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Abstrakt / Abstract
Tato práce popisuje návrh řízení

pro bezkontaktní manipulaci s mikro-
a mezoskopickými objekty pomocí
dielektroforézy. Konkrétně je dokumen-
tován výchozí stav systému založeného
na optimalizaci v reálném čase. Řešený
problém je dále rozšířen tak, aby byly
umožněny současné změny amplitud
a fázových posunů napěťových signálů
použitých k ovládání. Pro řešení dané
optimalizační úlohy je zvolena vhodná
numerická metoda a systém je expe-
rimentálně ověřen. Použita jsou dvě
různá elektrodová pole umožňující po-
hyb po přímce a v ploše. Dále jsou
analyzovány a řešeny problémy spojené
se škálovatelností systému, jako jsou
rostoucí výpočetní nároky a vzájemné
silové působení částic.

Klíčová slova: dielektroforéza; řízení
polohy mikročástic; optimalizace.

Překlad titulu: Řízení dielektroforézy
založené na optimalizaci v reálném čase

This thesis describes the control
design for a noncontact manipulation
of micro- and mesoscale objects utiliz-
ing the dielectrophoresis. Specifically,
the currently available system based
on an optimization in real-time is doc-
umented. The optimization problem is
further extended so that changes in both
the amplitudes and the phase shifts
of the voltage signals are used for ac-
tuation. A suitable numerical solver
is chosen for the given optimization
task and the system is experimentally
verified. The two different electrode
arrays allowing linear and planar mo-
tion are used. Furthermore, the issues
related to the system scalability, such
as the growing computational demands
and mutual particle force interactions,
are analyzed and appropriate solutions
proposed.

Keywords: dielectrophoresis; micro-
particle position control; optimization.
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Chapter 1
Introduction

1.1 Micromanipulation
Precise noncontact manipulation of micro- and mesoscale objects gained a huge interest
in the last four decades. The possible applications range from diverse engineering
problems (such as micro assembly [1]) to scientific areas of biology and biochemistry [2].
Since lately, a special interest is particularly directed towards the so-called lab-on-a-chip
devices. Their main characteristic is integration of several functions (like separation,
concentration and diagnosis) on a single device. The controlled micromanipulation
plays a major role in their function [3].

There are many ways to accomplish this task including optical tweezers [4], ul-
trasound [5], magnetic sorting (MACS) [6], fluorescence (FACS) [7] or electric field-
based approaches. Each of them has its advantages and disadvantages. In this thesis
I will deal with a dielectrophoresis (DEP), a subclass of the last mentioned approach.
The DEP has currently undoubtedly a great unexplored potential. Owing to the ease
with which such a manipulator can be fabricated and the fact that the DEP is non-
invasive to the manipulated objects like living cells [8], it can easily become a central
part of the lab-on-a-chip devices [3].

1.2 Dielectrophoresis
The DEP is capable of inducing a force on polarizable particles. It usually takes place
in a liquid medium. This makes it a very promising method of noncontact manipulation.

The DEP force acting on a manipulated object is in fact a resultant of the well-
known Coulomb forces. These arise as a consequence of a dipole (or multi-pole) form-
ing inside the object, while it is located in a spatially nonhomogeneous electric field.
That is in our case generated by a set of microelectrodes constituting our manipulator.
By changing parameters of voltage signals applied to the electrodes (like frequency,
phase shift or amplitude), it is possible to “shape” the electric field. Creating the dif-
ferent electric field inhomogeneities then, as a consequence, influences the forces acting
on the manipulated objects. Two basic types of the DEP are distinguished: the con-
ventional DEP (cDEP) and the traveling wave DEP (twDEP). The first term refers
to a situation when the force is caused by a field with a spatially varying magnitude,
whereas the second term denotes the force arising from a field with a spatially varying
phase. The cDEP is further divided into a positive and a negative. The former means,
that the particles are attracted towards locations of the biggest electrical field gradient
(typically to edges of the electrodes). The latter means that they are repelled from such
places. The DEP type is determined by the excitation voltage frequency and material
properties of the particle and the medium, namely their conductivity and permittivity.
In this work, only the negative DEP will be utilized for the manipulation. More de-
tails can be found for example in [3, 9–10] and were also discussed in my bachelor’s
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
thesis [11]. In this text I will only state and further use the final formulas for the DEP
derived in the mentioned literature.

1.3 State-of-the-art
There can be found a number of relevant works dealing with the dielectrophoretic micro-
manipulation and focusing on its control point of view. In this section I will summarize
the interesting results achieved until now and also highlight the contribution of this work
in their context.

Manaresi et al. [12–13] achieved the micromanipulation using a 2D array of 320 × 320
square electrodes fabricated as a part of a CMOS chip and another extra electrode
on a lid covering the whole manipulation area. The DEP was used to create the so-
called force cages above individual electrodes, in which the particle or particles could
be trapped. By changing position of these cages, the manipulation was achieved. How-
ever, no precise feedback position control was applied since the sensing was realized
just by a sparse distribution of photo-diodes. Manipulation precision is therefore lim-
ited to the electrode dimensions. The same method was also earlier demonstrated
fora 1D case by the same group [14]. Edwards and Engheta [15] developed the so-
called electric tweezers, which are constituted of circular electrodes arranged in a circle
around the manipulation area. For N particles, at least 2N + 1 electrodes are nec-
essary to individually control the forces acting on the objects together with the ori-
entation of the objects. The appropriate voltage values generating the desired forces
are found bya numerical optimization. Kharboutly et al. [16–17] used four triangular
electrodes pointing towards the center of the manipulation area. Control of the force
acting on the particle is realized using an inverted simplified 2D model together with
the Newton-Raphson method for finding the proper voltages. Although, manipulation
with only one particle was demonstrated, ideas for extending their work for an unlimited
planar manipulation were sketched.

This thesis is focused on allowing the DEP micromanipulation to be controlled [18]
by means of the voltage phase shifts modulation instead of the amplitude modulation.
This approach is advantageous because of the simple implementation – no amplifiers are
required compared to the voltage amplitude modulation method. Furthermore, an ef-
fort was made to investigate and solve the computational issues related to the system
scalability. All of this should direct the system under development towards the high
precision large range micromanipulator.

1.4 Goals of the work
The goal of this work is to document and further extend the currently existing con-
trol system for 1D micromanipulation using the DEP and a parallel electrode array.
This system is capable of the simultaneous and independent manipulation of sev-
eral polystyrene beads. A method based on the utilization of the inherent system
noise for overcoming the controllability issues was tested experimentally. As a result
of this previous work there were parts of the software and hardware, which I uti-
lized as the foundations upon which my work is built. Results of the mentioned work
were presented also in a journal paper [18], which I coauthored with Jiří Zemánek and
Zdeněk Hurák. For convenience, I will use some parts of the text here (with allowance
of the coauthors) and mark these passages by the reference number.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Link to the previous work

The particular problems tackled in this thesis include:. inspection of the existing approaches to “force allocation” in various force fields,. extension of the existing optimization problem formulation so that it can find both
the amplitudes and the phases of the voltages applied to the electrodes. This would
enable the control of both the cDEP and the twDEP,. selection of a suitable numerical solver that can handle this optimization problem
in real time,. conduction of experiments showing the performance of the control system with
the standard parallel and a four-sector electrode arrays,. investigation of the computational issues related to the increased number of the elec-
trodes and the manipulated particles,. consideration of the mutual interaction of the particles, including. the extension of the optimization problem so that it takes into account the uncertainty
in the position measurement.

1.5 Link to the previous work
This thesis freely builds on my previous work, which itself culminated in the bach-
elor’s thesis [11]. Objective of the work was to use a 6 × 5 matrix microelectrode
array for a control of the microobject manipulation. First part of the work dealt with
the completion of the hardware setup (design and fabrication of a suitable electrode ar-
ray connector). In the second part, I created the DEP simulation scheme and utilizing
it, I designed a few control algorithms. These were supposed to use just the changes
of the electric field phase gradient as a mean of actuation. The final outcome of the work
was then a collection of several control algorithms ranging from the simple ones to
the more advanced using look-up tables with optimal actions computed in advance
(for a discrete set of positions and directions of movement).

3



Chapter 2
Force allocation approaches

One of the key characteristics of the manipulator scheme described in this thesis (which
is by the way common for all the noncontact manipulation approaches) is that at first
a force field is generated, which just thereafter causes the objects to move. In a me-
chanical domain this can be illustrated on an example of a difference between a robot
gripper poking a ball on a desk and a robot moving the ball by tilting the whole desk.
This general property classifies this approach among a much narrower class of the ma-
nipulator systems. Some of the force fields, like the one noticed as an example above,
are somehow limited in control (here the force exerted in different locations has al-
ways the same direction), however, there exist ones that are almost fully adjustable.
As an example can serve an array of controlled omni wheels.

The idea of the object manipulation utilizing the miscellaneous force fields is defi-
nitely not new. A number of research groups have already started exploring this subject,
which is interesting from both the theoretical and the practical point of view. Applica-
tions in a macro as well as micro scale are considered. In the macro scale, the concept
itself promises a construction of the manipulation devices which are mostly composed
of a large number of identical (and relatively cheap) cooperating units. This allows
for a high robustness in cases of a failure of some units, easy reconfiguration of the sys-
tem or an exchange of broken parts. Various authors proposed their own solutions –
some differing in the most basic principles of operation or a physical phenomenon used
for exertion of the force field.

Böhringer et al. [19] explored the use of the so-called programmable vector fields
for an open-loop positioning and orientation of the distinct objects. By introducing
two different types of a static field that can each uniquely pose the object (an ellipsoid
potential field and a radial-gravity field), he improved the previous results when several
fields had to be employed in a sequence to achieve the same outcome. The only difficulty
his method is facing is the unique posing of geometrically symmetric objects. By de-
signing the whole manipulation strategy in open-loop he aimed at a robust and simple
practical realization. As a few examples can serve MEMS actuator arrays [20–21],
vibrating plates [22] or arrays of motors. The main problem encountered in the mi-
cromanipulation systems utilizing mechanical actuation elements is the generation and
control of the forces over a sufficiently large range of their magnitude [19].

Suh et al. [20] introduced a first micromachined bimorph organic ciliary array with
an on-chip CMOS circuitry. It is composed of 8× 8 cells (the so-called motion pixels)
each having four orthogonally oriented actuators. These are capable of curling into and
out of a substrate plane. This is due to different coefficients of thermal expansion of two
different materials making up the structure. The deformation is controlled by a voltage
supplied to a heating resistor placed between the two layers. On the manipulation area
of 9.4×9.4 mm the authors showed that a force of an arbitrary direction can be exerted
on one object by multiplexing the four basic actuation directions. Successful experi-
ments with the squeeze force fields (introduced in [19]) were also performed including

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a demonstration of the skew squeezed field generated by applying the radial field plus
tilting the whole chip by a small angle.

A manipulation principle based on combining horizontal and vertical vibrations was
proposed by Frei et al. in [22]. The horizontal circular motion of the whole platform
is supplemented with the vertical motion of its individual surface elements (arranged
in an array). The vertical elements motion results in a change of the force normal to the
surface of the object. If this force changes during one period of the circular horizon-
tal vibratory motion, the total friction force will be nonzero, thus causing the object
to move. The device is suitable for both the open-loop and the closed-loop control.
In the former case, the theory of vector fields [19] is utilized. An approach based on su-
perposing a uniform field and a moving radial force field centered on the desired position
of the traveling object is suggested. This causes the position errors of the object to de-
crease without the need for sensors and feedback. When using feedback, the use of such
squeeze fields becomes superfluous. Multiple objects can then be steered along different
trajectories as they are not too close to each other. Possible applications of the proposed
device include feeding, orienting, sorting, separating and arranging the objects.

Lunz et al. use an array of motor driven omni wheels for construction of an easy
reconfigurable and reprogrammable parcels conveyor system [20]. The manipulated
packages are significantly larger than each cell of the system (a unit consisting of four
motors). The force fields generated according to [19] are used for the open-loop control.
The authors also mention problems arising from the discreteness of the actuator array.
The approximation of the generated force field as being continuous causes an undesirable
behavior such as unstable rotational equilibria in the system. Thus the closed-loop
control is suggested for this type of the manipulator.

The problem of the closed-loop control of a system with many binary degrees of free-
dom in actuation allocation was investigated in [23] by Fromherz and Jackson. A ma-
nipulator system exerting a force on the object by an array of air jets was used as
a testing platform for various algorithms solving the force allocation problem. These
range from a discrete optimal search to a continuous constrained optimization to a hier-
archical approach that can be distributed. The hybrid hierarchical-optimal algorithms
represent a general method of solving the high-dimensional problems. A continuous
solution can be broken down into a number of similar subproblems. These are either
solved through the optimal search or further decomposed.

Konishi at al. focused on the practical aspect related to the control of the array of mi-
croactuators [24]. They suggest a distributed control scheme capable of a closed-loop
transportation and an orientation of one object by a sequential application of the simple
uniform, the squeeze and the rotation vector force fields. Algorithms for coping with
possible failures in some clusters of the actuating elements are also presented.

A distributed actuation device consisting of soft gel actuator elements intended
for a manipulation with soft objects like organs was proposed by Tadokoro [25].
The driving force is generated by a friction between the manipulated object and
the soft drop-like actuators deformable in a controlled manner. The object is carried
by a subset of actuators by a small distance while the rest of them is returning
to their original position not touching the object. Although it is a very interest-
ing actuation scheme, it is not capable of the manipulation with very soft objects
in the present form. The cause is the deformation of the manipulated object itself,
which is thus in the permanent touch with all the actuator elements. The net force is
therefore zero.

5



2. Force allocation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
One another interesting way of producing an arbitrary force field for the object ma-

nipulation examined Reznik and coworkers [21]. Inspired by the minimalism in robotics
they showed that a device with only a few degrees of the actuation freedom can indepen-
dently manipulate several objects. In fact, they show that the number of the actuators
can be traded for a more sophisticated control. By using the small number of actuators
this work totally differs from all the previous solutions. The proposed approach uses
a horizontally-vibrating plate moving the objects via frictional interactions (of the slid-
ing type). By appropriately modulating the vibrations of the desk (using just four
voice-coil actuators) they are capable of the independent manipulation of a theoreti-
cally unlimited number of objects.

Let me pinpoint some of the recognized key properties of all these devices, based
on which it is possible to categorize them. These are:. typical dimensions of the manipulated objects,.need for sensors (closed-loop/open-loop control strategies),.number of actuators (robustness/minimalism),.actuator-object relationship (Does one actuator influence more objects at the same

time and is one object influenced by more actuators at the same time? Or is there
an isolation in the sense that one actuator can only influence one object like it is
usually in the mechanical actuator systems?),.possibility of an easy extension of the manipulation area.
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Chapter 3
Current control system

This chapter documents the control system being available before I started writing my
thesis. I participated on its creation by implementing the control algorithm and con-
ducting the experiments. The basic capabilities of this control system were already
briefly mentioned in the previous text. For a more complete image of the current
manipulator function I will describe it once again here in a greater detail. I will, how-
ever, still omit the technical details of the laboratory setup which are not necessary
for the most fundamental understanding. These are further detailed in Section 6.1.

3.1 Control for the parallel array
The current manipulator is capable of steering one or even more polystyrene test beads
(50µm in diameter) along a straight line using the DEP. The manipulation itself takes
place in a small chamber cut out of a polydimethylsiloxane (PDMS) sheet and filled with
a deionized water, in which the beads are immersed. Its bottom is covered by the ac-
tuators — microelectrodes on a glass substrate (see Figure 6.1). The limitation to
just 1D motion control arises from the used microelectrode arrangement. The simple
configuration of eight parallel electrodes is used. For the illustration of the described
system, see Figure 3.1. By applying appropriate voltages to the individual electrodes,
the DEP force acting on the particle is induced and it starts to move. The core problem
here is to find a way how to determine the voltage values, such that the induced force
acting on the particle has the desired magnitude and direction. This is the responsi-
bility of the proposed controller. The input to the controller is the particle position
and the force value we want to affect it. The output is then the set of the appropriate
voltages that should be applied to the electrodes. The particle position is measured
using a microscope with mounted camera providing a top view image of the manipula-
tion area. The images acquired from the camera are processed on a PC by a computer
vision algorithm and the position of the particle is extracted. Only the x of the two
coordinates of interest can be measured [18].

x

polystyrene microbeads

y

electrodes

deionized water

glass substrate

Figure 3.1. Illustration of the parallel array manipulator. Redrawn from [18].
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3. Current control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Although it is possible to move the bead by dragging it along the bottom surface,

it is much more practical to levitate it (by overcoming the sedimentation force). Then
it can be moved in some height above the electrodes and parallel to the glass substrate.
This way, it is prevented from sticking to the bottom, which otherwise regularly hap-
pens. In such a case, the particle stays static and do not respond to the generated
force. The other good reason for maintaining the bead levitating is a better accuracy
of the mathematical model in a greater distance from the electrodes (a consequence
of the point-dipole approximation, see 4.2). The role of the model in the control algo-
rithm will be discussed further below.

Now, when the basic understanding of the overall system function was established
I will proceed with the description of the control strategy itself. Since we are interested
in controlling the movement of the bead arising from the DEP force effect, it would be
convenient for us to be able to directly dictate this force. The control problem would be
then separable into two actually independent parts: computation of the desired force
and the desired force allocation. The DEP force is, however, nonlinearly dependent
on the voltages applied to the electrodes and on the position of the particle.

Initially, we will elaborate the first stated subproblem. The used micro beads have
negligible inertia [26] and their velocity is thus determined simply as their terminal
velocity in the viscous fluid medium. This can be computed using the Stokes’ law

Fd = 6πµrv, (3.1)

where the frictional force Fd is equal to the force acting on the particle. The symbol
µ denotes the dynamic viscosity of the fluid, r is the radius of the spherical particle
and v the flow velocity relative to the object. The bold symbols are used to represent
vectors and matrices. The first subproblem thus leads through this simple force-velocity
connection to a linear system [

ẋ
ẏ

]
= 1

6πµr

[
Fx

Fy

]
, (3.2)

and can be controlled by even the most simplest proportional controller.
The second stated subproblem is much more challenging. We start with building

up a very simple model of the DEP based on the point-dipole approximation. Since
in this case the electric field is constant along the electrodes, it is sufficient to con-
sider just a planar cross-section of the array. Then x represents the coordinate along
the horizontal direction orthogonal to the electrodes and y stands for the levitation
height (this coordinate system is also shown in Figure 3.1. Nevertheless, if necessary,
the presented algorithm can also be extended to the third dimension by simply adding
the z coordinate.

The principle of superposition is applied to express the electric field potential at
the given coordinates (x, y) as

Φ (x, y) =
∑

i

uiΦi (x, y) = ūT Φ̄ (x, y) , i = 1, 2, . . . , 8, (3.3)

where ui denotes the voltage on the ith electrode and Φi (x, y) is the potential corre-
sponding to a unit voltage applied to the ith electrode while the rest of them is kept at
zero. The calculation of these potentials was done by numerically solving the Laplace’s
equation using a solver for the finite elements method (FEM), namely Comsol Multi-
physics (version 4.3). The second part of the expression is just a matrix-vector form
of the same. Variables with a bar placed over them then denote a special kind of vectors

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Control for the parallel array

where each element corresponds to one electrode. Knowing the potential, it is possible
to express the vector of the electric field intensity [18]

E (x, y) =
[
Ex (x, y)
Ey (x, y)

]
= −∇Φ (x, y) , (3.4)

where

Ea (x, y) = −ūT ∂Φ̄ (x, y)
∂a

= ūT Ēa, a ∈ {x, y} . (3.5)

Finally, the time-averaged conventional DEP force acting on the spherical homoge-
neous particle of the radius of r is [10]

FcDEP (x, y) =
[
FcDEP,x (x, y)
FcDEP,y (x, y)

]
= k∇E2 (x, y) , (3.6)

where k is a real constant dependent on the voltage frequency and the material
properties of both the particle and the medium. Specifically,

k = πεmr
3R
[
ε∗p − ε∗m
ε∗p + 2ε∗m

]
, ε∗r = ε0εr − j

σ

ω
, (3.7)

where ε∗ is the so-called complex permittivity with the subscripts p and m standing
for the particle and the medium, respectively. Further, ε0 is the permittivity of the vac-
uum, εr is the relative permittivity of the particular material, σ is its conductivity, ω is
the angular frequency of the applied sinusoidal voltage and finally j denotes the imag-
inary unit, that is j =

√
−1. The operator R [·] denotes the real part of the complex

number in the parenthesis. Similarly, I [·] will be later used to denote the imaginary
components of complex numbers. The particular complex fraction present here is com-
monly called the Clausius–Mossotti factor.

Apart from the above mentioned assumptions, Eq. (3.6) does not take into ac-
count any mutual particle force interactions. At least for now, we will consider them
as being negligible, which implies that the particles cannot be located close to each
other. Next, we continue by expressing the individual force components. First, the dif-
ferentiation is carried out and new symbols Ψab, representing the partial derivatives
of the a-component of electric intensity along b, are introduced

Ψ̄ab = ∂Ēa (x, y)
∂b

, a, b ∈ {x, y} . (3.8)

All is then again stated in the vector form

FcDEP,a (x, y) = 2k
(
Ex

∂Ex

∂a
+ Ey

∂Ey

∂a

)
=

= 2k
(
ūT ĒxūT Ψ̄xa + ūT ĒyūT Ψ̄ya

)
, a ∈ {x, y} ,

(3.9)

utilizing the fact that by transposition of a scalar we get the same scalar, it is possible
to factor out the vectors ū and ūT and to express the force components as the quadratic
forms

FcDEP,a (x, y) = ūT 2k

∑
b=x,y

ĒbΨ̄T
ba


︸ ︷︷ ︸

Pa

ū, a ∈ {x, y} . (3.10)

9
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Now the task is to find the potentials ū on the electrodes that will yield the desired

DEP force at a given place. This can be formulated as an optimization task

ūopt = arg min
ū

(∣∣ūT Px (x, y) ū− F des
x

∣∣+ ∣∣ūT Py (x, y) ū + Fsed − F des
y

∣∣) , (3.11)

s. t. |ui| < Umax,

where Fx
des and Fy

des are the appropriate components of the desired force and Fsed is
a sedimentation force acting on the particle. This way, it is possible to obtain voltages
ūopt necessary to induce the given force. The optimization task is therefore solved once
in every control period. Since the Pa matrix is in general indefinite, the optimization
problem is not convex. For solving it we use an implementation of a simulated annealing
algorithm in Matlab (the code written by J. Vandekerckhove is freely available [27]).
Further details regarding the optimization solver choice can be found in Chapter 5
devoted to the analysis of the optimization task. In [28], it was presented how this
procedure could also be interpreted as being a very close to a feedback linearization
concept [18].

Sample results of the optimization for the particular desired force are shown in Fig-
ure 3.2. There are four side views of a part of the manipulation area containing the par-
ticle. The particle is represented by a circle and its position differs as well as differ
the desired forces (shown by the red arrows). The blue arrows then mark the actual
forces generated by the solution of the optimization task. Although the two arrows
do not overlap perfectly, this performance is sufficient to be used in the feedback con-
troller for the real system (see Chapter 6). The background color represents the electric
potential field [18].
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Figure 3.2. Four examples of the optimization outcomes. Redrawn from [18].
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Since only the horizontal position x is currently measured and provided to the con-
troller, the levitation height y of the particle is tried to kept constant at the initial level
by the controller throughout the whole experiment. A way of doing this is by fixing
the F des

y component of the desired force vector at zero. This assumes that the initial
levitation height is known, the mathematical model based on which the voltages are
determined is totally accurate and a zero error solution is found by the optimization
task. This is of course never the case. The problem would fade away if we would be able
to measure the levitation height during the experiment, so that the controller would
have access to it. Not only this would greatly help in steering the particle in the x axis,
but it would also immediately allow the positioning in the y axis [18].

Another problem is that the measured horizontal position reaches the controller with
some non-negligible delay. It takes a finite time to acquire the image, process it and
execute the control algorithm. This delay should be compensated, because otherwise it
could cause an undesired behavior like oscillations. We tackle this problem using a posi-
tion estimator. The estimation of the horizontal position is calculated as the last known
position plus the last known velocity times the duration of the delay (approximately
measured as 25 ms) [18].

Prior to the experimental validation, the position control algorithm was tested in
a spirit of the software-in-the-loop (SIL), with the plant simulation based on the math-
ematical model described above. We simply plug in the control signals into the force
Eq. (3.10) and calculate FDEP . Knowing the force exerted on the particle, the Stokes’
law is used to get the following relationships for the bead movement

ẋ = 1
6πµr ū

T Px (x, y) ū, ẏ = 1
6πµr

[
ūT Py (x, y) ū + Fsed

]
. (3.12)

Furthermore, an artificial small noise can be added to the particle velocities repre-
senting the effects of the not modeled Brownian motion and alike phenomena. These
are in the most of the cases insignificant in comparison with the DEP force effects,
but useful in the situations described in the subsequent Section 3.2. Although, we
are simulating the position evolution in the both relevant axes to make the simulation
as much realistic as it is possible, we of course respect that only the x coordinate is
measured in the real experimental setup and do not provide any other information
to the control algorithm. The movement along the third remaining axis (in direction
parallel to the electrodes and the bottom plane) is not important in the current situa-
tion, because the DEP force should not vary in this direction. In fact, some movement
which is probably caused by thermal generated fluid flows occurs, but it is negligible
in comparison with the studied DEP induced motion so it is unconsidered in the model.
A schematic diagram of the whole SIL simulation is in Figure 3.3.

Both the control algorithm and the plant simulation were implemented in Simulink
by means of S-function blocks. The controller block runs at a frequency of 10Hz re-
sembling the real experiment conditions, where we are limited by real-time capabilities
of the hardware. The plant simulation, solving the equations (3.2) using standard
ode45 solver, is executed with a frequency ten times higher to capture the bead posi-
tion evolution even in the course of one control period. Furthermore, the components
introducing artificial delays on the inputs (caused by frame grabber and the image pro-
cessing blocks) and the outputs (possibly caused by the driving circuitry) are included.
All the delays can be grouped and represented just as a one block preceding the control
algorithm itself. The predicted value xpred is then in fact not the estimate of the current
position of the bead, but the estimate of its future position (at the time the control
signals propagate to the electrodes).
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𝑥𝑚𝑒𝑎𝑠 

Figure 3.3. Schematic diagram of the SIL simulation. The blue block simulates the phys-
ical system (the DEP and the particles), the yellow block simulates the driving circuitry
(the delay on the inputs and the outputs) and the grey block is the control algorithm itself.

In Figure 3.4 a simulation of a position reference tracking is shown. The upper graph
depicts the time progress of the position of the object in the direction of the horizontal
axes x and the lower one displays its levitation height. While the horizontal position
can be measured and thus controlled in the closed feedback loop, the vertical position
can be controlled only in the open-loop as noted above. The deviations from the de-
sired levitation height of 130µm are small in the steady-state regions, but increase
when the bead moves. However, the feedback controller of the x position still achieves
a maximal overshoot of around 12µm and a maximal deviation from the reference
in the steady state of 5µm (that is 10% of the particle diameter).

time (s)
10 20 30 40 50 60 70 80 90

po
si

tio
n 

x 
(m

)

#10-4

-5

0

5

Horizontal position of the object (xreal) -- closed-loop control

desired
simulated

-10

-5

0

5

10

time (s)
10 20 30 40 50 60 70 80 90

po
si

tio
n 

y 
(m

) #10-4

0.6

1

1.6

Vertical position of the object (yreal) -- open-loop control

vo
lta

ge
 o

n 
th

e 
el

ec
tr

od
es

 (
V

)

Simulation of the desired position tracking

Figure 3.4. Simulation of the reference tracking. The horizontal position is controlled
in the closed feedback loop while the vertical one just in the open-loop. The underlying

colored stripes represent the voltage amplitudes applied to the electrodes.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Parallel manipulation of several particles

Another example in Figure 3.5 shows that the bead can be steered and kept at any
desired location (not only the centers or the edges of the electrodes). The experimental
results verifying the simulation predictions are described in Section 6.
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Figure 3.5. Simulation of the reference tracking with randomly chosen reference positions.
The color stripes represent the voltage amplitudes applied to the individual electrodes.

3.2 Parallel manipulation of several particles
The presented optimization-based approach can be extended to an independent ma-
nipulation of several particles at the same time. It is sufficient to simply supplement
the optimization task definition (3.11) by other force requirements. So, if in the current
situation the minimization of the two norms is necessary for controlling just one particle
(one for each significant force component), for N particles there would be a sum of 2N
similar norms in the objective function.

Leaving aside the fact that not all the desired forces can be achieved because
of the constraints imposed on the voltage amplitudes, other limitations can arise from
the array geometry itself. Not only that the parallel electrode array does not allow to
control the movement of the objects in the direction along the third axis z (because
the corresponding DEP force component is zero), the DEP force components for the di-
rections along the other two axes remain constant along the given z coordinate. This
brings some controllability issues when dealing with the control of more particles.
Imagine a situation when two identical particles (the same volume, density, permit-
tivity, conductivity, ...) should swap their positions in the x coordinate. The control

13
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algorithm would start moving them in the corresponding directions and this would
work until they reached the same x coordinate. Assuming that their levitation height is
the same, both the particles would now feel an identical force. This in conjunction with
the negligible inertia of the particles causes the loss of the controllability – a problem
that can not be solved by any deterministic control algorithm [18].

A simple, however probabilistic, solution can be offered. First, a stable force equi-
librium is used to bring the beads to the same x coordinate position as it is illustrated
by a potential well in Figure 3.6. This is done naturally by the current form of the con-
troller. Then the equilibrium is changed to an unstable. The corresponding potential
illustration is shown in Figure 3.7. In this position, only a small disturbance (intrinsic
in the system) is sufficient to cause the particles to move down the created potential hill.
In total, there exist four possible results: both the particles will move to the left, both
the particles will move to the right, one particle will move to the left and the second to
the right and the other way around. Only one of these possibilities leads to the desired
particle swap. If any other situation comes to pass, the whole process of using the stable
and then the unstable force equilibrium repeats, until the positions of the beads are
successfully exchanged. Not only the stable, but also the unstable force equilibrium is
created naturally by the current form of the controller. The optimization task chooses it
as the best compromise between the two desired forces acting in the opposite directions.
This equilibrium is however too weak to be useful for the separation process. There-
fore the situation where the separation is necessary is detected (it is sufficient to look
whether the two particles are at the same x coordinate and want to move in opposite
directions) and a stronger equilibrium is artificially generated [18].

Figure 3.6. An illustration of the stable
equilibrium attracting the particles to

the same location. Taken from [18].

Figure 3.7. An illustration of the unstable
equilibrium repulsing the particles on its

two sides. Taken from [18].

The above described procedure of the position swapping of the two particles is shown
in the SIL simulation in Figure 3.8. The position controller first brings them together
and then the procedure of the separation begins (it is indicated by the green area).
The algorithm is separating the particles by creating the unstable equilibrium at their
(shared) position. In particular, three forces are set for the optimization. Zero force
is demanded in the position of the particles and two forces pointing away from this
location are set on either side of the particles. Their magnitude is rather large (100 pN)
and their points of activity are separated by a distance of 40µm. The desired forces
are depicted by arrows and crosses. If the separation is not successful, the position
controller tries to bring the particles together and the procedure of separation starts
again. The procedure finishes when the particles are far away (100µm). Experimental
results demonstrating the independent manipulation with up to three particles are
shown in Section 6.

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Parallel manipulation of several particles

Simulation of two beads position exchange
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Figure 3.8. Simulation of the particles swapping their positions. (a) First, they are brought
together, (b) and then the procedure of the separation begins (indicated by the green color).
If it is not successful, it stops and the particles are brought again together. (c) It finishes
when the particles are separated by some predefined distance. The arrows represents

the desired forces at the locations of the black crosses. [18].
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Chapter 4
Phase control

In the current setting, the only parameter that is used for the control is the voltage
amplitude. However, the DEP can also be controlled using the voltage phase shifts.
Moreover, even the traveling wave dielectrophoresis can be controlled this way.

Apart from the greater flexibility in the actuation, the phase shift control itself is
also advantageous when considering the hardware implementation of the driving cir-
cuits. There is no need for the voltage amplifiers. This is also reflected by the currently
available laboratory equipment (see Section 6.1). The driving circuitry for the ampli-
tude control has only eight independent channels, so arrays with more electrodes can
not be utilized. On the other hand the driving circuitry for the phase control has 64
independent channels. The phase control thus allows us to experiment with arrays
consisting of much more electrodes.

The derivation procedure of the model is very similar to the one seen in the previous
section, where just the case of amplitude control was considered. This time, we will
take into account all the three axes. Again, the basic point-dipole approximation is
used. The key extension here is that the elements of the optimization variable vector
ū are now represented by voltage phasors. These incorporate the amplitude as well as
the phase of the resulting harmonic signal. The phasors can be decomposed to their
real and imaginary parts and used in the subsequent calculations.

We start again by applying the principle of superposition to express the electric
field potential at the given coordinates (x, y, z), this time separately for the real and
the imaginary part

Φ̃ (x, y, z) = ΦR (x, y, z) + jΦI (x, y, z) , (4.1)

ΦR (x, y, z) =
∑

i

uRiΦRi (x, y, z) = ūT
RΦ̄ (x, y, z) , i = 1, 2, ..., n, (4.2)

ΦI (x, y, z) =
∑

i

uIiΦIi (x, y, z) = ūT
I Φ̄ (x, y, z) , i = 1, 2, ..., n, (4.3)

where uRi, uIi denote the real and imaginary part of the voltage phasor corresponding
to the ith electrode (there are n electrodes in total) and Φ̄i (x, y, z) are the potentials
arising from a unit voltage applied to the ith electrode while the rest of them was
kept at zero potential. These potentials were again calculated numerically by solving
the Laplace’s equation in Comsol. The second parts of the expressions are again just
the matrix-vector forms of the same. Variables denoted by bars are the vectors whose
elements relate to the particular electrodes. From the known potential, it is possible to
express the vector of the electric field intensity

Ẽ (x, y, z) =

 Ẽx (x, y, z)
Ẽy (x, y, z)
Ẽz (x, y, z)

 = ER (x, y, z) + jEI (x, y, z) =

= −∇ΦR (x, y, z)− j∇ΦI (x, y, z) ,

(4.4)
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where the individual components of the electric intensity vector can be stated again

in the vector form with the explicitly expressed inputs

ERa (x, y, z) = −ūT
R
∂Φ̄ (x, y, z)

∂a
= ūT

RĒa, a ∈ {x, y, z} , (4.5)

EIa (x, y, z) = −ūT
I
∂Φ̄ (x, y, z)

∂a
= ūT

I Ēa, a ∈ {x, y, z} , (4.6)

The time-averaged cDEP force component acting on the spherical homogeneous par-
ticle of the radius of r is given by [3]

FcDEP (x, y, z) =

FcDEP,x (x, y, z)
FcDEP,y (x, y, z)
FcDEP,z (x, y, z)

 = k1∇
(
Ẽ · Ẽ∗

)
= k1∇

∣∣∣Ẽ∣∣∣2 (4.7)

where k1 is defined the same way as k in the previous derivation, (·)∗ denotes the com-
plex conjugate and |Ẽ|2 = |R[Ẽ]|2 + |I[Ẽ]|2. The force can be thus rewritten as

FcDEP (x, y, z) = k1∇(|R[Ẽ]︸︷︷︸
ER

|2 + |I[Ẽ]︸︷︷︸
EI

|2), (4.8)

and by differentiation we get

FcDEP,a (x, y, z) = k1

(
∂E2

R
∂a

+ ∂E2
I

∂a

)
=

= k1

(
∂

∂a

(
E2

Rx + E2
Ry + E2

Rz

)
+ ∂

∂a

(
E2

Ix + E2
Iy + E2

Iz
))

= (4.9)

= 2k1

(
ERx

∂ERx

∂a + ERy
∂ERy

∂a + ERz
∂ERz

∂a +
+EIx

∂EIx

∂a + EIy
∂EIy

∂a + EIz
∂EIz

∂a

)
, a = {x, y, z} .

Next, a symbol Ψab defined by Eq. (3.8) is again used the force expression above is
possible to get in the vector form

FcDEP,a =2k
(

ūT
RĒxūT

RΨ̄xa + ūT
RĒyūT

RΨ̄ya + ūT
RĒzūT

RΨ̄za+
+ūT

I ĒxūT
I Ψ̄xa + ūT

I ĒyūT
I Ψ̄ya + ūT

I ĒzūT
I Ψ̄za

)
, (4.10)

a ∈ {x, y, z} .

Utilizing once again the fact that the transposition of a scalar does not make any
change, it is possible to factor out the vectors ūR,ūI,ūT

R and ūT
I and to express the force

components as the quadratic forms

FcDEP,a =ūT
R 2k1

 ∑
b={x,y,z}

ĒbΨ̄T
ab


︸ ︷︷ ︸

PcDEP,a,1,1

ūR + ūT
I 2k1

 ∑
b={x,y,z}

ĒbΨ̄T
ab


︸ ︷︷ ︸

PcDEP,a,2,2

ūI, (4.11)

a ∈ {x, y, z} .

The purpose of the numerical indexes of the P matrices will become clear later in this
section. Next, we express the traveling wave component of the time-averaged DEP force.
From [3] we have
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FtwDEP (x, y, z) =

FtwDEP,x (x, y, z)
FtwDEP,y (x, y, z)
FtwDEP,z (x, y, z)

 = k2

(
∇×

(
R[Ẽ]× I[Ẽ]

))
= (4.12)

= k2 (∇× (ER × EI)) ,

where k2 is again a real constant dependent on the voltage frequency and the material
properties of both the particle and the medium, this time equal to

k2 = 2πεmr3I
[
ε∗p − ε∗m
ε∗p + 2ε∗m

]
. (4.13)

By performing the vector cross product and applying the curl operator, we get the ex-
pression

FtwDEP (x, y, z) = k2


∂(ERxEIy−ERyEIx)

∂y − ∂(ERzEIx−ERxEIz)
∂z

∂(ERyEIz−ERzEIy)
∂z − ∂(ERxEIy−ERyEIx)

∂x
∂(ERzEIx−ERxEIz)

∂x − ∂(ERyEIz−ERzEIy)
∂y

 . (4.14)

Next, we proceed with the differentiation and we get this simple expression for each
force component

FtwDEP,a (x, y, z) =k2

(
ERa

∂EIb

∂b
+ EIb

∂ERa

∂b
− ERb

∂EIa

∂b
− EIa

∂ERb

∂b

)
, (4.15)

a ∈ {x, y, z} , b ∈ {x, y, z} \a.

By its conversion to a vector form we have

FtwDEP,a (x, y, z) =k2

(
ūT

RĒaūT
I Ψ̄bb + ūT

RΨ̄abūT
I Ēb−

−ūT
RĒbūT

I Ψ̄ab − ūT
RΨ̄bbūT

I Ēa

)
, (4.16)

a ∈ {x, y, z} , b ∈ {x, y, z} \a.

Now we apply again the transpositions where suitable and factor out the vectors ūI
and ūT

R. This yields the force components again as the quadratic forms

FtwDEP,a = ūT
R k2

 ∑
b∈{x,y,z}\a

(
ĒaΨ̄T

bb + Ψ̄abĒT
b −

−ĒbΨ̄T
ab − Ψ̄bbĒT

a

)
︸ ︷︷ ︸

PtwDEP,a,1,2

ūI, a ∈ {x, y, z} . (4.17)

Now we have all the necessary force components and they can be joined together into
a single expression suitable for the optimization task

FDEP,a (x, y, z) = FcDEP,a (x, y, z) + FtwDEP,a (x, y, z) =
= ūT

RPcDEP,a,1,1ūR + ūT
I PcDEP,a,2,2ūI + ūT

RPtwDEP,a,1,2ūI = (4.18)

= [ ūT
R ūT

I ]︸ ︷︷ ︸
ū′T

[
PcDEP,a,1,1 PtwDEP,a,1,2

0 PcDEP,a,2,2

]
︸ ︷︷ ︸

Pa

[
ūR
ūI

]
︸ ︷︷ ︸

ū′

, a ∈ {x, y, z} .
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As promised, this expression is fairly universal and can be used for both the voltage

amplitude and the phase shift optimization, separately or even together. Moreover, it
is possible to decide whether to incorporate the twDEP force in the model or not.

Unfortunately, we are currently unable to induce the twDEP experimentally. Al-
though the imaginary part of the Clausius–Mossotti factor, which influences the twDEP
force magnitude (see Eqs. (4.12) and (4.13)) and is a basic precondition for the twDEP
observation should be theoretically high enough at a suitable frequency range of the volt-
age (around 40 kHz), the twDEP was never experienced. By using a much higher fre-
quency (in our case 300 kHz) corresponding to an almost zero values of the imaginary
part of the Clausius–Mossotti factor, we may consider the twDEP with a sufficient cer-
tainty as being negligible. The individual optimization cases will be detailed in the fol-
lowing overview:.optimization only over the voltage amplitudes

by only the voltage amplitude modulation it is not possible to induce the twDEP.
This is also apparent from the derived expression. Let us assume that all the sinu-
soidal voltage signals are in this situation in phase (this is in our case guaranteed
by the driving circuitry described later in Section 6.1). Therefore the term ūI will be
kept zero and the amplitude will be changing only through ūR. Thus the expression
reduces to Fa = ūT

RPcDEP,a,1,1ūR. The optimization task itself can then be formulated
for example like (using ū instead of ūR for simplicity)

ūopt = arg min
ū


( ∑

a∈{x,y}

∣∣ūT PcDEP,a,1,1 (x, y, z) ū− F des
a

∣∣)+

+
∣∣ūT PcDEP,z,1,1 (x, y, z) ū + Fsed − F des

z

∣∣
 , (4.19)

s. t. |ui| ≤ Umax,

where ū denotes here the amplitude of applied voltage, F des
x , F des

y and F des
z are

the appropriate components of the desired force, Fsed is the sedimentation force
acting on the particle and Umax is the maximal voltage amplitude allowable..optimization only over the phases
by modulating the phase shifts of the voltage signals, both the cDEP and the twDEP
forces may arise. The formulation of the optimization criterion is more delicate
this time. In contrast with the constant phase constraint, the constant amplitude
constraint is not so easy achievable. Thus the optimization task has the following
form

ūopt = arg min
ū


( ∑

a∈{x,y}

∣∣ūT Pa (x, y, z) ū− F des
a

∣∣)+

+
∣∣ūT Pz (x, y, z) ū + Fsed − F des

z

∣∣
 , (4.20)

s. t.
∣∣u2

i + u2
n+i

∣∣ = U2
max,

where ū is now a vector defined the same way as ū′ in Eq. (4.18) and Px, Py and Pz are

matrices of the form
[
PcDEP,a,1,1 PtwDEP,a,1,2

0 PcDEP,a,2,2

]
if there is interest also in the twDEP

and
[
PcDEP,a,1,1 0

0 PcDEP,a,2,2

]
if we want to ignore it in the model. This can simplify

the computation and save the valuable execution time in the control loop if we know
it is of no importance in the given setting.
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In the practical implementation, when optimizing just over a discrete set of phases,

it is possible to remove the inconvenient equality constraint under the condition that
only feasible points will be evaluated..optimization over both the amplitudes and the phases of the voltage signal
This, as the most general task, is in fact also the most straightforward one. Now there
are no equality constraints regarding the voltage amplitude and thus it is possible
to optimize simply over ū′ (again denoted as ū for convenience). Through the real
and imaginary part of the voltage phasor it is possible to generate any amplitude
and phase shift. The constraints have to be added only for the amplitude limitation.
An example of the optimization task definition is

ūopt = arg min
ū


( ∑

a∈{x,y}

∣∣ūT Pa (x, y, z) ū− F des
a

∣∣)+∣∣ūT Pz (x, y, z) ū + Fsed − F des
z

∣∣
 , (4.21)

s. t. u2
i + u2

n+i ≤ U2
max,

where all the symbols are defined the same way as earlier. The resulting am-
plitude and the phase can then be extracted as mi =

√
u2

i + u2
n+i, respectively

φi = atan
(

un+i

ui

)
where n is the number of electrodes.

4.1 Control for the four-sector array
With the newly acquired ability to influence the DEP force not only by the voltage am-
plitudes but also by its phase shifts, it becomes possible to use the 64-channel generator
capable of setting the phase shifts (see Section 6.1.2) as a driving circuit for the elec-
trodes. Furthermore, a huge number of the individually controlled channels allows to
drive electrode arrays with much more electrodes – particularly the so-called four-sector
electrode array (see Figure 4.1).

x

polystyrene microbeads

y
electrodes

deionized water

substrate

z

Figure 4.1. Illustration of the four-sector array manipulator.

This array consists of 48 gold electrodes fabricated again on a glass substrate. Their
widths are 50µm and their inter-electrode gaps are also of the same size. The elec-
trodes of this array are arranged in the four identical groups (also-called sectors) of 12
electrodes rotated mutually by 90 ◦. This special layout was designed by Jiří Zemánek
for the purpose of the 2D manipulation. A control strategy allowing for the motion
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in the directions perpendicular to the electrodes inside the sectors and in the directions
along the interfaces of the sector was designed and successfully demonstrated [29].
The limitation of this approach is that although arbitrary location in the x and y
coordinates can be reached by an object, the trajectory along which the object trav-
els is restricted (see Figure 4.2). By deploying the optimization based control scheme
described in the previous sections, this limitation will no longer be so strict.

Figure 4.2. The limitations imposed on the object trajectory under the control system
used so far. The gray arrows show the possible directions of the motion and the blue line is
an example of the trajectory with the start denoted by the circle and ending at the cross.

A nice property of the proposed optimization based control scheme is that it can be
applied (almost as it is) to an electrode array of any layout. The only thing that needs
to be done is to simulate the potential distribution for the new geometry of the elec-
trodes and to recompute the appropriate potential derivatives necessary for the DEP
force calculation. The increased number of electrodes, however, brought a few techni-
cal difficulties that needed to be solved. Not only that the numerical simulations take
longer time to execute (N simulations of a larger model have to be performed, where
N is the number of electrodes), but also issues with the limited computer memory
arose. In order to perform the numerical simulations, an adaptive meshing had to be
used creating the finest mesh only where the most dramatic changes in potential are
expected (in the vicinity of the single electrode to which the potential of 1 V is applied).
The simulation area was then divided into a checker board like tiles and one data file
for the each individual tile containing the relevant results was created. Size of the tiles
was chosen such that at least nine of the associated data files could fit in the opera-
tional/random access memory (RAM) at the same time. One of the files would belong
to the tile in which the particle is currently located (so the data for construction of P
matrices would be read from it) and the remaining eight files would correspond to
the directly adjacent tiles. These would be preloaded for a case when the particle
leaves the currently active tile. I believed that such an algorithm taking care of loading
the data that are likely to be used in a near future (and removing the other ones) would
be a suitable solution. In Matlab, however, the implementation of an asynchronous file
loading showed up to be at least problematic (e.g. no solution based on the parallel
computing toolbox worked as expected). Because of the lack of the time a solution
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leaning on the direct file access from the hard disk was used in the end. Other promis-
ing approaches based e.g. on mex functions or on shared memory would be however
interesting to investigate later.

In order to make a better notion of the movement limitations mentioned above,
a few simulative experiments were conducted. A grid of 25 × 25 points at the levi-
tation height of 130µm covering one quarter of the array was generated. This way, I
made use of the geometrical symmetry of the array. A force of the same magnitude
(50 ·10−12 N) was then searched for the sixteen evenly distributed directions. The mag-
nitudes of the actually found forces were then used to define the vertices of the polygons
drawn in Figure 4.3. If the polygon resembles a circle the object in such a position can
move freely in all the directions. On the other hand, the bow tie-like shape of a polygon
indicates that the motion in direction perpendicular to the vertical axis of the bow tie
(in the orientation it is usually worn) is hardly achievable. From the figure it is obvious
that the best conditions for movement control in all the directions are at the center
of the electrode array (here the lower right corner of the image) and at the boundary
of the two sectors of the array (the diagonal line from the upper left to the lower right
corner). However, even the worst regions of the array suggest that there exist forces
other than just perpendicular to the electrodes that can be achieved and a controller
could utilize this fact.

Analysis of the force magnitudes achievable for different directions of motion                   
                  in a grid of possible object positions                                         
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Figure 4.3. The analysis of the force magnitudes achievable in the different directions
of the motion and in the grid of points (represented by the white dots).

Another simulation, whose results are presented in Figure 4.4 attempts to show,
which positions are reachable by the controlled object in a given time. The initial
position of the object is indicated by the white dot. This simulation was performed
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in an iterative way, when each iteration corresponded to one control period. At the start
of the iteration there is a set of points defining the current reachability border. Next,
the maximum force is found in the 16 different directions for each of the border point.
The bead motion is then simulated given the corresponding control action. Finally,
the iteration ends by the creation of the new reachability border based on the set union
of all the starting and ending positions of the beads. This approach gives another insight
into the abilities of the manipulator. It is again obvious that as soon as the object gets
to the interface of the two electrode sectors, it can easily move faster and in more
directions, and therefore the reachability area quickly extends.
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Figure 4.4. The reachable regions from one given starting point and elapsed time t.

Similarly as in the case of the parallel electrode array, the control algorithm was first
tested on the SIL. The simulation again takes place in Matlab/Simulink and resembles
the scheme in Figure 3.3. The only difference this time is that 48 control signals
(the voltages on the electrodes) are present and the movement simulation runs over
all the three space dimensions. The simulation of the reference trajectory tracking is
in Figure 4.5. It should be noted that the reference signal was changing in a big steps
during this simulation (as it is apparent from the graphs on the right side of the figure),
so the only important points on the reference trajectory are its corners. The deviation
from the dashed line on the left image showing the top view of the array was therefore
not directly the objective of the minimization. Nevertheless, it still says something
about the system, because with a perfectly working controller these deviations should be
zero anyway. As in the case of a parallel electrode array, the levitation height of the bead
(its position in the z coordinate) is again the subject of the biggest errors, especially
when the bead is moving. Still, the control system is due to its inherent robustness able
to track the reference signals with the maximal steady state error of 10µm for the x
coordinate and 35µm for the y coordinate.
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Simulation of the control system deployed to the four-sector array

Figure 4.5. The simulation of the position reference signal tracking.

The precise trajectory tracking is shown in Figure 4.6. Here the reference path is
defined by many near points located on a circle (apparent from the shown top view).
Since the steps in the reference signals are small enough this time, the deviations from
the trajectory are not higher than 12µm (with the mean deviation of 2.7µm). The prob-
lem is, however, the levitation height of the bead. The simulation shows that since this
time the particle is continuously in motion, the levitation height is not being restored
and the bead basically falls down until it reaches the bottom. The 2D position con-
trol still surprisingly works well, however, some problems with the particle sticking to
the bottom surface of the array may arise in the practical experiments.
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Simulation of the circular trajectory tracking on the four-sector array

Figure 4.6. The simulation showing the results of the circular trajectory tracking.
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4.2 Validity of the point-dipole approximation
Model of the DEP forces used for the control purpose in the current manipulator is
based on the Eq. (2.68) from [10]. This relation is derived using many assumptions
such as that the object is homogeneous and spherical, the voltages are sinusoidal and
no mutual particle force interactions are considered. The most discussable one within
the considered system is, however, the approximation of the particle just by the simple
dipole moment. This is perfectly fine if the particle is small relatively to the inhomo-
geneity of the surrounding electric field so that the field does not change much within
its volume. Unfortunately, this is not the case with the used 50µm beads levitating
at the height of 130µm over the electrodes of the width of 100µm. Yet the proposed
control system using this insufficiently precise model is capable of the precise objects
positioning as it will be shown in the Section 6. In order to find out how accurate
the model is and how much the success is due to the feedback, the topic was investi-
gated in a more detail.

The most correct way of calculating the DEP forces is the so-called Maxwell stress
tensor method (MST) [30]. This method, described in depth in [9], does not build on any
approximation or assumption and allows for a precise calculation of the DEP force act-
ing on an arbitrarily shaped object of any dimension. Moreover, if several particles are
close to each other, their mutual force interaction is also considered by the method. All
of this can be achieved only by first numerically solving the electric field in the presence
of the objects (at their respective positions). This has to be done for their every new
constellation. The numerical computation is usually done using the FEM or an arbi-
trary Lagrangian-Eulerian (ALE) method. Since it takes long computational times, it
is not suitable for the control purposes.

Nevertheless, the MST can serve as a reference solution for a comparing with the ap-
proximate solutions used. Rosales and Lim performed a study [30], in which they did ex-
actly this. Solution obtained by MST for a single particle in the DEP trap made by eight
circular electrodes was compared with the equivalent multipolar approaches. Spherical
particles of different sizes at different positions relatively to the center of the DEP trap
were used. It showed up that for small particles (with respect to the size of the elec-
trodes), multipoles of the order higher than two (quadrupoles) or three (octopoles) are
not necessary in the most cases since they do not improve the accuracy significantly.
In all the studied cases the error was below 5 % compared to the MST method. For par-
ticles of greater sizes (with the considerable size in comparison with the trap) the need
for higher order multipolar terms however arose. The authors suggest that the dipolar
approximation should be used only for the rough estimates of the DEP force and that
a special attention should be paid in the following situations:. the bead is near the electrodes,. the bead is relatively big compared to the electrodes,. the bead is near the field null (a place where the electric intensity magnitude is zero

and the dipolar approximation predicts zero force).

This topic is so important within this work, since the mathematical model is the basis
of the used control and thus should be justified.
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4.3 Using quadrupoles

An appropriate compromise between the computational demands and the model accu-
racy may be the second order approximation – quadrupoles.

The respective force expressions for the higher order approximations may be found
in [31] and especially in [9], where both the cDEP and the twDEP are considered and
the derivation of these expressions from the MST theory is present. The resulting
time-averaged expressions translated into the used notation are

FDEP =2πεmr3


R
[

ε∗p−ε∗m
ε∗p+2ε∗m

]( ∑
a∈{x,y,z}

ERa∇ERa + EIa∇EIa

)
−

−I
[

ε∗p−ε∗m
ε∗p+2ε∗m

]( ∑
a∈{x,y,z}

EIa∇ERa + ERa∇EIa

)
+ (4.22)

+ 2πεmr5

3


R
[

ε∗p−ε∗m
2ε∗p+3ε∗m

]( ∑
a∈{x,y,z}

∑
b∈{x,y,z}

∂ERa

∂b ∇
∂ERa

∂b + ∂EIa

∂b ∇
∂EIa

∂b

)
+

+I
[

ε∗p−ε∗m
2ε∗p+3ε∗m

]( ∑
a∈{x,y,z}

∑
b∈{x,y,z}

∂EIa

∂b ∇
∂ERa

∂b −
∂ERa

∂b ∇
∂EIa

∂b

)
 .

It can be shown that the first summand in the above expression is exactly the point-
dipole approximation used so far. The only aids that need to be used are the iden-
tity ∂Ea

∂b = ∂Eb

∂a , which follows from the fact that electric field is irrotational (it holds
∇ × E = 0) and furthermore that the electric potential meets the Laplace equation
∆φ = 0. For the sake of brevity, this treatment will not be shown here nor the reformu-
lation of the expressions into the quadratic forms. The steps are in this case very similar
to the derivations shown before. However, note that the expression contains not only
the first and second derivatives of the electric potential, but also the third derivatives
of the potential. More data has to be therefore computed in advance. Furthermore,
accessing these data during the control period can have non-negligible performance
consequences.

A set of the simulations was conducted in order to find out how much the force
calculated using the quadrupole approximation differs from the one acquired using
the so far used point-dipole approximation. In total, 1× 105 random voltage sets were
generated and a force at the center of the array and levitation height of 130µm was
calculated using the both methods. Histogram of the percentage difference (or the error
if the force from quadrupole approximation is used as the reference value) is shown
in Figure 4.7. It is apparent that although in some situations the errors might be quite
significant, in the most of the cases they do not exceed 10 % for the horizontal force
and around 3 % for the vertical force. Using the point-dipole approximation is therefore
a reasonable compromise between the accuracy and the computational demands.
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Figure 4.7. The histograms of the errors between the first order (point-dipole) and the sec-
ond order (quadrupole) approximation of the DEP force based on the sample of 1 × 105

simulations with the random voltage inputs.
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Chapter 5
Optimization solvers

Global optimization problems are generally very difficult to solve. Analytical methods
are usually not applicable and the common optimization solvers are prone to get stuck
in a local minimum. Therefore they have to be either provided with a good initial
guess of the solution or started repeatedly from many random initial conditions. This
approach together with other randomized strategies, however, do not guarantee to find
the solution. Moreover, the aggravating fact in this case is that the solution has to
be found in a very limited time (orders of milliseconds), so that a reasonable control
period can be achieved. Thus it can be very helpful to analyze the given problem well
and utilize as much as possible of its specific properties.

5.1 Optimization task analysis
The optimization task of finding the set of inputs ū (the voltage amplitudes, the phase
shifts or both at the same time) establishing the required forces at the given positions
can be stated basically in the two possible ways.

The first one is given by Eq. (4.21). The reffered optimization criterion contains
the absolute value of the difference between the required and the actually generated
force. The absolute value is necessary here, because otherwise the negative infinity
(corresponding to the infinite error) would be the sought minimizer. The constraints
are then used only to restrict the control variables ū to a given range.

The second, equivalent approach, is to define an error vector e, which would consist
of the same difference used in the criterion described above

ea = F des
a − ūT Paū− Fsed,a, a ∈ {x, y, z} . (5.1)

Using this definition, the optimization criterion can be stated in the following way

min
ū
‖e‖+ α ‖ū‖

s. t. F
des
a − ūTPaū− Fsed,a − ea = 0, a ∈ {x, y, z} ,

u2
i + u2

n+i ≤ U2
max,

(5.2)

where all the symbols are defined the same way as in the previous sections and α is
used to only set the trade-off between the error reduction and the control effort used.
The type of the used norm is not firmly determined (it may be 2-norm, 1-norm, ...).

The stated formulation of the objective function is the only one of the many other
possible. The error in the force may be for example expressed not only as the set of de-
viations corresponding to the individual force components, but also as the error in its
magnitude and its direction. It is then possible to introduce some weights for these
individual errors so that the optimization prefers for example the lower error in the di-
rection over the error in the magnitude. This particular choice showed advantageous
for our application.
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Furthermore, the expression defining the amount of the control effort can be
stated differently. The one mentioned may penalize for example a shifted solu-
tion ū + [sR, sR, ..., sR, sI, sI, ..., sI]T , sR, sI ∈ IR if its norm is smaller, over the original
ū, although both of them have exactly the same effect. The values of sR and sI
represent the real, respectively the imaginary part of an arbitrary potential phasor s̃.
The only thing that has an impact on the generated force is namely the difference
between the voltage phasors corresponding to the individual electrodes. This can
be also imagined as one electrode being referential and defining the zero potential
for the others. Utilizing this, the optimization problem can possibly be reduced
by the two dimensions in the case of the optimization over both the amplitudes and
the phases or by one dimension in the case of the optimization over just the amplitudes
or the phases. As an example regarding the case of the amplitudes optimization,
the control variables (the voltage amplitudes) can be transformed the following way

d̄ =


−1 0 · · · 0
1 −1 . . . ...
0 1 . . . 0
... . . . . . . −1
0 · · · 0 1



T

ū. (5.3)

This approach will be used later in the following section.
An important fact related to the both problem definitions is that the P matrices

defining the quadratic forms are indefinite, thus creating sort of saddle points. Further-
more, it is known ahead that the objective function will never be negative. Therefore if
a solution with a zero objective function is found, it must lie in the set of the global min-
imum points. The difficulty of the problem lies in the fact, that it is nonconvex in both
of the described definitions (4.21) and (5.2). Indeed, in the former case the absolute
value operator applied to the shifted quadratic form results in the nonconvex function.
Similarly, the quadratic equality-type constraints by themselves define the nonconvex
set in the latter case.

5.2 Numerical solvers
In the following paragraphs, I will describe the optimization approaches that were tried
and evaluate their performance. As a benchmark will serve the problem of the voltage
amplitudes optimization on the eight electrodes of the parallel array. A horizontal
force of the magnitude of 50× 10−12 N for one bead located at the center of the array
in the typical levitation height of 130µm will be searched for.

First, a simple approach using the interior-point algorithm (IP) of the fmincon Mat-
lab function was used. As the objective function a quadratic form d̄T d̄ with d̄ defined
in Eq. (5.3) was used and the requirements for the forces (F des

a − ūT Paū− Fsed,a = 0)
were used as the constraints. Additionally, the upper and lower element-wise bounds
on ū were incorporated. Although no special starting point is chosen (just a random
vector), the benchmark test was always successfully solved with the average run time
of 0.0386 s (measured on a notebook equipped with Intel i5 (2.27 GHz), 8GB RAM
and 64-bit Windows 7). This time, however, can be reduced only slightly by adjusting
the iteration count limits and at the great expense of the precision degradation. Fur-
thermore, when adding more constraints on the forces, only the local minimum is found
most of the times and a need for repeated starts with the random initial guesses arises
(MultiStart command).
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In the next attempt, the same solver was used and just the objective and constraint

functions changed so that the optimization ran only over the control variable differ-
ences (d̄ = [u2 − u1, u3 − u2, ...uN − uN−1]T . This was achieved by using the following
transformation relationship (the first element of ū will be without the loss of generality
equal always to zero)

ū =


0 0 · · · 0
1 0 . . . ...
1 1 . . . 0
... . . . . . . 0
1 · · · 1 1

 d̄. (5.4)

Furthermore, we can restrict ourselves just to the vectors d̄, whose first element is
positive (since the vectors d̄ and −d̄ generate the same force field).

In a similar way, the upper and the lower element-wise bounds imposed in the op-
timization task definition for the IP were transformed to a set of linear inequalities.
Hereby, both the execution time and the solution errors were slightly reduced (the time
to 25.3 ms). For the case of more particles the situation gets surprisingly even worse
than in the previous case.

Next, also the variant having the force requirements directly in the optimization
criterion was tried. Both the fmincon and the fminsearchcon [32] (which is a modifi-
caton of the classical fminsearch) were used this time. The latter one uses a derivative
free method (which is generally believed to be slower than supplying the derivatives),
but on the other hand it can be compiled into the mex function and therefore it is faster
in the end. Better proved to be the latter algorithm with the run time of 2.4448×10−4 s.
Though its error in the force magnitude is around 4%.

Another, tested tool is the specialized Matlab-based solver for the global optimization
over polynomials called Gloptipoly1). Using it, the problem can be defined in the spirit
of (5.2). A slight difference though is in the way of measuring the error size and imposing
the constraints. Since Gloptipoly expects just polynomials, the absolute value has to be
replaced by a power of two. Thus the error is measured as e2a and the constraints look
like ūT ū ≤ U2

max. To avoid the problems arising in the situations when the achievable
error is zero and there is the continuous set of solutions, the regularization term αūT ū
has to be present. Although this tool seemed promising at first, the experiments showed
the opposite. Apart from the toy examples (just a few electrodes, constraints, etc.)
the solution could not be found. Additionally the run time (above one second) needed
by the solver to search for the solutions would prohibit its use the in real-time control.

As a next tool the so-called Gröebner basis was tried. It is one of the fundamental
practical tools for solving the systems of polynomial equations. A Matlab implementa-
tion groebner2) was acquired from Matlab File Exchange (FEX) service and deployed
to the problem at hand. Similarly as in the case of Gloptipoly, the only problems that
were possible to solve were the simplest possible ones. With a realistic number of opti-
mization variables and force constraints, the solver could not return any solution even
if it existed. Moreover, this tool is in fact not an optimization solver since it searches
only for the actual solutions.

A method based on the problem conversion into an approximate linear program
(LP) was suggested by my colleague Jakub Tomášek. The main idea is that the P ma-
trices defining the quadratic norms are subjected to the so-called joint diagonalization.
1) http://homepages.laas.fr/henrion/software/gloptipoly3/
2) http://www.mathworks.com/matlabcentral/fileexchange/24478-groebner
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Through this technique a common orthogonal transformation matrix V is found such
that Pi = VDiVT . The matrices Di are as diagonal as possible providing a kind of aver-
age eigen-structure shared by the matrices Pi [33]. The optimization variables undergo
exactly the same transformation. Having diagonal matrices in the quadratic forms, it
is now possible to convert the problem into the LP and solve by the standard simplex
algorithm. But since the joint diagonalization is in general only approximate, the found
solution is not accurate. It is, however, a good initial choice for the local gradient based
solvers like fminsearch. I took the implementation of Jakub Tomášek, extended it to
allow more force constraints (more force requirements and thus more beads) and mod-
ified it in a way that it can be compiled into a mex function. On a benchmark test,
the algorithm works quite well although the errors of the force magnitude are larger
than preferred. On the other hand, the more important errors in the direction are
on average below 5% and the average execution time is only 3 ms.

The last optimization approach I will describe here is based on the simulated an-
nealing (SA) algorithm. It is a generic probabilistic metaheuristic suitable for finding
the global extreme of a function dependent on many variables. Especially good re-
sults can be achieved if the search space is discrete. Hence I discretized the search
space so that only integer values are allowed as the voltage amplitudes. Then I utilized
the existing simulated annealing implementation 1) found on FEX. The approximate
integer solution acquired through this random method was then used as a starting
point to the fminsearchcon2), a modification of the classical fminsearch supporting
also the general inequality constraints (also from FEX). Since the process is random,
a good solution is not guaranteed to be found at every run. As a sufficient workaround,
however, is to let the algorithm run several times in parallel (using the multithreading
capability of the parfor command). The benchmark results are the best so far achieved.
Both the errors in the magnitude and the direction are in the fractions of the percents
and the average run-time is only 1.2 ms.

Table 5.1 summarizes the performance of all the solvers that were capable of deliv-
ering the solution of the given benchmark problem. Based on these results, the SA
algorithm was despite its random nature chosen as the best one so far.

Algorithm Mag. error (%) Dir. error (%) Run-time (ms)
IP (req. in constr.) 0.1774 0.0981 38.6
IP (req. in constr, over d̄) 0.0479 0.0289 25.3
IP (req. in objective fcn) 0.2800 0.0656 44.4
Nelder-Mead (over d̄) 4.1797 0.6983 0.2
SA 3.72× 10−9 1.14× 10−9 1.2
LP 83.1560 3.6909 3.0

Table 5.1. The comparison of the tried optimization solvers. The values in the table are
the averaged results from the 100 measurements of the benchmark problem.

For the second type of the optimization task used in the experiments – optimization
over the voltage phase shifts – again the solver based on the SA was chosen. As will be
described in Section 6.1, the used 64-channel signal generator can produce the phase
shifts only in steps of π/8, thus defining the discrete search space suitable for the SA.
No further calls to the fminsearchcon are necessary in this case.

1) https://www.mathworks.com/matlabcentral/fileexchange/10548-general-simulated-annealing-algorithm
2) https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd--fminsearchcon
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Chapter 6
Experimental results

In order to verify and asses the performance of the designed control strategies, a number
of experiments was conducted. In these, both the standard parallel electrode array and
the four-sector electrode array were used. The former one for a test of the controller
based on the voltage amplitude modulation and the latter for a test of the voltage
phase shift control. The existing laboratory setup was used and will be briefly described
in the next section.

6.1 Laboratory setup description
Although the different types of the control require the partially distinct hardware setups,
the main parts are still the same:. camera – digital black-and-white camera (Pike F-032B, Allied, Germany) with

a firewire interface mounted on the microscope (Olympus BX-FM, 5× magnification
lens) for the image acquisition of the manipulation area; the beads appear in the im-
age as black spots on a light background so their position can be easily extracted
using an image thresholding.. computer – personal computer (Intel i5, 3.30 GHz, 8 GB RAM, 64-bit, Win 7) which
grabs the frames from the camera, analyses them (extracts the position of the beads)
and then runs the control program implemented in Matlab & Simulink. The resulting
control action is then interfaced with the signal generation block via an input/output
card (MF624, Humusoft, Czech Republic) or a serial port communication;. controlled signal generator — it drives the microelectrodes with the defined signals
(varying in the amplitude or the phase) based on the controller outputs;. electrode array.

Their arrangement is for the two specific laboratory setup variants shown in Figures
6.3 and 6.4. From the above description and the information flow indicated by the ar-
rows it is apparent how the feedback loop is closed.

One of the variable components in the setup is naturally the electrode array. This
is the main part of the whole system, since it is the place where the micromanip-
ulation occurs. It typically comprises of the non-conducting substrate (e.g. glass),
on which the microelectrodes, typically from gold or Indium tin oxide (ITO), are fab-
ricated. The techniques of the fabrication process are detailed in [34]. Above all this,
the open PDMS chamber is adhered to the surface. Its purpose is to hold the deionized
water (conductivity of 50µS/m) together with the immersed manipulated microob-
jects. In the experiments we use the polystyrene spheres with the diameter of 50µm.
For a comparison, the approximate sizes of a few comparable biological cells are shown
in Table 6.1. Based on the desired degree of the motion freedom (1D or 2D), the parallel
or the four-sector electrode layout is used. Both of these types were already described
in Sections 3.1 and 4.1. Their photos are shown in Figures 6.1 and 6.2. For more
details, please see [34–35].
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object size
human red blood cell 9µm

most eukaryotic animal cells 10− 30µm
most eukaryotic plant cells 10− 100µm

small Amoeba 90µm
human egg 90µm

Table 6.1. The approximate sizes of the biological cells that are closest to the size
of the test beads. The data in the table are taken from [36].

PDMS chamber

microscope
objective

contact pads

connector

Figure 6.1. Photo of the parallel electrode
array placed under the microscope.

PDMS chamber

microscope
objective

golden
electrodes

Figure 6.2. Photo of the four-sector elec-
trode array placed under the microscope.

The second varying part of the experimental setup is the block of the voltage gen-
eration. The used hardware depends evidently on the choice of the controlled signal
property. This can be either the phase shift between the individual output channels or
the voltage amplitudes. Both of these hardware variations will be, in brief, discussed
below, and where possible, a reference to the more in-depth description will be provided.

6.1.1 Amplitude control

The hardware setup for the amplitude control is capable of setting the amplitude
of the sinusoidal voltage individually for each of its channels in a range of 0 V to 10V
and additionally a phase shift of 0 ◦ or 180 ◦ (this corresponds to the negative amplifi-
cation factor of the basic signal). There can be maximally eight channels in total. This
limitation is given by the number of the analog outputs of the PC’s input/output card.

The basic part of the amplitude control hardware setup is the standard function
generator (Agilent 33220A) used for a precise generation of the basic sinusoidal voltage
of a given frequency. This signal is then as an input fed to a set of eight four-quadrant
analog multipliers (AD633) and it is multiplied by eight voltages fetched from the PC’s
input/output card.

The used frequency of the sinusoidal signal for the DEP control is in our case 300 kHz,
which corresponds to the negative DEP. This particular frequency value was selected so
that the low frequency electrokinetic effects are avoided and the bandwidth of the used
multipliers (1MHz) is not exceeded.

A diagram depicting the laboratory setup used for controlling the DEP forces
by changing the voltage amplitudes is in Figure 6.3.
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Figure 6.3. The diagram of the laboratory setup used for the DEP control capable of reg-
ulating the amplitudes of the voltage signals.

6.1.2 Phase shift control
The equipment for the phase shift control allows us to generate in total 64 channels
containing rectangular signals shifted in the phase. The shift can be set discretely to
16 different values (0, π/8, ...). The respective generator was in a detail described many
times (see [35, 11]). The basic frequency of the voltage signal was again set to 300 kHz.

A diagram depicting the laboratory setup used for controlling the DEP forces by ad-
justing the phase shifts of the used voltage signals is in Figure 6.4
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Figure 6.4. The diagram of the laboratory setup used for the DEP control capable
of the phase shift setting of the used voltage signals individually on up to 64 electrodes.

6.2 Notes to the experiments
The experiments were typically preceded by a preparation phase. First, before a set
of experiments was conducted, a thorough wash out of the manipulation chamber with
a deionized water was done. This way, a presence of the dust particles and other
dirt affecting the beads movement is reduced. The beads themselves are taken from
the already diluted solution and inserted in an ampoule filled by a pure deionized
water. Next, they were centrifuged, excessive water was sucked out and the beads
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were finally injected into the manipulation chamber. This way, the deionized water
in the manipulation chamber should maintain its resistivity.

Then the beads were carefully carried by a water flow (created by a slight pumping
with the pipette) into the field of view of the camera. This is done while the electrodes
are under voltage and creating a repulsive DEP force preventing the particles from
sticking to the bottom of the chamber. A force field under which they levitate at
a height of 130µm is used. At the same time this is assumed to be the initial levitation
height for the consecutive experiments.

6.3 Parallel electrode array
First, a few experiments demonstrating just one bead position control were conducted.
A user interface allowing the reference position change during the experiment was uti-
lized. The presses of keyboard arrows were captured and according to them the reference
position was incremented, respectively decremented by a small value (so small that it
seems continuous in the reality). A graph from such the experiment is shown in Figure
6.5. It is obvious, that although some steady state errors are present (in the worst-case
about 30µm), the manipulation in a wide range of positions above the whole array
is achievable. This confirms the prognosis based on the simulations in Section 3.2.
The controller is robust enough that even without the vertical position measurement
(and just assuming that the levitation height remains constant) the system works.

Experiment with one particle tracking the desired position
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Figure 6.5. The experiment demonstrating one particle position control. The reference
value was set manually by the operator during the experiment.

Next, a more detailed analysis of the manipulation precision (measured as the steady
state position error) was done. A number of experiments was conducted, in which
the particle was steered in sequence to the set of positions above the whole array.
These comprised of the centers of the electrodes, their edges and the centers of the inter-
electrode gaps. Each position was reached at least ten times. The resulting steady state
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errors were then statistically processed and the mean value and the standard deviation
of the absolute value of the error was calculated. Figure 6.6 presents these results.
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Figure 6.6. Mean value and the standard deviation of the absolute value of the error
in different places of the array acquired from the series of measurements. Taken from [18].

Generally the error is larger above the edges of the electrodes and towards the end
of the manipulation area (around 20µm). The mean value of the error, however, still
constitute only a fraction of the dimension of the bead (around 44 % at the worst, but
typically only about 12 % of the diameter of the bead).

An example of these precision measurements was also used for the comparison
of the experimental results and the simulation. Figure 6.7 shows that in the case
of the experiment, the response of the system to a change in the reference is faster,
but the overshoot (up to 37µm) and the steady state errors (up to 17µm) are larger
than in the simulation. It was impossible to improve these values by further tuning
of the proportional controller. Neither its extension by integration nor derivative
components was helpful.

Simultaneous control with several particles was also tried. Figures 6.8 and 6.9 show
the parallel independent control of the two, respectively three particles. Here the sep-
aration strategy based on the unstable equilibrium formation is used (see Section 3.2).
This is necessary because the DEP forces acting on the two objects are identical if these
have the same x coordinate positions. Practically, it is sufficient when the x coordinates
of the beads are almost identical. This happens for example at the times: 52 s, 64 s,
87 s or 98 s. The same holds also for the three particle case in Figure 6.9.

36



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Parallel electrode array

time (s)
10 20 30 40 50 60 70 80 90

po
si

tio
n 

x 
(m

)
#10-4

-7

-6

-5

-4

-3

-2

-1

0

1
Tracking of the desired positon - experiment and simulation

desired
measured
simulated

-10

-8

-6

-4

-2

0

2

4

6

8

10

vo
lta

ge
 o

n 
th

e 
el

ec
tr

od
es

 (
V

)

Figure 6.7. The comparison of the experiment and the simulation. The experimental data
comes from the performed steady state error measurements. [18]

Experiment with simultaneous control of two particles
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Figure 6.8. The experimental results showing simultaneous independent control of the two
particles. The separation strategy based on the unstable equilibrium formation described

in Section 3.2 is used when the two particles share the same position coordinate.
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Experiment showing simultaneous control of three particles
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Figure 6.9. Experimental results showing the simultaneous control of three particles. [18]

It is evident that the more particles is controlled, the greater the steady state position
errors become. Especially for the three particle case the measured positions are very
oscillatory and the deviations from the desired finial positions of the beads reach up to
70µm, a lot more than in the case of one bead control. This is due to the fact that
the optimization task is more complex and a better solution is not found in the given
time restrictions. Screenshots corresponding to this last described experiment showing
the positions of the beads at times t = 83 s, resp. t = 89 s are in Figure 6.10.

a) b)

Figure 6.10. The video screenshots with the marked beads and labels of the electrodes
showing the currently present voltage. The images correspond to the times (a) t = 83 s

and (b) t = 89 s of the experiment shown in Figure 6.9. Taken from [18].

The position interchange maneuver was, however, successfully completed even
for the three particles. Hence we can conclude that the simultaneous manipulation
of three particles is possible.
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6.4 Four-sector electrode array
First, alike as in the case of the parallel array, the experiments demonstrating just
one bead position control were conducted. The results are shown in Figures 6.11 and
6.12. It is evident that the real capabilities of the control system match the predictions
from the simulations. Indeed, it is not only possible to move the bead in the direction
perpendicular to the underlying electrodes, but also in the direction parallel to them.
This is because the optimization based controller is still able to deliver a satisfactory
force by utilizing the impact of even the far electrodes.
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Figure 6.11. Experiment demonstrating the manipulation capabilities with one bead.
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Figure 6.12. Experiment showing the circular reference trajectory tracking.
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The both figures are in addition supplemented with the screenshots from the videos

enhanced by visualization. The colored stripes labeling the electrodes are related to
the phase shift of the voltage signal applied to them. The gray surface above the elec-
trodes in a 3D graph visualizes the virtual potential. The bead sitting on its surface
always moves down the hill in a direction of a negative gradient. In Figure 6.13 a situ-
ation when the bead is steered from the corner of the array is shown, whereas in Figure
6.14 a bulge pushing the bead ahead of itself along the circular trajectory is shown.

Figure 6.13. Visualization of the virtual potential landscape for the first experiment.

Figure 6.14. Visualization of the virtual potential landscape for the second experiment.

In the next set of experiments, the manipulation precision in the form of the steady
state error for different reference positions was measured. For the sake of reducing
the experimental load, the fact that the array is symmetric was exploited and just one
of the four identical quarters was used for the measurement. A grid of 12 × 12 points
was generated and the bead was repeatedly steered to them. Some minimal distance
between the subsequent reference positions was kept in addition, so that the bead
always approached the reference point having the maximal velocity. The steady state
errors were then recorded and statistically processed. The mean and the standard
deviation of the absolute error values were computed for each of the points and are
shown in Figure 6.15.
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Figure 6.15. The evaluation of the positioning precision – the mean and the standard
deviation of the absolute error value.

The comparison of the experiment and the appropriate simulation was also per-
formed. Tracking of the circular trajectory was used and the results are shown in Figure
6.16. Even in reality, the controller is able to steer the bead along such a trajectory.
The reason why the circle traveled in the simulation has a smaller radius (217µm com-
pared to the full size of 250µm) is that bead does not move so fast as in the reality
and thus lags behind the reference signal. This causes that the simulated particle takes
a shorter path through the inside of the circle.
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Figure 6.16. Tracking of the circular trajectory – experiment and simulation.

Finally, the manipulation of more particles was tried. The results of the experiment
with parallel manipulation of the two beads is shown in Figure 6.17. Independent
steering of the two particles was successfully demonstrated. Furthermore, in the scope
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of this experiments, the beads were repeatedly brought together and then again sepa-
rated without any difficulties.

Video screenshot from the experiment
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Figure 6.17. The simultaneous manipulation of the two particles. In the scope of this
experiments, the beads were repeatedly brought together and then again separated.

In Figure 6.18, the manipulation of three particles is presented. As more force re-
quirements are added to the optimization criterion, it again becomes more difficult to
meet all of them at the same time. Although the independent manipulation of the three
beads is still possible, it can be seen that the beads oscillate a lot around their respective
steady state positions. The virtual potential visualization shows how the final positions
of the beads are permanently being corrected, because no local minima are created
for them.
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Figure 6.18. The experiment showing the simultaneous position control of the three par-
ticles.
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Chapter 7
Computational issues

One of the key advantages of the proposed control algorithm is its versatility concerning
the used electrode array layout design. This was demonstrated in Chapter 4.1 by ap-
plying practically the same control algorithm, as was used in the case of the parallel
electrode array, to the more sophisticated four-sector electrode array. This property not
only provides a great flexibility in an electrode array design, but also naturally raises
a question of the system scalability. By simply adding more electrodes to the parallel
array the manipulation area can be extended and the 1D motion can occur and be
controlled over greater distances. Moreover, by using some even more sophisticated
electrode array layouts allowing for the 2D manipulation and at the same time be-
ing easy extensible in all the directions (e.g. the matrix electrode array) the 2D/3D
manipulation over a theoretically arbitrarily large area should be possible.

There are, however, two major obstacles that have to be overcome in the practical
realizations. The first one is related to the capabilities of the sensor. So far, we have
been using in our experiments a camera mounted on the microscope, which has rela-
tively small field of view at the given necessary magnification factor. Some experiments
with lens-less position sensing using a bare camera CMOS chip laying under the trans-
parent electrode array were, however, carried out successfully. Although no efforts were
invested in the investigation of using an array of these chips so far, I believe it could
be a future way of the position sensing on the larger electrode arrays. Nevertheless,
this reason alone does not allow us to experiment with much larger electrode arrays.
The second problem regarding the system scalability is the computational demand
of the control algorithm, which will rise with the increasing number of electrodes and
the manipulated particles. This chapter will be devoted to the investigation of these
issues and the suggestions of the possible solutions.

7.1 Using more beads
The influence of the increasing number of beads onto the computational demands
was tested in a set of measurements. The most demanding is the control algorithm,
specifically the optimization task solved within it. The parallel array controlled only
by the changes of the voltage phase shifts was used for the analysis. One benchmark
task was solved subsequently for an increasing number of particles and its computational
demand was measured (as the optimization run time). Again the notebook equipped
with Intel i5 (2.27 GHz), 8GB RAM and Windows 7 (64-bit) was used for the mea-
surement. For the each given number of beads the task was solved 1000 times and
the averaged results were used to eliminate the stochastic nature of the SA optimization
approach as much as possible. The positions of the beads were not chosen randomly, but
always equidistantly and the group was centered above the array at the working height
of 130µm. The separation distance was either 200µm in a case when all the beads fit-
ted into the range −600–600µm or appropriately smaller (the utmost beads were then
at ±600µm). The optimization goals (the desired forces) were chosen in all the cases
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based on the same precomputed reference force field so that it was known for sure that
an exact zero error solution to the optimization task exists.

The only difficulty in these measurements was that the parameters of the SA solver
(the number of iterations, ...) had to be adjusted manually for each particular number
of particles in order to guarantee the acceptable errors (specified as the error in the force
direction being lower than 5 %) of the found solution with the minimal computational
demands at the same time. The parameter tuning is unfortunately not unambiguous
and so the results presented in Figure 7.1 are rather approximate. Still the trend is
pretty clear. The linear dependence of the combinational time on the number of par-
ticles is obvious from the figure. This nice property will not pose any insurmountable
difficulty regarding the future system expansion.
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Figure 7.1. The analysis of the increase in the computational time demands with the grow-
ing number of the manipulated objects.

7.2 Using more electrodes
Just as in the case of the increasing number of particles, the computational demands
also grow with the increasing number of electrodes. More electrodes means directly
more variables over which the optimization runs. Furthermore, besides the growing
computational demands, a memory issues may arise.

For a particular number of electrodes, a horizontal force having the magnitude of 25 N
in the array center and at the height of 130µm was searched. This was again done re-
peatedly (100×) and the resulting execution times were averaged. The Figure 7.2 shows
these measurements. The acquired data can be fitted by a cubic function. The conclu-
sion that the computational demands rise with the cube of the number of the electrodes
could pose a major obstacle in the future system expansion.
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Figure 7.2. The analysis of the increase in the computational time demands with the grow-
ing number of the actuating electrodes.

7.3 Localized optimization
A straightforward possible solution to the aforementioned computational issues is to
divide the one large optimization problem into a number of smaller subproblems, solve
these only locally and then merge the local solutions into a global one complying with
the original force requirements. This is possible just because the force at a given place
is influenced only by the near electrodes and that the far electrodes can be neglected.
The problem decomposition, local solving and the subsequent solution merging can be
performed in many different ways. In this section I will introduce several of the them
and analyze in a greater detail the most promising ones.

First of all, however, I will investigate what is the minimal distance for the electrode
to have a negligible influence. This is the key information needed in all the approaches.
To this purpose I performed a set of measurements using the optimization task for the 20
parallel electrodes and just the phase shift control. First, voltage signals with a random
phase shifts were applied to the electrodes and the force arising in the middle of the ar-
ray and in the levitation height of 130µm was computed. This was taken as a reference
solution and then modified in a way that only signals on the N electrodes closest to
the particle stayed untouched and the remaining ones were set to have a random phase
shift. A new simulation was then again performed and the error in the direction as
well as in the magnitude between the reference force and the newly calculated one
was recorded. The whole described procedure repeated 10000 times for each value
of N = 2, 4, 8,… and the resulting errors were then averaged for each N . The graph
showing the results can be seen in Figure 7.3. By prescribing the error tolerance sepa-
rately on the error in the magnitude and in the direction (denoted by the dashed line),
I found out that the number of the closest electrodes that have non-negligible influence
in the point of interest is equal to 10. This is definitely not a small number.
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Figure 7.3. The analysis of the influence of the electrodes with the growing distance from
the point of the interest.

In a case when the distribution of the particles in the manipulation area is rather
sparse and there does not exist any electrode contributing significantly to the force
of more than one particle, the optimization decomposition problem is relatively straight-
forward. One optimization task over the set of the influential electrodes is solved for each
of the particles and the determined voltage phase shifts are directly applied to the corre-
sponding electrodes. The phase shifts on the rest of the electrodes can be set arbitrarily,
since the effect of these electrodes on the resulting forces at the locations of the beads
is negligible. The difficulty arises when some of the particles are so close to each other
that they share some of the influential electrodes (there exist some electrodes having
the non-negligible effect on more than one particle at the same time). A few of the ideas
for solving such situations are the following:.The manipulation area would be divided into a number of fixed clusters of a given

size (e.g. such that each would contain a certain number of electrodes) and the opti-
mization task would be solved in each one of them separately. There would be also
necessary an inter-cluster communication in situations when the particles would be
located near the cluster boundaries..The clusters would be created dynamically based on the occurrence of the particles.
In a case of more particles close to each other the appropriate clusters would be
merged in a one bigger..Consider each one particle as being an agent enforcing its own interests (the de-
sired force in a given location). In case of a conflict (when there are more particles
close to each other sharing the actuators and possibly having different requirements
for the forces) the compromise would be searched.
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The problem of the first and the most straightforward idea is the already mentioned
situation with the particles near the cluster boundaries. The inter-cluster communica-
tion would be probably too challenging in these cases.

The dynamical clusters, which, if necessary, merge into a bigger one totally avoid
the communication needs. The problem may however arise, when the object distribution
generates excessively large clusters – in extreme case just one cluster containing all
the particles. In such a case, this strategy does not help at all.

The last stated approach seems the most promising. One way of accomplishing
this is to use an algorithm based on the so-called distributed subgradient method [37].
The idea taken over is that each agent (in this particular case the bead) would have
assigned its own optimization problem (minimizing error of the force acting on it) which
will be simultaneously solved by some kind of the gradient method. After each iteration
of this method, some information (a partial solution) would be locally interchanged
between the near beads (sharing some of the electrodes). The receiving bead would
then combine its own partial solution and the solution fo the neighbors through some
defined weights (see Figure 7.4) and perform the next optimization step. Ideally, this
will result in the solution convergence.

weight for solution #1

particle #1 particle #2

weight for solution #2

solution #1 solution #2

electrodes

Figure 7.4. The typical weights used in the process of the solution merging. For a sim-
plicity, each shown solution prescribes the voltages only on the four electrodes closest to
the particle (two of them are shared). On the first shared electrode, the solution #1
will dominate, since the its weight is higher. Similarly, in the case of the second shared

electrode, the second solution will dominate (although not so much this time).

The main obstacle is that all the papers describing the distributed subgradient
method are devoted towards the convex optimization solvable using the gradient de-
scent methods. As was shown in Chapter 5.1, this does not fit to our problem. However,
using the SA it is at least possible to simulate the iterative convergence of the partial
solutions. This is done by limiting the number of the SA inner iterations and by start-
ing its next run from the last found solution. The test of this approach, however, gave
only unsatisfactory results (even when a solution provably existed).

Another quite similar approach is to perform the optimization in a sequence.
For a simpler explanation, let us consider for example an optimization searching forces
for the three particles. First, an optimization task involving just the first particle
and its objectives is solved over the 10 closest significant electrodes. The partial
solution is then stored into a shared vector for the global solution. Then the second
optimization task based on the demands of the second particle takes place. This time
the starting value of the SA is set based on the corresponding values from the global
vector of the solutions. The results are again stored, possibly overwriting the present
values. The same happens with the third particle and then the whole process repeats.
However, the more iterations pass off, the less is the SA allowed to move from its
starting point. This is accomplished by keeping a counter for each element of the global
solution and decrementing its value with each writing into it. The idea again is that
the global solution could converge this way. The experimental results are, however, not
very promising. A good solution was found only for a trivial case of the two particles
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separated by a distance of around 300µm at a minimum and even in this case a rather
large number of the iterations was required (around 100).

The last tried approach to merging the several different solutions into the global one
is based on the idea that it would be easier if the individual solutions somehow built
on themselves. For example, by firstly negotiating the force field for the whole ma-
nipulation area all the compromises would be solved and there would be no more any
conflicting goals in the individual optimization tasks (see Figure 7.5). Since all of them
make an effort to satisfy a common objective, the final merging of the individual solu-
tions could be an easier task to do. The mutually corresponding elements of the found
solutions (either the vectors of the control variables or rather their differences) could
have similar values. This is, however, not guaranteed (and as it showed later in the ex-
periments, it sometimes really need not to happen). The composition of the global final
solution could be therefore done by their simple averaging (see Figure 7.6). Addition-
ally, the weights could by included for preferring the elements of the partial solutions
corresponding to the close locations.

For a better understanding, I will demonstrate the whole process on a simple exam-
ple, where a force field the bringing two particles together is searched for. Large parallel
electrode array with 20 electrodes is used. The beads are located at the coordinates
x = ±100µm, y = 130µm (depicted as black circles in Figure 7.7). In the same figure
the red lines beginning in the centers of the circles represent the direction of the desired
force. As it was described in the previous paragraph, the common force field is negoti-
ated first. This is demonstrated in Figure 7.5. The red, respectively blue lines represent
the desired forces demanded by the first, respectively the second particle. The specific
shape of these curves is based on the typical force profile get in the simulations per-
formed for one particle. The yellow line in the same figure then represents the averaged
desired force. Based on this, the inputs to the two individual optimization tasks will
be determined. The optimization will run over 10 electrodes, which cover pretty large
area. Therefore more than one force objectives has to be used. In fact, 15 objectives
are used in each of the task (in figure they are marked by the red, resp. the blue dots).
Note that they are not distributed equidistantly in the x direction, but they are a little
denser close to the position of the corresponding particle. This way, the error in force
at the given position will be small enough and at the same time at least the essence
of the overall demanded force profile will be achieved. Results of the two optimization
tasks are shown in Figure 7.6. Since the optimization runs over the control variable
differences, the result consist only from 19 elements. Because both of the task tried to
achieved the same goal, their results are almost the same. The yellow circles represent
then the merged solution (weighted average with the weights influenced by the distance
from the corresponding particle). The resulting force field is depicted in Figure 7.7.

The example was chosen so that the number of the electrodes shared by the two par-
ticles was large and thus the solution merging could be nicely demonstrated. The same
approach can be used for finding the solutions also in cases where more than two par-
ticles are present. The purpose of the method is clear – instead of performing the op-
timization over many electrodes but with a small number of objectives (two for each
particle), the optimization runs just over 10 electrodes but with a much higher number
of objectives (15× the number of particles N). Based on the measurements of the com-
putational demands made earlier, this should be advantageous when having an array
with 38 or more electrodes.
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Figure 7.5. The creation of a common force field further used as a base for the optimization.
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Figure 7.7. The resulting force field simulation (just the central segment of the array).

The method was tested on a few other simple tasks, but it has unfortunately not
always achieved such nice results as in the above example. Although the individual
optimization tasks end up successfully, the solutions could not be merged by a simple
weighted average. One of the possible problematic parts may be the determination
of the common force field, since its formation is currently rather heuristic.
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7.4 Mutual particle interactions

In a typical micromanipulation device, a common required task is to bring two or more
particles together or to separate them. Moreover, solutions (in the chemical meaning
of the word) containing tens or hundreds of particles are used. These come naturally
often in a close contact with each other. In all of these situations the mutual interaction
forces between the particles become non-negligible and should be therefore taken into
account. So far the performed experiments included just one isolated particle or a small
number of sufficiently distant particles. Therefore the modelling of the mutual particle
interactions was of no interest. However, with the extension of the control scheme
for a platform capable of 2D manipulation (and thus opening the new experimental
possibilities), the interactions effects should be studied.

The vast majority of the papers dealing with mutual particle interactions concentrate
on the case of the two particles located in the uniform electric field. Their stable respec-
tively unstable orientations are in such a case determined. In the most common case
where both the particles experience either the positive or the negative DEP, the stable
orientation is parallel to the applied field [3]. On the contrary, the unlike particles
orient perpendicularly to the applied field. These results agree with the experimental
observations, the so-called pearl-chaining.

A few different and variously accurate methods for modelling of the mutual particle
force interactions were reported in the literature. The most accurate, but also the most
computationally demanding, is the aforementioned MST method. Using a FEM solver
and the arbitrary Lagrangian-Eulerian method (ALE) Ai and Qian [38] considered even
the hydrodynamic interactions which are according to them non-negligible at short dis-
tances. Computationally less demanding, but still unsuitable for the control usage is
the hybrid immersed boundary and the immersed interface methods [39]. A completely
different approach is to use the equivalent multipole method [40], which is, however,
already just approximate. The level of the approximation may be however chosen
by the degree of the used multipoles [41]. Since we are highly restricted by the compu-
tational time limits, we will use just the simple point-dipole (possibly further extended
by a simple hydrodynamic) interactions model described in [42]. The drawback is
of course its accuracy at the very short inter-particle distances.

I will begin by considering a situation where N particles are mutually influencing
each other just electrostatically. According to the referred paper, the total electrostatic
force affecting the ith particle can be approximated by

FE,i = FDEP,i + FD,i − Frep,i, i = 1...N, (7.1)

where FDEP,i is the DEP force acting on the ith particle (see Eq. (3.6)), FD,i =
N∑

I=1,i 6=j

FD,ij and Frep,i =
N∑

I=1,i 6=j

Frep,ij are the electrostatic interaction, respectively

the repulsive force acting on the ith particle. The purpose of the repulsive force is
to prevent the particles from overlapping. As it is apparent, the interaction force is
composed of the individual contributions from the N − 1 other remaining particles.
These can be expressed after time-averaging as

FD,ij = 1
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 , (7.2)
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where p̃i = 4πεmKr3Ẽi is the effective dipole moment, where K = ε∗p−ε∗m
ε∗p+2ε∗m

is
the Clausius-Mossotti factor, (·)∗ denotes the complex conjugate, Rij = Rj −Ri, where
Ri, Rj are the respective position vectors of the particles i and j and Rij = ‖Rij‖2 is
the magnitude of the vector. The short range repulsive force arising from the interac-
tions between the particles is usually introduced in a form (see [42, 41])

Frep,ij = 2Fmaxe
−100

( Rij
r
−1
)
R̂ij , (7.3)

where Fmax is taken as the maximal DEP force and R̂ij = Rij

Rij
is a unit vector

in the direction of Rij .
Expression (7.1) can be used either in the current form only for the simulation pur-

poses or it can be further rearranged and utilized in the control algorithm. My goal will
be to restate the expressions as the quadratic forms and thus allow a straightforward
update of the existing optimization criterion.

For the sake of brevity, I will not include the whole derivation here, but rather de-
scribe the individual steps that are necessary to take in order to reformulate the problem
and then I will only state only the final result. First, all the vector products present
in the four individual summands in (7.2) has to be multiplied out and only the real part
of them extracted where prescribed. During this process, some of the newly-emerged
terms will mutually eliminate themselves. Next, we apply the same procedure we have
done already few times before — substituting the electric intensities by a product
of the input voltages, ū and the “unit” electric intensities Ēa, and then use the trans-
position where necessary to enable factoring out the input voltages. After performing
the final summation, FD,i can be expressed as

FD,i,A = ūT
RPR,D,i,AūR + ūT

I PI,D,i,AūI, (7.4)

PR,D,i,A =
N∑

i=1,i 6=j
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),
a ∈ {x, y, z} .

The notation in these expressions becomes unfortunately even more complicated.
The superscripts i and j denote that the corresponding quantity is evaluated in the po-
sition of the respective ith or jth particle, e.g. Ēi

Rx = ĒRx(Ri) is the vector composed
of the real parts of the electric intensity x component evaluated in the position of the ith
particle. Each of the components of this vector corresponds to the one electrode gen-
erating the electric field by 1 V voltage, (while the other are at 0 V).

The matrices defining the two quadratic forms in the above expressions, PR,D,i,A and
PI,D,i,A, can be easily used for the extension of the previously described P matrices from
the optimization criterion, specifically

Pa,i =
[
PcDEP,a,1,1 + PR,D,i,a PtwDEP,a,1,2

0 PcDEP,a,2,2 + PI,D,i,a

]
, a ∈ {x, y, z} , i = 1...N. (7.5)

Note that this time the matrices P have additional index i denoting the corresponding
particle they belong to. Since the repulsive force is not dependent on the input voltages,
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it can be easily included in the optimization criterion the same way as, for example,
the sedimentation force is. For clarity, I will show an example of the optimization
task definition for the most general case, when both the amplitudes and the phases
of the input voltages are allowed to change:

ūopt = arg min
ū

N∑
i


( ∑

a∈{x,y}

∣∣ūT Pa (x, y, z) ū + Frep,a,i − F des
a

∣∣)+

+
∣∣ūT Pz (x, y, z) ū + Fsed + Frep,z,i − F des

z

∣∣
 .(7.6)

s. t. u2
i + u2

n+i ≤ U2
max

As indicated above, the interaction model can be further extended to account
even for the simple hydrodynamic interactions. The motion of the particles induced
by the DEP in a liquid medium causes a flow field felt by the other near particles.
The particles will experience a force, which results from the hydrodynamic interac-
tions with the original particle. According to [42], by solving the Stokes’ equation
for the two-particle case, the expression for the hydrodynamic force acting on the first
particle due to the second one is

Fdrag,1 = −6πµrv1 + 6πµr 3r
4R21

(
1 + R̂21R̂T

21

)
v2, (7.7)

where µ is the dynamic viscosity of the medium, r is the particle radius, R21 is
the distance between the two particles, 1 is the unit tensor, R̂21 is the unit vector di-
recting from the second to the first particle and v1, v2 are the velocities of the respective
particles. This expression is in general valid only for the two particles interaction, but
since the correction terms arising from N -body interaction are of high order and do not
need to be taken into account, the expression can be generalized the following way [42]

Fdrag,i = −6πµrvi +
N∑

j=1,j 6=i

6πµr 3r
4Rij

(
1 + R̂ijR̂T

ij

)
vj , (7.8)

In order to use this hydrodynamic model for beads movement simulation, we use this
expression instead of the original simple Stokes’ law (see Eq. (3.1)). We substitute
Fdrag,i = − (FE,i + Fsed) and solve for the velocities v. The Fsed = [ 0 0 Fsed ]T is
the vector of the sedimentation force. This can be done simply by solving the following
system of linear equations into which the above expression can be reformulated

A11 A12 · · · A1N

A21 A22 · · · A2N
...

... . . . ...
AN1 AN2 · · · ANN




v1
v2
...

vN

 =


FE,1 + Fsed
FE,2 + Fsed

...
FE,N + Fsed

 , (7.9)

where Aii = 6πµrI (I is the 3 × 3 identity matrix), Aij = 6πµr 3r
4R21

(
1 + R̂ijR̂T

ij

)
and vi = [ vi,x vi,y vi,z ]T are the vectors contacting components of particle velocities
for the three directions along the individual axes.

Now we are a step closer to take into account the model of the hydrodynamic interac-
tions by the control algorithm. What only remains is to rebuild the control loop in such
a way that the controlled quantity will not be the resulting forces acting on the parti-
cles, but rather directly the particle velocities. In fact, this is not as huge change as it
may sound, because the velocity was already coupled with the force only by a simple
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linear relationship (3.1). After all, prescribing the velocity of the manipulated objects
may seem even more meaningful than pursuing the force. The controller then based
on these velocities computes the required forces FE,i + Fsed. This is done using again
the relationship (7.9), this time with the roles of the knowns and the unknowns being
switched. Having the required forces, the same optimization task as described above
can be solved.

Both the electrostatic and the hydrodynamic interaction models were implemented
in the simulation. Figure 7.8 shows a case, when two particles were placed 150µm apart
from each other above the parallel electrode array. Voltages of maximal the amplitude
of 10 V with the alternating phase shifts of 0 ◦ and 180 ◦ were present on the electrodes.
Although no DEP force acts in the direction parallel to the electrodes, the two beads ap-
proached each other and finally touched. This is caused by the electrostatic interaction.
The attracting force is greater as the inter-particle distance declines.
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Figure 7.8. The simulation showing the mutual interaction of the two beads (electrostatic
and hydrodynamic). The position in the y coordinate does not change since it corresponds

to the stable equilibrium in given voltage configuration.

Unfortunately, a controller preventing this from happening is impossible to design
for this type of an array. This is caused by an absence of the DEP force in the direc-
tion along the z axis. A controller taking into account the interaction forces has still
a value at least for the direction along the x axis. In a case of the four-sector array,
the abilities of this controller could be however better illustrated. Figure 7.9 shows
altogether eight records of the simulated test scenario — five of them being controlled
ignoring the mutual particle interactions (left column) and the other five taking them
into account (right column). The task was to move one bead along the dashed line to
the final position marked out by the cross, while the other particle should have stayed at
its initial position (also denoted by the cross). The progress of the two beads positions
in time is represented by the circles of different shades, each corresponding the end
of one control period. Since the second bead passes during its motion by the first one
in its close vicinity, the mutual electrostatic and hydrodynamic interactions are non-
negligible. Indeed, from the first column of the figure (control ignoring the interactions)
it can be seen that two particles sooner or later come together and the requested task
is not fulfilled. On the other hand, the second set of the simulation results shows, that
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the controller taking the studied interactions into account prevents the particles from
merging. Both will therefore reach their goal positions.

Comparison of the controller taking into account the mutual 
particle interactions and the controller ignoring them
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Figure 7.9. The comparison of the controller taking into account the particle interactions
and the controller ignoring them while they are still present.
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Chapter 8
Position uncertainty

In this chapter, I will analyze the effects of the uncertainty presence in the position
measurements and I will suggest and test possible solutions to this issue. For the sake
of simplicity, I will consider only the parallel electrode array and furthermore I will
overlook the fact that the position measurement is available only in the direction along
the x axis.

Since the optimization tries to ensure the desired force only exactly in the measured
position, the particle may actually feel a quite different force if the measurement is im-
precise and thus the true position of the bead is a little different. To evaluate this effect,
I will introduce the concept of a tolerable uncertainty, meaning the uncertainty that still
leads to a small enough error in the requested force. More specifically, we will express it
as the maximal radius of a circular neighborhood of a point in which the directional er-
ror of the force is below 5 %. Taking into account the achievable measurement precision
of the used laboratory setup, the tolerable radius of such an area should be preferably
not less than 4µm (which is the dimension corresponding to a one pixel of the camera
image). Figure 8.1 shows an example of the tolerable uncertainty region (the dark-
est color) together with the inscribed circular point neighborhood (in the green color).
The red circle marks the mentioned boundary of 4µm. Since the green circle lies inside
the red one, it is obvious that the minimal required size of the uncertainty region is not
achieved in this case.
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Figure 8.1. The example of the tolerable uncertainty region for the one particular bead
position and the force requirement (the darkest region).
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The size of the tolerable uncertainty can generally be different for the every given

position and the desired force. In order to avoid the brute force evaluation, the ma-
trices Px and Py can be studied instead. These matrices define the quadratic norms
in the DEP force expressions (3.10) and are always enumerated for a particular po-
sition. Analyzing the spatial derivatives of their individual elements it is possible to
identify the problematic ones, which are prone to big changes. Two samples of the ma-
trices formed by these derivatives for the two different positions of the beads are shown
in Figures 8.2 and 8.3.
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Figure 8.2. Visualization of the spatial derivatives of the (a) Px (b) Py matrices evaluated

at point x = 0µm, y = 130µm.
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Figure 8.3. Visualization of the spatial derivatives of the (a) Px (b) Py matrices evaluated

at point x = 400µm, y = 130µm.

Typically, as it is apparent from the figures, these problematic elements are then
multiplied by the voltage amplitudes corresponding to the electrodes near the particle
position. (based on Eq. (3.10)). This is because the effect of the closest electrodes
on the manipulated object is not only the strongest, but also the most unsteady. This
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means that the force changes dramatically with only a slight shift in the particle posi-
tion. The causes are just the large derivatives (1st and the 2nd) of the electric intensity
contribution close to the electrode which generated it. By applying a small voltage
values to these electrodes, it is therefore possible to trade off the energetic efficiency
of the manipulator for the extension of the tolerable uncertainty region.

The preceding consideration was implemented in two different ways. First, a simplis-
tic approach introducing the different weights on the individual electrodes in a form

ūT


w1 0 · · · 0
0 w2

. . . ...
... . . . . . . 0
0 · · · 0 wn

 ū (8.1)

was tried. The numbers wi (i = 1 . . . n) on the main diagonal are determined by eval-
uating a defined weighting function at the coordinates of the respective electrodes. This
function can be chosen arbitrarily, but it should have one peak always at the position
of the bead (e.g. the Gaussian curve can be used). This way, however, the non-diagonal
interactions are dropped.

In the second approach, the weighting matrix was created directly based on the ma-
trices Px and Py. First, they were transformed according to

Pa,diff = UT PaU, U =


0 0 · · · 0
1 0 . . . ...
1 1 . . . 0
... . . . . . . 0
1 · · · 1 1

 , a ∈ {x, y} , (8.2)

which is the same relation that was used when optimizing over the control variable
differences (see (5.4)). Then all the elements were replaced by the absolute value of their
spatial derivatives (otherwise the positive and the negative elements could mutually
compensate). The sum of these two modified matrices (multiplied by some factor
defining the balance between the importance of this objective with respect to the other
objectives calling for the force) is then taken to be the weighting matrix. This time also
the non-diagonal interactions are incorporated. It is necessary that the absolute values
of the control variable differences are weighted by this matrix the following way

∣∣d̄T
∣∣ ∣∣∣∣ ∂2

∂x∂y
[Px,diff + Py,diff ] (x, y)

∣∣∣∣ ∣∣d̄∣∣ . (8.3)

A few examples comparing the original controller and the improved one striving
to enlarge the tolerable uncertainty region are depicted in Figure 8.4. Different bead
positions and force requirements are captured. From these graphs, it is apparent that
by incorporating the additional weights into the optimization criterion the tolerable
uncertainty region indeed enlarged. In some cases, however, the improvement need not
to very significant (for example in the second case, where the new region has a diameter
of only 142 % of the original one, whereas in the first and the second example it is
694 % and 195 % of the original diameter respectively). It should be kept in mind that
the improvement comes at the cost of the worst energy efficiency, because the controller
intentionally prefers the usage of far actuators over the near ones.
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Figure 8.4. Comparison of the classical controller and the improved one taking into account
the position measurement uncertainty.
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Chapter 9
Conclusion

In this thesis I described the optimization based control system for the dielec-
trophoretic micromanipulation utilizing the parallel electrode array. Furthermore, I
extended the optimization task formulation in such a way that both voltage amplitudes
and mutual phase shifts can be utilized for the control. In the first place, this should
allow not only the conventional but also the traveling wave dielectrophoresis control.
Its induction is, however, impossible in the experiments, because of the currently
available and used objects/medium combination. Apart from this, the phase control
enabled me the utilization of a larger and more complicated four-sector electrode array.
I conducted the experiments involving both of the arrays in order to demonstrate their
manipulation capabilities and evaluate their performance. Surprisingly, the four-sector
electrodes arrangement allows the manipulation even along arbitrary trajectories,
which was not expected before. Next, I analyzed the system scalability with respect
to the growing number of particles and electrodes and investigated a few methods
dealing with the arising computational issues. No well working solution was however
found. Further, I supplemented the system model by the mutual particle interactions
and adapted the controller for taking them into account. Its function was then verified
on simulations. Finally, I studied the sensitivity of the control algorithm to the position
measurement uncertainties and I tested one of the possible approaches to the mini-
mization of their effects. The modified optimization task was tested on a simplified
simulation and the results seemed promising.

There are many potential improvements and also new ideas that would be worth of ex-
ploring in the future work. For example, the extension of the manipulator by adding
the subsystem for the levitation height measurement (developed by my colleague Mar-
tin Gurtner in parallel with my thesis) could be done. Actually, the first trials of doing
that have already started. Next, it would be great to come up with a better nonstochas-
tic approach of solving the optimization task. Comparison of the simulated and actual
mutual particle interactions would also be interesting. A big challenge would be the re-
placement of the deionized water and the polystyrene beads by some biological cells
and solutions. This would be a huge step forward towards the intended applications.
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Appendix B
Nomeclature

B.1 Abbreviations
Here is a list of all the abbreviations and symbols ocurring in the text:

MACS magnetic-activated cell sorting
FACS fluorescence-activated cell sorting
DEP dielectrophoresis

CMOS complementary metal oxide semiconductor
cDEP conventional dielectrophoresis

twDEP traveling wave dielectrophoresis
PDMS polydimethylsiloxane

FEM finite element method
SIL software-in-the-loop

MST Maxwell stress tensor method
ALE arbitrary Lagrangian-Eulerian method

RAM random access memory (here in metaphoric meaning of the operational
memory)

FEX Matlab file exchange
IP interior-point algorithm
LP linear programming
SA simulated annealing

ITO indium tin oxide

B.2 Symbols
Fd frictional force in the Stokes’ law
µ dynamic viscosity of the fluid
r radius of the spherical particle
v flow velocity relative to the object

x, y, z space coordinates
F vector of the resulting force acting on the particle
Fa component of the force vector corresponding to the direction of axis a (a ∈ {x, y, z})
u optimization variable vector, depending on the context it can be the amplitude

of sinusoidal voltage signal or its phase shift
ui ith component of the optimization variable vector u
ū vector of the optimization variables (the voltage amplitudes or the phase shifts

corresponding to individual electrodes)
Φ electric potential
Φi electric potential generated by applying 1V to the ith electrode and 0 V to the rest

of the electrodes
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Φ̄ vector of the electric potential composed the elements of Φi

E electric field intensity vector
Ea component of the electric field intensity vector corresponding to the direction

of the axis a (a ∈ {x, y, z})
Ēa vector of the electric intensity components for the axis a (a ∈ {x, y, z}), the ith

vector component is the electric intensity given by the potential Φi.
FcDEP conventional dielectrophoretic force

FcDEP,a component of the cDEP force corresponding to the axis a (a ∈ {x, y, z})
k, k1 multiplicative factor used in the cDEP force expression
εm permittivity of the medium
εr relative permittivity of the given material
ε0 permittivity of the vacuum
ε∗m complex permittivity of the medium
ε∗p complex permittivity of the manipulated object
σ conductivity of the given material
ω angular frequency of the applied sinusoidal voltage
j imaginary unit

Ψab partial derivatives of the a-component of the electric intensity along the axis b
(a, b ∈ {x, y, z})

Ψ̄ab partial derivative of Ēa along the axis b (a, b ∈ {x, y, z})
Pa matrix defining the quadratic form based on which the cDEP force in axis a is

calculated (a ∈ {x, y, z})
Fa

des desired force in the direction of the axis a (a ∈ {x, y, z})
Fsed sedimentation force acting on the particle
ūopt control variable vector with the results of the optimization
Umax maximum voltage amplitude applicable to the electrodes
xpred prediction of the particle x coordinate position at the time the next control action

is applied to the electrodes
N number of the particles
Φ̃ potential phasor

ΦR real component of the potential phasor
ΦI imaginary component of the potential phasor
ũ vector of the voltage phasors corresponding to the individual electrodes

ūR vector of the real components of the voltage phasors corresponding to the individual
electrodes

ūI vector of the imaginary components of the voltage phasors corresponding to the in-
dividual electrodes

uRi real component of the voltage phasor corresponding to the ith electrode
uIi imaginary component of the voltage phasor corresponding to the ith electrode
Ẽ phasor of the electric intensity

ER real component of the electric intensity phasor
EI imaginary component of the electric intensity phasor

ERa component of the vector ER corresponding to the axis a (a ∈ {x, y, z})
EIa component of the vector EI corresponding to the axis a (a ∈ {x, y, z})
Pa matrix defining the quadratic form based on which the total DEP force in the axis

a is calculated (a ∈ {x, y, z})
PcDEP,a,1,1 block components of the matrix Pa influencing the cDEP force contribution
PcDEP,a,2,2 block component of the matrix Pa influencing the cDEP force contribution

PtwDEP,a,1,2 block component of the matrix Pa influencing the twDEP force contribution
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FtwDEP traveling wave dielectrophoretic force
FtwDEP,a component of the twDEP force corresponding to the axis a (a ∈ {x, y, z})

k2 multiplicative factor used in the twDEP force expression
FDEP total dielectrophoretic force constituting of the conventional and the traveling wave

components
FDEP,a component of the DEP force corresponding to the axis a (a ∈ {x, y, z})

ū′ extended optimization vector containing separately the real and the imaginary
components of the voltage phasors corresponding to the individual electrodes

mi voltage amplitude correspondign to the ith electrode
φi voltage phase shift corresponding to the ith electrode
n number of the electrodes
e error in the force
α a trade-off between the quality of the approximation and the control efforts
d̄ vector of the optimization variables formed by the mutual differences of ū elements

FE,i total electrostatic force affecting the ith particle
FDEP,i the DEP force acting on the ith particle

FD,i electrostatic interaction force influencing the ith particle
Frep,i repulsive force acting on the ith particle

p̃i effective dipole moment
K Clausius-Mossotti factor

Rij position vector starting at the position of the jth particle and ending at the position
of the ith particle

R̂ij unit vector pointing from the particle j to the particle i
Rij magnitude of the Rij or the distance between the particles i and j

Fdrag,i hydrodynamic force acting on the ith particle
1 unit tensor
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