
Technisch-Naturwissenschaftliche
Fakultät

Network Media Content Aggregator for DLNA
Server

Master’s Thesis
to obtain the academic degree

Master of Science
in the master’s study programms

International Studies in Informatics ∗

and

Open Informatics †

Submitted by:
Jan Kubový

Institute:
Institute for Application Oriented Knowledge Processing (FAW)

Advisors:
1st Advisor: Doc. Ing. Zdeněk Kouba CSc.
2nd Advisor: A.Univ.-Prof. Dr. Josef Küng
3rd Advisor: DI Franz Wieshofer

Linz, July, 2011
∗Johannes Kepler University in Linz
†Czech Technical University in Prague

Date: 2011-05-09T09:01
Revision: 4342c1ef6ecbda0d2bb9524bb1cd2ba1f808cbd4

This research project was funded and supported by the International Stud-
ies in Informatics Hagenberg 1 and the Quanmax AG 2 company.

Living expenses were partially covered by the Student Mobility Scholarship,
Double-Degree Support Program of the Ministry of Education, Youth
and Sport of the Czech Republic and from interest-free loan from the
Kompakt spol. s r.o. 3 company.

1http://www.isi-hagenberg.at
2http://www.quanmax.ag
3http://www.kompakt-cr.cz

v

http://www.isi-hagenberg.at
http://www.quanmax.ag
http://www.kompakt-cr.cz

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to all my advisers:
A.Univ.-Prof. Dr. Josef Küng from Institute for Application Oriented Knowledge
Processing, Johannes Kepler University in Linz 1 , Doc. Ing. Kouba Zdeněk CSc.
from Department of Cybernetics, Czech Technical University in Prague 2 and DI
Franz Wieshofer from Quanmax AG company for their interest, support, back-
ground and time they devoted to my thesis.

Besides my advisers, I would like to thank Prof. Dr. Michal Pěchouček,
MSc. from Department of Cybernetics, Czech Technical University in Prague
who made possible for me to take part on a Double-Degree programme between
Czech Technical University in Prague and Johannes Kepler University in Linz for
his motivation. O.Univ. Prof. Dr.phil. Dr.h.c.mult. Bruno Buchberger from Re-
search Institute for Symbolic Computation, Johannes Kepler University in Linz 3

for his enthusiasm, and immense knowledge, who devoted his time to help me
with my thesis, prepared me for the final presentation and for his wise advices.

My sincere thanks also goes to PaedDr. Miroslav Káninský and Pavel Bažant
from Kompakt spol. s r.o. company who provided me with financial support
during my studies.

I would like to thank many people who have taught and motivated me: my
high school math and physics teachers, especially Mgr. Marie Dekojová and
Mgr. Alexej Bezděk, my undergraduate teachers at Czech Technical University,
especially doc. Dr. Ing. Michal Bednařík for their kind assistance, giving wise
advices, helping with various applications, and so on.

I also thank Leona Svobodová and Betina Curtis who were always there to
help out on faculty and other issues.

I am grateful for the stimulating discussions and the proof reading of this
thesis to my fellow colleague Mariam Wael Hassan Mohamed Mansour Rady.

Last but not the least, I would like to thank my family, especially my dear
mother Ing. Alena Kubová for giving birth to me at the first place, raising me and
supporting me both spiritually and financially throughout my studies and the
whole life.

1http://www.faw.uni-linz.ac.at
2http://cyber.felk.cvut.cz
3http://www.risc.jku.at

vii

http://www.faw.uni-linz.ac.at
http://cyber.felk.cvut.cz
http://www.risc.jku.at

STATEMENT

I hereby declare under oath that the submitted master thesis has been writ-
ten solely by me without any third-party assistance. Additional sources or aids
are fully documented in this paper, and sources for literal or paraphrased quotes
are accurately credited.

Jan Kubový

ix

ABSTRACT

This thesis engages in solving problem of collecting media files from differ-
ent sources in the network, identify them, sort them and make them available
to other devices in the network. Identification and removal of duplicates and
gathering additional information such as author, album, date, etc.

This thesis is divided into two parts. In the first part a technology and mar-
ket overview of existing devices, software and similar solutions can be found.

The second part introduces one solution and shows the implementation of
such solution. Further possibilities of the implementation will be also discussed.

ABSTRAKT

Tato diplomová práce se zabývá řešením problému se sběrem multimediál-
ních souborů z různých zdrojů v počítačové síti, jejich identifikací, jejich řazením
a jejich zpřístupněním pro ostatní zařízení v počítačové síti.
Identifikací a odstraněním duplicit a získáváním dodatečných informací o mul-
timediálních souborech jako je autor, album, datum, atd.

Práce je rozdělena do dvou částí. V první části jsou uvedeny dostupné tech-
nologie o existujících zařízeních, software a podobná řešení problému dostupná
na trhu.

Ve druhé části je představeno řešení a ukázána jeho implementace. Na
konci této části jsou také uvedena možná rozšíření a vylepšení navržené imple-
mentace.

Keywords: Digital Living Network Alliance (DLNA), DLNA server, content aggre-
gator, media files meta data

xi

Contents

I Research 1

1 Introduction 3

1.1 Goal . 3

1.2 Tasks . 4

2 Technologies 5

2.1 Digital Living Network Alliance (DLNA) . 5

2.2 DLNA Certified Device Classes . 7

2.2.1 Home Network Devices (HND) . 7

2.2.2 Mobile Handheld Devices (MHD) 8

2.2.3 Home Infrastructure Devices (HID) 8

2.2.4 Digital Media Aggregator (DMA) . 9

2.3 Universal Plug and Play (UPnP) . 9

2.3.1 UPnP Audio and Video standards 11

2.3.2 UPnP ContentDirectory Service Template 12

2.4 Container Formats . 12

2.5 Audio Codecs . 15

2.6 Video Codecs . 17

2.7 Image Formats . 18

2.8 Metadata . 19

3 Market overview 25

3.1 Devices Overview . 25

3.2 Media Server Software Overview . 26

3.3 Apple AirPlay . 33

3.4 Summary . 34

4 Home Environment Example 35

II Implementation 39

5 Shared Media Types 41

5.1 Audio . 41

5.1.1 ID3 Tag . 41

5.1.2 Xiph Comments . 43

5.2 Image . 44

5.2.1 EXIF & IFD . 44

xiii

5.3 Video . 47

6 Collecting Media Files 49

6.1 Sources . 49

6.2 Metadata Gathering . 49

6.3 Media File Identification . 52

6.4 Media Files Duplicates Identification . 53

6.5 Sharing Media Information . 55

7 Topology 57

7.1 Server-Based Topology . 57

7.2 Distributed Topology . 57

7.3 Conclusion . 58

8 Prototype Architecture 59

8.1 Application Model . 59

8.2 Aggregators Package . 59

8.2.1 AbstractAggregator Class . 59

8.2.2 Aggregator Class . 60

8.2.3 ContentDirectoryAggregator Class 60

8.2.4 FileSystemDirectoryAggregator Class 60

8.2.5 SambaAggregator Class . 61

8.3 Samba Subpackage . 61

8.3.1 SambaConnection Class . 61

8.3.2 SambaTicker Class . 62

8.4 GUI Package . 62

8.4.1 AggregatorGUI Class . 63

8.4.2 PreferencesDialog Class . 64

8.5 Media Models Package . 64

8.5.1 AbstractObject Class . 65

8.5.2 DeviceObject Class . 65

8.5.3 ContentObject Class . 65

8.5.4 MediaObject Class . 65

8.5.5 AudioObject Class . 65

8.5.6 ImageObject Class . 66

8.5.7 VideoObject Class . 66

8.5.8 ItemFactory Class . 66

8.5.9 ObjectFactory Class . 66

8.6 Servers Package . 67

8.6.1 ContentDirectoryCollector Class . 67

xiv

8.6.2 ContentDirectoryServer . 68

8.6.3 ContentDirectoryServiceClass . 69

8.7 Libraries package . 69

8.7.1 DMALib Class . 69

8.7.2 FileSystemExporter Class . 69

8.8 Testing of the Application . 70

9 Application User Guide 71

9.1 Aggregation Process . 71

9.2 Aggregators Configuration . 72

9.3 Browsing Aggregated Media . 73

9.4 Making Media available to the Network . 74

9.5 Saving and Loading Snapshots . 75

10 Conclusion 77

10.1 Application Proposal . 77

11 References 79

A Prototype UML Diagrams 85

B List of Figures 99

C List of Tables 100

D List of Abbreviations 101

E Curriculum Vitae 105

xv

Part I. - Research

This part focuses on the prerequisite knowledge and technologies needed
to the actual implementation of the prototype software.

First, a brief introduction of the Digital Living Network Alliance (DLNA) and
the Universal Plug and Play (UPnP), as representatives of the core technologies,
is present.

Next, commonly used and for the purpose of this thesis suitable image for-
mats, audio and video codecs and container formats are described.

Finally, a look at the current market, collection and description of devices
and software competitive to the DLNA Aggregator is done. Also a home envi-
ronment example is introduced for testing purpose of the the implementation
of the prototype software.

1

1 INTRODUCTION

1 Introduction

This thesis introduces a Network Content Aggregator for DLNA Server and re-
lated technologies, media container formats, media codecs and available 3rd

party software and libraries. From those some of the 3rd party software and li-
braries are selected and used in the implementation of the software prototype.

An overview of the current market state and the existing devices and soft-
ware competitive to the DLNA Server or the DLNA Aggregator is present in the
first part of this thesis.

On the end of the first part, before the software prototype will be intro-
duced, a typical home environment example is given. This example is used as a
specimen of a typical household and a target environment of such software.

The second part of this thesis deals with the implementation of the software
prototype and related requirements such as 3rd party libraries. A description
of the different media types and the way how to gather additional information
from them (e.g. author, album, date, etc.) is present in Section 5 ‘Shared Media
Types’ on page 41.

The way how the media files are collected from the different devices in the
network and with that related problems (e.g. identification, duplicates, etc.) is
described in Section 6 ‘Collecting Media Files’ on page 49.

One of the tasks given by the Quanmax AG company was to elaborate about
two different network topologies and find out their usability in such software.
Those topologies and their possibilities are elaborated in Section 7 ‘Topology’
on page 57.

The prototype architecture description and the application user guide are
present on the end of the second part in Section 8 ‘Prototype Architecture’ on
page 59 and Section 9 ‘Application User Guide’ on page 71. The Unified Mod-
eling Language (UML) diagrams of the implementation can be found in the Ap-
pendix A ‘Prototype UML Diagrams’ on page 85.

The conclusion and proposal of an extension and an improvement of the
software prototype is present on the end of this document in Section 10 ‘Con-
clusion’ on page 77.

1.1 Goal

The goal of this thesis it to implement a prototype of a DLNA Aggregator, which
is able to aggregate media files from different devices in the network. The pro-
totype introduces an architecture, which makes it easy to implement additional
device types and extend the ability of the DLNA Aggregator.

3

1 INTRODUCTION 1.2 Tasks

The prototype application includes a simple GUI which allows to control
the DLNA Aggregator, go through the aggregated media files and display the de-
tails of those files.

Some of the aggregators may require configuration. In the current imple-
mentation only the Samba (SMB) aggregator and the Local File System (LocalFS)
aggregator do need this. The application prototype allows to configure such ag-
gregators using the GUI.

1.2 Tasks

1. Get familiar with the current market around DLNA devices and server
software.

2. Analyze current used technologies i.e. codecs, container formats for gath-
ering meta-data.

3. Get familiar with the DLNA (class devices, technology components, soft-
ware).

4. Define a media content gathering proposal.
5. Implement a software prototype and evaluate the proposal.

4

2 TECHNOLOGIES

2 Technologies

2.1 Digital Living Network Alliance (DLNA)

The DLNA is a non-profit cross-industry organization of leading companies in
the customer electronics, computing, mobile devices and service provider in-
dustries. The goal of this alliance is using a standards-based technology to make
easier for customers to use and share media content (i.e. videos, music, photos,
etc.) [11].

One of the key technology of the DLNA is the UPnP Device Control Pro-
tocol Framework (DCP) , which simplifies the device networking and is the se-
lected device discovery and control solution for digital home devices [11]. This
technology will be described more in detail in Section 2.3 ‘Universal Plug and
Play (UPnP)’ on page 9.

Next key technology component used through UPnP technology is Internet
Protocol (IP) . IP is supported by a wide range of devices and is based on industry
standard specifications. IP can connect any device to the internet and allows
application to communicate transparently [11].

Media Format and Transport Model is another key technology intended
to achieve a baseline for the network interoperability. While improvements in
media codecs and formats are being encouraged, the DLNA media format sup-
port applies for media content that is being transported between server de-
vice (Digital Media Server (DMS) or Mobile Digital Media Server (M-DMS)) and
player/renderer device (Digital Media Player (DMP), Mobile Digital Media Player
(M-DMP), Digital Media Renderer (DMR), etc.)[11]. The DLNA devices can be
divided to two categories: The Home Network Devices (HND) and the Mobile
Handheld Devices (MHD) (both will be described in detail in Section 2.2 ‘DLNA
Certified Device Classes’ on page 7). For both of those categories a set of re-
quired and a set of optional media formats is defined for each of the three media
classes (audio, video and image). Required and optional formats for this pur-
pose for both HND and MHD can be seen in Table 2 ‘Supported DLNA Media
Formats[11]’ on page 20.

The Media Container Formats are discussed in detail in Section 2.4 ‘Con-
tainer Formats’ on page 12. A list with the description of the Audio Codecs is
available in Section 2.5 ‘Audio Codecs’ on page 15. In Section 2.6 ‘Video Codecs’
on page 17 is a detailed list of Video Codecs. Image Formats are described in
Section 2.7 ‘Image Formats’ on page 18.

Every DMS, DMP, DMR, Digital Media Printer (DMPr), M-DMS and M-DMP
device has to support all the required media formats listed in Table 2 ‘Supported
DLNA Media Formats[11]’ on page 20. Every DMS, DMP, M-DMS, M-DMP and
Mobile Digital Media Downloader (M-DMD) device may support any of the op-
tional format listed in that table. Also any of DMP, M-DMP, DMR, M-DMD and
DMPr has to be able to receive content from any DMS or M-DMS [11].

5

2 TECHNOLOGIES 2.1 Digital Living Network Alliance (DLNA)

Figure 1: DLNA Interoperability Guidelines Building Blocks[11]

The DMS or M-DMS has on the other hand be able to decode as many
Codecs and Container Formats1 as possible and transcode them at least to the
set of Required Formats. However the Digital Media Aggregator (DMA) needs
knowledge about those Codecs and Formats only for the purpose of metadata
(e.g. author, album, year, etc.) extraction.

Media Management, Distribution, and Control is the next key technol-
ogy. It allows the devices to identify, manage and distribute the media content
in the network and is provided by the UPnP Audio/Video technology (see Sec-
tion 2.3.1 ‘UPnP Audio and Video standards’ on page 11)[11].

There are other technologies used by the DLNA, however they are out of the
scope of this thesis. The building blocks of the DLNA interoperability guidelines
can be seen in Figure 1 ‘DLNA Interoperability Guidelines Building Blocks[11]’.

1The difference between Codec and Container Format will be explained in Section 2.4 ‘Con-
tainer Formats’ on page 12

6

2 TECHNOLOGIES 2.2 DLNA Certified Device Classes

2.2 DLNA Certified Device Classes

Figure 2: DLNA Classes Relations

The DLNA divides devices into 12 different classes in 3 main device categories[11].
The relations between the DLNA Certified Device Classes can be seen in Fig-
ure 2 ‘DLNA Classes Relations’.

2.2.1 Home Network Devices (HND)

Digital Media Server (DMS) stores the media content (e.g. music, video, im-
ages, etc.) and makes it available to all the devices in the wired and/or wireless
network like DMR or DMP. These devices are for example computers or Network
Attached Storage (NAS) [11]. The DMS can also have transcoding1 capabilities
and can also include a DMA.

Digital Media Controller (DMC) plays content, which it finds on DMS or DMR.
Digital Media Controller (DMC) can be a Tablet, Personal Digital Assistant (PDA),
etc.[11].

Digital Media Player (DMP) provides rendering of content which it finds on
a DMS. A DMP can be for example a TV, home theatre, stereo, projector, PCs,
monitors, etc.[11]. A DMP can provide one or more of the rendering capabilities:
image and/or video rendering and/or audio playback. For example an image
frame provides only image rendering. A HiFi provides only audio playback. But

1Transcoding is digital-to-digital converting method[24] of potentially unsupported media for-
mat into supported one for the DMP or DMR on the fly. This functionality has big advantage be-
cause there are lot of different, not always supported, media formats circulating around but only
certain of them are supported by the amount of devices on the market.

7

2 TECHNOLOGIES 2.2 DLNA Certified Device Classes

a TV provides both audio and video rendering and additionally may provide also
image rendering.

Digital Media Renderer (DMR) plays content received from a DMC. This can
be also a TV, audio/video receiver etc.[11]. The DMC does not provide any actual
content to the DMR, it just tells the DMR to pull certain media content from a
DMS and play/render it. The difference between DMP and DMR is that a DMR
needs to be told what to play by a DMC, but DMP can control itself alone without
a DMC.

Digital Media Printer (DMPr) provides printing of media like pictures or doc-
uments. Generally, a DMP or DMC with print capability can print on a DMPr
[11].

2.2.2 Mobile Handheld Devices (MHD)

Mobile Digital Media Server (M-DMS) is a wireless device, which stores media
content (i.e. music, video, images) and makes it available to all devices in the
wired/wireless network like M-DMP, DMR, DMP or DMPr. These devices are
for example cell phones or portable music players[11].

Mobile Digital Media Controller (M-DMC) is a wireless devices that can find
content on a DMS or M-DMS and send it to a DMR. Examples: PDA and cell
phones [11].

Mobile Digital Media Player (M-DMP) can find and play content from other
DLNA devices in DMS or M-DMS class. A M-DMP can be for example a cell
phone, tablet, netbook, etc. [11].

Mobile Digital Media Uploader (M-DMU) is a wireless devices able to send/upload
content to a DMS or M-DMS. A Mobile Digital Media Uploader (M-DMU) is for
example a digital camera or a cell phone [11].

Mobile Digital Media Downloader (M-DMD) is a wireless devices, which down-
loads and stores content from a DMS or M-DMS. A M-DMD can be for example
a cell phone or a portable music player[11].

2.2.3 Home Infrastructure Devices (HID)

Mobile Network Connectivity Function (M-NCF) is a device, which provides a
bridge between a mobile handheld device network connectivity and home net-
work connectivity[11].

8

2 TECHNOLOGIES 2.3 Universal Plug and Play (UPnP)

Media Interoperability Unit (MIU) is a device, which provides content trans-
formation between required media formats for home network and mobile hand-
held devices[11].

2.2.4 Digital Media Aggregator (DMA)

Digital Media Aggregator or DLNA Aggregator is not a specified DLNA certified
class. It is a part of a DMS and therefore it has strong relation to that class. In
the document DMS will be used if the context is related to the whole server and
DMA if the context is related only to the aggregator part of the DMS only.

The DMS or M-DMS is in general responsible for:

• Content acquisition, recording and storing.
• Content protection enforcement.
• Content distribution to other DLNA devices in the network.
• Content aggregation (DMA).
• Device & media management.
• ... in addition a DMS may provide DMP capabilities, media transcoding

and a user interface

A DMA as a part of a DMS is expected to provide:

• Knowledge about available devices in the network.
• Knowledge about relevant content in the network.
• Access to content on available devices in the network.
• Announce appeared devices in the network.
• Announce disappeared devices from the network.
• Announce content changes on the devices in the network.
• Metadata gathering (e.g. author, album, date, etc.).

2.3 Universal Plug and Play (UPnP)

The UPnP technology is a set of networking protocols for network devices sup-
ported by the UPNP FORUM. The UPnP enables seamless discovery and estab-
lishing of services for data sharing to devices in the network and is indepen-
dent of any programming language, operating system or network technology
(i.e. Ethernet, FireWire, IrDA, Bluetooth, Wi-Fi, etc.). The target of the UPnP are
home networks, proximity networks, small businesses and commercial buildings[53].

The UPnP Device Control Protocol Framework (DCP) allows to the devices
in the network discovering each other and comunicate seamlessly. It is a dis-
tributed and open technology based on standard such as Transmission Control
Protocol (TCP)/IP, User Datagram Protocol (UDP), Hypertext Transfer Protocol
(HTTP), Extensible Markup Language (XML), etc. The UPnP architecture sup-
ports automatic network configuration, which means that every UPnP compat-

9

2 TECHNOLOGIES 2.3 Universal Plug and Play (UPnP)

ible device from any manufacturer can dynamically connect to the network, ob-
tain its IP address, announce its abilities on request and discover the abilities of
other devices in the network. The Dynamic Host Configuration Protocol (DHCP)
and the Domain Name System (DNS) servers are optional and are used only if
they are available in the network. The UPnP devices can leave the network with-
out leaving any undesirable state informations behind[53].

The DCP defines the protocol for communication between the devices in
the network. The DCP uses the stack shown in Table 1 ‘UPnP Architecture (DCP)
stack [22]’ for discovery, control, eventing and presentation. On the top of the
stack, messages contain only vendor specific information which are supplemented
by the UPnP Forum information and hosted in the UPnP specific protocol such
as Simple Service Discovery Protocol (SSDP), General Event Notification Archi-
tecture (GENA) and Simple Object Access Protocol (SOAP). Those messages are
delivered by the HTTP, either multicast or unicast over the UDP or standard
HTTP over the TCP. The HTTP messages are then delivered over the IP [22].

UPnP vendor
UPnP Forum
UPnP Device Architecture (DCP)
SSDP, SOAP, GENA
HTTP
UDP, TCP
IP

Table 1: UPnP Architecture (DCP) stack [22]

The DCP defines two device classes: the Controlled Devices and the Con-
trol Points, where the role of a Controlled Device is responding to requests from
Control Point. In one network endpoint multiple Controlled Devices and/or
Control Points can run simultaneously[22].

The DCP works in couple steps. In the so called Step 0, named Addressing,
the device will try to receive an address from a DHCP server if such server is
present in the network. If no DHCP server is present the device will assign itself
an IP address using AutoIP in the 169.254/16 range except of the first and last
256 addresses which are reserved and must not be used[22].

A successfully assigned IP address enables Step 1, which is called Discovery.
In this step Control Points can find other Controlled Devices in the network[22].

If an "interesting" Controlled Device is found the Control Point will need to
know the abilities of such device, which can be done in Step 2 called Descrip-
tion. By sending a HTTP request to the Descriptor URL of the targeted Con-
trolled Device a XML file with the description of all Embedded Devices, services,
vendor-specific information, etc. will be sent back in the response [22].

Step 3 in the UPnP networking is Control. A Controlled Device can be con-

10

2 TECHNOLOGIES 2.3 Universal Plug and Play (UPnP)

trolled by a Control Point if that Control Point has discovered the Controlled
Device and has received the XML description file from it. From the XML de-
scription file the Control Point knows how to control the Controlled Device and
can send control requests to the Controlled Device. Such requests can change
the values of state variables of the Controlled Device depending on the concrete
implementation[22].

Eventing is Step 4 in the UPnP networking which allows listening for changes
of state variables of a Controlled Device. Any Control Point device may sub-
scribe to receive event messages with these information. An event message con-
tains the name of one or more state variables and the current value of those vari-
ables expressed in a XML using GENA [22].

Last, Step 5 is about Presentation which does not have to be present on
every device. But if the Controlled Device will provide a URL for presentation,
it can be loaded into a browser. The page can show state of the device and/or
its state variables and it can allow to control the Controlled Device from that
page. What the presentation page shows and allows to control, depends on the
capabilities of that presentation page [22].

2.3.1 UPnP Audio and Video standards

The DCP divides devices into couple categories such as Audio/Video, Basic, De-
vice Management, Home Automation, Networking, Printer, Remote Access, Re-
moting and Scanner. For the purpose of this thesis a closer look on the UPnP
Audio and Video category[56]will be introduced.

The UPnP A/V category is one of the DLNA key technologies. It includes
following device and service templates:

UPnP MediaServer is a device template that provides media content (using Con-
tent Directory) to other UPnP devices in the network[35].

UPnP MediaRenderer is a template that defines a general-purpose device tem-
plate that can be used to instantiate any device that is capable of render-
ing AV content from the network. It provides also a set of controls for the
Control Point to control specified rendering options of AV content (e.g.
brightness, contrast, volume, etc.)[34].

UPnP ConnectionManager is a service template that provides modelling of stream-
ing capabilities of an AV devices and binding of those capabilities between
devices[20].

UPnP ContentDirectory provides a mechanism to browse content on the server
and obtain detailed information about the content objects[36].

UPnP Rendering Control is a service template, which provides Control Points
with the ability to query and/or adjust any rendering attribute that the
device supports[37].

11

2 TECHNOLOGIES 2.4 Container Formats

UPnP AVTransport is a service template, which provides control over the trans-
port of audio and video streams[15].

2.3.2 UPnP ContentDirectory Service Template

The most important template from the list of UPnP Audio and Video standards
for the DMA is the ContentDirectory template. This service allows the Control
Points to enumerate the list of content (i.e. audio, video and still image files)
on the device. It provides detailed information about each item, such as author,
album, year, etc. It also enables searching and filtering capabilities.

Most commonly is this service present on a UPnP MediaServer and allows
to access files from a remote UPnP device. This allows the user to play or ren-
der media content from a variety of devices without direct interaction with the
device containing the content.

2.4 Container Formats

The difference between Container Format and Codec is that Container Format
(i.e. AVI, MKV, MOV, WMV, etc.) specifies how the data streams (one or more
audio, video and/or other streams like subtitles or other data) inside a file are
organized, but how the actual data are represented is specified by the concrete
Codec. Codec describes how video or audio data are encoded (compressed) and
how they should be decoded (decompressed). Theoretically any Codec can be
used in any Container Format but sometime there are license restriction for a
certain Codec to a certain Container Format (e.g. Windows Media Video (WMV)
is only used in Windows Media files). List of most commonly used and sup-
ported Container Formats will follow further in this section.

Table 4 ‘Media Container Formats Comparison’ on page 22 shows a com-
parison of the chosen Container Formats with focus on the relevant data ac-
cording to this thesis. For better orientation Table 5 ‘Media Container Formats
and Audio Codecs Support’ on page 23 and Table 6 ‘Media Container Formats
and Video Codecs Support’ on page 24 shows the possible usage of the different
Codecs in chosen Container Formats. In those tables the symbol “X” stands for
present support and the symbol “-” stands for absent support. If the support is
composed of distinct values, those values are represented in the table cells as
comma-separated values.

Audio Interchange Format File (.AIFF, .AIF) is a Container Format co-developed
by APPLE INCORPORATED and based on more general Interchange File Format (IFF)
used on Amiga systems. Audio Interchange Format File (AIFF) is popular on
MacOS and UNIX systems. It can contain only one, by default uncompressed
Pulse-Code Modulation (PCM) audio stream. There is also a variant support-
ing compression using various Codecs such as MPEG-1,2 Audio Layer III (MP3) .

12

2 TECHNOLOGIES 2.4 Container Formats

This Container is divided into a number of chunks each identified by Four Char-
acter Code (FourCC) :

• Common Chunk (required)
• Sound Data Chunk (required)
• Marker Chunk
• Instrument Chunk
• Comment Chunk1

• Name Chunk1

• Author Chunk1

• Copyright Chunk1

• Annotation Chunk1

• Audio Recording Chunk
• MIDI Data Chunk
• Application Chunk
• ID3 Chunk1

Advanced Systems Format (.WMV, .WMA, .ASF, .ASX) is a MICROSOFT CORPO-
RATION proprietary digital audio/digital video container format, which typically
uses WMV Codec for video encoding and Windows Media Audio (WMA) Codec
for audio streams, but in general can use any codec for both stream types. It
supports streaming video over network and can contain one or more media (i.e.
audio and/or video) streams. It uses own tagging format for metadata called ASF
Tags[18].

Audio Video Interleave (.AVI) introduced by MICROSOFT as a part Video for
Windows (VfW) technology and can contain multiple audio and video streams.
The file is divided into chunks identified by FourCC code. Metadata can be
stored in an optional INFO chunk[1] or in an embedded Extensible Metadata
Platform (XMP) [28]. This Container Format may contain any audio/video data
inside the chunks using virtually any Codec. This Container Format was not in-
tended for streaming[64].

DivX Media Format (.DIVX) developed by DIVX, INCORPORATED includes fol-
lowing features:

• Interactive video menus.
• Multiple subtitles (XSUB).
• Multiple audio tracks.
• Multiple video streams.
• Chapter points.

1Chunks containing useful metadata for the DMA

13

2 TECHNOLOGIES 2.4 Container Formats

• Other metadata (XTAG)1.
• Multiple format.
• Partial backwards compatibility with Audio Video Interleave (AVI) .

Video streams are encoded using one of two DivX Codecs; the regular MPEG-
4 Part 2 DivX codec and the H.264/MPEG-4 AVC DivX Plus HD codec. Audio
streams can be encoded using various audio codecs like MP3 , Audio Codec 3
(AC-3) , MPEG-2,4 Advanced Audio Coding (AAC) , etc.[19].

Flash Video (.FLV, .F4V) was originaly developed by MACROMEDIA INCORPO-
RATED and now by ADOBE SYSTEMS INCORPORATED. The Flash Video (FLV) is used
to deliver video over the internet using Adobe Flash Player. The FLV can be also
embedded within a ShockWave Flash (SWF) file. This Container Format uses
Sorenson Spark, VP6 or H.264 Codecs for video stream and MP3 , Adaptive Dif-
ferential Pulse-Code Modulation (ADPCM) , AAC , Nellymoser or High-Efficiency
Advanced Audio Coding (HE-AAC) for audio stream. FLV has own proprietary
support for metadata[29].

Matroska (.mkv) is an open multimedia format which use Extensible Binary
Meta Language (EBML) to provide extendibility for future format changes. The
Matroska File Format (MKV) can use various Codecs for encoding video and
audio streams and implement own proprietary tagging system using the EBML
[52].

MPEG-1, MPEG-2 (.MPG, .MPEG, .MPE) are a formats designed by the INTER-
NATIONAL STANDARD ORGANIZATION (ISO) and used in Video CDs (VCD). This con-
tainer is protected by a patent and cannot store any metadata or tags. Video
stream is encoded with MPEG-1 or MPEG-2 codec and audio stream with MP3
codec[2].

MPEG-4 (.MP4) is based on ISO Base Media File Format [8] developed by ISO
and can contain video and audio streams, subtitles and still images. This con-
tainer format allows to stream media over the internet. Video streams can be
encoded using MPEG-4, MPEG-2 or MPEG-1 codec and audio can be encoded
using AAC , MP3 , etc. Metadata may be stored using the format defined by the
standard or using XMP [9].

Ogg (.ogg) is maintained by the XIPH.ORG FOUNDATION and can multiplex a
number of independent streams for audio, video, text and metadata. In this con-
tainer format Free Lossless Audio Codec (FLAC) , OggPCM, Vorbis or Speex codec
can be used to encode audio streams, MPEG-4, DivX, Xvid, RealVideo, WMV or

1Feature containing useful metadata for the DMA

14

2 TECHNOLOGIES 2.5 Audio Codecs

Dirac codec can be used to encode video streams. Metadata can be stored us-
ing Continuous Media Markup Language (CMML) , Ogg Skeleton or Xiph Com-
ments[61].

QuickTime (.MOV, .QT) was introduced by APPLE and contains one or more
tracks, each of which stores a particular type of data such as audio, video, text,
etc. Track can either contains an encoded media stream or a reference to a me-
dia stream in another file. The advantage of the fact that the track can be just
a reference to a stream in another file makes this contaner format more suit-
able for editing media content than the others. QuickTime (QT) uses the same
Codecs for encoding video and audio streams as MPEG-4 container but has less
support especially on hardware devices because it is not an International Stan-
dard like MPEG-4 Container Format. It uses own proprietary tagging system[14].

RealMedia (.RM, .RMVB) was introduced by REALNETWORKS INCORPORATED and
uses RealVideo codec for video and RealAudio codec for audio streams. RealMe-
dia (RM) is supported on many platforms (e.g. Windows, Mac, Linux, Solaris,
etc.)[48] however could be played in the past only on extremely proprietary Re-
alPlayer. But nowadays, for example the open-source ffmpeg[21] library can
play RealVideo without RealPlayer or any parts thereof. This format is suitable
for use as a streaming media format and supports both Constant Bitrate (CBR)
and Variable Bitrate (VBR) encoding.

Video Object (.VOB) is a container format designed for DVD Video and can
contain video stream, multiple audio streams, subtitles, menu and navigation
content. It is based on MPEG Program Stream (specified in MPEG-1 Part 1[2] and
MPEG-2 Part 1[5]). Video stream can be encoded using H.262/MPEG-2 Part 2 or
MPEG-1 Part 2 codec and audio streams using MPEG-1 Audio Layer II, MPEG-2
Audio Layer II, PCM , AC-3 or Digital Theatre Systems (DTS) codec. Information
about the location of audio and video streams, chapters, etc. in a Video Object
(VOB) are stored in separate info (.IFO) and info backup (.BUP) file.

Windows WAVE audio (.WAV) was developed by MICROSOFT and INTERNATIONAL

BUSINESS MACHINES (IBM). Windows Wave Audio (WAV) is similar to AIFF and
contains usually uncompressed Linear Pulse-Code Modulation (LPCM) audio
stream. This format is popular on Windows systems.

2.5 Audio Codecs

A list of audio codecs will be introduced in this section. Because of the large
number of available codecs, only commonly supported audio codecs will be in-
cluded in this overview.

15

2 TECHNOLOGIES 2.5 Audio Codecs

MPEG-2,4 Advanced Audio Coding (AAC) is a standard developed by the MOV-
ING PICTURES EXPERT GROUP (MPEG) . AAC allows to encode five full-bandwidth
channel audio signals at data rates of 320kbps for ITU-R indistinguishable qual-
ity [7]. There is also a HE-AAC version.

Audio Codec 3 (AC-3) is a digital compression algorithm described by the UNITED

STATES ADVANCED TELEVISION SYSTEMS COMMITTEE (ATSC) and can encode from
one to five full-bandwidth audio channels, along with a low frequency enhance-
ment channel. Data rates can be between 32kbps and 640kbps [55].

Apple Lossless Audio Codec (ALAC) is a proprietary lossless audio compres-
sion scheme introduced by APPLE.

MPEG-4 Audio Lossless Coding (ALS) was described by ISO as lossless coding
for digital audio signals with up to 65535 channels support [10].

Digital Theatre System (DTS) was developed by DTS INCORPORATED and is a
lossless audio codec with variable data rates up to 24.5Mbps. It can encode up
to 7 channels and one low frequency enhancement channel [33].

Free Lossless Audio Codec (FLAC) was developed by XIPH.ORG FOUNDATION

and as the name suggest its a lossless audio codec. It can encode up to 8 chan-
nels and it uses Xiph Comments tags for storing metadata [60].

MPEG-1,2 Audio Layer 3 (MP3) is a lossy audio codec described by ISO as part
of MPEG-1 [4] and MPEG-2. Metadata can be stored using ID3 tags or APE tags.

Pulse-Code Modulation (PCM) is an uncompressed, header-less audio for-
mat.

RealAudio is a proprietary audio codec developed by REALNETWORKS [48].

MPEG-4 Scalable to Lossless (SLS) was described by ISO . MPEG-4 Scalable to
Lossless (SLS), is an extension to ISO 14496-3[10] standard and allows lossless
audio compression to lossy MPEG-4 General Audio coding methods.

Speex was developed by XIPH.ORG FOUNDATION. It is a patent-free, lossy audio
codec optimized for VoIP [57].

16

2 TECHNOLOGIES 2.6 Video Codecs

Vorbis is a lossy audio codec developed by XIPH.ORG FOUNDATION which can
encode up to 255 discreet channels. Metadata are stored in the comment header
of the file [62].

Windows Media Audio (WMA) is a proprietary technology developed by MI-
CROSOFT and consists of four distinct codecs[50]:

• Windows Media Audio: a lossy codec able to encode one or two channels
• Windows Media Audio Professional: improved Windows Media Audio codec,

which is able to encode theoretically an unlimited number of channels
• Windows Media Audio Lossless: can encode up to 6 discreet channels
• Windows Media Audio Voice: a lossy audio codec designed for low-bandwidth,

voice application

2.6 Video Codecs

List of commonly used and supported video codecs follows:

MPEG-1 is a lossy video codec introduced by ISO . It supports resolutions up
to 4095x4095 and bitrates up to 100 Mbps [3]. Most common usage of this codec
was on VideoCD.

MPEG-2 is a lossy video codec, a successor of MPEG-1 with some enhance-
ments e.g. support for interlaced video. MPEG-2 decoders are able to playback
MPEG-1 files [6].

MPEG-4 was intended for very high compression of audio and video data and
aims applications such as broadcast video over internet, Local Area Network
(LAN), Wireless Local Area Network (WLAN), video databases, video email, home
movies, games, etc. [47].

RealVideo is a lossy video codec. It is also suitable for streaming and was de-
veloped by REALNETWORKS [49].

Theora is a lossy codec developed by XIPH.ORG FOUNDATION and based on the
VP3 video codec. Additional metadata can be stored in the header [63].

VP6 is a lossy video codec developed by ON2 TECHNOLOGIES, INC.[45].

17

2 TECHNOLOGIES 2.7 Image Formats

WMV is a proprietary lossy video codec developed by MICROSOFT. It consist of
three distinct codecs[50]:

• Windows Media Video
• Windows Media Video Screen, which is a high efficient engine used to

capture computer desktop for presentation purposes.
• Windows Media Video Image, which enables to encode still images with

transition effects.

2.7 Image Formats

In comparison to audio codecs, video codecs and container formats the num-
ber of image formats is not so large. At least if we speak about actually used
formats in the consumer electronics. Also speaking about images the border
between Codecs (the actual representation of an image) and Container Format
(the image file structure) is beginning to disappear. Image Format is used for
both because most of the time the Image Format also specifies both. One ex-
ception is for example the Tag Image File Format (TIFF) which can embed other
Image Formats like Joint Photographic Experts Group (JPEG) or others. If the
mentioned name specifies only a certain Codec or Container Format but not
both, it will be told explicitly.

Graphics Interchange Format (GIF) is a bitmap Image Format developed by
COMPUSERVE. Graphics Interchange Format (GIF) supports animation, Lem-
pel–Ziv–Welch (LZW) compression and palette of up to 256 distinct colors which
can be chosen from 24bit space[32].

Portable Network Graphics (PNG) is an image format using lossless compres-
sion. It supports palette based images and RGB color images both with or with-
out alpha channel. Portable Network Graphics (PNG) was created to replace and
improve GIF [58].

Joint Photographic Experts Group (JPEG) uses lossy compression method
(Codec), which is using the fact, that by selective neglection of certain informa-
tion included in an image, that a much better compression ratio can be achieved
than in lossless compression. Only information which do not cause visible dam-
age by human observation can be neglected[54].

JPEG File Interchange Format (JFIF) is a minimal Container Format for ex-
changing JPEG encoded files commonly used for images on the internet. [26].

18

2 TECHNOLOGIES 2.8 Metadata

Exchangeable Image File Format (EXIF) is a Container Format, which can
contain JPEG or TIFF images and metadata. Exchangeable Image File Format
(EXIF) is used by cameras to store captured images and additional informa-
tion such as rotation, shutter speed, focal length, metering mode, aperture, ISO
speed information, time and date, GPS coordinates, copyright information, etc.
[17].

Tag Image File Format (TIFF) was originally developed by ALDUS CORPORA-
TION and is an unofficial standard for the use of saving images for publishing
purposes. TIFF format is widely supported by image manipulating, publishing,
scanning, faxing, word processing, etc. application. TIFF can contain both mul-
tiple images and additional data in one file. TIFF can also contain a wide range
of image types and compression schemas both lossy and lossless (e.g. JPEG,
LZW, etc.), both vector and bitmap based. The advantage over JPEG files is the
possibility to use lossless (LZW) or none compression in TIFF images what al-
lows images to be edited and re-saved without losing image quality.

The TIFF specification [13] is divided into two parts.

1. Baseline TIFF is the core of TIFF, the essentials that all mainstream TIFF
developers should support in their applications. It describes features such
as multiple subfiles, three basic compression schemes (None, PackBits
and Modified Huffman compression), image types (BW, grayscale, palette-
color, and RGB full-color images), byte order, etc. [13]

2. TIFF Extensions are TIFF features that may not be supported by all TIFF
readers such as: CCIT Bilevel Encoding, LZW Copression, JPEG Compres-
sion, CMYK images, Associated Alpha Handling, etc. [13]

2.8 Metadata

Metadata systems will be introduced in this section. Only shared metadata sys-
tems between more than one Codec or Container Format will be mentioned
here. Audio, video and image formats which implement own metadata system
separately for each distinct Codec or Container Format will not be included in
this list.

Metadata systems are shown in Table 3 ‘Metadata Systems Overview’ on
page 21. The support of a concrete tagging system is indicated with symbol “X”
in the corresponding table cell. Only codecs and container formats with meta-
data support are included in that table. Information about the content such as
author, title, year, producer, etc. is meant by metadata in this context.

IDentify an MP3 (ID3) is a tagging system for audio files to store information
about the origin and content of the audio within the file itself [44]. It is used for

19

2 TECHNOLOGIES 2.8 Metadata

MP3 , AIFF (inside IFF chunk called ID3), Advanced Systems Format (ASF) as
attributes and MP4 Container Format.

APE tag are unstructured key/value pairs, originally designed for MONKEY’S

AUDIO but can be used nowadays also for MP3 files[12].

eXtensible Metadata Platform (XMP) is a standard created by ADOBE [28] and
used in various file formats (e.g. PDF, JPEG , GIF , PNG , TIFF , MP3 , MP4, AVI ,
WAV).

Xiph Comments is a metadata system [59]which is used in Vorbis, FLAC , The-
ora and Speex formats.

Media
Format

Required Format Set
Home Devices Mobile Devices

Imaging JPEG JPEG
Audio LPCM (2 channel) MP3 and MPEG4 AAC LC
Video MPEG2 MPEG4 AVC (AAC LC Assoc Au-

dio)

Media
Format

Optional Format Set
Home Devices Mobile Devices

Imaging GIF, TIFF, PNG GIF, TIFF, PNG
Audio MP3, WMA 9, AC-3, AAC,

ATRAC3plus
MPEG4 (HE-AAC, AAC LTP,
BSAC), AMR, ATRAC3plus,
G.726, WMA, LPCM

Video MPEG1, MPEG4, WMV 9 VC1, H.263, MPEG4 part 2,
MPEG2, MPEG4 AVC (BSAC or
other for Assoc. Audio)

Table 2: Supported DLNA Media Formats[11]

20

2 TECHNOLOGIES 2.8 Metadata

APE ID3 Ogg Vorbis XMP XTAG Other
Skel Comment

Theora X
WMV X1

FLAC X
MP3 X X X

RealAudio X2

Speex X
Vorbis X
WMA X1

AIFF X
ASF X
AVI X

DivX X
FLV X

MKV X3

MPEG-4 X X
Ogg X X
QT X
RM X

WAV X

Table 3: Metadata Systems Overview

1Inside ASF container
2Real Audio Metadata (RAM)
3Matroska Tags [41]

21

2 TECHNOLOGIES 2.8 Metadata

C
o

n
tain

er
Fo

rm
at

V
id

eo
Fo

rm
ats

A
u

d
io

Fo
rm

ats
Su

b
titles

M
etad

ata
M

en
u

Su
p

p
o

rt
A

IF
F

-
P

C
M

,A
IF

C
-

-
-

A
SF

an
y

an
y

X
X

-
AV

I
an

y
an

y
X

X
-

D
ivX

M
P

E
G

-4
M

P
3,P

C
M

,A
C

-3
X

-
X

F
LV

So
ren

so
n

,
V

P
6,

Screen
V

id
eo,

H
.264/M

P
E

G
-4

AV
C

M
P

3,
N

ellym
o

ser,
A

D
P

C
M

,Lin
ear

P
C

M
,

A
A

C
,Sp

eex

-
X

-

M
K

V
an

y
an

y
X

X
X

M
P

E
G

-1
M

P
E

G
-1

M
P

E
G

-1
Layers

1
-

3
-

-
-

M
P

E
G

-4
M

P
E

G
-2,

M
P

E
G

-4,
H

.263,V
C

-1,D
irac

A
A

C
,M

P
3,A

C
-3,A

LS,
SLS,Vo

rb
is

X
X

X

O
gg

T
h

eo
ra,

D
irac,

O
g-

gU
V

S,
M

N
G

,
V

fW
,

...

Vo
rb

is,
F

L
A

C
,

Sp
eex,

C
E

LT,O
ggP

C
M

,A
C

M
,

...

X
X

-

Q
T

M
P

E
G

-2,
M

P
E

G
-4,

H
.263,

V
C

-1,
D

irac,
So

ren
so

n

A
A

C
,M

P
3,A

C
-3,A

LS,
SLS,Vo

rb
is

X
X

X

R
M

R
ealV

id
eo

8,9,10
A

A
C

,
C

o
o

k
C

o
d

ec,
Vo

rb
is,R

ealA
u

d
io

X
-

-

V
O

B
M

P
E

G
-1,M

P
E

G
-2

A
C

-3,
Lin

ear
P

C
M

,
D

T
S,M

P
3

X
-

X

W
AV

-
P

C
M

-
-

-

Tab
le

4:M
ed

ia
C

o
n

tain
er

Fo
rm

ats
C

o
m

p
ariso

n

22

2 TECHNOLOGIES 2.8 Metadata

Fo
rm

at
L

o
ss

y
C

o
m

p
re

ss
io

n
A

A
C

A
C

-3
D

T
S

M
P

3
N

el
ly

m
o

se
r

R
ea

lA
u

d
io

Sp
ee

x
Vo

rb
is

W
M

A
A

SF
X

X
X

X
-

X
X

-
X

AV
I

X
X

X
X

-
X

X
-

X
D

iv
X

X
X

-
X

-
-

-
-

-
F

LV
X

-
-

X
X

-
X

-
-

M
K

V
X

X
X

X
-

X
X

X
X

M
P

E
G

-1
-

-
-

X
-

-
-

-
-

M
P

E
G

-4
X

-
-

X
-

-
-

-
-

O
gg

-
-

-
-

-
-

X
X

-
Q

T
X

-
-

X
-

-
-

-
-

R
M

-
-

-
-

-
X

-
-

-
V

O
B

-
X

X
X

-
-

-
-

-

Fo
rm

at
L

o
ss

le
ss

C
o

m
p

re
ss

io
n

A
L

A
C

A
L

S
F

L
A

C
P

C
M

SL
S

A
SF

X
X

X
X

X
AV

I
X

X
X

X
X

D
iv

X
-

-
-

-
-

F
LV

-
-

-
X

-
M

K
V

X
X

X
X

X
M

P
E

G
-1

-
-

-
-

-
M

P
E

G
-4

X
X

-
-

X
O

gg
-

-
X

X
-

Q
T

X
X

-
-

-
R

M
-

-
-

-
-

V
O

B
-

-
-

X
-

Ta
b

le
5:

M
ed

ia
C

o
n

ta
in

er
Fo

rm
at

s
an

d
A

u
d

io
C

o
d

ec
s

Su
p

p
o

rt

23

2 TECHNOLOGIES 2.8 Metadata

Fo
rm

at
M

P
E

G
1

M
P

E
G

2
M

P
E

G
4

W
M

V
R

ealV
id

eo
T

h
eo

ra
So

ren
so

n
V

P
6

A
SF

X
X

X
X

-
X

-
-

AV
I

X
X

X
X

-
X

-
-

D
ivX

-
-

X
-

-
-

-
-

F
LV

-
-

X
-

-
-

X
X

M
K

V
X

X
X

X
X

X
-

-
M

P
E

G
-1

X
-

-
-

-
-

-
-

M
P

E
G

-4
X

X
X

X
-

-
-

-
O

gg
X

X
X

X
-

X
-

-
Q

T
X

X
X

X
-

X
X

-
R

M
-

-
-

-
X

-
-

-
V

O
B

X
X

-
-

-
-

-
-

Tab
le

6:M
ed

ia
C

o
n

tain
er

Fo
rm

ats
an

d
V

id
eo

C
o

d
ecs

Su
p

p
o

rt

24

3 MARKET OVERVIEW

3 Market overview

3.1 Devices Overview

Because of the huge amount of devices available on the market there is no way to
show them all. In this section only a small sample will be shown to demonstrate
the market diversity and functionality differences or similarities.

Most of the devices are not pure DMS. It is common that a device combines
more DLNA device classes together (e.g. DMP, DMC, etc.). But all listed devices
contain at least the DMS DLNA class.

Boxie Box

Boxie Box is a Digital Media Player from D-LINK. This player con-
tains High-Definition Multi-media Interface (HDMI) output which
allows to play video content in FullHD (1080p). It supports follow-
ing file formats:

Video AVI, DivX, MPEG-4, QuickTime, Xvid

Audio MP3, ACC, FLACK, OGG, WMA, WAV

Image BMP, GIF, JPEG, PNG, TIF

Boxie Box enables to play content from different sources. This
can be external disk attached to build-in USB 2.0 port, internet stream
video portals (e.g. Netflix, YouTube, Last.fm, Pandora, Flickr, Picasa)
or SD card.

This player can be attached to the network via RJ-45 100Mbit
Ethernet cable or WiFi 802.11 (incl. WEB, WPA, WPA2 encryption).

Vendor page: http://www.dlink.com/boxee/

Aspire Revo RV100

Digital Media Player with internal 1.5TB HDD (SATA II). Additional
external HDD can be attached via USB 2.0 port. The device also
includes internal memory card reader and support of following file
formats is available:

Video MPEG-1, MPEG-2, MPEG-4, H.264, XviD, WMV9, RV

Audio MP3, PCM, WMA, AAC, FLAC, WAV, OGG, AAC

Image JPEG, BMP, GIF, TIFF, PNG

This player can be attached to a TV via HDMI, YPbPr or A/V ca-
ble and to audio player via digital optical cable. The device can be
connected to the network via RJ-45 100Mbit Ethernet or WiFi 802.11.
Content from internet stream video portals (e.g. YouTube, Flickr, Pi-
casa) can be also played by this device.

25

3 MARKET OVERVIEW 3.2 Media Server Software Overview

Because the important part of the physical devices for the purpose of this
thesis is only the DMS software, comparison of the available software in more
detail on the market will follow. The DMS software has the advantage over the
physical devices that it can be used by more than one vendor in more than one
device. Also the important parameters of a physical device for the purpose of
this thesis are only parameters describing the DMS software.

3.2 Media Server Software Overview

There are many media servers on the market and each has different advantages
and disadvantages. The media servers listed in Table 7 ‘Media servers: Media
support comparison [25]’ on page 27, Table 8 ‘Media Servers: Operating Sys-
tems and License Comparison [25]’ on page 28, Table 9 ‘Media Servers: Vendor’s
Product Pages[25]’ on page 29, Table 11 ‘Media Servers: Supported Audio For-
mats’ on page 31, Table 10 ‘Media Servers: Supported Video Formats’ on page 30
and Table 12 ‘Media Servers: Supported Image Formats’ on page 32 are in alpha-
betical order and all of them are UPnP 1 compliant. The tables are based on the
Comparison Chart made by Robert Green[25]. All existing data were rechecked
because of the quick development in this field.

In Table 7 ‘Media servers: Media support comparison [25]’ on page 27
playable media types are shown. The Video column indicates that the device
is able to play at least one type of video Container Format and decode at least
one video Codec. The Music column indicates that at least one type of music
Container Format and one audio Codec can be streamed. The Pictures column
indicates that at least one type of Image Format can be served. The Transcod-
ing column indicates that the software can convert media content at least from
one Codec to one another. The Operating System support and license is shown
in Table 8 ‘Media Servers: Operating Systems and License Comparison [25]’ on
page 28. Vendor’s product web pages are listed in Table 9 ‘Media Servers: Ven-
dor’s Product Pages[25]’ on page 29.

Main Audio/Video/Image formats supported by those servers are listed in
Table 11 ‘Media Servers: Supported Audio Formats’ on page 31, Table 10 ‘Me-
dia Servers: Supported Video Formats’ on page 30 and Table 12 ‘Media Servers:
Supported Image Formats’ on page 32. If the particular server suports none of
the media type formats than it is indicated by "None". If no source (i.e. doc-
umentation, sourcecode, webpage, etc.) providing the information was found
then this fact is indicated by "Information N/A".

In some cases the support of formats is dependent on other libraries. In
that case this fact is indicated by keyword "Depends on LIB", where LIB is the

1Universal Plug and Play permits networked devices in residential networks to seamlessly dis-
cover each other’s presence in the network and establish functional network services for data
sharing, communications, and entertainment. This set of networking protocols is described in
detail in Section 2.3 ‘Universal Plug and Play (UPnP)’ on page 9

26

3 MARKET OVERVIEW 3.2 Media Server Software Overview

library the support depends on. If the list of supported formats is not complete
then this fact is indicated by "and more ...". The list of supported formats can be
incomplete because of two possible reasons. First the list of supported formats
is too big so it was cut and only key formats are shown. Second, the support of a
format can be extended by plugin or extension.

Most of the listed servers provide not only DMS but also DMP, DMR or DMC
functionality.

Name Video Music Pictures Transcoding
Allegro Media Server - X - -
Cyber Media Gate (Java) X X X -
Cyberlink Digital Home X X X -
Enabler Kit - - - -
Elgato Eyeconnect X X X -
Enna X X X -
Fuppes X X X X
Geexbox X X X -
GMediaServer X X X -
JRiver Media Center X X X -
MediaTomb X X X X
Mezzmo X X X X
MiniDLNA X X X -
MythTV X X X X
Nero MediaHome X X X X
Nullriver Medialink X X X X
On2Share X X X -
PS3 Media Server X X X X
Rhapsody X X X -
SimpleCenter Premium - X - X
Serviio X X X X
Tversity X X X X
TwonkyMedia X X X X
uShare X X X -
Wild Media Server X X X X
Winamp Remote X X - -
Windows Media Connect X X X X
Yahoo Music Jukebox - X - -

Table 7: Media servers: Media support comparison [25]

27

3 MARKET OVERVIEW 3.2 Media Server Software Overview

Name Windows MacOS Linux License
Allegro Media Server X X - Comercial
Cyber Media Gate (Java) X X X BSD
Cyberlink Digital Home X - - Comercial
Enabler Kit - - -
Elgato Eyeconnect - X - Comercial
Enna - - X LGPL, GPLv2
Fuppes X - X GPL
Geexbox full-featured OS GPL
GMediaServer - - X GPL
JRiver Media Center X - - Comercial
MediaTomb - X X GPL
Mezzmo X - - Comercial
MiniDLNA - - X BSD, GPL
MythTV - - X GPL
Nero MediaHome X - - Comercial
Nullriver Medialink - X - Comercial
On2Share X - - Comercial
PS3 Media Server X X X GPLv2
Rhapsody X X X Comercial
SimpleCenter Premium X - - Comercial
Serviio X X X Freeware
Tversity X - - Comercial
TwonkyMedia X X X Comercial
uShare - - X GPL
Wild Media Server X X X Comercial
Winamp Remote X - - Comercial
Windows Media Connect X - - Comercial
Yahoo Music Jukebox X - - Comercial

Table 8: Media Servers: Operating Systems and License Comparison [25]

28

3 MARKET OVERVIEW 3.2 Media Server Software Overview

Name Product page
Allegro Media Server http://www.allegrosoft.com/ams.html
Cyber Media Gate (Java) http://www.cybergarage.org/twiki/...

/bin/view/Main/MediaGateForJava
Cyberlink Digital Home http://www.cyberlink.com/multi/...
Enabler Kit /products/main_111_ENU.html
Elgato Eyeconnect http://www.elgato.com
Enna http://enna.geexbox.org
Fuppes http://fuppes.ulrich-voelkel.de
Geexbox http://www.geexbox.org
GMediaServer http://www.gnu.org/software/gmediaserver
JRiver Media Center http://www.jrmediacenter.com
MediaTomb http://mediatomb.cc
Mezzmo http://www.conceiva.com/products/...

/mezzmo/default.asp
MiniDLNA http://sourceforge.net/projects/minidlna
MythTV http://www.mythtv.org
Nero MediaHome http://www.nero.com/enu/mediahome4

-introduction.html
Nullriver Medialink http://www.nullriver.com/products/medialink
On2Share –
PS3 Media Server http://ps3mediaserver.blogspot.com
Rhapsody http://www.real.com/rhapsody
SimpleCenter Premium –
Serviio http://www.serviio.org
Tversity http://tversity.com/home
TwonkyMedia http://www.twonkyvision.de
uShare http://ushare.geexbox.org
Wild Media Server http://www.wildmediaserver.com
Winamp Remote https://winamp.orb.com/orb/html/login.html
Windows Media Connect http://www.microsoft.com/windows/...

/windowsmedia/devices/wmconnect/default.aspx
Yahoo Music Jukebox http://new.music.yahoo.com/

Table 9: Media Servers: Vendor’s Product Pages[25]

29

http://www.allegrosoft.com/ams.html
http://www.cybergarage.org/twiki/bin/view/Main/MediaGateForJava
http://www.cybergarage.org/twiki/bin/view/Main/MediaGateForJava
http://www.cyberlink.com/multi/products/main_111_ENU.html
http://www.cyberlink.com/multi/products/main_111_ENU.html
http://www.elgato.com
http://enna.geexbox.org
http://fuppes.ulrich-voelkel.de
http://www.geexbox.org
http://www.gnu.org/software/gmediaserver
http://www.jrmediacenter.com
http://mediatomb.cc
http://www.conceiva.com/products/mezzmo/default.asp
http://www.conceiva.com/products/mezzmo/default.asp
http://sourceforge.net/projects/minidlna
http://www.mythtv.org
http://www.nero.com/enu/mediahome4-introduction.html
http://www.nero.com/enu/mediahome4-introduction.html
http://www.nullriver.com/products/medialink
http://ps3mediaserver.blogspot.com
http://www.real.com/rhapsody
http://www.serviio.org
http://tversity.com/home
http://www.twonkyvision.de
http://ushare.geexbox.org
http://www.wildmediaserver.com
https://winamp.orb.com/orb/html/login.html
http://www.microsoft.com/windows/windowsmedia/devices/wmconnect/default.aspx
http://www.microsoft.com/windows/windowsmedia/devices/wmconnect/default.aspx
http://new.music.yahoo.com/

3 MARKET OVERVIEW 3.2 Media Server Software Overview

Name Video Formats
Allegro Media Server None
Cyber Media Gate (Java) Information N/A
Cyberlink Digital Home MPEG2 PS, MPEG2 TS, WMV, H.264 (MP4)
Enabler Kit
Elgato Eyeconnect MPEG1, MPEG2, MPEG4, 3IVX, DIVX,

XVID (incl. DIV3, DX50)
Enna Depends on libplayer
Fuppes Depends on ffmpeg instalation
Geexbox AVI, MPEG, DIVX, OGM

Depends on libplayer
GMediaServer Information N/A
JRiver Media Center VideoCD, AVI, MPEG, MPEG4, WMV, DIVX,

DVD, QT, RV, SWF, TiVo, FLV
MediaTomb Depends on ffmpeg instalation
Mezzmo AVI, H264, SWF, MPEG, DV, RM, MPEG4,

and more...
MiniDLNA Depends on ffmpeg instalation
MythTV Big amount of formats.
Nero MediaHome Information N/A
Nullriver Medialink MPEG1, MPEG2, MPEG4, H.264, DIVX, XVID,

AVI, WMV, ASF, MOV, MKV, FLV
On2Share ?
PS3 Media Server AVI, MPEG-4, TS, M2TS, MPEG-2, DVD, MKV,

FLV, OGM, AVI
Rhapsody None
SimpleCenter Premium Information N/A
Serviio MPEG1, MPEG2, MPEG4, AVI, VMW, MKV, FLV
Tversity WMV, MJPEG, DVR-MS, AVI, DIVX(3,4,5,6),

XVID, MPEG1, MPEG2, MPEG4, MOV, RT, FLV,
MKV

TwonkyMedia MPEG1, MPEG2, MPEG2-TS, MPEG4, AVI,
WMV, VOB, DivX, 3GP, VDR, ASF, MPE,
DVR-MS, XVID

uShare ASF, AVI, DV, DIVX, WMV, MJPEG, MPEG1,
MPEG2, MPEG4, DVD, MKV, MOV, QT, ...

Wild Media Server 3GP, ASF, AVI, DIVX, EVO, FLV, MPEG1,
MPEG2, MPEG4, MKV, MOV, VDR, DVD,
WMV, XVID, and more...

Winamp Remote Information N/A
Windows Media Connect Information N/A
Yahoo Music Jukebox None

Table 10: Media Servers: Supported Video Formats
30

3 MARKET OVERVIEW 3.2 Media Server Software Overview

Name Audio Formats
Allegro Media Server AAC, MP3, WAV, AIFF, and more...
Cyber Media Gate (Java) Information N/A
Cyberlink Digital Home MP3, LPCM, WMA, AAC_ADTS_320 (3GP),
Enabler Kit AAC_ISO_320 (3GP)
Elgato Eyeconnect AIFF, MP1, MP2, MP3, WAV, AAC (unprotected),

Ogg, WMA (unencrypted), PLS (Internet Radio)
Enna Depends on libplayer
Fuppes MP2, MP3, WAV, PCM, OGG, MPC, FLAC, AAC
Geexbox RM, MP3, OGG, CDA

Depends on libplayer
GMediaServer AAC, RIFF WAVE, and more...
JRiver Media Center APE, MPC, MP3, OGG, WAW, WMA, AAC,

AIFF, AU, AA, CDA, MIDI, RA, SHN,
AC3, FLAC, DTS WAV

MediaTomb MP3, FLAC, OGG, and more...
Mezzmo AC3, AMR, ASF, AU, MP3, OGG, WAV, AAC,

and more...
MiniDLNA MP3, OGG, FLAC
MythTV Big amount of formats.
Nero MediaHome Information N/A
Nullriver Medialink MP3, AAC, WMA, WAV
On2Share Information N/A
PS3 Media Server MP3, AC3, DTS, LPCM, OGG, FLAC, MPC,

APE
Rhapsody Information N/A
SimpleCenter Premium Information N/A
Serviio MP3, WMA, ACC, OGG, FLAC
Tversity WMA, MP3, ACC, RT, OGG, FLAC, APE,

MPC, WAV,
TwonkyMedia MP3, WMA, WAV, 3GP, M4A, MP4, LPCM,

OGG, FLAC, MP2, AC3, MPA, MP1, AIF
uShare AAC, AC3, AIFF, AU, SND, DTS, RMI, MP1,

MP2, MP3, MP4, MPA, OGG, WAV, PCM,
LPCM, WMA MKA, RM, FLAC, and more...

Wild Media Server AC3, AMR, APE, DTS, FLAC, MP1, MP2, MP3,
OGG, WAV, WMA, and more...

Winamp Remote Information N/A
Windows Media Connect Information N/A
Yahoo Music Jukebox Information N/A

Table 11: Media Servers: Supported Audio Formats

31

3 MARKET OVERVIEW 3.2 Media Server Software Overview

Name Image Formats
Allegro Media Server None
Cyber Media Gate (Java) Information N/A
Cyberlink Digital Home JPG, PNG, BMP
Enabler Kit
Elgato Eyeconnect JPEG, BMP, GIF, PNG, TIFF
Enna Depends on libplayer
Fuppes Depends on ImageMagick instalation
Geexbox Depends on libplayer
GMediaServer Information N/A
JRiver Media Center JPEG, TIFF, BMP, GIF, PNG, RAW
MediaTomb JPEG, ...
Mezzmo BMP, PNG, GIF, JPEG, TIFF
MiniDLNA JPEG
MythTV Big amount of formats.
Nero MediaHome Information N/A
Nullriver Medialink JPEG, PNG, GIF, TIFF, BMP, RAW,

PDF, PS, EPS, TGA
On2Share Information N/A
PS3 Media Server JPG, PNG, GIF, TIFF
Rhapsody None
SimpleCenter Premium Information N/A
Serviio JPEG, GIF, PNG
Tversity Information N/A
TwonkyMedia JPEG, PNG, TIF, BMP
uShare BMP, ICO, GIF, JPEG, PCD, PNG,

PNM, PPM, QTI, QTF, QTIF, TIFF
Wild Media Server BMP, EPS, GIF, JPG, PCD, PCX, PIC,

PNG, PSD, SCR, TGA, TIFF, ...
Winamp Remote Information N/A
Windows Media Connect Information N/A
Yahoo Music Jukebox None

Table 12: Media Servers: Supported Image Formats

32

3 MARKET OVERVIEW 3.3 Apple AirPlay

3.3 Apple AirPlay

The Apple AirPlay is a replacement for the DLNA by APPLE. This is a new feature
added to devices like iPhone, iPad and iPod Touch with iOS 4.2 and above. To
play media using AirPlay you will need an iOS device and at least one of AirPort
Express, AppleTV v2, third-party AirPlay-ready speaker, or a Bluetooth audio de-
vice [43]. Media controls on a Bluetooth audio device will allow to play, pause or
skip the music.

iTunes can be also used with AirPlay. Though there are some differences
between playing media from iTunes and playing media from iOS 4.2+ device.
For example iTunes will allow you to send the media to multiple different devices
and play for example the video on an AirPlay ready TV and audio stream on a
HiFi set, while iOS devices are able to send the media just to one place at a time.
However, iTunes are not able to use Bluetooth audio devices.

Now a closer look on Apple AirPlay devices and software follows:

Airport Express is a WiFi access point, which allows connection to USB printer,
modem or LAN over 10/100BASE-T Ethernet cable, and/or speaker over 3.5mm
Audio Jack. Speakers connected to Airport Express appear in the network and
audio can be played on them by iTunes or iOS device[31].

Apple TV is a box which can be connected to a High-definition television (HDTV)
via HDMI cable. To the home network it can be connected via 10/100BASE-T
Ethernet or Wi-Fi 802.11b, g or n wireless network. An additional optical audio
output is present and the box is supplied with a simple remote control[31]. Sup-
ported media formats are shown in Table 13 ‘Apple TV supported formats [30]’:

Video Formats H.264, MPEG 4, M-JPEF
Audio Formats HE-AAC, AAC, MP3, AIFF, WAV
Image Formats JPEG, GIF, TIFF

Table 13: Apple TV supported formats [30]

iOS devices starting with iOS version 4.2, such as iPad, iPhone (3GS or later)
or iPod touch (2nd generation or later), are able to stream video, audio or im-
ages using AirPlay to Apple TV, Airport Express or compatible third-party device.
There are still some limitations, e.g. that only one media can be played on only
one AirPlay device[31].

iTunes can stream media files to AirPlay devices. Advantage over iOS devices
is that media can be played on multiple AirPlay devices[31].

33

3 MARKET OVERVIEW 3.4 Summary

3.4 Summary

The market evolves very quickly. New servers are showing up. Existing ones are
always adding new features, supporting more formats and/or standards. The
purpose of this overview is to have a view on the current state of the market
and decide which features/formats have to be supported by a DMS and what
technologies can be used to achieve that approach.

Commonly used Container Formats and Codecs in the devices and software
on the market were introduced. This gives the picture of the diversity of the soft-
ware and the devices and accompanying difficulty of universal media support.

34

4 HOME ENVIRONMENT EXAMPLE

4 Home Environment Example

In this section an example of a home environment, which will be used as an
example of typical run environment and for testing of the implementation in
the Part II of this thesis, will be shown. The example should also outline the
diversity and amount of device in a typical household.

In this example a four member household as a typical sample will be spec-
ulated, which gives us enough diversity in the device classes. The household
consist of:

• Middle-aged man
• Middle-aged woman
• Adult in his twenties
• Adolescent

There are following rooms in the house: Livingroom, Kitchen, Room 1, Room
2, Workroom and Garage.

Devices available in the household are shown in Table 14 ‘Home Environ-
ment Example: Available Devices’ on page 37. The column Class indicates the
DLNA class if any. Column Location indicates the location of the device in the
house. If a device is connected to the DLNA network using wireless connection
and its position is not fixed in one of the rooms, then this fact is indicated by
"–". The column Connection indicates how the devices are connected together.
The whole scheme of the household example can be seen in Figure 3 ‘Home
Environment Example’ on page 38.

Media Content in the Network is following:

• PC

– 1321 GB in 3747 video files
– 54 GB in 11513 music files
– 49 GB in 28125 image files

• Notebook 1

– 12 GB in 2058 music files

• Notebook 2

– 5GB 2105 image files
– 10GB 16 video files

• NAS Storage 1

– 1116 GB in 2557 video files

• NAS Storage 2

– 386 GB in 2018 video files

35

4 HOME ENVIRONMENT EXAMPLE

• NAS Storage 3

– 25 GB in 4869 music files

• USB External HDD 1

– 466 GB in 2690 video files

• USB External HDD 2

– 855 GB in 1057 video files

• USB External HDD 3

– 34 GB in 5569 music files

• Cellphone 1

– 5 GB in 1258 music files

• Cellphone 2

– 3 GB in 908 music files

• Cellphone 3 - N/A for the testing of the implementation
• Camera 1

– 3GB 1210 image files

• Camera 2 - N/A for the testing of the implementation
• Video Camera - N/A for the testing of the implementation

36

4 HOME ENVIRONMENT EXAMPLE

Name Class Location Connection
Central Server DMS – LAN, WiFi
NAS Storage 1 – – Central Server
PC DMS Workroom LAN

DMP
NAS Storage 2 – Workroom PC
USB External HDD 1 – Workroom PC
Notebook 1 DMS Room 1 WiFi

DMP
NAS Storage 3 – Room 1 Notebook 1
USB External HDD 2 – Room 1 Notebook 1
Notebook 2 DMS Room 2 WiFi

DMP
USB External HDD 3 – Workroom Notebook 2
Kitchen player DMP Kitchen WiFi
Garage player DMP Garage WiFi
DLNA TV DMP Livingroom LAN
DLNA Audio Receiver DMP Livingroom LAN
DLNA Controller DMC Livingroom WiFi
Cellphone 1 – – WiFi, USB, BT
Cellphone 2 – – WiFi, USB, BT
Cellphone 3 – – WiFi, USB, BT
PDA M-DMU – WiFi, USB, BT

M-DMD –
Camera 1 – – USB, SD Card
Camera 2 – – USB, SD Card
Video Camera – – USB, SD Card, DVD

Table 14: Home Environment Example: Available Devices

37

4 HOME ENVIRONMENT EXAMPLE

Figure 3: Home Environment Example

38

Part II. - Implementation

This part contains description how the technologies, formats and techniques
mentioned in Part I are used in implementation of the prototype software. De-
scription of the architecture and design of the software developed as part of this
thesis, used libraries and other 3rd party software used in the actual implemen-
tation is present.

39

5 SHARED MEDIA TYPES

5 Shared Media Types

This chapter describes selected libraries used to extract desired information from
the different Container Formats and/or Codecs mentioned in Part I. Because of
the huge number of the different Container Formats, Codecs and metadata for-
mats, only those actually used in the implementation of prototype software are
mentioned. The goal of this thesis is not to try to support as much different for-
mats as possible but to show an example of a DMA with such abilities and sketch
the increasing implementation difficulty with increasing number of supported
Container Formats and Codecs.

5.1 Audio

5.1.1 ID3 Tag

The ID3 Tag is a data container within the audio file containing related text
and/or graphical information about the audio such as artist name, song title,
genre, year, cover image etc. It was created first for MP3 audio files. There are
two versions of the ID3 Tag by now.

ID3v1 is the first version, which allowed to store informations like song title,
author, album, year and comment (see Figure 4 ‘Internal layout of an ID3v1
tagged file[27]’ on page 42 and Table 15 ‘Fields in ID3[27]’). In ID3v1 was not
enough room for improvement or extension. The only improvement made to
this version was ID3v1.1 which added an album track field containing the num-
ber of the song on the CD the music comes from (see Figure 5 ‘Internal layout of
an ID3v1.1 tagged file[27]’ on page 42)[27].

Field Name Size
Song Title 30 characters
Artist 30 characters
Album 30 characters
Year 4 characters
Comment 30 characters
Genre 1 byte

Table 15: Fields in ID3[27].

ID3v2 was introduced because of the insufficient room for improvement in
ID3v1. ID3v2 is focused on flexibility and extensibility. It is a chunk of data
before the audio data in the file and can contain one or more smaller chunks
called frames. A frame in the ID3v2 tag can contain any kind of data, not just the

41

5 SHARED MEDIA TYPES 5.1 Audio

Figure 4: Internal layout of an ID3v1 tagged file[27].

Figure 5: Internal layout of an ID3v1.1 tagged file[27].

42

5 SHARED MEDIA TYPES 5.1 Audio

ones mentioned in the ID3v1. Additionally it can contain a cover image, author
or producer website URL, etc. (see Figure 6 ‘Internal layout of an ID3v2 tagged
file[27]’)[27].

Figure 6: Internal layout of an ID3v2 tagged file[27].

jID3lib library[38] is used in the implementation of prototype software to sup-
port ID3 tags. This library covers following tags:

• ID3v1
• ID3v1.1
• ID3v2.2
• ID3v2.3
• ID3v2.4
• Lyrics3v1 - not used
• Lyrics3v2 - not used

5.1.2 Xiph Comments

Xiph Comments are embedded into Ogg container, basically used for Ogg Vorbis,
FLAC and Speex and are meant for short text comments. The comment header
is a list of vectors and each vector can have the maximum length of 32 bytes.
Vendor vector is the only obligatory vector in the list. Comment headers are
encoded as follows[62]:

• VENDOR_LENGHT - 32bit unsigned integer
• VENDOR_STRING - UTF-8 vector as vendor_lenght octets
• COMMENT_LIST_LENGTH - 32bit unsigned integer

43

5 SHARED MEDIA TYPES 5.2 Image

• COMMENT_1_LENGTH - 32bit unsigned integer
• COMMENT_1_STRING - UTF-8 vector as comment_1_lenght octets
• COMMENT_2_LENGTH - 32bit unsigned integer
• COMMENT_2_STRING - UTF-8 vector as comment_2_lenght octets
• ... -
• COMMENT_N_LENGTH - 32bit unsigned integer
• COMMENT_N_STRING - UTF-8 vector as comment_N_lenght octets
• FRAMING_BIT - boolean

The comment vector structure looks like[62]:

• comment[0]="ARTIST=me"
• comment[1]="TITLE=The sound of Vorbis"
• ...

This is the minimal list of standard field names[62]:

• TITLE
• VERSION
• ALBUM
• TRACKNUMBER
• ARTIST
• PERFORMER
• COPYRIGHT
• LICENSE
• ORGANIZATION
• DESCRIPTION
• GENRE
• DATE
• LOCATION
• CONTACT
• ISRC

The field names are not required to be unique within a comment header,
i.e. more authors can be specified using multiple AUTHOR comment fields.

J-Ogg is a library that is used in the implementation to access the Xiph com-
ments [39].

5.2 Image

5.2.1 EXIF & IFD

Image File Directory (IFD) is a recurring data structure within the EXIF. Accord-
ing to [17] IFD consists of 2Bytes indicating the number of fields, 12Bytes per

44

5 SHARED MEDIA TYPES 5.2 Image

field and 4Bytes indicating the offset to the next IFD [13]. Every 12Byte field
consist of:

Bytes 0-1 Tag identified by 2Byte unique number.
Bytes 2-3 Type identifying the value type:

1: BYTE 8bit unsigned integer
2: ASCII 8bit Byte containing one 7bit ASCII code. The final Byte is termi-

nated with NULL.
3: SHORT 16bit unsigned integer.
4: LONG 32bit unsigned integer.
5: RATIONAL 2 LONGs, first is numerator and second is denominator.
7: UNDEFINED 8bit Byte.
9: SLONG 32-bit (4Byte) signed integer.
10: SRATIONAL 2 SLONGs, first is numerator and second is denomina-

tor.

Bytes 4-7 Count (number) of values.
Bytes 8-11 Value offset records the offset from the start of the header to the po-

sition where the value itself is recorded.

Some important IFD are listed in Table 16 ‘Selection of relevant TIFF Rev.
6.0 IFD Attributes [17]’ on page 46, Table 17 ‘Selection of relevant EXIF IFD At-
tributes [17]’ on page 46, Table 18 ‘Selection of relevant GPS IFD Attributes [17]’
on page 47.

In Section 2.7 ‘Image Formats’ on page 18, image formats which are con-
sidered in this thesis are discussed. A look on some libraries, which allow us to
extract metadata from those files, follows.

Sanselan is a pure-Java image library which is used to retrieve additional meta-
data from images in the implementation of the prototype software. Is supports
following image formats (library supports more image formats than the ones
listed here):

• TIFF
• JPEG/JFIF EXIF metadata
• JPEG/JFIF IPTC metadata

Although lot of image libraries are available out there, this library was cho-
sen because it is a pure-java library, its portability and the number of supported
image formats[51].

45

5 SHARED MEDIA TYPES 5.2 Image

Tags related to the image data structure
Tag ID Field Name Type Count

256 ImageWidth SHORT / LONG 1
257 ImageLength SHORT / LONG 1
258 BitsPerSample SHORT 3
259 Compression SHORT 1
274 Orientation SHORT 1
282 XResulution RATIONAL 1
283 YResolution RATIONAL 1
296 ResolutionUnit SHORT 1

Other tags
Tag ID Field Name Type Count

306 DateTime ASCII 20
270 ImageDescription ASCII Any
271 Make ASCII Any
272 Model ASCII Any
305 Software ASCII Any
315 Artist ASCII Any

33432 Copyright ASCII Any

Table 16: Selection of relevant TIFF Rev. 6.0 IFD Attributes [17]

Tags Relating to User Information
Tag ID Field Name Type Count
36864 ExifVersion UNDEFINED 4

Tags Relating to User Information
Tag ID Field Name Type Count
37500 MakerNote UNDEFINED Any
37510 UserComment UNDEFINED Any

Tags Relating to Date and Time
Tag ID Field Name Type Count
36867 DateTimeOriginal ASCII 20
36868 DateTimeDigitized ASCII 20

Other Tags
Tag ID Field Name Type Count
42016 ImageUniqueID ASCII 33
42032 CameraOwnerName ASCII Any
42033 BodySerialNumber ASCII Any

Table 17: Selection of relevant EXIF IFD Attributes [17]

46

5 SHARED MEDIA TYPES 5.3 Video

Tags Relating to Global Positioning System (GPS)
Tag ID Field Name Type Count

0 GPSVersionID BYTE 4
1 GPSLatitudeRef ASCII 2
2 GPSLatitude RATIONAL 3
3 GPSLongitudeRef ASCII 2
4 GPSLongitude RATIONAL 3
5 GPSAltitudeRef BYTE 1
6 GPSAltitude RATIONAL 1
7 GPSTimeStamp RATIONAL 3

29 GPSDateStamp ASCII 11

Table 18: Selection of relevant GPS IFD Attributes [17]

5.3 Video

Metadata extraction from video files was not implemented in the prototype soft-
ware. Mostly every video Container Format and/or Codec introduces its own
tagging system. Implementation of a library which would be able to extract de-
sired information from at least one video Container Format and/or Codec is not
in the scope of this thesis. However, the usage of such library would be similar to
the usage of metadata extraction libraries for audio or image media. The archi-
tecture of the implementation allows the addition of such library. The proposal
of this improvement is placed in Section 10.1 ‘Application Proposal’ on page 77.

The title possibly author and other information about the video media file
are obtained only from the name of the file and the directory structure as de-
scribed in Section 6.2 ‘Metadata Gathering’ on page 49.

47

6 COLLECTING MEDIA FILES

6 Collecting Media Files

The DMA should be able to collect media files such as audio, video and images
from different sources and gather additional information about those files e.g.
author, album, date, description etc.

6.1 Sources

Different sources can be used to obtain media files. In the first place UPnP Con-
tent Directory Service (CDS) will be used. This is also the way how aggregated
media files are made available to other devices in the network. The source types
(also called aggregation methods further in this document) included in the pro-
totype are:

• UPnP ContentDirectory:1 Service
• LocalFS
• SMB Share1

6.2 Metadata Gathering

For each source type a different method for gathering metadata has to be used.
The description of Metadata Gathering methods for the three implemented source
types follows:

UPnP Content Directory Services requires no special method to be used as all
needed metadata are available through the CDS properties.

Local File System needs usage of 3rd party libraries for metadata extraction
(e.g. ID3, EXIF , etc.). Those libraries and their possibilities are described in
Section 5 ‘Shared Media Types’ on page 41.

Samba Share and other similar media source types are having more restric-
tions. They have mostly access only to the name of the media file, extension,
source type dependent path and size of the media file. To gather additional in-
formation using similar libraries like in LocalFS, the media files would need to
be downloaded first to the LocalFS. This is not possible for all such files because
of their size, the network capacity and the related processing time of gathering
of those metadata. For the purpose of sources like SMB, a proposal of one pos-
sible solution will be introduced. This solution is implemented in the prototype

1Samba Share is a reimplementation of SMB/CIFS protocol for Unix-like systems. It allows
Unix-like system to access Microsoft Windows shared files and printers.

49

6 COLLECTING MEDIA FILES 6.2 Metadata Gathering

MIME Type File Extension ContentDirectory Class
audio/mpeg mp3 musicTrack
audio/x-wav wav audioItem
image/jpeg jpe jpeg jpg photo
image/png png imageItem
image/tiff tif tiff photo
video/mpeg mp2 mpa mpe mpeg mpg mpv2 movie
video/quicktime mov qt movie
video/x-matroska mkv movie
video/x-ms-asf asf asr asx movie
video/x-msvideo avi movie

Table 19: MIME Type - File Extension - ContentDirectory Class Mapping

[Root]
|-[Author]
| |-[Album]
| |-[Music Track]
| |-...
|-[Album]
| |-[Music Track]
| |-...

Figure 7: Audio Files Directory Structure Sample

software and should be considered as one possible solution of many. The solu-
tion is inspired by the directory structure used in CDS of Windows Media Player
11 [42].

The metadata will be based only on the available information
mentioned above. In the first step the type (ContentDirectory Class) of the
media will be recognized from the file extension. To this purpose
javax.activation.MimetypesFileTypeMap class from the Java SE is used.
A modified file with the extension to mime-type mapping is used. A subset con-
sidering the media mime-types and their mapping to extension and media types
is shown in Table 19 ‘MIME Type - File Extension - ContentDirectory Class Map-
ping’.

The second step requires a directory structure compliance. This directory
structure differs slightly for each media type. For audio files the directory ex-
pected structure is shown in Figure 7 ‘Audio Files Directory Structure Sample’
and the directory structure for image files is shown in Figure 8 ‘Image Files Di-
rectory Structure Sample’ on page 51. For video files no particular directory
structure is needed and a different algorithm is used instead.

50

6 COLLECTING MEDIA FILES 6.2 Metadata Gathering

[Root]
|-[Album Part 1]
| |-[Image]
| |-...
|-[Album Part 1]
| |-[Album Part 2]
| |-[Image]
| |-...
|-[Album Part 1]
| |-[Album Part 2]
| |-[...]
| |-[Album Part X]
| |-[Image]
| |-...

Figure 8: Image Files Directory Structure Sample

Video files are divided into 3 subtypes: Movie (movie UPnP ContentDirec-
tory Class), Serial Episode (videoItem UPnP ContentDirectory Class) and Music
Video Clip (musicVideClip UPnP ContentDirectory Class). If the duration of the
footage is available the video file will be classified by following rules:

• < 15 minutes⇒Music Video Clip
• ≥ 15 minutes and < 1 hour⇒ Serial Episode
• ≥ 1 hour⇒Movie

If the duration of the footage is not available but the file size is available
than the video file will be classified by following rules:

• < 100 MB⇒Music Video Clip
• ≥ 100 MB and < 500 MB⇒ Serial Episode
• ≥ 500 MB⇒Movie

If neither the duration of the footage nor the size of the file is available the
video file will be classified as a Movie.

In case a video file is classified as Music Video Clip the directory structure
for audio files shown in Figure 7 ‘Audio Files Directory Structure Sample’ on
page 50 will be used for that video file for gathering additional metadata. If a
video file is classified as a Serial Episode the parent directory name (if any) will
be used as channelName property, which identifies the name of the serial in this
case.

In all cases media types and the title property will be obtained from the file
name by omission of the file extension.

51

6 COLLECTING MEDIA FILES 6.3 Media File Identification

The date property will be obtained from the file creation date, if this is avail-
able.

The album property for photo class will be constructed by concatenating of
all Album Parts showed in Figure 8 ‘Image Files Directory Structure Sample’ on
page 51 using "-" as a separator.

If any of the properties cannot be obtained it will not be set as all of them
are not required by the UPnP ContentDirectory:1 specifications[36].

6.3 Media File Identification

The CDS presents the shared files in a tree structure where every file and con-
tainer is identified by an id property, which must be unique with respect to the
CDS. The tree structure is realized by using a parentID property, which is the id
value of the parent container. The parentID of the root container must be set to
the reserved value "-1"[36].

ID ParentID Title Child Type
0 -1 Root object.container
1 0 Music object.container
4 1 All Music object.item.audioItem
5 1 Genre object.container.genre.musicGenre
6 1 Artist object.container.person.musicArtist
7 1 Album object.container.album.musicAlbum

100 1 Contributing Artists object.container.person.musicArtist
107 1 Album Artist object.container.person.musicArtist
108 1 Composer object.container.person.musicArtist

2 0 Video object.container
8 2 All Video object.item.videoItem
9 2 Genre object.container.genre.videoGenre
A 2 Actor object.container.person.movieActor
E 2 Series object.container.album.videoAlbum
3 0 Pictures object.container
B 3 All Pictures object.item.imageItem
C 3 Date Taken object.container.album.photoAlbum
D 3 Albums object.container.album.photoAlbum

D2 3 Keyword object.container.album.photoAlbum

Table 20: ContentDirectory Service Directory Structure[42]

The CDS is following the directory structure used by Windows Media Player
11[42] shown in Table 20 ‘ContentDirectory Service Directory Structure[42]’. All
other subcontainers (i.e. genre container, author container, album container,
etc.), not listed in that table will have an auto-generated id property. The gener-

52

6 COLLECTING MEDIA FILES 6.4 Media Files Duplicates Identification

ated id property of such sub-containers will follow following rules:

• The length will be 8 characters.
• The id will contain only numbers and upper case letters.
• The id will be unique with respect to the CDS.

For every media file a Globally Unique Identifier (GUID) will be generated.
The GUID has to be unique but may change for a same media file each time
the application restarts. A problem regarding the uniqueness of the id has to be
solved when a media file will appear in more than one container in the directory
structure. This will actually happen quite often. An example could be an audio
file which will appear in:

• Music/All Music
• Music/Artist/[Particular Artist]
• Mucic/Genre/[Particular Genre]
• ...

Every media file will first appear in the default container. For audio files the
default container is "Music/All Music", for video files the default container is
"Video/All Video" and for picture files the default container is "Pictures/All
Pictures". The format of the id property of a media file is "{[GUID]}.0.[container_id]",
where [container_id] is the id of the container the file is in. For example, an au-
dio file in a default container (Music/All Music which has i d = 4) the id will
be "{[GUID]}.0.4". All other occurrences of the file in some other sub-containers
will have the same GUID part but different [container_id] part. In addition ex-
cept the occurrence in the default container all other occurrences of the same
media file will have specified a refID property which will contain the id of the
occurrence of the media file in the default container.

6.4 Media Files Duplicates Identification

Next problem to be solved in this chapter is regarding duplicates of the media
files in the network. Basically there are two potential chances how this can hap-
pen:

• The media file on one machine is accessible through two or more different
aggregation methods e.g.: CDS, SMB, LocalFS etc.

• The same media file is present on two or more machines and accessible
through at least one aggregation method on each machine.

For simplification a new term is defined: Gathering Source (GS). GS is a
unique combination of a machine and aggregation method. For example:

• Machine A through SMB
Machine A through CDS
⇒ are two different GS

53

6 COLLECTING MEDIA FILES 6.4 Media Files Duplicates Identification

• Machine A through CDS
Machine B through CDS
⇒ are two different GS

• Machine A through LocalFS
Machine B through CDS
⇒ are two different GS

To distinguish that two media files obtained from two different GS are same
is a difficult task. On a LocalFS a checksum could be calculated using Message-
Digest algorithm 5 (MD5) or some other algorithm suitable for this purpose. But
because we are expecting a huge number of files and those files can have size
around several GB (e.g. HD movies), the computation of such checksum for all
the files on the LocalFS could take quiet a long time. For files on other devices
in the network, using SMB, CDS, etc., this is even harder because the media file
would have to be downloaded before calculating the checksum. Connection
speed, network load, latency would have to be taken into consideration in that
case.

A problem are also two media files with the same content but using different
representation (e.g. two same music tracks stored using different codec). This
can easily happen if one of the GS has transcoding abilities. In such case the
calculation of a checksum would not help at all.

Those reasons lead to the decision to identify duplicate media files by match-
ing ContentDirectory properties or metadata of those files. A small subset of
properties for each media type (audio, video and pictures) is defined. Also a
method for media files which are missing one, more or all of those properties is
defined.

Property subsets on what the uniqueness identification is based on are:

Music Track - the musicTrack UPnP Class will be used[36].

• Title
• Album
• Alphabetically sorted Artists

Music Video Clip - the musicVideoClip UPnP Class will be used[36].

• Title
• Album
• Alphabetically sorted Artists

Movie / Series Episode - the videoItem UPnP Class will be used with all sub-
classes except the musicVideoClip Class [36].

• Title

Photo - the photo UPnP Class will be used[36].

• Title
• Album

54

6 COLLECTING MEDIA FILES 6.5 Sharing Media Information

• Date

Image - the imageItem UPnP Class will be used[36].

• Title
• Date

If a property is missing it will be replaced by "Unknown [X]", where X is the
name of the property which is missing. For example if artist property is missing,
it will be replaced by "Unknown Artist" or if an album property is missing, it will
be replaced by "Unknown Album", etc. One exception is the title property. It will
be replaced with "Unknown Title [I]" where, I is a counter increased each time
such replacement is used for a media file. Every media type (audio, video and
pictures) has its own counter.

6.5 Sharing Media Information

Collected media are exposed to other devices in the network using a CDS . There
are two main libraries for Java available on the internet: CyberLink for Java[16]
and Cling - Java/Android UPnP library[40]. The reasons that Cling library was
chosen were: documentation, examples and efficiency of the development of
the ContentDirectory service prototype. The project contains reference open-
source implementation of a renderer and open-source application called Work-
bench, which allow discovering UPnP devices in the network, showing their ca-
pabilities like actions and state variables values and allows invocation of service
actions with arguments etc.

Cling - Java/Android UPnP library is a UPnP-compatible stack for Java EE,
Java SE and Android[16]. The project is devided into two parts:

Core implements the UPnP Device Architecture 1.0[23].
Support classes for developing and controlling UPnP Services with Core. Sim-

plification of working with UPnP media servers, renderers, etc. (optional)

55

7 TOPOLOGY

7 Topology

One of the given task by QUANMAX company was to research about was the topol-
ogy which should be used. There are theoretically two possible options: Server-
Based Topology and Distributed Topology.

7.1 Server-Based Topology

The Server-Based Topology means that there has to be at least one server (DMS)
available in the network (see Figure 9 ‘Server Based Topology’). All the devices
like DMP, DMC, etc. can detect the server (using UPnP) and ask about available
media (using CDS). If the wished media is found on the server it can be down-
loaded or streamed upon request to the rendering device.

The advantage of this topology is, that we have defined servers, which are
taking care of the aggregation of the media files.

The disadvantage is that we have to have a server device present in the net-
work what increase the costs.

Figure 9: Server Based Topology

7.2 Distributed Topology

The idea of Distributed Topology is that the server device has not to be neces-
sarily present. The devices in the network would keep track about other devices
and media in the network on their own. This means that the software part of
the DMA has to be present in such devices and this devices starts to behave as
a DMS. Otherwise, DLNA devices such as DMP, DMC, etc. without the DMA ca-
pabilities will not find any content in the network since they expect the DMS to
be present.

The Distributed Topology makes sense in the manner between two or more
devices with DMA. Those DMA could exchange the media databases between

57

7 TOPOLOGY 7.3 Conclusion

each other, find duplicate media, redirect request from devices like DMP or
DMC to the closest server etc. In some cases the aggregation process on one
DMA could be improved by just using the data from another DMA if both have
access to the same GS. Or if one DMA discovers any changes, it can populate
those changes to others, so the other DMA devices does not have to repeat the
job again.

Figure 10: Distributed Topology

7.3 Conclusion

Since the whole concept of DLNA build on top of UPnP is a Server Based Topol-
ogy, there is no choice to not support that. The additional Distributed Topology
between two or more devices with DMA introduces some improvements. But
those improvements will start to be interesting in bigger networks with lot of
devices and media files. In those cases the Distributed Topology could bring
speed improvements and more efficient usage of the network capacity.

Because the implementation of such topology is out of the time constrains
of this thesis only a proposal was introduced in Section 10.1 ‘Application Pro-
posal’ on page 77.

58

8 PROTOTYPE ARCHITECTURE

8 Prototype Architecture

The application prototype architecture will be shown in this section. The UML
class diagrams of the application are present in Appendix A ‘Prototype UML Di-
agrams’ on page 85. Public packages, classes and methods of the application
are described in this section. The list is not complete and shows only packages,
classes and methods, which are important to understand the architecture of the
prototype software.

8.1 Application Model

This section will introduce and describe the application model of the prototype
software. There are five main packages in the project:

• Aggregators package [at.quanmax.dlna.aggregators]
• GUI package [at.quanmax.dlna.gui]
• Models package [at.quanmax.dlna.media.models]
• Servers package [at.quanmax.dlna.servers]
• Libraries package [at.quanmax.libraries]

8.2 Aggregators Package

This package contains implementation of all the different aggregator types.

8.2.1 AbstractAggregator Class

Is is the super class of all future aggregators. The purpose of this class is to guide
the developer of future aggregators and to provide connection to the applica-
tion. The UML of this class can be seen in Figure 17 ‘Aggregators Class Diagram’
on page 86. Description of public methods of this class follows:

public final AbstractAggregator getInstance() is a lazy singleton constructor.
It returns the AbstractAggregator singleton instance.

public void interrupt() sends an interrupt signal to the aggregator thread. This
will cause that the aggregator thread will stop as soon as it will be safe.

public final boolean isInterrupted() checks if the interrupt signal was already
sent to the aggregator thread. This doesn’t mean that the aggregator thread has
already been stopped. It will run until it will be safe to stop it without leav-
ing anything unwanted behind. This method returns a boolean value telling
whether the signal was already sent.

59

8 PROTOTYPE ARCHITECTURE 8.2 Aggregators Package

public void run() is a method, which will be called after the aggregator thread
is instantiated. It should be overwritten in the subclasses and it should imple-
ment the aggregator type specific code.

8.2.2 Aggregator Class

This class contains the main method which starts the application GUI (see Sec-
tion 8.4 ‘GUI Package’ on page 62). The UML diagram of this package can be
seen in Figure 17 ‘Aggregators Class Diagram’ on page 86.

public static void main(String[] args) is the main method. Directly after the
GUI is started, the existence of previous snapshots of the aggregated data will
be checked. If such a snapshot is found it will be loaded. To load the snap-
shots the at.quanmax.libraries.FileSystemExporter class is used (see
Section 8.7.2 ‘FileSystemExporter Class’ on page 69).

public static void start(List<AbstractAggregator> aggregators) will start all
aggregators listed in aggregators parameter. Every aggregator will be started
in a separate thread. The given aggregators will be saved to the aggregator list
and an aggregation indicator indicating the running state of the aggregation will
be switched on. This indicator forbids to start the aggregation more than once
at the time.

public static void stop() interrupts all running aggregator threads and waits
till all of them are stopped. After all the aggregator threads are stopped it will
clear the aggregator list and switch off the aggregation indicator. This will allow
to start the aggregation again using the start method.

8.2.3 ContentDirectoryAggregator Class

This class is an aggregator for UPnP ContentDirectory:1
sources. It uses the Cling Library[16] and inherits the
at.quanmax.dlna.aggregatorsAbstractAggregaror class described in
Section 8.2.1 ‘AbstractAggregator Class’ on page 59. This aggregator allows to
discover and aggregate media files from UPnP devices in the network. Its UML
diagram is shown in Figure 17 ‘Aggregators Class Diagram’ on page 86.

8.2.4 FileSystemDirectoryAggregator Class

This class inherits theat.quanmax.dlna.aggregators.AbstractAggregaror
class described in Section 8.2.1 ‘AbstractAggregator Class’ on page 59 and im-
plements support of aggregating media files from directory structure on a local
filesystem. The list of directories which have to be searched through is retrieved

60

8 PROTOTYPE ARCHITECTURE 8.3 Samba Subpackage

from at.quanmax.dlna.gui.PreferencesDialog#getFSDirs described in
Section 8.4.2 ‘PreferencesDialog Class’ on page 64. The UML diagram of this
class is shown in Figure 17 ‘Aggregators Class Diagram’ on page 86.

8.2.5 SambaAggregator Class

This class implements aggregation of media files from Samba shares in the net-
work using the jCIFS library[46]. It also inherits the
at.quanmax.dlna.aggregators.AbstractAggregaror class described in
Section 8.2.1 ‘AbstractAggregator Class’ on page 59 and its UML diagram can
be seen in Figure 17 ‘Aggregators Class Diagram’ on page 86. It allows to ag-
gregate media files from both public and private shares. This aggregator can
be setup using the at.quanmax.dlna.gui.PreferencesDialogdescribed in
Section 8.4.2 ‘PreferencesDialog Class’ on page 64. The implementation is too
complex for one class and because of that an additional
at.quanmax.dlna.aggregators.samba subpackage described in
Section 8.3 ‘Samba Subpackage’ on page 61 was added.

public static ArrayList<String> getWorkGroups() gets all available
workgroups in the network. First it will try to query the
network with “smb://” query to obtain all the available groups then
the retrieved list will be added to user defined workgroups (see
at.quanmax.dlna.gui.PreferencesDialog#getSMBWorkgroup()described
in Section 8.4.2 ‘PreferencesDialog Class’ on page 64). The delimiter for more
workgroups is comma, semicolon or space.

8.3 Samba Subpackage

Is a package used by theat.quanmax.dlna.aggregators.SambaAggregator,
described in Section 8.2.5 ‘SambaAggregator Class’ on page 61, to aggregate me-
dia files from Samba Shares.

8.3.1 SambaConnection Class

Is a class that performs the actual search through samba sources. Can perform
both public (anonymous) and user defined (password based authentications)
searches. The UML diagram of this class and its dependencies can be seen in
Figure 17 ‘Aggregators Class Diagram’ on page 86.

public String getIP() is a method that returns the IP address of the host.

public boolean isReachable() determines whether the host is reachable or not.
Returns TRUE if the host is reachable, otherwise it returns FALSE.

61

8 PROTOTYPE ARCHITECTURE 8.4 GUI Package

public void start() method will start the search in a separate thread. While the
search thread is running this method will not do anything. The search has to be
stopped by calling the stop method before starting a new search, by calling this
method, again.

public static void startPublicSearch() will start the public search in a separate
thread. Search through all machines in all available workgroups (see
at.quanmax.dlna.aggregators.SambaAggregator#getWorkGroups()de-
scribed in Section 8.2.5 ‘SambaAggregator Class’ on page 61) will be performed.

Only one public search thread can be started at the time. If another call of
this method will be performed before the currently running search thread stops
it will be remembered and and a new public search will be executed after the
current will finish.

public void stop() is a method that will stop currently running search if any. If
no search is running this method will not do anything.

8.3.2 SambaTicker Class

Samba ticker is a samba observer. If any samba server appears/becomes avail-
able in the network this class will perform the search on it using
at.quanmax.dlna.aggregators.samba.SambaConnection class described
in Section 8.3.1 ‘SambaConnection Class’ on page 61.

Also if any of the sources disappears this class is responsible for stopping
the search and removing the device from the tree.

The UML diagram of this class can be seen in Figure 17 ‘Aggregators Class
Diagram’ on page 86.

public static void restart() is a method that restarts currently running ticker
thread if any or starts a new one if no one was running before.

public static void start() will start the ticker thread. Only one ticker thread can
be running at the time.

public static void stop() stops currently running ticker thread if any.

8.4 GUI Package

The package at.quanmax.dlna.gui contains the GUI part of the application.
There are two dialogs whose UML diagrams are shown in Figure 16 ‘GUI Dialogs
Diagram’ on page 85. Some screenshots of the application can be seen in Sec-
tion 9 ‘Application User Guide’ on page 71.

62

8 PROTOTYPE ARCHITECTURE 8.4 GUI Package

8.4.1 AggregatorGUI Class

The main dialog AggregatorGUI, whose UML diagram can be seen in Figure 16 ‘GUI
Dialogs Diagram’ on page 85 and Figure 18 ‘Aggregator GUI Detail Diagram’ on
page 87, is the control point of the application. From it all the different aggrega-
tors (CDS Aggregator, LocalFS Aggregator and SMB Aggregator) or CDS Server
can be started. Also the whole file structure of the aggregated media files can be
browsed and details of the aggregated files can be displayed.

public static void disableDialog(String message) method will disable the con-
trol elements (i.e. buttons, checkboxes, ...) of the dialog and the text message,
given in the message parameter, will be shown in the status bar. The message
describes the reason of disabling the dialog.

public static void display() method shows the Aggregator GUI dialog using a
separate AWT thread.

public static void enableDialog() will enable the control elements (i.e. but-
tons, checkboxes, ...) of the dialog. It will also clear the status message in the
status bar.

public static AggregatorGUI getInstance() method is a lazy singleton construc-
tor of the Aggregator GUI dialog class.

public void setInfoText(String text) sets the info text on the right side of the
dialog to the value of the text parameter.

public static void setStatus(String message) method sets the status message
in the status bar to value given by the message parameter.

public static void setStatusDone() sets the status message in the status bar to
“Done.” value.

public static void tick(Short id) pokes a ticker defined by id identification
number. This will cause that the corresponding indicator in the bottom area
of the dialog will blink.

63

8 PROTOTYPE ARCHITECTURE 8.5 Media Models Package

8.4.2 PreferencesDialog Class

The second dialog called PreferencesDialog (UML diagram can be seen in Fig-
ure 16 ‘GUI Dialogs Diagram’ on page 85) is used to configure the different parts
of the application (i.e. the different aggregators). Each aggregator has a separate
tab in this dialog and only aggregators which need to be configured have a tab
present.

public static String[] getFSDirs() gets the list of local file system directories to
search through and returns them as an array.

public static PreferencesDialog getInstance() is a lazy singleton constructor
of the PreferencesDialog class.

public static boolean getSMBSearchPublic() determines if Samba public search
should be performed or not. This method will return TRUE if public search
should be performed and FALSE if not.

public static String[] getSMBShares() method returns an array of samba share
URIs which should be searched through.

public static String getSMBWorkgroup() gets Samba default workgroup(s).
More than one workgroup can be specified by creating a symbol
separated list. The separator symbol between two workgroups
can be comma, semicolon or space. From this method the whole string as en-
tered is returned. The separation of the workgroups is done in
at.quanmax.dlna.aggregators.SambaAggregator#getWorkGroups()de-
fined in Section 8.2.5 ‘SambaAggregator Class’ on page 61.

8.5 Media Models Package

The package at.quanmax.dlna.media.models contains object representa-
tion of all the different media file types and factories. The structure is based on
the UPnP ContentDirectory:1 AV Class Definition[36] and the UML diagram can
be seen in Figure 19 ‘Media Models Class Diagram’ on page 88. Detailed UML
diagram of the classes in this package are shown in Figure 20 ‘AbstractObject
Class Detail’ on page 89, Figure 21 ‘DeviceObject Class Detail’ on page 90, Fig-
ure 22 ‘ContentObject Class Detail’ on page 90, Figure 23 ‘MediaObject Class De-
tail’ on page 91, Figure 24 ‘AudioObject Class Detail’ on page 92, Figure 25 ‘Im-
ageObject Class Detail’ on page 93 and Figure 26 ‘VideoObject Class Detail’ on
page 94.

64

8 PROTOTYPE ARCHITECTURE 8.5 Media Models Package

8.5.1 AbstractObject Class

This is the top-level abstraction of every object in the system file structure (see
Figure 20 ‘AbstractObject Class Detail’ on page 89). It implements the storage
back-end and common methods. This class has two successors: DeviceObject
(described in Section 8.5.2 ‘DeviceObject Class’) and ContentObject (described
in Section 8.5.3 ‘ContentObject Class’).

8.5.2 DeviceObject Class

Is a class that is meant as the root for different devices (see Figure 21 ‘DeviceOb-
ject Class Detail’ on page 90). By different devices is not meant a different physi-
cal machine but different server application on different or same machines. For
example a DeviceObject will be created for a SMB share on PC1, UPnP CDS on
PC1 and also for SMB on PC2, etc. Basically a DeviceObject will be created for
each GS as described in Section 6.4 ‘Media Files Duplicates Identification’ on
page 53.

8.5.3 ContentObject Class

It is a superclass for all files on a device. Those files could possibly be also non-
media files in the future (see Figure 22 ‘ContentObject Class Detail’ on page 90).
The only successor of this class in the current implementation is MediaObject
class described in Section 8.5.4 ‘MediaObject Class’.

8.5.4 MediaObject Class

It is a superclass of all media files on a device (see Figure 23 ‘MediaObject Class
Detail’ on page 91). The successor are: AudioObject class (described in Sec-
tion 8.5.5 ‘AudioObject Class’), ImageObject (described in Section 8.5.6 ‘Ima-
geObject Class’ on page 66) and VideoObject (described in Section 8.5.7 ‘VideoOb-
ject Class’ on page 66) as the three main media types. The structure starting here
is based on the UPnP ContentDirectory:1 AV Class Definition[36].

8.5.5 AudioObject Class

Is a class meant for audio media files. The successors are: AudioBookObject,
AudioBroadcastObject and MusicTrackObject (see Figure 24 ‘AudioObject Class
Detail’ on page 92). All the successor classes are implemented in the prototype
but only MusicTrackObject is actually used.

65

8 PROTOTYPE ARCHITECTURE 8.5 Media Models Package

8.5.6 ImageObject Class

It is a class meant for image files. This class has only one successor in the cur-
rent implementation: PhotoObject (see Figure 25 ‘ImageObject Class Detail’ on
page 93).

8.5.7 VideoObject Class

Is a class handling video files. The successors are: VideoBroadcastObject, Mu-
sicVideoClipObject and MovieObject (see Figure 26 ‘VideoObject Class Detail’
on page 94). VideoBroadcastObject is implemented but not actually used in the
current implementation.

8.5.8 ItemFactory Class

Factory class to create org.teleal.cling.support.model.item.Item[16].
The UML diagrams of this class can be seen in Figure 27 ‘Factories’ on page 95
and Figure 28 ‘Item Factory Detail’ on page 96.

public static Item get(MediaObject object) method, which constructs
org.teleal.cling.support.model.item.Item object from
at.quanmax.dlna.media.models.MediaObjector subclasses. Paramobject
specifies theat.quanmax.dlna.media.models.MediaObject to construct the
org.teleal.cling.support.model.item.Item from.

8.5.9 ObjectFactory Class

This class is a factory class that is able to construct
at.quanmax.dlna.media.models.MediaObject from different objects. The
UML diagrams can be seen in Figure 27 ‘Factories’ on page 95 and Figure 29 ‘Ob-
ject Factory Detail’ on page 97.

public static MediaObject getMediaObject(Item item) method constructs a
at.quanmax.dlna.media.models.MediaObject from given
org.teleal.cling.support.model.item.Item. The parameteritem spec-
ifies the org.teleal.cling.support.model.item.Item to construct the
at.quanmax.dlna.media.models.MediaObject from.

public static MediaObject getMediaObject(FileObject fo) constructs a
at.quanmax.dlna.media.models.MediaObject from given
org.openide.filesystems.FileObject. The parameter fo specifies the
org.openide.filesystems.FileObject to construct the
at.quanmax.dlna.media.models.MediaObject from. The method returns
the constructed at.quanmax.dlna.media.models.MediaObject.

66

8 PROTOTYPE ARCHITECTURE 8.6 Servers Package

public static AbstractObject getObject(FileObject fo) is a method that con-
struct a at.quanmax.dlna.media.models.AbstractObject from
org.openide.filesystems.FileObject. The parameter fo specified the
org.openide.filesystems.FileObject to construct the
at.quanmax.dlna.media.models.AbstractObject from. It returns the con-
structed at.quanmax.dlna.media.models.AbstractObject.

8.6 Servers Package

The package at.quanmax.dlna.servers contains classes necessary to run
the server part of the aggregator. This part consists of three classes: Content-
DirectoryCollector (described in Section 8.6.1 ‘ContentDirectoryCollector Class’
on page 67), ContentDirectoryServer (described in Section 8.6.2 ‘ContentDirec-
toryServer’ on page 68) and ContentDirectoryService (described in
Section 8.6.3 ‘ContentDirectoryServiceClass’ on page 69).

8.6.1 ContentDirectoryCollector Class

This class collects all the aggregated files from all the different sources/devices,
sorts them (by artist, album, etc.) and stores them in the memory so the Con-
tentDirectoryService (described in Section 8.6.3 ‘ContentDirectoryServiceClass’
on page 69) can use them.

The ContentDirectoryCollector has 2 separated storages where it can put
the collected files: Storage A and Storage B. Only one is published to the Con-
tentDirectoryService and the second one is ready if another collecting job is per-
formed. Till the collecting is finished ContentDirectoryService has access to the
old collection and after the collecting job finishes the storages will switch roles.
Lets show this on an example:

In the beginning both of the storages are empty and the Empty Storage In-
dicator is set to TRUE. The Current Storage Pointer points to Storage A.

When the first collecting job starts it uses the Storage A. But no data are
available to the application because the Empty Storage Indicator is still set to
TRUE. After the first collecting job finishes the Empty Storage Indicator will be
set to FALSE and remains in that state until the the application exits.

When a next collecting job is started it will use the Storage B. The applica-
tion has access to Storage A till the collecting job is running. When the collecting
job finishes it will switch the Current Storage Pointer to Storage B.

Next time the collecting job will use Storage A again and after it finishes the
Current Storage Pointer will be switched to point to Storage A. This way it will go
on every time a collecting job will be started.

public static void check() method performs media files check. This will start
a separate thread, which will collect all the media files to a separate storage (the

67

8 PROTOTYPE ARCHITECTURE 8.6 Servers Package

other one than the one currently selected) in memory.

After the collection is done the actually used storage and the one where the
new data were collected will switch.

public static Container get() returns the root container from the current stor-
age.

public static Container get(String id) method, which returns the container
from the current storage identified by the id parameter.

public static boolean isLoaded() checks if any collection is loaded into the
storage. This will return TRUE after the first collection is loaded.

8.6.2 ContentDirectoryServer

In this class the whole UPnP stack will be setup. The service will announce itself
in the network, start the first collecting job using ContentDirectoryCollector and
start the ContentDirectoryService. Any UPnP complaint device in the network
will be able to browse through the collected media files.

public static UDN getUDN() method, which returns the Unique Device Name
(UDN) of this UPnP ContentDirectory server.

public static boolean isInterrupted() checks if the server thread was inter-
rupted. This does not have to mean that the server thread was stopped, just
that it will stop as soon as it will be safe. The method returns TRUE if the server
thread was already interrupted.

public static boolean isRunning() method check if the server thread is run-
ning or not. Even if the server thread was interrupted this can return TRUE,
meaning that it was not safe yet to stop the thread yet. If the server thread is
still running, this method returns TRUE, otherwise it returns FALSE.

public static void start() starts the server thread. Only one server thread can
be started at the time. Calling this method when one server thread is already
running will not do anything.

public static void stop() tries to stop the currently running server thread, if
any, by interrupting it. The server thread will not be stopped immediately.

68

8 PROTOTYPE ARCHITECTURE 8.7 Libraries package

8.6.3 ContentDirectoryServiceClass

This class allows to make the collected media files available to the network.

public BrowseResult browse(String objectID, BrowseFlag browseFlag, String
filter, long firstResult, long maxResults, SortCriterion[]orderby) implements
browsing of the aggregated content. This is a required action defined by Con-
tentDirectory:1 [16].

public BrowseResult search(String containerId, String searchCriteria, String
filter, long firstResult, long maxResults, SortCriterion[]orderBy) method im-
plements searching through the aggregated content [16].

8.7 Libraries package

8.7.1 DMALib Class

The DLNA Aggregator library contains project specific code shared across the
whole project.

8.7.2 FileSystemExporter Class

The FileSystemExporter class allows to export org.openide.filesystems.
FileObject into a XML file and compress the output XML file using ZIP com-
pression.

public static void exportFileToXML(String filename) exports all found devices
with aggregated media files into a XML file. The name of the file is specified by
filename parameter.

public static void exportFileToZip(String filename) method, which exports
all found devices with aggregated media files into a XML file compressed using
ZIP compression. Parameter filename specifies the name of the file.

public static void importXMLFile(String filename) method, which imports a
XML file into the tree of devices and aggregated media files. The name of the file
to import is specified by filename parameter.

public static void importZIPFile(String filename) imports a XML compressed
using ZIP compression into the tree of devices and aggregated media files. Pa-
rameter filename specifies the name of the file to import.

69

8 PROTOTYPE ARCHITECTURE 8.8 Testing of the Application

public static void importSnapshots() imports all existing snapshots of the de-
vices and aggregated media files. Snapshots are XML files beginning with “snap-
shot_” in the path of the application.

8.8 Testing of the Application

The application was tested using data, device arrangement and media files dis-
tribution described in Section 4 ‘Home Environment Example’ on page 35.

70

9 APPLICATION USER GUIDE

9 Application User Guide

This section will describe how the application works from the user’s point of
view. When the application is started the application main window, shown in
Figure 11 ‘Application: Main Window’, will appear. All the aggregators (i.e. UPnP
ContentDirectory Aggregator, LocalFS Aggregator and Samba Share Aggregator)
and the CDS Server can be controlled from this window.

Figure 11: Application: Main Window

9.1 Aggregation Process

To start aggregating the media files from the network, first the aggregators, which
will be used, have to be selected by checking the corresponding checkbox in the
Option area or from the Options menu.

After the desired aggregators are selected the DMA has to be switched on by
clicking the DMA button in the Switches area or in the Aggregator menu. The
DMA button in the Switches area will remain pushed as an indication that the
DMA is running. The aggregation can be interrupted any time by clicking on the
DMA button in the Switches area or in the Aggregator menu again. Clicking on

71

9 APPLICATION USER GUIDE 9.2 Aggregators Configuration

the button will start/stop the aggregation process again. Already aggregated files
will not be deleted before but overridden, if necessary, during the aggregation
process. Only files which do not exist anymore will be removed from the list of
aggregated files.

During the aggregation process the devices and media files will
appear/disappear in the list as they will be connected/disconnected from the
network. This behaviour can be turned off by unchecking the Auto Refresh
checkbox in the Options area or in the Options menu. A manual refresh of the
whole tree can be performed by clicking on the Refresh button.

In the bottom left part of the main window (see Figure 11 ‘Application: Main
Window’ on page 71), following aggregator indicator labels can be seen:

UPnP for UPnP ContentDirectory aggregator
FS for local file system aggregator
SMB for Samba aggregator

9.2 Aggregators Configuration

Figure 12: Preferences: Local File System

If the File System aggregator in the Options menu was checked the aggre-
gation process will also search through LocalFS. Directories which should be

72

9 APPLICATION USER GUIDE 9.3 Browsing Aggregated Media

searched on the LocalFS can be defined in the Preferences in the Local File Sys-
tem tab (see Figure 12 ‘Preferences: Local File System’ on page 72).

Samba Shares tab in the Preferences window shown in the Figure 13 ‘Pref-
erences: Samba Shares’ allows to setup the SMB Aggregator. It allows to set the
default workgroup, to check weather also public folders should be searched and
to set-up User Defined Shares.

Figure 13: Preferences: Samba Shares

9.3 Browsing Aggregated Media

The directory tree can be browsed in the left part of the window and the details of
a device or media file will appear in the right side as soon as the corresponding
item in the tree is selected (see Figure 15 ‘Application: Media File Detail’ on
page 75).

Each device will have its own folder in the root of the tree structure. The
name of the folder will be the name of the device and its type in parentheses. For
example a UPnP ContentDirectory Service on a computer called QUANMAXPC
will appear as “QUANMAXPC: Username: (UPnP Device)”, samba share on the
same computer will appear as “QUANMAXPC (Samba Share)”, local filesystem
will appear as "localhost (Local Machine)", etc. (see Figure 14 ‘Application: Ag-
gregation in progress’ on page 74).

73

9 APPLICATION USER GUIDE 9.4 Making Media available to the Network

Every device will contain following folders in the tree structure:

AUDIO containing all audio files on that device.
IMAGE containing all image files on that device.
VIDEO containing all video files on that device.

Each device can also contain additional folder for the purpose of showing
the original file structure on the concrete device. Those folders are just for de-
bugging, development and presentation purposes. The ContentDirectory server
is not taking them into consideration.

Figure 14: Application: Aggregation in progress

9.4 Making Media available to the Network

To make the aggregated files available to other devices in the network, the UPnP
ContentDirectory Server has to be started. This can be done by clicking the CDS
button in the Switches area or in the Aggregator menu. The CDS button will re-
main pressed while the server is running. The server status indicator can be also
seen in the bottom left area of the main window in the indicator’s area under the
label SRV (see Figure 11 ‘Application: Main Window’ on page 71). The activity
indicator of the UPnP ContentDirectory Server is in the same are under the CDS
label.

74

9 APPLICATION USER GUIDE 9.5 Saving and Loading Snapshots

9.5 Saving and Loading Snapshots

The aggregated files can be saved to a snapshot any time by clicking the Save
Snapshot button. If a snapshot is saved it will be automatically loaded before
the application starts next time. This allows a faster startup (we don’t need to
wait till all the files are aggregated again the first time). The files loaded from
such snapshot will be overwritten by the next aggregation process as soon as the
particular aggregator comes to the particular file.

Figure 15: Application: Media File Detail

75

10 CONCLUSION

10 Conclusion

Research about technologies related to the problem of aggregating media files
in the network, gathering additional information such as author, album, date,
etc. from them and make them available to other DLNA (UPnP) devices in the
network was done in this thesis. A market overview was made about existing
devices, software and similar solutions of this problem. A Home Environment
Example was introduced as a specimen of a typical usage environment of such
a problem and its solution.

In the second part of this thesis a solution was introduced to solve problems
such as collecting media files from different sources in a network, gathering and
normalizing metadata/tags from media files, identification of those files, media
duplicate identification and elimination and disposing collected files further to
the network.

Two usage cases were introduced based on different topology: Server Based
and Distributed topology, where the distributed topology allows saving network
connection resources in larger networks. It also allows to complete certain me-
dia files with additional metadata gathered by one DMA but not by another.

A prototype software was implemented to try out the solution and demon-
strate the possibilities of such implementation. The advantage of such solution
is that the files are aggregated from different sources like LocalFS, SMB, CDS, etc.
The introduced architecture of the implementation allows to add more types of
such sources (e.g. File Transfer Protocol (FTP), OBject EXchange (OBEX), etc.)
easily. The implemented types are aggregating media files from the particular
sources properly.

Also the media files duplicates identification, described in Section 6.4 ‘Me-
dia Files Duplicates Identification’ on page 53, was tested and works across the
different implemented aggregators.

The software prototype met all goals defined in Section 1.1 ‘Goal’ on page 3
and all tasks listed in Section 1.2 ‘Tasks’ on page 4.

10.1 Application Proposal

Further to this thesis I would like to propose some improvements and/or ideas,
which are out the scope of this thesis:

• Implementation of more aggregator’s types such as Bluetooth (OBEX), (S)FTP,
WebDAV, etc.

77

10 CONCLUSION 10.1 Application Proposal

• Dividing aggregator types into two different categories. Stable and Mobile,
where the second one will include aggregators with low bandwidth and/or
unreliable access (i.e. OBEX) and the aggregated files will be also down-
loaded to the DMS device, where the DMA is running. The assumption in
this case is that the files available through such devices will be relatively
small, can be downloaded in reasonable time and there is enough space
on the DMS device with the DMA to store them.

• Implementation of Distributed Topology support between two or more
devices with DMA as described in Section 7 ‘Topology’ on page 57.

• Implementation of metadata extraction from not yet supported Codecs
and File Formats.

78

11 References

[1] Multimedia programming interface and data. Specification, IBM Corpora-
tion; Microsoft Corporation, August 1991. version 1.0. 13

[2] ISO 11172-1:1993. Information technology - Coding of moving pictures and
assiciated audio for digital storage media at up to about 1.5Mbit/s - Part 1:
Systems. ISO, Geneva, Switzerland, 1993. 14, 15

[3] ISO 11172-2:2006. Information technology - Coding of moving pictures and
assiciated audio for digital storage media at up to about 1.5Mbit/s - Part 2:
Video. ISO, Geneva, Switzerland, 2006. 17

[4] ISO 11172-3:2009. Information technology - Coding of moving pictures and
assiciated audio for digital storage media at up to about 1.5Mbit/s - Part 3:
Audio. ISO, Geneva, Switzerland, 2009. 16

[5] ISO 13818-1:2000. Information technology - Generic coding of moving pic-
tures and associated audio information - Part 1: Systems. ISO, Geneva,
Switzerland, 2000. 15

[6] ISO 13818-2:2004. Information technology - Generic coding of moving
pictures and associated audio information - Part 2: Video. ISO, Geneva,
Switzerland, 2004. 17

[7] ISO 13818-7:2004. Information technology – Generic coding of moving pic-
tures and associated audio information – Part 7: Advanced Audio Coding
(AAC). ISO, Geneva, Switzerland, 2004. 16

[8] ISO 14496-12:2008. Information technology – Coding od audio-visual ob-
jects – Part 12: ISO base media file format. ISO, Geneva, Switzerland, 2008.
14

[9] ISO 14496-14:2003. Information technology – Coding od audio-visual ob-
jects – Part 14: MP4 file format. ISO, Geneva, Switzerland, 2003. 14

[10] ISO 14496-3:2009. Information technology – Coding of audio-visual objects
– Part 3: Audio. ISO, Geneva, Switzerland, 2009. 16

[11] Digital Living Network Alliance. Dlna overview and vision whitepaper 2007.
Whitepater, Digital Living Network Alliance, 2007. 5, 6, 7, 8, 9, 20, 99, 100

[12] Apev2 specification. http://wiki.hydrogenaudio.org/index.php?
title=APEv2_specification. Last modified: 24th February 2008, Read:
20th February 2011. 20

79

http://wiki.hydrogenaudio.org/index.php?title=APEv2_specification
http://wiki.hydrogenaudio.org/index.php?title=APEv2_specification

[13] Adobe Developers Association. Tiff. Specification, Adobe Systems Incorpo-
rated, 1585 Charleston Road, P.O. Box 7900, Mountain View, CA, June 1992.
Revision 6.0. 19, 45

[14] E. Hoffert; M. Krueger; L. Mighdoll; M. Mills; J. Cohen; D. Camplejohn; B.
Leak; J. Batson; D. Van Brink; D. Blackketter; M. Arent; R. Williams; C. Thor-
man; M. Yawitz; K. Doyle; S. Callahan. Quicktime: an extensible standard
for digital multimedia. In Compcon Spring ’92. Thirty-Seventh IEEE Com-
puter Society International Conference, Digest of Papers, pages 15–20, San
Francisco, CA, February 1992. Apple Comput. Inc., Cupertino, CA. 15

[15] L. Buerk (Microsoft Corporation); J. Moonen (Philips Electronics); D. Sather
(Microsoft Corporation); J. Kai Fu (Pioneer Research Center). Avtransport:1
service template version 1.01. Standardized dcp, UPnP Forum, June 2002.
12

[16] Cling - java/android upnp library and tools. http://teleal.org/
projects/cling/. Read: 18th March 2011. 55, 60, 66, 69

[17] Standardization Committee. Exchangeable image file format for digital still
cameras: Exif version 2.3. Specification, Camera & Imaging Products As-
sociation, 1585 Charleston Road, P.O. Box 7900, Mountain View, CA, April
2010. CIPA DC-008-Traslation-2010. 19, 44, 45, 46, 47, 100

[18] Microsoft Corporation. Advanced systems format (asf) specification. Spec-
ification, Microsoft Corporation, June 2010. Revision 01/20/05. 13

[19] Divx website. http://www.divx.com/, 2011. Read: 15th March 2011. 14

[20] S. Chan (Microsoft); A. Dara-Abrams (Sony Electronics); M. Dawson
(OpenGlobe); J. Kai Fu (Pioneer); F. Matsubara (Mitsubishi Electric); J.
Moonen (Philips Electronics); Y. Rasheed (Intel); D. Sather (Microsoft); E.
Shteyn (Philips Electronics). Connectionmanager:1 service template ver-
sion 1.01. Standardized dcp, UPnP Forum, June 2002. 11

[21] Ffmpeg. http://www.ffmpeg.org. Read: 30th March 2011. 15

[22] UPnP Forum. Upnp device architecture 1.0. Specification, UPnP Forum,
April 2008. Revision 04/24/2008. 10, 11, 100

[23] UPnP Forum. Upnp device architecture 1.0. Standardized dcp, UPnP Fo-
rum, October 2008. 55

[24] J. Sánchez; M. C. R. Gancedo. Sixth framework programme priority 2 –
search on audio-visual content using peer-to-peer information retrieval
(safir). Prototype, Information Society Technologies, January 2009. Con-
tract no.: 45128. 7

80

http://teleal.org/projects/cling/
http://teleal.org/projects/cling/
http://www.divx.com/
http://www.ffmpeg.org

[25] R. Green. How to choose a dlna media server for win-
dows, mac os x or linux. http://www.rbgrn.net/content/
21-how-to-choose-dlna-media-server-windows-mac-os-x-or-linux,
August 2007. Read: 4th February 2011. 26, 27, 28, 29, 100

[26] E. Hamilton. Jpeg file interchange format. Technical report, C-Cube Mi-
crosystems, 1778 McCarthy Blvd. Milpitas, CA 95035, September 1992. ver-
sion 1.02. 18

[27] Id3 website. http://www.id3.org. Read: 28th March 2011. 41, 42, 43, 99,
100

[28] Adobe Systems Incorporated. Xmp specification. Specification, September
2005. 13, 20

[29] Adobe Systems Incorporated. Adobe flash file format specification. Spec-
ification, 345 Park Avenue, San Jose, California 95110, USA, August 2010.
version 10.1. 14

[30] Apple Incorporated. Apple tv. http://store.apple.com/us/browse/
home/shop_ipod/family/apple_tv?mco=MTY3ODQ5OTY. Read: 18th
February 2011. 33, 100

[31] Apple Incorporated. Using airplay. http://support.apple.com/kb/
HT4437. Read: 18th February 2011. 33

[32] CompuServe Incorporated. Graphics interchange format(sm) version
89a. http://www.w3.org/Graphics/GIF/spec-gif89a.txt, July
1990. Read: 2nd April 2011. 18

[33] DTS Incorporated. Dts-hd audio - customer white paper for blu-ray disc
and hd dvd applications. White paper, November 2006. 16

[34] J. Ritchie (Intel). Mediarenderer:1 device template version 1.01. Standard-
ized dcp, UPnP Forum, June 2002. 11

[35] J. Ritchie (Intel). Mediaserver:1 device template version 1.01. Standardized
dcp, UPnP Forum, June 2002. 11

[36] K. Debique (Microsoft); T. Igarashi (Sony); S. Kou (Sony); J. Moonen
(Philips); J. Ritchie (Intel); G. Schults (HP); M. Walker (Intel). Contentdi-
rectory:1 service template version 1.01. Standardized dcp, UPnP Forum,
June 2002. 11, 52, 54, 55, 64, 65

[37] S. Kou (Sony); T. Matsui (EIZO NANAO); J. Moonen(Philips); Y. Rasheed
(Intel); J. Ritchie (Intel). Renderingcontrol:1 service template version 1.01.
Standardized dcp, UPnP Forum, June 2002. 11

81

http://www.rbgrn.net/content/21-how-to-choose-dlna-media-server-windows-mac-os-x-or-linux
http://www.rbgrn.net/content/21-how-to-choose-dlna-media-server-windows-mac-os-x-or-linux
http://www.id3.org
http://store.apple.com/us/browse/home/shop_ipod/family/apple_tv?mco=MTY3ODQ5OTY
http://store.apple.com/us/browse/home/shop_ipod/family/apple_tv?mco=MTY3ODQ5OTY
http://support.apple.com/kb/HT4437
http://support.apple.com/kb/HT4437
http://www.w3.org/Graphics/GIF/spec-gif89a.txt

[38] Java id3 tag library. http://javamusictag.sourceforge.net/. Read:
29th March 2011. 43

[39] J-ogg website. http://www.j-ogg.de. Read: 28th March 2011. 44

[40] S. Konno. Cyberlink for java. http://www.cybergarage.org/twiki/
bin/view/Main/CyberLinkForJava/, February 2011. Read: 18th March
2011. 55

[41] Matroska. Tag specifications. http://www.matroska.org/technical/
specs/tagging/index.html. Read: 6th March 2011. 21

[42] Building a network device compatible with microsoft windows media
player 11. Specification, Microsoft Corporation, November 2007. 50, 52,
100

[43] Ware Ground IT News. The hidden secrets of apple’s airplay.
http://www.wareground.com/articles/the_hidden_secrets_
of_apples_airplay, November 2010. Read: 19th February 2011. 33

[44] M. Nilsson. Id3 tag version 2.3.0. Informal Standard id3v2.3, February 1999.
19

[45] Advanced of truemotion vp6 technology. White Paper v1.2, On2 Technolo-
gies, Inc., February 2004. 17

[46] The JCIFS Project. The java cifs client library. http://jcifs.samba.
org/, October 2010. Read: 6th February 2011. 61

[47] A. Puri. Mpeg-4: an object-based multimedia coding standard support-
ing mobile applications. Mobile Networks and Applications - Special issue:
mobile multimedia communications, 3(1):5–20, June 1998. 17

[48] Realnetworks website. http://www.realnetworks.com. Read: 27.
March 2011. 15, 16

[49] Realvideo 10. Technical overview, RealNetworks, 2003. version 1.0. 17

[50] J. Ribas-Corbera. Windows media 9 series. Technical report, Microsoft Win-
dows Digital Media Division, January 2003. 17, 18

[51] Sanselan: a pure-java image library. http://commons.apache.org/
sanselan/. Read: 29th March 2011. 45

[52] Matroška. Codec specs. http://www.matroska.org/technical/
specs/codecid/index.html. Read: 25th February 2011. 14

[53] S. Tarkoma. Mobile Middleware: Architecture, Patterns and Practice. John
Wiley & Sons, Ltd, Chichester, UK, March 2009. 9, 10

82

http://javamusictag.sourceforge.net/
http://www.j-ogg.de
http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava/
http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava/
http://www.matroska.org/technical/specs/tagging/index.html
http://www.matroska.org/technical/specs/tagging/index.html
http://www.wareground.com/articles/the_hidden_secrets_of_apples_airplay
http://www.wareground.com/articles/the_hidden_secrets_of_apples_airplay
http://jcifs.samba.org/
http://jcifs.samba.org/
http://www.realnetworks.com
http://commons.apache.org/sanselan/
http://commons.apache.org/sanselan/
http://www.matroska.org/technical/specs/codecid/index.html
http://www.matroska.org/technical/specs/codecid/index.html

[54] Information technology - digital compression and coding of continuous-
tone still images - requirements and guidelines. Recommendation
T.81, The International Telegraph and Telephone Consultative Committee
(CCITT), September 1992. 18

[55] Digital audio compression standard. Standard A/52:2010, United States Ad-
vanced Television Systems Committee (ATSC), 1776 K Street, N.W., Suite
200, Washington, D.C. 20006, Novebmer 2010. 16

[56] Universal plug and play forum website. http://www.upnp.org, 2011.
Read: 10th March 2010. 11

[57] J. M. Valin. The speex codec manual - version 1.2 beta 2. http://www.
speex.org/docs/manual/speex-manual/manual.html, 2007. Read:
3rd March 2011. 16

[58] M. Adler; T. Boutell; J. Bowler; C. Brunschen; A. M. Costello; L. Daniel; A.
Dilger; O. Fromme; J. Gailly; C. Herborth; A. Jakulin; N. Kettler; T. Lane; A.
Lehmann; C. Lilley; D. Martindale; O. Mortensen; K. S. Pickens; R. P. Poole;
G. Randers-Pehrson; G. Roelofs; W. Schaik; G. Schalnat; P. Schmidt; M.
Stokes; T. Wegner; J. Wohl. Portable network graphics (png) specification
(second edition). http://www.w3.org/TR/2003/REC-PNG-20031110,
November 2003. Read: 2nd April 2011. 18

[59] Xiph.Org. Ogg vorbis i format specification: comment field and header
specification. http://www.xiph.org/vorbis/doc/v-comment.html.
Read: 5th March 2011. 20

[60] Xiph.Org. Flac free lossless audio codec documentation. http://flac.
sourceforge.net/documentation.html, 2008. Read: 2nd March 2011.
16

[61] Xiph.Org. The ogg container format. http://www.xiph.org/ogg/, 2008.
15

[62] Vorbis i. Specification, Xiph.org Foundation, February 2010. 17, 43, 44

[63] Theora specification. Specification, Xoph.Org Foundation, September
2010. 17

[64] R. Zimmermann. Straming of divx avi movies. In SAC ’03 Proceedings of the
2003 ACM symposium on Applied computing, pages 979–982. University of
Southern California - Department of Computer Science, 2003. 13

83

http://www.upnp.org
http://www.speex.org/docs/manual/speex-manual/manual.html
http://www.speex.org/docs/manual/speex-manual/manual.html
http://www.w3.org/TR/2003/REC-PNG-20031110
http://www.xiph.org/vorbis/doc/v-comment.html
http://flac.sourceforge.net/documentation.html
http://flac.sourceforge.net/documentation.html
http://www.xiph.org/ogg/

A Prototype UML Diagrams

Figure 16: GUI Dialogs Diagram

85

Figure 17: Aggregators Class Diagram86

Figure 18: Aggregator GUI Detail Diagram

87

Figure 19: Media Models Class Diagram

88

Figure 20: AbstractObject Class Detail

89

Figure 21: DeviceObject Class Detail

Figure 22: ContentObject Class Detail

90

Figure 23: MediaObject Class Detail

91

Figure 24: AudioObject Class Detail

92

Figure 25: ImageObject Class Detail

93

Figure 26: VideoObject Class Detail

94

Figure 27: Factories

95

Figure 28: Item Factory Detail

96

Figure 29: Object Factory Detail

97

B List of Figures

1 DLNA Interoperability Guidelines Building Blocks[11] 6

2 DLNA Classes Relations . 7

3 Home Environment Example . 38

4 Internal layout of an ID3v1 tagged file[27]. 42

5 Internal layout of an ID3v1.1 tagged file[27]. 42

6 Internal layout of an ID3v2 tagged file[27]. 43

7 Audio Files Directory Structure Sample . 50

8 Image Files Directory Structure Sample . 51

9 Server Based Topology . 57

10 Distributed Topology . 58

11 Application: Main Window . 71

12 Preferences: Local File System . 72

13 Preferences: Samba Shares . 73

14 Application: Aggregation in progress . 74

15 Application: Media File Detail . 75

16 GUI Dialogs Diagram . 85

17 Aggregators Class Diagram . 86

18 Aggregator GUI Detail Diagram . 87

19 Media Models Class Diagram . 88

20 AbstractObject Class Detail . 89

21 DeviceObject Class Detail . 90

22 ContentObject Class Detail . 90

23 MediaObject Class Detail . 91

24 AudioObject Class Detail . 92

25 ImageObject Class Detail . 93

26 VideoObject Class Detail . 94

27 Factories . 95

28 Item Factory Detail . 96

29 Object Factory Detail . 97

99

C List of Tables

1 UPnP Architecture (DCP) stack [22] . 10

2 Supported DLNA Media Formats[11] . 20

3 Metadata Systems Overview . 21

4 Media Container Formats Comparison . 22

5 Media Container Formats and Audio Codecs Support 23

6 Media Container Formats and Video Codecs Support 24

7 Media servers: Media support comparison [25] 27

8 Media Servers: Operating Systems and License Comparison [25] . . 28

9 Media Servers: Vendor’s Product Pages[25] 29

10 Media Servers: Supported Video Formats 30

11 Media Servers: Supported Audio Formats 31

12 Media Servers: Supported Image Formats 32

13 Apple TV supported formats [30] . 33

14 Home Environment Example: Available Devices 37

15 Fields in ID3[27]. 41

16 Selection of relevant TIFF Rev. 6.0 IFD Attributes [17] 46

17 Selection of relevant EXIF IFD Attributes [17] 46

18 Selection of relevant GPS IFD Attributes [17] 47

19 MIME Type - File Extension - ContentDirectory Class Mapping . . . 50

20 ContentDirectory Service Directory Structure[42] 52

100

D List of Abbreviations

AAC MPEG-2,4 Advanced Audio Coding
ACIII Audio Codec 3
ADPCM Adaptive Differential Pulse-Code Modulation
AIFF Audio Interchange Format File
ALAC Apple Lossless Audio Codec
ALS MPEG-4 Audio Lossless Coding
ASF Advanced Systems Format
ATSC United States Advanced Television Systems Committee
AVI Audio Video Interleave
CBR Constant Bitrate
CDS UPnP Content Directory Service
CMML Continuous Media Markup Language
CMYK Cyan-Magenta-Yellow-Key (black) color model
DCP UPnP Device Control Protocol Framework
DHCP Dynamic Host Configuration Protocol
DLNA Digital Living Network Alliance
DMA Digital Media Aggregator
DMC Digital Media Controller
DMP Digital Media Player
DMPr Digital Media Printer
DMR Digital Media Renderer
DMS Digital Media Server
DNS Domain Name System
DTS Digital Theatre Systems
EBML Extensible Binary Meta Language
EXIF Exchangeable Image File Format
FLAC Free Lossless Audio Codec
FLV Flash Video
FourCC Four Character Code
FS Local File System
FTP File Transfer Protocol
GENA General Event Notification Architecture
GIF Graphics Interchange Format
GPS Global Positioning System
GS Gathering Source

101

GUID Globally Unique Identifier
HDMI High-Definition Multi-media Interface
HDTV High-definition television
HEAAC High-Efficiency Advanced Audio Coding
HID Home Infrastructure Devices
HND Home Network Devices
HTTP Hypertext Transfer Protocol
ID3 IDentify an MP3
IFD Image File Directory
IFF Interchange File Format
ID3 IDentify an MP3
IP Internet Protocol
ISO bibliography refInternational Standard Organization
JFIF JPEG File Interchange Format
JPEG Joint Photographic Experts Group
LAN Local Area Network
LZW Lempel–Ziv–Welch
MDMC Mobile Digital Media Controller
MDMD Mobile Digital Media Downloader
MDMP Mobile Digital Media Player
MDMS Mobile Digital Media Server
MDMU Mobile Digital Media Uploader
MDV Message-Digest algorithm 5
MHD Mobile Handheld Devices
MIU Media Interoperability Unit
MKV Matroska File Format
MNCF Mobile Network Connectivity Function
MP3 MPEG-1 or MPEG-2 Audio Layer III
MPEG Moving Pictures Expert Group
NAS Network Attached Storage
OBEX OBject EXchange
PCM Pulse-code modulation
PDA Personal Digital Assistant
PNG Portable Network Graphics
QT QuickTime
RM RealMedia
SLS MPEG-4 Scalable to Lossless
SMB Samba
SOAP Simple Object Access Protocol
SSDP Simple Service Discovery Protocol
SWF ShockWave Flash
TCP Transmission Control Protocol
TIFF Tag Image File Format

102

UDN Unique Device Name
UDP User Datagram Protocol
UML Unified Modeling Language
UPnP Universal Plug and Play
VBR Variable Bitrate
VfW Video for Windows
VOB Video Object
WAV Windows Wave Audio
WLAN Wireless Local Area Network
WMA Windows Media Audio
WMV Windows Media Video
XML Extensible Markup Language
XMP Extensible Metadata Platform

103

E Curriculum Vitae

Jan Kubový

Personal Information

Date of birth: December 12, 1984
Nationality: Czech
Gender: Male

Phone: (+420) 732 841 225
Email: jan@kubovy.eu
Homepage: http://www.linkedin.com/in/kubovy

Education

Johannes Kepler University in Linz
M.Sc., Software Engineering, Computer Science, 2010 - 2011 (expected)
Institute for Application Oriented Knowledge Processing (FAW)
International Studies in Informatics

Czech Technical University in Prague
Ing. (eq. to M.Sc.), Computer Science, Cybernetics, 2009 - 2011 (expected)
Open Informatics
Faculty of Electrical Engineering

Czech Technical University in Prague
Bc., Computer Science, Electrical Engineering, 2005 - 2009
Electrical Engineering and Communication Engineering
Faculty of Electrical Engineering

Honours, Awards & Scholarships

Student Mobility Scholarship 2010-2011
Faculty of Electrical Engineering, Czech Technical University in Prague
Support for Double-Degree Programme

Merit Scholarship (awarded 2 times) 2009-2010, 2010-2011
Faculty of Electrical Engineering, Czech Technical University in Prague
Open Informatics

Google Developer Competition Winner 2010
Faculty of Electrical Engineering, Czech Technical University in Prague
Open Informatics

105

mailto:jan@kubovy.eu
http://www.linkedin.com/in/kubovy

	Title Page
	Support
	Acknowledgments
	Statement
	Abstract
	Contents
	I Research
	1 Introduction
	1.1 Goal
	1.2 Tasks

	2 Technologies
	2.1 Digital Living Network Alliance (DLNA)
	2.2 DLNA Certified Device Classes
	2.2.1 Home Network Devices (HND)
	2.2.2 Mobile Handheld Devices (MHD)
	2.2.3 Home Infrastructure Devices (HID)
	2.2.4 Digital Media Aggregator (DMA)

	2.3 Universal Plug and Play (UPnP)
	2.3.1 UPnP Audio and Video standards
	2.3.2 UPnP ContentDirectory Service Template

	2.4 Container Formats
	2.5 Audio Codecs
	2.6 Video Codecs
	2.7 Image Formats
	2.8 Metadata

	3 Market overview
	3.1 Devices Overview
	3.2 Media Server Software Overview
	3.3 Apple AirPlay
	3.4 Summary

	4 Home Environment Example

	II Implementation
	5 Shared Media Types
	5.1 Audio
	5.1.1 ID3 Tag
	5.1.2 Xiph Comments

	5.2 Image
	5.2.1 EXIF & IFD

	5.3 Video

	6 Collecting Media Files
	6.1 Sources
	6.2 Metadata Gathering
	6.3 Media File Identification
	6.4 Media Files Duplicates Identification
	6.5 Sharing Media Information

	7 Topology
	7.1 Server-Based Topology
	7.2 Distributed Topology
	7.3 Conclusion

	8 Prototype Architecture
	8.1 Application Model
	8.2 Aggregators Package
	8.2.1 AbstractAggregator Class
	8.2.2 Aggregator Class
	8.2.3 ContentDirectoryAggregator Class
	8.2.4 FileSystemDirectoryAggregator Class
	8.2.5 SambaAggregator Class

	8.3 Samba Subpackage
	8.3.1 SambaConnection Class
	8.3.2 SambaTicker Class

	8.4 GUI Package
	8.4.1 AggregatorGUI Class
	8.4.2 PreferencesDialog Class

	8.5 Media Models Package
	8.5.1 AbstractObject Class
	8.5.2 DeviceObject Class
	8.5.3 ContentObject Class
	8.5.4 MediaObject Class
	8.5.5 AudioObject Class
	8.5.6 ImageObject Class
	8.5.7 VideoObject Class
	8.5.8 ItemFactory Class
	8.5.9 ObjectFactory Class

	8.6 Servers Package
	8.6.1 ContentDirectoryCollector Class
	8.6.2 ContentDirectoryServer
	8.6.3 ContentDirectoryServiceClass

	8.7 Libraries package
	8.7.1 DMALib Class
	8.7.2 FileSystemExporter Class

	8.8 Testing of the Application

	9 Application User Guide
	9.1 Aggregation Process
	9.2 Aggregators Configuration
	9.3 Browsing Aggregated Media
	9.4 Making Media available to the Network
	9.5 Saving and Loading Snapshots

	10 Conclusion
	10.1 Application Proposal

	11 References
	A Prototype UML Diagrams
	B List of Figures
	C List of Tables
	D List of Abbreviations
	E Curriculum Vitae

