Version Control

Michal Sojka, Martin Molnar

sojkam1l (at) fel.cvut.cz
molnam1 (at) fel.cvut.cz

2.12. 2015

What Is version controll geoed fior?

® More people work together on one (software) project.

® One person works with multiple computer (home, office).
® What is the last version on my file?

® Who did the change which caused the bug?

® How did | correct that error last year?

® What are the changes since the last release?

Avallable soelutions

® Manual comparison of files
» commands: diff and patch
» Graphical diffs (kdiff3, WinMerge)
® Version control systems (software)
» local: RCS

» networked
* Centralized repository: CVS, Subversion, ...

« Distributed repository: Darcs, git, Monotone, Bitkeeper, bzr,
Mercurial...

Manual file comparison

file:/llhome/sojkalsre/linux-2.6/kernelfacct.c:file:usrisrellinux-2.6.18.1/kernel/lacct.c - Kompare

File Difference Settings Help

EHdH R avddP W

LA 4
Source Folder Destination Folder Source File Destination File Source Line Destination Line Difference B
E.-'hnrne.-‘sﬂjh;a.-'sr{:-’lin E.-'usr.-'sr{:-'linux—E.E.1B.1.-'h;E 439 430 Deleted 1 line

488 486 Inserted 5 lines |:|

£) I | 489 492 Deleted 2 lines -

LA 4
acct.c acct.c B
478 #if ACCT_VERSION==1 || ACCT_VERSION== 479 ac.ac_gidle = current-=gid;
479 /* backward-compatible 16 bit fields */ 4808 #endif
480 ac.ac_uidls = current-=uid; 481 #ifT ACCT _VERSION==
481 ac.ac_gidle = current-=gid; 482 ac.ac_pid = current-=tgid;
482 Fendif 483 ac.ac_ppid = current-=parent-=tgid;
4833 #if ACCT VERSION== 484 #endif
484 ac.ac_pid = current-=tgid; 485
485 gc.ac_ppid = current-=parent-=tgid; 486 read lock({&tasklist Llock); J* pin current-=sigmi
486 Fendif 487 ac.ac_tty = current-=signal-=tty ?
487 488 old _encode dev(tty devnum{current-=signal-=tty
488 spin_lock irg{¤t-»sighand-=siglock); 489 read_unlock({&tasklist_lock);
459 tty = current->signal-=tty; 458
498 ac.ac tty = tty ? old encode dev(tty devnum{tty)) 491 spin_lock_irg(¤t-=sighand-=siglock);
491 gc.ac_utime = encede_comp_t({jiffies_to_ AHI{cputime 492 ac.ac_utime = encode comp t{jiffies to AHZ{cputime
4932 ac.ac_stime = encode_comp_t(jiffies_to_AHI{cputime 493 ac.ac stime = encnde_cnmp_t{jiffies_tn_.ﬂ.HZ(cputime[
493 gc.ac flag = pacct-=ac flag; 494 ac.ac_flag = pacct-=ac_flag;
494 ac.ac_mem = encode comp_ti{pacct-=ac mem); 455 ac.ac_mem = encode comp_t{pacct-=ac_mem);
495 gc.ac_minflt = encode_comp_ti{pacct-=ac_minflt); 496 ac.ac_minflt = encode comp t{pacct-=ac minflt);
496 gc.ac_majflt = encode_comp_t({pacct-=ac_majflt); 497 ac.ac_majflt = encode comp_t{pacct-=ac majflt):
497 ac.ac exitcode = pacct-=ac exitcode; 498 ac.ac exitcode = pacct-=ac exitcode; E]B
Comparing file file:home/sojka/srclinux-2 6/kerneliacct.c with file file Musrsrelinux-2 .6.18.1/kernellacct.c 10 of 12 differences, 0 applied 1 of 1 file

\/ersion| control systems

® Store the whole project history

® Allow for commenting individual changes

® Store when and who did the change

® Merge changes in the same file from multiple people
® Allows for multiple development branches

® Can tag some revisions by a symblic name

Secondary branch
(e.g. fixes of stable branch) i »%ﬁ
version 1.0.1

Main branch p

- R
(trunk)
version 1.0.0

V/ESs with centralized repository.

® CVS, Subversion (SVN)

® There is only one repository usually stored on a server
® Every developer has a working copy in his computer

® Basic operations:

» After there is something changed in the working copy, a new
revision is stored in the repository (commit, check-in)

» Update the working copy from repository (update, check-out)
Local (uncommited) changes are merged with updates

® Terminology:
» HEAD - the latest revision in the repository

» BASE - revision which was checked-out (after checkout
BASE=HEAD until somebody commits to the repository)

Recommendations for commit

[MESSaUES

® Use the whole sentences (with verb). For example:
Fixed bug in ...
Added computation of PI.
Wrong:
Computation of pi.

® |t must be clear what was changed only by looking at the
message (not at the code).

® For longer message start with a brief one line description and
continue with additional paragraphs.

® Many open-source projects require “Certificate of Origin”:

» Signed-off-by: Name <email@example.com>

Recommendations for commit

messages (cont.)

® |deal commit message answers the following questions:
» Why did you change that code?

» What led you to that code (motivation, problem report,
use-case, etc.)?

» What options did you consider?
» Why did you select the option taken out of those?
» What is the intended result?

» How much testing was done?

\/€Ss with distriouted repository.

® Git, Darcs, Monotone, bzr, mercurial, BitKeeper

® No need for centralized repository (but any repository can be
used as a central one)

® Working copy is also repository at the same time

® Changes in the working copy are first recorded (committed)
to the “local” repository.

® Then changes can be sent to other developer's repositories
or to the central repository (push).

® Changes can also be pulled from other (central) repositories.
® Advantages:

» You can work off-line

» Possibility of having multiple versions (branches) of projects
and move changes between them

What IS gIt?

Source control management (SCM) system designed for
sharing large amounts of source code among a distributed
group of developers

Initially written by Linus Torvalds to manage Linux kernel
sources

simply and concisely: git is a stupid (but extremely fast)
directory content manager

Drawbacks (not completely true today)

» Steeper learning curve (27 high-level commands, 140 in total)

» Windows support not so mature
» people continuously improve it

Homepage: http://git-scm.com - contains useful information
(manual, tutorials, wiki, etc.) about git 15

What does Gl stands fior?

® According to man git, "git" can mean anything, depending
on your mood:

» random three-letter combination that is pronounceable, and
not actually used by any common UNIX command. The fact
that it is a mispronunciation of "get" may or may not be
relevant.

» stupid. contemptible and despicable. simple. Take your pick
from the dictionary of slang.

» "global information tracker": you're in a good mood, and it
actually works for you. Angels sing, and a light suddenly fills
the room.

» "goddamn idiotic truckload of sh*t": when it breaks

16

Mailn fieatures

® fully distributed - no need for central repository (this is a good
thing, why?). Changes are committed to the local (cloned)
repository

¢ fully peer-to-peer
» repository can be based on one or more remote repositories
» repository can be published for other developers to use

® complex merges

» different merge algorithms - starting with a very fast stupid one
progressing to more complex and time consuming ones

» able to recognize and handle duplicate changes

» If the merge cannot be done automatically, git gives you a powerful
tool to help you with the merge.

¢ file content tracking - does not record only file content
changes but whole file content 17

Features

® Very efficient storage of history:

» Unpacked Linux 2.6.32 sources:
« du -ch git Is-files': 410 MB

» 4.5 years of Linux development history = 186 thousands
of commits = 113 commits every day (in average)

« du -sh .git: 419 MB
» Unpacked Linux 4.3: 688 MB

» 10.5 years history, 548 thousands commits (152 commits
daily): 1124 MB

18

gt COMPONENLS

® Object Database
» collects objects of four types: blob, tree, commit, tag
» objects are addressed by SHA1 hash of their content
® Index
» current tree cache

» stores the next revision to be committed

19

Object Datapase |.

¢ blob object
» represents contents = one version of a file

» if two files in a directory tree (or in multiple different versions
of the repository) have the same contents, they will share
the same blob object

® tree object
» represents one directory

» contains sorted list of text lines with the following information:
mode,object type, SHA1, path name

» information about blobs and tree objects lying in the directory

» several tree objects forms hierarchical directory structure

20

http://git-scm.com/

Object Datakase II.

® commit object

» contains by the reference to related tree object, the parent
commits, commentary

» sequence of commit objects provides the history

» commit objects tie the directory structures together into a
acyclic graph (DAG)

¢ tag object

» assigns symbolic name to particular object reference e.q.
commit object associated with a named release

» contains SHA1, object type, symbolic name of referenced
object and optionally a signature

21

Example: Object Datahase |.

¢7db...

® 1. Start with a new
repository

® 2. Create filel with the
content: “This is filel.”

® 3. Create file2 with the
content: “This is file2.”

® 4. Update the index

® 5. Make an initial commit

22

Example: Opject Databhase |l

® 1. Move filel and file2 into —
subdirectory Tdb.. e Tbd..

parent c7db..
Author mm

® 2. At top level, create file3
with the content: “This is
file3.”

Mowed files
to subdir

l 71bd...

blob affs . anbdir
blob dat?... file3

das7.. l

® 3. Update the index

trae

® 4. Make a commit

5364 oEa...
blob
Thiz iz
filed.

23

Index

® simple binary file, which contains an efficient representation
of a virtual directory content

® itis implemented by a simple array that associates a set of
names, dates, permissions and content (blob) objects
together

® serves as staging area to prepare commits
® helps with merge conflicts resolving

® improves performance (speed of operations)

24

Internal git woerkileow:

glt —commmlit —tree

|

Object DB

glt —wrlte —tree l glt—read —tree

Index

glt—update—Index J gt —checkout—Index

Working
Directory

25

Plumpings and Porcelains

¢ plumbings are low level git commands e.qg. git-write-tree,
git-commit-tree, etc.

® porcelains are high level git commands (e.g. git commit
calls git-write-tree and git-commit-tree) and other frontends:

» git gui, gitk, qgit - graphical tools
» tig - text mode git browser
» Gitweb, Cgit

» TopGit, StGit - simplifies patch-queue management in git

26

Example

® mkdir git-test; cd git-test

e git init - initialize empty git repository in the current working
directory

® echo “Hello world” > hello
e git add hello - adds file to the Index
e git status - shows the state of the index

® git commit -m “Adding file hello.” - commits changes

27

Example: Lintx git repository,

e gitclone \
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

® cd linux ; git pull - pull new revisions from remote repository

® git gc - clean and compress object database (garbage
collect)

28

Prejects using Git

® Linux kernel ® Debian
® LibreOffice (OpenOffice) e X.org
® GNOME

e KDE

® Perl

e Qt

® Android

® PostgreSQL

® Fedora

29

References

144 a“

® “How To GitIt”, "Embracing the Git Index” ,“Collaborating
With Git” Jon Loeliger, Linux Magazine, March 2006

® Git man pages

® Tutorials at http://git.or.cz

30

What 1S guilit?

® tool to manage large sets of patches by keeping track of the
changes each patch makes

® patches are applied incrementally on top of the base tree
plus all preceding applied patches=> stack of patches

® quilt is command-line tool invoked by: quilt command

31

Some QuIlt commanads

® new patchname - create a new patch and insert it after
the topmost patch in the patch series file

® add filename - Add file to the topmost patch
® refresh - refreshes the topmost patch
® push - apply patches from the series file

® pop - remove patch(es) from the stack of applied patches

32

mkdir quilt-test

echo Hello > a.txt
quilt new a.patch
quilt add a.c

» track a.c in the a.patch

» the content of a.c is backuped in .pc/a.patch directory
modify a.c
quilt refresh

» updates/creates a.patch in the patches directory
create file b.c

quilt new b.patch - b.patch is now on the top of patch stack

33

