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Abstrakt

Prediktivńı ř́ızeńı (MPC) je populárńı metoda, která dokáže přirozeně brát v úvahu

omezeńı a na základě definovaného kritéra optimality zprostředkovat optimálńı ř́ıd́ıćı

zásah. Hlavńı nevýhodou tohoto př́ıstupu je výpočetně náročná optimalizace, která se

řeš́ı v pr̊uběhu ř́ızeńı pro každý akčńı zásah, takže neńı takto možné ř́ıdit rychlé systémy.

Tento nedostatek částečně odstraňuje explicitńı formulace MPC. Zde je však limituj́ım

faktorem složitost výsledného zákona ř́ızeńı, která roste s počtem omezeńı, které jsou na

systém kladeny.

Daľśı nevýhodou MPC je potřeba dostatečně přesného modelu ř́ızeného systému, protože

ten je použit pro predikci budoućıho vývoje systému. Pokud je model nepřesně určen a

vyskytuj́ı-li se poruchy, kvalita ř́ızeńı může být ńızká a pro systémy s omezeńımi nemuśı

existovat výsledek optimalizace splňuj́ıćı zadaná omezeńı. Proto mnoho praktických ap-

likaćı MPC použ́ıvá tzv. ř́ızeńı ”set range”, kde je umožněno aby se ř́ızené veličiny pohy-

bovaly v určitém rozsahu a jakékoliv porušeńı tohoto rozsahu je penalizováno nějakou

kvadratickou funkćı. Bohužel, ”set range” ř́ızeńı vyžaduje přidáńı velkého množstv́ı

omezeńı, takže rychle vzr̊ustá i složitost zákona ř́ızeńı explicitńıho MPC regulátoru.

Konflikt toho, že je třeba zajistit existenci řešeńı optimalizace splňuj́ıćı zadaná omezeńı

i přes neurčitost modelu a vliv poruch při malé složitosti zákona ř́ızeńı MPC regulátoru,

může být vyřešen použit́ım algoritmu, který je popsán v této práci.
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Abstract

Model Predictive Control (MPC) is a popular method which can naturally deal with

constraints and provides optimal control actions based on a declared cost function. The

main drawback of this approach is need for on-line optimization, which limits the usage

of MPC only for slow process. The on-line optimization can be avoided by using the

Explicit formulation of MPC, where all optimization can be performed off-line, so that it

is possible to use MPC even for high-speed systems. Main drawback of Explicit formula-

tion of MPC is complexity of the result control law, which increases with the number of

constraints.

The weakness of MPC is the need for a good and accurate process model because the

model is used for prediction of future system response. When disturbances or model

uncertainty are present, the control performance may be poor and the solution of opti-

mization may be infeasible in constrained case. Thus many practical applications use the

range control, where the controlled variables are enabled to freely vary in specified range

and violation of the range is penalized by a quadratic function. The problem is that the

range control needs to add many constraints so that the complexity of resulting explicit

MPC control law will extremely increase.

The conflict that it is necessary to ensure the feasible solution of the constrained MPC,

despite of the small complexity of the control law, presence of model uncertainty and

disturbances can be solved by using the algorithm described in this work.
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Chapter 1

Introduction

Model predictive control (MPC) [56] is a control strategy that has been widely accepted

in the industrial process control community and implemented successfully in many com-

mercial applications [8], [1], [30]. The greatest strength of MPC is the intuitive way in

which constraints can be incorporated in a multivariable control problem formulation.

However, the traditional MPC strategy demands a great amount of on-line computation,

limiting the use of these kinds of controllers to processes with relatively slow dynamics,

since an optimization problem (often a constrained quadratic program (QP)) is solved at

each sampling time step.

Note that many progress was made in this field, namely the on-line active set strategy

for linear [19] and for nonlinear MPC [20] or interior-point method [63]. Another ap-

proach of solving QP for multivariable system, called multiplexed MPC, was introduced

in [42]. Here, the MPC problem is solved for each subsystem sequentially, and the sub-

system controls are updated as soon as the solution is available.

It has recently been shown that much of the computational effort in traditional MPC

can be done off-line. In [7] and [6] the authors present algorithms for solving multi-

parametric quadratic programs (mpQPs) that are used to obtain explicit solutions to the

MPC problem. Thus, the Explicit model predictive controller accomplishes on-line MPC

functionality without solving an optimization problem at each time step. This makes

the Explicit MPC usable for high-speed application, like engine control [51] or attitude

control for spacecraft [32].

The main disadvantage of the Explicit MPC is its large growth of complexity of a mp-QP

solution with increasing number of constraints. Although the complexity can be reduced

1



2 Chapter 1. Introduction

as show [27], [62], [33], the Explicit MPC is still limited to models with small state di-

mensions and few process inputs.

Stability and robustness are very important properties of each control system. For

MPC technology, these two properties are the subject of intensive research [53],[5],[46].

The weakness of MPC is the need for a good and accurate process model because

the model is used for prediction of future system response. Thus the conjunction of

model uncertainties and disturbance with constraints of process variables may caused

the infeasible solution of QP. This drawback is reduced by the range control approach

[43], where the soft constraints are used. The soft constraints are usually used to sys-

tem output to specify the range in which the controlled variables are enabled to freely

vary. The control action is without changes as long as the predictions of the controlled

variables are inside of the range. Violation of the specified range is penalized, usually

by a quadratic cost and then the appropriate control sequence that ensures return back

to the range is generated. This control sequence may be very aggressive in case of small

control or prediction horizon and may caused unsuitable behavior of the process response.

The main aim of this work is to introduce the algorithm which will provide the offset-

free tracking and the output soft constraints satisfaction in spite of model uncertainties,

disturbances and small control and prediction horizon of MPC in control problem where

some of the controlled variables are tracked to a given references and the rest of them

are controlled in specified range. The main idea of the algorithm is that the output soft

constraints are considered only in one step of the outputs prediction. Therefore when the

constraint is violated the controller ignores it up to step where the constraint is consid-

ered, thus no control action is generated immediately after the violation. This leads to

more careful control and the choice of the step, where the constraint is considered, is a

parameter of how much the control will be careful.

This approach also avoids the dramatic increase of the control law complexity which

arises in standard case, where the soft constraints are considered over the whole predic-

tion horizon.

For elimination the steady-state offset in model uncertainty and disturbances presence

the Unknown Input Observer method [50],[47],[11] was used.

The work is organized as follows: in Chapter 2 the required and motivating the-
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oretical background of model predictive control, with focus on linear MPC, and some

modifications are summarized. Afterwards, Chapter 3 reviews the parametric quadratic

programming and Explicit MPC with complexity analysis. The Chapter 4 gives some

insight to multivariable control and our algorithm is introduced. Practical usage of our

algorithm to model of port injection spark-ignited gasoline engine is described in Chapter

5. Finally, Chapter 6 is devoted to a conclusion and some ideas for future work.

1.1 Notation

In this work the next notation will be assumed:

A, T the matrices

Ã the augmented (modified) matrix A

x the column vector

x̃ the augmented (modified) column vector

uk,N the sequence uk, . . . , uN

In the identity matrix In ∈ Rn×n

a, β the constants

A Â 0 the positive-definite matrix

A º 0 the positive-semidefinite matrix

(̂.) the hat superscript denotes the estimation

u∗k,N the star superscript denotes the optimal value
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Chapter 2

Model Predictive Control

Model Predictive Control (MPC) is an advanced method of process control that has been

in use in the process industries such as chemical plants and destilation columns since the

1980s [48].

In MPC, model of the plant is used to predict the future evolution of the system state and

outputs to find proper control action. This control action is determined by optimizing

the certain cost function over the sequence of future control moves subject to operating

constraints. The goal of the optimization is to minimize the cost function (performance

index) which penalize unwanted behavior, such as high control action of controller, track-

ing error and others.

One of the main reasons why MPC is so popular, is ability to do on-line constraints

handling in a systematic way. But it makes this technique computationally demanding

and for finding the optimum of cost function, numerical algorithm needs to be used [63],

[20], [26], [4].

Next major selling point of MPC is easy tunning even for Multiple-Input Multiple-Output

(MIMO) systems, where classical way of tunning Proportional–Integral–Derivative con-

troller (PID) is too hard [34], [24].

The chapter is organized as follows: in the first section the prediction based on state-

space model and model uncertainty will introduced. In the second section the basic

algorithm for unconstrained and for constrained MPC will be formulated. Finally, in the

last section some modification of MPC such as ∆u-formulation or constraints handling

will be introduced. In conclusion of the section the methods for offset-free tracking will

be presented.

5



6 Chapter 2. Model Predictive Control

2.1 Prediction in Model Predictive Control

Most control laws, for example PID (proportional, integral and derivative) take into

account only expected closed-loop dynamics and they do not consider the future impli-

cation of current control actions. But MPC explicitly computes the predicted behavior

over some horizon.

In order to predict the future behavior of a process, we must have a model of how the

process behaves. In particular, this model must show the dependence of output on the

current measured variable and the current and/or future inputs.

In practice, most MPC algorithms use linear models because the dependence of the pre-

dictions on future control choices is then linear and this facilities optimization as well as

off-line analysis of expected closed-loop behavior. However, nonlinear models can be used

where the implied computational burden is not a problem and linear approximation is not

accurate enough. A few types of models can be used for prediction, e.g. CARIMA, FIR,

state-space model and other. This work will focus on linear time invariant state-space

models, for more information about others, see [56].

2.1.1 State-space Model

MPC is usually implemented in discrete time, so this work always consider the linear

time-invariant (LTI), discrete system

xk+1 = Axk + Buk (2.1)

yk = Cxk + Duk, (2.2)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control (input) vector, yk ∈ Rp is the

output vector, A, B, C and D are real n× n, n×m, p× n, and p×m matrices.

2.1.2 Prediction of the System Future Behavior

MPC algorithms make use of predictions of the system behavior. In this section it will

be shown how to compute those predictions for state-space model [14],[40].

Consider the state-space model (2.1), which gives the one step ahead predictions (modified

[56]):

xk+1 = Axk + Buk (2.3)

yk+1 = Cxk+1 + Duk+1, (2.4)
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One can use this relationship recursively to find predictions, for instance:

Write (2.3) at k + 2

xk+2 = Axk+1 + Buk+1 (2.5)

yk+2 = Cxk+2 + Duk+2, (2.6)

and substitute (2.3) into (2.5) to eliminate xk+1

xk+2 = A2xk + ABuk + Buk+1 (2.7)

yk+2 = CA2xk + CABuk + CBuk+1 + Duk+2 (2.8)

More generally one can continue this recursion to give the T -step ahead predictions as:

xk+T = AT xk + AT−1Buk + AT−2Buk+1 + · · ·+ Buk+T−1 (2.9)

yk+T = C
[
AT xk + AT−1Buk + AT−2Buk+1 + · · ·+ Buk+T−1

]
+ Duk+T(2.10)

Hence one can form the whole vector of future predictions up to a horizon Tp as follows:



xk+1

xk+2

...

xk+Tp




︸ ︷︷ ︸
xk+1,Tp

=




A

A2

...

ATp




︸ ︷︷ ︸
Vx

xk +




B

AB B
...

. . .

ATp−1B B 0




︸ ︷︷ ︸
Sx




uk

uk+1

...

uk+Tp−1




︸ ︷︷ ︸
uk,Tp−1

(2.11)

and for outputs:



yk+1

yk+2
...

yk+Tp




︸ ︷︷ ︸
yk+1,Tp

=




CA

CA2

...

CATp




︸ ︷︷ ︸
Vy

xk +




CB D

CAB CB
...

. . .

CATp−1B CB D




︸ ︷︷ ︸
Sy

uk,Tp−1 (2.12)

Thus the predictions of future states and outputs over prediction horizon are affine in the

current state and the future control moves:

xk+1,Tp = Vx xk + Sx uk,Tp−1 (2.13)

yk+1,Tp
= Vy xk + Sy uk,Tp−1 (2.14)

where Vy xk is reaction of the system output to state xk, and Sy uk,Tp−1 is reaction of

the system output to control moves uk,Tp−1 .
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2.1.3 Model Uncertainty

Each system model has some uncertainty caused by noise affecting the model identifica-

tion, by an inaccurate model structure, by noise presence, by surroundings or by some

another influence. Therefore a fundamental question about MPC is its robustness. Any

statement about robustness must make reference to a specific uncertainty range and to

a specific performance criteria. While a rich theory has been developed for the robust

control of linear systems, little is known about the robust control of linear systems with

constraints. For handle the robustness of constrained MPC, many approaches were in-

troduced: Robust Invariant Sets, Min-Max Formulation of MPC, etc. More information

about these, reader can find in [56].

An important and probably fundamental part of robust controller design is the way of

uncertainty description and modeling. There are different approaches to describe model

uncertainties depending mainly on the type of technique used for designing the controllers.

In the MPC context, the most important approaches are the following two:

• The true system Σ0 belongs to a set S, that is Σ0 ∈ S, where the set S is a given

family of LTI systems.

• An unmeasured noise wk (or measured/unmeasured disturbances) enters the sys-

tem, where w ∈ W and W is a given set.

The parameter uncertainty belongs into the first family of uncertainties description. The

real model then vary within the convex hull defined by set of possible models. That is,

for the nominal model xk+1 = A0xk + B0uk may for example exist set of models:

xk+1 = (A0 + ∆A) xk + B0uk, (2.15)

where ∆A represents parametric uncertainty of model dynamic and A0, B0 are the sys-

tem matrices of nominal model.

The second types of uncertainties description can be for example written as

xk+1 = A0xk + B0uk + wk, w ∈ W , (2.16)

where w represent noise or measured/unmeasured bounded disturbances.

One can figure out that it is possible to transform parametric uncertainty (2.15) into the

disturbance form of (2.16):

xk+1 = (A0 + ∆A) xk + B0uk = A0xk + B0uk + ∆Axk︸ ︷︷ ︸
wk

. (2.17)
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So it is legitimate to deal with the disturbance model uncertainty as many papers were

written about it, for example [50], [47], [11]. Special case of modeling uncertainty in

presence of constant disturbance is discussed later in section (2.3.6).

2.2 Basic Algorithm of Model Predictive Control

Model Predictive Control (MPC) uses an explicit process model to predict the future

plant response over the chosen period, also known as the prediction horizon Tp. At each

time step an optimization problem is solved over the sequence of future control moves,

possibly subject to constraints. The future control moves are optimized over the control

horizon Tc. Situation can be seen at figure (2.1), where n is natural number and TS is

sampling time.

Figure 2.1: Control and prediction horizon

We also define, the constraints horizon Tcs. It is the horizon over which the constraints

have to be satisfied. It is usually the same or smaller than the prediction horizon Tp.

The first of optimal control moves is the control action applied to the process. At

the next time step, the prediction and control horizon of the optimization problem are

shifted forward in time and procedure is repeated. This concept is called receding horizon

and is described in next section.

It should be denoted, that the prediction horizon should include all significant dynamics,
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otherwise performance of the control loop may be poor and important events may be

unobservable.

Next, constant reference tracking problem for system (2.1) would be considered. The

controlled variables are defined as:

zk = Z yk, (2.18)

with zk ∈ Rpz , Z full row rank and p ≥ pz.

Equation (2.18) means, that not all outputs track their references, but some of them are

controlled only in defined range.1.

The goal is to asymptotically eliminate the output reference tracking error for a given

constant reference signal r∞, that is

zk −→ r∞, k −→∞. (2.19)

Unless specified otherwise, conditions zk = yk, that is Z = Ip are assumed.

2.2.0.1 The Receding Horizon Concept

Applying a computed control sequence to system, after one step of sequence, the system

would be controlled in open loop. This approach is not robust and reaction to disturbance

is not possible. For robust control it is necessary to measure actual output of the system

in each step and recompute a control sequence. This scheme is called the receding horizon

concept, that means horizon which is constantly moving away.

At sample k, the control law optimizes predicted performance over the time span [56]:

k + 1 ≤ t ≤ k + Tp. (2.20)

At sample k + 1, the control law optimizes predicted performance over the time span:

k + 2 ≤ t ≤ k + Tp + 1. (2.21)

Thus, the time span over which the optimization takes place is always moving. At the

current sample one takes into account points that were previously beyond the time span.

Implementation is simple. There is optimal control sequence u∗k,Tc−1 found in k-th step,

but only first control move is applied to system.

uk = [Im,0, · · · ,0] u∗k,Tc−1 (2.22)

1The range control is briefly described in section 2.3.4
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After applying first control move of optimal sequence to system, new output yk+1 is

measured and new optimal control sequence uk+1,Tc is computed.

2.2.1 Unconstrained MPC

In MPC, the optimal control sequence u∗k, · · · , u∗k+Tc−1 is searched. This sequence min-

imizes a chosen cost function with respect of dynamics of controlled system. Quadratic

cost function is traditionally used.

For distinguish actual and predicted values of outputs, consider new labeling. Expression

yk+n|k means predicted value of output y at time k + n on the basis of output at time k.

It is clear that yk|k = yk.

Thus algorithm of MPC controller can be written as optimization problem over prediction

and control horizon respectively:

u∗
n,Tc−1 = arg min

un,Tc−1

J(un, · · · , un+Tc−1|xn, rn) =

=
1

2

[
n+Tp−1∑

k=n

(yk − rk)
T Q (yk − rk) +

n+Tc−1∑

k=n

uT
k Ruk

]
(2.23a)

s.t. xk+1 = Axk + Buk (2.23b)

yk = Cxk + Duk (2.23c)

Q = QT º 0, R = RT Â 0. (2.23d)

where rk is output reference at time k, Q ∈ Rp×p, R ∈ Rm×m are weighting matrices of

reference tracking error and control moves. These matrices create together with predic-

tion and control horizon tuning parameters of controller.

It is assumed that reference rk is constant during the prediction horizon, that is:

rk+i = rk, 0 ≤ i ≤ Tp (2.24)

It is also assumed that control moves are constant beyond the control horizon, that is:

uk+i|k = uk+Tc−1|k, Tc ≤ i < Tp. (2.25)

This restriction, called move blocking [13], can be easily implement by modifying the

predictions (2.13):

xk+1,Tp = Vx xk + Sx Mbuk,Tc−1 (2.26)

yk+1,Tp
= Vy xk + Sy Mbuk,Tc−1, (2.27)
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where Mb ∈ RTp×Tc . For Single-Input-Single-Output (SISO) system, Tc = 1 and Tp = 4

it is:

Mb =
[

1 1 1 1
]T

(2.28)

Next, prediction matrix Ś∗ always represents the modified prediction matrix, that is:

Ś∗ = S∗ Mb (2.29)

Finding optimal control sequence which minimizes quadratic cost function (2.23) rep-

resents dynamic optimization and in case when there are no constraints it can be found

as analytic solution.

Using the predictions (2.26) one can formulate the cost function as:

J =
(
Vy xk + Śy uk,Tc−1 − rk+1,Tp

)T

Q́
(
Vy xk + Śy uk,Tc−1 − rk+1,Tp

)
+

+ uT
k,Tc−1Ŕuk,Tc−1, (2.30)

where Q́ ∈ R(p·Tp)×(p·Tp), Ŕ ∈ R(m·Tc)×(m·Tc) are weighting block diagonal matrices of

reference tracking error and control moves over prediction or control horizon respectively.

Then the cost function can be rewritten as: 2

u∗
k,Tc−1 = arg min

uk,Tc−1

J(uk, · · · , uk+Tc−1|xk, rk) =

=
1

2
uT

k,Tc−1

(
Śy

T
Q́Śy + Ŕ

)
uk,Tc−1 +

+
[(

Vyxk − rk+1,Tp

)T
Q́Śy

]
uk,Tc−1 (2.31a)

s.t. xk+1 = Axk + Buk (2.31b)

yk = Cxk + Duk (2.31c)

Q́ = Q́
T º 0, Ŕ = Ŕ

T Â 0. (2.31d)

Using derivate of cost function one can find optimal control sequence:

u∗k,Tc−1 = −Fxk + Grk, (2.32)

where

F =
(
Śy

T
Q́Śy + Ŕ

)−1

Śy
T
Q́Vy (2.33)

G =
(
Śy

T
Q́Śy + Ŕ

)−1

Śy
T
Q́, (2.34)

2Additional constant, which does not effect the solution is omitted.
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where matrix inversion of
(
Śy

T
Q́Śy + Ŕ

)
is possible due assumption (2.31d).

According to equation (2.32), it can be denoted that optimal analytic MPC is state feed-

back controller.

2.2.2 Constrained MPC

Found control law (2.32) in previous section can not incorporate the constraints to vari-

ables in the loop, e.g. controls, states, outputs, etc.. This drawback can be removed by

using the constrained MPC, which allows the constraints handling in a systematic way.

Now let’s define the state augmentation which will be mandatory for Explicit formulation

of MPC in chapter 3 and it also simpilifies the next text.

2.2.2.1 State augmentation to reference

For reference tracking problem is advantage to augment the state space model of system

(2.1) to state of reference:
[

xk+1

xref k+1

]

︸ ︷︷ ︸
x̃k+1

=

[
A 0

0 Ip

]

︸ ︷︷ ︸
Ã

[
xk

xref k

]

︸ ︷︷ ︸
x̃k

+

[
B

0

]

︸ ︷︷ ︸
B̃

uk (2.35)

yk =
[

C 0
]

︸ ︷︷ ︸
C̃

x̃k + Duk (2.36)

where xref k are states of references and x̃k is augmented state vector.

Main advantage of this approach is that one can easily get reference tracking error

ek = yk − rk as:

ek =
[

C −Ip

]

︸ ︷︷ ︸
C̃e

x̃k + Duk, (2.37)

and also it’s prediction over prediction horizon Tp

ek+1,Tp = Ve x̃k + Śe Mb uk,Tc−1, (2.38)

where Ve and Śe are prediction matrices with reference tracking error as system output

defining as (2.37). States reference values then will become a parameter by which the

predictive controller is parametrized.
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2.2.2.2 Cost Function with Constraints

Consider now quadratic cost function (2.23) and rewrite it using (2.35),(2.37) and let’s

add constraints to trajectories of states x̃k ∈ X , outputs yk ∈ Y and control moves

uk ∈ U .

u∗
n,Tc−1 = arg min

un,Tc−1

J(un, · · · ,un+Tc−1|x̃n) =

=
1

2

[
n+Tp−1∑

k=n

eT
k Qek +

n+Tc−1∑

k=n

uT
k Ruk

]
(2.39a)

s.t. x̃k+1 = Ãx̃k + B̃uk, (2.39b)

yk = C̃x̃k + Duk, (2.39c)

ek = C̃ex̃k + Duk, (2.39d)

Q = QT º 0, R = RT Â 0, (2.39e)

x̃k ∈ X , yk ∈ Y , uk ∈ U , k = n, · · · , n + Tp − 1 (2.39f)

Obtained control law is not linear function of the actual state and problem can not be

solved analytically. In our case Quadratic Programming (QP) numerical algorithm is used

for finding a solution. It can be shown that the solution is a piecewise affine function

of system state. This conclusion is used in Explicit formulation of MPC described in

chapter 3.

2.2.2.3 Quadratic Programming

Quadratic programming (QP) is a special type of mathematical optimization problem. It

is the problem of optimizing (minimizing or maximizing) a quadratic function of several

variables subject to linear constraints on these variables.

The quadratic programming problem can be formulated as:

min
z

{
f(z) =

1

2
zT Hz + zT f + β|Az ≤ b

}
, (2.40)

where H = HT ∈ Rs×s, H º 0, f ∈ Rs, A ∈ Rq×s, b ∈ Rq, s is length of variable z

and q is number of constraints.

Constraints Az ≤ b create convex set (also polyhedral) and together with condition of

positive semi-definite of H º 0 one can say, that even optimization problem (2.40) would

be complex. For these types of optimization many numerically stable algorithms already

exist. For more information about convex optimization, please see [12].
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2.2.2.4 Quadratic predictive controller

Let’s formulate QP for optimal control law. For purposes of the following chapters one

can formulate constraints inequalities as:

Gc uk ≤ W c + Ec x̃k, (2.41)

with G ∈ R1×m, W ∈ R and E ∈ R1×ñ and ñ is length of augmented system state

vector.

Then cost function can be rewritten as:

u∗
n,Tc−1 = arg min

un,Tc−1

J(un, · · · , un+Tc−1|x̃n) =

=
1

2

[
n+Tp−1∑

k=n

eT
k Qek +

n+Tc−1∑

k=n

uT
k Ruk

]
(2.42a)

s.t. x̃k+1 = Ãx̃k + B̃uk, (2.42b)

yk = C̃x̃k + Duk, (2.42c)

ek = C̃ex̃k + Duk, (2.42d)

Gc uk ≤ W c + Ec x̃k, k = n, · · · , n + Tp − 1, (2.42e)

Q = QT º 0, R = RT Â 0. (2.42f)

As in case of unconstrained predictive controller, using the predictions (2.26) one can get

cost function in matrix form:

J(uk,Tc−1|x̃k) =
1

2
uT

k,Tc−1 H uk,Tc−1 + x̃T
k F uk,Tc−1 +

1

2
x̃T

k Y x̃k, (2.43a)

s.t. G uk,Tc−1 ≤ W + E x̃k, (2.43b)

where matrices H , F and Y are defined as follows:

H = Śe
T
Q́Śe + Ŕ, (2.44)

F = Ve
T Q́Śe, (2.45)

Y = Ve
T Q́Ve. (2.46)

It should be denoted that term with matrix Y of (2.43) can be omitted because there is

no influence to optimal solution uk,Tc−1.

Where matrices G ∈ Rq×m·Tc , W ∈ Rq and E ∈ Rq×ñ.



16 Chapter 2. Model Predictive Control

Cost function (2.43) is quadratic program where optimization vector is control se-

quence uk,Tc−1 and state vector x̃ is parameter of this program. For H Â 0 one can

conclude, that solution u∗k,Tc−1 is unique 3 and defined by actual state xk:

u∗k,Tc−1 (xk) = arg min
uk,Tc−1

J(uk,Tc−1|x̃k) s.t. constraints (2.47)

2.3 Modifications of Model Predictive Control

In practice, the MPC is usually not implemented in such way as it is described in previous

section but it is freely modified. This section gives some traditional approaches how MPC

can be modified for constraints handling and for robust tracking problem.

2.3.1 Obtaining Integral Character of MPC

Equation (2.32) shows, that MPC is state feedback controller, which has only proportional

character. It means, that if reference tracking is assumed, the optimal control moves

can not be zero in steady state. Thus, the standard MPC is modified to obtain the

integral character, which provides the zero control moves, so-called control increments

in steady state as mentioned bellow. It should be denoted that in model uncertainty or

disturbances presence, the tracking error will be still non-zero. To remove this drawback,

more sophisticated methods have to be used. These methods are described in section

2.3.6.

In the MPC, obtaining integral character can be done by modifying the cost function,

sometimes called ∆u-formulation or control increment formulation [17]:

∆u∗
n,Tc−1 = arg min

∆un,Tc−1

J(x̃n, ∆un, · · · , ∆un+Tc−1) =

=
1

2

[
n+Tp−1∑

k=n

eT
k Qek +

n+Tc−1∑

k=n

∆uT
k R∆uk

]
, (2.48a)

s.t. G ∆uk,Tc−1 ≤ W + E x̃k, (2.48b)

where ∆uk = uk − uk−1 and ∆uk,Tc−1 is vector of new optimizing variable - control

increments. It is also necessary to augment state vector. Thus one can rewrite the

3This conclusion can be found in [12].
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state-space equation (2.35) as




xk+1

uk

xref k+1




︸ ︷︷ ︸
x̃k+1

=




A B 0

0 Im 0

0 0 Ip




︸ ︷︷ ︸
Ã




xk

uk−1

xref k




︸ ︷︷ ︸
x̃k

+




B

Im

0




︸ ︷︷ ︸
B̃

∆uk (2.49)

yk =
[

C D 0
]

︸ ︷︷ ︸
C̃

x̃k + D∆uk, (2.50)

ek =
[

C D −Ip

]

︸ ︷︷ ︸
C̃e

x̃k, (2.51)

where states uk−1 represent last control move.

Output of controller is then sequence of control increments ∆uk. To obtain the control

move to process it is necessary to sum the actual control increment ∆uk with last control

move uk−1, that is

uk = ∆uk + uk−1. (2.52)

Last control move uk−1 can be internally computed by the controller or it is necessary to

include this as next input to controller.

In case of controller usage without weighting the control increments (2.42a), the cost

function is not set up 4 so that the minimum (in steady state) corresponds to zero tracking

error, that is, the optimum control will necessarily cause offset. The ∆u-formulation

causes the problem transformation to one, where in steady state (for nominal model) for

the reference tracking error and control increment is next valid

ess → 0, ∆uss → 0, (2.53)

Then value of cost function (2.48) is also minimum, that is:

J(x̃n, ∆un, · · · , ∆un+Tc−1)ss = 0, (2.54)

In case of cost function usage (2.48), it is necessary to change assumption (2.25) of

constant control moves uk beyond control horizon and use new blocking strategy [13]:

∆uk+i|k = 0, Tc ≤ i < Tp. (2.55)

4For instance, the weighting matrix of control R is too high.
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This can be easily implemented by picking out first Tc ·m columns of prediction matrix

S∗. Predictions of states and outputs are then:

xk+1,Tp = Vx x̃k + S̆x ∆uk,Tc−1 (2.56)

yk+1,Tp
= Vy x̃k + S̆y ∆uk,Tc−1, (2.57)

where S̆∗ is first Tc ·m columns of prediction matrix S∗.

2.3.2 Constraints Handling

As it was already said, great advantage of MPC is ability to take constraints of any sys-

tem variables into account. But on the other hand, constraints presence is main reason

why the optimization problem (2.43) or (2.48) is so computationally demanding. When

sampling times become so short that computation times for QP solution can no longer

be neglected, specialized algorithms that exploit the structure of the QPs arising in MPC

problems become necessary. One of these algorithms is Explicit formulation of QP de-

scribed in chapter 3.

The constraints may occur on any variable in the loop. The MPC controller has to

ensure that none of the constraints are violated by the optimal predictions over the pre-

diction horizon in the cost function J .

In practical problems it is common to find that the desirable constraints (2.43b) are

infeasible. It means they can not all be satisfied simultaneously. In this case, if constraints

do not admit a solution, then MPC optimisation is ill posed and has no solution. This

case may be dangerous in real process as the resulting control would be arbitrary. To

avoid this situation, constraints should be placed into two categories - Hard constraints

and Soft constraints [56].

For purposes of the following chapters the constraints inequalities will be formulated in

following form:

G ∆uk,Tc−1 ≤ W + E x̃k, (2.58)

where nS is number of slack variables (soft constraints) defined later, G ∈ Rq×(m·Tc+nS),

W ∈ Rq and E ∈ Rq×(ñ+nS).

Next, use of cost function (2.48) weighing control increments is assumed.
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2.3.3 The Hard Constraints

The hard constraints are constraints which must be satisfied. The hard constraint are

naturally used for limit the control variable on actuators or on valves (which must lie

between 0% and 100%) open.

2.3.3.1 Control Rate Constraints

Sometimes it is necessary to limit the control rate especially in chemical industry, where

time changes of temperature has to be finite.

Take upper and lower limits on the control rate to be

∆u ≤ ∆u ≤ ∆u (2.59)

Using assumption (2.55), control increment are predicted to be zero beyond the control

horizon Tc, one can write constraints over control horizon as:


∆u

∆u
...

∆u




︸ ︷︷ ︸
∆U

≤ ∆uk,Tc−1 ≤




∆u

∆u
...

∆u




︸ ︷︷ ︸
∆U

(2.60)

This can be rewritten in form of linear inequalities (2.48b),
[

Im·Tc

−Im·Tc

]
∆uk,Tc−1 ≤

[
∆U

−∆U

]
+ 0 x̃k (2.61)

2.3.3.2 Control Constraints

More often one wants to limit control variables because of finite response of actuators.

Consider upper and lower limit on the control variable

u ≤ u ≤ u. (2.62)

This has to be satisfied over prediction horizon Tp with assumption (2.25) that control

moves are constant beyond the control horizon. Thus, one can write


u

u
...

u




︸ ︷︷ ︸
U

≤ uk,Tc−1 ≤




u

u
...

u




︸ ︷︷ ︸
U

. (2.63)
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For this, one must express the future control over prediction horizon. This can be done

by creating new output of the augmented system (2.49)

uk =
[

0 Im 0
]

︸ ︷︷ ︸
C̃u




xk

uk−1

xref k


 + ∆uk, (2.64)

and computing it’s prediction over prediction horizon Tc

uk,Tc−1 = Vu x̃k + S̆u ∆uk,Tc−1, (2.65)

where Vu and S̆u are prediction matrices for augmented system (2.49) with output (2.64).

Then one can rewrite (2.63) in form of linear inequalities (2.48b),

[
S̆u

−S̆u

]
∆uk,Tc−1 ≤

[
U

−U

]
+

[
−Vu

Vu

]
x̃k. (2.66)

2.3.3.3 Output Constraints

The output constraints can be set up analogously to control constraints in section 2.3.3.2.

It should be noted that the output constraints are taken up to the prediction horizon Tp.

From output equation (2.50) and it’s prediction (2.57) one can write

[
S̆y

−S̆y

]
∆uk,Tc−1 ≤

[
Y

−Y

]
+

[
−Vy

Vy

]
x̃k, (2.67)

where Y , Y are lower and upper limits of output over prediction horizon.

2.3.4 The Soft Constraints

Soft constraints are the ones, which should be satisfied if possible. It is assumed that if

necessary, they can be violated at some penalty, for example a loss of product quality.

Usually soft constraints are on output/states although they could be applied to control

variable too.

The soft constraints are formulated as next additive terms to cost function with appro-

priate weighting coefficients. The soft constraints are the base for the Range Control

Algorithm [43],[52], where the controlled variables are enabled to freely vary in specified

range. The control action is without changes as long as the predictions of the quanti-

ties are inside of the range. Violation of the specified range is penalized, usually by a
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quadratic cost and then the appropriate control sequence that ensures return back to

range is generated. Ranges can be time-varying. The limits of the time-varying range

create so-called funnels in the time and they specify the limits for the time trajectory of

the system quantities. Using the soft constraints one can also find a feasible solution of

MPC optimization.

2.3.4.1 Output Constraints

Consider a lower and upper soft constraints on outputs, that is:

y − ε ≤ y ≤ y + ε (2.68)

where y, y are lower and upper limits of outputs and ε, ε are the slack variables, the

values how much can be lower and upper limit violated.

Let’s create substitutes

ε =
[

ε ε
]T

y =
[

y y
]T

ρ =

[
ρ 0

0 ρ

]
, (2.69)

where ρ and ρ are penalty matrices of violations of the lower and upper constraints.

The goal of MPC is then to minimize the violations ε and ε.

Let’s modify the cost function (2.48)

J(∆uk,Tc−1, ε|x̃k) = (2.70)

=
1

2
∆uT

k,Tc−1 H ∆uk,Tc−1 +
1

2
εT ρε + x̃T

k F ∆uk,Tc−1 +
1

2
x̃T

k Y x̃k,

Thus, one can augment the minimized control sequence to violations, that is

h =
[

∆uk,Tc−1 ε
]T

. (2.71)

Then cost function can be rewritten to matrix form as (2.43):

h∗ = arg min
h

J(h|x̃k) =
1

2
hT H́h +

[
x̃k

y

]T

F́ h +

[
x̃k

y

]T

Ý

[
x̃k

y

]
, (2.72)

where

H́ =

[
H 0

0 ρ

]
F́ =

[
F 0

0 0

]
Ý =

[
Y 0

0 0

]
. (2.73)

The soft constraints then can be written as linear inequalities
[

S̆y −1 0

−S̆y 0 −1

]
h ≤

[
0

0

]
+

[
−Vy 1 0

Vy 0 −1

] [
x̃k

y

]
. (2.74)
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2.3.5 State Estimation

From (2.32), it is clear that MPC is state feedback controller. For it’s operation it is

necessary to know a state values of a controlled system [55]. But in many cases in

practice, it may be either impossible or simply impractical to obtain measurements for

all states. In particular, some states may not be available for measurement at all. There

are also cases where it may be impractical to obtain state measurements from otherwise

available states because economic reasons (e.g. some sensors may be expensive) or because

of technical reasons (e.g. too noisy environment for any useful measurements). At figure

2.2, such state observer is shown.

Figure 2.2: State observer

Thus, it is necessary to estimate the state of the system from available measurements,

typically outputs and controls. Given system parameters A, B, C and D and the values

of the controls and outputs over a time interval, it is possible to estimate the state when

the system is observable 5.

For distinguish actual, last or predicted values of variables and on what their pre-

dictions are based, consider new labeling. Expression sk+1|k means predicted value of

variable s based on data up to time k. Expression sk|k−1 means estimation value of

variable s based on data up to time k − 1.

5That means, matrix of observability O must be of full row rank.
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2.3.5.1 The Predictor Estimator

The full-order identical estimator [2] of the full state xk for system (2.1), can be con-

structed as a system

x̂k+1|k = Ax̂k|k−1 + Buk + Lεk|k−1, (2.75)

where ŷk|k−1 = Cx̂k|k−1 + Duk, (̂.) labels estimation and L ∈ Rn×p is state injection

gain. We also define the output prediction error as

εk|k−1 = yk − ŷk|k−1 (2.76)

Dynamic of state estimation error is then

ek+1|k = xk+1 − x̂k+1|k = (A − LC) ek|k. (2.77)

If the eigenvalues of A − LC are inside the open unit disk of the complex plane, then

ek → 0 as k →∞, independently of the initial condition e0 = x0 − x̂0. This asymptotic

state estimator is called Luenberger observer [44].

If pair (A,C) is not observable but the unobservable eigenvalues are stable, i.e.,

(A,C) is detectable, then error ek will still tend to zero asymptotically. Hower, the

unobservable eigenvalues will appear in this case as eigenvalues of A − LC, and they

may affect the speed of the response of the estimator in the undesirable way.

2.3.5.2 The Filter

From (2.75) one can deduce that the state estimate x̂k is based on measurements up to

and including yk−1. It is often in interest in applications to determine the state estimate

x̂k based on measurement up to and including yk. If the computation time required

to calculate x̂k is short compared with the sample period in a sampled-data system,

then it is certainly practically possible to determine the estimate x̂k before xk+1 and

yk+1 are generated by the observed system. If the state estimate, which is based on

current measurements of yk, is to be used to control the system, then the unavoidable

computational delays should be taken into consideration.

Denote x̄k the current state estimate based on measurements up through yk. Thus the

filter or also the current estimator [2] is system described as

x̄k|k = x̂k|k−1 + Lc

(
yk −Cx̂k|k−1

)
, (2.78)

x̂k|k−1 = Ax̄k−1|k−1 + Buk−1, (2.79)
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It can be shown, that if

L = ALc, (2.80)

then the prediction estimator and filter are equivalent. For current estimator one can get

dynamic of estimation error ēk = xk − x̄k

ēk+1|k = (A − LcCA) ēk|k. (2.81)

2.3.5.3 The Kalman Filter

In 1960, R.E. Kalman published his famous paper [67] describing a recursive solution to

the discrete-data linear filtering problem. Since that time, due in large part to advances

in digital computing, the Kalman filter has been the subject of extensive research [58]

and application, particularly in the area of autonomous or assisted navigation.

The Kalman filter is the estimator for stochastic process. Consider the linear time in-

variant stochastic, discrete system

xk+1 = Axk + Buk + vk (2.82)

yk = Cxk + Duk + ek, (2.83)

where vk, ek are non correlated 6 discrete white noises with known covariances.

cov





[
vk

ek

]
·
[

vk

ek

]T


 =

[
Q 0

0 R

]
. (2.84)

Note that matrices Q and R create the tunning parameters of the filter. They say, how

the designer trusts to the system model and to measurements of the process outputs.

Because of stochastic formulation, Kalman filter is looking for the state values of

the system in linear means squares sense 7. It implements Linear Mean Squares (LMS)

algorithm, thus mean value of the states is

E
{
xk|k−1

}
= x̂k|k−1, (2.85)

and covariance of the state is

cov
{
xk|k−1

}
= P k|k−1 (2.86)

6If the noises are correlated, there exists a transform, which converts the system into one with non

correlated noises.
7Gaussian noise are assumed.
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We define the update step of the filter (according to [31]):

x̂k|k = x̂k|k−1 + Lk

(
yk −Cx̂k|k−1 −Duk

)
, (2.87)

P k|k = P k|k−1 −Lk

(
CP k|k−1C

T + R
)
L

T

k (2.88)

where Lk = P k|k−1C
T

(
CP k|k−1C

T + R
)−1

is the Kalman filter gain of update step or

also innovation gain.

And predict step of the filter:

x̂k+1|k = Ax̂k|k + Buk (2.89)

P k+1|k = AP k|kA
T + Q (2.90)

Both steps can be joined together into one step algorithm:

x̂k+1|k =
(
A−ALkC

)
x̂k|k−1 +

(
B −ALkD

)
uk + ALkyk (2.91)

P k+1|k = AP k|k−1A
T −ALk

(
CP k|k−1C

T + R
)
L

T

k AT + Q (2.92)

It is also possible to use the Kalman filter gain defined as:

Lk = ALk = AP k|k−1C
T

(
CP k|k−1C

T + R
)−1

(2.93)

And get the one step Kalman algorithm:

x̂k+1|k = (A−LkC) x̂k|k−1 + (B − LkD) uk + Lkyk (2.94)

P k+1|k = AP k|k−1A
T −Lk

(
CP k|k−1C

T + R
)
LT

k AT + Q (2.95)

Equation (2.95) together with Kalman filter gain definition (2.93) is well known Discrete

Riccati Equation (DRE) [39]. In many cases its solution converges 8 to limit value P

P = lim
k→∞

P k+1|k. (2.96)

If such solution exists, then it is also valid for Discrete Algebraic Riccati Equation (DARE)

defined as

P = APAT −L
(
CT PC + R

)
LT + Q, (2.97)

where L is limit value of Kalman filter gain

L = APCT
(
CPCT + R

)−1
(2.98)

There are two variants of discrete-time Kalman estimators [61]:

8Conditions of the existence of the limit solution can be found for example in [58].
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2.3.5.3.1 Current estimator The current estimator generates output estimates ŷk|k
and state estimates x̂k|k using all available measurements up to yk. Output equations of

this filter is then

ŷk|k = Cx̂k|k−1 + Duk + CL
(
yk −Cx̂k|k−1 −Duk

)
(2.99)

x̂k|k = x̂k|k−1 + L
(
yk −Cx̂k|k−1 −Duk

)
︸ ︷︷ ︸

innovation

, (2.100)

where the innovation gain L = PCT
(
CPCT + R

)−1
updates the prediction x̂k|k−1 us-

ing the new measurements yk with innovation.

Note that the current estimator should be used every time where the designer needs pre-

cise estimation and computation time of the control action of the controller are assumed

to be very small in comparison with the sampling time.

2.3.5.3.2 Delayed estimator The delayed estimator generates output estimates ŷk|k
and state estimates x̂k|k using measurements only up to yk−1. This estimator is easier to

implement inside control loops and has the output equation

ŷk|k−1 = Cx̂k|k−1 + Duk (2.101)

x̂k|k−1 = x̂k|k−1 (2.102)

2.3.6 Unknown Input Observer

Closed-loop performance of model-based control (for example MPC) algorithm is directly

related to model accuracy [50]. In practice, modeling error and unmeasured disturbances

can lead to steady-state offset unless precautions are taken in the control design. Elimi-

nation of steady-state offset is accomplished in two basic ways. The first method involves

modifying the control objective to include integration of the tracking error. This method,

employed by the PID control algorithm, can also be used in MPC framework [38]. In the

MPC framework, the integral term is incorporated by augmenting the process model with

tracking error states [50]. For large-scale systems, this augmentation can significantly in-

crease the computational time of the dynamic optimization. This effect is particularly

bothersome when explicit Model Predictive Control is used, where the complexity in-

creases quickly with the number of state variables 9. This approach also requires an

anti-windup algorithm for the integral term to prevent an unnecessary, and sometimes

9The Explicit Model Predictive Control is briefly described in chapter 3.
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costly performance penalty.

A second general approach to eliminating steady-state offset involves augmenting the

process model 10 with a disturbance model which is used to estimate and predict the

mismatch between measured and predicted outputs. The mismatch can be caused by the

unknown inputs, as unmeasured or measured disturbances, unknown control action, or

unmodeled system dynamics or its uncertainty.

The method which allows an estimation of the unknown input to controlled system is

called Unknown Input Observer (UIO) [18],[23]. Situation is shown in figure 2.3. Here,

an unknown inputs v and e and disturbance d enter to the controlled system and the

Unknown input observer estimate them to eliminate the steady-state offset of output y.

Figure 2.3: MPC controller with unknown input observer

In MPC framework, the augmentation of the process model to include a constant

step disturbances to eliminate steady-state offset is widely used when tracking a constant

reference. This disturbance, which is estimated from the measured process variables, is

generally to remain constant in the future and its effect on the controlled variables is

removed by shifting the steady-state target for the controller.

Closed loop controller performance is directly related to how accurately the disturbance

model represents the actual disturbances entering the process. This subject has become

known as the internal model principle [21].

10It should be denoted that augmented process model must be also used for prediction of the MPC

controller.
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In industrial model predictive control implementations, offset-free control is commonly

achieved through the use of a step output disturbance model. A constant output distur-

bance model can be constructed using the following augmented state-space model [50]

[
xk+1

pk+1

]
=

[
A 0

0 Isp

][
xk

pk

]
+

[
B

0

]
uk, (2.103)

yk =
[

C Gp

] [
xk

pk

]
+ Duk, (2.104)

in which p ∈ Rsp , sp is the number of augmented output disturbance states, and Gp

determines the effect of these states on the output. In the standard industrial MPC

implementation, Gp = Ip and the output disturbance is estimated as pk = yk −Cxk −
Duk. The result is deadbeat observer for the output disturbance states and an open-loop

observer for the model states.

The output disturbance model (2.103) is simple to implement but may lead to poor

performance when a disturbance enters elsewhere in the loop. The solution is to augment

the system model with an input or state disturbance. The state disturbance can be

represented as

[
xk+1

dk+1

]
=

[
A Gd

0 Isd

][
xk

dk

]
+

[
B

0

]
uk, (2.105)

yk =
[

C 0
] [

xk

dk

]
+ Duk, (2.106)

where d ∈ Rsd , sd is the number of augmented disturbance states, and Gd determines

the effect of the disturbance. Input disturbances can be represented by choosing Gd = B.

For linear systems, a general block diagonal disturbance model that includes both

state/input and output disturbances is

x̃k+1 = Ãx̃k + B̃uk

yk = C̃x̃k + Duk, (2.107)

in which the augmented state vector and system matrices are defined as follows:

x̃k =




xk

dk

pk


 , Ã =




A Gd 0

0 Isd
0

0 0 Isp


 , B̃ =




B

0

0


 , C̃ =

[
C 0 Gp

]
(2.108)
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On two next examples, the output and the state disturbance rejection will be shown on

general SISO system with the requirements of offset-free control using the unknown input

observer method.

Example 2.1 (Output disturbance rejection): Let’s also consider presence of the

output disturbance affected to the system process output. At figure 2.4, closed-loop

response of such case is shown. At time 8 s and 14 s disturbances change it’s value.

Controller without disturbance model (left pictures) doesn’t react to entered disturbance

and steady state tracking error is present. On other hand, controller augmented to

disturbance model (right pictures) leads to offset-free control. The observer estimates

the entered disturbance and its influence to system process is eliminated

Example 2.2 (State disturbance rejection): Now consider that state disturbance

enters to the system and states of the system can not be measured. At figure 2.5, closed-

loop response for the case without and with process model augmentation is shown. At

time 8 s, an unmeasured constant disturbance enters the process. The left pictures shows

response without augmentation. Due to the disturbance, output of the system grows up

out of desired reference, but controller does not react. At the left pictures, controller re-

acts to the disturbance and thanks to disturbance observer estimation at the steady-state

there is an offset-free control.

The most basic goal for disturbance model design is to ensure that the augmented dis-

turbance states are observable. Because these states are not asymptotically stable, they

will be observable if and only if the augmented process model (2.107) is detectable 11.

In [50], authors proved the existence of detectable system (2.107) when the total number

of disturbance states is equal to the number of outputs (sp + sd = p). They also proved

that augmented system (2.107) is not detectable if the total number of augmented dis-

turbance states exceeds the number of outputs.

In [47], authors note that in the case where only subset of measured variables is actually

to be controlled with zero offset, previous method yields too complex models. By inter-

nal model principle, it should be possible to add as many disturbance states as there are

outputs to control with zero offset. Adding more variables then necessary will lead to

unnecessarily complex optimization problem in MPC.

The best achievable closed-loop system performance will be obtained when the un-

measured disturbance model matches the disturbances entering the process.

11Detectability means, that all unobservable modes are stable.
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Figure 2.4: Closed-loop response of SISO system to output disturbance.

Figure 2.5: Closed-loop response of SISO system to state disturbance.



Chapter 3

Explicit Formulation of Model

Predictive Control

The MPC has become the accepted standard for complex constrained multi-variable con-

trol problems in the process industries. In MPC, at each sampling time, starting at the

current state, an open-loop optimal control problem (2.42a) is solved over a finite horizon.

At the next time step, the computation is repeated starting from the new state and over

a shifted horizon leading to a moving policy, as describes section 2.2.0.1.

When sampling times become so short that computation times of QP solution can no

longer be neglected, specialized algorithms must be used.

One of these are active set methods, which come in two variants, namely primal [26]

and dual [4] active set methods. Furthermore, (primal-dual) interior point methods [54]

have become a strong competitor to active set methods. They posses relatively con-

stant computational demands and polynomial runtime guarantee can be given for them.

However, interior point methods suffer from the drawback that so far no efficient warm

starting techniques exist.

In recent work [63] authors found approximate primal barrier method which is used to

greatly speed up the computation of the online optimization.

In 2002, Bemporad, Morari, et al published paper [7] in which they found another way

to solve the MPC problem. They formulated problem (2.42a) using the Multi-Parametric

Quadratic Programming and they also found an explicit control law as function of the

actual process state, which minimizes the quadratic cost function (2.42a). The greatest

benefit of this approach is possibility to move all the computations necessary for imple-

31
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mentation of MPC off-line, while preserving all its other characteristics. This largely

increases the range of applicability of MPC to problems where standard MPC could not

be used. Moreover, such an explicit form of the controller provides additional insight for

better understanding of the control policy of MPC (e.g. stability, feasibility, etc.).

A toolbox for Matlab known as Multi Parametric Toolbox [37] is an efficient tool for

solving the multi-parametric programmes in connection with model predictive control.

The toolbox is freely downloadable from http://control.ee.ethz.ch/∼mpt.

The chapter is organized as follows: in the first section, the multi-parametric quadratic

programming will be introduced. Based on it, the Explicit MPC will be formulated in

the second section. Finally, in the last section the complexity of explicit control law will

be discussed.

3.1 Multi-parametric Quadratic Programming

In this section, multi-parametric quadratic programming (mp-QP) will be briefly de-

scribed. The goal is to derive an algorithm to express the solution u∗ and the minimum

value of the quadratic cost function J(u∗|x) as an explicit function of the parameters x.

In particular, can be proven that the solution u∗ is a continuous piecewise affine function

of x [7],[6].

3.1.1 Optimization Problem

Consider the quadratic cost function with convex constraints:

min
u

J(u|x) = min
u

{
1

2
uT H u + xT F u +

1

2
xT Y x

}
,

s.t. G u ≤ W + E x, (3.1)

where H = HT Â 0, H ∈ Rs×s, G ∈ Rq×s, w ∈ Rq and E ∈ Rq×n.

Before proceeding further, it is useful to transform coordinate:

z = u + H−1F T x, (3.2)

http://control.ee.ethz.ch/~mpt�
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which leads to the optimization problem

min
z

{
1

2
zT Hz + β

}
s.t. Gz ≤ W + Sx, (3.3)

where

S = E + GH−1F T β =
1

2
xT

(
FH−1F T + Y

)
x, (3.4)

and z is the variable to be optimized, x is the parameter, and β is constant which does

not influence the optimum of the cost function.

3.1.2 Finding the Cost Function Optimum

Now we can write the Lagrange function for problem (3.3) to minimize it:

L(z, λ) =
1

2
zT Hz + β + λ (Gz −W − Sx) . (3.5)

One can then write the first-order Karush-Kuhn-Tucker (KKT) optimality conditions

[12]:

∂L(z,λ)

∂z
= Hz + GT λ = 0 (3.6a)

∂L(z,λ)

∂λ
= Gz −W − Sx = 0 (3.6b)

λi

(
Giz −W i − Six

)
= 0 (3.6c)

λi ≥ 0 (3.6d)

with λ ∈ Rq and superscript i ∈ I = {1, · · · , q} denotes the i-th constraint (row of

matrices G, W and S). The constraints can be separated into two disjunctive sets:

A(x) =
{
j ∈ I |Gjz(x)− Sjx = Wj

}
, (3.7)

A(x) =
{
j ∈ I |Gjz(x)− Sjx < Wj

}
, (3.8)

where A(x) is active constraint (λj > 0) and A(x) in inactive constraint (λj = 0).

Now, from (3.6a) one can write: (H Â 0)

z = −H−1GT λ, (3.9)

and substitute the result into (3.6c) to obtain the complementary slackness condition

−GA H−1GT
A λA −WA − SA x = 0 (3.10)
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where (.)A represents rows of (.) where constraints are active.

Therefore,

λ∗A = − (
GAH−1GT

A
)−1

(WA + SA x) , (3.11)

where
(
GAH−1GT

A
)−1

exists because the rows of GA are linearly independent. Thus, λ∗A
is an affine function of x.

Finally, substitute result into (3.9):

z∗ = H−1GT
A

(
GA H−1GT

A
)−1

(WA + SA x) , (3.12)

thus, z∗ is also an affine function of x. And thanks to H Â 0, the solution is also unique.

From substitution (3.2) one can get optimal value of the original optimized variable u

u∗ = z∗ −H−1F T x = H−1GT
A

(
GA H−1GT

A
)−1

(WA + SA x)−H−1F T x. (3.13)

Equation (3.12) characterizes the solution only locally in the neighborhood of a specific

x0, where the same constraints are active and optimal value of optimized variable z∗ is

also the same. Sets of the active constraints defines so called critical polyhedral regions

(CR) of the state space. The critical region can be found easily, because variable z from

(3.9) must satisfy the constraints in (3.3):

GH−1GT
A

(
GA H−1GT

A
)−1

(WA + SA x) ≤ W + Sx. (3.14)

and by (3.6d), the Lagrange multipliers in (3.11) must remain non-negative:

(
GA H−1GT

A
)−1

(WA + SA x) ≤ 0 (3.15)

as we vary x. Thus equations (3.14) and (3.15) can be written as polyhedron set:

CR : {x ∈ X |Px ≤ k x} (3.16)

with

P =

[
GH−1GT

A
(
GA H−1GT

A
)−1

SA − S(
GA H−1GT

A
)−1

SA

]
(3.17)

k =

[
GH−1GT

A
(
GA H−1GT

A
)−1

WA + W

− (
GA H−1GT

A
)−1

WA

]
(3.18)

After removing the redundant inequalities from (3.14) and (3.15), we obtain a compact

representation of the critical region CR in (3.16) form. Obviously, CR is a polyhedron in
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the x-space, and represents the largest set of x ∈ X such that the combination of active

constraints at the minimizer remains unchanged.

Once the critical region CR corresponds to x0 ∈ X has been defined, the rest of the space

CRrest = X − CR has to be explored and new critical regions generated. An effective

approach for partitioning the rest of the space was proposed in [16].

From equation (3.13) one can note that the optimal solution of the quadratic program

(3.1) is continuous and piece-wise affine function of parameter x in form

u∗ = f(x) = F ix + gi if x ∈ CRi, i = 1, . . . Nmpc (3.19)

where the polyhedral set CRi:
{
x ∈ X |P ix ≤ ki

}
, i = 1, . . . Nmpc are a partition of the

given set of states X .

3.1.3 Algorithm of the mp-QP

Algorithm of mp-QP can be clearly written as

1. let X is space of the parameter x and P is unexplored space of it, P ⊆ X

2. set P = X

3. for x0 ∈ P solve the QP problem (3.3) to find z∗0 and λ∗0

4. find active constraints A defining region CRi, P = P r CRi

5. create matrices GA, WA and SA by collecting the active constraints

6. generate the new regions of the unexplored space P and choose some x0 from it

7. repeat from point (3) for all found regions, thus there exist GA, WA and SA for

each region
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3.2 Explicit Model Predictive Control

Consider quadratic cost function of MPC in matrix form (2.43) 1

J(uk,Tc−1|x̃k) =
1

2
uT

k,Tc−1 H uk,Tc−1 + x̃T
k F uk,Tc−1 +

1

2
x̃T

k Y x̃k, (3.20a)

s.t. G uk,Tc−1 ≤ W + E x̃k (3.20b)

Finding the optimal control sequence which minimize this cost function can be represented

as mp-QP program (3.1), where u - the vector variable to be optimized corresponds to

the wanted optimal control moves uk,Tc−1 and x - parameter of the program agrees with

the process state vector x̃k. Thus, we get the optimal control law u∗k,Tc−1 as a continuous

and piece-wise affine function of the process state vector x̃k

x̃k ∈ CRi ⇒ u∗k,Tc−1 (x̃k) = F ix̃k + qi, (3.21)

where CRi is a region which contains the actual process state x̃k.

Note: We define CR1 as critical region, where no constrains are active, i.e. strong

inequality is valid in (3.20b). From KKT conditions one can write

CR1 :
{
x̃k ∈ X | − (

E + GH−1F T
)
x̃k ≤ W

}
. (3.22)

For each state x̃k ∈ CR1 the optimal control law is linear function of state value

u∗k = −KMPCx̃k =
[

Im 0 . . . 0
]
H−1F T . (3.23)

2

The solution of mp-QP is control law u∗k,Tc−1 over the control horizon Tc. Because we use

the receding horizon concept, only the first control move u∗k is taken into account. The

procedure can be shown on the next example.

Example 3.1 (MPC for Double Integrator): Let’s consider the discrete time in-

variant double integrator with state space matrices:

A =

[
1 0

1 1

]
, B =

[
1

0.5

]
,

C =
[

0 1
]
, D =

[
0

]
. (3.24)

1Where x̃k represents augmented state space vector for example to references, last control moves

or/and disturbance states as describes section 2.3.
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The goal is to find the explicit MPC control law which minimizes the cost function:

u∗
n,Tc−1 = arg min

un,Tc−1

J(un, · · · ,un+Tc−1|xn) =

=
1

2

[
n+Tp−1∑

k=n

xT
k Qxxk +

n+Tc−1∑

k=n

uT
k Ruk

]
(3.25)

s.t. xk+1 = Axk + Buk, (3.26)

yk = Cxk + Duk (3.27)

with additional constraints to output and control:

− 15 ≤ yk ≤ 15 − 1 ≤ uk ≤ 1 (3.28)

The cost function (3.25) is a simpler version of (2.42a). It does not describe the refer-

ence tracking problem, but the resulting MPC controller which optimizes it is the state

feedback controller which drives all system states towards origin. The reference tracking

problem in explicit MPC needs the state augmentation to reference, described in section

2.2.2.1, which in this example 2 precludes the possibility to show easily the resulting

control law and critical regions in plain.

For weightening matrices Qx = I2 and R = 1, initial state condition x0 =
[

4 −10
]T

and length of prediction and control horizon Tp = Tc = 2 we are looking for optimal con-

trol law which drives all system states to origin.

Solution: Using the prediction of the states (2.13) over the prediction horizon one can

get the cost function in matrices form:

J(uk,Tc−1|xk) =
1

2
uT

k,Tc−1 Hx uk,Tc−1 + xT
k F x uk,Tc−1 +

1

2
xT

k Y x xk, s.t. constraints

where Hx = Śx
T
Q́xŚx + Ŕ, F x = Vx

T Q́xŚx and Y x = Vx
T Q́xVx.

According to section 2.3.2 we construct the constraints matrices in matrix form

G uk,Tc−1 ≤ W + E x, (3.29)

X
The resulting explicit control law is shown on figure 3.1. As one can see, the found control

law is defined in 17 state space regions (left image) and value of the control action is a

continuous affine function of the state (middle image). Two right images show closed

2The double integrator has 2 states.
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loop response to a given initial condition. In time 2, the controller respects the control

constraints (bottom image). All system states are successfully driven to the original.

Figure 3.1: Explicit control law for double integrator and closed loop re-

sponse to initial condition x0.

3.2.1 Complexity Analysis of Explicit Control Law

The main disadvantage of the explicit MPC is its large growth of complexity of a mp-QP

solution with increasing number of q constraints [27]. Complexity of the mp-QP solution

is reflected by the number Nmpc of regions in the mp-QP solution, which influences the

computation time of mp-QP (off-line complexity) and search time (on-line complexity)

of the correct region, which includes the actual state xk.

The number Nmpc of regions in the mp-QP solution depends on the dimension n of the

state vector, and on the number of degrees of freedom f = mTc and constraints q in the

optimization problem (3.3). Note that in complexity analysis, the number of possible

combinations of active constraints at the solution of a QP is important. That is at most

NmpcMAX
=

q∑

k=0

(
q

k

)
= 2q. (3.30)
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This number represents an upper bound on the number of different linear feedback gains

which describes the controller. In practice, far fewer combinations are usually generated.

For example lower and upper bound of control variable can not be satisfied simultane-

ously. Furthermore, the gains for the future control moves uk+1,Tc−1 are not relevant for

the control law, because of receding horizon concept. Thus, several different combina-

tions of active constraints may lead to the same first control move u∗k(x). It means that

several regions can be merged together without any influence to the control quality.

In [7], authors proved that number Nmpc of regions in the mp-QP solution remains con-

stant with increasing the number of states n if

qs = rank S, qs ≤ q, n > qs. (3.31)

Therefore, the number of partitions Nmpc is insensitive to the dimension n of the state x

for all n > qs. In particular, the additional parameters that were introduced in section

2.3 to extend MPC to reference tracking, disturbance rejection, soft constraints, do not

affect significantly, the complexity of the mp-QP, and hence, the number Nmpc of regions

in the MPC controller.

The number q of constraints increases with constraints horizon Tcs
3 and control hori-

zon Tc, for instance, q = 2 f = 2m Tc in case of control constraints only. Thus, the larger

m, p, Tcs, Tcs, the larger number of constraints q, and therefore Nmpc.

Detailed description of complexity analysis of explicit control law can be found in

[27]. A note on the complexity of explicit solution versus active set QP algorithm can be

found in recent papers [9] and [10].

3The constraints horizon Tcs, is horizon over which the constraints have to be satisfied. It is usually

the same or smaller than the prediction horizon Tp.
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Chapter 4

Influence of Model Uncertainty on

Constraints Handling in MPC

In the standard formulation of the MPC, the optimization problem is usually formulated

as a reference tracking problem, i.e. the system output should follow the given refer-

ence signal or stay at some set-point value. This request can be too conservative for

some industrial processes, namely in presence of disturbances and model uncertainties

therefore the standard MPC algorithm is modified. This extension is called the Range

control [43], where the controlled variables are enabled to freely vary in specified range,

which is defined by the soft constraints. In the last few years many theoretical results

were obtained in this field, namely the stability and robustness for linear time-invariant

systems [43], and robustness for nonlinear systems [52].

The big drawback of the Range control is that it is computational demanding and

therefore it can not be used for on-line control of high-speed systems. The Explicit MPC

formulation [7], where the control law is computed off-line is the way how to make on-line

control possible even for high-speed systems. But, there is a limitation of resulting con-

trol law complexity which depends on the number of constraints. Note that in standard

Range control the number of constraints is very high, therefore the complexity of control

law is also high. This leads to worse on-line complexity of the control law (increase of

the searching time of the appropriate region) and thus prevents the possibility to control

the high-speed systems. Therefore, the reduction of the constraints number is needed.

Often this is done by choosing the control horizon Tc = 1 and small prediction horizon

Tp. But this choice leads to poor closed loop performance mainly if disturbances, model

uncertainties or nonlinearity are present.

41
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In this chapter the algorithm which reduces the number of soft output constraints

with preservation of closed loop performance will be introduced. It considers the soft

output constraints only in one step of the prediction of the MPC. It will be shown that

this consideration has positive effect on quality of reference tracking problem and it will

also improve the controller robustness. This will be shown on example of controlling the

linear time invariant discrete MIMO system. The ability of this algorithm will be also

shown on controlling the nonlinear model of port injection spark-ignited gasoline engine

in chapter 5.

The chapter is organized as follows: in the first section, the main objectives and

principles of MIMO feedback control are reviewed. In the following section the new

algorithm of output soft constraint handling is introduced. Finally, in last section the

influences of the new constraint handling algorithm to controlled system in frequency and

time domain are illustrated on example.

4.1 Basic Principles of MIMO Feedback Control

In MIMO case there is a problem to define the system gains, because there exist interac-

tions between inputs or outputs. Generally the response of the MIMO system does not

depend only on input frequency but also on input direction.

To describe the input-output behavior of the system we will introduce the transfer func-

tion of the system. To state the frequency response of the multi-variable systems we will

remind the generalization of Bode plot [15] by introduction the singular values [49]. To

express the interactions and ill-conditionality of the system we will introduce the con-

ditional number [28], [59]. We will also show the dependency of model uncertainty to

condition number. Then we will introduce the basic objectives of feedback for multi-

variable systems.

Note that the last few years brought major development in the mathematical theory of

multi-variable linear time invariant feedback systems. The developments include certain

generalizations of frequency-domain concept which offers analysis and synthesis tools in

the classical SISO tradition [45], such as the classical Bode gain/phase [15], gain margin

[65] and the phase margin [64].
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4.1.1 Transfer Function

In section 2.1.1 the state-space model was introduced. It describes internal behavior of

the system perfectly but it is not suitable for input-output description and for survey a

frequency dependency of the system. Rather, the transfer function, which is the mathe-

matical representation of the relation between the inputs and outputs will be introduced.

Consider the linear time-invariant (LTI), discrete system in state space form (2.1)

xk+1 = Axk + Buk (4.1a)

yk = Cxk + Duk, (4.1b)

Taking the Z-transform [22] of (4.1) with zero initial conditions we find

y(z) = G(z) u(z) (4.2)

where

G(z) = C (zIn −A)−1 B + D (4.3)

is referred to as the system transfer matrix. The elements {gij(z)} of G(z) are transfer

functions expressing the relationship between specific inputs uj(z) and outputs yi(z).

4.1.2 Singular Values and Condition Number

The singular values [49] of a complex n×m matrix A, denoted σi(A), are the k largest

nonnegative square roots of the eigenvalues of AHA 1 where k = min {n,m}, that is

σi(A) =
√

λi

(
AHA

)
i = 1, 2, . . . , k, (4.4)

where we assume that the σi are ordered such that σi ≥ σi+1.

We define the maximum σ and minimum σ singular values alternatively by

σ = max
x 6=0

|Ax|2
|x|2 = ||A||2, (4.5)

σ =

[
max
x 6=0

|A−1x|2
|x|2

]−1

= ||A−1||−1
2 if A−1exists

= min
x6=0

[ |A−1x|2
|x|2

]−1

= min
x 6=0

|x|2
|A−1x|2

= min
x 6=0

|Ax|2
|x|2 (4.6)

1Superscript (.)H is used to denote complex conjugate transpose.
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where |.| notes vector 2-norm and ||.|| notes 2-norm of a function or matrix.

Thus σ and σ can be interpreted geometrically as the least upper bound and the greatest

lower bound on the magnification of a vector by the matrix function A.

A convenient way of representing a matrix that exposes its internal structure is known

as the Singular Value Decomposition (SVD) [25]. For an n×m matrix A, the SVD of A

is given by

A = UΣV H =
k∑

i=1

σi(A)ui vH
i , (4.7)

where U and V are unitary matrices with column vectors defined by

U = (u1, u2, . . . , un) V = (v1,v2, . . . , vm) (4.8)

and Σ contains a diagonal nonnegative definite matrix Σ1 of singular values arranged in

descending order as in

Σ =

[
Σ1

0

]
n ≥ m (4.9)

or

Σ =
[

Σ1 0
]

n ≤ m (4.10)

and

Σ1 = diag {σ1, σ2, . . . , σk} , k = min {m, n} , (4.11)

where

σ = σ1 ≥ σ2 ≥ . . . σk = σ (4.12)

It can be shown [25] that the columns of V and U are unit eigenvectors of AHA and

AAH respectively. They are known as the right and left singular vectors of the matrix A.

Note also that if A is Hermitian (A = AH) then the singular values and the eigenvalues

coincide.

From a system point of view the vector v1(vm) in (4.8) corresponds to the control direc-

tion with the largest (smallest) amplification. Furthermore u1(un) is the output direction

in which the controls are most (least) effective.
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We also define the condition number [28] of A as

γ(A) = σ(A)σ(A−1) =
σ(A)

σ(A)
(4.13)

If the system is unitary then γ(G) = 1. If the system is ill-conditioned, i.e., γ(G) is

large. The large condition number may be caused by a small value of σ, thus there exists

control direction with very small amplification. It can be also indication of a difficult

control problem with strong interaction (related to Relative Gain Array (RGA) [66])

or it indicates that the system is sensitive to unstructured input uncertainty, like badly

identified input gains. Thus, if condition number is large, the careful controller design

have to be used for good closed loop performance.

On the other hand, small condition number means that system is insensitive to input

uncertainty irrespective of the controller, thus robust performance to input uncertainty

is guaranteed.

The unstructured input uncertainty belongs to family of parameters uncertainty de-

scribed in section 2.1.3 and it can be written in so-called multiplicative form:

Ǵ(z) = Ǵ(ejωTs) =
[
I + L(ejωTs)

]
G(ejωTs), (4.14)

with

σ(L(ejωTs)) < lm(ejωTs) 0 ≤ ω ≤ π

Ts

, (4.15)

where L is open loop transfer function described in next section, Ts is sampling time of

the system and lm is the bounding functions, which is small (¿ 1) at low frequencies

and increase to unity and at higher frequencies. It should be noted that representation of

uncertainty in (4.14) can be used to include perturbation effects that are not uncertain at

all. For example, a nonlinear element may be quite accurately modeled that way. More

information about unstructured uncertainties can be found in [15] or in [49].

4.1.3 Feedback for Multi-variable Systems

We will deal with the standard feedback configuration illustrated in figure 4.1. It consists

of the interconnected system (G) and controller C forced by reference r, measurement

noise (n), and disturbances (d). All disturbances are assumed to be reflected to the

measured outputs y, all signals are in general multi-variable.
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Figure 4.1: Standard feedback configuration.

Then one can write:

y(z) = T (z)r(z) + S(z)d(z)− T (z)n(z), (4.16)

e(z) = r(z)− y(z) = S(z)r(z)− S(z)d(z) + T (z)n(z), (4.17)

where we define open loop transfer function L(z), sensitivity S(z), and complementary

sensitivity T (z) as

L(z) = G(z)C(z) S(z) = [I + L(z)]−1 T (z) = L(z) [I + L(z)]−1 . (4.18)

Next limitation equation is also valid

S(z) + T (z) = I. (4.19)

In [15], the author points that the equations (4.16) and (4.17) summarize the fundamental

benefits and design objectives inherent in feedback loops. Specifically, (4.17) shows that

the tracking error in the presence of reference and disturbances can be made ”small” by

making the sensitivity S(z) ”small”.

For SISO systems, the appropriate notion of smallness for the sensitivity is well-understood–

we require that the complex scalar
[
1 + g(ejωTs)c(ejωTs)

]−1
has small magnitude, for all

real frequencies ω where the references, disturbances and/or system changes are signifi-

cant.

The basic idea can be readily extended to MIMO problems through the singular values.

Then the corresponding feedback requirements become

σ
(
S(ejωTs)

)
= σ

(
[I + L(z)]−1) is small, (4.20)

or conversely

ps(ejωTs) ≤ σ
(
I + L(ejωTs)

)
for ω ≤ ω0, (4.21)
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where ps(ejωTs) is a positive function and ω0 specifies the active frequency range.

Condition (4.21) on the return difference I + L(ejωTs) can be interpreted as merely a

restatement of the common intuition that large loop gains or tighten loops yield good

performance. This follows from the inequalities

σ(L)− 1 ≤ σ(I + L) ≤ σ(L) + 1, (4.22)

which show that return difference magnitudes approximate the loop gains, σ(L), when-

ever these are large compared with unity. Evidently, good multi-variable feedback loop

design boils down to achieving high loop gains in the necessary frequency range. But feed-

back design is not so trivial. It is because the loop gains can not be made arbitrary high

over arbitrarily large frequency ranges. They must satisfy certain performance trade-off

and design limitations. A major performance trade-off, for example, concerns reference

and disturbance error reduction versus sensor noise error reduction. The conflict between

these two objectives is evident in (4.17). Large σ(L(ejωTs)) values over a large frequency

range make errors due to r and d small. However, they also make errors due to n large

because this noise is ”passed through” over the same frequency range.

What distinguishes MIMO from SISO loop designs are the functions used to express

transfer function ”size”. The singular values replace absolute values in MIMO case.

Thus singular value functions play a design role much like classical Bode plots. For

example the σ(I + L(ejωTs)) function is the minimum return difference magnitude of the

closed loop system, σ(L(ejωTs)) and σ(L(ejωTs)) are the minimum and the maximum loop

gains, and σ(T (ejωTs)) is the maximum closed-loop frequency response. The Condition

number γ(G)(ejωTs) shows if the system is ill-conditioned, thus it is strongly dependent

to direction of inputs. These can all be plotted as ordinary frequency dependent functions

in order to display and analyze the features of a multi-variable design. Such plots will be

called σ-plots.

4.2 Reduced Output Soft Constrains Handling

In chapter 3 we discussed the Explicit Formulation of MPC, where the optimal control

law is introduced as continuous piecewise affine function of state value x. Complexity of

this law (number of critical regions) depends mainly on the number of constraints. For
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usage of the Explicit MPC for high-speed systems, the complexity of the solution (mainly

the on-line complexity) must be small, therefore in general there is an effort to reduce

the number of constraints to provide the realizable control.

On the other hand, in [62], authors found the input trajectory parametrization, where

the class of control trajectories with less degrees of freedom is introduced to reduce the

dimensions of the optimization problem. Authors of [33] used the goal-oriented reduced-

order models to reduce the control law complexity.

In this section, the algorithm which provides reduction of control law complexity in

case of output soft constraints will be introduced. Although this algorithm can be used

for standard formulation of MPC it will be described in conjuction with the Explicit

formulation of MPC for better insight.

4.2.1 Algorithm Description

The output constrains are useful in practice when not every of the system outputs are

tracking their references and there exists a demand to keep the rest of outputs in some

ranges. But adding the hard constrains, to define this ranges, the control law may be

infeasible. This solution is not also robust, because presence of disturbances may cause

that output would be out of these ranges. In Explicit MPC formulation we can say that

there will be no critical region which contains such state value. Therefore, it is reasonable

to use the soft constraints defined in section 2.3.4.

If we consider upper and lower limit to control and outputs with ps the number of

outputs controlled in some range, we have q the number of constraints:

q = 2 (mTc + ps Tp) . (4.23)

Note that control horizon Tc is typically low. For control of high-speed systems it is

chosen Tc = 1. But prediction horizon Tp is high, typically it is chosen that the output

prediction can ”see” the steady-state value of the system. Thus, applying the constraints

to output, whether hard or soft, over the prediction horizon Tp, the complexity of the

explicit control law will increase dramatically. This drawback can be eliminated by using

the algorithm described next, where the constraints are considered only in one step of

the output prediction. This approach avoids dramatic increase of control law complexity
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and will be shown that it has a positive influence to feedback features.

In section 2.3.2 we have defined the constraints in form

G ∆uk,Tc−1 ≤ W + E x̃k, (4.24)

with G ∈ Rq×(m·Tc+nS), W ∈ Rq and E ∈ Rq×(ñ+nS), nS is number of slack variables

(soft constraints).

Note that each row of matrices G, W and E corresponds to one constraint.

Consider a lower and upper soft bounds on output, that is:

ys − ε ≤ ys ≤ ys + ε. (4.25)

In form of (4.24) we defined these soft constrains over the prediction horizon Tp as (2.74)

[
S̆ys −1 0

−S̆ys 0 −1

]
h ≤

[
0

0

]
+

[
−Vys 1 0

Vys 0 −1

] [
x̃k

y

]
, (4.26)

where S̆ys and Vys are the prediction matrices of the output where the soft constraints

are considered.

Consider now not applying constraints (4.25) over whole prediction horizon Tp, but apply

them only in one step of the prediction, thus

[
S̆ys(Tn) −1 0

−S̆ys(Tn) 0 −1

]
h ≤

[
0

0

]
+

[
−Vys(Tn) 1 0

Vys(Tn) 0 −1

][
x̃k

y

]
, (4.27)

1 ≤ Tn ≤ Tp, (4.28)

where S̆ys(Tn) and Vys(Tn) are the Tn-th row of the prediction matrices S̆ys and Vys .

Previous construction must be made for all outputs where the soft constraints are as-

sumed. Then we get number of constrains to add

nS = 2ps, (4.29)

where ps is number of outputs controlled in some range.

Note that although the bounds (4.25) are considered in control law design, only nS

constraints were added. Therefore, the increase of control law complexity is not so no-

ticeable as in case where the constrains were assumed over whole prediction horizon and

Tp nS constraints have to be added.
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4.3 Influence of Reduced Output Soft Constraints

to Feedback

In this section the influence to feedback of choice Tn (the step of the prediction), in

which the output soft constraints are considered, will be described without any theoreti-

cal proofs. These are for another works.

The influence of reduced output soft constraint to feedback loop will be shown on next

example. It will be shown that as increaring the parameter Tn, the closed loop system

will more and more damp the high frequencies where the system is ill-conditioned and

uncertainties or disturbances can arise.

Note that another way how to prevent the excitation of the system on frequencies

where it is ill-conditioned is to place the selective filter (e.g. the low pass filter) on the

reference input of the system. But this approacch does not defend to the disturbances

and model uncertainties which do not pass through the filter.

Example 4.1 (Explicit MPC with reduced output soft constraint): Consider lin-

ear time invariant discrete system with 2 control inputs and 2 outputs. The first output

will be tracking to a given reference and the second one will be controlled with soft upper

bound. Consider also that disturbances enter the system. One disturbance enters into

the system additively to the first system state and the second one enters additively to

system output, which is tracking to reference. Show the influence of parameter Tn to

system in frequency and time domain.

The controlled system is sampled with sample period TS = 0.1 s and its step response

is shown in figure 4.2. From that one can deduce, that steady-state gains and settling

times in each control direction are very similar. Thus, with increase of frequency of

demanded reference, it will be difficult to track the reference with guarantee to meet

the constraint on second output. This effect can be also seen in condition number plot,

where with increasing the frequency of reference changes, the condition number of the

system rapidly increases. From previous sections we can say that this system is sensitive

to unstructured input uncertainty and disturbances on high frequencies and the control

design should prevent the excitation of the system on these frequencies. It also means

that there exists control direction with very small amplification, which leads to non ef-

fective control. The σ-plot of this smallest amplification (σ(G)) can be seen in top image.
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Figure 4.2: Step response, σ-plot of open loop and condition number of

the controlled system.

Solution: To get the control law we will use the Explicit Formulation of MPC with control

increments with following settings:

Tp = 45, Tc = 1, Q = 2, ρ = 106, ys ≤ y + ε, (4.30)

R =

[
1 0

0 1

]
,

[
−10

−10

]
≤ u ≤

[
10

10

]
, u =

[
u1

u2

]
, Z =

[
1 0

]
. (4.31)

On the second output ys the described algorithm will be used.

We will also use the Unknown Input Observer method described in 2.3.6 to ensure

the offset free tracking by modeling 1 state and 1 output disturbance, i.e.,

Gd =
[

1 0 . . . 0
]T

Gp =
[

1 0
]T

, (4.32)

For estimating the system state we will use the Kalman filter augmented to disturbances

model.
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According to section 2.3.3.2 we construct the matrices of control constraints and using

equation (4.27) we construct matrices of output soft constraint for given Tn. Then we

assemble the matrices of cost function (2.72) and we compute the explicit control law for

a few parameters Tn. Next, the influence of Tn to frequency and time response will be

shown.

We will also construct the controller with settings (4.30) and with constraint horizon

Tcs = 10 for comparing. Note that the controller created by using the reduced output

soft constraints handling algorithm has only 18 regions and the controller with Tcs = 10

has 311 regions, i.e., it is much more complex. X

Note: In resulting explicit control law we define CR2 as critical region, where only the

soft output constrain is active. In this region, the control law is changed by the choice

of Tn, the step of the prediction, in which the output soft constraints are considered.

Note that the control law will be also changed in other regions where the soft output

constrain is active, for example in regions where the combination of control and soft

output constraints is active.

Note also, that control law in region CR1 will not be influenced by the changing the

parameter Tn, because there are no active constraints in this region. 2

4.3.1 Frequency Domain

Explicit MPC control law is defined in regions, where each of them has own gain F i

in equation (3.21) of the optimal control. Thus, frequency response of the system will

depend to region where the state value x̃k lies.

From Note 1 we know that the control law in region CR1 is independent to any

constraints, therefore even to choice of parameter Tn (step of prediction where the soft

constraints are considered). Thus frequency response of the system with state in region

CR1 will be independent to choice of parameter Tn. However, the frequency response of

the system with state in region CR2 with changing Tn will be more interesting. Note

that the influence of the parameter Tn to response of the system in other regions, where

the considered soft constraint is active, is very similar as in region CR2.
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The optimal control law (3.21) in i-th region can be rewritten as

∆u∗k = F ix̃k + Gi (4.33)

as

∆u∗k = Kxxk + Kuuk−1 + Krrk + Kyyk, (4.34)

where Kx, Ku and Kr are gains obtained from controller gain F i. They are pertaining

to system state xk, last control moves uk−1 and to reference state rk from equation (2.49).

Gain Ky belongs to state, which arises when soft constraint to output was added. Note

that in this case the state vector xk already includes the model of disturbances.

4.3.1.1 Region CR1

There is no active constraints in region CR1, thus gain Ky in (4.34) will be zero. Then

we can define the sensitivity and complementary sensitivity functions as follows.

4.3.1.1.1 Sensitivity Substitution (4.34) in equation (2.49) one get system with r

reference as input and e reference tracking error as output
[

xk+1

uk

]
=

[
A + BKx B + BKu

Kx Im + Ku

][
xk

uk−1

]
+

[
BKr

Kr

]
rk

ek =
[

ZC + ZDKx ZD (Im + Ku)
] [

xk

uk−1

]
+

[
−1

]
rk. (4.35)

This system represents the sensitivity function and using the equation (4.3) one can get

SISO transfer function. The Bode plot of sensitivity is shown in figure 4.3. One can see

that it increases with frequency and it has a maximum on 6 rad/s on which S is greater

then 0 dB, i.e. the closed loop system will amplify the disturbances and uncertainties.

4.3.1.1.2 Complementary Sensitivity Substitution (4.34) in equation (2.49) and

(2.50) one can gets system with r reference as input and z as output which is tracking to

the reference.
[

xk+1

uk

]
=

[
A + BKx B + BKu

Kx Im + Ku

][
xk

uk−1

]
+

[
BKr

Kr

]
rk

z =
[

ZC + ZDKx ZD (Im + Ku)
] [

xk

uk−1

]
(4.36)
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This system represents the complementary sensitivity function and using the equation

(4.3) one can get SISO transfer function. The Bode plot of complementary sensitivity

is shown in figure 4.3. As one can see, the condition T ≈ 1 is guaranteed in wide band

and high frequencies corresponding to condition number’s growth are correctly damped

to prevent the measurement noise influence.

Figure 4.3: Sensitivity and complementary sensitivity in region CR1.

4.3.1.2 Region CR2

In region CR2 the output soft constraint is active, thus gain Ky will not be zero. Also

the slack variable ε will not be zero. One can actually write:

εk = Kxεxk + Kuεuk−1 + Krεrk + Kyεyk, (4.37)

where Kxε , Kuε and Kyε are gains obtained from controller gain F 2. They are pertaining

to system state xk, last control moves uk−1 and to reference state rk from equation (2.49).

4.3.1.2.1 Sensitivity Substitution (4.34) and (4.37) in equation (2.49) one get sys-

tem with two inputs: r reference and y upper bound of second output, and with two



4.3 Influence of Reduced Output Soft Constraints to Feedback 55

outputs: e reference tracking error of first output and ε violation of soft upper bound of

second output.

[
xk+1

uk

]
=

[
A + BKx B + BKu

Kx Im + Ku

][
xk

uk−1

]
+

[
BKr BKy

Kr Ky

][
rk

yk

]

[
ek

εk

]
=

[
ZC + ZDKx ZD (Im + Ku)

Kxε Kuε

][
xk

uk−1

]
+

[
−1 0

Krε Kyε

][
rk

yk

]
.

(4.38)

Note that system above represents the sensitivity function. The soft constraint of output

ys were reformulated as ”tracking” problem with reference ys and with tracking error

εk = ysk
− ysk. Note also that resulting transfer function is MIMO. Thus, standard Bode

plot is unmeaning and the σ-plots for changing parameter Tn are used in figure 4.4. As

one can see, for Tn = 1 the maximum sigma value of sensitivity σ(S) is greater then 0

dB for high frequencies, where the system is ill-conditioned. Thus all uncertainties and

disturbances are amplified.

By increasing the Tn, the sensitivity descends on high frequencies, so the control loop

becomes robust. This shows the images with Tn = 5, 10.

On the other hand, by further increase of Tn, the peak of the sensitivity increases on

middle frequencies. This situation can be seen for example in image for Tn = 20. Note

when the sensitivity growth, the error tracking also growth. Therefore some methods,

which eliminate the tracking error on middle frequencies are needed. One of the these

- Unknown Input Observer was described in section 2.3.6. Note that eliminating the

tracking error on middle frequencies is simpler than do it on high frequencies, where the

system is ill-conditioned.

Comparing the sensitivity function with Tn = 1 with sensitivity function in figure 4.6

of the system with controller which is using constraints horizon Tcs = 10, we can deduce

that they are the same. Thus, the reduced output soft constraint algorithm provides much

less complex controller (18 regions) with the same frequency response as more complex

controller (311 regions) in region CR2.

4.3.1.2.2 Complementary Sensitivity Substitution (4.34) and (4.37) in equation

(2.49) one get system with two inputs: r the reference and y the upper bound of second

output. And with two outputs: output z which tracking the reference and output ys
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which is controlled below the upper soft constraints.

[
xk+1

uk

]
=

[
A + BKx B + BKu

Kx Im + Ku

][
xk

uk−1

]
+

[
BKr BKy

Kr Ky

][
rk

yk

]

y =
[

C + DKx D (Im + Ku)
] [

xk

uk−1

]
. (4.39)

Note that

y =
[

z ys

]T

. (4.40)

The system above represents the complementary sensitivity function T . The soft con-

straint of second output were again reformulated as the ”tracking” problem as in sensi-

tivity case. Note that main objective for control design in MIMO case is to keep σ(T )

very close to 1 in wide band from low to middle frequencies and forcefully damp the high

frequencies, where the system uncertainties and measure noise take effect. Another ob-

jective is to narrow the band between the maximum amplification of σ(T ) and minimum

amplification σ(T ), to eliminate the influence of direction of the reference vector.

The σ-plots of complementary sensitivity function for system in region CR2 for a few

parameters Tn are shown in figure 4.5. As one can see, for Tn = 1 the frequency band on

which the σ(T ) is closed to 1 is narrow. Also the high frequencies are not damped enough,

thus all the system uncertainties together with measure noise will influence the quality

of control (match with condition number in figure 4.2). The band between the maximum

and minimum amplification is wide too, therefore the control would be difficult. By

increasing the parameter Tn, the band between the maximum and minimum amplification

is narrowing at the first look (compare for example the σ-plots for Tn = 1 and Tn = 5).

The frequency band, where the σ(T ) is closed to 1 is extended, although by further

increase of Tn the frequency band is too wide, so that it intervenes to frequencies where

the system is ill-conditioned. Note that this drawback is not so distinct compared to

choice of low Tn, where these frequencies are not damped enough.

Comparing the complementary sensitivity function with Tn = 1 with complementary

sensitivity function in figure 4.6 of the system with controller which using constraints

horizon Tcs = 10, we can deduce that they are very similar.
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Figure 4.4: The σ-plots of sensitivity in region CR2 for Tn = 1, 5, 10, 20.

Figure 4.5: The σ-plots of complementary sensitivity in region CR2 for

Tn = 1, 5, 10, 20.

Figure 4.6: Comparing of the σ-plots of sensitivity and complementary

sensitivity in region CR2 for controller with Tcs = 10 and

with Tn = 1.
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4.3.2 Time Domain

In the previous section, we showed that by increasing the parameter Tn, the closed loop

more and more damps the high frequencies of reference changes, thus the system is not

excited in band of frequencies where it is ill-conditioned.

This damping of high frequency will also take effect in time domain. It will decelerate

the system dynamics and the controller will control the system more carefully. The

influence of parameter Tn will be shown on nominal model first, then we will focus on

case where the disturbances and model uncertainties will be present.

4.3.2.1 Nominal Model

The closed loop responses of nominal model is shown in figure 4.7. Here one can see that,

the controller with Tn = 1 is too aggressive. Once the soft constraint of second output

is violated, the controller produces the maximum available control action to solve this

violation. This leads to oscillations on the both outputs (at time 10−16 s), therefore the

offset-free tracking is not possible thus the choice of Tn = 1 is not suitable.

By increasing the parameter Tn (for example to Tn = 20) the dynamics of closed loop

is damped, so the controller produces more conservative control action which leads to

offset-free tracking. Note that this is because the controller takes the violation of the

output soft constrain into account after 20 steps of the prediction, where the system

outputs are almost in steady state (we assume stable system) and probably near the soft

constraint, moreover it does not consider the violation of the output soft constraint over

the prediction up to step Tn. The controller then implements the strategy: ”Care only

what you can fix, other ignore”. It means that the controller does not produce large

control actions to eliminate the soft constraint violation immediately in very close future,

but rather the controller tries to eliminate the violation in distant future.
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Figure 4.7: Closed loop responses of nominal model for controller with

Tn = 1, 10, 20
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4.3.2.2 Uncertain Model

In previous section the influence of Tn to control loop with nominal model were intro-

duced. It was shown that by increasing the parameter Tn, the controller produces more

conservative control actions. Now we will consider the presence of the input uncertainty

together with limited disturbances. We will show that by increasing the parameter Tn

the closed loop system will have better performance. Moreover, we will show that quality

of control will be better then in case of usage standard MPC controller which considers

the output soft constraint over the constraint horizon Tcs.

In next simulations we will assume an uncertain model with bad identified input gains,

so that the first input gain of the real system is by about 30 % greater and the second

input gain is by about 50% greater then the model which MPC uses for prediction and

which observer uses. The state and output disturbances which enter to system are shown

in figure 4.10.

The system outputs controlled by controllers with Tcs = 10 or with different parame-

ter Tn are shown in figure 4.8. One can see that closed loop response for controller with

Tcs = 10 or with Tn = 1 are very similar. This is because both of them are sensitive to

input uncertainty as it was discussed in section 4.3.1. Thus it is no wonder that quality

of control is really poor in both of these cases.

On the other hand, by increasing the parameter Tn (for example to Tn = 20), the

quality of control is much better. One can see that although the soft constraint of the

second output is violated (time 10-15s) it does not influence the control quality of the

first output which is tracking a given reference.

Note that the disturbances are successfully rejected independently of choice of Tn or Tcs.
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Figure 4.8: Closed loop responses (outputs) for uncertain system model

controlled by controller with Tcs = 10 and Tn = 1, 20

Figure 4.9: Closed loop responses (control variables) for uncertain system

model controlled by controller with Tcs = 10 and Tn = 1, 20
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Figure 4.10: Disturbances entering the system.

Figure 4.11: The eigenvalues trajectories of discrete closed loop system in

region CR2 for Tn = 1, 2, . . . , 25.
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4.3.3 Positions of Closed Loop Eigenvalues in region CR2

We can also watch the influence of choice of Tn to the trajectories of eigenvalues of the

closed loop system with state in region CR2. The trajectories for our example are shown

in figure 4.11. The arrows show directions of eigenvalues trajectories for increasing Tn.

Note that the changing Tn from 1 to 2 causes that one fast oscillating eigenvalue

together with another one will change to slower complex pair. By further increasing of

Tn the complex pair are more and more moved close to 1, thus the system is more and

more like low pass filter. It can be matched with complementary sensitivity σ-plots in 4.5,

where by increasing the parameter Tn the high frequencies are more and more damped.

As one can see, the complex eigenvalues are noticeable moved but the real ones are

moved much less. Thus the influence of choice of Tn to positions of eigenvalueas is not

straightforward and deeper research of eigenvalues behavior is needed. This research is

out of scope of this work thus it is left for future work.
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Chapter 5

Practical Usage of Explicit Model

Predictive Control

In this chapter the complete design of Explicit MPC which will use the output soft con-

straints handling algorithm described in previous chapter for nonlinear model of port in-

jection spark-ignited gasoline engine will be done. Note that the engine is the high-speed

non-linear uncertain system [29], thus for control it, the robust and very fast controller

is needed.

An emission reduction and fuel economy are often contrasting goals therefore the engine

control unit essentially contains a very complex collection of simple loops, mostly with

PID controller, with a huge amount of manually or semi-manually calibrated tables [20].

Thus it it effort to use the MPC to control the engines to reduce the complexity of the

control design [19],[51].

The chapter is organized as follows: in the first section the port injection spark-ignited

gasoline engine model is introduced according to [29]. The second section descibes the

design of the explicit MPC which uses the output soft constraints handling algorithm

described in Chapter 4 for model of engine and gives some simulation results.

5.1 Port Injection Spark-ignited Gasoline Engine

The majority of modern passenger cars are still equipped with port injection spark-ignited

(SI) gasoline engines [29]. The premixed and stoichiometric combustion of the the Otto

65
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process permits an extremely efficient exhaust gas purification with three-way catalyst

converters and produces very little particulate matter (PM).

The torque of a stoichiometric SI engine is controlled by the quantity of air/fuel mixture

in the cylinder during each stroke. Typically, this quantity is varied by changing the

intake pressure and by that the density of the air/fuel mixture. Thus, a throttle plate is

used upstream in the intake system.

In next text, SI engine will be briefly described.

5.1.1 Mean-Value Models

The reciprocating engines in passenger cars clearly differ in at least two aspects from

continuously operating thermal engines gas turbines:

• the combustion process itself is highly transient (Otto or Diesel cycle, with large

and rapid temperature and pressure variations)

• the thermodynamic boundary conditions, that govern the combustion process (in-

take pressure, composition of air/fuel mixture, etc.) are not constant

The thermodynamic and kinetic process in the first class of phenomena are very fast (few

milliseconds for full Otto cycle) and usually not accessible for control purposes. More-

over, the models necessary to describe these phenomena are rather complex and are not

useful for the design of real-time control systems.

Usually, the second class of phenomena are taken into account using control-oriented

models (COM), and simplifies the fast combustion characteristics as static effects. The

underlying assumption is that once all important thermodynamic boundary conditions

at the start of an Otto cycle are fixed, the combustion itself will involve in an identical

way each time the same initial starting conditions are imposed. Clearly, such models will

not be able to reflect all phenomena.

In the COM paradigm, the engine has several input (control) signals, one main distur-

bance signal (load torque) and several output signals.

The reciprocating behavior of the engine induces another dichotomy in the COM used to

describe the engine dynamics:

Mean value models (MVM) continuous COM, which neglect the discrete cycles of

the engine and assume all processes and effects are spread out over the engine cycle
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Discrete event models (DEM) COM that explicitly take into account the recipro-

cating behavior of the engine

In MVM, the time t is the independent variable, while in DEM, the crankshaft angle Φ is

the independent variable. In MVM, the reciprocating behavior is captured by introducing

delays between cylinder-in and cylinder-out effects. For example, the torque produced by

the engine does not respond immediately to an increase in the manifold pressure. Only

after the induction-to-power-stroke (IPS) delay τIPS = 2π
ωe

has elapsed the new engine

torque will be active.

5.1.2 Port-Injection SI Engines

A typical port-injected SI engine system has the structure shown in figure 5.1 In a mean

value approach, the reciprocating behavior of the cylinders is replaced by a continuously

working volumetric pump that produces exhaust gases and torque.

Figure 5.1: Abstract mean-value SI engine structure (according to [29])

The following signal definitions have been used in figure 5.1:
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Tin intake temperature

pin intake pressure (atmospheric)

QmAIR
fresh air mass flow through the valve

uth control signal of the throttle

VIM intake manifold volume

pIMP intake manifold pressure

T intake manifold temperature

Qme air mass flow entering the cylinders

QmF
fuel mass flow entering the cylinders

Me engine torque

Ml load torque

ωe engine speed

Next, mean-value models of the most important subsystems of SI are introduced.

5.1.2.1 Air system

5.1.2.1.1 Receiver The basic building block in the air intake system and also in the

exhaust part is a receiver, i.e., a fixed volume for which the thermodynamic states (pres-

sures, temperatures, etc., as shown in figure 5.2) are assumed to be the same over the

entire volume.

Figure 5.2: Inputs, states and outputs of a receiver (according to [29])

The inputs and outputs are the mass and energy flows, the reservoirs store mass and

thermal energy, and the level variables are the pressure and temperature. If one assumes

that no heat or mass transfers through the walls and that no substantial changes in

potential or kinetic energy in the flow occur, then the following differential equation

describe such a receiver.

d

dt
m(t) = Qmin

(t)−Qmout(t), (5.1)
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with m is air mass [kg] and Qmin
, Qmout [kg/s] are input, output air mass flow to receiver.

Consider the ideal gas law

pV = mRT, (5.2)

where p [Pa] is the absolute pressure of the gas, V [m3] is the volume of the gas, R [J/(kg

K)] is the specific gas constant and T [K] is the absolute temperature.

Then one can write

d

dt
p(t) =

RT

V
[Qmin

(t)−Qmout(t)] (5.3)

where the temperature T is assumed to be constant.

5.1.2.1.2 Valve Mass Flow One important variable in engine control is mass flow

of fresh air. This is controlled by the throttle in the intake manifold system. The flow

of fluids (in this case fresh air) between two reservoirs (environment and cylinders) is

determined by valves or orifices whose inputs are pressures upstream and downstream.

The difference between these two level variables drives the fluid in a nonlinear way through

such restrictions. As this problem is at the heart of fluid dynamics in this work, next

simplification will be done:

• no friction in the flow,

• no inertial effects in the flow (the piping around the valves is small compared to

the receivers to which they are attached)

• completely isolated conditions (no additional energy, mass, etc.)

• all flow phenomenon zero dimensional, i.e., no spatial effects need be considered

For compressible fluids (as air is), the most important flow control block is the isothermal

orifice. The key assumptions for modeling this device are following:

• No losses occur in the accelerating part (pressure decreases) up to the narrowest

point. All the potential energy stored in the flow is converted isentropically 1 into

kinetic energy.

• After the narrowest point, the flow is fully turbulent and all of the kinetic energy

gained in the first part is dissipated into thermal energy. Moreover, no pressure

recuperation takes place.

1without change of entropy
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The consequence of this is that the pressure in the narrowest point of the valve is approx-

imately equal to the downstream pressure and that the temperature of the flow before

and after orifice is the same.

Using the the thermodynamic relationship for isentropic expansion the following equation

for the flow can be obtained

QmAIR
(t) = cd A(t)

pin(t)√
RT

Ψ

(
pin(t)

pIMP (t)

)
, (5.4)

where QmAIR
[kg/s] is mass flow through the valve, A [m2] is open area of the throttle, cd

is discharge coefficient, pin [Pa] is pressure upstream of the valve, pIMP [Pa] is pressure

downstream of the valve (intake manifold pressure), and Ψ(.) is approximately defined

by

Ψ

(
pin(t)

pIMP (t)

)
≈





1√
2

for pIMP < 1
2
pin√

2pIMP (t)
pin(t)

[
1− pIMP (t)

pin(t)

]
for pIMP ≥ 1

2
pin

(5.5)

Open area of the throttle A is controlled by the actuator and following can be written

A(t) =
1

100

(
πd2

4
− Aleak

)
uth(t) + Aleak = AC uth(t) + Aleak, (5.6)

with d [m] is throttle diameter, uth [%] is control variable of a throttle, Aleak [m2] throttle

opening area when uth = 0.

5.1.2.1.3 Engine Mass Flow Ragarding the air system, the engine itself can be ap-

proximated as a volumetric pump, i.e., a device that enforces a volume flow approximately

proportional to its speed. A typical formulation for such a model is

Qme(t) = ρin(t) QVe = ρin(t) ηV E
Vd

N

ωe(t)

2π
, (5.7)

where ρin [kg/m3] is density of the gas at the engine’s intake (related to the intake

pressure and temperature by the ideal gas law (5.2)), ηV E is volumetric efficiency, which

descibes how far the engine differs from an ideal volumetric device (see below), Vd [m3]

is displacement volume - the volume swept by all the pistons of an engine in a single

movement from top dead center to bottom dead center, N is number of revolutions per

cycle (N = 2 for four-stroke and N = 1 for two-stroke engines), ωe [rad/s] is engine speed.

The volumetric efficiency ηV E determines the engine’s ability to aspire mixture or air and

is of special importance at full-load conditions. It is rather difficult to predict it reliably

since many effects influence it (internal exhaust gas recirculation, ram effects in the intake
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runner, resonance in the manifold, etc.). Note also that evaporation of the fuel in the

intake port causes a substantial reduction of the temperature of the inflowing mixture.

This effect can increase volumetric efficiency.

At first approximation, volumetric efficiency can be formulated as

ηV E(t) = aV E ω2
e(t) + bV E ωe(t) + cV E, (5.8)

where coefficients aV E, bV E, cV E are found during the identification of the engine model.

5.1.2.1.4 Air to Fuel Ratio Air to fuel ratio (AFR) is the mass ratio of air to

fuel present during combustion. When all the fuel is combined with all the free oxygen,

typically within a engine’s combustion chamber, the mixture is chemically balanced and

this AFR is called the stoichiometric mixture (often abbreviated to stoich). AFR is an

important measure for anti-pollution and performance tuning reasons.

λ(t) =
QmAIR

(t)

QmF
(t)

(5.9)

with QmAIR
[kg/s] is mass flow through the valve and QmF

[kg/s] is fuel mass flow into

cylinders.

Note that mixture dynamic is omitted for simplicity.

5.1.2.2 Mechanical System

5.1.2.2.1 Torque Generation The primary objective of an engine is to produce me-

chanical power. Its speed is a level variable, i.e., it is not arbitrary assignable. However,

the torque can be changed arbitrarily at will, by providing the certain amount of mixture

into the cylinder and/or its composition. The mean-value engine torque is a nonlinear

function of many variables (fuel mass in cylinder, AFR, engine speed, ignition or injection

timing, etc.).

Detailed thermodynamic simulations are necessary to correctly predict the engine torque.

However, for control purposes such simulations are too time-consuming. Thus, alterna-

tive approaches have been investigated. Mostly, some physical insight to separate the

different influencing variables and divide the modeling task into several low-dimensional

problems is used.

Often, there is a problem to determinate the engine efficiency as many effects influence it.

In this work, only fuel efficiency would be considered. Also no frictions are also assumed.
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The fuel efficiency ηF consists of two main factors: thermodynamic and combustion effi-

ciency.

ηf = ηt ηc (5.10)

The thermodynamic efficiency ηt of the engine strongly depends to its speed and typically,

it has a parabolic form. At very low speeds, the relatively large heat losses through the

wall reduce engine efficiency, while at very high speeds, the combustion times become

unfavorably large compared to the available interval in the expansion stroke. Note that ηt

has magnitude substantially smaller than 1 since it incorporates the basic thermodynamic

efficiency mechanism.

Since engine efficiency has parabolic form one can write

ηt(t) = at ω2
e(t) + bt ωe(t) + ct, (5.11)

The combustion efficiency ηc is caused by fuel which has not burnt. Note that, this coe-

ficient is very close to 1.

Engine output power P [W] is

P (t) = Hl QmF
(t) ηf (5.12)

where Hl[J/kg] is heating value of the fuel, QmF
[kg/s] is fuel mass flow into cylinders.

For rotary machine we can also write

P (t) = Me(t) ωe(t) (5.13)

where Me [Nm] is generated torque.

Thus one can write

Me(t) =
1

ωe(t)
ηt ηc(t)Hl QmF

(t) (5.14)

5.1.2.2.2 Engine Speed In a mean-value setting, modeling the engine speed behav-

ior is straightforward process. In fact, the inertia is assumed to be constant and friction

and other losses are already included in the torque model described in section before.

The only relevant reservoir is the engine flywheel. It stores kinetic energy and the differ-

ential equation for the corresponding level variable ωe is

J
d

dt
ωe(t) = Me(t)−Ml(t), (5.15)

where J [m2 kg] is engine inertia, Ml is load torque which depends on engine speed, drive

train properties and external loads like road slope or wind disturbances. The control

algorithm has to eliminate the influence of it.
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5.1.3 State space model

Now consider the engine model illustrated in figure 5.3. For such model there are two

inputs (control variables): QmF
- fuel mass flow into cylinders, uth - control variable of

a throttle. There are also two system outputs: ωe - engine speed, λ - air to fuel ratio.

Model has two internal states: ωe - engine speed and pIMP - intake manifold pressure

(IMP) defined from (5.3), (5.7), (5.4) as

d

dt
pIMP (t) =

RT

VIM

[QmAIR
(t)−Qme(t)] , (5.16)

where VIM [m3] is intake manifold volume.

Figure 5.3: Considered engine model with inputs, outputs and states

Consider constant, time invariant input manifold temperature T , constant input pres-

sure pin and four stroke engine, that is

T (t) = T pin(t) = pin N = 2. (5.17)

Now state space model construction will be descibed for such a model. First, sub-

stitute the equation of generated torque (5.14) together with engine efficiency (5.11) to

(5.15)

J
d

dt
ωe(t) = J ω̇e(t) =

(
atωe(t) + bt +

ct

ωe(t)

)
Hl ηc QmF

(t)−Ml(t). (5.18)

then put together the equation of fresh air mass flow (5.4) with the equation of volumetric

pump (5.7) and intake manifold pressure equation (5.16)

d

dt
pIMP (t) = ṗIMP (t) =

RT√
RT

pin

VIM

cd (AC uth(t) + Aleak) Ψ

(
pin

pIMP (t)

)
−

−pIMP (t)

N

Vd

VIM

ωe(t)

2π

(
aV E ω2

e(t) + bV E ωe(t) + cV E

)
(5.19)

Let’s construct the output equation of AFR now. From (5.12) and (5.4) we get:

λ(t) = cd (AC uth(t) + Aleak)
pin√
RT

Ψ

(
pin

pIMP (t)

)
1

QmF
(t)

(5.20)
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5.1.3.1 Linearization

As one can see, process equations (5.20), (5.18), (5.19) are not linear. For linear control

it is necessary to linearize them. Controller will then work in neighborhood of working

point

pIMP = pIMP,0 ωe = ωe,0 uth = uth,0 QmF
= QmF ,0 λ = λ0 Ml = Ml,0. (5.21)

From equation of the air throttle (5.5) it is also clear that there will exist two separate

models for each of validity condition. Next, we will focus on model, where

pIMP (t) ≥ 1

2
pin (5.22)

Thus, we define linearized engine model 2 as

∆ω̇e =
∂ω̇e

∂ωe

∣∣∣∣
w.p.

∆ωe +
∂ω̇e

∂pIMP

∣∣∣∣
w.p.

∆pIMP +
∂ω̇e

∂QmF

∣∣∣∣
w.p.

∆QmF
+

∂ω̇e

∂uth

∣∣∣∣
w.p.

∆uth (5.23)

∆ṗIMP =
∂ṗIMP

∂ωe

∣∣∣∣
w.p.

∆ωe +
∂ṗIMP

∂pIMP

∣∣∣∣
w.p.

∆pIMP +
∂ṗIMP

∂QmF

∣∣∣∣
w.p.

∆QmF
+

∂ṗIMP

∂uth

∣∣∣∣
w.p.

∆uth(5.24)

∆λ =
∂λ

∂ωe

∣∣∣∣
w.p.

∆ωe +
∂λ

∂pIMP

∣∣∣∣
w.p.

∆pIMP +
∂λ

∂QmF

∣∣∣∣
w.p.

∆QmF
+

∂λ

∂uth

∣∣∣∣
w.p.

∆uth. (5.25)

After derivation we have

J ∆ω̇e(t) = Hl QmF ,0 ηc

(
at − ct

ωe,0

)
∆ωe(t) +

Hl

ωe,0

(
at ω2

e,0 + bt ωe,0 + ct

)
ηc ∆QmF

(t)

(5.26)

∆ṗIMP (t) = −pIMP,0

2πN

Vd

VIM

(
3aV E ω2

e,0 + 2bV E ωe,0 + cV E

)
∆ωe(t) +

+

[
RT√
RT

cd (AC uth,0 + Aleak)
pin − 2pIMP,0

p2
inF

−

− ωe,0

2πN

Vd

VIM

(
aV E ω2

e,0 + bV E ωe,0 + cV E

)]
∆pIMP (t) +

+
pin

VIM

RT√
RT

cd AC F∆uth(t) (5.27)

∆λ(t) = cd (ACuth,0 + Aleak)
pin√
RT

1

QmF ,0

pin − 2pIMP,0

p2
inF

∆pIMP (t) +

+ cd AC
pin√
RT

1

QmF ,0

F∆uth(t)− cd (AC uth,0 + Aleak)
pin√
RT

F

Q2
mF ,0

∆QmF
(t)

(5.28)

2Time indexes are omitted for simplicity.
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where F =

√
2pIMP,0

pin

[
1− pIMP,0

pin

]
.

It should be denoted that load torque Ml is not included in linearized equations of

the system, because it is unmesured input disturbance which control algorithm must

eliminate.

Thus the state space model in neighborhood of working point (5.21) is

∆ẋ(t) = Ac∆x(t) + Bc∆u(t)

∆y(t) = Cc∆x(t) + Dc∆u(t), (5.29)

where the matrices Ac, Bc, Cc, Dc are parametrized by equations (5.26), (5.21) and

∆x(t) =

[
∆ωe(t)

∆pIMP (t)

]
∆u(t) =

[
∆QmF

(t)

∆uth(t)

]
∆y(t) =

[
∆ωe(t)

∆λ(t)

]
. (5.30)

5.1.3.2 Model Parametrization and Verification

The nonlinear model of the SI engine ((5.20), (5.16), (5.18)) and linearized model (5.26)

were implemented in MATLABr and Simulinkr3 with following parameters 4:

Hl = 4.7 [MJ/kg] Vd = 2 [dm3] V = 1 [dm3] J = 0.4 [kg/m2]

R = 287 [J/(kg K)] T = 293.15 [K] pin = 100 [hPa] N = 2 [−]

ηc = 0.9 [−] cd = 0.1 [−]

For linear control, the following working poit was choosen:

pIMP,0 = 51.7 [kPa] ωe,0 = 302.2 [rad/s] uth,0 = 27 [%]

QmF ,0 = 1.7 [g/s] λ0 = 16 [−] Ml,0 = 100 [Nm].

The continuous nonlinear and linearized model have been sampled with sample period

TS = 50 ms. The figure 5.4 shows the comparing of the step responses of the nonlinear

and for the linearized model in neighborhood of working point. From the step response

of the fuel mass flow QmF
to engine’s speed ωe (top image) one can see the strong non-

linearity effect ( 1
ωe

term in (5.18)) which causes diferent behavior of the nonlinear and

linearized model even for small step of QmF
. The intuitive independecy of the engine’s

3MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
4The list of all parameters is stated in SI engine init.m script on attached CD.
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speed to position of the throttle uth is also clear from this figure. It means that for

increasing the engine’s speed it is neccessary to increase the fuel mass flow into the cylin-

ders. The increasing of the fresh air mass flow, which is controlled by the throttle position

uth will influence only the AFR λ. It can be seen in the second image, where the fast

dynamics of the AFR is also evident. Note that the direct feedthrough of the fuel mass

flow QmF
to AFR, which is evident from (5.20) can be seen here too.

After discretization of the linearized model we have

∆xk+1 = A∆xk + B∆uk

∆yk = C∆xk + D∆uk, (5.31)

where the system matrices A, B, C, D are the discrete equivalent of system (5.29) and

∆xk =

[
∆ωek

∆pIMPk

]
∆u(t) =

[
∆QmF k

∆uthk

]
∆yk =

[
∆ωek

∆λk

]
. (5.32)

Figure 5.4: Step responses of nonlinear and linearized model of the SI

engine.
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5.2 The Controller Design

From figure 5.5 is clear that the slowest mode of the engine is in steady state aproxi-

amtely in 5s, therefore the prediction horizont was choosen to Tp = 100. For reduce the

complexity of the result controller the control horizont was choosen to Tc = 1 and the

algorithm for the soft output constraints described in chapter 4 was used.

Consider following requirements:

• offset-free tracking of a given engine speed ωe

• range control of the AFR λ among the upper λ and lower λ constraints

• limited control action of fuel mass flow 0.3 ≤ QmF
≤ 5 [mg/s]

• limited control action of position of the throttle 5 ≤ uth ≤ 100 [%]

From the σ-plot of condition number of the engine’s model in figure 5.5 it is clear that

engine is ill-conditioned system on high frequencies and therefore sensitive to input un-

certainty [59].

Figure 5.5: Step response and σ-plots of open loop and condition number

of the linearized model of the SI engine.
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Note: For distinguish the ∆u-formulation of MPC and ∆ symbol of increment in neigh-

borhood of working point for linearized system model the new labeling for control incre-

ment which is result of MPC will be considered. The formulation δuk means the control

move of MPC in step k, that is

δuk = ∆uk −∆uk−1 = (uk − u0)− (uk−1 − u0) = uk − uk−1, (5.33)

where u0 is value of control in working point. 2

5.2.1 Formulation

From equation of the engine speed (5.18) it is clear that one state disturbance enters into

the system. This disturbance represents the engine’s load Ml which depends on the road

slope or wind which affects to a car. From the equation of AFR (5.9) is also clear its

nonlinearity, thus it is reasonably to modeling this as the output disturbance. Thus the

disturbance model for engine would be

Gd =
[
−1 0

]T

Gp =
[

0 1
]T

. (5.34)

Thus according to (2.107) it is neccessary to augment the system (5.32). Moreover, in

order to use the ∆u-formulation of MPC the system model (5.32) has to be augmented

with last control move and reference, i.e.

∆x̃k+1 = Ã ∆x̃k + B̃ δuk

∆yk = C̃ ∆x̃k + D̃ δuk, (5.35)

where the system matrices Ã, B̃, C̃ and D̃ are built according to (2.107) and (2.49).

From the second requirement of range control of AFR among the upper and lower

constraints it is clear that 2 slack variables and 2 states have to be add to cost function

and to system model.

Finally, according to (2.72) one can find the optimal control of the engine as the

solution of the cost function

h∗ = arg min
h

J(h|x̃k) =
1

2
hT H́h +

[
x̃k

λk

]T

F́ h +

[
x̃k

λk

]T

Ý

[
x̃k

λk

]
, (5.36)

s.t. G δuk,Tc−1 ≤ W + E x̃k, (5.37)
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with

h =
[

δuk,Tc−1 ε
]T

λk =
[

λk λk

]T

(5.38)

and where the constraints matrices G, W and E are built according to section 2.3.2 and

4.2. On the AFR output, the algorithm which were introduced in chapter 4 is used.

The two controllers were obtained using the MPT Toolbox [37] with following settings:

q = 500, R =

[
10000 0

0 100

]
, ρ =

[
10e6 0

0 10e6

]
, Tc = 1, Tp = 100. (5.39)

The first controller uses the constraints horizon Tcs = 10 and the second one uses our

algorithm of output soft constraints handling described in Chapter 4 for reducing the

control law complexity with Tn = 50.

Note that result controller, which uses our algorithm, consists of 36 regions and the

second one consists of 260 regions. Thus the controller which uses our algorithm is much

less complex.

For estimating the system state, the Kalman filter 2.3.5.3 augmented to disturbances

model (5.34) was used.

5.2.2 Assessment

Figure 5.6 shows that thanks to Unknown Input Observer method the offset-free tracking

of engine speed is guaranteed even for large steps of references from the neighborhood

of the working point (ωe,0 = 302.2 [rad/s]) where the model is uncertain or where the

model is not valid (see 5.8, where the intake manifold pressure must be greater than the

condition of validity 5.22).

Note again that model of engine is nonlinear and used MPC works only with lin-

earized model. The off-set free tracking is also guaranteed when the load (disturbance)

is present. At 16 s the load of 50 [Nm] enters to the system (see figure 5.8) and the

controller arranges that the engine speed is returned back to reference value.
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Air to fuel ratio response shows that the soft constraints are satisfied if it is possible.

The peaks of AFR are caused by the large changes of fuel mass flow shown in figure 5.7

(mainly due to the direct feedthrough).

As one can see the closed loop responses are the same for the much more complex

controller which uses the constraints horizon and for the less complex controller which

uses our constraints handling algorithm, thus it is possible to use our algorithm even for

uncertain nonlinear models.

Note that, research of influence of parameter Tn to frequency response of engine leads

to very similar results as were introduced in example 4.1. But because the eigenvalues of

the engines’s model are real, the influence is not so evident.

Figure 5.6: Offset-free tracking of the engine speed and range control of

the AFR.
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Figure 5.7: Control actions of fuel and air throttle during the simulation.

Figure 5.8: The Kalman’s estimation of variables of the engine during the

simulation.
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Chapter 6

Conclusions

In the first chapter of this work the main principles of MPC were introduced. The Un-

known Input Observer method which allows an estimation of the unknown input to the

controlled system to eliminating steady-state offset was described there too. The abilities

of this method were shown on examples of MPC control of the linear models and later

(in Chapter 5) the method was used to eliminate the tracking error of engine speed of

nonlinear model of port injection spark-ignited gasoline engine.

In Chapter 3 the Explicit MPC were described together with its main drawback - the

large growth of complexity of a mp-QP solution with increasing number of constraints. In

Chapter 4 the influence of model uncertainty to constraints handling for MPC with small

prediction horizon was shown. The focus was on the soft output constraints. The hard

output constraints were not considered because they can cause the infeasible solution of

MPC.

In Chapter 4 the new output soft constraints handling algorithm for MPC was in-

troduced too. The main idea of the algorithm is that the output soft constraints are

considered only in one step of the outputs prediction. Therefore when the constraint is

violated the controller ignores it up to the step where the constraint is considered, thus

no control action is generated immediately after the violation. This leads to more careful

control and the choice of the step, where the constraint is considered, is a parameter of

how much the control will be careful. The influence of the algorithm on frequency and

time response of the result closed loop system was shown on example. It was shown that

with increasing the step, where the constraints are considered, the closed loop system

will more and more damp the high frequencies where the system is ill-conditioned and

uncertainties or disturbances can arise. Thus the result controller will be more robust.

83
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The abilities of the algorithm were also shown on control of the nonlinear model of the

port injection spark-ignited gasoline engine, where the controller which used our algo-

rithm reached similar closed loop performance as more complex controller.

It was also shown that this algorithm does not increase the complexity of the resulting

Explicit MPC so much, thus the range control which will use this algorithm can be used

even for high-speed systems.

The algorithm presented in this work assumes that all of the output soft constraints

are considered in one step. In the future works, the constraints can be considered in more

steps or in different steps for each system output/constraint. Also the stability guarantee

proofs of range control with using described algorithm needs to be found.
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[60] Štěcha, J.: Optimálńı rozhodováńı a ř́ızeńı - textbook[cz]
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Appendixs A

Contents of the enclosed CD

For this work the CD with the source codes of described algorithm is enclosed.

• directory doc: contains the electronic version of this work

• directory matlab: constains the Matlab source codes (m-files) of the described al-

gorithm and Simulink models
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