
Resource Management in Real-Time Systems

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

December 6, 2023

Based on the book and accompanying materials to
Alan Burns and Andy Wellings, Real-Time Systems and Programming Languages, Addison

Wesley Longmain, 2001
http://www.cs.york.ac.uk/rts/books/RTSBookThirdEdition.html#Teaching%20Aids

and slides from Giorgio Buttazzo

1 / 34

http://www.cs.york.ac.uk/rts/books/RTSBookThirdEdition.html#Teaching%20Aids

Outline

1 Introduction

2 Fixed Priority Protocols
Priority Inheritance Protocol
Priority Ceiling Protocols

3 Dynamic Priority Protocols
Stack Resource Policy

2 / 34

Introduction

Outline

1 Introduction

2 Fixed Priority Protocols
Priority Inheritance Protocol
Priority Ceiling Protocols

3 Dynamic Priority Protocols
Stack Resource Policy

3 / 34

Introduction

Shared resources, critical sections

Definition (Shared resource)
A resource accessed from multiple threads of execution that must be used
in a mutually exclusive manner.
Examples: data structure in memory, device, …

Access to shared resources must be “protected” by mutexes,
spinlocks, disabling of interrupts/preemption, RCU, etc. ⇒ locks.
Locks can be nested.

Definition (Critical section)
Critical section is a segment of a job (piece of code) that begins with lock
operation and ends with matching unlock operation.

4 / 34

Introduction

Problem

Priority Inversion
A high priority task is blocked by a lower priority task for an unbounded
interval of time.

Deadline Inversion
A task with short deadline is blocked by a task with longer deadline for an
unbounded interval of time.

Real-Time computing is about determinism and unbounded blocking is not
deterministic!

5 / 34

Introduction

Terminology

Blocking, preemption

If a task is waiting for a lower-priority task, it is said to be blocked.
Note: VxWorks calls this state “pending”.
If a task is waiting for a higher priority task, it is said to be preempted.

Priority inversion

If a task is blocked waiting for an unrelated lower-priority task to
complete some required computation then the priority model is, in
some sense, being undermined.
The blocked task is said to suffer priority inversion.

6 / 34

Introduction

Conflict in concurrent access to a critical section

Solution
Introduce a concurrency control protocol (resource access protocol) to
control the access to shared resources.
A resource access protocol, is a set of rules that govern

1 when and under what conditions each request for resource is granted
and

2 how jobs requiring resources are scheduled.
7 / 34

Fixed Priority Protocols

Outline

1 Introduction

2 Fixed Priority Protocols
Priority Inheritance Protocol
Priority Ceiling Protocols

3 Dynamic Priority Protocols
Stack Resource Policy

8 / 34

Fixed Priority Protocols

Fixed Priority Protocols

Non Preemptive Protocol (NPP)
Cyclic scheduling, taskLock()

Priority Inheritance Protocol (PIP)
Mutexes in VxWorks and Linux

Priority Ceiling Protocol (PCP)
Immediate Priority Ceiling Protocol (IPCP)
Stack Resource Policy (SRP) – also for dynamic priority

9 / 34

Fixed Priority Protocols

Fixed Priority Protocols

Non Preemptive Protocol (NPP)
Cyclic scheduling, taskLock()

Priority Inheritance Protocol (PIP)
Mutexes in VxWorks and Linux

Priority Ceiling Protocol (PCP)
Immediate Priority Ceiling Protocol (IPCP)
Stack Resource Policy (SRP) – also for dynamic priority

10 / 34

Fixed Priority Protocols

Fixed Priority Protocols

Non Preemptive Protocol (NPP)
Cyclic scheduling, taskLock()

Priority Inheritance Protocol (PIP)
Mutexes in VxWorks and Linux

Priority Ceiling Protocol (PCP)
Immediate Priority Ceiling Protocol (IPCP)

Stack Resource Policy (SRP) – also for dynamic priority

11 / 34

Fixed Priority Protocols

Fixed Priority Protocols

Non Preemptive Protocol (NPP)
Cyclic scheduling, taskLock()

Priority Inheritance Protocol (PIP)
Mutexes in VxWorks and Linux

Priority Ceiling Protocol (PCP)
Immediate Priority Ceiling Protocol (IPCP)
Stack Resource Policy (SRP) – also for dynamic priority

12 / 34

Fixed Priority Protocols

Priority Inversion

To illustrate an extreme example of priority inversion, consider the
executions of four periodic tasks τ1,...,4 and two resources: Q and V

Task Priority Execution Sequence Release Time
τ1 4 E E Q V E 4
τ2 3 E V V E 2
τ3 2 E E 2
τ4 1 E Q Q Q Q E 0

13 / 34

Fixed Priority Protocols

Example of Priority Inversion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

τ1

τ2

τ3

τ4

Executing
Executing with Q locked
Executing with V locked

Preempted
Blocked

14 / 34

Fixed Priority Protocols → Priority Inheritance Protocol

Priority Inheritance

If task p is blocking task q, then p runs with q’s priority

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

τ1

τ2

τ3

τ4

15 / 34

Fixed Priority Protocols → Priority Inheritance Protocol

Calculating Blocking

If a task has m critical sections that can lead to it being blocked then
the maximum number of times it can be blocked is m
The task i has an upper bound on its blocking Bi given by:

Bi =
K∑

k=1

canblock(k, i)C(k),

where
K is the number of critical sections in the system,
canblock(k, i) is 1 if task i can suffer blocking from critical section k,
i.e. if k is executed by a task with lower priority than i, and 0 otherwise,
C(k) is the worst-case execution time of critical section k.

16 / 34

Fixed Priority Protocols → Priority Inheritance Protocol

Blocking Term (cont.)

Bi =
K∑

k=1

canblock(k, i)C(k),

In fact, the above formula for Bi is too pessimistic. The total number
of terms in the sum is at most v × l, where v is the number of
resources accessed by task i and l is the number of lower priority tasks
that can conflict with task i.
Don’t forget that nested blocking can create a blocking chain.

17 / 34

Fixed Priority Protocols → Priority Inheritance Protocol

Schedulability Analysis and Blocking

Response-Time Analysis

∀i
i=1,...,n

Ri = Ci + Bi +
i−1∑
j=1

⌈
Ri
Tj

⌉
Cj ≤ Di

Utilization-based Analysis

∀i
i=1,...,n

 i∑
j=1

Cj
Tj

+
Bi
Ti

= Ui +
Bi
Ti

≤ URM(i)

18 / 34

Fixed Priority Protocols → Priority Ceiling Protocols

Priority Ceiling Protocols

Two forms
Original priority ceiling protocol (OPCP)
Immediate priority ceiling protocol (IPCP)

On a single processor

A high-priority task can be blocked at most once during its execution
by lower-priority tasks
Deadlocks are prevented
Transitive blocking is prevented
Mutual exclusive access to resources is ensured (by the protocol itself)

19 / 34

Fixed Priority Protocols → Priority Ceiling Protocols

Original priority ceiling protocol (OPCP)

1 Each task has a static default priority assigned (perhaps by the
deadline monotonic scheme)

2 A task has a dynamic priority that is the maximum of its own static
priority and any it inherits due to it blocking higher-priority tasks.

3 Each resource k has a static ceiling value ⌈k⌉ defined as the
maximum priority of the tasks that use it

4 A task can only lock a resource if its dynamic priority is higher than
the system ceiling i.e. the ceiling of any currently locked resource
(excluding any that it has already locked itself)

Blocking term calculation

Bi =
Kmax

k=1
usage(k, i)C(k)

20 / 34

Fixed Priority Protocols → Priority Ceiling Protocols

OPCP example

⌈
Q
⌉
= 4,

⌈
V
⌉
= 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

τ1

τ2

τ3

τ4

1
2
3
4

System ceiling
Dyn. priority
of currently executing task

21 / 34

Fixed Priority Protocols → Priority Ceiling Protocols

Immediate priority ceiling protocol (IPCP)

Each task has a static default priority assigned (perhaps by the
deadline monotonic scheme).
Each resource k has a static ceiling value ⌈k⌉ defined as the
maximum priority of the tasks that use it.
A task has a dynamic priority that is the maximum of its own static
priority and the ceiling values of any resources it has locked
As a consequence, a task will only suffer a block at the very beginning
of its execution
Once the task starts actually executing, all the resources it needs
must be free; if they were not, then some task would have an equal or
higher priority and the task’s execution would be postponed

22 / 34

Fixed Priority Protocols → Priority Ceiling Protocols

IPCP example
⌈

Q
⌉
= 4,

⌈
V
⌉
= 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

τ1

τ2

τ3

τ4

1
2
3
4

System ceiling

Dyn. priority

23 / 34

Fixed Priority Protocols → Priority Ceiling Protocols

OPCP versus IPCP

Although the worst-case behavior of the two ceiling schemes is identical
(from the scheduling view point), there are some points of difference:

IPCP is easier to implement than the OPCP as blocking relationships
need not to be monitored
IPCP leads to less context switches as blocking is prior to first
execution
IPCP requires more priority movements as this happens with all
resource usage
OPCP changes priority only if an actual block has occurred

Note that IPCP is called Priority Protect Protocol in POSIX and Priority
Ceiling Emulation in Real-Time Java

24 / 34

Dynamic Priority Protocols

Outline

1 Introduction

2 Fixed Priority Protocols
Priority Inheritance Protocol
Priority Ceiling Protocols

3 Dynamic Priority Protocols
Stack Resource Policy

25 / 34

Dynamic Priority Protocols

Dynamic Priority Protocols

Dynamic Priority Inheritance (DPI)
Dynamic Priority Ceiling (DPC)
Dynamic Deadline Modification (DDM)
Stack Resource Policy (SRP)

26 / 34

Dynamic Priority Protocols → Stack Resource Policy

Stack Resource Policy
[Baker 1990]

Generalization of PCP
Works both with fixed and dynamic priorities
Limits blocking to the beginning of the job
Prevents deadlock
Supports multi-unit resources
Allows stack sharing (stack is considered as a “special resource”)
Is easy to implement

27 / 34

Dynamic Priority Protocols → Stack Resource Policy

Stack Resource Policy

For each resource Rk

Maximum units: Nk

Available units: nk

For each task τi the system keeps:
its resource requirements: µi(Rk) ∈ Z
a priority pi: RM: pi ∝ 1/Ti EDF: pi ∝ 1/di

a static preemption level: πi ∝ 1/Di

28 / 34

Dynamic Priority Protocols → Stack Resource Policy

Stack Resource Policy

Resource ceiling:

Ck(nk) = max
j

{πj : nk < µj(Rk)}

System ceiling:
Πs = max

k
{Ck(nk)}

SRP Rule:
A job cannot preempt until pi is the highest and πi > Πs.

29 / 34

Dynamic Priority Protocols → Stack Resource Policy

Example

τ

τ

τ

Π

π

30 / 34

Dynamic Priority Protocols → Stack Resource Policy

SRP: Properties

Blocking always occurs at preemption time
A task never blocks on a wait/lock primitive
(semaphore queues are not needed)
Semaphores are still needed to update the system ceiling
Early blocking allows stack sharing

31 / 34

Dynamic Priority Protocols → Stack Resource Policy

SRP: Stack sharing

SP

τ

τ

τ

τ

SP1

SP2

Memory (stacks)

Memory (stacks)

32 / 34

Dynamic Priority Protocols → Stack Resource Policy

Stack sharing

If tasks can be grouped in M subsets with the same preemption level,
then tasks within a group cannot preempt each other.
Then the stack size is the sum of the stack memory needed by M
tasks.

Example
If we have 100 tasks with 10 preemption levels and each task requires
10 kB of stack, then

Stack size =

{
1 MB without SRP
100 KB under SRP

33 / 34

Dynamic Priority Protocols → Stack Resource Policy

Schedulability of EDF with SRP

n tasks
Tasks τi ordered by increasing relative deadlines Di

Bi is the execution time of the longest critical section of any task τk
such that Di ≤ Dk or zero it there is no such τk

∀k
k=1,...,n

(k∑
i=1

Ci
Di

)
+

Bk
Dk

≤ 1

34 / 34

	Introduction
	Fixed Priority Protocols
	Priority Inheritance Protocol
	Priority Ceiling Protocols

	Dynamic Priority Protocols
	Stack Resource Policy

