
1/114

RTOS VxWorks 7.x

Ing. Michal Sojka, Ing. Zdeněk Šebek

October 18, 2023

Czech Technical University in Prague,
Faculty of Electrical Engineering,

Department of Control Engineering

2/114

Topics

 VxWorks 7.x kernel – components, properties
 Device drivers
 Kernel customization to a specific application

3/114

VxWorks – basic properties I.
 UNIX type real-time operating system
 Proprietary, WindRiver
 Safety certification (aerospace etc.)!

 Real-Time scheduling
 Unlimited number of tasks
 Preemptive scheduling

 Priority-Based
 Round-Robin

 256 priority levels
 Fast and flexible inter-process communication

4/114

VxWorks – basic properties II.

 Inter-task/process communication
 Binary, counting and mutex semaphores

 Supports priority inheritance
 Message queues, Signals, Pipes, Sockets
 Shared memory

 Connectivity
 IPv4, IPv6, Time-sensitive networking (TSN), USB,

CAN

5/114

VxWorks – basic properties III.

 Multi-core support (symmetric/asymmetric)
 Virtualization
 Asynchronous I/O
 Filesystems

 FAT file system
 „raw“ file system
 TrueFFS (for flash memories)
 Fault-tolerant file system HRFS

 Multimedia: OpenGL (ES). OpenCV, Vulkan
 Security: OpenSSL, Secure boot, Arm

TrustZone...

6/114

VxWorks – supported CPU architectures

 Intel x86 (32b., 64b.)
 ARM (32b., 64b.)
 RISC-V
 MIPS
 PowerPC
 ...

7/114

VxWorks – application programming
interfaces (API)

 How programs interact with the OS
 Two main options:

 Wind API
 POSIX API

8/114

VxWorks 7.x – Languages & Wind API

 C language
 Why? C is a portable assembler.

 Rust for user space (RTP)


 Wind API
 Basic API of VxWorks
 Is not POSIX compatible
 Less complicated
 Usually solves drawbacks of POSIX specification
 Using this API produces less portable code

9/114

VxWorks 7.x – POSIX API
 Standard API compatible with POSIX 1003.1b

specification for
 Asynchronous I/O
 Semaphores
 Message queues
 Memory management
 Signals
 Scheduler
 Timers

10/114

Applications types

 Downloadable kernel module (DKM)
 No memory protection
 Direct access to HW

 Real-time process (RTP)
 Employs memory protection
 No direct access to HW

 DKM is similar to Linux kernel modules (drivers)
 WindRiver tries to provide the same (similar)

APIs for both DKM and RTP applications.

11/114

Overall VxWorks OS Structure

12/114

Task Management I.
Task context a.k.a. task_struct (Linux)

● Program counter
● Content of CPU registers
● Stack
● Assignment of standard I/O
● Timer for function delay
● Timeslice timer
● Kernel control structures
● Signal handlers
● Debugging a monitoring variables

http://lxr.free-electrons.com/source/include/linux/sched.h#L1027

13/114

Task management II.

All tasks run in one common address space
(either kernel or RTP)

+ Fast context switch
– Zero protection

Besides other things, RTP implements protection
mechanisms (if CPU has MMU)

14/114

Task state

pended

ready

delayed

suspended

taskInit()

15/114

READY state

 The task is ready to run
 Doesn't wait for any resources except for CPU
 VxWorks doesn't distinguish whether the task is

running (has assigned CPU) or not.

16/114

PEND state

 Task is blocked, waits for some
resource to be assigned to it.

 Typical examples are waiting for a
semaphore, reading from an empty
message queue etc.

 Most of the time caused by calling
semTake, msgQReceive etc.

17/114

DELAY state
 The task waits for some time interval to elapse
 Caused by calling taskDelay() or nanosleep()
 Warning! This is different from elapsing of timeout

in some calls.

18/114

SUSPEND state

 The execution of the task is forbidden
 Typically used when the task is debugged
 Doesn't forbid change of task state, only its

execution
 This state can be set by calling taskSuspend

19/114

STOP state

 also used by debugger
 signalizes the task was stopped by a breakpoint

20/114

Task State – Combinations I.

 DELAY+S
Simultaneously delayed and suspended, e.g. call to
taskDelay during debugging

 PEND+S
Simultaneously pended and suspended e.g. waiting
for a semaphore (semTake) during debugging

21/114

Tasks state – combinations II.

 PEND+T
waiting for a resource with timeout

 PEND+T+S
same as PEND+T, but suspend because of
debugging

 State+I
arbitrary state, priority inheritance mechanism
is active

22/114

Task priorities

 Tasks have priorities in range 0 (highest) through
255 (lowest)

 Priority can be read or set at runtime
(taskPriorityGet, taskPrioritySet)

 When creating the task manually (debugger,
shell) the priority is set to the default value 100

 Recommended priority ranges:
 Applications: 100 – 255
 Drivers: 51 – 99
 Network handling (tNet0): 50

23/114

Preemptive fixed-priority scheduling

 Default scheduler – selects which task will be run next
 Reflects only task priorities (difference from GPOS, needs to

be deterministic)

24/114

How the scheduler selects the next
task to run?

0

1

2

3

:

255

Task 1 Task 2

Task 3

Priority

Run queue data structure

 What is the complexity of the scheduling algorithm?
 O(n·log n), O(n), O(log n), O(1)?

n is the nuber of tasks in the system

25/114

Round-Robin Scheduling
 Limits time (timeslice), when the CPU is

assigned to one task, then rescheduling to
different one is forced.

 Timeslice can be set by system call
kernelTimeSlice()

 Task priority remains the main criterion .

26/114

Scheduler invocation

 When is the scheduler executed?
 After every interrupt – there might be new work to do

 Timer (system tick)
 I/O device

 As a part of some system calls
 taskDelay
 semTake, semGive
 ... and many more

 What exactly is the context switch?

27/114

Disabling of Scheduling
 Every task can disable/enable rescheduling to

other task using taskLock/taskUnlock calls
 In locked state, rescheduling is possible only if

the task is blocked (PEND state) or suspended
 Interrupts are not blocked at all

 What is it good for?
 What is better for real-time? Using taskLock() or

mutexes?

28/114

Task creation
 taskInit – create a task
 taskActivate – run a task
 taskSpawn = taskInit + taskActivate

Creates and runs the task according to the
parameters:
 Task name
 Stack size (why this needs to be specified?)
 Code (entry function)
 Entry function parameters

29/114

Task Creation Options

 VX_FP_TASK – must be specified when the task
uses floating-point operations. Why?

 VX_NO_STACK_PROTECT – Create without
stack overflow or underflow guard zones.

 VX_TASK_NOACTIVATE – Used with
taskOpen() so that the task is not activated.

 VX_NO_STACK_FILL – Does not fill the stack
with 0xEE.
 Filling stacks is useful during development for debugging

with the checkStack() routine.

30/114

Task termination

 Task is terminated when either
 The entry function returns or
 taskDelete(taskId) is called

 Enabling/disablig task deletion –
taskSafe/taskUnsafe calls

 If the task is in Safe state, other tasks calling
taskDelete on the task are blocked.

 Beware: deleted task does not release held locks
(mutexes)

31/114

Task control
 taskSuspend/taskResume – suspends/resumes

task
 taskRestart – recreates the task with the original

creation arguments
 taskDelay – delays the execution for specified time.

Time is measured in ticks of the system timer
(default frequency is 60 Hz, can be changed/read by
sysClkRateSet/sysClkRateGet)

 POSIX
 nanosleep – delay, time in nanoseconds

32/114

Tasks in POSIX = Threads

 pthread library
 pthread_create() – no two phase initialization
 pthread_cancel()
 Thread cancellation (see POSIX:2008 2.9.5)

33/114

Scheduler – POSIX API

 POSIX priority numbering is inverse to
VxWorks

 POSIX allows setting the scheduling algorithm
independently for each task

 Lowest and higher priority level is not defined
 VxWorks supports only one algorithm for all tasks

in the system

34/114

Scheduler – POSIX API (1)Scheduler – POSIX API (1)

/* Header file */
#include <sched.h>

/* Constants */
 SCHED_FIFO – Preemtive priority-based scheduling

 SCHED_RR – Round-robin scheduling

 SCHED_OTHER – Other, implementation dependent scheduling

 SCHED_SPORADIC – Sporadic server scheduling

/* Get/set scheduling algorithm */
int sched_getscheduler(pid_t pid);
int sched_setscheduler(pid_t pid, int policy,

struct sched_param *params);

35/114

Scheduler – API (2)Scheduler – API (2)

/* Get and set scheduling parameters */
int sched_getparam(pid_t pid, struct sched_param

*params);
int sched_setparam(pid_t pid, struct sched_param

*params);
int sched_rr_getinterval(pid_t pid, struct

timespec *t);
/* Explicitly execute rescheduling */
int sched_yield(void);
/* Get minimal and maximal priority applicable to

a given scheduler */
int sched_get_priority_min(int policy);
int sched_get_priority_max(int policy);

36/114

Inter-task/Inter-process
Communication (IPC)

● shared memory
● semaphores
● message queues and pipes
● sockets
● signals
● events

37/114

Shared memory

 All tasks (threads) in a multi-threaded program
share memory.

 Tasks can communicate by writing and reading to
the memory.

 Shared memory is the fastest IPC mechanism –
there is no software-induced overhead.

 It might not be as easy to use as it seems...

38/114

Memory consistency

 When data are accessed/modified from multiple
places (e.g. tasks), extra care has to be taken.

 We don’t want tasks to randomly overwrite data
used by other tasks.
 This type of programming error is known as a “race

condition”
 Race conditions are very hard to debug!
 Race conditions are not deterministic – typically they

happen only from time to time, e.g. once per week

 Solution: synchronize the tasks somehow

39/114

Maintaining data consistency

 If shared data is accessed from:
 multiple tasks => mutexes
 Tasks and interrupts => disable interrupts
 Interrupts on multiple processors (SMP) => spinlock

 Other methods (scalable in SMP)
 Non-blocking synchronization (atomic instructions)
 Per-CPU variables
 Read-Copy-Update (RCU, SMP)

 Details are out of scope of this lecture
 Covered in Efficient Software course (B4M36ESW)

40/114

Semaphores
 Basic synchronization mechanism
 Internal variable has the value 0 or 1 (binary,

mutex semaphore) or arbitrary non-negative
integer (counting semaphore)

 Two primitives for accessing semaphore
 semTake – takes the semaphore (internal variable

is decremented), if the semaphore is not available
(variable = 0), calling task is blocked (PEND state)

 semGive – „returns“ the semaphore (increments
the internal variable and optionally wakes a
waiting task up)

41/114

Simple semaphore implementation
(on uniprocessor, buggy!!!)

semTake(sem) {

 if (sem->count > 0) {

 sem->count--;

 return;

 }

 current->state = PEND;

 runq_del(curent)

 listAppend(sem->queue, current);

 schedule(); // select new current

}

semGive(sem) {

 waiting = listDelHead(sem->queue);

 if (waiting) {

 waiting->state = READY;

 runq_add(waiting);

 schedule();

 } else {

 sem->count++;

 }

}

struct task *current;

struct Sem {
 int count;
 struct task *queue;
};

42/114

Simple semaphore
implementation
(on uniprocessor)

semTake(sem) {

 intLock();

 if (sem->count > 0) {

 sem->count--;

 intUnlock();

 return;

 }

 current->state = PEND;

 runq_del(curent)

 listAppend(sem->queue, current);

 intUnlock();

 schedule(); // select new current

}

semGive(sem) {

 intLock();

 waiting = listDelHead(sem->queue);

 if (waiting) {

 waiting->state = READY;

 runq_add(waiting);

 intUnlock();

 schedule();

 } else {

 sem->count++;

 intUnlock();

 }

}

struct Sem {
 int count;
 struct task *queue;
};

43/114

Semaphores – API I.

Semaphore Creation
semBCreate(int options, SEM_B_STATE initialState)
semCCreate(int options, int initialCount)
semMCreate(int options)

initialState: SEM_FULL (1), SEM_EMPTY (0)
initialCount: initial value of the internal variable

options: specifies how the tasks waiting for the
semaphore are queued i.e. who will get the semaphore
first after the semaphore is returned.

- SEM_Q_FIFO – according to the order in which tasks
asked for the semaphore

- SEM_Q_PRIORITY – first according to the priority, then
according to the order

44/114

Semaphores – API II.

Asking for (Locking) the Semaphore
STATUS semTake(SEM_ID semId,/*semaphore to take*/

 int timeout /*timeout in ticks*/)
timeout: WAIT_NOWAIT (0) don't wait

WAIT_FOREVER (-1)
timeout v system clock ticks

Returning (Unlocking) the Semaphore
STATUS semGive (SEM_ID semId)

Deleting the Semaphore
STATUS semDelete (SEM_ID semId)

45/114

Use of Semaphores

 Mutual exclusion
 The semaphore (called mutex) is initialized as full
 A task wanting to access the resource takes it, uses the

resource and gives the mutex back
 The code in between is called critical section
 Mutex has a concept of owner (this is needed to prevent

priority inversion – see later)
 Synchronization (producer-consumer)

 The semaphore is initialized as empty
 A task trying to wait for an event tries to take the

semaphore and gets blocked
 Whenever the event (e.g. IRQ) occurs, the semaphore is

“given” by semGive (e.g. in an interrupt handler)

46/114

How does mutex protect things?

 Mutex can “protect” many things, e.g.
 data structure
 hardware device

 Association between the mutex and the thing it
protects is just a software abstraction
 Other tasks can access the data (without the

mutex) even if another task has locked the mutex
 It is often necessary to add comments to the code

about what the mutex protects
 Higher-level languages make this easier: monitors,

synchronized methods in Java
 Fine-grained locking

47/114

Options – mutex semaphore

 SEM_INVERSION_SAFE – activates
priority inheritance mechanism (priority
inversion avoidance)

 SEM_DELETE_SAFE – it is not possible
to delete the task owning this semaphore
(corresponds to taskSafe)

 SEM_INTERRUPTIBLE – waiting for the
semaphore can be interrupted by a signal.

48/114

Priority Inversion Problem

49/114

Possible Solution – Priority
Inheritance

 The priority of tasks having “locked” some resource
is temporarily increased to the highest priority
among tasks waiting for that resource.

 Inheritance must work across the locking chain
(when multiple resources and tasks are involved)

50/114

Mars Pathfinder & priority inversion

 Mars Pathfinder began experiencing total system
resets

 One task missed a deadline and safety software
caused the reset.

 A mutex without priority
inheritance enabled was
used inside the select()
system call.

 It was sufficient to enable
the priority inheritance by
default.

 http://research.microsoft.com/~mbj/Mars_Pathfinder/

http://research.microsoft.com/~mbj/Mars_Pathfinder/

51/114

Recursive Use of Mutex Semaphore

 One task can lock the mutex repeatedly even
if it is already locked by the same task.

 What is it good for?
 The number of semTake calls has to be the

same as the number of semGive calls
 Mutex semaphore can be only returned by

the task, which has locked the mutex.

52/114

Semaphores – POSIX API I.
 POSIX semaphore is always counting
 Can have a name (for sharing between

processes/address spaces)

53/114

Semaphores – API (1)Semaphores – API (1)

/* Header file */
#include <semaphore.h>

/* Useful constants */
• SEM_VALUE_MAX – maximal available value of a semaphore

(>= 32767)

/* Useful constants, named variant */
 O_RDONLY, O_WRONLY, O_RDWR – see. message queues

 O_CREAT, O_EXCL – see. message queues

54/114

Semaphores – API (2)Semaphores – API (2)

/* Create/destroy memory-based (unnamed)
semaphore*/

int sem_init(sem_t *sema, int pshared, unsigned
int initial_value);

int sem_destroy(sem_t *sema);

/* Connect to/open, close, delete named semaphore
*/

sem_t sem_open(const char *sem_name, int oflag,
mode_t creat_mode, unsigned int init_val);

int sem_close(sem_t *sema);
int sem_unlink(const char *sem_name);

55/114

Semaphores – API (3)Semaphores – API (3)

/* Semaphore operations common to named and unnamed
variants */

/* Enter critical section – blocking/nonblocking
variant */

int sem_wait(sem_t *sema);
int sem_trywait(sem_t *sema);
/* Leave critical section */
int sem_post(sem_t *sema);
/* Read the value of semaphore */
int sem_getvalue(sem_t *sema, int *value);
/* wait with an absolute timeout (only

CLOCK_REALTIME) */
int sem_timedwait(sem_t *sem, const struct timespec

*abs_timeout);

56/114

Shared code, reentrancy
 Every part of the code can be called from any task

within the current address space (RTP, kernel)
 Functions that can be safely called this way are

called reentrant. Such functions either
 do not use global variables or
 protect global variables with mutexes.

 Almost all VxWorks API functions are reentrant
(exceptions have two variants with and without _r
suffix, e.g., strtok() and strtok_r()).

 When using legacy non-reentrant code, it is possible
to use so called task variables

57/114

Task variable

 global variable with a separate copy for each
task

 taskVarAdd(int *ptr) – global variable of the
length 4 bytes is added to the task context.
 Each task, which called this function have its own copy

of this variable.
 At every context switch, the content of every task

variable is saved/restored to/from the task context.

58/114

Real-Time processes (RTP) I.
● Similar to processes in different OSes (Unix)
● Optimized for RT
● Each RTP contains one or more tasks

(sometimes called threads in other OSes)
● RTP can be thought as an organizing unit that

groups several tasks. RTP alone is not
scheduled, only the tasks within RTP are
scheduled.

● Each RTP has its own address space
● User application can also be run as a kernel

module. In that case its tasks are not part of
any RTP.

59/114

Real-Time processes (RTP) II.
(optimizations for real-time)

 Entire process is always loaded in memory (no
swapping/page faults)

 New RTP is spawn in two phases.
 1st phase runs with the priority of the calling

process
 2nd phase (load) is executed with the priority of

the new process, i.e. lower-priority processes
do not influence the task that created them.

60/114

RTP creation

 rtpSpawn call
 filename on filesystem
 Initial task is created
 Starts with main() function

61/114

RTP Termination

 main() function returns
 When last task exits
 If any task in process calls exit()
 By calling rtpDelete

62/114

Shared memory between RTPs
● Part of the address space is shared between multiple

processes (not within a single VxWorks RTP)
● Mostly implemented in HW (memory management

unit)
– OS only sets up page tables

● To maintain data consistency, exclusive access must
be ensured by some means, e.g.:
– disabling interrupts (intLock/intUnlock) – it works (only on

one CPU), but is not good with respect to real-time
behavior

– disabling of rescheduling (taskLock/taskUnlock) – better,
but still not good

– binary or mutex semaphore – the best approach is most
cases

63/114

Shared Memory – API (1)Shared Memory – API (1)

/* Header file */
#include <sys/mman.h>

/* Useful constants */
• O_RDONLY, O_RDWR, O_CREAT, O_EXCL – see message

queues

• O_TRUNC – truncate file to zero bytes (default)

• PROT_NONE, PROT_READ, PROT_WRITE, PROT_EXEC –
enable none / read / write / code execution in shared memory

• MAP_FIXED, MAP_SHARED, MAP_PRIVATE - map shared
memory block to a given address / writes are visible by others /
non-visible for others (copy on write – COW)

64/114

Shared Memory – API (2)Shared Memory – API (2)

/* Create(open), close, delete named mapped
memory */

int shm_open(char *name, int oflag, mode_t mode);
int close(int fd);
int shm_unlink(const char *name);

/* Set shared memory size */
int ftruncate(int fd, off_t total_size);

/* Map a file to the address space */
void * mmap(void *where_i_want_it, size_t length,

int mem_protection, int map_flags,
int fd, off_t offset_within_shared_mem);

65/114

Shared Memory – API (3)Shared Memory – API (3)

/* Unmap the memory from the process address
space */

int munmap(void *begin, size_t length);

/* Extension: change memory protection for a
mapped memory (whole or only a portion) */

int mprotect(void *begin, size_t length, int
mem_protecion);

/* Extension: synchronize the memory with mapped
file (only for mmaped files) */

int msync(void *begin, size_t length, int flags);

66/114

Message Queues

 Transfer of messages of arbitrary length
 The maximal length must by specified in advance

 FIFO
 One queue = one direction, for both directions two

queues must be used

67/114

Message Queues – API

 msgQCreate – creation
 msgQSend – insert a message to the queue
 msgQRecv – get a message from the queue
 msgQDelete – delete queue and free used

memory
 msgQNumMsgs – find out the number of

messages in the queue

68/114

Message Queues – API II.

MSG_Q_ID msgQCreate(int maxMsgs,

 int maxLen,

 int options)

maxMsgs – max number of msg. in the queue

maxLen – max length of one message (Bytes)

options – MSG_Q_FIFO, MSG_Q_PRIORITY

how are ordered waiting tasks

69/114

Message Queues – API III.

STATUS msgQSend (MSG_Q_ID msgQId,
 char *buffer,
 UINT nBytes,
 int timeout,
 int priority)

buffer, nBytes – data and its length
timeout – how long to wait for freeing the queue if it

is full
priority – message priority (MSG_PRI_NORMAL,

MSG_PRI_URGENT)

70/114

Message Queues – API IV.

int msgQReceive(MSG_Q_ID msgQId,
 char *buffer,
 UINT maxNBytes,
 int timeout)

buffer, maxNBytes – where to store received data.
Longer messages will be truncated

timeout – how long to wait for getting something
from an empty queue

Returns the length of the received message

71/114

Message Queues – POSIX API

mq_open – open named queue
mq_close – close it
mq_unlink – delete it
mq_send – insert message to the queue
mq_receive – get the message from the queue
mq_notify – ask for sending a signal when a

message is inserted to the empty queue
mq_setattr/mq_getattr – setting/getting of

queue parameters

72/114

Message Queues – Wind/POSIX API
Comparison

yes
(one proces)

noNotification by a signal

noyesTimeout waiting

priorityFIFO of priorityOrdering of waiting tasks

322Number of priority levels

POSIXWind

73/114

Pipes

 Message queue that looks like a file
 Created by calling pipeDevCreate
 Then standard I/O operation (read, write) can be

used
 Unlike msg. queue, pipe can be used in select call

(waiting for multiple I/O events)

74/114

Signals

● Asynchronous events with respect to task
execution

● Very similar to interrupts (generated by HW)
● Signals are generated by SW (OS or apps)
● When a signal is delivered, task execution is

stopped and a signal handler is executed
● Bit-field in task_struct
● Two possible APIs:

– UNIX-BSD
– POSIX 1003.1 including queued signal

extensions POSIX 1003.1b

75/114

Signals – BSD/POSIX API Comparison

signal mask manipulationsigsetmask,
sigblock

sigemptyset, sigfillset,
sigaddset,
sigismember, sigdelset,
sigprocmask

find out delivered signals blocked
by mask

---sigpending

suspend process until a signal is
delivered

pausesigsuspend

get/set handlersigvecsigaction

send signal to self---raise

send signal to given processkillkill

handler assignmentsignalsignal

funkceBSDPOSIX

76/114

Signals – which ones to use

 The number of signals differs across platforms
 Some signals are used by the OS
 Availability and meaning of signals is different

across platforms, see manual, sigLib library
 There are 7 signals starting with SIGRTMIN, for

user application

77/114

Signals – multiple reception I.
 Handler executes with the priority of receiving

task
 Problem: what happens when another signal

is delivered before executing the handler of
the same previously delivered signal?

 In that case the handler is executed only
once (each signal is represented by one bit)

 Solution – queued signal extensions (POSIX
1003.1b)

78/114

Signals – multiple reception II.
 Signal is sent by calling sigqueue
 Sent signals are queued
 For each signal instance, the handler is

executed
 It is possible to wait for signal (synchronous

reception) without installing a handler –
sigwaitinfo, sigtimedwait calls

 Queued signals can carry additional value
specified by the user. The type of the value is
pointer. Type casting can be used for other
simple types.

79/114

POSIX 1003.1b realtime signals – APIPOSIX 1003.1b realtime signals – API

/* Send a signal */
int sigqueue(pid_t victim_id, int sig, union

sigval extra_info);

/* Wait for one or more signals */
int sigwaitinfo(const sigset_t *mask, siginfo_t

*extra_info);
int sigtimedwait(... , const struct timespec

*timeout);

80/114

Usage of signals and setjmp/longjmp for handling
of bus error states during device detection
struct jmp_buf jbuf;

int f(int *x)
{

/* Set signal handler */
sigaction(SIGBUS, &sighnd, NULL);

/* Place of safe return */
if (0 != setjmp(&jbuf))

return ERROR;

/* Access to VME bus */
*x = *((int *) BUSERR_ADDR);

return OK;
}

void sighnd()
{

longjmp(jbuf, 1);
}

return value = 1

 It is not possible to just set a global variable in the handler as the CPU would retry the bus
access.

 Modern HW buses (PCI(e), USB, ...) allow to enumerate devices and this kind of device
detection is not needed there.

81/114

VxWorks Events

● Lightweight task-to-task and ISR-to-task
synchronization

● Notifications from message queues or
semaphores

● Similar to signals – sent asynchronously,
but received only synchronously

● 32 different events (25-32 are reserved
to VxWorks)

82/114

Events API

 eventSend(int taskId, UINT32 events)
 eventReceive(UINT32 events, UINT8 options, int timeout,

 UINT32 *pEventsReceived)
 semEvStart(MSG_Q_ID msgQId, UINT32 events, UINT8 options)
 semEvStop()
 msgQEvStart()
 msgQEvStop()

83/114

Static Instantiation of Kernel Objects

 Creation of kernel objects (tasks, semaphores, ...)
requires memory allocation – slow, not always
succeeds, ...

 It is possible to allocate the memory statically
(required by many safety standards)

VX_TASK(myTask,4096);

int myTaskId;

STATUS initializeFunction (void)

{

myTaskId = VX_TASK_INITIALIZE(myTask, 100, 0, 4096, pEntry, \

 0,1,2,3,4,5,6,7,8,9)

84/114

Timing

● taskDelay
● nanosleep
● POSIX timers
● Timestamp timers
● Watchdog timers

85/114

TaskDelay
 Task execution is stopped for given number of

system timer ticks
 taskDelay(0) only puts the task at the end of ready

queue.
 Waiting is terminated when a signal is delivered

to the delayed task
 System clock frequency can be changed during

runtime (sysClkRateSet/Get)
 When setting the system clock, return value must

be checked. Too high frequency gives an error.
 Default frequency is 50 or 60 Hz (depends on

BSP)

86/114

nanosleep
 Task execution is delayed for a given amount

of time
 Time is specified in seconds and nonoseconds

 struct timespec
(
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
)

 Delivery of a signal terminates waiting

87/114

POSIX timers

 After the desired time interval elapses, the signal
(SIGALRM by default) is delivered to the task

 Input parameters are:
 Time to the first tick
 The period of the other ticks
 These can differ
 time resolution in nanoseconds

88/114

POSIX timer – API

 timer_create – creates timer
 timer_settime – starts timer
 timer_gettime – find out remaining time
 (non POSIX) timer_connect – handler

initialization (calls sigaction)
 (non POSIX) timer_cancel – stops the timer

(calls timer_settime with zero interval)

89/114

Timestamp timers

 Thin interface to hardware timers with high
resolution and minimal overhead.
 sysTimestampConnect()
 sysTimestampEnable()
 sysTimestampDisable()
 sysTimestampPeriod()
 sysTimestampFreq()
 sysTimestamp()
 sysTimestampLock()

90/114

Watchdog timer
 Timer that calls a specified function upon elapsing of

the time interval
 May be used to drive hardware watchdog – if

VxWorks freezes, HW watchdog will reset the
system.

 Not available for RTP
 Executed as a part of timer interrupt
 API:

 wdCreate – creates wdtimer
 wdStart – runs wdtimer
 wdCancel – cancels the timer
 wdDelete – deletes wdtimer

91/114

Networking

● Wide range of supported protocols,
IPv4/IPv6

● standard API – BSD sockets
● for high throughput applications: zbuf

sockets
● supported booting from Ethernet

(BOOTP+TFTP/FTP/RSH)

92/114

Supported protocols

 SLIP, CSLIP, PPP
 IP, UDP, TCP, ARP, DNS
 DHCP, BOOTP
 OSPF, RIP, NDP
 RPC, RSH
 FTP, TFTP
 NFS
 telnet

93/114

Network API – sockets

 standard API for BSD sockets
 Additional libraries: hostLib, ifLib, ftpLib, ...
 more detailed description in VxWorks Network

Programmer’s Guide

94/114

Alternative API – zbuf sockets I.
 Kernel tasks only, not in RTP
 BSD sockets use different buffers in applications

and in the kernel – data must be copied between
them

 zbuf sockets API enables to share the same
buffer between all the layers – no need for
copying

 almost all functions from BSD sockets API have
corresponding counterparts in zbuf sockets API

95/114

Alternative API – zbuf sockets II.

 zbufSockSend – send zbuffer (TCP)
 zbufSockSendTo – dtto, UDP
 zbufSockBufSend – send data from user buffer

(TCP)
 zbufSockBufSendTo – dtto, UDP
 zbufSockRecv – read data (TCP)
 zbufSockRecvfrom – dtto, UDP

96/114

Interrupts
● Handling interrupts is only possible in kernel tasks,

not in RTPs
● Interrupt handler is set up by calling:

– intConnect (some architectures only)
– vxbIntConnect (as a part of device driver)

● There is a separate task context for all the interrupt
handlers

● Handlers use a separate stack to not overflow
application’s stack

● Interrupts can be globally disabled/enabled by calling
intLock/intUnlock

● Interrupt mask can be set by intLevelSet

97/114

Interrupt Handlers
(Interrupt Service Routines – ISR)

 Should be as short as possible to minimize interrupt
latency (why?)

 Cannot call functions that can cause blocking e.g.
 semTake (but can call semGive), no mutex semaphores
 msgQReceive (be aware of msgQSend! If the queue is full,

the message is thrown away.)
 taskDelay
 taskSuspend
 the full list can be found in the documentation

 Cannot use floating point calculations
 Debugging: logMsg()

98/114

Minimizing The Work Performed Within an ISR

1. Program the interrupting device to stop
interrupting the CPU

2. Prepare and queue a data structure describing
what needs to be done later with the device
(status register, ...)

3. Use a semaphore to unblock a task (with
appropriate priority) that will perform the
necessary work later (when the ISR completes
and the task is scheduled).

4. Return from the ISR. The OS runs the scheduler
and the just unblocked task will run unless a
higher priority task is ready.

99/114

Signals vs. interrupts

 Interrupts are similar to signals
 In both handlers it is not allowed to call services

which block
 Need to maintain data consistency (we can't use

mutexes)
 Signal mask in the OS vs. interrupt masking in the CPU

 Signal delivery interrupts some system calls
 taskDelay etc.; see also SEM_INTERRUPTIBLE flag
 Interrupts don't influence system calls but a signal can be

sent from an interrupt handler

100/114

VxWorks Device Drivers

● Means of communication between
VxWorks and hardware devices.

● VxBus device drivers
● VxBus is a software framework for driver

development
● Every driver is a plugable component (object-

oriented approach)
● Similar architecture as Linux drivers

101/114

VxBus

 Software framework for writing device drivers in
VxWorks.

 Terminology: device = HW, driver = SW
 Drivers publishes methods (entry points)
 vxbDevMethodGet(): query which instance

supports the given method (e.g. {vxbTimerFuncGet}()
for timer instance)

 Driver classes:
PCI, USB, FDT, ...

 Every class defines
mandatory methods

102/114

Device tree
(Flat Device Tree, FDT)

 Data structure describing HW components and
their interconnection
 Only for devices that cannot be automatically

detected/enumerated, e.g. not for USB and PCIe
devices

 Allows having a single kernel image running on
different boards/CPUs with the same architecture

 Heavily used in Linux (PowerPC, ARM)
 x86 have ACPI tables for similar purpose
 Linux device trees are not compatible with VxWorks

device trees
 Device tree source (*.dts) -> compiler (dtc) -> Device

tree binary (*.dtb)

103/114

Device tree (example)

/ {
 memory {
 device_type = "memory";
 reg = <0x00000000 0x10000000 0x30000000 0x10000000>;
 };
 sampdev_1: sampdev@f8002000 {
 compatible = "ctu,sample-driver";
 reg = <0xf8002000 0x1000>;
 clock-frequency = <111111111>; // Hz
 interrupt-parent = <&intc>;
 interrupts = <69>;
 };
 intc: interrupt-controller@f8f01000 {
 compatible = "arm,gic";
 ...
 };

...
}

104/114

Driver methods

LOCAL VXB_DRV_METHOD sampleMethods[] =
{
 /* DEVICE API */
 { VXB_DEVMETHOD_CALL(vxbDevProbe), sampleProbe },
 { VXB_DEVMETHOD_CALL(vxbDevAttach), sampleAttach },
 { VXB_DEVMETHOD_CALL(vxbDevShutdown), sampleShutdown },
 { VXB_DEVMETHOD_CALL(vxbDevDetach), sampleDetach },
 { 0, NULL }
};
VXB_DRV vxbSampleDrv =
{
 { NULL }, /* Linked list header */
 "sample", /* Name */
 "Sample VxBus driver", /* Description */
 VXB_BUSID_FDT, /* Class */
 0, /* Flags */
 0, /* Reference count */
 sampleMethods /* Method table */
};
VXB_DRV_DEF(vxbSampleDrv);

105/114

Probe method

 Called by the kernel to ask the driver whether it
can drive the detected device instance
 In case of PCI or USB devices, this is a result of bus

enumeration
 In case of FDT devices, drivers are called for every node

in the device tree

LOCAL VXB_FDT_DEV_MATCH_ENTRY sampleDriverMatch[] = {
 {“ctu,sample-driver”, NULL}, {} /* Empty terminated list */
};

LOCAL STATUS sampleProbe(VXB_DEV_ID pInst) {
 return vxbFdtDevMatch(pInst, sampleDriverMatch, NULL);
}

106/114

Attach method
(initialize the device and the driver data)

LOCAL STATUS sampleAttach(VXB_DEV_ID pInst) {
 VXB_RESOURCE *pRes = NULL;
 VXB_RESOURCE *pResIrq = NULL;

 pMyDeviceData = (struct my_device *)vxbMemAlloc(sizeof(struct my_device));
 if (pMyDevice == NULL) {perror("vxbMemAlloc"); goto error;}
 vxbDevSoftcSet(pInst, pMyDeviceData);

 // Map device registers to virtual memory
 pRes = vxbResourceAlloc(pInst, VXB_RES_MEMORY, 0);
 if (pRes == NULL) {perror("vxbResourceAlloc(MEMORY)"); goto error;}
 pMyDeviceData->regs = ((VXB_RESOURCE_ADR *)(pRes->pRes))->virtAddr;

 // Setup the interrupt
 pResIrq = vxbResourceAlloc(pInst, VXB_RES_IRQ, 0);
 if (pResIrq == NULL) {perror("vxbResourceAlloc(IRQ)!\n"); goto error;}

 // Connect the interrupt handler
 STATUS s1 = vxbIntConnect(pInst, pResIrq, my_irq_handler, 0);
 if (s1 == ERROR) {perror("vxbIntConnect"); goto error;}
 // Enable interrupts
 if (vxbIntEnable(pInst, pResIrq) == ERROR) {perror("vxbIntEnable"); vxbIntDisconnect(pInst, pResIrq); goto
error;}

 return OK;

error:
 // Free any allocated resources
 if (pResIrq != NULL)
 vxbResourceFree(pInst, pResIrq);
 if (pRes != NULL)
 vxbResourceFree(pInst, pRes);
 if (pMyDeviceData != NULL)
 vxbMemFree(pMyDeviceData);
 return ERROR;
}

107/114

BSP – board support package
● Enables VxWorks to run on the specific hardware (board)

● Provides

– initialization of hardware and special device drivers

– detection of size and type of memory

– preparation of interrupt systems

– preparation of timers

● Usually provided by hardware vendors

● Source code of BSPs can be fount at:

– /opt/WindRiver/vxworks/22.06/source/os/arch/

– Our board: /opt/psr/mzapo-image/xlnx_zynq7k_3_0_0_1

108/114

Writing own BSP – boot sequence
(similar for all “embedded” systems)

 Kernel image is located in FLASH/ROM memory or is loaded
from network/disk by a bootloader to RAM.

 Initialize processor for running C (_romInit)
 in assembler
 initialize memory and a temporary stack
 disable interrupts

 romStart is called (installDir/vxworks-7.x/target/config/all/bootInit.c)

 copy (and decompress) data sections from ROM to RAM
 _sysInit() is called

 initialize cache, vector table; perform board specific
initialization

 start multi-tasking and user-booting task

109/114

111/114

Preparing a Custom VxWorks Kernel

 VxWorks Image
Project

 Choose which
components to include
and their settings

 Run “build”
 Most components are

available as binary only
objects

 => linking

112/114

Multiprocessor systems

 SMP – Symmetric Multi-Processing
 All CPUs share the whole memory
 A task can run on arbitrary CPU
 Need for different synchronization primitives

 Spinlocks, memory barriers, cache coherency...
 AMP – Asymmetric Multi-Processing

 Supported only on multicore systems
 Each CPU runs independent VxWorks OS

copy
 Ability to send messages between CPUs

113/114

Differences between SMP and AMP

115/114

Linux vs. VxWorks

● Price and license
● VxWorks is much simpler than Linux

– Less overhead (sometimes)
– Smaller memory footprint

● VxWorks has not so wide HW support
● VxWorks is certified for “almost everything”
● Linux real-time support is already quite good

(with the PREEMPT_RT patch)

