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Prague, August 2016



Supervisor:
prof. Ing. Vladiḿır Havlena, CSc.
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Abstract

This dissertation thesis deals with the development of algorithms for the effective solution of
quadratic programming problems for the embedded application of Model Predictive Control
(MPC). MPC is a modern multivariable control method which involves solution of quadratic
programming problem at each sample instant. The presented algorithms combine the active
set strategy with the proportioning test to decide when to leave the actual active set. For the
minimization in the face, we use the Newton directions implemented by the Cholesky factors
updates. The performance of the algorithms is illustrated by numerical experiments and the
results are compared with the state-of-the-art solvers on benchmarks from MPC. The main
contributions of this thesis are three new quadratic programming solvers together with their
proof of convergence and properties analysis. Furthermore, the algorithm’s implementation
is described in detail showing how to exploit the structure of the face problem and resulting
Newton direction to reduce the computational complexity of each iteration.

Keywords:
Model Predictive Control, Quadratic Programming, Newton Type Method, Projection,

Active Set Strategy.
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Abstrakt

Tato práce se zabývá vývojem algoritmů pro efektivńı řešeńı kvadratického programováńı pro
vestavěné aplikace metody prediktivńıho ř́ızeńı (MPC). MPC je moderńı v́ıcerozměrová ř́ıdićı
metoda, která v sobě zahrnuje nutnost řešeńı kvadratického programováńı v každém vzorko-
vaćım čase. Prezentované algoritmy kombinuj́ı metodu aktivńıch množin a tak zvaného testu
proporcionality k rozhodnut́ı, zda-li má být aktuálńı množina aktivńıch omezeńı změněna. Mini-
malizace na množině aktivńıch omezeńı je provedena pomoćı Newtonova směru, vypoč́ıtaného
Choleskyho faktorizaćı spolu s aktualizaćı faktoru. Rychlost prezentovaných algoritmů je ilus-
trována na numerických experimentech aplikaćı MPC a výsledky jsou porovnány s řešiči dos-
tupnými v literatǔre. Hlavńımi p̌ŕınosy práce jsou ťri nové algoritmy řešič̊u kvadratického pro-
gramováńı spolu s rozborem jejich vlastnost́ı a důkazem jejich konvergence. Vlastńı imple-
mentace algoritmů je nav́ıc podrobně popsána a je ukázáno, jak je možné využ́ıt struktury
pomocného problému, řešeného na množině aktivńıch omezeńı, spolu se strukturou Newtonova
směru k redukci výpočetńı složitosti každé iterace.

Kĺıčová slova:
Prediktivńı ř́ızeńı, kvadratické programováńı, Newtonova metoda, projekce, metoda ak-

tivńıch množin.
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Chapter 1

Introduction

This work addresses development of algorithms suitable for solution of convex box constrained
Quadratic Programming (QP) problem which arises in the context of embedded applications of
Model Predictive Control (MPC), although the methods are not restricted to this application.
Firstly we restrict our attention to the control of linear MPC where we assume control of linear
time-invariant discrete-time plant. Later we show that one of the developed methods can be
applied to a more general framework of nonlinear MPC where it is assumed that plant to be
controlled is non-linear time invariant and continuous-time.

In this chapter, firstly, the motivation for our work is described with a statement of the
problem to be solved. Then a brief introduction to the previous results is given together with
formal goals of this work. Finally, the organization of this thesis is outlined.

1.1 Motivation

Model Predictive Control (MPC) is an advanced multivariable optimization based control strat-
egy which provides a systematic and scalable approach to designing the controller. MPC is
widely used in industrial [72] or automotive applications, see e.g.,[C.6, 33, 49, J.2, 54, 53]1

among others. The main strength of MPC is that it can naturally incorporate the constraints
on the process inputs, outputs, and/or states [56]. In MPC, the control goals (i.e., tracking of
references, constraints) are transformed into an optimization problem. The relative importance
of the potentially conflicting goals is translated into the weights of particular terms in the op-
timization problem cost function. The limitations of the controlled plant are then transformed
into the optimization problem constraints.

MPC is a truly model based method, i.e., the model is not used exclusively for tuning
purposes but also acts as the cornerstone of a decision to derive the correct control action to
mitigate a hazardous situation in the future (e.g., limit violation). This is done through the
prediction of plant states and outputs based on the model on the finite horizon to the future.

1The letters ’J’, ’C’ and ’P’ in the bibliography represent author’s journal, conference and patent type of
work respectively.
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1. Introduction

Thus, the controller can change its control action to prevent a hazardous situation before it
occurs. The result of an MPC algorithm is a future sequence of the input variables over the
finite horizon. Only the first input move from the sequence is applied to the plant, and the
entire calculation is repeated in the next sampling interval based on the updated estimation
of the plant state. This is done to provide feedback in the loop to reject the plant model
inaccuracy and presence of unmeasured disturbances leading to the so-called Receding Horizon
Control (RHC) concept.

The main disadvantage of MPC, compared to traditional control methods, is higher compu-
tational complexity associated with the solution of the optimization problem at each sampling
interval. As the control goals usually represent a minimization of the loss of the energy, the `2

norm is often used for individual terms in the cost function. Hence, the optimization problem
to be solved is a convex Quadratic Programming (QP) problem.

Hence, MPC comprises at each sampling instant the solution of a QP problem and the
parametrization of the system with the new measurement/estimate of the plant state. In the
embedded applications of MPC, we are often limited by the available memory and computation
power, e.g., available Random Access Memory (RAM) is less than 200kB and CPU frequency
is approximately 100MHz in a standard Engine Control Unit (ECU) in automotive applications.
Moreover, not all the resources may be available to the MPC solver since many other systems
are running within the ECU. On one hand, the number of variables is in the order of tens or
hundreds in typical embedded applications of MPC. On the other hand, a typical processor unit
of embedded applications is either equipped only with single precision floating point arithmetic
or even has to emulate it. Hence, the solver for MPC has to be numerically robust to deal with
limited arithmetic accuracy and fast enough to deliver the solution before next sampling period.

In the last two decades, there has been rapid development in optimization algorithms to
solve convex QP enabling sampling times in the order of milliseconds or even microseconds.
Most of them reduce the solution of the QP problem to a series of unconstrained problems which
are solved either by off-line, iterative or direct methods which typically combine the adapted
Newton, active set, and gradient methods.

The overview of the most common methods for the solution of the QP for MPC:

Off-line methods are based on [6, 7] where the authors present algorithms for solving Multi-
parametric Quadratic Programming (mp-QP) that are used to obtain explicit solutions
to the MPC problem. The online phase of the MPC controller is then reduced to look-up
table process since the solution is the affine map defined by the parameter value. The
main disadvantage of the Explicit MPC is its large growth of the complexity of the mp-QP
solution with the increasing number of constraints in the optimization problem.

Fast Gradient Methods (FGMs) or first order methods relies on the projection of the gradi-
ent and have attracted the attention of the MPC community recently (e.g., [76, 68, 50])
by its simple iterative scheme and tight certification aspects. The bottleneck is that they
share the issue of the sensitivity to the problem scaling [12]. Hence, they might involve a
relatively large number of iterations for ill-conditioned Hessian of the QP problems which
is often the case in the application of MPC.

2



1.1. Motivation

Active Set Methods (ASMs) estimate the optimal set of active constraints by the active
set [65]. They are not sensitive to QP problem scaling but often involve a large number
of iterations when there is a rapid change in the optimal active set. Unfortunately,
such situation occurs often during transient operations of the MPC applications, where
actuators hit their limits to reach new setpoints as fast as possible.

Interior Point Methods (IPMs) solve directly the Karush–Kuhn–Tucker (KKT) conditions
of the QP problem by applying Newton method to a sequence of equality constrained
problems or to a sequence of modified versions of the KKT conditions [18]. It was shown
in [74, 25, 90] that IPMs can exploit the sparse structure of the problem2 to reduce the
computational cost associated with the solution of system of linear equations. Despite
this, each iteration of IPMs is often more computationally expensive when compared to
ASMs for considered problem size in this work.

The common issue of the gradient-based methods for the solution of QP problem is the
strong sensitivity dependence of their rate of convergence on the QP problem conditioning in
terms of the spectral condition number of QP problem Hessian. Unfortunately, the practical
engineering applications often lead to the ill-conditioned Hessian of the QP problem either due
to the MPC tuning (need of aggressive control, e.g., for limit violation) or ill-posed controllability
of the system to be controlled.

Furthermore, in embedded systems the maximum execution time of the algorithm is what
is important, i.e., not the average computation time. When the maximum computation time
allocated for the algorithm is exceeded, the device is often reset by the watchdog and return
to the normal operation. This device reset is, of course, undesirable, since it might impact the
controller performance and safety: imagine a situation that vehicle’s ECU is repeatedly reset
due to the fact that the QP solver has not converged in the allocated time when the vehicle is
driving on a highway at 70 mph! Such situation might occur for ASMs for rapid change of the
optimal active set, or for gradient based methods due to the ill-conditioning of the problem or
the large difference of the initial iterate to the solution.

The proposed algorithms in this work solve both issues by utilizing the projection for faster
identification of optimal active set and utilizing the second order information by solving the
auxiliary optimization problem, so-called face problem, defined by the active set, by use of direct
solver via Cholesky factorization. Furthermore, the changes of the active set are controlled to
avoid unnecessary expansion or reduction and hence, reduce the cost of the Cholesky factor
update leading to faster solution of the face problem. The resulting algorithms identify the
optimal active set maximally in 15-20 relatively low complex iterations independently of the
initial iterate, the QP problem size, and conditioning.

2Using the sparse formulation of the MPC which will be introduced later in Section 2.1.1.2.
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1.2 Problem Statement

In this work we shall be concerned with the sequence of problems to find

f ∗(θ) , min
z∈Ω

f(z,θ) = f(z∗(θ),θ), (1.1)

where Ω = {z : z ≤ z ≤ z, z < z}, f (z,θ) = 1
2
zTH(θ)z + hT (θ) z, z and z are given

column n-vectors, H is an n × n Symmetric Positive Definite (SPD) matrix, and h is an
n-vector parameterized by a parameter nθ-vector θ with a sequence θ ∈ {θ1,θ2, . . .}. For a
fixed value of the parameter θ we define h = h (θ), H = H (θ) and

q (z) = 1
2
zTHz + hTz. (1.2)

We assume that the sequence {θk} is not known in advance and θk ≈ θk+1, so that we can
use z∗(θk) as a good initial approximation for z∗(θk+1). It is shown later in Chapter 2 that
such sequence of parameters is generated in MPC applications.

Remark 1. Since H(θ) is a SPD matrix and Ω is a nonempty convex set, the problem (1.1) is
strictly convex QP problem for which there always exists a unique solution, see, e.g., [18].

Remark 2. The limitation of z ∈ Ω might look as too restrictive compared to the usually more
general form z ∈ {z ∈ Rn : Gz ≤ w+Sθ}, e.g., in [8]. On the other hand, we observed that
Ω is sufficient for practical applications of MPC (e.g., [49, C.6]) and it enables a fast execution
of the projection operation utilized by the proposed methods. Moreover, Ω covers the natural
limitations of actuators and both the system state and output via soft constraints formulation.
This formulation is often used instead of hard constraints to ensure feasibility of MPC problem
solution. The limitation on the rate of change of the actuators might be either substituted by
soft constraints or by limiting only the first control move in the actuator’s trajectory.

Remark 3. Note that for linear MPC, the Hessian matrix H is constant for all θ from the
sequence.

We show in the following sections, that the problem (1.1) has to be solved at each sampling
time in the MPC application with different parameter θ. We suppose that n is relatively small,
i.e., n . 200. The reason for this restriction is the applicability of the proposed algorithm for
the embedded systems where both the available memory and computational power is limited.
Note that only storing the problem data for n = 200 takes 79.7 kB in single-precision3 when
only upper triangle of H is stored.

3For 4 bytes per single-precision floating-point number according to IEEE 754-1985.
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1.3 Goals of the Dissertation Thesis

The main goals of this thesis are as follows:

1. Develop a general type of solver for convex box-constrained QP program suitable for
application of MPC in embedded platforms (automotive, aerospace, etc.).

2. The proposed methods should involve low number of low complex iterations with minor
impact of QP problem scaling, QP problem size and initial iterate.

3. Compare the performance of the developed and the state-of-the-art methods on selected
numerical benchmarks.

4. Draw conclusions and directions of future research.

1.4 Structure of the Dissertation Thesis

The thesis is organized into five main parts as follows:

1. Introduction: Chapter 1 describes the motivation of this work together with its goals.

2. Background and State-of-the-Art: Chapter 2 introduces the reader to the necessary
theoretical background and surveys the current state-of-the-art of MPC as well as the
methods used for a solution of the associated optimization problem.

3. Overview of Our Approach: Chapter 3 gives a high level overview of the proposed methods
and their connection to the existing literature.

4. Main Results: Chapters 4-8 describe in details three developed algorithms for solution of
problem (1.1). It is shown how the proposed methods differ and how they solve the goals
stated in this work. Finally, the performance of the proposed methods is compared to the
state-of-the-art methods on the several numerical benchmarks in Chapter 8.

5. Conclusions: Chapter 9 summarizes the results of our research, suggests possible topics
for further research, and concludes the thesis. There is also a list of contributions of this
dissertation thesis.

Some parts of this thesis build on the results that were previously published in collaboration
with colleagues. Specifically, some parts of Sections 4.2, 4.5, 4.6, 6.1, 6.2 and partially Chapter 8
were presented in [J.1]. Section 5.1 is based on the research showed in [C.7]. The Newton
Projection with Proportioning (NPP) algorithm presented in Chapter 7 was introduced in [C.5],
and tip-in manuover of Section 8.4 was studied in [C.4].
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Chapter 2

Background and State-of-the-Art

This chapter briefly introduces the Model Predictive Control (MPC) and shows how the under-
lying optimization problem with the form (1.1) is constructed from the original control goals.
Then, the overview of the existing methods which solve problem (1.1) is presented.

2.1 Theoretical Background

MPC is an optimization based multivariable control strategy which can explicitly incorporate
the constraints of the real controlled process. In MPC, the current control input is obtained
by solving a finite N -horizon open-loop optimal control problem (typically a constrained QP
problem) at each sampling instant, using the current state of the system as the initial state
[59]. Hence, the so-called Receding Horizon Control (RHC) concept is established, i.e., the plan
of control inputs u(0), . . . ,u(N − 1) is recomputed at each sampling instant with currently
measured/estimated system state x as a parameter. Only the first control move u(0) is applied
to the system, cf. [59]. This optimization demands a relatively large amount of computation
compared to the traditional control methods and therefore MPC was limited to the processes
with relatively large sampling times in the past. As the computation power of the processors
increased in recent years and new solution methods were developed, MPC is widely used in
industrial (see the excellent survey in [72]) or automotive applications, see, e.g., [C.6, 33, 49].

In this section, the MPC control approach is introduced. It is shown how the control goals
and limitations are transformed to the optimization problem – box constrained strictly convex
QP problem in a form of (1.1). Such QP has to be solved at each sampling time motivating
the development of fast and reliable solvers.

2.1.1 Linear Model Predictive Control

Linear MPC is a strategy which uses a linear plant model to predict the future plant output for
computing potential control action. The linear MPC is suitable for control of linear or close to
linear plants. The standard approach for control of plants with weak nonlinearity is to use a set
of switched local linear MPC controllers, see, e.g., [49, 33] with satisfactory performance. On
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the other hand, when the controlled plant contains high nonlinearity, such an approach might
lead to poor controller performance, and nonlinear MPC might be a method of choice with the
cost of higher computational demand.

There exist various flavors of linear MPC in the literature. These differ mainly in the used
model type and form of the cost function which is minimized over the finite horizon by the
MPC algorithm. It has been shown that MPC based on the 1/∞-norm simplifies the solution
of the underlying optimization problem, see, e.g., [6, 92] since it leads to the solution of
Linear Programming (LP). On the other hand, the 1/∞-norm based MPC tends to generate
unwanted aggressive control, hence, most of the industrial application of MPC uses quadratic
cost function which generates smoother control trajectories. In this work, we focus on the
standard class of the linear MPC problems that uses a linear model of the plant and quadratic
costs on both the states/outputs and control inputs subject to box constraints. Further, it is
showed how to extend the type of constraints to the output limits while preventing the box
constrained form of the resulting optimization problem by constraint softening.

2.1.1.1 Model and Predictions

Most control laws, for example, PID (proportional, integral and derivative), are reactive. There-
fore they generate a control action as a response to observed tracking error. On the other hand,
MPC is a predictive control strategy which explicitly computes the predicted response of the
closed loop system over the finite horizon into future, e.g., to avoid the violation of a limit
which will come in the future.

To predict the future response of a process, we must have a model of how the process
behaves. In particular, this model must show the dependence of output/state on the current
state and the present and future inputs.

A few types of models can be used for prediction. They are either based on input/output
description, e.g., FIR, ARX, ARMAX, or the state-space models, see for example [81]. This
work will focus on linear time-invariant state-space models.

Consider a discrete-time linear time-invariant system described by a state space model

x(k + 1) = Ax(k) +Bu(k), (2.1a)

y(k) = Cx(k) +Du(k), (2.1b)

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny are the state vector, the input vector, and
the output vector respectively, for all time instants k ≥ 0. And A ∈ Rnx×nx , B ∈ Rnx×nu ,
C ∈ Rny×nx , D ∈ Rny×nu .

The state and output predictions over a finite prediction horizon k + 1, . . . k + N , can be
expressed as a function of the initial state or its estimate x̃(k) and control input sequence U(k)
[56] by the recursive use of (2.1) as

X = Ax̃(k) + BU(k),

Y = Cx̃(k) + DU(k),
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where U(k) =
[
u(k)T , u(k + 1)T , . . . u(k +N − 1)T

]T
and

X =
[
x(k + 1)T , x(k + 2)T , . . . x(k +N)T

]T
,

Y =
[
y(k)T , y(k + 1)T , . . . y(k +N − 1)T

]T
,

and

A =


A
A2

...
AN−1

AN

 , B =


B 0

AB B
. . .

...
. . .

AN−2B B 0
AN−1B AN−2B . . . AB B

 ,

C =



C
CA
CA2

...
CAN−1

CAN


, D =



D
CB D

CAB CB
. . .

...
CAN−2B
CAN−1B CAN−2B . . . CB D


. (2.2)

2.1.1.2 Problem Formulations

Individual control problems (e.g. system stabilization, following the output references, etc.)
are formulated by the cost function of the optimization problem in the MPC. The associated
weights set the relative importance of the potentially conflicting goals. The limitations of the
controlled plant are transformed to the constraints of the optimization problem.

There are several approaches how to recast the MPC problem into an optimization problem.
In sparse formulation, the predictions of system states are added as the decision variables and
the set of constraints (2.1a) are incorporated into the problem as equality constraints over the
prediction horizon. The resulting optimization problem then has N(nx +nu) decision variables,
but the problem matrices are sparse. This approach is usually used in combination with IPMs as
it can lead to significant speed-ups, mainly for larger prediction horizons. The problem structure
can be exploited to have linear computational complexity at each iteration with respect to N ,
see, e.g., [90].

To eliminate the equality constraints and preserve the linear computational complexity of
each iteration, the dual optimization of the sparse problem was formulated and solved by the
Gradient Projection algorithm for QP (GPQP) algorithm in [3]. The main drawback of the
dual formulation is the double number of the decision variables as compared to the primal one
in the case of box constrained QP problem. A different approach to eliminate the equality
constraints was developed in [C.7] where they were transformed into the cost function with
penalization weighted by the fixed `2-norm penalty. This trick preserves the problem structure
while keeping the simple constraints enabling the application of projection-type of algorithm
with linear complexity in prediction horizon for each iteration.
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2. Background and State-of-the-Art

In dense formulation, the state variables are eliminated using predictions (2.2) which are
substituted to the cost function. Even if the sparse structure is lost, the number of decision
variables is reduced to N · nu. Hence this formulation is favorable for the problems with a
relatively short prediction horizon (N < 50 samples) or for the problems with a large number of
states where sparse formulation would lead to high number of optimization variables. Moreover,
dense formulation enables to use the move blocking strategies [20] to reduce the number of
optimization variables further.

Recently the sparse condensed formulation by coordinate transformation using state feed-
back leading to banded prediction matrices (2.2) and hence sparse Hessian was derived in [51].
It was shown that each iteration of IPMs applied to proposed formulation has complexity linear
with respect to N . Unfortunately, the coordinate transformation led to the loss of a simple
type of constraints preventing effective use of projection-type methods for the solution of such
a problem.

The following text is focused on the dense formulation since it provides the optimization
problem which contains only box type of constraints and the least number of optimization
variables. Hence, it can be solved by the projection-type methods to speed-up the convergence
with the computational complexity which is driven by the number of optimization variables in
the proposed methods.

In the following, the two most common MPC control problems are introduced and it is shown
how they can be recast to the form of the QP problem (1.1) using the dense formulation. The

control input is assumed to belong to the convex compact set Ω̃ = {u ∈ Rnu : u ≤ u ≤
u,u < 0 < u} which contains the origin in its interior. The constant terms are omitted in the
following control problem formulations since they do not influence the minimizer.

Regulator Problem The goal of the regulator problem is to drive the system state x to the
origin while minimizing the control effort. This can be formulated as an MPC problem

f ∗MPCreg
(x̃(k)) , min

u(k),...,u(k+N−1)

1

2
x(k +N)TPx(k +N) +

1

2

N−1∑
i=1

x(k + i)TQx(k + i) +
1

2

N−1∑
i=0

u(k + i)TRu(k + i),

s.t. x(k + 1 + i) = Ax(k + i) +Bu(k + i), i = 0, . . . , N − 1

u(k + i) ∈ Ω̃, i = 0, . . . , N − 1,

x(k) = x̃(k), (2.3a)

where matrix Q ∈ Rnx×nx is Symmetric Positive Semidefinite (SPS), matrices R ∈ Rnu×nu

and P ∈ Rnx×nx are SPD.
The problem (2.3) can be rewritten in the form (1.1) denoting z = U ∈ Rn, n = N · nu,

H = BTQB + R, h(x̃(k)) =
(
BTQA

)
x̃(k), z = 1N ⊗ u,

Q = diag (IN ⊗Q,P ) , R = IN ⊗R, z = 1N ⊗ u,
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where ⊗ refers to the Kronecker product, IN and 1N being the identity matrix and the column
vector of ones of the dimension N , respectively.

Tracking Problem The tracking problem represents the situation when the system outputs
should typically follow the given reference trajectory r(k + i) ∈ Rny for i = 0, · · · , N − 1.
Furthermore, the control movement ∆u is penalized rather than control effort to guarantee
the off-set free tracking in the nominal case without the presence of model inaccuracy and
disturbances, see [81] for a detailed explanation.

Hence we design MPC controller as the following optimization problem

f ∗MPCtrc
(θ(k)) , min

u(0),...,u(N−1)

1

2

i+N−1∑
i=0

(
(y(k + i)− r(k + i))T Qy (y(k + i)− r(k + i))

)
+

1

2

i+N−1∑
i=0

(
∆u(k + i)TR∆u(k + i)

)
,

s.t. x(k + 1 + i) = Ax(k + i) +Bu(k + i), i = 0, . . . , N − 1

y(k + i) = Cx(k + i) +Du(k + i), i = 0, . . . , N − 1

∆u(k + i) = u(k + i)− u(k − 1 + i), i = 0, . . . , N − 1

u(k + i) ∈ Ω̃, i = 0, . . . , N − 1,

x(k) = x̃(k),

θ =
[
x̃(k)T , r(k)T ,u(k − 1)T

]T
, (2.4)

where Qy ∈ Rny×ny is SPS and R ∈ Rnu×nu is SPD. The term u(k − 1) ∈ Rnu represents
the control action applied in the last sampling period. Assuming that the reference trajectory
is constant over the prediction horizon, i.e., r(k) = r(k + i) for i = 0, . . . , N − 1, the problem
(2.4) can be rewritten in the form (1.1) denoting z = U ∈ Rn, n = N · nu, θ ∈ Rnx+ny+nu as

H = DTQD +KTRK, h(θ) =
[

DTQ
[

C −1N ⊗ Iny

]
KTRM

]
θ, z = 1N ⊗ u,

Q = IN ⊗Qy, R = IN ⊗R, z = 1N ⊗ u,

and

K =


Inu

−Inu Inu

. . . . . .

−Inu Inu

 , M =


−Inu

0
...
0

 .
2.1.1.3 Soft Constraints

Often, the control goal is at time-step k to keep the j-th system output within limits and/or
follow the reference, i.e., to solve (2.3) or (2.4) with additional constraints

yj(k + i) ≤ yj(k + i) ≤ yj(k + i), i ⊆ χ, (2.5)
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with χ = {i ∈ N : 1 ≤ i ≤ N − 1} and yj < yj. These constraints can be violated (e.g.

as an effect of unfavorable initial condition or disturbance) leading to an unfeasible solution of
QP problem (1.1). To prevent this to happen, the common practice in the process industry is
to formulate (2.5) as soft constraints. These constraints can be violated, but any violation is
penalized in the objective function and simple constrained slack variables are added as decision
variables, see, e.g. [59, 46]. Hence the following term is added to the cost function of (2.3) or
(2.4)

1

2

∑
i∈χ

(Cj,:x(k + i) +Dj,:u(k + i)− εi)T ρ (Cj,:x(k + i) +Dj,:u(k + i)− εi) ,

with ρ > 0 and the auxiliary optimization variable ε ∈ R|χ| constrained as

yj(k + i) ≤ εi ≤ yj(k + i), i ⊆ χ.

Note that each sample along the prediction horizon where the soft constraint is considered adds
an optimization variable, hence impacting the solution time of the QP solver. To reduce this,
often the cardinality of χ set is reduced to select only several points along the prediction horizon
using the limited bandwidth of the controlled process, see, e.g. [J.2].

2.2 Previous Results and Related Work

In the last two decades, there has been rapid development in the optimization algorithms for
problem (1.1). This effort together with the common growth of the computational power
of processors enabled sampling times in orders of milliseconds or even microseconds in MPC
applications. Available solvers can be divided into two main groups based on where the most
computational complexity is performed: off-line and online methods. The limitation of the
off-line group is the large memory demand depending on the problem size. Hence its use is
limited to small size problems. On the other hand, the online, iterative methods enable to solve
mid to large scale problems at the cost of bigger associated computational burden.

2.2.1 Explicit Solution

An off-line approach, so called explicit solution, was suggested in [8], where parametric nature
of problem (1.1) was used. It was shown that the solution is a piece-wise affine function in the
parameter space and the cost function value is a piece-wise quadratic over a polyhedral portion,
so-called critical region, of the parameter space. Each critical region represents a portion of
parameter space where certain constraints are activated.

The solution of (1.1) is divided into off-line and online phase. In the off-line phase the
polyhedral partitioning and corresponding affine mapping of the solution is computed and stored.
In the online phase, the solution is a fast look-up table process to search in the critical region in
which the current state measurement lies. Then the solution is computed as an affine function
based on the found critical region and measured state. It was shown, that the memory footprint
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of the explicit solution growths exponentially with the number of constraints [15]. Hence its
use is limited to small scale problems only.

To reduce the memory demand of explicit solution and its approximations several semi-
explicit approaches were presented. In [92] approximation of explicit solution was used as warm
start of ASM for MPC based on 1-norm. The ASM was combined with precomputed and stored
factors of associated KKT system in [15] leading to a reduction of memory demand compared to
the explicit solution. The partial enumeration presented in [67] reduces memory by using a fact
that only a few combinations of active constraints are activated during run time of controller,
hence only a subset of critical regions is saved. A simplified problem is computed and the subset
of stored critical regions is updated when the algorithm is facing a not stored combination of
active constraints in real-time.

Although the explicit solution is superior in solution time, a limiting factor of it and its
approximations, like those presented in [52, 9, 44], is the number of critical regions which grows
exponentially with the number of constraints in the MPC problem [15]. This growth limits the
explicit type of solution to small control problems only, mainly because of limited memory in
embedded systems. See the survey of explicit solution [1] for details.

2.2.2 Active Set Methods

Active Set Methods (ASMs) are ones of the most common methods for solving the QP problem
(1.1) for a fixed parameter [15]. The main idea of ASMs is to identify the set of active constraints
at the solution with so-called active set in a finite number of iterations. The ASMs maintain an
estimate of the active set, which is a linearly independent set of constraints that are satisfied at
the beginning of each algorithm iteration. At each iteration of ASM the active set is updated
so that it converges to the optimal one. Further, the auxiliary optimization problem defined
by the current active set, so-called face problem, is solved either by direct solvers or by Krylov
space methods at each iteration.

The ASMs exist in primal [38, 39], and dual variant [5, 41]. The well-known drawback of the
ASMs is that if the initial active set is very different from the optimal one, the algorithm needs
many iterations since the active set is changing very slowly [3]. Typically only one change in
the active set is performed per iteration. This fact may result in slow convergence for problems
which arise in optimal control, where the control variables are often at the constraints for a
large portion of the prediction horizon [10] when a transient operation is invoked by the change
of the references or due to the effect of external disturbances in the MPC applications.

To improve this, non-feasible ASM tailored for MPC which allows multiple constraints to be
added or removed from active set per iteration based on Lagrange multipliers was introduced in
[61]. To prevent, but not ensure, returning unfeasible solution when a maximum number of iter-
ation is exceeded, the method updates active set by preferring constraint’s indices corresponding
to ”earlier” control moves in the planned control trajectory.

A different strategy was used in [33, 30] initially presented in [13] where ASM moves along
the line in the parameter space towards the new value from the one from previous sample
instant. Along the move it is checked whatever some constraint needs to be added or removed,
allowing reuse of previous solution and associated factor of the KKT system for factor update
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scheme. A drawback of this method is that it needs as many iterations as the difference in the
optimal active sets of (1.1) for previous and the new parameter.

A natural benefit of the ASM is a possibility to select the initial iterate by the solution from
the previous sample time in MPC by a warm start. The warm-start strategies were studied in
more details in [C.8].

2.2.3 Interior Point Methods

Interior Point Methods (IPMs) solve the KKT conditions of QP problem directly by applying
Newton method to the sequence of equality constrained problems or to a series of modified
versions of the KKT conditions [18]. It was shown in [74, 25, 90] that IPMs can exploit the
sparse structure of the problem to reduce the computational cost associated with the solution
of the system of linear equations. There exist many variations namely the primal-dual methods,
see, e.g., [65] and log-barrier method, see, e.g., [18, 90]. IPMs involve relatively small and a
constant number of iterations independently to problem conditioning.

As was presented in [90] the log-barrier method can be effectively used for MPC by exploiting
the sparsity pattern of the sparse MPC formulation. Further, the overall computation time is
decreased by the early termination of the iterations. This, however, can lead to a violation of
the process dynamics since it is considered as equality constraints which can not be fulfilled
after a certain number of iterations.

For IPMs, a polynomial runtime guarantee of the number of algorithm iterations can be
given. Unfortunately, this estimate is in practice far larger than the observed number of iterations
[76]. The IPMs involve a small relatively constant number of iterations, which enhances the
solution of a system of linear equations, usually much more expensive than for ASMs. It was
shown in [74] that such system of linear equations can be solved at a cost proportional to the
length of the prediction horizon when Riccati recursion is used for the sparse formulation of
MPC. The same was achieved in [90] with block-wise Cholesky factorization when the warm-
start with the fixed barrier parameter and fixed number of iterations were used. This resulted
in a suboptimal solution, which can even violate the system dynamics equation.

The FORCES package [25] produces automatically generated code in which the Newton step
computation [90] is enhanced by saving two back-substitutions using the rectangular factoriza-
tion with possible speed-up for special instances. CVXGEN, universal IPM solver applicable
also for MPC with automatically generated code was proposed in [57, 58]. Although automati-
cally generated problem tailored code may result in superior solution time, the code size might
increase rapidly with the problem size thus preventing embedded application due to the Read
Only Memory (ROM) limitations of the target platform.

The proper warm starting of the IPMs is still an open theoretical question despite several
recent attempts to solve this. The prediction from the previous sample time was used as the
warm start together with a fixed barrier parameter in [90] leading to the sub-optimal solution
only. In [84], the idea of constraints tightening was used to reduce the limits on the prediction
horizon to obtain feasible point closer to the central path for which IPMs converge quickly at
the cost of solving additional linear program.
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2.2.4 Gradient Projection Methods

The Gradient Projection Methods (GPMs) are almost as simple as ASMs and provides a more
rapid change of the working set than ASMs and they also inherit many good properties as
warm-start capability. The GPM was firstly introduced by Rosen [80] as a generalization of
the steepest descent method for optimization problems with convex constraints. The Rosen’s
algorithm moves along the straight line segment until the first new constraint is activated,
hence limiting the change of the active set. This has been improved by Goldstein, Levitin and
Polyak [42],[55] by allowing the movement along the projected arc on the constraint surface
while maintaining the feasibility and allowing a larger change of the active set per iteration. It
was shown, that under the non-degeneracy assumption, the algorithm of GPM identifies the
optimal active set in a finite number of iterations [19, 63].

The gradient projection algorithm is then defined by

zk+1 = PΩ(zk − αk∇q(zk)),

where αk > 0 is either a fixed step-size or one obtained by the line search optimization along
the negative gradient direction, ∇q(zk) is the gradient of q at zk. The projection of y onto Ω
is the mapping PΩ : Rn → Ω defined by

PΩ(y) = arg min
z∈Ω
||z − y||. (2.6)

One of the main drawbacks of GPMs is that the computation of the projection (2.6) can
be expensive for the general type of constraints [63] since it may lead to the QP problem in
general. Thus, GPMs are limited to problems involving simple constraint sets such as spheres,
Cartesian products of spheres, or the box constraints [10].

Another well-known drawback of GPM is that it shares the slow convergence rates (linear)
with the steepest descent method, since, after a finite number of iterations, GPMs become
a version of the steepest descent method restricted to the binding constraint manifold [10].
The convergence of the GPM with a fixed step size has been studied recently in [64] showing
that GPM shows the global linear convergence of function value residuals with a convergence
ratio 1 − O(1/condH).1 Hence, such GPM method requires O(1) condH ln(1/ε) iterations
in order to meet ε-solution for ε > 0 with respect to the optimal cost function value.

2.2.5 Combination of Gradient Projection and Newton Method

To overcome the slow convergence of GPMs for ill-conditioned QP problems, super-linearly
convergent modifications of GPM were presented in the literature. In [65], the GPM iteration
serves as a tool for identification of the optimal active set and the solution of face problem
defined by current active set is used as an improvement of the projected point at each iteration
of the GPM algorithm. The projection of gradient was switched to Newton method once it is
detected that probably optimal active set is reached by the algorithm in [10]. The detection is

1See Appendix A.1 for an overview of the convergence rates.

15



2. Background and State-of-the-Art

based on the heuristic defined by no change in the active set after the trial GPM iteration with
a fixed step-size. The fixed step in the trial GPM iteration then allows choosing the compromise
of the number of overall algorithm iterations versus the number of solutions of the face problem
defined by the current active set. Furthermore, the Newton direction which points towards the
face problem minimizer was also projected onto the feasible set, e.g., in [10, 3] to obtain a
faster rate of convergence. While algorithm presented in [10] used computational expensive
Generalized Armijo rule to project the Newton direction, computational cheaper Projected Line
Search (PLS) presented in [65] has been used in [3]. PLS looks for the first local minimizer
along the projected path and was in these algorithms used also for projection of gradient.

The disadvantage of the combined GPM and Newton method is the computational cost
involved in a solution of the face problem defined by the current active set. This is partially
solved by exploiting the structure of a dual problem as in [3] using the Riccati recursion, see,
e.g., [4] and references therein. A disadvantage of this approach is that it is not possible to
guarantee a primal feasibility of the result in the case of early termination of the iteration
process. Another method is involvement of Krylov subspace methods as in [63] for larger
problem size.

The common bottleneck of above mentioned combined methods is that the active set
changes are not under control in a sense that it is not defined exactly when and which indices
will be added to / removed from the active set. Hence, it might happen that some constraint
indices are removed and added back to the active set in the following iteration or in the other
part of the algorithm. This prevents to use effectively the factor update technique commonly
used in the ASMs to speed-up solution of the face problem in case a direct solver is employed.

A different strategy has been presented in [11] where super-linearly convergent algorithm
called Projected Newton Method (PNM) uses Generalized Armijo rule at each iteration to
project the Newton direction which points towards the minimizer of the face problem de-
fined only by those constraints which have positive associated Lagrange multiplier. Hence, the
gradient projection part is completely eliminated and the blocking constraints are released im-
mediately whenever they are detected to be not optimal by the Lagrange multiplier sign. This
leads to the fact that the constraints indices might me removed prematurely and added back
later to the active set increasing the complexity of the potential factor update technique for
the solution of the face problem.

2.2.6 Fast Gradient Projection Methods

Nesterov’s Fast Gradient Methods (FGMs) presented in [64] have attracted attention of the
MPC community recently. While the complexity of each iteration of FGMs is comparable to
GPMs, the FGMs converge with a much smaller convergence ratio 1− O(1/

√
condH)2, see,

e.g., [64]. FGMs require O(1)
√

condH ln(1/ε) iterations, hence much less compared to GPMs
especially for ill-conditioned QP problems. The basic idea underlying these methods is to relax
the condition of a monotone decrease of sequence {q(zk)}. The iterations are based on the

2See Appendix A.1 for an overview of the convergence rates.
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projection of gradient with fixed step-size computed at the point which is a combination of
current and last iterate. FGMs exist in primal, e.g., [64, 76] and dual variants, e.g., [68].

It was shown that the upper bound on the number of iterations for any value of a parameter
can be certified for problems with simple bounds off-line [78]. The certification of the upper
bound of the required iterations for the dual of the sparse formulation of MPC problem, where
the equality constraints corresponding to the state equation are relaxed, is discussed in [77, 76].
The certification results for the dual of dense MPC formulation are presented in [40]. The FGM
for linear MPC with general polyhedral constraints on inputs and states applied on the dual
sparse MPC problem is developed together with the certificate of iteration bound in [68] to
reach primal accuracy. A fixed point implementation of FGM is studied in [69].

A common issue of the FGMs is the sensitivity of the number of iterations to the QP problem
scaling in terms of spectral condition number of H . Further, as the QP problem conditioning
depends on the MPC controller tuning the number of the needed iterations might vary only
because the change of the importance of the control goals. Although the number of iterations
can be decreased by the proper problem pre-scaling (e.g., [76] or [68]), this cannot be applied
in all situations due to its computational complexity. This arises when the Hessian of the QP
problem is subject to change at each sample time. Hence the pre-conditioner would need to
be computed and applied online. The change of the QP problem Hessian might occur either
because of the change of the controller tuning or when the QP problem arises in the application
of nonlinear MPC.

2.2.7 Proportioning Algorithms

The inability to effectively control the changes in the active set was declared as important disad-
vantage of the combined Newton/gradient projection algorithms. It appears that this problem
has been solved in a mathematical community by the proportioning strategy. It has been pro-
posed independently by Friedlander and Martinez [36] and Dostál [26] for the solvers combining
the conjugate gradients and projecting steps and further developed into the Modified Propor-
tioning with Reduced Gradient Projections (MPRGP) algorithm in [28] where proportioning
serves as an effective precision control of the solution of auxiliary linear problems.

The MPRGP algorithm explores the face defined by the current active set by the conjugate
gradient until the component of the gradient which corresponds to the active set dominates
the violation of the KKT conditions or an unfeasible iteration is generated. In the first case,
the active set is expanded by the gradient projection with a fixed step length, otherwise, it is
reduced by the so-called proportioning step. The algorithm has been proved to enjoy a global
R-linear rate of convergence and was successfully applied to the solution of large problems
discretized by billions of variables.

The algorithm presented in [14] executes the proportioning with non-monotone line search
whenever a component of the gradient which corresponds to the active set dominates the
violation of the KKT conditions. Otherwise, the face problem defined by the current active
set is solved. If the face minimizer is not feasible, the backtracking search along the polygonal
path defined by the direction to the minimizer is executed. It was proved that the algorithm
converges under nondegeneracy assumption. Further, a remedy to guarantee the convergence
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in the presence of dual degeneracy based on the modified test of proportionality has been
established.

2.2.8 Other Methods

Dual Newton Strategy based on non-smooth Newton method was introduced in [32] and applied
to the nonlinear MPC in [35]. The main idea of the approach is to decouple the individual
stages along the prediction horizon by dualizing the equality constraints of system dynamics.
The resulting algorithm exploits the sparsity structure and enables the use of warm starting.
Projection-free quadratic programming algorithm for non-negative least squares derived from the
variational calculus was presented in [21]. The converge was proved, and linear convergence rate
reported. The main advantage of the method is simple iterate update rule and its parallelization
which is a topic for further development. The Alternating Direction Method of Multipliers
(ADMM) originally developed in the mid-1970s by Gabay and Mercier in [37] has seen resurgence
recently due the increase of computational power, see the survey in [17]. The ADMM method
uses Gauss-Seidel-type algorithm to minimize the augmented dual problem. Since it breaks the
optimization problem into smaller sub-problems, it has been used as an enabler to distributed
MPC in [88]. R-linear rate of convergence of the method has been proved in [73], although the
numerical experiments suggest that ADMM often outperforms the FGMs [86].
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Chapter 3

Overview of Proposed Approach

Although many approaches of the combination of gradient / Newton projection algorithms
are present in the literature, none of them fit for the real-world MPC problem applications to
the author’s knowledge. Either the algorithm is designed mainly for large scale problems, e.g.,
[10],[63],[65], hence behaves poorly in the embedded applications where the number of variables
is limited. Or it operates in a dual space, e.g., [3], where it is not possible to guarantee a primal
feasibility of the result in the case of premature termination of the iteration process due to the
limited resources. The second issue of the combined gradient projection algorithms is when and
how the second order information should be used to expand the active set and improve the rate
of convergence of the algorithm.

An attempt of development of the combined gradient / Newton projection method in context
of embedded MPC was done by the author of this thesis in [C.1]. Therein, the algorithm,
based on [10], combined the GPM algorithm with projection of the Newton direction computed
by the Cholesky factorization and the null space method [65, Ch. 16.2]. With such a set-
up, computational complexity of the solution of the face problem at each iteration has been
reduced to O((n − m)3), with m being the number of currently active constraints. Hence
the algorithm is suitable for the application of the MPC, where the control variables are often
at the constraints for a large portion of the prediction horizon [10]. The projection of both
directions (gradient, Newton direction) is executed via PLS algorithm presented in [65] instead
of more computational expensive Generalized Armijo rule. The algorithm uses a heuristic from
[10], hence the active set is tested for a change after the application of trial gradient projection
iteration with a fixed step-size. Whenever there is no change in the active set, the Newton
direction projection using PLS is applied. Otherwise the GPM iteration is executed using PLS.
To extend the algorithm for a large scale problems, the null-space method was replaced by the
conjugate gradient method in [C.2]. Furthermore, a favorable distribution of the eigenvalues
of H arising in the modified MPC problem was exploited in [C.3] to speed-up the solution
of auxiliary linear problems by the conjugate gradients combined with the gradient/Newton
projection algorithm.

The bottleneck of algorithms [C.1, C.2, C.3] is that the decision when the Newton direction
should be computed and applied relies only on a heuristic which depends on the parameter (fixed
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step size of trial GPM iteration) which is hard to tune. To overcome this, the heuristic was
replaced in [70] by a simple observation that if a new constraint is activated by the application
of the Newton step, the active set should be expanded. Otherwise, either algorithm finds an
optimum or the active set is reduced to remove blocking constraints to allow a further cost
function decrease. Furthermore, as the Newton step points to the solution of the face problem
it can be used as a direction for a projection for active set expansion using PLS method. On
the other hand, as GPM algorithm assures the algorithm convergence it can be used for active
set reduction.

Such algorithm was applied to the dense MPC formulation in [70] in the domain of auto-
mated process control utilizing also the Cholesky factorization and null space method. This
was later developed as a part of a commercially available software product for the diesel en-
gines air-path control using MPC, see [49]. The authors report the use of the software tool
in several embedded applications using either directly ECU or rapid prototyping system: the
air-path control of dual loop exhaust gas re-circulation diesel engine [C.6], the temperature con-
trol of the diesel oxidation catalyst [54], and the thermal management of combustion engine
[53]. Hence, contrary to [C.1, C.2, C.3] the algorithm of [70] executes the solution of the face
problem at each iteration and based on the result it decides what should be executed next. The
algorithm either applies Newton direction up to the 1st boundary at each iteration, followed
by either projection of the Newton direction by PLS [65, Ch. 16.7] or the GPM by PLS. By
this, one evaluation of the gradient is eliminated compared to algorithms presented in [3] and
[C.1, C.2, C.3]. The reported number of iterations of this method is typically 15 for a wide
range of problem sizes which is in agreement with the algorithm of [63] which uses Conjugate
Gradient (CG) iterations.

Original algorithm [70] was using PLS for a projection of both the Newton direction and the
gradient. The modification, which reduces the computational complexity of GPM iteration we
presented in [C.7] where we use a fixed step-size derived from the eigenvalues of H resulting
in the same typical number of iterations. Furthermore, the algorithm was applied to the sparse
approximation of MPC problem. This was done to decrease the computational cost of a
solution of the face problem in primal variables. The result was a linear growth of complexity
of each iteration with respect to the prediction horizon compared to traditional cubic one. The
projection of the gradient utilizing PLS routine was added into the algorithm of [C.7] in [J.2] for
the application to the nonlinear MPC as H is changing at each sampling time. The resulting
method was applied to the fuel optimization based cruise controller problem running on the
standard production ECU.

The main disadvantage of the combined GPM/Newton method is that the changes in the
active set are not under control, preventing effective use of factor update for the solution of the
face problem, which is commonly used in ASMs. On the contrary, the proportioning strategy
of [36, 26] used for large scale box constrained optimization enables to decide when the active
set should be reduced / expanded. The test is based on the detection which part of the KKT
conditions dominates their violation. This is exploited in the MPRGP algorithm presented in
[28] as effective precision control of the solution of auxiliary linear problems.

In this work we firstly describe in details the algorithm of [C.7] with several improvements
for the reduction of the computational complexity of the PLS method. Then we propose
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two new algorithms for an efficient solution of QP problems arising from MPC, which try to
exploit the advantages of the algorithms MPRGP and [C.7, J.2]. The algorithms exploit the
control of MPRGP to “look ahead” in order to avoid unnecessary expansion of the active set in
combination with full exploitation of the Newton directions. Resulting algorithms identify the
optimal active set in 15-20 relatively low complex iterations in average independently of the
initial iterate, the QP problem size, and conditioning.

All of the proposed algorithms are active set based strategies which minimize the face prob-
lem by direct solver via Cholesky factorization with factor update. Furthermore, all algorithms
use projected Newton direction path utilizing the modified PLS originally presented in [65] to ex-
pand the active set along the Newton direction which points towards the face minimizer defined
by the active set. It is shown that the original algorithm of PLS can be modified and extended
so that it can update the cost function gradient along the projected path with complexity linear
in the QP problem size.

The main difference between the proposed algorithms is the way how and when the active set
is reduced. The first two algorithms (Combined Gradient and Newton Projection (CGNP) and
Proportioning with Newton Directions (PND)) use for the active set reduction a proportioning
step, which is the projection of the chopped gradient with fixed step-size. The chopped gradient
represents the components of the gradient which corresponds to the active set and not optimal
sign of the associated Lagrange multiplier. Similarly as in ASMs, the CGNP executes the active
set reduction only in a case that the face problem minimizer is feasible. As this strategy does
not take into account the value of the Lagrange multipliers (but only their sign), it might reduce
the active set lately in the iteration, hence limiting unnecessarily further cost function decrease.

To improve this, the PND algorithm uses proportionality test introduced independently by
Friedlander and Martinez [36] and Dostál [26] for the solvers combining the conjugate gradients
and projecting steps. The proportionality test decides which part of gradient dominates the
violation of the KKT conditions of the QP problem. It was used as an effective precision
control of the solution of auxiliary linear problems by the MPRGP algorithm [28]. The MPRGP
algorithm explores the face defined by the current active set by the conjugate gradient until
the component of the gradient which corresponds to the active set dominates the violation of
the KKT conditions or an unfeasible iteration is generated. In the first case, the active set is
expanded by the gradient projection with a fixed step length, otherwise, it is reduced by the
proportioning step. Similarly, the PND algorithm expands the active set via projected Newton
direction path utilizing the PLS routine until the component of the gradient which corresponds
to the active set dominates the violation of the KKT conditions. Then the active set is reduced
by the proportioning step. Hence, the PND algorithm tries to exploit the advantages of the
algorithms MPRGP and CGNP. The algorithm exploits the control of MPRGP to “look ahead”
in order to avoid unnecessary expansion/reduction of the active set in combination with full
exploitation of the Newton directions.

The third proposed algorithm which we call Newton Projection with Proportioning (NPP)
is inherited from the PND algorithm. It also uses the proportionality test but it executes only
projection of the Newton direction for the expansion of the active set while reduction is handled
via modified definition of the face problem. Since the proportioning step is eliminated, this
algorithm does not require convergent step-size and thus it is suitable, e.g., for nonlinear MPC

21



3. Overview of Proposed Approach

where the Hessian matrix H is changing at each sampling period.

This rest of this thesis is organized as follows:

◦ Chapter 4 presents the shared basic ingredients of the proposed algorithms.

◦ Chapter 5 describes the CGNP algorithm and gives the proof of convergence together
with algorithm properties analysis.

◦ Chapter 6 depicts the PND algorithm and gives the proof of convergence together with
algorithm properties analysis and comparison to CGNP algorithm.

◦ Chapter 7 shows the NPP algorithm and gives the proof of convergence together with
algorithm properties analysis and comparison to CGNP and PND algorithms.

◦ Chapter 8 compares the performance of implementation of the proposed methods with
the state-of-the-art methods on selected numerical experiments.

Some parts of this thesis build on the results that were previously published in collaboration
with colleagues. Specifically, some parts of Sections 4.2, 4.5, 4.6, 6.1, 6.2 and partially Chapter 8
were presented in [J.1]. Section 5 is based on the research showed in [C.7]. The NPP algorithm
presented in Chapter 7 was introduced in [C.5], and tip-in manuover of Section 8.4 was studied
in [C.4].
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Chapter 4

Basic Ingredients

Let us first review notations and present shared basic ingredients of the proposed algorithms.
Firstly the projection operator which is used as a tool for effective change of the active set is
introduced. Then basic notation regarding the most important sets is presented together with
definition of chopped and free gradient. Next, the face problem is introduced and solution
based on the Cholesky factorization with factor update is given. Further, the fast computation
of gradient update is introduced. Finally, the tool of expansion/reduction of the active set via
projected Newton direction path utilizing the Projected Line Search (PLS) of [65] is repeated
with implementation details and tricks leading to its linear computation complexity with respect
to QP problem size.

4.1 Projection

The important ingredient of the proposed algorithms is projection of the vector which lies outside
the feasible set by the orthogonal projection. This tool is used to expand or release multiple
constraint indices from the active set at once allowing rapid identification of the optimal active
set.

In general, the projection of z ∈ Rn onto set Γ ⊂ Rn is the mapping PΓ : Rn → Γ defined
by

PΓ(z) = arg min
x
‖x− z‖ s.t. x ∈ Γ.

The computation of the projection can be expensive for general type of constraints [63] since it
may lead to the QP problem in general. Thus projection use is effectively limited to problems
involving simple constraint sets such as positive orthant, spheres, Cartesian products of spheres
or the box constraints [10].

In case of feasible set defined by box constraints as Ω = {z : z ≤ z ≤ z, z < z} the
projection PΩ is defined for any n-vector z by

PΩ (z) = z+,
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where the entries of z+ are defined as z+
i = max{zi,min{zi, zi}}, i.e. the projection is a

simple clamping rule.

4.2 Quantitative Refinement of the KKT Conditions

For an arbitrary n-vector z, let us define the gradient g (z) of the cost function q in (1.2) by

g (z) = Hz + h.

The optimal solution z∗ of (1.1) is fully determined by the KKT optimality conditions1, see
Appendix A.2 or [18] for more details. Denoting g∗ = g(z∗), the KKT conditions require that
for i = 1, . . . , n

z∗i =


zi implies g∗i (z

∗) ≤ 0,

zi implies g∗i (z
∗) ≥ 0,

zi ≤ z∗i ≤ zi implies g∗i (z
∗) = 0.

(4.1)

Denoting I = {1, 2, . . . , n}, let us define the upper, lower, and active set of z as U =
{i ∈ I : zi = zi}, L = {i ∈ I : zi = zi}, and A = {U ∪ L} respectively. The complement
of the active set is called the free set F = I\A. Furthermore, from the definition of box
constraints in (1.1) L ∩ U = ∅.

To give an alternative reference to the KKT conditions (4.1), let us define similarly as in
[27] the free gradient ϕ and the chopped gradient β by

ϕi(z) = gi(z) for i ∈ F , ϕi(z) = 0 for i ∈ A,
βi(z) = 0 for i ∈ F , βi(z) = g#

i (z) for i ∈ A, (4.2)

where

g#
i (z) =

{
max {gi(z), 0} if i ∈ U ,
min {gi(z), 0} if i ∈ L.

Vectors −ϕ(z) and −β(z) are orthogonal and feasible decrease directions of q at z [27].
See also Figure 4.1. Thus based on the definition (4.2) the KKT conditions are satisfied if and
only if the projected gradient ν = ϕ+ β is equal to zero.

4.3 Face Problem Solution

We shall use the active set strategy which reduces the solution of (1.1) to the solution of a
sequence of equality constrained problems. Thus in each iteration, we need to solve the auxiliary

1Note that problem (1.1) is not subject to equality constraints, hence the associated Lagrange multiplier
is zero. The condition of the non-negativity of the Lagrange multipliers of the simple constraints is reduced to
the first two rows of (4.1).
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Figure 4.1: Gradient splitting to the free gradient ϕ and the chopped gradient β and the
definition of the projected gradient ν.

minimization problem - so-called face problem

z̃ = arg min
z∈Φ

q(z), (4.3)

where
Φ = {z ∈ Rn : zi = zi for i ∈ Uk and zi = zi for i ∈ Lk}

is the face defined by the lower and upper active sets Lk, Uk of the indices which are predicted to
be active in the solution at the k-th iteration of the algorithm. Since z̃Uk = zUk and z̃Lk = zLk ,
the equality constrained problem (4.3) is equivalent to the unconstrained minimization problem
defined only for the variables zI\Ak .

Problem (4.3) can be rewritten formally as

z̃ = arg min q(z) s.t. Az = b, (4.4)

where A is defined by the rows of the identity matrix with dimension n as A =
[
ITUk , I

T
Lk
]T

,

A ∈ Rm×n and b =
[
zTUk , zTLk

]T
with I ∈ Rn×n representing identity matrix. Applying first-

order optimality conditions (KKT conditions) and denoting the Lagrange multipliers associated
with equality constraints as λ, the solution of (4.4) reduces to the following set of linear
equations [65] [

H −AT

A 0

] [
z̃∗

λ∗

]
=

[
−h
b

]
. (4.5)

Assuming zk ∈ Φ, let introduce the notation

z̃ = zk + pk, (4.6)

with Newton direction pk used later in the proposed algorithm. Than (4.5) can be rearranged
to the form with so-called KKT matrix [65] as[

H AT

A 0

] [
−pk
λ∗

]
=

[
gk

ck

]
, (4.7)
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with gk = Hzk + h and ck = Azk − b.
The problem (4.3) can be solved by the Krylov subspace methods [82], which are advan-

tageous, e.g., in large-scale optimization. Since a low precision of the solution of auxiliary
problems (4.3) is often sufficient, the performance of the approaches of solution of (1.1) based
on Krylov subspace methods can be often improved by an efficient adaptive precision control
[27]. On the other hand, if the size of the problem is relatively small, as we consider in this work,
we can find the exact solution more efficiently by a direct solver as shown in the followings.

There are multiple ways of solving the linear set of equations (4.7) by direct solvers. When
H and A are sparse or have a special structure (e.g., arrow shape or banded), the direct
solution can be used. The direct method is based on the factorization methods of the KKT
matrix and solution of the associated linear equations via two successive back substitutions.
Since the KKT matrix is indefinite for m ≥ 1, see e.g. [65, Section 16.2], the LU factorization
or symmetric indefinite factorization have to be employed [65].

Another methods of direct solution of (4.7) are range space and null space methods. This
terminology arises because the working set can be viewed as defining two complementary sub-
spaces: the range space of vectors that can be expressed as linear combinations of the rows of
A, and the null space of vectors orthogonal to the rows of A [39]. Both methods use elimina-
tion of one equation of (4.7) to solve the second one. The main difference of methods is which
equation is eliminated. Range space method eliminates the first equation of (4.7) and solves
the problem in the Lagrange multipliers space, i.e. with m variables. In null space method,
the second equation is eliminated leading to the fact that only free variables have to be solved,
i.e. n−m variables. The work associated with both methods is proportional to the number of
variables for dense matrix H . Hence range space method is more efficient when the number
of equality constraints m is small [65]. Conversely, the null space method is the most effective
when the number of bounded variables is close to n. Since for optimal control, we can expect
many constraints to be active [10] and we usually do not need to form the Lagrange multipliers
of the problem (4.4), we focus next to the null space method.

In the null space method the Newton direction pk is partitioned into two components as

pk = Y pky +Zpkz , (4.8)

where the columns of Z ∈ Rn×(n−m) are a basis for the null space of A and the columns of
Y ∈ Rn×m are a basis for the range space of AT . The first term represents a particular solution
of equality constraints while the second term represents a correction on the subspace of the free
variables. Then one can substitute (4.8) into the first equation of (4.7), multiply the equation
by ZT and using the orthogonality property AZ = 0 and non-singularity of [Y |Z] ∈ Rn×n to
receive (

ZTHZ
)
pkz = −

[
ZTHY py +ZTgk

]
. (4.9)

The Lagrange multipliers are get via substitution of (4.8) into the first equation of (4.7) and
multiplying by Y T and solution of the following linear system

(AY )T λ∗ = Y T
(
gk +Hpk

)
. (4.10)
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Let assume that zk in (4.6) fullfills the equality constraintsAzk = b. Note that this assumption
can be made since in the proposed algorithm the problem (4.4) is solved exactly based on the
active set in zk. Therefore, the constraint violation ck = Azk − b = 0 and by non-singularity
of AY (see [65]) we can assume that pky = 0 and (4.9) can be simplified to the following
equation

Gpkz = −rk, (4.11)

where G = ZTHZ and rk = ZTgk are reduced Hessian and gradient, respectively.
Thanks to the special structure of matrix A for the box constraints considered within this

work, the matrices Z and Y contain columns of an identity matrix hence there is no need
to construct them. Rather it is possible to form the reduced Hessian and gradient directly by
selection of rows and columns as [C.1]

G = HI\Ak,I\Ak , rk = gkI\Ak . (4.12)

Then since pky = 0 and special form of matrix Z the Newton direction is

pk =

{
pkI\Ak = −G−1rk

pkAk = 0
, (4.13)

where notation aB = e means that aBi = ei for i = 1, . . . , |B|.
Remark 4. Note that the form of the reduced Hessian, G in (4.12) is independent of whether
the lower or the upper bound constraint is activated. This results from the fact that the
corresponding rows of constraint gradient A are linearly dependent if either lower or upper
constraints of i-th component are activated.

Lemma 4.3.1. Since H ∈ Rn×n is a SPD matrix, the reduced Hessian G = ZTHZ is also
a SPD for a full column rank matrix Z ∈ Rn×(n−m).

Proof. Considering positive definiteness of H and substitution x = Zy for x ∈ Rn, y ∈ Rn−m

we can write

yTGy = yTZTHZy = xTHx > 0 for all y ∈ Rn−m,y 6= 0

proving the lemma.

As reduced Hessian remains positive definite (see Lemma 4.3.1), the problem (4.13) can
be solved, e.g., by the Cholesky factorization (see e.g. [65] for details) of reduced Hessian in
O ((n−m)3) as

G = (Rk)TRk,

where Rk ∈ R(n−m)×(n−m) is an upper triangular matrix with strictly positive diagonal. Then
the forward and backward substitutions (see Appendix B.2 and B.3) can be performed as

(Rk)Ty = −rk −→ y, Rkpk = y −→ pk,
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4. Basic Ingredients

with y ∈ Rn−m and assuming the triangularity of the matrix Rk in 2(n − m)2 flops when
m = |Ak| denotes the cardinality of the active set Ak.

For the later use the following lemma shows that the Newton direction pk defined by (4.13)
is always a descent direction.

Lemma 4.3.2. Let z ∈ Ω, A is the corresponding active set and the Newton direction p is a
nonzero solution of

p =

{
pI\A = −G−1r
pA = 0

,

with G = HI\A,I\A, r = gI\A. Then p is a descent direction for any active set A.

Proof. Since pA = 0 based on the definition in (4.13) only the components pI\A have to be
analyzed. Then using Lemma 4.3.1, the reduced Hessian G remains positive definite for any A
thus also its inverse. Hence we get

gTp = gTI\A pI\A = gTI\A
(
−G−1r

)
= −‖gI\A‖G−1 < 0,

which is exactly the definition of the descent direction see e.g. [34, Section 2.3].

4.4 Factors Updates

To reduce the cost of calculation of the Cholesky factor corresponding the active set Ak, we
employ the factor update scheme. The standard way of factor update [83, 43], deals with only
one change of active set in the context of ASMs by rank-one update of the factor. On the other
hand, the proposed algorithm can add or remove an arbitrary number of constraints at each
iteration. Therefore, instead of successive rank-one update, we employ multiple rank update
leading to the decrease of the computational complexity of the update scheme. We distinguish
three phases of the update of the active set:

1. detection of the change of the active set from previous iteration,

2. adding new constraints to Ak,

3. removing constraints from Ak.

Each operation has some specifics described in details in the following text.
The Cholesky factor from the last iteration is updated in O (n2) Floating point operations

(flops) per a change of the active set. Hence the complexity of each update is relatively low,
but it is still important to keep the number of changes of the active set small.

Let consider a known upper triangular Cholesky factor R ∈ R(n−mk−1)×(n−mk−1) of reduced
Hessian in (4.12) from (k − 1)-th iteration corresponding to the active set Ak−1 as

Gk−1 = HI\Ak−1,I\Ak−1 = (Rk−1)TRk−1.
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4.4. Factors Updates

Remark 5. Since the sequence of problem (1.1) is typically solved in the MPC for xk ≈ xk+1,
it is possible to use a solution from the previous sample as an initial iteration. Moreover, as the
solution represents a future trajectory of control inputs in MPC, one can shift the solution from
the previous sample to improve the initial iteration to establish a warm start setup, see, e.g.,
[C.8] and references therein. Further, it is possible to reuse the factor of the reduced Hessian
in (4.13) to establish a so-called hot start of the algorithm.

4.4.1 Detection of Active Set Changes

The update of the factor is different depending on the type of change of the active set. Hence,
the changes in the active set are determined and grouped into two sets:

1. Constraint indices to be added: Akadd = Ak \ Ak−1

2. Constraint indices to be removed: Akrem = Ak−1 \ Ak

Than based on the active set Ak−1 from (k − 1)-th iteration, the reduced Hessian (4.12) in
k-th iteration takes form

Gk = HI\Ak,I\Ak = H(I\(Ak−1∪Ak
add))∪Ak

rem,(I\(Ak−1∪Ak
add))∪Ak

rem
. (4.14)

Therefore the update of the Cholesky factor can be done in two stages: 1) the Cholesky
factor of the reduced Hessian corresponding to the active set with added new constraints
Ak−1 ∪Akadd is computed updating the factor from (k− 1)-th iteration and 2) factor from the
previous stage is updated to cover the active set with removed constraints indices Akrem from
the active set. The addition of new constraints indices to the active set leads to the decrease
of the dimension of the reduced Hessian and hence the factor. Therefore as the cost of factor
update is directly related to the computational complexity of the factor update process it is
profitable to keep the order of stages as indicated.

4.4.2 Adding New Constraints

According to (4.12) when new constraints Akadd are added at the k-th iteration the reduced
Hessian takes the form HI\(Ak−1∪Ak

add),I\(Ak−1∪Ak
add). Hence the rows and columns correspond-

ing to the Akadd have to be removed from the factor Rk−1. The standard approach in ASMs
solvers would be to perform |Akadd|-times removal of the column of the Rk−1 and than return
the upper triangular form by application of Givens rotation, see Appendix B.4 and references
[83, 43]. Each removal of the row/column leads to a decrease of the dimension of the factor.
Hence to reduce the computational complexity, we rather apply the removal of all columns
at once and apply the Givens rotation to return the upper triangular form of updated factor
denoted as Rk

add. Hence the update of factor when adding new constraints can be executed in

O
(
|Akadd|(n−mk−1 − |Akadd|)2

)
instead of O

(∑|Ak
add|

i=1 (n−mk−1 − i)2
)

flops.
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4.4.3 Removing Constraints

When some constraints are removed from the active set, the dimension of the reduced Hessian
is increased by the rows and columns of the Hessian matrix corresponding to the Akrem indices as
indicated in (4.14). Hence the Cholesky factor Rk

add can be updated by |Akrem|-times application
of rank-one update utilizing the back-substitution, see e.g. [83]. In our implementation the
algorithm of Cholesky of an augmented matrix [2] has been used. It is a continuation of the
Cholesky factorization when new data are appended to the existing factor. The algorithm is
described in Appendix B.1 for the sake of completeness.

The benefit of this method is that it has about the same complexity as successive application
of rank-one updates and its code can be shared with the Cholesky factorization used in the
first iteration when the Cholesky factor is not available. The algorithm of Cholesky augmented
matrix [2] starts by initializing the factor in the following form

Rk =

[
Rk

add S
0 T

]
, S = HI\(Ak−1∪Ak

add),Ak
rem
, T = HAk

rem,Ak
rem
.

Then the Cholesky factorization is started from the first row of Rk but only the columns
with index greater than nf = n −mk−1 − |Akadd| are processed leading to the computational
complexity O

(
|Akrem|3

)
+O

(
|Akrem|2nf

)
+O

(
|Akrem|n2

f

)
, see [2] for details.

4.5 Gradient Updates

To reduce the computational complexity associated with computation of the gradient, we employ
gradient update rule based on the formula for δ > 0 and direction d

g(z + δd) = H(z + δd) + h = g(z) + δHd.

Where the most computational demanding part Hd can be effectively computed after the face
problem is solved and updated over the course of the PLS algorithm as shown later. But firstly
the technical lemma showing the structure of the gradient in the face problem minimizer is
stated.

Lemma 4.5.1. Let zk ∈ Ω with corresponding active set Ak = Uk ∪ Lk and z̃∗ ∈ Rn be the
solution of the face problem

min
z∈Φ

q(z) s.t. Φ = {z : zi = zi for i ∈ Uk and zi = zi for i ∈ Lk}.

Then gi (z̃
∗) = 0 for all i ∈ I\Ak. Moreover, z̃∗ ∈ Ω implies that ϕi (z̃

∗) = 0 for all i ∈ I.

Proof. Let the Jacobian matrix of active constraints be A =
[
ITUk , I

T
Lk
]T

, A ∈ Rm×n and λ∗

be associated Lagrange multipliers. Then analyzing the first equation of the KKT conditions
(4.5) of the face problem we get

Hz̃∗ −ATλ∗ = −h −→Hz̃∗ + h = g (z̃∗) = ATλ∗.
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4.5. Gradient Updates

Since the structure of the Jacobian matrix of constraints A, there are only zero elements in the
i-th columns of A for all i ∈ I\Ak. Hence all i-th rows of AT for all i ∈ I\Ak contain only
zeros. Therefore,

(ATλ∗)i = gi (z̃
∗) = 0 for all i ∈ I\Ak.

When z̃∗ ∈ Ω, the active set of z̃∗ is the same as of zk. Hence, using the definition of the free
gradient (4.2), ϕi (z̃

∗) = 0 for all i ∈ Ak and

ϕi (z̃
∗) = gi (z̃

∗) = 0 for all i ∈ I\Ak,

and using I = (I\Ak) ∪ Ak we can conclude that ϕi (z̃
∗) = 0 for all i ∈ I.

The gradient at the minimizer of the face problem (4.3) has the form

g(z̃k) = g(zk + pk) = H(zk + pk) + h = g(zk) +Hpk.

From Lemma 4.5.1 we have
gi(z̃

k) = 0 for i ∈ I\Ak

and so
(Hpk)i = gi(z

k) for i ∈ I\Ak.

Hence when computing Hpk, only the components of (Hpk)i, i ∈ Ak with the sparsity
pattern of pk (4.13) need to be evaluated, which requires 2m(n −m) flops instead of 2n2 as
it is depicted in Algorithm 1 with m = |Ak| where notation Bi represents the i-th element of
indices set B, aB = e means that aBi = ei for i = 1, . . . , |B| and hi,j is element of matrix H
on the i-th row and the j-th column.

The graphical comparison of the computational complexity of computation of Hpk for
changing m is depicted in Figure 4.2. The Algorithm 1 is compared to the case when only the
sparsity pattern of pk is exploited and without any prior knowledge of p. From the figure, it is
possible to conclude that Algorithm 1 is about four times faster than the direct computation
of Hpk. And more than two times faster than an algorithm which would exploit the sparsity
pattern of pk for m ≤ 100 in case that n = 200.

Algorithm 1 Fast computation of Hpk for H ∈ Rn×n, pk ∈ Rn, pki = 0 for all i ∈ Ak,

pI\Ak = −
(
HI\Ak,I\Ak

)−1
g
(
zk
)
I\Ak .

1: Let m = |Ak|, Fk = I\Ak, (Hpk)i = 0 for all i ∈ I.
2: for i = 1 to n−m do
3: (Hpk)Fk

i
= gFk

i

(
zk
)

4: for j = 1 to m do
5: (Hpk)Ak

j
= (Hp)Ak

j
+ hAk

j ,Fk
i
pkFi

6: end for
7: end for
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Figure 4.2: Comparison of the computational complexity of Hpk when only sparsity pattern
of pk is used or when Algorithm 1 is used for n = 200.

4.6 Projected Line Search

To expand the active set, the proposed algorithms use the projected-Newton-direction path
evaluated via Projected Line Search (PLS) of [65]. PLS has been used also in [C.3, C.7, 71]
where it enabled fast identification of optimal active set when projecting the Newton direction
pk. For the sake of completeness, the PLS is described in details here closely following the
original algorithm of [65]. Contrary to the original algorithm of [65] which was used in the
context of gradient projection, we are using it to project Newton direction, which is descent.
The implementation details exploiting the update of Hpk leading to the linear computational
complexity of the PLS with respect to (1.1) problem size are also described. Furthermore,
the algorithm to update gradient along the projected path with linear complexity in the QP
problem size is described. To simplify the notation, the iteration index of the proposed algorithm
is omitted in the description of the PLS algorithm.

The PLS is used to find the first local minimizer along the path towards the optimizer of
(4.3). The PLS operation starts by computing first the breakpoints - the maximal step-sizes in
a Newton direction where constraints are activated as

t̄i =


(zi − zi) / pi if pi > 0
(zi − zi) / pi if pi < 0
∞ otherwise.

(4.15)

The breakpoints t̄i for i = 1, . . . , n within vector t̄ are sorted and duplicates are removed
to construct set of step-sizes T = {t1, t2, . . . tl} with 0 < t1 < t2 < . . . tl. The Shell sort
algorithm [85] has been used as it is more convenient for embedded application since it does
not use call stack compared, e.g., to Quick sort [91].

The projected-Newton-direction path as a function of any step-size t ≥ 0 can be described
as

zi (t) =

{
zi + t pi if t ≤ t̄i
zi + t̄i pi otherwise,

(4.16)
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4.6. Projected Line Search

Figure 4.3: The example of piecewise-linear projected Newton direction path as z (t) in R3

[65].

see Figure 4.3 for graphical interpretation.
The intervals of sorted breakpoints from T , i.e., [0, t1], [t1, t2], . . . are then explored suc-

cessively until the local minimizer is found within the interval or the cost function increase
is detected. Let suppose that up to tj−1 the minimizer has not been found. Hence the line
segment for the interval [tj−1, tj] can be written as

z (t) = z (tj−1) + ∆t dj−1, (4.17)

where
∆t = t− tj−1 ∈ [0, tj − tj−1]

and

dj−1
i =

{
pi if tj−1 ≤ t̄i
0 otherwise.

(4.18)

Then the one-dimensional quadratic model qj−1 is constructed within each (j − 1)-th line
segment [z (tj−1) , z (tj)] and its minimizer with respect to ∆t is found as follows

∆t∗j−1 = −q′j−1/q
′′
j−1

with

q′j−1 = hTdj−1 + z (tj−1)T Hdj−1 = g (z(tj−1))T dj−1, q′′j−1 =
(
dj−1

)T
Hdj−1. (4.19)

Several situations may occur:

◦ if q′j−1 > 0, i.e. there is growth of functional along the segment and local minimizer of
qj−1 is at t = tj−1; else
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4. Basic Ingredients

◦ ∆t∗j−1 ∈ [0, tj − tj−1] there is a minimizer at t = tj−1 + ∆t∗j−1;

◦ otherwise the search continues on the next interval [tj, tj+1] using (4.16).

The search direction d in (4.18) is identical for two followings breakpoints except the
components corresponding to the newly activated constraints which are set to zero. This can
be exploited as suggested in [65] without specific details by updating the term Hdj−1 in (4.19).
For the sake of completeness we give details about the update of Hdj−1 here. Denoting d0 = p
we can write (

Hdj−1
)
i

=
(
Hdj−2

)
i
−
∑
s∈S

hi,s ps S = {s ∈ I : tj−1 > t̄s},

allowing to reduce the computational complexity of exploring each segment to O (n|S|) flops
where |S| represents the number of changes in the active set for explored segment which is
typically only one. Note that since at the first segment the search direction d is identical to
Newton direction p, therefore Hd0 = Hp which is computed as described in Section 4.5.

Moreover, as PLS gradually moves along the projected-Newton-direction path with updated
Hdj−1, it is possible to avoid the direct computation of the gradient at the resulting point
and update it in O (n) flops. The update is done gradually depending whether the minimizer
∆t∗j−1 ∈ [0, tj − tj−1] has been found or not on the line segment. If it has not been found, i.e.
the minimizer lies outside the line segment [z (tj−1) , z (tj)], the update is done as follows

g (z (tj)) = g (z (tj−1)) + (tj − tj−1)Hdj−1, (4.20)

while in case that the minimizer ∆t∗j−1 ∈ [0, tj − tj−1] has been found we employ

g (z (tj)) = g (z (tj−1)) + ∆t∗j−1Hd
j−1.

The complexity of PLS is described in the following lemma.

Lemma 4.6.1. Let z ∈ Rn, mk = |Ak|, pk be the solution of (4.13) and Hpk is precomputed.
Then the computational complexity of projected-Newton-direction path utilizing PLS algorithm
together with updating of the gradient is

OPLS(n) = 2(n−mk) +
s∑
i=1

(2nri + 10n)

where s is the number of explored line segments, ri number of changes in the active set on the
i-th explored line segment.

Proof. First observe that pkAk = 0 hence the computation of the breakpoints (4.15) can be
executed in 2(n−mk) flops. Secondly, at i-th explored segment: the Hd has to be updated in
2nri flops where ri is the number of changes in the active set; the minimizer along the ray has
to be computed using (4.19) in 6n flops; move to the end of line segment (4.16) in 2n flops;
gradient can be updated as (4.20) in 2n flops. As a sum of all terms the result is evident.
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Chapter 5

Combined Gradient and Newton
Projection

As mentioned in the Chapter 2, the algorithms that combine gradient projection with Newton-
like methods were introduced, e.g., in [C.1, 3]. These methods use gradient projection step and
add an improvement step by computing and application of the Newton direction on the face
defined by the active constraints. Since the result of the application of the Newton direction can
be infeasible with respect to the constraint, the Newton direction is projected onto a feasible set
Ω, e.g., via PLS method or Armijo Generalized rule [10] to expand the active set. The existing
algorithms differ when the improvement step is applied. In [3] the Newton direction is used at
each iteration right after the gradient projection step is executed. On the other hand, in [C.1]
the Newton direction is applied only when the working set is not changing after the application
of the projection of gradient with fixed step-size. Hence, the performance of the algorithm
strongly depends on the parameter of the heuristic which is not convenient for a real world
application. To remove this disadvantage, the algorithm presented in this chapter executes the
computation of the Newton direction at each iteration and furthermore the Newton direction
is used for control whether the active set should be reduced by the projection of gradient or
expanded by the projection of the Newton direction using PLS method.

In this chapter, the specific ingredients of the proposed method are described in detail
together with the algorithm referring to the basic ingredients described in Chapter 4. Then the
convergence of the algorithm is proved and the main properties of the algorithm are analyzed
on the illustrative QP problem.

5.1 Algorithm

The bottleneck of previously mentioned methods is that the gradient always needs to be eval-
uated twice at each iteration, firstly for the gradient projection step and then for computation
of the Newton direction. In this section a new modification of algorithm [3] and [C.7, 71] is
presented. The resulting algorithm needs only to evaluate the gradient for the computation of
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5. Combined Gradient and Newton Projection

Algorithm 2 Combined Gradient and Newton Projection (CGNP) algorithm. Given a SPD
matrix H of the order n, n-vectors h, z, z, Ω = {z : z ≤ z ≤ z, z < z}, z0 ∈ Ω,
α ∈ (0, 2‖H‖−1), ε > 0 and kmax > 0.

1: {Initialization}
2: Set k = 0, g

(
zk
)

= Hzk + h
3: for k = 0 to kmax do
4: Solve (4.13) to obtain Newton direction pk.
5: Compute Hpk as described in Section 4.5
6: αf = min{1,max{α : zk + αpk ∈ Ω}}
7: if αf < 1 then
8: {Expansion step}
9:

[
zk+1, g

(
zk+1

)]
= PLS

(
zk,pk,Hpk, g

(
zk
))

10: else
11: {Application of full Newton direction}
12: zk+1/2 = zk + pk

13: g
(
zk+1/2

)
= g

(
zk
)

+ (Hpk)

14: if ‖β
(
zk+1/2

)
‖ ≤ ε then

15: {zk+1/2 satisfies KKT conditions.}
16: Terminate with z∗ = zk+1/2.
17: else
18: {Proportioning step}
19: zk+1 = PΩ

(
zk+1/2 − αβ

(
zk+1/2

))
20: g

(
zk+1

)
= Hzk+1 + h

21: end if
22: end if
23: end for

the Newton direction using the gradient update rule. The whole gradient has to be recomputed
only after the gradient projection step has been executed. Such situations occur only in the case
that the application of the Newton direction does not add any new constraint to the working
set. Hence as opposed to [3], the proposed algorithm performs either the projection of the
Newton direction or projection of gradient. To prevent unwanted changes in the active set after
the projection of the gradient and due to the accumulation of numeric errors, we project only
the chopped gradient. To speed-up the computation of the Newton direction the factor update
is employed.

Furthermore, when comparing the algorithm presented in [3] with our setup which we call
Combined Gradient and Newton Projection (CGNP) (see Algorithm 2), the order of the GPM
step and an improvement step is reversed. This is motivated by the fact that most of the time,
the controlled plant is in steady state or close to it; hence there is no need to find a new active
set, rather only to find an optimal solution on currently active constraints. This modification
also allows a simple rule update of the gradient instead of its re-computation after the each
step. The overview of the computational complexity of all the algorithm steps is presented in
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5.1. Algorithm

Table 5.1: Computational complexity of the CGNP algorithm steps.

Algorithm Step Complexity (flops) Notation Described

g
(
zk
)

= Hzk + h 2n2

Rk−1 → Rk

O
(
|Akadd|(n−mk−1 − |Akadd|)2

)
+

O
(
|Akrem|3

)
+O

(
|Akrem|2nf

)
+

O
(
|Akrem|n2

f

) mk−1 = Ak−1

nf = n−mk−1 − |Akadd|
Section 4.4

(Rk)Ty = −r
(
zk
)

Rkpk = y
2(n−mk)2 mk = |Ak| Section 4.3

Hpk 2mk(n−mk) Section 4.5
αf = min{1,max{α : zk + αpk ∈ Ω}} 2n Section 5.1.1[
zk+1, g

(
zk+1

)]
=

PLS
(
zk,pk,Hpk, g

(
zk
)) 2(n−mk) +

∑s
i=1(2nri + 10n) ri constraints changed

on the i-th line segment Section 4.6
zk+1/2 = zk + pk n

g
(
zk+1/2

)
= g

(
zk
)

+ (Hpk) n

zk+1 = PΩ

(
zk+1/2 − αβ

(
zk+1/2

))
4n Section 5.1.4

g
(
zk+1

)
= Hzk+1 + h 2n2

Table 5.1 concluding that the overall computational complexity of each algorithm iteration is
O(n2).

5.1.1 Face Problem Solution

The iteration of the CGNP algorithm starts by computation of the Newton direction pk which
points towards the minimizer of the face problem (4.3) defined by the current active setAk. The
face problem is solved by the Cholesky factorization of the reduced Hessian and substitutions
as described in Section 4.3 involving gradient at zk. To speed-up the Cholesky factorization
process, the factor from the previous iteration is updated to capture the change in the active
set as described in Section 4.4. Moreover, when the Hessian of the QP problem (1.1) is not
changing, the factor from the previous sample time can be reused together with the initial
iterate in MPC applications.

When Newton direction pk is applied, two things can happen: (i) some new constraints are
activated, i.e. zk + pk 6∈ Ω, hence it can be applied only with the limited step size µ ∈ (0, 1)
such that zk + µpk ∈ Ω (ii) full Newton direction can be applied without violation of any
constraints, i.e. zk + pk ∈ Ω.

In order to decide which situation occurs, the maximal step size αf ∈ (0, 1] leading to the
feasible iterate along the direction pk, i.e., αf = min{1,max{α : zk +αpk ∈ Ω}} is computed
as

αf = min{1, arg min
i∈I

αi}, αi =


(zi − zi) / pi if pi > 0
(zi − zi) / pi if pi < 0
∞ otherwise.

(5.1)
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5.1.2 Expansion Step

If αf < 1, i.e., the application of Newton direction leads to violation of some constraint and
there is at least one missing constraint in the active set. Hence, the Newton direction pk is used
in the projected-Newton-direction path evaluated via PLS algorithm. PLS procedure of [65] is
used to obtain the first local minimizer along the projected path completing the iteration. Our
implementation of PLS when compared to the original algorithm of [65] additionally successively
updates the gradient using the pre-computed Hpk as described in Sections 4.6 and 4.5.

Remark 6. Note that the line search procedure is necessary for projection of Newton direction
to preserve a convergence since it is not true in general that projection of the Newton direction
with fixed step-size leads to an objective function decrease, see e.g. [3] for details.

5.1.3 Application of Newton Direction

If full Newton direction could be applied without violation of any constraints (i.e., αf = 1) then
the intermediate iteration zk+1/2 is computed together with the gradient as

zk+1/2 = zk + pk, g
(
zk+1/2

)
= g

(
zk
)

+ (Hpk),

using the pre-computed Hpk as described in Section 4.5.
Since zk+1/2 ∈ Ω is the solution of the face problem (4.3), Lemma 4.5.1 predicts that

free gradient ϕ
(
zk+1/2

)
is zero and hence zk+1/2 might be optimum when also the chopped

gradient β
(
zk+1/2

)
is also zero1. Hence zk+1/2 is reported as solution of the problem (1.1) if

βi
(
zk+1/2

)
= 0 for all i ∈ A −→ ‖β

(
zk+1/2

)
‖ = 0.

For better numerical stability, the algorithm uses ε > 0 to detect the solution of problem (1.1)
as

‖β
(
zk+1/2

)
‖ ≤ ε.

5.1.4 Proportioning Step

If zk+1/2 is not KKT optimal, there are some blocking constraints which could be removed from
the active set to decrease the objective function q. For this purpose, GPM step with PLS is used
in [C.1, J.2]. This might lead to the activation of new constraints which might be removed later,
hence making the factor update more computationally expensive. In [C.7] the projection of the
gradient with fixed step size α ∈ (0, 2‖H‖−1) has been executed with lower computational
complexity. But the issue of newly activated constraints persist if some inaccuracy is present in
the computation of the gradient at zk+1/2 so that gi

(
zk+1/2

)
6= 0 for some i ∈ I\Ak contrary

to results of Lemma 4.5.1 especially when it is being updated.
In the proposed algorithm we use the projection of the chopped gradient instead as

zk+1 = PΩ

(
zk+1/2 − αβ

(
zk+1/2

))
, (5.2)

with fixed step-length α ∈ (0, 2‖H‖−1). This only releases the not optimal2 constraint indices
1The KKT conditions can be written as ‖ν

(
zk+1/2

)
‖ = 0, ν

(
zk+1/2

)
= ϕ

(
zk+1/2

)
+ β

(
zk+1/2

)
2In terms of sign of the associated Lagrange multipliers.
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from the active set without activation of new constraints3. This has been inspired by the pro-
portioning step commonly used in the large scale optimization as an effective tool for releasing
of the blocking constraints, see, e.g., [28].

5.2 Convergence

The convergence of Algorithm 2 is based on the simple estimate of the cost function q de-
crease at the proportioning step when the algorithm moves to the face problem minimizer.
The algorithm performs either the projection of the chopped gradient from the solution of
face problem in the proportioning step or the projection of the Newton direction utilizing the
projected-Newton-direction-path via PLS. Hence it is shown firstly that in both steps the cost
function q is decreased leading to the decrease at each iteration. Then based on those results,
the final theorem showing the convergence of the proposed algorithm is stated and proved.

Each iteration of CGNP algorithm uses the Newton direction p. Lemma 4.3.2 showed that
nonzero p is descent direction for any active set. The following lemma shows that there is
a positive decrease in the cost function q when Newton direction p is applied with limited
step-size.

Lemma 5.2.1. Let zk ∈ Ω and

∆t∗1 = − g(zk)Tpk

‖H‖‖pk‖2
, ∆t ∈ (0,∆t∗1],

and consider nonzero direction pk to be descent. Then there exists ζ > 0 such that

q
(
zk
)
− q

(
zk + ∆tpk

)
≥ ζ.

Proof. Let ∆t > 0 and using (pk)THpk ≤ ‖H‖‖pk‖2 we get

q
(
zk
)
− q

(
zk + ∆tpk

)
= −∆tg(zk)Tpk − (1/2)∆t2(pk)THpk

≥ −∆tg(zk)Tpk − (1/2)∆t2‖H‖‖pk‖2 = ∆q
(
zk,pk,∆t

)
.

Analyzing the derivative of right hand side of inequality w.r.t. ∆t

d ∆q
(
zk,pk,∆t

)
d ∆t

= −g(zk)Tpk −∆t‖H‖‖pk‖2,

and from the assumption of descent direction pk, i.e., g(zk)Tpk < 0 one can conclude that
∆q
(
zk,pk,∆t

)
is positive and increasing function on interval ∆t = (0,∆t∗1] with maximum at

∆t∗1 = − g(zk)Tpk

‖H‖‖pk‖2
, (5.3)

3If opposite bound is not activated by the projection of the chopped gradient, which rarely happens in MPC
applications.
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5. Combined Gradient and Newton Projection

proving the Lemma with

ζ = −∆tg(zk)Tpk − (1/2)∆t2‖H‖‖pk‖2 > 0,

for ∆t = (0,∆t∗1].

Now let show that there is decrease in q at each iteration of Algorithm 2 when proportioning
step is executed.

Lemma 5.2.2. Let

d = z − z, z ∈ Ω, β = β(z), α ∈ (0, 2‖H‖−1),

and let β̃ be defined by its components

β̃i =


min{βi, di/α} for zi = zi
−min{−βi, di/α} for zi = zi

0 elsewhere.
(5.4)

Then there exists µ > 0 independent of z, such that

q(z)− q (PΩ(z − αβ)) ≥ µ‖β̃‖2. (5.5)

Proof. Let α = δ‖H‖−1, δ ∈ (0, 2). Let us see that β̃Tg = β̃Tβ. Since by definition (4.2) we

get βi = gi or βi = 0. The first case is trivial. If βi = 0 it is enough to see that β̃i = 0 from
(5.4). Using the Taylor formula and

αβ̃THβ̃ = δ‖H‖−1β̃THβ̃ ≤ δ‖β̃‖2,

we get

q(z)− q (PΩ(z − αβ)) = q(z)− q(z − αβ̃)

= αβ̃Tg − α2

2
β̃THβ̃ = αβ̃Tβ − α2

2
β̃THβ̃

≥ α‖β̃‖2 − αδ

2
‖β̃‖2 =

(
δ − δ2

2

)
‖H‖−1‖β̃‖2

= µ‖β̃‖2.

This proves (5.5) with µ =
(
δ − δ2

2

)
‖H‖−1.

Lemma 5.2.3. Let zk, zk+1 ∈ Ω are produced by the CGNP as Algorithm 2. Then there exists
γ > 0 such that

q
(
zk
)
− q

(
zk+1

)
≥ γ.
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5.2. Convergence

Proof. There are two main branches in Algorithm 2. In the first one, the Newton direction pk

which points to the minimizer of face problem (4.3) is projected utilizing the projected-Newton-
direction path via PLS algorithm. In the second branch, the Newton direction pk is applied up
to the minimizer of the face problem and the projection of the chopped gradient is executed.
The decision of which branch will be executed is based on the feasibility of zk + pk. Hence to
show the decrease in the cost function q, the decrease has to be in both branches.

The decrease of the cost function q in the first branch is based on the successive application
of Lemma 5.2.1 for each explored line segment of PLS algorithm. Observe that the Newton
direction pk generated via solution of (4.13) is always descent direction as indicated in Lemma
4.3.2. This is however not true in general for the projected direction d as defined in (4.18) at
each explored line segment in PLS algorithm. The exception is the first line segment where it is
true since d0 = pk . Moreover, as the growth of function q (z) is checked in PLS as stopping
condition of exploration, the PLS always performs at least one line segment exploration with
cost function q decrease.

Hence assume that zk+1 is generated by the Newton-projected-direction path via PLS al-
gorithm and let ∆t∗ > 0 be defined by (5.3) and the difference of two successive ordered
breakpoints in PLS be δtj = tj − tj−1 > 0. Then there exist γPLS > 0 such that

q
(
zk
)
− q

(
zk+1

)
≥

j=w−1∑
j=1

{−δtjg(zk(tj−1))Tdj−1 − (1/2)δt2j‖H‖‖dj−1‖2}+

+ (−∆t∗w−1g(zk(tj))
Tdw−1 − (1/2)(∆t∗w−1)2‖H‖‖dw−1‖2) =

= γPLS, (5.6)

with w denoting the number of successively explored line segments by PLS algorithm where
the cost function decrease has been detected. As the terms in the sum are all positive based
on the Lemma 5.2.1 the right-hand side of inequality is also positive, hence γPLS > 0.

On the other hand, when zk + pk ∈ Ω the iterate moves to the face minimizer zk+1/2 =
zk + pk where based on Lemma 5.2.1 there exist ∆t∗ > 0 and γNS > 0 such that

q
(
zk
)
− q

(
zk+1/2

)
≥ −∆t∗g(zk)Tpk − (1/2)(∆t∗)2‖H‖‖pk‖2

=
1

2

(g(zk)Tpk)2

‖H‖‖pk‖2

= γNS > 0.

If the iteration zk+1/2 is not KKT optimal, the proportioning test is executed. Based on
Lemma 5.2.2 there exist γP > 0 such that

q
(
zk+1/2

)
− q

(
zk+1

)
≥ γP > 0.

Hence, connecting all results together there exist γ > 0 such that

q
(
zk
)
− q

(
zk+1

)
≥ γ > 0,

with γ = min{γPLS, (γNS + γP)}.
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5. Combined Gradient and Newton Projection

Now we are ready to prove the convergence of Algorithm 2.

Theorem 5.2.4 (CGNP Convergence). Let {zk} denote the iterates generated by the CGNP
algorithm for the solution of (1.1) with z0 ∈ Ω and α ∈ (0, 2‖H‖−1). Then, {zk} converges
to the solution z∗ of (1.1).

Proof. First notice that {q
(
zk
)
} is based on Lemma 5.2.3 decreasing and bounded from below

by the unconstrained minimum of q. Moreover, if {zk} is infinite, then it has an infinite
subsequence of iterations where proportioning is called – there can be at most n consecutive
expansion steps since the active set is expanding at each step by at least one index. Since Ω is
compact, it follows that there is a set of indices K of the proportioning steps such that {zk}k∈K
converges to ẑ and

q(ẑ) = inf
{
q
(
zk
)}

k∈K .

Using Lemma 5.2.2, we get that there is µ > 0 such that

q(z0)− q(ẑ) ≥
∑
k∈K

µ‖β̃(zk)‖2,

so ‖β̃(zk)‖ converges to zero. However, after inspecting the definition of β̃, it follows that
also ‖β(zk)‖ converges to zero. Since the proportioning step is executed at the face minimizer
where based on the Lemma 4.5.1 ϕ(zk) = 0 we conclude that also ν(zk) converges to zero.
Thus ν(ẑ) = 0 and, since the solution is unique, also ẑ = z∗ and {zk} converges to z∗.

5.3 Step Length Selection

The CGNP solver can be used for QP problem (1.1) with fixed problem Hessian. Here it will
be shown how it can be used for QP problems arising in MPC where problem Hessian might
change at each sample time.

The convergence of the CGNP algorithm is based on the estimate of the cost function
decrease in the proportioning step for selection of step-length α ∈ (0, 2‖H‖−1). Hence to
ensure the convergence, the step-length must be bounded above by inverse of the Hessian
norm. When the QP problem Hessian is fixed the Hessian norm can be computed off-line,
e.g., by computing the maximal eigenvalue of H for the expected limited range of optimization
variables.

On the other hand, when the QP problem Hessian is changing at each sample time, it is
needed to ensure that the selected step-length is still convergent and if possible to eliminate
need of computing the Hessian norm exactly. As the inverse of the Hessian norm creates the
upper bound of the convergent step-length, any upper bound of the Hessian norm leads to
convergent step-length. Hence e.g., in case of nonlinear MPC where the QP problem Hessian
is subject to change due to different dynamics, the Frobenius norm can be used since it upper
bounds the matrix spectral norm [43]. When only controller tuning might change in the linear
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5.4. Algorithm Properties

MPC application, it is possible to use the range of the tuning parameters to set the upper
bound of the QP problem Hessian off-line using the Cauchy inequality as4

‖Ht‖ = ‖BTQtB + Rt‖ ≤ ‖BTQtB‖+ ‖Rt‖ ≤ ‖BT‖‖Qt‖‖B‖+ ‖Rt‖

where B, Qt and Rt are fixed prediction matrix, and tuning matrices at time t defined in Section
1.2. Note that it is assumed that the entries of Qt and Rt might change in a given range,
allowing the setting of their upper bound of norm and hence the upper bound of the QP
problem.

5.4 Algorithm Properties

The blocking constraints are removed from the active set only when the face minimizer is
feasible, i.e., zk + pk ∈ Ω in the CGNP algorithm. This is very similar to the ASMs where the
constraint index with the largest negative Lagrange multiplier is removed from the active set
when the iteration is the minimizer of the face problem, see, e.g., [65, Section 16.5].

But contrary to the ASMs, all the not optimal constraint indices are removed from the
active set by the proportioning step, leading to more rapid change in the active set in CGNP
algorithm. On the other hand, the situation that zk + pk ∈ Ω is valid only in rare iterations,
hence the algorithm waits for this condition to release the blocking constraints to allow a more
rapid change in the cost function q. As a result, the algorithm mostly executes the expansion
step and at the later stage it removes the blocking constraints by the proportioning step.

Note that this property is good for reduction of unwanted changes in the active set, hence
limiting the complexity of the factor update scheme used for solution of the face problem. On
the other hand, the CGNP algorithm does not take into account the absolute value of the
Lagrange multipliers of the blocking constraints in the active set. Hence the algorithm might
have slower decrease of q at the beginning iterations while having more rapid decrease of q when
blocking constraints are removed from the active set at the later iterations of the algorithm.

The benefit of CGNP is that the gradient can be updated over the course of the iterations,
except when the proportioning step is executed where it must be recomputed from scratch.

5.4.1 Sensitivity to Step Size

In this section we show how the iterations generated by the CGNP algorithm are dependent
on the choice of the step-size of the proportioning step α ∈ (0, 2‖H‖−1) with ε = 1e−6‖h‖.
Typical convergence of CGNP algorithm is depicted for the numerical example of a randomly
generated QP problem with n = 100, condH = 1.17e5. The Hessian and linear part of the
QP problem have been generated in the MATLAB environment using randn command while
constraints were constructed randomly around the unconstrained minimizer by rand command.
In the following two figures, the square, circle, cross and diamond markers indicate that the iter-
ation has been the result of initialization, expansion step, proportioning step and full application
of Newton direction, respectively.
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Figure 5.1: Comparison of convergence of CGNP algorithm for several step-sizes α of propor-
tioning step for example randomly generated QP problem with n = 100, and z0 = (z+z)/2.
Algorithm in this case generates very similar iterations, with the same active set.
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Figure 5.2: Comparison of convergence of CGNP algorithm for several step-sizes α of propor-
tioning step for example randomly generated QP problem with n = 100, and z0 = z.

Two scenarios have been tested by varying the initial iterate. The purpose of the variance
is to show how the algorithm might behave when the active set has to be mostly expanded
or reduced. In the first setup, the algorithm has been started from the center of the feasible
set with z0 = (z + z)/2, hence A0 = ∅. The typical convergence of the CGNP algorithm
for a different choice of α is depicted in Figure 5.1 where |q(zk)− q(z∗)|, ‖zk − z∗‖ and the
cardinality of active set |Ak| are shown as a function of algorithm iteration index k. It is evident
that the algorithm starts generating the iterations via expansion steps (circles) and then in about
the 5-th, 9-th and 11-th iterations the proportioning step is executed (cross) as indicated in the
drop of the number of constraint indices in the active set. Note that the iterations are almost
the same, even for very different α which differs in power of four, showing that algorithm is very

4Proof can be found in [87].
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5.4. Algorithm Properties

insensitive to this parameter for this setup. Note that the full step application of the Newton
direction (diamond) is always executed at the final iteration.

In the second setup, the initial iteration has been set to upper bound, i.e., z0 = z, i.e.,
A0 = I. Hence all upper constraints have been active at the initial iteration, and the CGNP
algorithm has to start with the proportioning step to remove the blocking constraint indices
from the active set. In this example, the algorithm is sensitive to the choice of α as illustrated
in Figure 5.2. The reason is that the application of proportioning with larger step-size leads
to the activation of the opposite bound (lower bound) which is not happening for a very short
choice of α. This is evident e.g., from the first iteration where the active set cardinality for
choice of α = 1.95‖H‖−1 drops to 39 while for a shorter choice it is 26 although the initial
iterate has been the same. As a result, the algorithm involves more iterations for a shorter
choice of α, but our experiments suggest that the difference is often in order of 1−5 additional
iterations.

5.4.2 Comparison to GPQP Algorithm

To compare the CGNP algorithm to the existing methods, the GPQP method of [3] has been
implemented in MATLABr environment. The GPQP method performs the gradient projection
via PLS followed by the solution of face problem defined by the current active set. When the
face minimizer is not feasible it is projected using the projected Newton direction path as in
the CGNP algorithm via PLS. Compared to the original algorithm reported in [3] we apply the
GPQP algorithm directly to the primal dense formulation problem and the Cholesky factorization
with updates introduced in Section 4.4 is used for solution of face problem. Furthermore, we
have implemented a gradient update for projection of gradient and Newton direction along the
projected path in PLS. The same stopping condition has been implemented in both algorithms.
Additionally, to indicate the effectiveness of the proportioning step in CGNP, we implemented
a modified algorithm denoted as CGNP PLS which uses PLS routine to project the gradient
instead of the proportioning step (5.2) together with an update of the gradient.

The comparison of convergence of both algorithms for the randomly generated QP problem
introduced in Section 5.4.1 for initial iterate z0 = (z + z)/2 is depicted in Figure 5.3. Firstly,
observe that the GPQP algorithm converges in less number of iterations (6 compared to 13 for
CGNP). This is because the proportioning (crosses) in the CGNP is executed late in the iteration
process while the projection of the gradient performed at each iteration of GPQP enables the
drop of the not-optimal constraint indices from the active set in a faster way. On the other
hand, the cost of PLS in the gradient projection step together with need of recomputation of
the gradient might lead to the significant increase of cost of each GPQP iteration compared to
CGNP. From our simulation, it seems that the update of the gradient along the PLS introduced
in Section 4.6 is an important ingredient to reduce the cost of projection in GPQP. When it
is used, the GPQP involves 26.8% less number of flops, while when it is not used, the GPQP
involves 4.5% less flops compared to the CGNP algorithm in our setup while involving far fewer
iterations to converge.

The impact of the computation cost of PLS used in the gradient projection in GPQP is
even more significant when the initial iterate is chosen as z0 = z as shown in Figure 5.4. Both
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Figure 5.3: Comparison of convergence of CGNP and GPQP algorithms for example randomly
generated QP problem with n = 100, and z0 = (z + z)/2.
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Figure 5.4: Comparison of convergence of CGNP and GPQP algorithms for example randomly
generated QP problem with n = 100, and z0 = z.

algorithms have to perform drop of constraint indices from the active set. The GPQP converges
in 6-th iteration compared to 11 iterations needed for CGNP.

The cost of the gradient projection via PLS at each iteration of GPQP leads to the fact
that the algorithm involves 5.9% more flops compared to the CGNP algorithm. Furthermore,
when the updates of the gradient are not used in the PLS in GPQP, the algorithm needs 41.5%
more flops than compared to CGNP.

The iterations generated by the CGNP and CGNP PLS algorithms are very similar for both
test cases although each proportioning of the CGNP PLS algorithm is more expensive due to
additional cost of PLS routine compared to the proportioning step (5.2). It leads to the fact
that the CGNP PLS algorithm involves 2.0% and 8.1% more flops compared to the CGNP
algorithm for test cases respectively. Our further experiments suggest that it is true in general
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that projection of gradient via PLS instead of the proportioning step leads to increase of flops
in a range of 2-10% compared to the CGNP algorithm.

5.5 Summary

The algorithm combining the projection of chopped gradient and Newton direction has been
presented as CGNP method. It computes at each iteration the solution of the face problem
defined by current active set by direct solver with Cholesky factor update. If the solution of the
face problem is not feasible, the algorithm uses projected-Newton-direction path utilizing PLS
routine to expand the active set. On the other hand, when the solution of the face problem is
feasible with respect to QP problem constraints, it employs the proportioning step via projection
of chopped gradient with fixed step-size to free all blocking constraint indices from the active
set. Another option would be to employ PLS routine along the gradient as in GPQP of [3],
which would potentially release only a subset of blocking constraints. On the other hand, the
drawback would be the additional computational cost of PLS as was previously indicated in our
experiments and the previous section.

It was observed that CGNP algorithm is not sensitive to the choice of step-size of pro-
portioning step on randomly generated numerical experiment when opposite bounds are not
activated during the course of the algorithm. On the other hand, the large but still convergent
step size of proportioning leads to better algorithm performance when opposite bounds are
activated during the course of algorithm iterations. This is because it helps with the active set
expansion with low computation cost.

The benefit of the proposed method compared to the first order methods is its insensitivity
to QP problem conditioning since it employs the solution of the face problem. Compared to
the ASMs, the CGNP algorithm enables quicker identification of the optimal active set by
expansion/reduction of the active set by the projection. The main disadvantage of the CGNP
algorithm is its inability to take into account the absolute value of Lagrange multipliers indicating
the not-optimality of blocking constraint indices in the active set. The algorithm instead waits
for the condition that the face problem minimizer is feasible with respect to the QP constraints.
As a result, the decrease of the cost function q due to the removal of the blocking constraints
from the active set can occur late in the algorithm iterations.
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Chapter 6

Proportioning with Newton Directions

The main drawback of the CGNP algorithm presented in Chapter 5 is that the absolute values
of Lagrange multipliers are not taken into account for the decision whether the active set should
be expanded or reduced. As a result, the algorithm waits for the condition that zk + pk ∈ Ω
to release the not-optimal constraint indices from the active set, to allow further decrease of
the cost function q.

In this chapter, the algorithm which combines the active set strategy with the proportioning
test is introduced. The proportioning test is used to decide when to leave the actual active
set. For the minimization in the face, the proposed algorithm uses the Newton directions
implemented by the Cholesky factors updates.

A similar strategy to the proposed algorithm has been independently proposed in [14].
Compared to the algorithm presented therein we use rather a free gradient in the proportioning
test instead of a projected gradient as suggested in [26]. Moreover, the proportioning step is
executed with fixed step-size instead of non-monotone line search. When solution of the face
problem is not feasible, we employ the projected Newton direction path using the PLS algorithm
which enables the effective update of the gradient when compared to the non-monotone line
search in the algorithm of [14].

Firstly, the specific ingredients of the proposed method are described in detail together with
the algorithm referring to the basic ingredients described in Chapter 4. Then the convergence of
the algorithm is proved and the main properties of the algorithm are analyzed on the illustrative
QP problem together with the comparison to the CGNP algorithm.

6.1 Algorithm

The proposed algorithm tries in each iteration to reduce effectively the part of the gradient
which dominates the error in the KKT conditions. If it is the free gradient, i.e., if the iterate
is proportional, then the algorithm uses the Newton direction computed by direct solver em-
ploying the factor update from the previous iteration to solve the face problem as described
in Section 4.4. When the solution of the face problem (4.3) lies outside the feasible set Ω,
the working set is expanded using the projected-Newton-direction path utilizing PLS algorithm
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6. Proportioning with Newton Directions

Algorithm 3 Proportioning with Newton Directions (PND)) algorithm. Given a SPD matrix
H of the order n, n-vectors h, z, z, Ω = {z : z ≤ z ≤ z, z < z}, z0 ∈ Ω, Γ > 0,
α ∈ (0, 2‖H‖−1) and ε > 0.

1: {Initialization}
2: Set k = 0, g

(
zk
)

= Hzk + h
3: while ‖ν

(
zk
)
‖ ≥ ε do

4: if ‖β(zk)‖ ≤ Γ‖ϕ(zk)‖ then
5: {Proportional zk}
6: Solve (4.13) to obtain Newton direction pk.
7: Compute Hpk as described in Section 4.5
8: αf = max{α : zk + αpk ∈ Ω}
9: if αf < 1 then

10: {Expansion step}
11:

[
zk+1, g

(
zk+1

)]
= PLS

(
zk,pk,Hpk, g

(
zk
))

12: else
13: {Full Newton direction can be applied to remain feasible}
14: zk+1 = zk + pk

15: g
(
zk+1

)
= g

(
zk
)

+Hpk

16: end if
17: else
18: {Proportioning step}
19: zk+1 = PΩ

(
zk − αβ

(
zk
))

20: g
(
zk+1

)
= Hzk+1 + h

21: end if
22: k = k + 1
23: end while
24: z∗ = zk

(Section 4.6). In case that iteration is not proportional, the algorithm uses projection of the
chopped gradient with fixed step-size to remove blocking constraints.

The Proportioning with Newton Directions (PND) algorithm presented as Algorithm 3 uses
the proportioning test to limit the number of unwanted changes of the active set hence reduces
the computational complexity of the factor update scheme used for the face problem solution.
The overview of computational complexity of all algorithm steps is presented in Table 6.1
concluding that overall computational complexity of each the algorithm iteration is O(n2).

6.1.1 Proportioning Test

The presented algorithm starts with testing of which part of the gradient should be reduced, i.e.,
free gradient ϕ(zk) or the chopped gradient β(zk). The decision is based on the proportioning
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Table 6.1: Computational complexity of the PND algorithm steps.

Algorithm Step Complexity (flops) Notation Described

g
(
zk
)

= Hzk + h 2n2

‖β(zk)‖ ≤ Γ‖ϕ(zk)‖ 2n Section 6.1.1

Rk−1 → Rk

O
(
|Akadd|(n−mk−1 − |Akadd|)2

)
+

O
(
|Akrem|3

)
+O

(
|Akrem|2nf

)
+

O
(
|Akrem|n2

f

) mk−1 = Ak−1

nf = n−mk−1 − |Akadd|
Section 4.4

(Rk)Ty = −r
(
zk
)

Rkpk = y
2(n−mk)2 mk = |Ak| Section 4.3

Hpk 2mk(n−mk) Section 4.5
αf = max{α : zk + αpk ∈ Ω} 2n Section 5.1.1[
zk+1, g

(
zk+1

)]
=

PLS
(
zk,pk,Hpk, g

(
zk
)) 2(n−mk) +

∑s
i=1(2nri + 10n) ri constraints changed

on the i-th line segment Section 4.6
zk+1 = zk + pk n
g
(
zk+1

)
= g

(
zk
)

+ (Hpk) n
zk+1 = PΩ

(
zk − αβ

(
zk
))

4n Section 6.1.3
g
(
zk+1

)
= Hzk+1 + h 2n2

test. Given Γ > 0, we call the iteration zk proportional if the inequality

‖β(zk)‖ ≤ Γ‖ϕ(zk)‖, (6.1)

holds [28]. This test tries to limit both the unnecessary expanding of the active set and the
premature releasing of the constraints from the set Ak by balancing the violation of the KKT
conditions on the active and the free set.

6.1.2 Proportional Iteration

If the proportioning test (6.1) holds, the iteration is proportional and the algorithm should
reduce the violation of the KKT conditions in the free gradient ϕ(zk). To eliminate the free
gradient, the Newton direction pk which points towards the minimizer of face problem defined
by the current active set Ak is computed by solution of (4.13). The update of the Cholesky
factor of the reduced Hessian from the previous iteration is used as described in details in
Section 4.4.

When the Newton direction pk is applied it may result in one of two scenarios: (i) some new
constraints are activated, i.e., zk + pk 6∈ Ω, hence it can be applied only with limited step size
µ ∈ (0, 1) such that zk + µpk ∈ Ω (ii) full Newton direction can be applied without violation
of any constraints, i.e. zk + pk ∈ Ω.

In order to decide which situation occurs, the maximal step size αf ∈ (0, 1] leading to
feasible iterate along the direction pk, i.e., αf = min{1,max{α : zk +αpk ∈ Ω}} is computed
by (5.1).
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6.1.2.1 Expansion Step

If αf < 1, i.e., zk + pk 6∈ Ω, there is at least one missing constraint in the active set. Hence,
the Newton direction pk is used in the projected-Newton-direction path evaluated via PLS
algorithm. PLS procedure of [65] is used to obtain the first local minimizer along the projected
path completing the iteration. Our implementation of PLS when compared to the original
algorithm of [65], additionally successively updates the gradient using the pre-computed Hpk

along the projected Newton direction path as described in Sections 4.6 and 4.5.

6.1.2.2 Application of Newton Direction

If full Newton direction could be applied without violation of any constraints (i.e., αf = 1) then
the iterate is updated together with the gradient by

zk+1 = zk + pk, g
(
zk+1

)
= g

(
zk
)

+ (Hpk),

using the pre-computed Hpk as described in Section 4.5.

6.1.3 Proportioning Step

When the iteration is not proportional, i.e., (6.1) does not hold, we employ the proportioning
step

zk+1 = PΩ

(
zk − αβ

(
zk
))
, (6.2)

with fixed step-length α ∈ (0, 2‖H‖−1). Hence all constraint indices indicated as not-optimal
by a nonzero component of β

(
zk
)

will be removed from the active set. We project the
chopped gradient β

(
zk
)

instead of the full gradient as done in [C.7] to disable the addition of
new constraints to the active set by the proportioning step. This limits unwanted changes in
the active set. Note that the use of a fixed step-length reduces the computational complexity
when compared to the case when feasible minimizer is searched along the chopped gradient
as in [14, 28]. Moreover, as the chopped gradient β is eliminated1 by the application of
the proportioning step, see definition in (4.2), the consecutive iteration is proportional and
the corresponding face problem will be solved by direct solver. After the application of the
proportioning step, the gradient cannot be updated as described in Section 4.5 and has to be
computed from scratch.

6.2 Convergence

The proof of convergence of the PND algorithm is based on a simple estimate of the decrease
of the cost function q in the proportioning step proved in Lemma 5.2.2.

Theorem 6.2.1 (PND Convergence). Let {zk} denote the iterates generated by the PND
algorithm for the solution of (1.1) with z0 ∈ Ω, α ∈ (0, 2‖H‖−1), and Γ > 0. Then, {zk}
converges to the solution z∗ of (1.1).

1If some new constraint has not been activated.
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Proof. First notice that {q
(
zk
)
} is decreasing and bounded from below by the unconstrained

minimum of q. Moreover, if {zk} is infinite, then it has an infinite subsequence of non-
proportional iterates – there can be at most n consecutive expansion steps since the active set
is expanding at each step by at least one index. Since Ω is compact, it follows that there is a
set of indices K of the proportioning steps such that {zk}k∈K converges to ẑ and

q(ẑ) = inf
{
q
(
zk
)}

k∈K .

Using Lemma 5.2.2, we get that there is µ > 0 such that

q(z0)− q(ẑ) ≥
∑
k∈K

µ‖β̃(zk)‖2,

so ‖β̃(zk)‖ converges to zero. However, after inspecting the definition of β̃ in (5.4), it follows
that also ‖β(zk)‖ converges to zero. Since for a given Γ > 0 the non-proportional iterates
satisfy

Γ‖ϕ(zk)‖ < ‖β(zk)‖,

we conclude that also ϕ(zk) converges to zero and so does ν(zk). Thus ν(ẑ) = 0 and, since
the solution is unique, also ẑ = z∗ and {zk} converges to z∗.

Remark 7. The proportioning step is a simple and efficient way of releasing the indices from the
active set. However, there are some other options. For example, we can try to use (possibly
reduced) conjugate gradient step length in the direction β(zk) or the gradient projection step.
The latter is supported by the following theorem which guarantees sufficient decrease of the
cost function.

Theorem 6.2.2. Let z∗ denote the unique solution of (1.1), let λmin(H) denote the smallest
eigenvalue of H , z ∈ Ω, g = Hz + h, and α ∈ (0, 2‖H‖−1). Then

q
(
PΩ (z − αg)

)
− q(z∗) ≤ η(α)

(
q(z)− q(z∗)

)
,

where

η(α) := max{1− αλmin, 1− (2‖H‖−1 − α)λmin}.

Proof. See Bouchala et al. [16].

6.3 Algorithm Properties

Firstly observe, that similar to the CGNP, the proposed algorithm executes either projection of
the chopped gradient or Newton direction via projected Newton direction path. Compared to
the CGNP, the PND algorithm uses the violation of the KKT condition in the proportioning
test to decide when the blocking constraint indices should be released from the active set to
allow further cost function q reduction.
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6. Proportioning with Newton Directions

Hence, opposed to the CGNP, the blocking constraints can be removed from the active
set earlier or even later in the iterations depending on the proportionality parameter Γ > 0.
By this parameter, it is possible to ”tune” the behavior of the algorithm with respect to when
the blocking constraints should be released from the active set. Therefore for the choice of
Γ → 0 the algorithm prefers releasing the blocking constraints early. On the other hand, the
algorithm favors the expansion of the active set firstly with the choice of Γ → ∞. Note that
the proportionality test also limits premature release of the constraint indices from the active
set, hence reducing the computational complexity of the factor update scheme used for face
problem solution.

Like the CGNP algorithm, the PND algorithm involves the selection of convergent α step-
size for the proportioning step. The issue with its estimation is valid for both algorithms as
discussed in Section 5.3. Moreover, the gradient can be updated at each step except when the
proportioning step is executed.

To show the numerical behavior of the proposed algorithm, the sensitivity to the proportion-
ing step-size α and proportioning parameters Γ is studied on the same randomly generated QP
problem from Section 5.4.1 with n = 100 and condH = 1.17e5. Then the results of CGNP
and PND algorithms are compared for a fixed parameter.

In the following figures, the square, circle, cross and diamond markers indicate that the iter-
ation has been the result of initialization, expansion step, proportioning step and full application
of the Newton direction, respectively.

6.3.1 Sensitivity to Step Size

In this section we show how the iterations generated by Algorithm 3 depend to the choice of
the step-size of the proportioning step α ∈ (0, 2‖H‖−1) for the QP problem of Section 5.4.1.
Other parameters have been set as ε = 1e−6‖h‖ and Γ = 1.

Two scenarios have been tested by varying the initial iterate. The purpose of this is to show
how the algorithm might behave when the active set has to be mostly expanded or has to be
reduced. In the first setup, the algorithm has been started from the center of the feasible set as
z0 = (z + z)/2, hence A0 = ∅. The typical convergence of the PND algorithm is depicted in
Figure 6.1 where |q(zk)− q(z∗)|, ‖zk − z∗‖, the cardinality of active set |Ak| and cumulative
flops are shown as function of algorithm iteration index k. It is evident that the algorithm starts
generating the iterations via expansion steps (circles) and then in the 4th and 8th iterations
the proportioning step is executed (cross) as indicated in the drop of the number of constraint
indices in the active set. Note that the iterations are almost the same even for a very different
α which differs in power of four, showing that algorithm is very insensitive to this parameter
for this setup. It is worth mentioning the consecutive application of the full Newton direction
and the proportioning step in the 7th and 8th iterations. This follows immediately from the
result of Lemma 4.5.1, since the application of Newton direction will solve the face problem,
hence eliminating the free gradient. As a consequence, the next iteration is considered to be
not proportional2 by the proportioning test (6.1).

2If zk+1 is not KKT optimal.
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Figure 6.1: Comparison of convergence of PND algorithm for several step-sizes α of propor-
tioning step for example randomly generated QP problem with n = 100, and z0 = (z+z)/2.
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Figure 6.2: Comparison of convergence of PND algorithm for several step-sizes α of propor-
tioning step for example randomly generated QP problem with n = 100, and z0 = z.

In the second setup, the initial iterate has been set to upper bound i.e., z0 = z, i.e.,
A0 = I. Hence all the constraints have been activated at the initial iteration, and PND
algorithm has to start with the proportioning step to remove blocking constraint indices from
the active set. In this example, the algorithm is sensitive to the choice of α as illustrated in
Figure 6.2. The reason is that the application of proportioning with larger step-size leads to the
activation of the opposite bound (lower bound) which is not happening for a very short choice
of α. This is evident e.g., from the first iteration where the active set cardinality for choice of
α = 1.95‖H‖−1 drops to 39 while for shorter choice it is 32 or 26 respectively although the
initial iterate has been the same. As a result, the algorithm involves more iterations for shorter
choice of α, but our experiments suggest that the difference is often in order of 1−5 additional
iterations. It is worth noting that the difference of the number of involved flops for the selection
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6. Proportioning with Newton Directions

of α for shortest and longest choice in the test which is about 31 % of the flops needed to solve
the QP problem with α = 1.95‖H‖−1. This indicates that the algorithm performance can be
degraded for too short α for the case that opposite bounds are activated during the iterations.

6.3.2 Sensitivity to Proportioning Parameter

Since the proportioning parameter Γ > 0 influences the decision when the blocking constraints
are removed from the active set, its selection has a large impact to the algorithm performance.
To illustrate this, the QP problem of Section 5.4.1 has been solved by the PND algorithm for a
set of choices as Γ = {0.001, 1, 10}, ε = 1e−6‖h‖ and fixed α = 1.95‖H‖−1 since this value
showed best results in Section 6.3.1.

Two scenarios have been tested varying the initial iterate. The purpose of this is to show
how the algorithm might behave when the active set has to be mostly expanded or has to be
reduced. In the first setup, the algorithm has been started from the center of the feasible set as
z0 = (z + z)/2, hence A0 = ∅. The typical convergence of the PND algorithm is depicted in
Figure 6.3. The results confirm, that for a low choice of Γ, the PND algorithm prefers release
of not optimal constraints in the iterations. This can be observed e.g., for Γ = 0.1 where the
proportioning step (cross) is executed already in the 3rd iteration. On the other hand, the first
proportioning step is executed in the 6th iteration preceded by the application of full Newton
direction (diamond) which follows from Lemma 4.5.1 for Γ = 10.

Comparing the cumulative flops in Figure 6.3, it seems that Γ should be selected small for
this setup. But our further experiments suggest that, e.g., choice of Γ = 0.01 leads to about
the same flops as for Γ = 1 and Γ = 0.001 leads to increase of flops of about 5 % compared
to the choice with Γ = 1. Hence the sensitivity of Γ to the number of performed flops of
the algorithm to converge to the solution with a given accuracy is not monotone function,
complicating its optimal selection.

In the second scenario, the initial iterate has been set to upper bound, i.e., z0 = z, i.e.,
A0 = I. Hence all constraints have been active at the initial iteration, and the PND algorithm
has to start with proportioning step to remove blocking constraint indices from the active set.
Similarly to the results with initial iterate as the center of feasible set, the minimum flops is
performed by the algorithm with Γ close to 1 as shown in Figure 6.4. The reason is that for
low choice of Γ the active set is changed often rapidly leading to the computational expensive
updates of the Cholesky factor in the face problem solution. This is indicated by the large
increase of cumulative flops, e.g., in the 4th iteration for Γ = 0.1. Interesting are the two
successive applications of the proportioning step (crosses) for Γ = 0.1 in the 2nd and 3rd
iteration. This is because the proportioning step in the 2nd iteration adds some constraint
indices to the active set leading to non-proportional iteration due to the low Γ.

From the computational complexity point of view the minimum number of flops is executed
for Γ = 1 in our setup. Both higher and lower values of Γ than 1 leads to higher computational
complexity. This contradicts the result from the previous experiment where lower computational
complexity is for Γ < 1. But as in real-world application of the algorithm both setups (A0 = ∅
and A0 = I) can happen we suggest using Γ close to 1. This choice is also supported by the
numerical experiments done later in Section 8.
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Figure 6.3: Comparison of convergence of PND algorithm for several values of proportioning
parameter Γ for example randomly generated QP problem with n = 100, and z0 = (z+z)/2.
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Figure 6.4: Comparison of convergence of PND algorithm for several values of proportioning
parameter Γ for example randomly generated QP problem with n = 100, and z0 = z.

6.3.3 Comparison to CGNP Algorithm

The main difference between CGNP and PND algorithms is when the blocking constraint indices
are removed from the active set. While in the CGNP algorithm the blocking constraints are
released only in the rare situation that the solution of the face problem is feasible, the decision
based on the violation of KKT conditions via proportioning test (6.1) is used in PND algorithm.

6.3.3.1 Random QP Problem

To show the effect of this difference on the algorithms convergence, the QP problem of Section
5.4.1 has been solved with ε = 1e−6‖h‖ and fixed α = 1.95‖H‖−1 by the CGNP and PND
algorithms. Based on the results from Section 6.3.2 we select Γ = 1.
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Figure 6.5: Comparison of convergence of CGNP and PND algorithms for example randomly
generated QP problem with n = 100, and z0 = (z + z)/2.
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Figure 6.6: Comparison of convergence of CGNP and PND algorithms for example randomly
generated QP problem with n = 100, and z0 = z.

Again two scenarios have been studied with varying the initial iteration. In the first setup,
the algorithms have been started from the center of the feasible set as z0 = (z + z)/2, hence
A0 = ∅. The comparison of convergence of CGNP and PND algorithms is depicted in Figure
6.5. Both algorithms start with the expansion steps (circles) generating the same iterate up
to the 4th iteration when PND executes the proportioning since the iteration is detected as
not proportional by the proportionality test (6.1). This confirms the hypothesis that the PND
algorithm allows the earlier release of blocking constraints by the execution of the proportioning
step (crosses). As the blocking constraints are released earlier for PND algorithm the number
of involved iterations is reduced and also the cost function decrease is steeper than for CGNP.
In terms of the computational complexity, PND algorithm involves 14% less flops compared to
CGNP in this setup.
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In the second scenario, the initial iterate has been set to upper bound, i.e., z0 = z, i.e.,
A0 = I. Hence all constraints have been activated at the initial iteration, and both algorithms
have to start with the proportioning step to remove blocking constraint indices from the active
set. Similar to the case z0 = (z + z)/2, the proportioning step is executed earlier for PND
algorithm allowing further cost function decrease earlier than for CGNP. As a result, PND
involves one iteration less and 12% reduction of the flops compared to CGNP algorithm.

6.3.3.2 Illustrative QP problem

To show the difference between CGNP and PND algorithms in more detail, the illustrative QP
problem with n = 2 has been setup. Two scenarios depending on the proportionality of the
initial iterate for a fixed Γ = 1 have been investigated. The reason for such analysis is to
show how the algorithms differ in the behavior when iteration is proportional or not during the
iterations.

In the first case, the initial iterate z0 has been generated to be proportional based on the
test (6.1). The comparison of the iterate for such a case is depicted in Figure 6.7. As in
previous figures, the square, circle, cross and diamond markers indicate that the iteration has
been the result of initialization, expansion step, proportioning step and full application of the
Newton direction, respectively.

As the initial iterate z0 is proportional, both algorithms start by the computation of the
Newton direction. In both algorithms, the whole Newton step can be applied up to the face
minimizer. Hence for CGNP algorithm the Newton direction is applied (diamond) and inter-
mediate iterate z1/2 is obtained by the step 12 of Algorithm 2. As the KKT conditions are
not fulfilled, the proportioning step (cross) is executed to generate iterate z1. The solution is
then generated in the 2nd iteration by application of the whole Newton direction (diamond).
On the other hand, the full application of the Newton direction (diamond) concludes the first
iteration of PND algorithm. The proportioning step (cross) is executed in the 2nd iteration to
create iterate z2, successive by the application of the full Newton direction (diamond) in the
3rd iteration.

Therefore for the case that the iterate is proportional such that the minimizer of the cor-
responding face problem is feasible and is not KKT optimal, the PND algorithm involves one
additional iteration compared to the CGNP algorithm since the proportioning step is executed
in the following iteration of PND as a consequence of Lemma 4.5.1. On the other hand, the
number of the involved flops is about the same for both algorithms for such a situation, since
both algorithms execute the same functionality which is only split into one additional iteration
for PND.

In the second example presented in Figure 6.8, the initial iterate z0 is generated as not
proportional based on the test (6.1). Since CGNP algorithm does not distinguish the pro-
portionality of the iterate it generates the same sequence of iterates as in the case for initial
proportional iterate. On the other hand, PND algorithm recognizes the non-proportionality of
z0 and executes the proportioning step (cross) in the first iteration followed by the full applica-
tion of the Newton direction (diamond) in the second iteration. Hence both algorithms involve
the same number of iterations. But they execute different parts of the algorithm. For example,
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(a) CGNP (b) PND

Figure 6.7: Comparison of iterations generated by CGNP and PND when solving ilustrative
QP problem with proportional initial iteration.

(a) CGNP (b) PND

Figure 6.8: Comparison of iterations generated by CGNP and PND when solving ilustrative
QP problem with non-proportional initial iteration.

the CGNP executes the computation of Newton direction (i.e., update of the factor and two
substitutions as described in Section 4.3) twice. Whereas PND executes the computation of
Newton direction only once in the last iteration. Hence PND might involve less flops compared
to the CGNP when iteration is detected as not proportional by the early release of the blocking
constraints.

6.4 Summary

The main building blocks of the PND algorithm are very similar to the CGNP algorithm pre-
sented in Section 5. The PND algorithm consists of face problem minimization by direct solver
using Cholesky factor update, expansion of the active set via projected Newton direction path
utilizing the PLS and the proportioning step via projection of chopped gradient with fixed
step-size. Further, PND algorithm adds proportionality test (6.1), based on which it decides
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whether the active set will be expanded or reduced. Since the proportionality test takes directly
into account the absolute value of not optimal Lagrange multipliers, PND removes the main
disadvantages of the CGNP algorithm. Hence the proportionality test in PND enables earlier
reduction of the active set compared to CGNP algorithm. Moreover, by the proportionality
parameters Γ in the proportional test, it is possible to ”tune” the preference of the algorithm
for reduction of the active set (for low values of Γ) or rather the expansion (for high values of
Γ).

Similar to CGNP, the PND algorithm indicates insensitivity to the choice of the proportioning
step-size when opposite bounds are not activated. It was shown that PND always needs one
additional iteration compared to CGNP when the proportional iteration leads to the feasible
face minimizer. On the other hand, when the iteration is not proportional, the PND algorithm
might save solution of face problem compared to CGNP algorithm.

Contrary to the algorithm presented in [14], PND uses computationally cheaper fixed step-
size instead of non-monotone line search. Furthermore, PLS routine with linear computational
complexity in QP problem size is used in PND rather than expensive backtracking search to
expand the active set.

61





Chapter 7

Newton Projection with Proportioning

The bottleneck of the PND algorithm presented in Chapter 6 is need of matrix norm of the
QP problem Hessian for selection of step-size α in the proportioning step. This can introduce
significant computational overhead as described in Section 5.3. Moreover, as the proportioning
step uses chopped gradient for projection it is not possible to update the gradient as described
in Section 4.5 reusing the computed Hp leading to unwanted expensive computation. The
algorithm introduced in this section shows that both bottlenecks can be resolved by elimination
of the projection of the chopped gradient in the proportioning step.

In this chapter firstly, the specific ingredients of the proposed method are described in detail
together with the algorithm referring to the basic ingredients described in Chapter 4. Then the
convergence of the algorithm is proved and main properties of the algorithm are analyzed in
the illustrative QP problem and compared to CGNP and PND algorithms.

7.1 Algorithm

Analyzing the alternative refinement of the KKT conditions in (4.1) and definition of the
chopped gradient β in (4.2) one can deduce that β indicates the not-optimality1 of the i-th
activated constraints by nonzero element of βi. In PND algorithm (Algorithm 3) all the blocking
constraints are released by the proportioning step (6.2). Hence by applying the proportioning
step, the blocking constraints are removed from the active set without activation new con-
straints2 leading to zero of the chopped gradient β based on the definition in (4.2). As a
consequence, the next iteration is considered as the proportional since

‖β(zk)‖ = 0 ≤ Γ‖ϕ(zk)‖,

and the face problem (4.3) is solved considering the released constraints by the proportional
step as free. Simply said, the proportioning step in PND serves mainly as a tool for deactivation

1In terms of the sign of the Lagrange multipliers.
2If the opposite bound is not activated by the proportioning step, which happens rarely in the application

of MPC.
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of the constraints which are then assumed to be not active in the face problem in the following
iteration.

The idea of the presented algorithm which we call Newton Projection with Proportioning
(NPP) is to completely eliminate the projection of the chopped gradient in the proportioning
step. Instead, when the iteration is detected not to be proportional (see Section 6.1.1), the
algorithm releases all the blocking constraints indicated by non-zero (not optimal) components
of the chopped gradient by the modification of the set which defines the face problem.

The release of the not optimal constraint indices from the set defining the face problem based
on the gradient entries has been done also in [11] in the context of the Projected Newton Method
(PNM) algorithm. There, the constraint indices have been released immediately whenever
they become not-optimal over the course of the algorithm iterations. On the other hand, the
NPP algorithm executes a release of the constraint indices only when the iteration becomes
not proportional based on the test (6.1). This allows to limit the unwanted changes in the
active set and reduce the computational complexity of the factor update scheme used for the
solution of the face problem. Furthermore, from a scratch computation of the gradient after
the proportioning step is eliminated compared to the PND algorithm.

The proposed algorithm NPP is presented in Algorithm 4. Similar to the PND algorithm it
uses the proportionality test (6.1) to decide which part of the gradient will be reduced. The
procedure starts by checking the KKT condition for iterate via a norm of the projected gradient
as defined in Section 4.2. In case that it is not optimal, the free and the chopped gradient
are computed and the proportioning test (6.1) is evaluated. An overview of the computational
complexity of all the algorithm steps is presented in Table 7.1 concluding that the overall
computational complexity of each algorithm iteration is O(n2).

7.1.1 Proportioning

Depending on the proportionality test (6.1) the algorithm defines the face upper and lower sets
at the k-th algorithm iteration as

UkF =

{
Uk if ‖β(zk)‖ ≤ Γ‖ϕ(zk)‖,
{i ∈ Uk : βi

(
zk
)

= 0} otherwise
(7.1)

LkF =

{
Lk if ‖β(zk)‖ ≤ Γ‖ϕ(zk)‖,
{i ∈ Lk : βi

(
zk
)

= 0} otherwise
. (7.2)

Furthermore, the face active set is defined as AkF = UkF ∪ LkF . Note that the check for zero
components of the chopped gradient in (7.1) and (7.2) can be done exactly since the zeros are
produced by the definition (4.2).

When the iteration is proportional, the face active set AkF is the same as the active set
Ak. On the other hand, when the iteration is detected to be non-proportional, the face active
set contains only those constraint indices from the active set which are indicated by the zero
components of the chopped gradient.
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7.1. Algorithm

Algorithm 4 Newton Projection with Proportioning (NPP) algorithm. Given a SPD matrix H
of the order n, n-vectors h, z, z, Ω = {z : z ≤ z ≤ z, z < z}, z0 ∈ Ω, Γ > 0 and ε > 0.

1: {Initialization}
2: Set k = 0, g

(
zk
)

= Hzk + h
3: while ‖ν

(
zk
)
‖ ≥ ε do

4: if ‖β(zk)‖ ≤ Γ‖ϕ(zk)‖ then
5: {Proportional zk}
6: UF = U ,
7: LF = L, AF = A
8: else
9: {Non-proportional zk}

10: UF = {i ∈ U : βi
(
zk
)

= 0},
11: LF = {i ∈ L : βi

(
zk
)

= 0}, AF = {i ∈ I : i ∈ UF ∪ LF}
12: end if
13: Solve (7.4) to obtain Newton direction pk assuming face active set AF .
14: Compute Hpk as described in Section 4.5 assuming face active set AF .
15: αf = max{α : zk + αpk ∈ Ω}
16: if αf < 1 then
17: {Expansion step}
18:

[
zk+1, g

(
zk+1

)]
= PLS

(
zk,pk,Hpk, g

(
zk
))

19: else
20: {Full Newton direction can be applied to remain feasible}
21: zk+1 = zk + pk

22: g
(
zk+1

)
= g

(
zk
)

+Hpk

23: end if
24: k = k + 1
25: end while
26: z∗ = zk

7.1.2 Modified Face Problem

The NPP algorithm solves at each iteration a modified face problem

z̃ = arg min
z∈Ψ

q(z), (7.3)

where
Ψ = {z : zi = zi for i ∈ UkF and zi = zi for i ∈ LkF},

which can be solved with the same procedure as described in Sections 4.3 and 4.4 with little
abuse of notation, denoting the active set Ak as the face active set AkF and the computation
of the Newton step (4.13) is obtained as

pk =

{
pkI\Ak

F
= −G−1rk

pkAk
F

= 0,
(7.4)
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7. Newton Projection with Proportioning

Table 7.1: Computational complexity of the NPP algorithm steps.

Algorithm Step Complexity (flops) Notation Described

g
(
zk
)

= Hzk + h 2n2

‖β(zk)‖ ≤ Γ‖ϕ(zk)‖ 2n Section 6.1.1

Rk−1 → Rk

O
(
|Akadd|(n−mk−1 − |Akadd|)2

)
+

O
(
|Akrem|3

)
+O

(
|Akrem|2nf

)
+

O
(
|Akrem|n2

f

) mk−1 = Ak−1
F

nf = n−mk−1 − |Akadd|
Section 4.4

(Rk)Ty = −r
(
zk
)

Rkpk = y
2(n−mk)2 mk = |AkF | Section 4.3

Hpk 2mk(n−mk) Section 4.5
αf = max{α : zk + αpk ∈ Ω} 2n Section 5.1.1[
zk+1, g

(
zk+1

)]
=

PLS
(
zk,pk,Hpk, g

(
zk
)) 2(n−mk) +

∑s
i=1(2nri + 10n) ri constraints changed

on the i-th line segment Section 4.6
zk+1 = zk + pk n
g
(
zk+1

)
= g

(
zk
)

+ (Hpk) n

with
G = HI\Ak

F ,I\A
k
F
, rk = gkI\Ak

F
.

If the iteration is proportional, the face problem (7.3) is solved assuming that the face active
set is the same as the active set. On the other hand, when the iteration is not proportional, the
constraint indices which block further cost function decrease are released from the face active
set. The face problem is solved as in the PND solver via Cholesky factorization with the factor
update and substitutions as described in Section 4.3 and 4.4.

When the Newton direction pk is applied two scenarios may happen: (i) some new con-
straints are activated, i.e., zk + pk 6∈ Ω, hence it can be applied only with a limited step
size µ ∈ (0, 1) such that zk + µpk ∈ Ω; (ii) full Newton direction can be applied without
violation of any constraints, i.e., zk + pk ∈ Ω. In order to decide which situation occurs,
the maximal step size αf ∈ (0, 1] leading to the feasible iterate along the direction pk, i.e.,
αf = min{1,max{α : zk + αpk ∈ Ω}} is computed by (5.1).

7.1.3 Expansion Step

If the face problem (7.3) minimizer is not feasible, i.e., zk + αfp
k ∈ Ω, αf < 1, the active set

should be expanded to allow further cost function q decrease. For that, the projected-Newton-
direction path utilizing the PLS algorithm described in Section 4.6 is used and the gradient is
updated along the projected path.

7.1.4 Application of Newton Direction

If the solution of the modified face problem (7.3) is feasible, i.e., zk + pk ∈ Ω, the Newton
direction pk which points towards the face minimizer is applied and the gradient is updated by

zk+1 = zk + pk, g
(
zk+1

)
= g

(
zk
)

+ (Hpk),
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using the pre-computed Hpk as described in Section 4.5.

7.2 Convergence

In this section the convergence of NPP algorithm (Algorithm 4) is proved. The proof is based
on the idea of cost function decrease at each iteration together with the finite number of faces
which algorithm can explore. To prove the convergence of NPP algorithm, the lemma showing
the cost function decrease is firstly stated and proved.

Lemma 7.2.1. Let zk, zk+1 ∈ Ω are produced by the NPP algorithm (Algorithm 4). Then
there exists γ > 0 such that

q
(
zk
)
− q

(
zk+1

)
≥ γ.

Proof. First observe that the Newton direction pk which points towards the minimizer of the
modified face problem (7.3) is used in the projected-Newton-direction path in the PLS algorithm
to find the first local minimizer along the projected path as described in Section 4.6. Second
observe that the Newton direction pk generated via solution of (4.13) is always descent direction
as indicated in Lemma 4.3.2. This is however not true in general for the projected direction d
as defined in (4.18) at each explored line segment in PLS algorithm. The only exception is the
first line segment where it is true since d0 = pk. Moreover, as the growth of function q (z) is
checked in PLS as a stopping condition of exploration, the PLS always performs, at least, one
line segment exploration with cost function decrease. Note that the application of the whole
Newton direction, if leads to feasible iterate, is equivalent to running the PLS algorithm which
would find ∆t∗ = 1. Hence, only the application of the PLS has to be analyzed to prove the
algorithm convergence.

Let ∆t∗ > 0 is defined by (5.3) and difference of the two successive ordered breakpoints by
δtj = tj − tj−1 > 0. Then using (4.17), (4.18) and Lemma 5.2.1 we get

q
(
zk
)
− q

(
zk+1

)
≥

j=w−1∑
j=1

{−δtjg(zk(tj−1))Tdj−1 − (1/2)δt2j‖H‖‖dj−1‖2}+

+ (−∆t∗w−1g(zk(tj))
Tdw−1 − (1/2)(∆t∗w−1)2‖H‖‖dw−1‖2) =

= γ > 0, (7.5)

with w denoting the number of line segments successively explored by the PLS algorithm for
which the cost function decrease has been detected. As the terms in the sum are all positive
based on the Lemma 5.2.1, the right-hand side of inequality (7.5) is also positive which proves
the lemma.

Now we are ready to prove the convergence of Algorithm 4.

Theorem 7.2.2 (NPP Convergence). Let {zk} denote the iterates generated by the NPP
algorithm for the solution of (1.1) with Γ > 0. Then, {zk} converges to the solution z∗ of
(1.1).
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Proof. Based on Lemma 7.2.1 the {q
(
zk
)
} is a decreasing function such that

q
(
zk+1

)
< q

(
zk
)
,

and which is bounded from below by the unconstrained minimum of q. From the fact that each
iteration zk ∈ Ω is based on the solution of the modified face problem defined by the face active
set AkF and processed by the PLS algorithm it follows that no face active set can reappear.
From the uniqueness of solution of (1.1) and as the number of different face active sets is
finite, we can conclude that NPP algorithm finds the solution of (1.1) in the finite number of
iterations.

7.3 Algorithm Properties

When compared to CGNP and PND algorithms, the NPP algorithm depicted in Algorithm
4 executes only projection of the Newton direction which points towards the minimizer of a
modified face problem (7.3). Hence, there is missing a step of projection of the chopped
gradient. This served as a tool for releasing of the not-optimal constraint indices from the
active set in CGNP and PND algorithms. The NPP algorithm instead uses a modification
of the set of constraints which defines the face problem when the iteration is detected non-
proportional by the proportionality test (6.1). As a consequence, the NPP algorithm does not
require any knowledge of the QP problem Hessian norm, which is convenient, e.g., in the MPC
applications where QP problem Hessian might change at each sample time due to the change
of controller tuning or in a case of nonlinear MPC.

Similarly as for PND algorithm, by use of the proportionality test (6.1), the violation of
KKT conditions due to the blocking constraints which are present in the active set is taken into
account. Furthermore, the proportionality parameter Γ > 0 used in the proportionality test
defines the preference of the algorithm when the blocking constraint indices should be released
from the active set. Therefore, for a choice of Γ → ∞ the algorithm prefers the active set
expansion. The blocking constraint indices are removed later in the iteration process when the
KKT conditions violation caused by the chopped gradient dominates the violation by the free
gradient. On the other hand, the algorithm releases all blocking constraints at each iteration
similar to PNM of [11] for Γ→ 0. Therefore, the proportionality test with Γ > 0 serves as a tool
which helps to reduce a premature release of the constraints and decreasing the computational
complexity of the factor update.

When the iteration is considered not proportional, the NPP algorithm can save one iteration
compared to the PND since it can produce the proportioning and expansion in one iteration.
Whereas PND has to execute the proportioning step firstly and in the following iteration the
active set is expanded. Further, when the proportioning step would lead to the activation
of some opposite bounds, the active set is not changed3 for PND algorithm. But in the
NPPalgorithm, the blocking constraints have to be firstly released from the face active set in
one iteration and in the next iteration added back which increases the computational complexity
of factor update.

3Since the active set is defined as A = L ∪ U
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To show the numerical behavior of the proposed algorithm, the sensitivity to the propor-
tioning parameter Γ is studied on the same randomly generated QP problem from Section 5.4.1
with n = 100 and condH = 1.17e5. Then the convergence of NPP algorithm is compared to
CGNP and PND algorithms for a fixed parameter.

In the following figures, the square, circle, cross, diamond and star markers indicate that the
iteration has been the result of initialization, expansion step without proportioning, expansion
with proportioning step and application of full Newton direction without proportioning, and
with proportioning, respectively.

7.3.1 Sensitivity to Proportioning Parameter

Since the proportioning parameter Γ > 0 influences the decision when the blocking constraints
are removed from the active set, its selection has large impact to the algorithm performance.
To illustrate this, QP problem of Section 5.4.1 has been solved by NPP algorithm for set of
choices Γ = {0.1, 1, 10} and ε = 1e−6‖h‖.

Two scenarios have been tested varying the initial iterate. In the first setup, the algorithm
has been started from the center of the feasible set as z0 = (z + z)/2, hence A0 = ∅. The
typical convergence of NPP algorithm is depicted in Figure 7.1. The results confirm that for
the low choices of Γ the proportioning (cross) is executed more often while for large values
it is executed only rarely and algorithm prefers the expansion without proportioning (circle).
Since NPP algorithm can expand the active set at the same iteration when proportioning is
executed (cross) the optimal active set is changing rapidly, leading to the low number of involved
iterations. From the computational complexity point of view, least flops is executed for the
choice Γ = 0.1 in our setup. On the other hand, decreasing Γ further leads to increase of the
executed flops since a premature release of the blocking constraints from the active set which
have to be returned back to the active set later.

In the second scenario, the initial iterate has been set to the upper bound and z0 = z,
i.e., A0 = I. Hence all the upper bound constraints are active at the initial iteration, and
NPP algorithm has to start with the proportioning step to remove the blocking constraint
indices from the active set, see Figure 7.2. Again, the choices of relatively low Γ leads to more
frequent execution of the proportioning. Moreover, in this example the proportioning (crosses)
is executed at each iteration for Γ = 0.1 leading to the need of only 7 iterations of the algorithm.
Similar to the case for z0 = (z + z)/2, the choice of Γ = 0.1 leads to the lowest number of
flops but with only about 1.5% margin compared to the choice Γ = 10 and less than 1% to
the case Γ = 1.

Hence, the choice of the Γ parameter to minimize the number of involved flops is not
straightforward. However, numerical experiments also in Section 8 suggest that the value lower
or close to one works generally fine giving a balanced algorithm tuning.
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Figure 7.1: Comparison of convergence of NPP algorithm for several values of proportioning
parameter Γ for example randomly generated QP problem with n = 100, and z0 = (z+z)/2.
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Figure 7.2: Comparison of convergence of NPP algorithm for several values of proportioning
parameter Γ for example randomly generated QP problem with n = 100, and z0 = z.

7.3.2 Comparison to CGNP, PND and PNM Algorithms

All presented algorithms (CGNP, PND and NPP) are based on the projection of the Newton
direction. The main difference between the algorithms is in the way how and when the blocking
constraint indices are removed from the active set. To show the differences between the
algorithms, their convergence is compared on the random QP problem. Moreover, the algorithm
iterates are compared on the illustrative QP problem with n = 2 to show behavior under the
specific circumstances.

To illustrate the difference of NPP algorithm to PNM of [11], PNM has been implemented
in MATLABr environment and included in the following tests. The PNM implementation uses
Generalized-Armijo rule as described in [11]. We choose the Armijo rule parameters σ = 1e−4
and β = 0.8 since they lead to the best results in the test. To speed-up the face problem
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solution, the Cholesky factor updates have been employed in a similar way how it is done for
the proposed algorithms.

7.3.2.1 Random QP Problem

To show the effect of the algorithm differences, the QP problem of Section 5.4.1 has been
solved with ε = 1e−6‖h‖ and fixed α = 1.95‖H‖−1 by the PNM, CGNP, PND and NPP
algorithms. Further, the proportionality parameter of PND algorithm has been set to Γ = 1.
Based on results from Section 7.3.1 we select Γ = 0.1 for the NPP algorithm.

Again two scenarios have been studied with varying the initial iterate. In the first setup,
the algorithms have been started from the center of the feasible set as z0 = (z + z)/2. The
comparison of the convergence of the algorithms is depicted in Figure 7.3. As the constraint
indices can be added and removed from the active set at the same iteration for the NPP
algorithm, only 6 iterations are involved compared to 10 and 15 iterations for PND and CGNP
algorithm respectively. Comparing computational complexity, the PND and CGNP algorithms
involve about 20 % and 39% more flops compared to the NPP algorithm. About 30% of the
difference of the flops compared to the PND algorithm is due the fact that NPP algorithm
does not execute the proportioning step by the projection of the chopped gradient. Therefore,
the gradient can be updated when the proportioning is executed for NPP, whereas it has to
be computed from the scratch in the PND algorithm. The rest is caused by the fact that
NPP algorithm involves fewer iterations due to the faster convergence by the fact that the
face problem is minimized at each iteration. When comparing the convergence of proposed
methods to the PNM algorithm, it is visible that all converge in less number of iterations with
a much fewer involved number of flops. Our observation is that the main reason for this is
that the Generalized Armijo rule leads to adding of the too many new constraints which are
later removed from the active set. This is visible, e.g., in the 5th iteration where the cardinality
of the active set for PNM is higher than for all other algorithms. Also, as the removal of the
blocking constraints is performed immediately (compare 4th iteration of NPP and PNM), the
cost of the factor update is increased for PNM since the constraints are returned back to the
active set.

In the second scenario, the initial iterate has been set to the upper bound, i.e., z0 = z,
i.e., A0 = I. The comparison of convergence of the proposed algorithms for such a setup
is presented in Figure 7.4. It was already studied in Section 5.4.1 and 6.3.1 that for this
example the opposite bounds are activated during the algorithm’s iterations. As it was already
mentioned, that this leads to the increase of the computational complexity of the factor updates
in NPP algorithm since the blocking constraints indices are removed from the face active set
and later added back. The consequence of such a phenomena is that NPP algorithm involves
for about 17 % more flops compared to PND algorithm despite that the NPP converges in
only 7 compared to 10 iterations for PND algorithm. This phenomenon can be observed on
the steep slope of the cumulative flops for NPP compared to the both other algorithms. When
comparing the convergence of PNM and NPP algorithms, it is visible that both generate very
similar iterates at the beginning of iterations. The reason is that both algorithms have to
perform the removal of the blocking constraints since the iterates are not proportional. Hence,
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Figure 7.3: Comparison of convergence of CGNP, PND, NPP and PNM algorithms for example
randomly generated QP problem with n = 100, and z0 = (z + z)/2.
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Figure 7.4: Comparison of convergence of CGNP, PND, NPP and PNM algorithms for example
randomly generated QP problem with n = 100, and z0 = z.

no pure expansion step is performed in the NPP algorithm and the Armijo rule and the projected
Newton direction path via PLS produce the similar results. The main difference is in the 7th
iteration of NPP where PLS enables much faster convergence since the full Newton direction
is applied to the solution of the face minimizer. On the other hand, PNM performs the Armijo
rule with a limited step-size, leading to the fact that more iterations are involved.

To summarize the results so far, the NPP algorithm is superior for QP problems where
opposite bounds are not activated during the iterations. When such event occurs it is better to
use the PND algorithm which involves less number of flops compared to NPP algorithm since
it can add the opposite bounds without change of the active set4.

4It is expected that step-size of proportioning step of PND is such that activation of the opposite bounds
is detected.
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7.3.2.2 Illustrative QP Problems

To show the difference of the proposed algorithms in more details, two illustrative QP problems
with n = 2 have been setup. In the first setup, the QP problem from Section 6.3.3 has been
used in two scenarios depending on the proportionality of the initial iterate for a fixed Γ = 1.
The reason for such an analysis is to show how the algorithms differ in the behavior when
iteration is proportional or not during the iteration. In the second setup, the phenomena of
activation of opposite bounds discussed in the previous section are analyzed in more detail.

In the first case, the initial iterate z0 for illustrative QP problem of Section 6.3.3 has been
generated to be proportional based on the test (6.1). The comparison of the iterates for such
a case is depicted in Figure 7.5. All the proposed algorithms start by the computation of the
Newton direction defined by the active set (diamond). Since the minimizer of the face is feasible,
the whole Newton direction can be applied and all the algorithms move to the face minimizer.
Next, while CGNP and PND algorithm executes the proportioning step, the NPP modifies the
face active set based on the chopped gradient. Hence, it releases the blocking constraint and
the application of the whole Newton direction with the proportioning (star) returns the QP
problem solution. Hence, when compared to PND, the NPP algorithm saves one iteration.
Note that in this setup, the NPP algorithm saved compared to PND also evaluation of one
gradient since it can update the gradient after the application of the proportioning easily as
described in Section 4.5.

In the second example presented in Figure 7.6, the initial iterate z0 for illustrative QP
problem of Section 6.3.3 is generated as a non-proportional based on the test (6.1). Since CGNP
algorithm does not distinguish the proportionality of the iterate it generates the same sequence
of iterates as in the case for the initial proportional iterate. Since the iteration is detected to
be non-proportional, the NPP algorithm releases the blocking constraints by the modification
of the face active set concluding the iteration by the application of the whole Newton direction
with the proportioning (star). PND algorithm firstly executes the proportioning step (cross) and
the full Newton direction is applied (diamond) in the following iteration. Hence NPP algorithm
again saved one iteration compared to the PND algorithm. Note that in this setup, the NPP
algorithm saved compared to PND also evaluation of one gradient since it can update the
gradient after the application of the proportioning easily as described in Section 4.5.

To study the phenomena of activation of the opposite bounds during the iterations for the
proposed algorithms, the QP problem illustrated in Figure 7.7 has been setup. The initial iterate
z0 is generated such that it is not proportional based on the test (6.1) for a given Γ > 0. Since
CGNP does not detect the proportionality of the iterate it starts by the computation of the
face minimizer followed by the proportioning step. Based on the assumption of sufficiently long
convergent step-size, this step leads to the activation of the opposite bound. Since the active
set remains the same5, the face problem in the following iteration can be solved without any
factor updates if the factor of the reduced Hessian has been computed for the initial iterate.
Similar is executed for PND solver starting with the proportioning step. On the other hand, the
face active set is modified for NPP algorithm releasing the blocking constraint index. Therefore
the face problem is simplified to unconstrained optimization, leading to the need of the factor

5Remind the definition of the active set as A = L ∪ U .
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(a) CGNP (b) PND (c) NPP

Figure 7.5: Comparison of iterations generated by CGNP, PND and NPP for ilustrative QP
problem with proportional initial iteration.

(a) CGNP (b) PND (c) NPP

Figure 7.6: Comparison of iterations generated by CGNP, PND and NPP for ilustrative QP
problem with non-proportional initial iteration.

update. The direction towards the unconstrained minimizer is used in the projected-Newton-
direction path utilizing PLS leading to the solution in the first iteration. When comparing the
active set of initial iterate and the solution, one can conclude that NPP made one unwanted
change in the active set, hence increasing the computational complexity of the algorithm. Note
that in the case of too short step-size of the proportioning step of CGNP and PND algorithms
to activate the opposite bounds, the factor update would be also necessary for the mentioned
algorithms leading to the superior computational complexity for NPP algorithm.
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(a) CGNP (b) PND (c) NPP

Figure 7.7: Comparison of iterations generated by CGNP, PND and NPP for ilustrative QP
problem with non-proportional initial iteration where solution lies on the opposite bound.

7.4 Summary

The main idea of the NPP algorithm is to remove the proportioning step in the PND algorithm
via projection of the chopped gradient. Instead as a shortcut, the algorithm modifies the face
problem to take into account only those active constraints for which the Lagrange multipliers
are indicated to be optimal by the chopped gradient. This results in saving one additional
iteration compared to the PND algorithm in the case of non-proportional iteration which leads
to the feasible face minimizer. It also enables updating the gradient after each step compared
to the PND where the gradient has to be recomputed from the scratch after the proportioning
step.

A similar approach with the face modification was developed in the Projected Newton
Method (PNM) of [11] without referencing to the chopped gradient definition. The main
difference of the NPP and PNM algorithms is the proportionality test in the NPP algorithm.
It prevents premature release of the blocking constraints from the active set compared to the
PNM where they are removed immediately when they are detected to be not optimal by a
wrong sign of the gradient component and potentially added back later. This prevention of
premature release of constraints leads to the reduction of the computational cost of the update
of the factors used for the face problem minimization.

The main benefit of the NPP algorithm is that norm of the QP problem Hessian does not
need to be known for convergent step-size of the proportioning like in the PND algorithm. This
is attractive for the QP problems where Hessian is subject to change: e.g., in nonlinear MPC or
linear MPC with varying controller tuning. Compared to the PND algorithm, the NPP might
involve a higher computational cost of the factor update when the opposite bound is activated.
This is because the active set defining the face problem remains the same for PND but the face
active set will change for NPP.
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Chapter 8

Numerical Experiments

In this chapter, the performance of the proposed methods is compared with the state-of-the-art
solvers in several experiments. In particular, we are referring to qpOASES, an online active
set strategy, C++ implementation of [31] with hot start functionality used in all experiments
together with the option for MPC problems; FiOrdOs [89], FGM with automatically generated
C code; FORCES [25] automatically generated C code of IPM solver for MPC. All algorithms
use default settings except the FiOrdOs, where the maximum number of iteration was set to
2000 and stopping condition to reach εFGM-solution with respect to the optimal cost function
value via so-called gradient map based stopping condition as proposed in [79]. The value
εFGM = 1e−3 was used, otherwise, no effort has been taken to optimize it to the experiments.

The presented algorithms were implemented in ANSI-C language using the single precision
floating point arithmetic (4 bytes per floating point number) and were, as other solvers, called
from MATLABr environment via C-MEX interface with parameters set α = 1.95‖H‖−1 and
ε = 1e−6‖h‖. The proportioning parameter of PND and NPP was set to Γ = 1.

All numerical experiments were executed on a laptop with Intel i7-4800MQ 2.7GHz processor
utilizing only one core for all the computation. Since in embedded applications the solution has
to be ready before the next sampling time the maximum computation time for each simulation
was recorded. To eliminate outliers in the execution times caused by the other running programs
on the computer, the solvers were called 50 times for each QP problem and the minimum time
measured was accepted. Hence reported times are the results of max-min operation for each
simulation if not stated otherwise. For the sake of completeness, we show also the mean
computation times during the simulation.

The computation times of presented algorithms have been measured by the QueryPer-

formanceCounter C function which gives microsecond accuracy. The computation time of
FORCES and qpOASES was provided by the compiled code of the available packages. Since
FiOrdOs package does not produce the computation time, we have measured the MEX func-
tion call time by the MATLABr’s tic and toc functions. All solvers have been using the
warm start strategy using a shifted solution from the previous sample instant. Additionally, the
CGNP, PND, NPP and qpOASES reused the factors from the previous sample instant.
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8. Numerical Experiments

The algorithms in the test are firstly compared on the benchmark problem of oscillating
masses presented in [90]. Then their speed of convergence with respect to problem size and
cardinality of an optimal active set is studied on the MPC problem with the randomly generated
system. Further, the performance of algorithms is analyzed for the practical problem of linear
control of the light-duty diesel engine air path. The final section provides the details of the
comparison of the solvers for the nonlinear control of the heavy-duty diesel engine air path.

8.1 Oscillating Masses

The setup of the first experiment is similar to [90]. It consists of a sequence of six masses
connected by the coil springs. The first and the last masses are connected to the walls. The
weight of each mass is m = 1 kg, the spring constant is k = 1 N/m and there is no damping.
There are three control inputs, i.e., u ∈ R3, which exert the tensions between different masses.
The setup is shown in Figure 8.1.

Figure 8.1: Oscillating mass model taken from [90]. Boxes represent the masses and dark
regions on each side represent walls.

The setup can be described as continuous-time linear time invariant system

m s̈1 = −ks1 + k(s2 − s1) + u1

m s̈2 = −k(s2 − s1) + k(s3 − s2)− u1

m s̈3 = −k(s3 − s2) + k(s4 − s3) + u2

m s̈4 = −k(s4 − s3) + k(s5 − s4) + u3

m s̈5 = −k(s5 − s4) + k(s6 − s5)− u2

m s̈6 = −k(s6 − s5)− ks6 − u3. (8.1)

The system state x ∈ R12, x =
[
sT , ṡT

]T
then represents the displacement from the steady-

state and the velocity of an individual mass. We assume the control limits −0.5 ≤ u ≤ 0.5, and
the presence of a random bounded external disturbance w ∈ R6 with a uniform distribution
on [−0.5, 0.5] which acts additionally on the displacement state of each mass, see [90] for
more details about the setup. The continuous-time system (8.1) has been discretized with the
sampling time Ts = 0.5 s and its state space representation (A,B,C,D) has been found.
The control objective is to stabilize each mass in its origin, i.e., to solve (2.3) with R = I and
Q = P = µI, µ > 0 at each sample time t > 0 with the new estimate of the current system
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Figure 8.2: Dependency of the condition number of the QP problem Hessian as a function of
prediction horizon for the oscillating masses for a different tuning Q = µI.

state x̃(t) along the simulation. Simulations with all solvers were carried out for 1000 seconds,
i.e., 2000 sampling instants. The maximum and the average computation times during the
simulation for a fixed prediction horizon were saved. The solution of the QP problem at each
sample time has been repeated 50 times and the minimum time has been accepted to eliminate
the outlines in the computation time due to the interrupts from the other running tasks on the
computer.

In order to show the dependency of the performance of the proposed algorithms on the
number of variables of the resulting QP problem we perform simulation of the model and
controller with the prediction horizon N ∈ {10, 20, . . . , 100}. The number of variables of
associated QP problem is N nu, i.e., n ∈ {30, 60, . . . , 300}. Furthermore, to test the solver
performance for worse-conditioned problems, we choose the two different controller tuning by
changing µ: 1) well-conditioned with µ = 1 where condH ≈ 1e2 and 2) worse-conditioned
with µ = 1e3 with condH ≈ 1e3. The growth in condH is caused only by the change of
controller tuning. Note that we are referring to the conditioning of the QP problem in the sense
of the spectral condition number of the H . The dependency of the condition number of the
QP problem Hessian on the prediction horizon is depicted in Figure 8.2.

To speed up the convergence of the proposed algorithms the solution from the previous

sample time U∗(k−1) =
[
u?(0)T , . . . ,u?(N − 1)T

]T
was used as a warm start (initial iterate).

We have used one sample shifted solution with keeping the last control move constant, i.e.

U0(k) =

{
u0(i) = u?(i+ 1) for all i = 0, · · · , N − 2,
u0(i) = u?(N − 1) otherwise

,

although the proposed methods could be combined also with other variants of the warm start.
One possible option is the result of Linear Quadratic Regulator (LQR) or, e.g., combination of
shifted solution and LQR as described in [C.8]. Moreover, the factor of the reduced Hessian
from the previous sample time has been used to speed up the factorization process when solving
the face problem in the proposed algorithms.
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Figure 8.3: Maximum and mean computation time for well-conditioned oscillating masses.
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Figure 8.4: Maximum and mean computation time for worse-conditioned oscillating masses.

Both Figure 8.3 and Figure 8.4 show that for short to medium size of the prediction horizons
all the proposed solvers are several times faster than FORCES, although it is the only solver
in the test which has a linear computational complexity of each iteration with respect to the
prediction horizon. To our understanding this is because the multiplicative constant of linear
complexity is high; hence on a given prediction horizon range the complexity of each iteration
is actually higher than for other solvers. It is also evident that FiOrdOs is very sensitive to
the QP problem conditioning, leading to the fact that it is faster than the proposed algorithms
(CGNP, PND and NPP) up to N = 10 for well conditioned QP problems (µ = 1) but more
than four times slower for worse-conditioned QP problems (µ = 1e3) for N ≥ 20. Moreover,
as the condition number of H increases with prediction horizon (see Figure 8.2), the FiOrdOs
is about eight times slower compared to NPP algorithm for µ = 1e3 and N = 100.

On the other hand, the qpOASES and the proposed algorithms indicate small sensitivity to
QP problem conditioning. However, compared to qpOASES, which needs as many iterations
as the difference in the active set from one sample instant to the another, the projection in
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Figure 8.5: Relative maximum computation time of solvers in test compared to NPP for
oscillating masses.

the proposed algorithms helps to reduce the computation time when the working set changes
dramatically from the previous sample time.

When comparing the performance of the algorithms, the least computation time is obtained
for the NPP solver. This is valid for both the maximum and mean value of the computation
times consistently for all the simulations. To be able to compare the relative performance of
the solvers when compared to NPP for a particular prediction horizon N , a relative maximum
computation time of solver s ∈ S,

S = {CGNP, PND, NPP, FiOrdOs, qpOASES, FORCES},

compared to the baseline solver NPP is defined as

rs,N =
max ts,N

max tNPP,N

, (8.2)

with max ts,N being the maximum computation time of solver s for the prediction horizon N
along the simulation.

The relative maximum computation times of other solvers is depicted in Figure 8.5. In
average, the PND is about 20% slower and CGNP solver involves about 40 % more computation
time than NPP for both well and worse conditioned case. This confirms the results from Section
7.3.2 where similar performance difference was observed in terms of flops. The relative increase
of the computation time reduces for higher prediction horizons for the qpOASES solver. To
the author’s knowledge, this is because as the prediction horizon growths the number of QP
problem variables rises leading to the more computational expensive factor update. Hence,
the rapid change of the active set by the projection might lead to the higher computational
complexity than a successive change of the active set by one optimal element only as it is done
in qpOASES.

Figures 8.6 and 8.7 indicate the maximum and mean number of iterations for each solver to
converge to the solution with a given accuracy over the simulation. The number of iterations of
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Figure 8.6: Maximum and mean number of iterations for well-conditioned oscillating masses.
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Figure 8.7: Maximum and mean number of iterations for worse-conditioned oscillating masses.

FiOrdOs has been divided by 10 for better overview when compared to the other solvers. Results
indicate good scalability of the proposed algorithms in terms of the number of iterations for a
different QP problem size. All proposed algorithms require less than 15 iterations in average
with a maximum number of 29 iterations for PND, 24 for CGNP and 22 for the NPP algorithm
for the worse-conditioned QP problem.

To compare the methods in more detail, we employ the standard Dolan-More performance
profiles presented in [24]. These profiles visualize how many percents of all problem instances are
solved within τ - factor times the time of the fastest solver for this instance. The computation
times of each QP problem from the simulation with oscillating masses have been merged for
all selection of prediction horizon N separately for each solver. There were exactly 2000 · 10 =
20000 QP problem instances solved by each solver and the particular choice of µ. Figure 8.8a
shows that 65.2% of QP problem instances are solved by the NPP as the fastest solver and
that 96.4% instances is solved by NPP solver within two times (i.e., τ = 2) the fastest solver
for well-conditioned oscillating masses. The similar performance of CGNP and PND solvers is
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Figure 8.8: Performance profiles of [24] for computation times of solvers in test for oscillating
masses with all settings of prediction horizon.

indicated by the fact that they solve 93.9% and 94.8% of test cases for τ = 2. The qpOASES
solves 73.0% of instances for τ = 2, while FiOrdOs than solves 32.0% instances for τ = 3.
The poor performance of the FORCES solver is indicated by the fact that it solves only 47.4%
instances within ten times the computation time of the fastest solver.

The sensitivity of the FiOrdOs to the QP problem conditioning is demonstrated in Fig-
ure 8.8b for rather worse-conditioned oscillating masses as it solves only 1.4% problem instances
for τ = 3. On the other hand, NPP solves 64.2% of problem instances with the lowest compu-
tation time and 95.5 % with τ = 2. The qpOASES then solves 62.9% of problem instances for
τ = 2 showing only small sensitivity to the QP problem conditioning. The performance profiles
of CGNP and PND solvers shows similar computation times and insensitivity to QP problem
conditioning compared to the profiles for well conditioned oscillating masses in Figure 8.8a.

To compare the algorithms with respect to the changes in the optimal active set, the
cardinality of optimal active set |A∗| and its absolute difference from the previous sample time
|A(t)∗| − |A(t− 1)∗| were recorded during the simulation. This is illustrated in Figure 8.9 for
time segment t ∈ (520, 560) seconds and choice N = 50 and µ = 1e3. It is evident that the
computation time and the number of iterations are strongly correlated with the difference in
the optimal active set for qpOASES. Observe, e.g., time segment t ∈ (535, 550) seconds where
an increase in the number of changes in active set leads to higher number of iterations, hence
computation time. On the other hand, all proposed methods keep about the same iteration
number and computation time for the same time segment. This is caused by the fact that the
new active set can be found very rapidly via projection in the proposed methods.

8.2 Random System

The controlled system is often close to the steady state conditions where typically no constraints
are activated. This is modified by either change of the setpoints, limits, or the effect of external

83



8. Numerical Experiments

520 525 530 535 540 545 550 555 560

T
im

e 
[m

s]

10-1

100

101

CGNP
PND
NPP
FiOrdOs
qpOASES
FORCES

520 525 530 535 540 545 550 555 560

Ite
ra

tio
s

0

10

20

30

40

50

520 525 530 535 540 545 550 555 560

|A
* |

50

100

Time [s]
520 525 530 535 540 545 550 555 560

|A
* (t

)|
 -

 |A
* (t

-1
)|

0

20

40

Figure 8.9: Comparison of computation times and number of iterations for oscillating masses
for simulation time t ∈ (520, 560) seconds and N = 50 with µ = 1e3.

disturbances leading to transient operation of the MPC controller which tries to stabilize the
system back. During the transient operation the constraints are activated as the actuators of
the plant are saturated to speed up the stabilization process. This leads to the fact that the
optimal active set has to be updated by the QP solver.

In the following experiment, the proposed method is compared to the state-of-the-art solvers
to investigate how quickly the optimal active set is identified during the MPC controller transient
operation when the external disturbance causes changes in the system state estimate x̃ from
the steady state where x̃ = 0. In the previous experiment, it was shown how the proposed
method can use a solution from the previous sample time when there is the only slight change
in x̃. Contrarily, the experiment suggested in this section clarifies the behavior of the proposed
method when the solution from previous sample time serves as poor initial iteration. The reason
for that is a large change of the system state due to the external disturbance. As such, this
experiment serves as a tool for estimating the worst case performance of the methods which
can be expected during the transient operation of the MPC controller.

To this end, a random linear Schur stable1 discrete time system with nx = 15 and nu = 5
was generated by Matlab's function drss. The control limits were set as −0.1 ≤ u ≤ 0.1 and

1Schur stable system is such that all eigenvalues of A are within the open unit disk.
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the controller was tuned with R = I, Q = 1e3 · I and P as solution of Lyapunov equation,
see [8]. The controller has been set with enlarging prediction horizon N ∈ {10, 20, . . . , 70}.
The resulting QP problem conditioning has been condH ≈ 1e3. For each value of N , there
were randomly generated 1000 current state estimates x̃ where each component has a uniform
distribution on [−10, 10]. The center of the feasible set has been used as an initial iteration
for all generated x̃, and all solvers were initialized before running at steady state condition
x̃ = 0. The solution from the steady-state conditions have been used as an initial iteration for
all solvers.

Hence the MPC problem (2.3) has been solved for a fixed N and for randomly generated x̃
from uniform distribution [−10, 10] and U0 = 0.

Figure 8.11 illustrates the maximal computation times2 for the various state estimate x̃
leading to the same cardinality of the optimal active set |A∗|. It is evident that qpOASES
needs more than twice the computation time compared to CGNP and almost four times more
compared to PND and NPP algorithms for large |A∗|. The reason is, contrary to proposed
methods, the inability of qpOASES to change active set by more than one component at one
iteration. As a result, qpOASES involves a relatively large number of iterations as indicated in
Figure 8.12e. The FiOrdOs is 2-3 times slower compared to NPP and shows a large increase
of the computation time with increasing of the prediction horizon. The reason is its sensitivity
to the QP problem conditioning, see Figure 8.10. The FORCES algorithm shows persistently
higher computation times compared to the NPP algorithm, especially for prediction horizons
below 40 where it is more than 5 times slower independently on the cardinality of the optimal
active set. Consistently to the results from the previous sections, the CGNP and PND algorithms
involve about 20-40 % and 10-20 % more computation time respectively compared to the NPP
algorithm.

Figure 8.12 illustrates the mean number of iterations of the tested solvers for the various
state estimate x̃ leading to the same cardinality of optimal active set |A∗|. It was already
mentioned that number of involved iterations growth proportionally to |A∗| for qpOASES, see
Figure 8.11d. Since the conditioning of the QP problem (see Figure 8.10) the FiOrdOs solver

2The QP problem for each generated state estimate x̃ was solved 50 times for each solver and minimum
time was accepted.
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Figure 8.11: Comparison of maximal solver times for random system with variable state
estimate x̃ leading to various cardinality of optimal active set |A∗|.

involves many iterations to converge as indicated in Figure 8.12d. Figure 8.12f demonstrates
that the number of involved iterations is relatively insensitive to the QP problem size and
cardinality of the optimal active set for FORCES solver. The number of iterations is within 15
to 30 iterations. The similar can be observed for the proposed algorithms, where NPP algorithm
involves up to 15 iterations in average and up to 20 iterations are needed for CGNP and PND
algorithms in average to converge to the optimum.
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Figure 8.12: Comparison of mean number of involved iterations for random system with
variable state estimate x̃ leading to various cardinality of optimal active set |A∗|.

8.3 Diesel Engine Linear Control

To show the practical use of the proposed methods, the solvers were used for the solution of the
MPC problem arising in the linear control of a turbo diesel engine. A nonlinear control-oriented
model of four-cylinder turbocharged 2.2 liter diesel engine was built using the OnRAMP Design
Suite tool [49] fitted to the real-time data collected on the test bench. A linear model at engine
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speed 1500 rpm and injection quantity 40 mg/stroke was derived by the linearization inside the
tool with resulting 23 states. An Exhaust Gas Recirculation (EGR) valve and Variable Geometry
Turbocharger (VGT) valve were used as actuators. Similarly to [33], the Mass Air Flow (MAF)
and the Manifold Absolute Pressure (MAP) were tracked to the references.

Figure 8.13: Turbocharged 2.2 liter diesel engine layout with sensor placement [49, Training
material].

The layout of the engine together with the sensor placement is depicted in Figure 8.13.
The fresh air coming from the ambient conditions is compressed by the compressor which is
connected to the common shaft together with a turbine. The compressed air is cooled down
by the charge air cooler to increase its density. The air is further mixed with the part of the
exhaust gas recirculated through the EGR branch to decrease the oxygen concentration and
increase of average specific heat capacity of gas mixture in the combustion chamber. This is
done to reduce the formation of nitrogen oxides (NOx) which are dangerous for the environment
and are subject to legal restrictions. Such a gas mixture is fed to the intake manifold and then
to the engine cylinders where together with the injected fuel are burned creating power which
drives the engine speed rotation. The mixture of the exhaust gas is from the exhaust manifold
partly fed to the EGR branch cooled down by the EGR cooler to increase its density. The
mass flow through the EGR branch is mainly controlled by the position of the EGR valve. The
rest of the exhaust mixture drives the turbine where part of its enthalpy is transformed into
the rotation energy of the turbine shaft, hence driving the compressor. The efficiency of the
enthalpy transformation into the rotation energy of the turbine-compressor shaft is controlled by
the variable geometry of the turbine housing which is affected by the VGT valve. See, e.g., [C.6]
and references therein for more details about the control of the air path of the turbocharged
diesel engines.
Hence, we designed an MPC controller for a tracking problem as (2.4) with system outputs
y = [MAF,MAP ]T and control inputs u = [EGR, V GT ]T . The form of the problem (2.4)
assures zero tracking error in nominal conditions [56] and can be formulated as (1.1), see
Section 2.1.1.2 for details.

The engine model was discretized with sampling period 50 ms and the prediction horizon
was selected as five seconds. The controller was tuned with R = diag (0.1, 0.1) and Qy =
diag (1, 200). Additionally, to decrease the number of optimization variables to n = Nblocknu,
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Figure 8.14: Condition number of Hessian of the QP problem in diesel engine tracking simu-
lation for Nblock ∈ {10, 20, . . . , 100}.

the input blocking strategy described in [20] was employed. It keeps the inputs constant
over Nblock time-steps, so-called blocks, while having usually a minor effect on the controller
performance. In our experiments we set the length of first (Nblock− 1)-th blocks as one sample
and the last block has length (N − Nblock + 1). The condition number of QP problem to be
solved as a function of the number of blocks is depicted in Figure 8.14.

To benchmark the solvers, practical trajectories of MAF and MAP references were set in the
simulation with number of blocks as Nblock ∈ {10, 20, . . . , 100}. The limits for both actuators
were selected as −10% and +5% from the linearization point. Step changes of 5 kg/h in MAF
and 0.02 bar in MAP reference in Figure 8.15 led to the saturation of actuators, leading to the
activation of new constraints, see Figure 8.16a. This results in an increase in the demanded
number of iterations of all solvers which is evident from the difference of maximal and mean
values of iterations in Figure 8.18 and solution times in Figure 8.17. While the number of
iterations increases dramatically for solvers in the test, the maximum number of iterations of
proposed methods remain under nine in all instances since the fast identification of optimal
active set by projection is used. The NPP algorithm appears to involve the least computation
time for all number of blocks. Hence NPP is more than 58 % faster in the worst solution time
than qpOASES for Nblock ≥ 30 and more than 141 % faster for Nblock ≤ 30. The FiOrdOs
algorithm involves more than 24 times computation time of NPP for Nblock ≤ 70 in the worst
case. The speed of FiOrdOs is improved for a higher number of blocks since the drop in the
condition number of the QP problem, see Figure 8.14. The sensitivity to the QP problem scaling
is a well-known issue of all first-order methods [12]. Our further simulations indicate that when
optimal diagonal preconditioner introduced in [76] is used, the number of involved iterations of
FiOrdOs can be decreased to ≈ 100 in this experiment. Such an algorithm then involves two
to three times higher computation time compared to NPP which solves not preconditioned QP
problem. When comparing the proposed methods, both CGNP and PND algorithms involve
about 10% more computation time compared to the NPP for all choice of the number of blocks.
Since FORCES package cannot directly solve the problem with the cost function of type (2.4)
it was not involved in this test.
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Figure 8.15: Diesel engine tracking problem simulation for Nblock = 100. (a) The MAF and
its setpoint are in solid line whereas MAP in dashed. (b) The EGR and its limits are in solid
while VGT in dashed lines.
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Figure 8.16: Diesel engine tracking problem simulation for Nblock = 100. (a) The number of
active constraints in solid line and the number of changes in the optimal active set from last
sample instant in dashed line. (b) The computation times during experiment. Markers show
three largest computation times for each solver.

8.4 Diesel Engine Nonlinear Control

To demonstrate the performance of the NPP solver in the nonlinear MPC application, the solver
has been integrated into the commercially available Honeywell Nonlinear MPC Framework [48].
The Nonlinear MPC Framework is a MATLABr toolbox which implements a single shooting
method solved by the Sequential Quadratic Programming (SQP) method for the general type
of model and control setup. In SQP method, the quadratic model (1.1) of Lagrangian is
constructed subject to the linearization of the constraints. As such, the QP problem Hessian
is subject to change at each SQP iteration based on the result of model simulation and the
construction of the cost function sensitivities, see, e.g., [65, Chapter 18], [23].
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Figure 8.17: Maximum and mean computation time for engine tracking simulation for Nblock ∈
{10, 20, . . . , 100}.
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Figure 8.18: Maximum and mean number of involved iterations for engine tracking simulation
for Nblock ∈ {10, 20, . . . , 100}.

For the purpose of solver performance comparison, we select the control of the air-path of a
12.8 liter heavy-duty turbocharged diesel engine in the so-called tip-in maneuver studied in [60].
This experiment starts with the engine in the close to the idle conditions and continues with
the sudden increase of the torque demand to full load. Hence, the injected fuel is dramatically
increased and the engine speed is ramping up as a vehicle is speeding up. Such experiment
is challenging mainly because it exercises the engine over a set of rapidly changing operating
points, which are far from steady-state equilibria [22]. Therefore, the linear MPC control which
uses linearized models in a fixed operating points might have issues to deal with all physical
constraints of the engine. The most important are the prevention of the turbocharger surge,
turbo over speed and too high pressure in the intake manifold which might destroy the manifold,
see [22] and reference therein for more details.

The layout of the engine used together with the sensor placement is depicted in Figure 8.19.
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Figure 8.19: Turbocharged 12.8 liter TVA-EGR-WG diesel engine layout with sensor place-
ment.

Similar to the EGR-VGT engine described in Section 8.3, the EGR valve serves as a tool to
reduction of NOx. Moreover, the engine configuration uses the Throttle Valve Actuator (TVA)
to create a pressure drop across it when less fresh air is needed or the air needs to be warmed
up, mainly during the engine warm-up or during engine braking mode. To control the amount
of energy from the exhaust gas, the turbine is bypassed by the wastegate branch with the
Wastegate (WG) valve.

The control oriented mean value model3 of the 12.8 liter turbocharged diesel engine was
built from test cell data and turbocharger map in the Honeywell OnRAMP Design Suite [49].
The complexity of the model was further reduced in [60] by the elimination of all states except
the turbo speed so that all other states and Controlled Variables (CVs) were expressed as static
polynomials in the Manipulated Variables (MVs) u, Disturbance Variables (DVs) d and turbo
speed state x = Nturbo as

ẋ(t) = Θ(x(t),u(t),d(t))

y(t) = Π(x(t),u(t),d(t)), (8.3)

where Θ(x(t),u(t),d(t)) and Π(x(t),u(t),d(t)) represent polynomial functions and

u = [EGR,WG,TVA]T , d = [NEng, IQ, SOI]T , y = [Nturbo,MAP,EGRratio, λ]T

with NEng [rpm], IQ [mg/stroke], and SOI [ATDC4] being the engine speed, injection quantity
and advanced crank shaft angle of start of injection of the fuel. The EGR [% open], TVA [%
open], WG [% open] are positions of EGR, TVA, and WG valves respectively; turbo speed
Nturbo [krpm] and MAP [kPa] is absolute manifold pressure. The EGR ratio [%] and relative
air fuel ratio λ [-] are defined as [47]

EGRratio = 100
ṁEGR

ṁEGR + ṁair

, λ =
ṁair/ṁfuel

AFRstoich

3Due the confidentiality reasons, all signals are scaled.
4ATDC means degrees After Top Dead Centre.
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8.4. Diesel Engine Nonlinear Control

where ṁEGR and ṁair are mass flows through the EGR valve and the fresh air respectively; ṁfuel

is the injected fuel flow and AFRstoich = 14.5 is stoichiometric air-to-fuel ratio for a diesel fuel.
It was shown in [66] that model in a form of (8.3) enables fast evaluation of Jacobians while
still leading to good data fit both in the steady-state and transient operation. Furthermore, the
model outputs were scaled internally for better numerical robustness.

The control strategy was selected to follow the setpoints of MAP and EGR ratio while
respecting the actuators limits (0-100)%. The MAP and EGR ratio setpoints were given as
a function of the engine speed and the injected fuel. There are only two setpoints but three
available actuators are given (TVA, EGR, WG), hence one actuator was fixed to prevent the
ill-conditioned control problem. In our case, this is done by attracting the TVA to a preferred
position. Since partly closed TVA causes pumping losses, a fully open position was selected
as the preferred position. Also, a partly opened WG causes inefficiency in the turbo, hence a
fully closed position of WG was chosen as the preferred position with a low weight in the MPC
controller cost function. To prevent the overspeed of the turbo, the maximum limit to the
turbo speed was added into the optimization. Additionally to avoid the generation of excessive
smoke, the minimum limit to the relative air-fuel ratio was added.

The control goals were transformed into the finite dimensional nonlinear MPC problem
with time discretisation of actuators by zero-order hold with sampling period Ts = 0.1 s and
prediction horizon T = 2 s (N = T/Ts = 20) as

min
U

∫ T

0

(JCV(τ) + JMV(τ) + JdMV(τ))dτ

s.t. ẋ(t) = Θ(x(t),u(t),d(t)) for t ∈ [0, T ],
y(t) = Π(x(t),u(t),d(t)), for t ∈ [0, T ],
λ(t) ≥ λmin, for t ∈ [0, T ],
Nturbo(t) ≤ Nmax, for t ∈ [0, T ],
u ≤ u(kTs) ≤ u, for k = 0, . . . , N − 1,

Nturbo(0) = Ñturbo,

with U =
[
u(0)T ,u(Ts)

T , . . .u((N − 1)Ts)
T
]T ∈ R3·N , estimate of turbo speed Ñturbo and

JCV(τ) =qEGRratio
‖EGRratio(τ)− EGRSP

ratio‖2 + qMAP‖MAP(τ)−MAPSP‖2,

JMV(τ) =rTVA‖TVA(τ)− TVASP‖2 + rWG‖WG(τ)−WGSP‖2,

JdMV(τ) =rdTVA‖TVA(τ)− TVA(τ − Ts)‖2 + rdEGR‖EGR(τ)− EGR(τ − Ts)‖2+

+ rdWG‖WG(τ)−WG(τ − Ts)‖2.

To assure feasibility of the solution, the limits of the relative air-to-fuel ratio and turbo speed
were formulated as soft constraints. Each violation is penalized in the cost function by the
quadratic term with an associated weight (qλmin

and qNmax) as described in Section 2.1.1.3, hence
two auxiliary (T/Ts)-vectors have been added and the following box constrained optimization
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Table 8.1: Controller tuning overview of diesel engine air-path control.

CV weights MV weights MV movement weights Constraints weights

qEGRratio
= 10

qMAP = 10
rTVAratio

= 100
rWG = 1

rdTVAratio
= 10

rdWG = 1
rdEGR = 1

qλmin
= 10

qNmax = 10

Table 8.2: Overview of the setpoints and constraints of diesel engine air-path control.

CV setpoints MV setpoints CV limits MV limits

EGRSP
ratio = Γ(NEng, IQ)

MAPSP = ∆(NEng, IQ)
TVASP = 100
WGSP = 0

Nmax = 102
λmin = 1.2

0 ≤ TVA ≤ 100
0 ≤ EGR ≤ 100
0 ≤ WG ≤ 100

problem was obtained

min
Z

∫ T

0

(JCV(τ) + JMV(τ) + JdMV(τ) + Jλ(τ) + Jturbo(τ))dτ

s.t. ẋ(t) = Θ(x(t),u(t),d(t)) for t ∈ [0, T ],
y(t) = Π(x(t),u(t),d(t)), for t ∈ [0, T ],
zλ(kTs) ≥ λmin, for k = 1, . . . , N,
zturbo(kTs) ≤ Nmax, for k = 1, . . . , N,
u ≤ u(kTs) ≤ u, for k = 0, . . . , N − 1,

Nturbo(0) = Ñturbo,

(8.4)

with Z =
[
UT , zTλ , z

T
turbo

]T ∈ R3·N+2·N , zλ = [zλ(Ts), zλ(2Ts), . . . zλ(T )]T ∈ RN , zturbo =

[zturbo(Ts), zturbo(2Ts), . . . zturbo(T )]T ∈ RN ; Jλ(τ) = qλmin

∑N
k=1‖zλ(kTs) − λ(kTs)‖2 and

Jλ(τ) = qNmax

∑N
k=1‖zturbo(kTs) − Nturbo(kTs)‖2. Therefore, assuming the prediction horizon

N = T/Ts = 20, the number of the optimization variables in optimization problem (8.4) is
3N + 2N = 100.

The overview of the controller tuning, setpoints and limits is shown in Table 8.1 and Ta-
ble 8.2, respectively. Tracking weights of both CVs have been tuned with the same importance
while the weight on the movement of the TVA valve was selected to be high compared to MVs
to prevent sudden action by the TVA which can lead to undesirable pumping losses and slow
response. The weight of the relative air-to-fuel ratio limit was selected very high to assure that
EGR valve would be closed and TVA fully open during the tip-in maneuver to speed up the
increase of the MAP which is directly proportional to the delivered engine torque, therefore
vehicle acceleration.

The goal of the controller during the tip-in maneuver is to deliver as fast increase of MAP
as possible while assuring that the turbo will not be over-speeded and MAP signal will not grow
too much to destroy the manifold and smoke peak generated will be minimized. The smoke
is formed since there is not enough fresh air delivered by the compressor for the injected fuel
as indicated by the drop of λ in Figure 8.20a at time 5 seconds. Hence, the controller has to
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8.4. Diesel Engine Nonlinear Control

assure the fresh air increase by closing the EGR, fully opening the TVA valves and closing the
WG bypass of the turbo to increase its speed to drive more air by the compressor as shown
in Figure 8.20b. Hence the EGRratio setpoint is not respected. Note, that in the situation of
very low air-to-fuel ratio, such as at about time 5 seconds in Figure 8.20a, the smoke limiter
would be activated leading to the fuel deration in practical applications. On the other hand,
when MAP approaches the setpoint at about time 8.5 seconds, the controller has to stop its
further increase to prevent the turbo over speed and damage of the manifold by opening the
WG bypass and simultaneously adapt the EGR valve to control the EGRratio to its setpoint.
At the end of the experiment, the WG valve returns to the preferred position to maximize the
flow coming directly to the turbo to drive the compressor.
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Figure 8.20: Time traces of the model outputs and inputs during the tip-in manoeuvre during
the simulation with MPC controller. The limits and setpoints are plotted in red dashed lines,
while the signals are in solid blue line.

The optimization problem (8.4) has to be solved at each sampling time. In the Nonlinear
MPC Framework of [48] it is done by the SQP method where a succession of convex box
constrained QP problems is solved based on the updated system linearization along the predicted
inputs trajectory over the prediction horizon5. As a result, each QP problem in the succession

5Description of the linearization along the trajectory is out of the scope of this work. Hence, the reader is
kindly referred to, e.g., [29] for more details.
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differs also in the problem Hessian. The maximum number of SQP iterations, hence a maximum
number of QP problems solved at each sampling period, was set to 5.

Since the NPP solver has shown the superior performance of the proposed methods, it has
been compared to the state-of-the-art solvers. To be able to apply the FiOrdOs solver to the
problem (8.4) the Hessian of the problem was selected as a parameter, and its eigenvalues were
computed automatically at each solver call to set the convergent step-size. No pre-conditioner
has been applied to the QP problem before the call of FiOrdOs. Its maximum number of
iterations has been set to 20,000 per each QP problem, otherwise, the settings were kept the
same as in previous benchmarks. The qpOASES solver utilized the extended online active set
strategy introduced in [33] to hot-start the solution of QP problem even when Hessian was
changed. Since the FORCES uses sparse MPC formulation it is not directly applicable to the
problem of form (8.4), hence was not involved in this test. The zero vector was used as initial
iterate for all solvers, except the qpOASES which use solution from the previous solved QP
problem to hot start the algorithm.
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Figure 8.21: Comparison of the sum of solution times in all SQP iterations for the solvers
during the tip-in manoeuvre together with the condition number of the Hessian of the solved
QP problem at particular SQP iteration.

The comparison of the sum of the computation times over all the performed SQP iterations
for each solver in the test is depicted in Figure 8.21a together with the number of performed SQP
iteration over the simulation, which was the same for all solvers. All solvers show a significant
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increase of computation time at 5 seconds, where there is a step introduced in the injection
quantity in Figure 8.20b. The reason is twofold: firstly many new constraints are activated due
the fact that EGR has to close immediately; secondly, the condition number of the QP problem
Hessian increases as there is a violation of the λ minimum limit. The projection enables fast
identification of the new optimal active set for the NPP solver so that it involves maximally
only 5 iterations per QP subproblem within SQP iterations. On the other hand, the qpOASES
solver needs maximally 71 iterations to converge, see Figure 8.22. This causes a large difference
in the average and maximum computation times for qpOASES. The ill-conditioning of the QP
problem Hessian visible in Figure 8.21b causes a fact that FiOrdOs method involves thousands
of iterations leading to the computation times up to 500 ms, hence higher than the sampling
period. The sum of the computation times for all SQP iterations is under 1.34 ms for NPP
solver while qpOASES involves maximally 13.6 ms to converge. The average computation time
of the NPP is 0.6 ms while the qpOASES involves 2.3 ms and FiOrdOs 222.8 ms in average for
this experiment. The computation time of the NPP is 30% betters when compared to qpOASES
at the end of the transient (for t ≥ 10 s). To the author’s knowledge, this is mainly due to the
cost of factorization of Hessian matrix at each SQP iteration since the number of iterations is
one for both algorithms. While qpOASES has to perform factorization of full Hessian, the NPP
performs the only factorization of reduced Hessian with lower computational complexity.

8.5 Summary

The performed numerical experiments confirm that all proposed methods converge to the solu-
tion with a given accuracy in a finite number of iterations. Compared to the first order method
- FiOrdOs, it was observed that the average number of iterations is insensitive to the QP prob-
lem size and its conditioning. All proposed algorithms typically converge in less than 15 for
NPP and less than 20 for CGNP and PND algorithms. When warm start is used, the number
of iterations is further reduced. On the one hand, the similar insensitivity to the problem size
also indicates IPM solver FORCES. On the other hand, as each iteration of this algorithm is
computationally more expensive it is several times slower compared to the proposed methods
for the problems in the test with the indication that for large problem size the benefit of the
proposed method is reduced.

The important advantage of all proposed methods compared to qpOASES is the ability
to identify the optimal active set quickly by the use of projected Newton direction path and
proportioning. This reduces the maximum number of iterations, hence maximum computation
time in case that active set has to change very rapidly. As observed in experiments, such
situations occur very often in the applications of MPC where the rapid change of actuators
is required with activation of actuator limits. As a consequence, all proposed methods are
comparable and mostly superior to the state-of-the-art methods.

The best solution time performance (both in average and in maximum execution time) was
delivered by the NPP algorithm. Moreover, it was shown that this algorithm is suitable also
for application in the nonlinear MPC since it does not require the convergent step-size of the
proportioning step as in CGNP and PND algorithms.
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Figure 8.22: Comparison of the solution time and number of involved iterations of the solvers
in particular SQP iteration during the tip-in manoeuvre. For better overview the number of
iterations of FiOrdOs has been divided by 1000.

The memory requirements of the proposed algorithms can be divided into two parts. First,
QP problem data can be stored in ROM in case of linear MPC or in RAM in nonlinear MPC
applications. In our implementation, we exploit the symmetry of H , hence only the upper
triangular part, 0.5(n2 + n) + n floating point numbers, has to be stored. The proposed
methods were implemented without any dynamic memory allocation. This is important for
the embedded applications, e.g., in automotive, aearospace or mission critical areas, where
the dynamic allocation is prohibited due to the embedded coding standards, e.g., [62]. The
implementation of the proposed methods involves a static allocation of six temporary n-vectors
and a matrix with n2 floating numbers, which is used to speed up the process of the Cholesky
factor update process using the lower triangular part of mentioned matrix as temporary space
when a new constraint is added to the active set. In this case, the column of the factor is
removed and the rest of the factor is moved to fill-in the gap in the column. The potential
reduction of the RAM memory requirements to 0.5(n2 + n) + 6n can be achieved by using a
more complex indexing (pointer logic) so that there is no need to move the factor columns in
the memory. A different approach to reduce the memory footprint is to modify the algorithm to
work directly on the factored form of the QP problem Hessian, e.g., in LDLT factorization, and
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then perform a LDLT factorization update procedure as described in [45]. Then it is possible
to decrease the memory footprint of RAM + ROM to n2 + 6n floating point numbers.
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Chapter 9

Conclusions

9.1 Summary

This work addressed development of algorithms suitable for solution of convex box constrained
QP. It was shown in Chapter 2.1 that such a problem arises in the application of linear and
nonlinear MPC, further the most common formulations of linear MPC were presented. It was
shown that when dense formulation with `2 norm is used to formulate the individual control
goals, the resulting optimization problem is a convex QP with dense Hessian matrix. The
number of optimization variables then depends linearly on the prediction horizon. Furthermore,
it was shown that the practical application of MPC can be formulated with box constraints
when considering the output constraints as soft limits.

An overview of the existing methods for MPC was given in Chapter 2.2. It was shown that
the QP problem arising in the MPC can be solved either off-line or online. The offline method,
so-called explicit solution, is suitable only for small control problems with a limited number
of dimension of the state vector due to the exponential growth of memory complexity of the
online part of the algorithm. This bottleneck motivates the development of online methods.
Most of them reduce the solution of a QP problem to a series of unconstrained problems which
are solved either by iterative or direct methods. The methods include ASMs, where the main
idea is to identify the active set at the solution in a finite number of iterations. The current
active set defines the face problem which is solved by either direct solvers with factor updates
or by Krylov subspace methods. ASMs are very efficient in practice, mainly due to their relative
insensitivity to the QP problem conditioning. The well-known drawback of the ASMs is that if
the initial active set is very different when compared to the optimal one, the algorithm needs
many iterations to converge. On the other hand, IPMs involve relatively constant small number
of iterations independently on the QP problem conditioning and size.

GPMs can identify the optimal active set quickly utilizing the projection, but their conver-
gence is strongly influenced by the condition number of H . This was improved by FGMs for
which the rate of convergence is driven by the square root of the condition number of H .
Although the convergence of FGMs is better than for GPMs, the methods still involve a large
number of low complexity iterations for ill-conditioned QP problems.
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It was shown that the combined gradient / Newton projection algorithms which combine
the GPM with the Newton methods offer relative insensitivity of the rate of convergence to the
conditioning of H . This insensitivity is given by utilizing the second order information when
solving the face problem defined by the current active set at a cost of more complex iteration.
The main bottleneck of these methods is that the active set changes are not under control
in a sense that it is not defined exactly what part of the constraint indices and/or when the
algorithm will add or release constraint indices from the active set. Therefore, it might happen
that individual constraint index is removed from the active set and added back later in the
following iteration or by the other part of the algorithm. It appears that this issue was solved
in a mathematical community by the proportioning strategy. It was proposed for the solvers
combining the conjugate gradients and projecting steps and further developed into the MPRGP
algorithm where it enables to decide when the active set should be reduced/expanded. The
proportioning strategy is based on the balancing of the violation of the KKT conditions on the
active and the free set.

In chapter 3, the background and overview of the proposed algorithms for a solution of QP
problems arising from MPC were presented. Similarly, as ASMs they try to find the optimal
combination of indices of constraints in the optimum to solve the QP problem. All proposed
methods minimize the face problem defined by the current active set (or face active set for
the NPP algorithm) by the direct solver employing the Cholesky factorization with multiple
rank update to speed up the computation. Hence, all proposed algorithms share the relative
insensitivity of the number of iterations to the conditioning of H . Furthermore, the proposed
algorithms use projected Newton direction path via PLS routine as a tool for effective active
set expansion. On the other hand, it was shown that the presented algorithms differ in the way
how/when the active set is reduced.

The main shared building blocks of the presented algorithms were presented in Chapter 4.
The procedure for m-rank update of the Cholesky factor for the face problem solution was in-
troduced together with the update rule of the cost function gradient in O(n) flops. Additionally
the PLS routine of [65] was extended to update also the cost function gradient in O(n) flops.

In Chapter 5 the CGNP algorithm was presented, and its convergence analyzed. The algo-
rithm uses the PLS routine to expand the active set along the projected Newton direction path
and proportioning step for its reduction. It enables to update the gradient in O(n) flops at
each iteration except the case when the proportioning step is executed. The convergence of the
CGNP algorithm was proved based on the simple estimate of the cost function decrease at the
proportioning step when the algorithm moves to the face problem minimizer. The disadvantage
of the CGNP algorithm is that it might block the cost function decrease since it does not take
into account the value of Lagrange multipliers, and applies the active set reduction only in the
case that the face problem minimizer is feasible.

It was shown that the cost function decrease was improved in the PND algorithm, presented
in Chapter 6, by an introduction of the proportionality test. Based on this test, the active set
reduction is executed by the proportioning step whenever the component of the gradient which
corresponds to the active set dominates the violation of the KKT conditions. Otherwise, the
PND algorithm uses projected Newton direction path for active set expansion. Hence the
values of the Lagrange multipliers (components of the gradient) drive the decision when the
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reduction/expansion of the active set should be performed. The convergence of the PND
algorithm was proved based on the estimate of the cost function decrease at the proportioning
step.

The NPP algorithm, presented in Chapter 7, removes the main two drawbacks of the PND
algorithm, i.e., the need for convergent step-size and the inability to perform a computationally
inexpensive update of gradient after the proportioning step. The cause of both bottlenecks is the
proportioning step. Therefore, instead of proportioning step, the set defining the face problem
is modified in the NPP algorithm whenever the component of the gradient that corresponds to
the active set dominates the violation of the KKT conditions. Moreover, it was shown that this
reduces the number of algorithm iterations compared to PND algorithm whenever the iteration
is considered non-proportional by the proportioning test. On the other hand, the NPP algorithm
might involve more computation burden for factor update compared to PND when opposite
bounds are activated during the algorithm iterates. This is because the active set defining the
face problem remains the same for PND but the face active set will change for NPP.

It was shown that the computational complexity of each iteration of all the proposed methods
is O(n2). The most computationally expensive part of the algorithms is the update of the
Cholesky factor which involves O((n − mk)2) flops, where mk is the number of constraint
indices defining the face problem at kth iteration.

For the MPC application, it is important to note that all the proposed algorithms can be
warm-started, i.e. the solution from the previous sample can be used to calculate the initial
iterate to reduce the number of algorithm iterations. Moreover, when the Hessian of the QP
problem remains fixed, the Cholesky factor from the previous sample time can be used to
speed-up the face problem solution.

As was shown on numerical experiments in Chapter 8, contrary to the first order methods,
the presented algorithms show relative insensitivity to the problem scaling1 as the direct solver
solves the face problem. Hence after a finite number of iterations, the algorithms eventually
reduce to the unconstrained Newton method restricted on the subspace of active constraints
which is solved by one iteration when the Newton step is applied. This together with the ability
of fast identification of the optimal active set by the projected Newton direction path and the
proportioning leads to the fact that all the proposed algorithms converge maximally in 15-20
relatively low complexity iterations independently on the initial iterate, QP problem size and
conditioning, as was observed on all numerical examples. Further, when warm start is used,
the number of iterations decreases to 5-10, to our observation. As a consequence, all proposed
methods are comparable and mostly superior to the state-of-the-art methods. The best solution
time performance (both in average and in maximum execution time) was observed for the NPP
algorithm. Moreover, it was shown that this algorithm is suitable also for application in the
nonlinear MPC since it does not require the convergent step-size of the proportioning step as
in CGNP and PND algorithms.

1In terms of spectral condition number of QP problem Hessian
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9.2 Contributions of the Dissertation Thesis

The main contributions of the thesis are summarized in the following list.

Tutorial results

◦ Overview of the linear MPC framework and its formulation as QP problem (Section 2.1).

◦ Overview of the existing methods used for a solution of an optimization problem of MPC
(Section 2.2).

Preliminary algorithmic results

◦ The m-rank update procedure for the update of the Cholesky factorization for the face
problem solution (Section 4.4).

◦ An effective approach of computing the update of the cost function gradient in 2m(n−m)
flops (Section 4.5).

◦ Extension of the PLS algorithm of [65] with an effective update of the cost function
gradient with complexity O(n) (Section 4.5).

Main algorithmic and theoretical results

◦ Introduction of CGNP algorithm together with convergence and computational complexity
analysis (Chapter 5).

◦ Introduction of PND algorithm together with convergence and computational complexity
analysis (Chapter 6).

◦ Introduction of NPP algorithm together with convergence and computational complexity
analysis (Chapter 7).

◦ All the presented algorithms use the PLS routine in order to change rapidly the active set
via projected-Newton-direction path. This leads to the low number of required iterations
of all proposed algorithms independently on the quality of the initial iteration and the
problem size. This feature improves the state-of-the-art active-set based strategies where
the number of required iterations depends heavily on the number of needed changes in
the active set.

◦ Thanks to the utilization of the second order information in the solution of the auxiliary
face problem, all proposed algorithms show relative insensitivity to the QP problem scaling
in terms of the conditioning of the problem Hessian.
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◦ The PND and NPP algorithms represent an effective approach of utilization of the pro-
portionality test to ”look ahead” in order to reduce the number of unwanted changes
in the active set, hence decreasing the computational complexity of the factor update
scheme used for the solution of the auxiliary face problem.

◦ The unwanted blocking of the cost function decrease in the CGNP algorithms is removed
by the active set reduction executed based on the proportionality test in the PND and
NPP algorithms.

◦ The proportioning step in the CGNP and PND algorithms serves as a cheap way of
the active set reduction. The requirement of convergent fixed stepsize and the inability
to update cost function gradient after the proportioning step is removed in the NPP
algorithm by the utilization of the modified face problem which is solved at each algorithm
iteration.

Application results

◦ A comparison of introduced algorithms to the state-of-the-art methods on several bench-
mark problems (Chapter 8).

9.3 Future Work

The author of the dissertation thesis suggests to explore the following:

MPC problem approximation It is well-known that due to the effect of model inaccuracy
and measurement noise it is not required to satisfy the equality constraints resulting from process
dynamics exactly. When looking at the problem from the opposite side considering the previous
statement, one can modify the original formulation of MPC and solve its approximation. The
reason for this is the computationally less complex iterations leading from the exploitation of the
modified QP problem structure. Such approximation of MPC was presented in [C.7] to establish
the linear computational complexity of each iteration with the prediction horizon in connection
with a preliminary version of the CGNP algorithm. This was achieved by the utilization of
the sparse MPC formulation and equality constraints of the system evolution considered as
soft constraints with `2 penalization of each violation. Hence the projection operation onto
constraint set remains simple allowing to apply the proposed algorithms or their modifications
to such approximation exploiting all the advantages of the sparse formulation.

Large-scale MPC problem approximation The solution of the face problem within the
proposed methods can be substituted by the CG iterations and the resulting algorithm applied to
the approximation of the MPC problem as presented in [C.3]. The approximation is based on the
relaxation where the tracking error is considered in the cost function over the prediction horizon.
Such approximation leads to the structured spectrum of the eigenvalues of H . Structured
eigenvalues spectrum then implies fast convergence of the CG iterations, hence reduction of
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the computational complexity. This would be although more favorable for MPC problems with
the higher number of variables, i.e., n > 200 and/or for the application with a very limited
RAM.

Semi-explicit approach The proposed methods could be combined with a semi-explicit ap-
proach presented in [P.1] to completely or partly remove the most computationally complex
part of the algorithms - factor update. The semi-explicit approach of [P.1] stores Cholesky
factors of reduced Hessians for a selected combinations of active constraints. As an option
some large factors can be stored only partly, i.e. only a few rows of them and the rest can be
computed on-line. As a result, the method could trade-off between the available memory to
store the partial factors and the associated computational effort to finalize the factorization.
This approach is mainly targeted for MPC problems with the lower number of optimization
variables due to the combinatorial nature of the possible combinations of active constraints.

Alternative solutions approaches Another possible way of research is to compute the first
control move only. Since MPC is based on receding horizon concept only the first input move
from the computed trajectory of inputs is actually applied to the process. Thus the others
control moves are discarded, but they are needed to be computed in a traditional way. By
computing the only the first control move or at least detection that its value will remain the
same in the algorithm iterations, the computational burden would be drastically decreased.

9.4 Fulfillment of the Stated Goals

The fulfillment of the stated goals according to their formulations in Section 1.3 on page 5 is
summarized below.

1. The goal of development of the general type of solver for the embedded application
of MPC is satisfied in Chapters 5-7 by the introduction of the CGNP, PND and NPP
algorithms. The suitability of the proposed methods for the embedded applications is
indicated by the low number of the required iterations (typically <15-20), O(n2) compu-
tational complexity of each iteration and n2 floating point numbers memory requirements
as shown in Chapter 8.

2. The fast convergence of the proposed methods independently on the QP problem scaling
in terms of conditioning of the problem Hessian is obtained by the use of the second-order
information in the solution of the auxiliary face problem defined by the current active set
as shown in Section 4.3. The active set expansion by the PLS via projected-Newton-
direction path and proportioning step offers a good scalability of the proposed algorithms
regarding the QP problem size and relative insensitivity to the quality of the initial iterate
as indicated by Chapter 8. The goal of the low complex iterations of the proposed
methods is fulfilled by the utilization of the gradient update rule and by the modification
of the PLS routine by the exploitation of the Newton direction and the face problem
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structure as shown in Section 4.5 and 4.6. Furthermore, the computational complexity of
O(n2) per iteration is achieved by the m-rank update of the Cholesky factor introduced
in Section 4.4 for the solution of the face problem. Moreover, the proportionality test,
introduced in the PND and NPP algorithms, leads to the reduction of the computational
complexity of the Cholesky factor update between the algorithm iterations, by avoiding
the unwanted changes in the active set.

3. The goal of the comparison of the performance of the developed and state-of-the-art
methods is completed in Chapter 8. It is shown that the proposed methods are comparable
and mostly superior in the solution time when compared to the other solvers available in
the literature on all numerical examples. The best solution time performance (both in
average and in maximum execution time) was observed for the NPP algorithm.

4. Conclusions and possible future research are indicated in this chapter.
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[19] J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM Journal on
Numerical Analysis, 25(5):1197–1211, 1988.

[20] R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari. Move blocking strategies in receding
horizon control. Journal of Process Control, 17(6):563–570, July 2007.

[21] S. D. Cairano, M. Brand, and S. Bortoff. Projection-free parallel quadratic programming
for linear model predictive control. International Journal of Control, 86(8):1367–1385, aug
2013.

[22] D. Cieslar, P. Dickinson, A. Darlington, K. Glover, and N. Collings. Model based approach
to closed loop control of 1-D engine simulation models. Control Engineering Practice,
29:212–224, 2014.

[23] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. Phd thesis,
Ruprecht-Karls-Universität Heidelberg, 2001.
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Appendix A

Support for Optimization

A.1 Rate of Convergence

To measure how fast the iterative algorithm converges to the solution x∗ we define the algo-
rithm’s rate of convergence. The most common types of converge are defined closely following
the definition of the convergence rates in [65, Chapter A.2.].

Lemma A.1.1 (Q-linear convergence). Let {xk} be a sequence in Rn that converges to x∗.
We say that the convergence is Q-linear if there is a constant r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖

≤ r, for all k sufficiently large.

Lemma A.1.2 (Q-superlinear convergence). Let {xk} be a sequence in Rn that converges to
x∗. We say that the convergence is Q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Lemma A.1.3 (Q-quadratic convergence). Let {xk} be a sequence in Rn that converges to
x∗. We say that the convergence is at least Q-quadratic if

‖xk+1 − x∗‖
‖xk − x∗‖2

≤M for M > 0.

Lemma A.1.4 (R-linear convergence). Let {xk} be a sequence in Rn that converges to x∗.
We say that the convergence is R-linear if there is a sequence of nonnegative scalars {vk} such
that

‖xk − x∗‖ ≤ vk for all k,

and {vk} converges Q-linearly to zero.

In the work, we omit the letter Q and simply talk about linear, superlinear convergence, and
so on. Whenever we want to emphasize that we are talking about R-type of convergence we
use the letter ”R”.
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A. Support for Optimization

A.2 Optimality Conditions

To certify that the output of the solver is solution of an optimization problem one needs to
have a certificate. For convex problems, the fulfillment of so-called KKT optimality conditions
serves as a necessary and sufficient proof of the optimality of the solution, see [18, Chapter
5.5.3].
For the sake of completeness and better reader overview, the KKT optimality conditions are
shown for (1.1) with a fixed parameter by following [18, Chapter 5.5].
With a fixed parameter θ, the problem (1.1) can be written as

q∗ , q(z∗) = min
z∈Ω

1
2
zTHz + hTz, (A.1)

with strictly feasible set Ω = {z : z ≤ z ≤ z, z < z} and with H as a SPD matrix, h and z,
z, z are n-vectors.

We define the Lagrangian function L associated with the problem (A.1) as

L(z,λ,µ) = 1
2
zTHz + hTz + λT (z − z) + µT (z − z), (A.2)

where λ ∈ Rn and µ ∈ Rn are the dual variables or Lagrange multiplier vectors of lower and
upper bound respectively. We refer λi as the Lagrange multiplier associated with the inequality
zi ≤ zi constraint; similarly we refer µi as the Lagrange multiplier associated with the inequality
zi ≤ zi.

The KKT conditions of (A.1) are then derived from the fact that gradient of (A.2) at x∗

and (λ∗,µ∗) must vanish; hence,

zi − z∗i ≤ 0, i = 1, . . . , n

z∗i − zi ≤ 0, i = 1, . . . , n

λ∗i ≥ 0, i = 1, . . . , n

µ∗i ≥ 0, i = 1, . . . , n

λ∗i (zi − z∗i ) = 0, i = 1, . . . , n

µ∗i (z
∗
i − zi) = 0, i = 1, . . . , n

Hz∗ + h− λ∗ + µ∗ = 0. (A.3)

Additionally, since the upper and lower of i-th bound constraint cannot be active at the
same time1

λi · µi = 0, i = 1, . . . , n.

Combining this with equality (A.3) and the definition of gradient of q as g∗ = Hz∗ + h one
can deduce that Lagrange multipliers are defined exactly by the gradient as

λ∗i =

{
g∗i for i ∈ L
0 elsewhere,

µ∗i =

{
−g∗i for i ∈ U

0 elsewhere.

1That follows from the fact that a feasible set Ω is strictly feasible.
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Appendix B

Algorithms

B.1 Cholesky Factorization of an Augmented Matrix

The Cholesky factorization of augmented matrix has been presented in [2] as an effective tool
for update of the Cholesky factor when new rows and columns are appended to the original
matrix. The algorithm is shown here for the sake of completeness.

Let X(0) ∈ Rn×n be positive definite matrix and R(0) ∈ Rn×n be its upper triangular Cholesky
factor with strictly positive diagonal so that X = (R(0))TR(0), see e.g. [65] for details about
Cholesky factorization.

Suppose an augmented positive definite matrix X(1) ∈ R(n+m)×(n+m) defined as

X(1) =

[
X(0) S
ST T

]
,

where S ∈ Rn×m and T ∈ Rm×m. Then its Cholesky factor will take the form

R(1) =

[
R(0) U
0 V

]
,

with U ∈ Rn×m and V ∈ Rm×m which is an upper triangular with strictly positive diagonal
which both need to be computed. The Cholesky factorization of augmented matrix presented
in [2] computes R(1) from a given R(0) by initialing matrix W ∈ R(n+m)×(n+m) as

W =

[
R(0) S
0 T

]
, (B.1)

and running the Algorithm 5 in O (m3) +O (m2n) +O (mn2) flops. Note that when m = 0
the Algorithm 5 performs standard Cholesky factorization of top left block of matrix W .
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B. Algorithms

Algorithm 5 Cholesky factorization of an augmented matrix. Given W ∈ R(n+m)×(n+m)

defined as (B.1).

[W ] = cholaug(W ,m,n)
1: if m = 0 then
2: q = 1
3: else
4: q = n+ 1
5: end if
6: for i = 1 to n+m do
7: if i ≥ q then

8: wi,i =
√
wi,i −

∑i−1
k=1w

2
k,i

9: end if
10: for j = max{i+ 1, q} to n+m do
11: wi,j = (wi,j −

∑i−1
k=1 wk,iwk,j)/wi,i

12: end for
13: end for

B.2 Forward Substitution

Having a non-singular upper triangular matrix R ∈ Rn×n and vector b ∈ Rn the solution of
the following set of linear equations

RTx = b,

with x ∈ Rn can be executed in O (n2) flops by Algorithm 6 adopted from [87]. Note that the
straight modification allows in-place operation overwriting the right hand side vector b.

Algorithm 6 Forward substitution, adoption of [87, Section 2.1]. Given nonsingular upper
tringular matrix R ∈ Rn×n and b ∈ Rn. Solves RTx = b.

[x] = forwardsub(R,b,n)
1: for k = 1 to n do
2: xk = bk
3: for j = 1 to k − 1 do
4: xk = xk − rj,k xj
5: end for
6: xk = xk / rk,k
7: end for
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B.3. Backward Substitution

B.3 Backward Substitution

Having a non-singular upper triangular matrix R ∈ Rn×n and vector b ∈ Rn the solution of
the following set of linear equations

Rx = b,

with x ∈ Rn can be executed in O (n2) flops by Algorithm 7 adopted from [87]. Note that the
straight modification allows in-place operation overwriting the right hand side vector b.

Algorithm 7 Backward substitution, adoption of [87, Section 2.4]. Given nonsingular upper
tringular matrix R ∈ Rn×n and b ∈ Rn. Solves Rx = b.

[x] = backwardsub(R,b,n)
1: for k = n to 1 do
2: xk = bk
3: for j = k + 1 to n do
4: xk = xk − rk,j xj
5: end for
6: xk = xk / rk,k
7: end for

B.4 Givens Rotation

A Givens rotation or plane rotation is an orthogonal transformation and serves as an effective
tool for triangularization of close to triangular matrices by introducing zeros in the matrix. A
Givens rotation is defined as orthogonal matrix of the form [87]

P i,j =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (B.2)

where c2 + s2 = 1, c and s appears at the intersections i-th and j-th rows and columns.
The construction and purpose of the Givens rotation is demonstrated on the example. Let

suppose the close to triangular matrix X ∈ R4×4 in the form

X =


X X X X

0 a X X

0 b X X

0 0 0 X

 ,
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B. Algorithms

where X, a and b denote nonzero elements. It is evident that matrix X is almost upper
triangular except the element under the main diagonal x3,2 = b which is nonzero. To annihilate
the nonzero element we construct plane rotation matrix in the form

P 2,3 =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

 ,
with

c =
a√

a2 + b2
, s =

b√
a2 + b2

.

Then application of the Givens rotation leads to the upper triangular matrix Y ∈ Rn×n

Y = P 2,3X =


X X X X

0 X̂ X̂ X̂

0 0 X̂ X̂

0 0 0 X

 ,
where X̂ indicates changed non-zero element.

Observing the form of the matrix P i,j in (B.2) one can deduce that Givens rotation modifies
only the i-th and j-th rows taking into account only the i-th and j-th rows. The following two
algorithms implement the construction of the Givens rotation and its application to the rows
of the matrix. From the numerical perspective the Givens rotation enjoys the same stability
properties as Householder transformations, see [87] more details of numerical stability analysis.
From the computational perspective, each application of Givens rotation can be executed in
6n flops. The computational complexity can be reduced by use of ”Fast Givens Rotation”, see
[75].

Algorithm 8 Generation of Givens rotation [87, Section 4.1.3]. Given quantities a and b,
generates the Givens rotation in c and s overwriting a with

√
a2 + b2 and b with 0.

[c, s, a, b ] = rotgen(a, b)
1: τ = |a|+ |b|
2: if τ = 0 then
3: c = 1; s = 0; return
4: end if
5: ν = τ ∗

√
(a/τ)2 + (b/τ)2

6: c = a/ν; s = b/ν
7: a = ν; b = 0
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B.4. Givens Rotation

Algorithm 9 Application of Givens rotation [87, Section 4.1.3]. Applies Givens rotation defined
by c and s to two n-vectors x and y, overwriting them. It involves need of temporary n-vector
t.

[x, y] = rotapp(x, y, c, s)
1: t = cx+ sy
2: y = cy − sx
3: x = t
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