Dp 364 cz

From DCEwiki
Jump to: navigation, search

Vliv neurčitosti modelu na splnění omezení veličin při prediktivní regulaci[edit]

Autor: Šantin Ondřej

Diplomové práce 2009

Stáhnout práci v PDF

364 dp cz.gif

Prediktivní řízení (MPC) je populární metoda, která dokáže přirozeně brát v úvahu omezení a na základě definovaného kritéra optimality zprostředkovat optimální řídící zásah. Hlavní nevýhodou tohoto přístupu je výpočetně náročná optimalizace, která se řeší v průbehu řízení pro každý aktivační zásah, tak že není takto možné řídit rychlé systémy. 0Tento nedostatek částečně odstraňuje explicitní formulace MPC. Zde je však limitujím faktorem složitost výsledného zákona řízení, která roste s počtem omezení, které jsou na systém kladeny. Další nevýhodou MPC je potřeba dostatečně přesného modelu řízeného systému, protože ten je použit pro predikci budoucího vývoje systému. Pokud je model nepřesně určen a vyskytují-li se poruchy, kvalita řízení ůže být nízká a a pro systémy s omezeními nemusí existovat výsledek optimalizace splňující zadaná omezení. Proto mnoho praktických aplikací MPC používá a tzv. řízení ”set range”, kde je umožněno aby se řízené veličiny pohybovaly v určitém rozsahu a jakékoliv porušení tohoto rozsahu je penalizováno nějakou kvadratickou funkcí. Bohužel, ”set range” řízení vyžaduje přidání velkého množství omezení, takže rychle vzrůstá i složitost zákona řízení explicitnčího MPC regulátoru. Konflikt toho, že je třeba zajistit existenci řešení optimalizace splňující zadaná omezení i přes neurčitost modelu a vliv poruch při malé složitosti zákona řízením MPC regulátoru, může být vyřešen použitím algoritmu, který je popsán v této práci.

Dp 2009 santin ondrej.pdf