

Version ControlVersion Control

Michal Sojka, Martin Molnár

sojkam1 (at) fel.cvut.cz
molnam1 (at) fel.cvut.cz

2. 12. 2015

What is version control good for?What is version control good for?

More people work together on one (software) project.

One person works with multiple computer (home, office).

What is the last version on my file?

Who did the change which caused the bug?

How did I correct that error last year?

What are the changes since the last release?

Available solutionsAvailable solutions

Manual comparison of files

commands: dif and patch

Graphical diffs (kdiff3, WinMerge)

Version control systems (software)

local: RCS

networked
● Centralized repository: CVS, Subversion, ...
● Distributed repository: Darcs, git, Monotone, Bitkeeper, bzr,

Mercurial...

Manual file comparisonManual file comparison

Version control systemsVersion control systems

Store the whole project history

Allow for commenting individual changes

Store when and who did the change

Merge changes in the same file from multiple people

Allows for multiple development branches

Can tag some revisions by a symblic name

Main branch
(trunk)

Secondary branch
(e.g. fixes of stable branch)

version 1.0.0

version 1.0.1

VCSs with centralized repositoryVCSs with centralized repository

CVS, Subversion (SVN)

There is only one repository usually stored on a server

Every developer has a working copy in his computer

Basic operations:

After there is something changed in the working copy, a new
revision is stored in the repository (commit, check-in)

Update the working copy from repository (update, check-out)
Local (uncommited) changes are merged with updates

Terminology:

HEAD – the latest revision in the repository

BASE – revision which was checked-out (after checkout
 BASE=HEAD until somebody commits to the repository)

Recommendations for commit Recommendations for commit
messagesmessages

Use the whole sentences (with verb). For example:
Fixed bug in ...
Added computation of PI.

Wrong:
Computation of pi.

It must be clear what was changed only by looking at the
message (not at the code).

For longer message start with a brief one line description and
continue with additional paragraphs.

Many open-source projects require “Certificate of Origin”:

Signed-off-by: Name <email@example.com>

Recommendations for commit Recommendations for commit
messages (cont.)messages (cont.)

Ideal commit message answers the following questions:

Why did you change that code?

What led you to that code (motivation, problem report,
use-case, etc.)?

What options did you consider?

Why did you select the option taken out of those?

What is the intended result?

How much testing was done?

VCSs with distributed repositoryVCSs with distributed repository

Git, Darcs, Monotone, bzr, mercurial, BitKeeper

No need for centralized repository (but any repository can be
used as a central one)

Working copy is also repository at the same time

Changes in the working copy are first recorded (committed)
to the “local” repository.

Then changes can be sent to other developer's repositories
or to the central repository (push).

Changes can also be pulled from other (central) repositories.

Advantages:

You can work off-line

Possibility of having multiple versions (branches) of projects
and move changes between them

15

What is git?What is git?

Source control management (SCM) system designed for
sharing large amounts of source code among a distributed
group of developers

Initially written by Linus Torvalds to manage Linux kernel
sources

simply and concisely: git is a stupid (but extremely fast)
directory content manager

Drawbacks (not completely true today)

Steeper learning curve (27 high-level commands, 140 in total)

Windows support not so mature
● people continuously improve it

Homepage: http://git-scm.com - contains useful information
(manual, tutorials, wiki, etc.) about git

16

What does GIT stands for?What does GIT stands for?

According to man git, "git" can mean anything, depending
on your mood:

random three-letter combination that is pronounceable, and
not actually used by any common UNIX command. The fact
that it is a mispronunciation of "get" may or may not be
relevant.

stupid. contemptible and despicable. simple. Take your pick
from the dictionary of slang.

"global information tracker": you’re in a good mood, and it
actually works for you. Angels sing, and a light suddenly fills
the room.

 "goddamn idiotic truckload of sh*t": when it breaks

17

Main featuresMain features

fully distributed – no need for central repository (this is a good
thing, why?). Changes are committed to the local (cloned)
repository

fully peer-to-peer

repository can be based on one or more remote repositories

repository can be published for other developers to use

complex merges

different merge algorithms – starting with a very fast stupid one
progressing to more complex and time consuming ones

able to recognize and handle duplicate changes

If the merge cannot be done automatically, git gives you a powerful
tool to help you with the merge.

file content tracking – does not record only file content
changes but whole file content

18

FeaturesFeatures

Very efficient storage of history:

Unpacked Linux 2.6.32 sources:
● du -ch `git ls-files`: 410 MB

4.5 years of Linux development history = 186 thousands
of commits = 113 commits every day (in average)

● du -sh .git: 419 MB

Unpacked Linux 4.3: 688 MB

10.5 years history, 548 thousands commits (152 commits
daily): 1124 MB

19

git componentsgit components

Object Database

collects objects of four types: blob, tree, commit, tag

objects are addressed by SHA1 hash of their content

Index

current tree cache

stores the next revision to be committed

20

Object Database I.Object Database I.

blob object

represents contents = one version of a file

if two files in a directory tree (or in multiple different versions
of the repository) have the same contents, they will share
the same blob object

tree object

represents one directory

contains sorted list of text lines with the following information:
mode,object type, SHA1, path name

information about blobs and tree objects lying in the directory

several tree objects forms hierarchical directory structure

http://git-scm.com/

21

Object Database II.Object Database II.

commit object

contains by the reference to related tree object, the parent
commits, commentary

sequence of commit objects provides the history

commit objects tie the directory structures together into a
acyclic graph (DAG)

tag object

assigns symbolic name to particular object reference e.g.
commit object associated with a named release

contains SHA1, object type, symbolic name of referenced
object and optionally a signature

22

Example: Object Database I.Example: Object Database I.

1. Start with a new
repository

2. Create file1 with the
content: “This is file1.”

3. Create file2 with the
content: “This is file2.”

4. Update the index

5. Make an initial commit

23

Example: Object Database II.Example: Object Database II.

1. Move file1 and file2 into
subdirectory

2. At top level, create file3
with the content: “This is
file3.”

3. Update the index

4. Make a commit

24

IndexIndex

simple binary file, which contains an efficient representation
of a virtual directory content

it is implemented by a simple array that associates a set of
names, dates, permissions and content (blob) objects
together

serves as staging area to prepare commits

helps with merge conflicts resolving

improves performance (speed of operations)

25

Internal git workflowInternal git workflow

26

Plumbings and PorcelainsPlumbings and Porcelains

plumbings are low level git commands e.g. git-write-tree,
git-commit-tree, etc.

porcelains are high level git commands (e.g. git commit
calls git-write-tree and git-commit-tree) and other frontends:

git gui, gitk, qgit – graphical tools

tig – text mode git browser

Gitweb, Cgit

TopGit, StGit – simplifies patch-queue management in git

27

ExampleExample

mkdir git-test; cd git-test

git init – initialize empty git repository in the current working
directory

echo “Hello world” > hello

git add hello – adds file to the Index

git status – shows the state of the index

git commit -m “Adding file hello.” – commits changes

28

Example: Linux git repositoryExample: Linux git repository

gitclone \
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

cd linux ; git pull – pull new revisions from remote repository

git gc – clean and compress object database (garbage
collect)

29

Projects using GitProjects using Git

Linux kernel

LibreOffice (OpenOffice)

GNOME

KDE

Perl

Qt

Android

PostgreSQL

Fedora

Debian

X.org

30

ReferencesReferences

“How To Git It”, ”Embracing the Git Index” ,“Collaborating
With Git” Jon Loeliger, Linux Magazine, March 2006

Git man pages

Tutorials at http://git.or.cz

31

What is quilt?What is quilt?

tool to manage large sets of patches by keeping track of the
changes each patch makes

patches are applied incrementally on top of the base tree
plus all preceding applied patches=> stack of patches

quilt is command-line tool invoked by: quilt command

32

Some Quilt commandsSome Quilt commands

new patchname - create a new patch and insert it after
the topmost patch in the patch series file

add filename - Add file to the topmost patch

refresh – refreshes the topmost patch

push – apply patches from the series file

pop - remove patch(es) from the stack of applied patches

33

ExampleExample I. I.

mkdir quilt-test

echo Hello > a.txt

quilt new a.patch

quilt add a.c

track a.c in the a.patch

the content of a.c is backuped in .pc/a.patch directory

modify a.c

quilt refresh

updates/creates a.patch in the patches directory

create file b.c

quilt new b.patch – b.patch is now on the top of patch stack

