
Deadline-driven scheduling

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

November 22, 2023

Some slides are derived from lectures by Steve Goddard and James H. Anderson

1 / 30



Classification of scheduling algorithms
(used in real-time systems)

Scheduling algorithms

Off-line scheduling
(static, clock-driven)

On-line scheduling
(dynamic)

Static-priority scheduling
(VxWorks, SCHED_FIFO)

Deadline-driven
scheduling
(EDF, …)

General purpose OS
scheduling

(fair, interactive, …)

2 / 30



Note

Terminology
Deadline-driven scheduling is also referred to as dynamic-priority
scheduling.

Why dynamic priority?
Historical name coming from implementations on top of fixed-priority
schedulers.
The term “Deadline driven scheduling” better reflects the nature of the
algorithms.

Differences against fixed-priority scheduling:
Different jobs of the same tasks can have assigned different “priority”.
Infinite number of “priorities”

3 / 30



Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

4 / 30



Earliest Deadline First (EDF) and its optimality

Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

5 / 30



Earliest Deadline First (EDF) and its optimality

Earliest Deadline First (EDF) scheduling

Scheduler selects a job with earliest deadline
(the job with earliest deadline has the “highest priority”)
From the programmers point of view (when dealing with CPU
scheduling):

On task creation, one specifies relative deadline (or period if D = T)
rather than the priority.
Job completion has to be explicitly announced to the scheduler.
Scheduler is able to detect deadline misses and react appropriately (e.g.
notify the application).

6 / 30



Earliest Deadline First (EDF) and its optimality

EDF optimality

Theorem (Liu, Layland)
When preemption is allowed and jobs do not contend for resources, the
EDF algorithm can produce a feasible schedule of a set T of independent
jobs with arbitrary release times and deadlines on a processor if and only if
T has feasible schedules.

Notes:
Applies even if tasks are not periodic.
If periodic, a task’s relative deadline can be less than its period, equal
to its period, or greater than its period.
Stronger claim that RM/DM optimality.

7 / 30



Earliest Deadline First (EDF) and its optimality

Proof

We show that any feasible schedule of jobs T can be systematically
transformed to EDF schedule.
Assume that parts of two jobs Ji a Jk are scheduled in non-EDF order:

Ji Jk

rk Dk Di

This can be easily resolved by swapping the jobs:

Jk Jk Ji

Note that this operation cannot cause deadline miss.

8 / 30



Earliest Deadline First (EDF) and its optimality

Proof (continued)

By repeating this step, we get rid of all EDF order violations.
Resulting schedule may still not be valid EDF schedule, because it can
contain “gaps” even when some jobs were ready:

Jk Jk Ji

These gaps can be easily eliminated by shifting the schedule ahead of
time:

Jk Jk Ji

9 / 30



LRT, LLF and optimality

Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

10 / 30



LRT, LLF and optimality

Latest Release Time (LRT) algorithm

It is sufficient when jobs finish right at the deadline.
We will run them at the latest time possible to not miss deadline.
EDF with time going backward ⇒ the same optimality claim holds.

11 / 30



LRT, LLF and optimality

Least Laxity First (LLF) scheduling

Sometimes called “least slack time first” or “minimum laxity first” (Liu).

Definition (slack, laxity)
At any time t the slack (or laxity) of a job with deadline at D is equal
D − t − x, where x is the remaining portion of the job.

laxity: 4 4 4 3 3 3 3 2 2 1 0

deadline

LLF scheduling: The job with the smallest laxity has highest priority at
all times.

12 / 30



LRT, LLF and optimality

LLF optimality

Theorem
When preemption is allowed and jobs do not contend for resources, the
LLF algorithm can produce a feasible schedule of a set J of independent
jobs with arbitrary release time times and deadlines on a processor if and
only if J has feasible schedules.

The proof is similar to that of EDF.

13 / 30



LRT, LLF and optimality

Quiz

Which algorithm would be preferable in practice for CPU scheduling?
A EDF (earliest deadline first)
B LLF (least laxity first)

14 / 30



Utilization-based schedulability test

Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

15 / 30



Utilization-based schedulability test

Utilization-based schedulability test for (preemptive) EDF
CZ: Test rozvrhnutelnosti pro EDF založený na zatížení

Theorem (Liu, Layland)
A system T of independent, preemptable, periodic tasks with relative
deadlines equal to their periods can be feasibly scheduled (under EDF) on
one processor if and only if its total utilization U is at most one.

Proof: Implication in one direction is trivial: If U > 1, then it is obvious
that some task has to miss its deadline. Let’s focus on the opposite
direction.

16 / 30



Utilization-based schedulability test

Proof

We want to show that U ≤ 1 ⇒ T is schedulable.
We will prove equivalent statement (contrapositive)
T is not schedulable ⇒ U > 1.
Assume that T is not schedulable. Let τi,k is the first job to miss the
deadline.

17 / 30



Utilization-based schedulability test

Proof (continued)

As τi,k misses the deadline, the demand placed on the processor by jobs
with deadline less than ri,k+1 in the interval [t−1, ri,k+1) is greater than the
available processor time in [t−1, ri,k+1]. Thus,

ri,k+1 − t−1 = available processor time in [t−1, ri,k+1] <

< demand placed on the processor by jobs with D ≤ ri,k+1 =

=

N∑
j=1

(number of jobs τj s Dj,x ≤ ri,k+1 and rj,x ∈ [t−1, ri,k+1])Cj ≤

≤
N∑

j=1

⌊
ri,k+1 − t−1

Tj

⌋
· Cj ≤

≤
N∑

j=1

ri,k+1 − t−1

Tj
· Cj

18 / 30



Utilization-based schedulability test

Proof (continued)

So we have

ri,k+1 − t−1 <

N∑
j=1

ri,k+1 − t−1

Tj
· Cj

Canceling ri,k+1 − t−1 yields

1 <

N∑
j=1

Cj
Tj

,

i.e.
1 < U,

This completes the proof.

19 / 30



EDF variants

Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

20 / 30



EDF variants

EDF with deadlines < period

If deadlines are less than periods then U < 1 is no longer sufficient
schedulability condition.
This is easy to see. Consider two tasks such that, for both, Ci = 1 a
Ti = 2. If both have deadlines at 1.0, then the system is not
schedulable, even though U = 1.
For these kinds of systems, we work with densities instead of
utilizations.

Definition
The density of task τk is defined as δk =

Ck
min(Dk,Tk)

.

The density of the system is defined as ∆ =
∑

k=1,...,N
δk.

21 / 30



EDF variants

EDF with deadlines < period (continued)

Theorem
System T of independent, preemptible, periodic tasks can be feasibly
scheduled on one processor if its density is at most one.

Proof is similar to the one for the previous theorem.
Note: This gives only sufficient condition.
The next expression is called EDF schedulability condition.

n∑
k=1

Ck
min(Dk,Tk)

≤ 1

22 / 30



EDF variants

Proof on non-tightness

Next example shows, why ∆ > 1 does not imply non-feasibility.

Example
Consider tasks τ1 = (2, 0.6, 1) and τ2 = (5, 2.3).
∆ = 0.6/1 + 2.3/5 = 1.06. Yet, the tasks can be feasibly scheduled by
EDF:

23 / 30



EDF variants

EDF in existing systems

Real-Time threads1 in MAC OS X are reported to use a variant of
EDF.
SCHED_DEADLINE scheduler in Linux:

In mainline kernel since 3.14 (January 2014)
Developed at SSSA, Pisa, Italy
SCHED_DEADLINE tasks are scheduled before SCHED_FIFO tasks
(have higher priority)
SCHED_DEADLINE tasks have guaranteed bandwidth (see scheduling
servers lecture)

1http://developer.apple.com/library/mac/#documentation/Darwin/
Conceptual/KernelProgramming/scheduler/scheduler.html

24 / 30

http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html
http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html


EDF variants

SCHED_DEADLINE example (in Linux)
void ∗run_deadline(void ∗data) {

struct sched_attr attr;

attr.size = sizeof(attr);
attr.sched_flags = attr.sched_nice = attr.sched_priority = 0;

/∗ This creates a 10ms/30ms reservation ∗/
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 10 ∗ 1000 ∗ 1000;
attr.sched_period = attr.sched_deadline = 30 ∗ 1000 ∗ 1000;

sched_setattr(0, &attr, 0);

while (!done) { ... }
}
int main (int argc, char ∗∗argv) {

pthread_t thread;
pthread_create(&thread, NULL, run_deadline, NULL);
// ...

}

25 / 30



Comparison of EDF with FPS

Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

26 / 30



Comparison of EDF with FPS

Comparison of EDF and FPS (RM)
Giorgio C. Buttazzo: Rate Monotonic vs. EDF: Judgment Day
https://support.dce.felk.cvut.cz/psr/prednasky/3/rtsj05-rmedf.pdf

Implementation: Comparable or “it depends”
Overhead: EDF typically exhibits less number of preemptions
⇒ lower overhead
Overrun behavior (U > 1):

Permanent: EDF – automatic “period rescaling”,
RM – complete blocking of lower priority tasks
Transient: Task overrun can cause deadline miss of

EDF: arbitrary task
RM: only lower priority task

If we don’t know which task will overrun, the result is the same.
Jitter and latency: RM has no jitter only for the highest-priority task. In
overall comparison, EDF provides better results (smaller release-time jitter
a smaller input-output latency)
Resource reservation: Simpler in case of EDF (see future lecture)

27 / 30

https://support.dce.felk.cvut.cz/psr/prednasky/3/rtsj05-rmedf.pdf


Multiprocessor Scheduling

Outline

1 Earliest Deadline First (EDF) and its optimality

2 LRT, LLF and optimality

3 Utilization-based schedulability test

4 EDF variants

5 Comparison of EDF with FPS

6 Multiprocessor Scheduling

28 / 30



Multiprocessor Scheduling

Multiprocessor Scheduling

EDF scheduling for multiple processors is not optimal.

So far we have talked about uni-processor scheduling.
Nowadays, multi-core CPUs are common.
Possible approaches to real-time multiprocessor scheduling:

Partitioned scheduling – each CPU is scheduled independently of the
others (Linux, most RTOSes)
Global scheduling – single scheduler for all CPUs
Clustered scheduling – mixture of the above

29 / 30



Multiprocessor Scheduling

Multiprocessor Scheduling

EDF scheduling for multiple processors is not optimal.

So far we have talked about uni-processor scheduling.
Nowadays, multi-core CPUs are common.
Possible approaches to real-time multiprocessor scheduling:

Partitioned scheduling – each CPU is scheduled independently of the
others (Linux, most RTOSes)
Global scheduling – single scheduler for all CPUs
Clustered scheduling – mixture of the above

30 / 30


	Earliest Deadline First (EDF) and its optimality
	LRT, LLF and optimality
	Utilization-based schedulability test
	EDF variants
	Comparison of EDF with FPS
	Multiprocessor Scheduling

