
Reference model of real-time systems
Chapter 3 of Liu

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

September 20, 2022

Some slides are derived from lectures by Steve Goddard and James H. Anderson

1 / 29



Reference model of RT systems

In order to analyze a RT system/application, it is necessary to create its
model.
Main parts of RT system models

Workload model describes the applications in the system.
Resource model describes available system resources.
Algorithms that define how the system resources are used.

2 / 29



Workload model

Outline

1 Workload model

2 Resource model

3 Algorithms

4 Summary

3 / 29



Workload model

Real-Time Applications Categories
Purely periodic

Every task is released periodically
Constant or almost constant demand for system resources
Examples: digital controller, flight control, real-time monitoring

Mostly periodic
Most of the tasks are released periodically
System has to respond to external asynchronous events
Examples: modern avionics or control systems

Asynchronous and predictable
Most of the tasks are aperiodic
Requirements for system resources can change dramatically for the consecutive task
activations, but there are limits known in advance or their statistical distribution is
known.
Examples: multimedia communication, radar signal processing and tracking
facilities

Asynchronous and non-predictable
Most of the events are asynchronous
Task with high level of complexity
Examples: real-time control with artificial intelligence, real-time simulation, virtual
reality

4 / 29



Workload model

Job and task description

Task τi

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
rij dij

Ci

Rij

Dij

Job Jij Job Jij+1

Time

= release time (rij); the job is released at time 3.
= absolute deadline (dij); the job has to be completed before

deadline; equal to 10 for this case.
Relative deadline (Dij) is 7.
Response time (Rij) is 6.

5 / 29



Workload model

Terminology – detail

Task τi: A set of jobs executed in order to perform certain function in
the system, e.g. airplane stabilization.
Job Jij: An instance of task.
Jobs need resources.

Examples of resources: CPU, network, critical section, shovel
Resources that can perform some work are called processors.

Release time rij: Time instant when a job is ready to be executed.
Deadline dij: Time instant by which the job has to be finished.
Relative deadline Di: Difference between deadline and release time.
Response time Rij: Completion time minus release time.
Execution (computation) time Cij: Time needed to execute a job if
runs alone on a processor.
Feasible interval of a job: Interval between rij and dij.

6 / 29



Workload model

Hard Real-Time Systems

Hard Deadline is a deadline that has to be met under all
circumstances.

If a hard deadline is missed, the behavior of the system is wrong and it
often has catastrophic consequences.
We need mathematical apparatus for verifying that deadlines are met.
But: “There is nothing like a hard deadline in the real world.”

Hard Real-Time System: is a real-time system, where all deadlines are
hard.

This course is focused on hard real-time systems. They are easier to
analyze. Why?

Examples: Nuclear power plant, aircraft control.

7 / 29



Workload model

Soft Real-Time Systems

Soft Deadline (required completion time) can be missed occasionally.
Question: How to define the term “occasionally”?

Soft Real-Time System: a real-time system where all deadlines are
soft.
Example: Multimedia applications, telephone exchanges (but what
about emergency calls?).

8 / 29



Workload model

Reference model of RT systems

Each job Ji is characterized by its
timing parameters,
functional parameters,
resource describing parameters and
dependencies between individual jobs.

Each job Ji has its release time ri, deadline di, relative deadline Di,
computation time Ci (often called execution time or worst-case
execution time, WCET).
Occasionally, some parameters are defined as ranges. E.g
ri ∈

⟨
r−i , r+i

⟩
. The size of the interval is called release-time jitter.

Similarly, execution time can be given as interval
⟨
C−

i ,C+
i
⟩
.

Determination of exact value of Ci might be difficult. Why?

9 / 29



Workload model

Periodic, sporadic and aperiodic task models

Periodic task model – deterministic workload model, well suited for
many hard real-time applications.
Periodic task:

Each task τi has its period Ti. Task τi is composed of sequence of jobs.
Ti is minimal inter-arrival time between consecutive jobs.
Task computation time is the maximum computation time among all
jobs of τi.

Sporadic and aperiodic tasks – released at arbitrary times.
Sporadic tasks have hard deadlines.
Aperiodic tasks have no or soft deadlines.

10 / 29



Workload model

Liu vs. rest of the world

Beware!
What Liu calls “periodic” the rest of the
world calls “sporadic”.
For others period Ti of task τi means exact
time between activations of two
consecutively released jobs.

11 / 29



Workload model

Examples

Periodic task τi with ri = 2, Ti = 5, Ci = 2, Di = 5 can be executed like
this (continues until infinity).

čas0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Legend: = job release time , = deadline.

According to Liu, this task can execute, for example, like this:

čas0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
The rest of the world calls this sporadic task.

12 / 29



Workload model

Some definitions for periodic task systems

Number of tasks is n.
The jobs of task τi are denoted Ji,1, Ji,2, …
Φi = ri,1 (release time of Ji,1) is called the phase τi.

Synchronous system: Each task has phase of 0.
Asynchronous system: Phases are arbitrary.
What is more common?

Hyperperiod: Least common multiple of {T1,…,Tn}.

Task utilization: ui =
Ci
Ti

.

System utilization: U =
∑

i=1,...,n
ui

13 / 29



Workload model

Task/job dependencies

Data flow and control dependencies between the jobs can constrain
the order in which the jobs can be executed.
Two main types of dependencies:

Mutual exclusion (critical sections)
Precedence constraints – e.g.: Job Ji can start only after another job
Jk finishes.

Tasks without any dependency on other tasks are called independent.
In the initial lectures, we will only consider independent tasks.
Software tasks running under a (RT)OS are rarely independent.

14 / 29



Workload model

Job dependencies

Precedence relation on a set of jobs is a relation, that determines
precedence constrains among individual jobs.
Job Ji is a predecessor of another job Jk (and Jk is successor of job
Ji), if Jk cannot be started before Ji is finished.
A job with predecessor is ready to be executed, when current time is
greater than its release time and all its predecessors are completed.

15 / 29



Workload model

Task graph

Precedence graph – directed graph G = (J, <), where each node
represents a job from set J and if job Ji is immediate predecessor of
Jk (relation <), there is a directed edge from node Ji to node Jk.

Data dependencies cannot be captured in the precedence graph.
Task graph is an extended precedence graph. It can contain other
types of dependencies.

Type of an edge connecting two nodes and other parameters of the
edge is called interconnection parameters of the jobs.
Data dependencies are represented explicitly by data-dependency edges.
An interconnection parameter can be, for example, the amount of data
passed between the jobs.
Task graphs are rarely used periodic-task systems.

16 / 29



Workload model

Task graph – example

(0, 6] (2, 9] (4, 11] (6, 13] (8, 15]
…

(2, 5] (5, 8] (8, 11] (11, 14] (13, 17]
…

(0, 5] (4, 8] (5, 20]

branch join

conditional block

(0, 6] J

(2, 10]

2/3 1/2

Numbers above a job give its feasible interval.

17 / 29



Workload model

Other types of dependencies

Time dependency (distance) is difference of job completion times.
AND/OR precedence constraints – dependence among immediate job
predecessors.

AND job – node J
OR jobs – square nodes marked 2/3 a 1/2.

Conditional branches represent conditional execution of jobs.
Branch is a job represented by filled circles.
Conditional block – subgraph starting in a branch node and ending at
next join job.

Pipe relation is dependency among a pair of jobs that are in
produce-consumer relation (dotted hrana).

18 / 29



Workload model

Functional parameters

Preemptivity of jobs
Preemptive
Non-preemptive

Criticality of jobs
Optional execution
Laxity type and laxity function

19 / 29



Resource model

Outline

1 Workload model

2 Resource model

3 Algorithms

4 Summary

20 / 29



Resource model

Terminology

Processors Pi (active resources) execute machine instructions, move
data, read files etc.
(CPU, communication links, disks, database servers)
Resources Ri (passive resources) – additional resources needed by jobs
to perform their task (memory, mutexes, semaphores). By resources
we usually understand “reusable resources”.
Non-reusable resource is, for example, Energy (power-aware
scheduling).

21 / 29



Resource model

Resource parameters

Processors
Speed of a processor
Topology of CPU interconnect/network-on-chip

Preemptivity of resources (CPU, network, …)
Memory hierarchy (caches, DRAMs, …)
Resource graph
Wake-up delay from power-saving state
…

22 / 29



Algorithms

Outline

1 Workload model

2 Resource model

3 Algorithms

4 Summary

23 / 29



Algorithms

Scheduling algorithms

We are interested in two types of algorithms:
1 Scheduling algorithm, which produces the schedule of jobs (maybe at

runtime).
In real-time systems, this algorithm is usually simple.

2 Schedulability analysis algorithm, which verifies whether all timing
constraints are met.

This algorithm is typically more complex.

24 / 29



Algorithms

Classification of scheduling algorithms
(used in real-time systems)

Scheduling algorithms

Off-line scheduling
(static, clock-driven)

On-line scheduling
(dynamic)

Static-priority scheduling
(VxWorks, SCHED_FIFO)

Deadline-driven
scheduling
(EDF, …)

General purpose OS
scheduling

(fair, interactive, …)

25 / 29



Algorithms

Feasibility and optimality

A valid schedule is a feasible schedule if every job completes by its
deadline (or, in general, meets its timing constraints).
A set of jobs τ is schedulable according to scheduling algorithm A if
when using the algorithm scheduler always produces a feasible
schedule for τ .
Hard real-time scheduling algorithm is optimal if the algorithm always
produces a feasible schedule if the given set of jobs has feasible
schedules.

Similarly, we can define optimality for a class of schedulers – e.g..
“optimal scheduler for static priorities”.

26 / 29



Summary

Outline

1 Workload model

2 Resource model

3 Algorithms

4 Summary

27 / 29



Summary

Model of a real-time system

Comprises of the following parts:
1 Workload model

Set of tasks/jobs and their parameters (Ci, Di, resource dependencies,
etc.)
Precedence graph or task graph
etc.

2 Resource model
Description of resources (CPU, memory, network, etc.), their types and
relations among them.
Often: resource model is just “Uni-processor”.

3 Algorithms
Fixed-priority scheduler + priority inheritance
Off-line scheduler

28 / 29



Summary

Real-Time system model – example

29 / 29


	Workload model
	Resource model
	Algorithms
	Summary

