
Programování systémů reálného času
Real-Time Systems Programming

*35PSR

Michal Sojka, Pavel Píša

Czech Technical University in Prague,
FEE and CIIRC

September 27, 2023

1 / 58

What is this course about?
Real-Time operating systems (RTOS)

Demonstrated on VxWorks, similar for others RTOSes as well.
Real-Time systems principles

What is a real-time system? HW, SW, ...
The aim is deterministic (predictable) behavior
Real-Time scheduling (theory, analysis)
Real-Time communication

Safety critical systems

Literature
J. Cooling: Real-time Operating Systems: Book 1 – The Theory, 2019
Giorgio Buttazzo: Hard Real-Time Computing Systems, 2011
Jane W.S. Liu, Real-Time Systems, Prentice Hall, 2000.
Alan Burns and Andy Wellings, Real-Time Systems and Programming
Languages, Addison Wesley, 2001

2 / 58

Lectures
1 Introduction to Real-Time Systems
2 VxWorks Operating System
3 POSIX 1003.1b – Standard Real-time Systems API
4 Overview of other Real-Time OSes (Linux, RTEMS, ...)
5 Introduction to safety engineering
6 Safety analysis methods (HAZOP, ...)
7 Real-Time Scheduling and Analysis (static scheduling, fixed-priority

scheduling, deadline scheduling)
8 Static scheduling
9 Fixed priority scheduling
10 Dynamic priority scheduling
11 Real-Time resource management
12 Combining real-time and non-real-time tasks
13 Advanced use of C language, GCC compiler

3 / 58

Course grading
Max. points

Tasks 1 – 7 35
within 1 week 5 points
each other week −1 points (up to -3)

Semestral work 25
Code 18 points
Version control 4 points
Documentation 3 points

Exam 40
Exam test min 13 max 30 pt.
Oral exam max 10 pt.

Authoritative information is on the course web site!

Grade Points
A 90 – 100
B 80 – 89
C 70 – 79
D 60 – 69
E 50 – 59
F <50 or <13 from exam test 4 / 58

Communication

Website: https://rtime.felk.cvut.cz/psr
E-mail: michal.sojka@cvut.cz
MS Teams – ask questions that might be of interest for other
students (no private emails, please)

5 / 58

https://rtime.felk.cvut.cz/psr

Real-time Systems Introduction

Outline

1 Real-time Systems Introduction

2 Examples of real-time systems

3 Classification of real-time systems

4 Real-Time Operating Systems

6 / 58

Real-time Systems Introduction

What is a Real-Time System?

Real-time system is a system whose specification includes both logical
and temporal correctness requirements.
Logical correctness We get correct results, e.g. 1 + 1 = 2.
Temporal correctness We get the results at the right time.
Real-Time system can react in deterministic way to unpredictable
events.
The system is deterministic if the analysis of the worst-case behavior
proves that all deadlines (temporal requirements) are met.

Techniques to verify the timing requirements are the focus of this
course.
The question of specifying temporal requirements is important, but it is
mostly out of the scope of this course. Typically, it is application
specific.

7 / 58

Real-time Systems Introduction

Typical Characteristics of Real-Time Embedded Systems

Event driven, reactive
Misbehave/failure is often expensive, dangerous, life or environment
threatening (safety-critical systems)
Parallel/multithreaded programming
Continuous operation without human interaction or supervision
Strict demands on reliability and fault-tolerance
Predictable behavior

8 / 58

Real-time Systems Introduction

Real-Time System Examples

9 / 58

Real-time Systems Introduction

Real-Time System Examples

Autor: Stanislav Dusík – Vlastní dílo, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=42618707

10 / 58

Real-time Systems Introduction

Real-Time System Examples

11 / 58

Real-time Systems Introduction

Real-Time System Examples

12 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

There is no science in real‑time systems
design.

We will see during the course…

13 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

There is no science in real‑time systems
design.

We will see during the course…

14 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

Advances in computer hardware will
solve all real‑time requirements for us.

No! Bad design and/or algorithms can
cause infinite delays.

15 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

Advances in computer hardware will
solve all real‑time requirements for us.

No! Bad design and/or algorithms can
cause infinite delays.

16 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

Real‑time computing is equivalent of fast
computing.

May be for PR and advertising agencies.
We understand real‑time as predictable.

17 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

Real‑time computing is equivalent of fast
computing.

May be for PR and advertising agencies.
We understand real‑time as predictable.

18 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

“Real‑time” systems research is
performance engineering.

Deterministic timing is often more
important than system throughput.

19 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

“Real‑time” systems research is
performance engineering.

Deterministic timing is often more
important than system throughput.

20 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

The problems of real‑time systems
design have all been solved in other

areas of computer science/engineering.

IT people are mostly concerned about
average performance.

21 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

The problems of real‑time systems
design have all been solved in other

areas of computer science/engineering.

IT people are mostly concerned about
average performance.

22 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

It is not meaningful to talk about
guaranteeing real‑time performance,
because there is no bug free software

and 100% reliable HW.

Even though everything can brake, we do
not want the operating system or the

application to be the weakest point in the
chain.

23 / 58

Real-time Systems Introduction

Common Misconceptions about RT Systems
(Stankovic ’88)

It is not meaningful to talk about
guaranteeing real‑time performance,
because there is no bug free software

and 100% reliable HW.
Even though everything can brake, we do
not want the operating system or the

application to be the weakest point in the
chain. 24 / 58

Real-time Systems Introduction

Are All Systems Real-Time Systems?

Question: Is a payroll processing system
a real-time system?

There is a deadline – print the pay
checks once a month.

According to the definition of real-time
systems it is a real-time system.
However, we do not consider it as such.
We are interested in systems for which
it is not a priori obvious how to meet
the timing constraints.

25 / 58

Real-time Systems Introduction

Are All Systems Real-Time Systems?

Question: Is a payroll processing system
a real-time system?

There is a deadline – print the pay
checks once a month.

According to the definition of real-time
systems it is a real-time system.
However, we do not consider it as such.
We are interested in systems for which
it is not a priori obvious how to meet
the timing constraints.

26 / 58

Real-time Systems Introduction

Are All Systems Real-Time Systems?

Question: Is a payroll processing system
a real-time system?

There is a deadline – print the pay
checks once a month.

According to the definition of real-time
systems it is a real-time system.
However, we do not consider it as such.

We are interested in systems for which
it is not a priori obvious how to meet
the timing constraints.

27 / 58

Real-time Systems Introduction

Are All Systems Real-Time Systems?

Question: Is a payroll processing system
a real-time system?

There is a deadline – print the pay
checks once a month.

According to the definition of real-time
systems it is a real-time system.
However, we do not consider it as such.
We are interested in systems for which
it is not a priori obvious how to meet
the timing constraints.

28 / 58

Real-time Systems Introduction

Resource Availability

Resources (CPU, memory, network,) may be categorized as:
Abundant Almost any design methodology can be used to realize

timing requirements of the application.
Insufficient It is not known how to fulfill the application requirements

with any known technology.
Sufficient but scarce It is possible to realize the timing requirements, but

careful resource allocation is required.

29 / 58

Real-time Systems Introduction

Example: Interactive/Multimedia Application

Interesting RT applications are here.

1980 1990 2000

Remote login

Network file access

HiFi audio

interactive video

Requirements
(performance)

Sufficient but scarce
resourcesInsufficient

resources

Abundant
resources

Hardware resource in year X
30 / 58

Examples of real-time systems

Outline

1 Real-time Systems Introduction

2 Examples of real-time systems

3 Classification of real-time systems

4 Real-Time Operating Systems

31 / 58

Examples of real-time systems

Example: Real-Time System Application

Almost each control system is a real-time system.

Example 1: A simple control system with one sensor and one actuator.

Controller

A/D

A/D Control
action

computation
D/A

Actuator
(H-bridge)

Controlled plant
(e.g. motor)

Sensor
(e.g. IRC)

yk

rk
uk

u(t)y(t)

32 / 58

Examples of real-time systems

A simple control system (continued)

Pseudocode of a control application
Setup periodic timer to activate interrupt in each period T.
Run the next sequence for each timer interrupt activation:

run A/D conversion and read value y
compute controller output u
write u and start D/A conversion

The parameter T is known as sampling frequency and the section of the
proper T value depends on the dynamic properties of the controlled plant.
Typical values range from one second to milliseconds or even less. Bad
choice makes plant stabilization impossible or setpoint/trajectory tracking
less precise than demanded.

33 / 58

Examples of real-time systems

Example: Multi-rate system
More complex control systems, multiple sensors and actuators. Different system partitions exhibit different
dynamics and therefore multiple sampling periods for control loops are used.

Example 2: Helicopter control system
Do 180× per second the following:

Check and read sensor data. Reconfigure (mode change) control strategy in case of sensor failure.
Run noise filtering and decimation on input data
Avionics control every 6thcycle (30 Hz):

Check the keyboard for the change of the control mode
Normalize sensor data and coordinate transformations
Determine reference setpoints for controllers
Compute outer pitch control loop control law
Compute outer roll control loop control law
Compute outer yaw and collective control loop control law.

Every 2ndcycle (90 Hz) run inner controller with setpoints computed in 30 Hz avionics computation):
Update controller output for inner pitch control loop.
Update controller output for inner yaw and collective control loop.

Update controller output for inner roll control loop.
Write computed control actions into outputs
Run internal tests
Wait for the next fast cycle release time

Note: Use of harmonic sampling rates simplifies the system. .

34 / 58

Examples of real-time systems

Example: Hierarchical Control System
Commands

–

Air traffic
control

–

Flight
management

–

Aircraft control

Responses

State
estimation

State
estimation

State
estimation

Flight data

Navigation

Operator
Interface

Virtual
system

Virtual
system

35 / 58

Examples of real-time systems

Example: Digital Signal Processing System

Processing of a signal in different representation and conversion of
the signals between these representations.
Examples:

Digital filtering
Compression/decompression of video or audio streams
Radar signal processing

Response times range from a few milliseconds to several seconds.

36 / 58

Examples of real-time systems

Example: Radar System

Radar Memory DSP
processors

Data
processing

sampled
digital data

trajectory
records

signal
processing
parameters

trajectory
records

37 / 58

Examples of real-time systems

Other examples of real-time system applications I

Multimedia
The typical goal is to process audio and/or video at a constant
sampling frequency/framerate
Additional limits: Audio and video mutual synchronization, low jitter
(discrepancy in timing), low latencies for interactive transmission
(video phone)

Real-time (industrial) databases
Transactions have to be committed within predefined deadline
Most significant problems: Classical algorithms for transactions
scheduling and optimization aim to achieve high throughput, which is
in contrast to the predictability of real-time systems.
Requirements for absolute or relative temporal consistency.

Virtual reality

38 / 58

Classification of real-time systems

Outline

1 Real-time Systems Introduction

2 Examples of real-time systems

3 Classification of real-time systems

4 Real-Time Operating Systems

39 / 58

Classification of real-time systems

Basic Terminology

Task τi

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
rij dij

Rij

Di

Job Jij Job Jij+1

Time

= release time (rij); the job is released at time 3.
= absolute deadline (dij); the job has to be completed before

deadline; equal to 10 for this case.
Relative deadline (Di) is 7.
Response time (Rij) is 6.

40 / 58

Classification of real-time systems

Hard Real-Time Systems

Hard Deadline is a deadline that has to be met under all
circumstances.

If a hard deadline is missed, the behavior of the system is wrong and it
often has catastrophic consequences.
We need mathematical apparatus for verifying that deadlines are met.
But: “There is nothing like a hard deadline in the real world.”

Hard Real-Time System: is a real-time system, where all deadlines are
hard.

This course is focused on hard real-time systems. They are easier to
analyze. Why?

Examples: Nuclear power plant, aircraft control.

41 / 58

Classification of real-time systems

Soft Real-Time Systems

Soft Deadline (required completion time) can be missed occasionally.
Question: How to define the term “occasionally”?

Soft Real-Time System: a real-time system where all deadlines are
soft.
Example: Multimedia applications, telephone exchanges (but what
about emergency calls?).

42 / 58

Classification of real-time systems

Try to Define Term “Occasionally”

One approach: Use a statistical probability model.
For example: 99% deadlines has to be met.

Another approach: Define the function describing the outcome of a
job provides as a function of its completion time.

0

1

relative deadline

Notice: To analyze system behavior according such model is more
complicated.

43 / 58

Real-Time Operating Systems

Outline

1 Real-time Systems Introduction

2 Examples of real-time systems

3 Classification of real-time systems

4 Real-Time Operating Systems

44 / 58

Real-Time Operating Systems

Parallelism in the Real World and Control Application

Control

Control

Inter Tasks
coordination

Task 1

Task 2
45 / 58

Real-Time Operating Systems

Options for Developing Real-Time Applications
Bare-metal (microcontroller) application

Fast, little overhead, more work (for the programmer)

General-purpose OS (GPOS)
Parallel data processing reflects the natural parallelism of the real world.
Synchronization and data exchange between tasks represent the interaction between the
elements in the real world.
Allows easy separation of task functions (what tasks do) and temporal characteristics (when
it should be done).
Provide an interface (API) for application to use the hardware.
Allow easier and effective utilization of system resources (hardware) for applications.
Higher level of abstraction simplifies application porting to different hardware/software
platforms.
Address space isolation of processes.
No timing guarantees!

Real-Time Executive
Very simple “OS”, typically just a scheduler and synchronization primitives
Microcontrollers, no processes, no networking, no address space isolation, etc.

Real-Time OS (RTOS)
Similar to GPOS, but provides algorithms for real-time resource management
Gives timing guarantees, prevents (theoretically) unbounded latencies
Temporal isolation of processes (avionics)

46 / 58

Real-Time Operating Systems

Options for Developing Real-Time Applications
Bare-metal (microcontroller) application

Fast, little overhead, more work (for the programmer)
General-purpose OS (GPOS)

Parallel data processing reflects the natural parallelism of the real world.
Synchronization and data exchange between tasks represent the interaction between the
elements in the real world.
Allows easy separation of task functions (what tasks do) and temporal characteristics (when
it should be done).
Provide an interface (API) for application to use the hardware.
Allow easier and effective utilization of system resources (hardware) for applications.
Higher level of abstraction simplifies application porting to different hardware/software
platforms.
Address space isolation of processes.
No timing guarantees!

Real-Time Executive
Very simple “OS”, typically just a scheduler and synchronization primitives
Microcontrollers, no processes, no networking, no address space isolation, etc.

Real-Time OS (RTOS)
Similar to GPOS, but provides algorithms for real-time resource management
Gives timing guarantees, prevents (theoretically) unbounded latencies
Temporal isolation of processes (avionics)

47 / 58

Real-Time Operating Systems

Options for Developing Real-Time Applications
Bare-metal (microcontroller) application

Fast, little overhead, more work (for the programmer)
General-purpose OS (GPOS)

Parallel data processing reflects the natural parallelism of the real world.
Synchronization and data exchange between tasks represent the interaction between the
elements in the real world.
Allows easy separation of task functions (what tasks do) and temporal characteristics (when
it should be done).
Provide an interface (API) for application to use the hardware.
Allow easier and effective utilization of system resources (hardware) for applications.
Higher level of abstraction simplifies application porting to different hardware/software
platforms.
Address space isolation of processes.
No timing guarantees!

Real-Time Executive
Very simple “OS”, typically just a scheduler and synchronization primitives
Microcontrollers, no processes, no networking, no address space isolation, etc.

Real-Time OS (RTOS)
Similar to GPOS, but provides algorithms for real-time resource management
Gives timing guarantees, prevents (theoretically) unbounded latencies
Temporal isolation of processes (avionics)

48 / 58

Real-Time Operating Systems

Options for Developing Real-Time Applications
Bare-metal (microcontroller) application

Fast, little overhead, more work (for the programmer)
General-purpose OS (GPOS)

Parallel data processing reflects the natural parallelism of the real world.
Synchronization and data exchange between tasks represent the interaction between the
elements in the real world.
Allows easy separation of task functions (what tasks do) and temporal characteristics (when
it should be done).
Provide an interface (API) for application to use the hardware.
Allow easier and effective utilization of system resources (hardware) for applications.
Higher level of abstraction simplifies application porting to different hardware/software
platforms.
Address space isolation of processes.
No timing guarantees!

Real-Time Executive
Very simple “OS”, typically just a scheduler and synchronization primitives
Microcontrollers, no processes, no networking, no address space isolation, etc.

Real-Time OS (RTOS)
Similar to GPOS, but provides algorithms for real-time resource management
Gives timing guarantees, prevents (theoretically) unbounded latencies
Temporal isolation of processes (avionics)

49 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment

Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

50 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

51 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

52 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks

Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

53 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)

Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

54 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities

Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

55 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)

Time resolution for measurement and task activation is fine enough

56 / 58

Real-Time Operating Systems

Requirements of a Real-Time OS

Multi tasking or multi thread environment
Preemptive

RT task should not be blocked by other tasks if it is not necessary
(shared resources).

A mechanism to prevent priority inversion or even better to avoid
deadlocks
Priority driven (or EDF – earliest deadline first)
Sufficient number of priorities
Guaranteed response-time for handling of interrupts (interrupt
latency)
Time resolution for measurement and task activation is fine enough

57 / 58

Real-Time Operating Systems

Distributed Real-Time Systems

There are many reasons to use distributed systems
Increased reliability (redundancy)
Distribution of computational power to places where it is needed (fast
local servo-control loops)
Simpler interconnection of subsystems from different producers
(standardized communication protocols)

Additional problems to solve: end-to-end properties
End-to-end properties (e.g. response-time) depends on more resources
and components (multiple CPUs, network, ...)
One of the biggest challenges of today’s engineers

58 / 58

	Real-time Systems Introduction
	Examples of real-time systems
	Classification of real-time systems
	Real-Time Operating Systems

