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Abstract

Learning about objects through manipula-
tion importantly complements visual per-
ception mainly to identify physical prop-
erties of objects such as stiffness, mass, or
surface roughness. This holds both for hu-
man and robot perception. In this work,
I study the classification of deformable
objects by grasping them using four dif-
ferent robotic hands / grippers: Barrett
Hand (3 fingers with adjustable configu-
ration), gb SoftHand (5 fingers, 1 motor),
and two industrial parallel jaw grippers
(Robotiq 2F-85 and OnRobot RG6). The
time series collected during object com-
pression (and sometimes decompression)
are fed into four different classifiers: k
Nearest Neighbors (kNN) and LSTM ap-
plied on raw data, and kNN and SVM
on features. I systematically compare the
grippers’ performance, together with the
effects of: (i) action parameters (grasp-
ing configuration and speed of squeezing),
(ii) knowledge transfer ability, and (iii)
individual sensory modalities. The Robo-
tiq 2F-85 and the Barrett Hand perform
best. The OnRobot RG6 is closely in line,
and gb SoftHand performs significantly
worse. The 2-finger grippers thus pro-
vide a more parsimonious solution to de-
formable object classification relying only
on the stress/strain characteristics in only
2 sensory channels (position and effort),
compared to the Barrett hand with 96 tac-
tile sensors, 3 fingertip torque sensors, and
8 joint encoders. The supervised learn-
ing problem is complemented by principal
component analysis to uncover the sources
of variability in the data. This work pro-
vides a unique contribution in that it de-
ploys four different robot hands/grippers
on the same datasets and systematically
studies their performance. Transfer learn-
ing between different robot hands remains
a future challenge.
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Abstrakt

Poznavani objektt prostrednictvim mani-
pulace vyznamné dopliuje vizudlni vni-
mani a to predevsim pri urcovani fyzi-
kalnich vlastnosti objektt jako je tuhost,
hmotnost nebo drsnost povrchu. Toto
plati jak pro lidské, tak pro robotické vni-
mani. V této praci studuji klasifikaci defor-
movatelnych objektt pomoci jejich mac-
kani ¢tyfmi rtiznymi robotickymi rukama-
/uchopovaci: Barrett Hand (3 prsty s na-
stavitelnou konfiguraci), gb SoftHand (5
prsti, 1 motor) a dva prumyslové grippery
(Robotiq 2F-85 a OnRobot RG6). Casové
rady shromézdéné béhem stlac¢ovani (a né-
kdy i dekomprese) objektil jsou privadény
do ¢tyr raznych klasifikator: k Nearest
Neighbors (kNN) a LSTM jsou aplikované
na surova data a kNN a SVM na extraho-
vané features. Systematicky porovnavam
vykonnost grippert spolu s vlivem: (i) aké-
nich parametru (konfigurace uchopeni a
rychlost stisku), (ii) schopnost pfenaset
znalosti a (iii) modality jednotlivych sen-
zoru. Nejlépe si vedou grippery Robotiq
2F-85 a Barrett Hand. V tésném zavésu
za nimi je OnRobot RG6 a gb SoftHand
si vede vyrazné hife. Dvouprsté grippery
tak poskytuji iispornéjsi reseni klasifikace
deformovatelnych objektt, které se spo-
1éhé pouze na charakteristiky napéti/de-
formace pouhych 2 senzoricky kanala (po-
loha a sila). Ve srovnani s Barrett Hand
s 96 hmatovymi senzory, 3 senzory toci-
vého momentu na $pickach prsti a 8 sen-
zory thlu prsti. Problém uceni s ucitelem
je doplnén analyzou hlavnich komponent,
ktera odhaluje zdroje variability v datech.
Tato prace predstavuje jedine¢ny prinos
v tom, Ze na stejnych souborech dat nasa-
zuje CtyTi rtizné robotické ruce/chapadla
a systematicky studuje jejich vykonnost.
Prenos uceni mezi riznymi robotickymi
rukama zustava vyzvou do budoucna.

Klicova slova: roboticka chapadla,
taktilni senzory, klasifikace objekta bez
modelu, zjistovani vlastnosti predmétu,
LSTM sit

Pteklad nazvu: Klasifikace mékkych
predmétt skrze mackani robotickymi
uchopovaci
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Chapter 1

Introduction

. 1.1 Motivation

In the last few years, computer vision achieved significant progress, mainly
thanks to the invention of convolution networks and new architectures like
ResNet [I]. Nowadays, there are off-the-shelf methods for image classification,
bounding box regression, or segmentation, such as Facebook’s Detectron 2,
based on Mask R-CNN architecture. However, this network primarily detects
objects. For all sorts of tasks, such as waste sorting, visual information alone
is not enough and one needs to gain the physical properties of an object from
haptic feedback.

Object recognition using haptic exploration can also be more robust as it
is insensitive to lighting conditions and attributes like color. Nevertheless,
exploring objects by manipulation also brings the danger of damage. However,
in some areas like the previously mentioned waste sorting, this is not a problem.
Recycling is still a process relying on human labor. Plastic, paper and metal
differ significantly in their material properties, and sorting them through
manipulation would mean a big step forward.

So, what are the limits of modern robots’ haptic feedback? Professional
laboratory equipment with a high number of sensors can probably achieve good
results, but what about more industrial-like grippers? Moreover, even when
objects are correctly classified, we may be interested in the structure of the
haptic data. Is there much hidden information, or is it a more straightforward
task? I am going to find at least partial answers to these questions.

. 1.2 Goals

Computational costs when simulating solid deformable objects’ interactions
are enormous [2]. Therefore, model-free classification provides an alternative
and real measurements are needed. Using four robotic grippers and two sets
of objects, I will collect s sufficient number of measurements according to the
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standards of the machine learning community. Some of the measurements
have already been collected on two robots. This is described in detail in
Section 3.1l

I will design my own pipeline for data preprocessing since the samples
come in series. This will consist of sample synchronisations and discarding
outliers. I will also remake some gripper controlling programs to achieve
higher automation in data collection.

Grippers’ capabilities will be tested with the use of four classifiers, each one
with a different degree of sophistication. Not only will classifiers be compared,
but I will also try knowledge transfer by testing already trained models on
different datasets. This may reveal the primary sources of variability in time
series. Search for the main source of information in the data will also be done
by ablation study. To gain additional insight into the structure of the data,
principal component analysis will be used for visualization.

. 1.3 Related work

Sanchez et al. [2] provide a survey of robotic manipulation and sensing of
deformable objects. Objects are considered deformable if they have (1) no
compression strength (ropes and clothes), or (2) have a large strain', or
present a large displacement. Additionally, a classification based on geometry
is presented. In this work, I am not interested in objects of linear, planar, and
cloth-like type, and will focus on triparametric objects—solid objects such as

sponges or plush toys, which are also the least researched object type [2].

B 1.3.1 Objects classification

Specifically related to this work, Spiers et al. [3] used a single force closure
grasp with an underactuated two-finger compliant gripper equipped with
force sensors to classify objects of various shapes, sizes, and stiffness. The
feature space used for classification via Random Forests consists only of the
actuator positions and the force sensor measurements at two specific time
instances (first contact and getting stuck). A feature variable’s importance
was calculated, and the most crucial features were determined. The gripper
used and our gb SoftHand can be considered similar.

A series of neural models (MLP, CNN, LSTM) was developed for the
classification of 16 objects in Bednarek et al. [4]. Not using a hand or
gripper, but a spherical tip with OptoForce 3-axis optical force sensor, they
processed the time series from this sensor using an LSTM employed for
material classification. A similar approach is used for terrain classification on
a legged robot in the same work.

1For linear elasticity, this implies small Young’s modulus, e.g. less than 10 MPa.



1.4. Outline

B 1.3.2 Terrain classification

In 2014, Hoffmann et al. studied the effect of motor action, and different
sensory modalities on terrain classification in a quadruped robot running with
multiple gaits [5]. One approach leading to terrain classification with high
accuracy was computing hand-designed features on all sensor time series and
then using SVM. Because both problems (terrain and object classification)
can be viewed as haptic sensing problems, I decided to try extracting the
same features.

B 1.3.3 Prior work at FEE, CTU

In his master’s thesis [6], Pavel Stoudek used three of the four robotic grippers
used in this work. He also wrote control programs and collected pilot series
of data. His work was an important source of information for me. However,
his work focused on elasticity estimation rather than object classification.

Finally, Michal Mares in his bachelor’s thesis [7] designed sets of soft objects,
wrote programs for controlling Barrett Hand, recording and processing data,
used LSTM for classification, and attempted to extract properties like stiffness
and density. Unfortunately, it was later found out that the ground truth
values of stiffness and density are not valid, and therefore I did not try to
repeat this task. This work is a natural continuation of his, which was also
my primary source of information.

B 1.3.4 Thesis contribution

In the work of Michal Mares [7], only one robotic hand was used for object
classification. Here, I will compare more robotic hands and grippers to assess
their individual performance on the same dataset. In addition, compared to
Mares [7] who used only the LSTM classifier, I will use four different classifiers
to have more robust results.

Michal Mares already tried knowledge transfer and ablation experiments,
but I will deliver a more systematic overview over all hands/grippers. Finally,
I will use principal component analysis to gain insight into the structure
of the data. Feature-based analysis is based on results from feature-based
classification.

. 1.4 Outline

First, I will present all objects sets, robotic hands and grippers, classifiers,
method of analysis, and data preporcessing in Chapter [2.

Next, the configurations of all hands/grippers used during the measurements
will be presented in Chapter [3. All created datatasets are going to be

3



1. Introduction

described.

In Chapter 4] all obtained results will be presented and analyzed. Summary
and observations will be noted.

Finally, in Chapter 5, I am going to discuss the results, identify the
limitations, and suggest possible improvements that could be made in the
future.



Chapter 2

Materials and methods

In this chapter, I am going to present the basic materials and methods used
in this work. I will firstly introduce soft objects and foams, which we are
exploring. Then I show the grippers used for collecting data. In the last part,
I will explain the methods used for classification and unsupervised analysis.
Some information about object sets, Barrett Hand, and LSTM neural network
are paraphrased from Michal Mares’s work [7] (it will be pointed at the
appropriate places). Some information about rest of the grippers is taken
from Pavel Stoudek’s work [6].

B 21 Objects and foams

I used two sets of deformable objects. The first is the ordinary object set
consisting of 9 mostly cuboid objects with different sizes and degrees of
deformability. The second set is the polyurethane foams set consisted of
20 polyurethane foam blocks of similar size, along with reference values for
elasticity and density provided by the manufacturer.

B Ordinary objects set

The first set consists of mainly toy-like soft objects bought in stores; see
Fig. Cuboids are preferred over spheres, as the contact surface area does
not change during deformation. In addition, all objects are highly homoge-
neous, as we are more interested in material properties like elasticity /stiffness
(elasticity is closely related to the stiffness, but stiffness takes into account
both the material’s elasticity and geometry) and not the shape or mass
distribution. Deformation of all objects can be studied as elastic (objects
do not permanently deform during squeezing), although some objects have
memory foam-like behavior (e.g., blue die and blue cube). The yellow cube
is composed of the same material as the yellow sponge—it has been cut out
from another exemplar of the same sponge, aiming at the dimension of the
Kinova cube. The same is true for blue die and blue cube. Conversely, white

5



2. Materials and methods

Figure 2.1: Objects. Picture from [7].

die, kinova cube, yellow cube and blue cube have roughly the same dimensions
but different material composition and hence stiffness. The dataset has been
deliberately designed to test which of the object properties are critical for
model-free haptic object recognition. Source of this information is Mares’s
work [7].

Blue die /
: bbdie

Pink die / Yellow sponge /

mpdie yellowsponge
() eo O -
E oo N

x
S Kinova cube
= /kinova Yellow cube / Blue cube /
g yspongecube bdiecube

e / E
germandie

Darkblue die YCB object /
/ sbdie ycb

material elasticity

Figure 2.2: Ordinary objects set approximately spread out on the elasticity and
volume axes (reference values for this object set are not available). Object names
are displayed.

This set is also visualized in Fig. approximately spread out by the
stiffness/elasticity of the objects and their volume. We will later see that the
distances in this graph, at least partially, correlate with misclassification rate.
An overview of the object names, labels, and dimensions is in Table

6
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Description Label Dimensions [mm|]
Kinova cube kinovacube 56x56x56
Blue cube bluecube 56x56x56
Yellow cube ycbeube 56x56x56
Blue die bluedie 90x90x90
White die whitedie 59x59x59
Pink die pinkdie THXT7HXTH
Darkblue die | darkbluedie 43x43x43
YCB object ycbcube 75x50x50
Yellow sponge | yellowsponge 195x135x65

Table 2.1: Ordinary objects set — dimensions and labels. Table from [7].

Bl 2.1.1 Polyurethane foams set

NFzm

Figure 2.3: Polyurethane Foams. Picture from [7].

To complement the ordinary objects set, I tested another set of objects
consisting of 20 polyurethane foams (see Fig. . These were samples
provided by a manufacturer of mattresses. Their labels encode reference
values for key physical properties: elasticity and density — see Table
Some of them (GV and V types) also have memory-foam-like behavior. 1
am going to call Compression stress value at 40% (C'Vyg) (defined in ISO
standard [8]) elasticity. Source of this informations is Mares’s work [7].

Bl 2.1.2 Polyurethane foams subset

Since the polyurethane foams set is large and measuring a sufficient number
of samples for each foam takes too much time, a subset of six representative

7



2. Materials and methods

Type | Dimensions [mm] | Density [kg - m™3] | Elasticity C'Vy [kPa]
V4515 118x120x40 45 1.5
V5015 119x120x42 50 1.5
GV5030 118x119x40 50 3.0
GV5040 118x118x39 50 4.0
N4072 118x117x37 40 7.2
NF2140 105x100x50 21 4.0
T1820 125x125x50 18 2.0
T2030 125x120x40 20 3.0
T3240 123x123x50 32 4.0
T2545 125x125x50 25 4.5
RL3529 119x118x40 35 2.9
RL4040 117x120x40 40 4.0
RL5045 118x118x39 50 4.5
RP1725 118x120x41 17 2.5
RP2440 118x120x38 24 4.0
RP27045 117x119x39 270 4.5
RP30048 123x121x39 300 4.8
RP3555 117x119x39 35 5.5
RP2865 118x118x38 28 6.5
RP50080 121x118x39 500 8.0

Table 2.2: Properties of used polyurethane foams, C'Vyq stands for “compression
stress value at 40%”, [§]. Table from [7].

foams was constructed to test more action parameters in a reasonable time.
They are showed in Table 2.3

Type | Dimensions [mm] | Density [kg - m~3] | Elasticity C'Vyo [kPa]
V4515 118x120x40 45 1.5
NF2140 105x100x50 21 4.0
RL5045 118x118x39 50 4.5
RP1725 118x120x41 17 2.5
RP30048 123x121x39 300 4.8
RP50080 121x118x39 500 8.0

Table 2.3: Subset of six polyurethane foams.

B 2.2 Robot hands and grippers

Four robotic devices with different morphologies were used: two anthropo-
morphic robot hands and two parallel jaw 2-finger grippers. Control and
dimension of feedback also vary.



2.2. Robot hands and grippers

Bl 2.2.1 gb SoftHand

The first gripper used is Softhand (see Fig. made by gbrobotics [9]. The
hand was mounted on UR10e robot [10], which was used only to hold the
hand in position and controlled separately via the pendant. gb SoftHand is
an anthropomorphic hand with five fingers the same size as a human. There
is only one actuator, electric motor, which drives all joints by pulling a single
string. The hand is thus highly underactuated and feedback (position, motor
current) is available only from the single motor. The hand will thus passively
conform to differently shaped objects. For a better idea, we can consider the
following situation: If the hand starts closing empty and one finger is blocked,
in the beginning, we can observe only light pressure. However, if all other
fingers reach the palm and can not move any further, the pressure on the
blocked finger will dramatically increase. This behavior leads to confident
grips on all sorts of objects. The maximum grasping force is 62N and the
nominal payload is 1.7kg.

Figure 2.4: The gbrobotics SoftHand gripper. Picture from [11].

Bl Sensors

As mentioned before, gb Softhand has only one actuator, which is the source
of all signals: current and position. Since the single motor drives all coupled
fingers together, these values indirectly code for the position and effort
between the fingers and the object. The reading frequency is 10Hz. Position
range in the interval 0-19000 without specified units and current in 0-1000
mA. Both are later in processing scaled to the <0,1> interval before any
classification task or unsupervised analysis.



2. Materials and methods

Il Control

Control via ROS was used. Official ROS package [12] allows a user to set
so-called “waypoints” specifying the desired motor positions in distinct time
moments. More details on the ways of control are described in the official
manual [13].

waypoints:
time: [1.0]
joint_positions:
gbhandl: [0.0]

time: [2.25, 2.75]
joint_positions:
gbhandl: [0.8]

With this configuration, the hand will open or stay open till time 1s, then
start closing and reach position 0.8 (relative motor position, the interval is
<0, 1>) in time 2.25s while waiting for 0.5s. The cycle is then repeated until
shutdown. To record the signals, Pavel Stoudek wrote the logging node [14]
(gb_SoftHand/qgbhand_logging) in his MSc. thesis [6].

Source of this information is Pavel Stoudek’s work [6].

B 2.2.2 Barrett Hand

The Barrett Hand (model BH8-282) [I5] is less anthropomorphic than the gb
SoftHand and has only three fingers, see Fig. 2.5 One of them is fixed, and
the remaining two can rotate around the base mirroring each others angle at
the base. During all measurements, the hand was mounted on the KUKA
LBR iiwa arm [16], which was controlled via the pedant and served only to
hold the hand in position. Each of the fingers has only one motor between the
palm and the base link, which drives both joints in the finger — the mechanism
is called TorqueSwitch. The behavior of Barrett Hand’s fingers is similar
to the gb Softhand’s. When the base finger link can not move any further,
the torque of the motor transforms to the fingertip link, enclosing the object
securely in Barrett Hand. In total, there are four actuators.

Bl Sensors

Barrett Hand has 107 sensors. Of all eight Barrett Hand’s joints, each delivers
its position information (joint angle), but only four are actuated. In addition,
each fingertip has a torque sensor, three in total. There is also a 6-axis
torque/force sensor in the base, which will not be used in this work. What
makes the Barrett Hand unique are the tactile sensors located underneath

10
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2.2. Robot hands and grippers

Figure 2.5: The Barrett Hand. Picture from [7].

BarrettHand with Tactile Sensors P/N: B4335
Function Senses torques about last joint in each finger Function Localizes pressure across palm and fingers
Quantity 3(1 per finger) Quantity 96 active cells
Element Type Metal foil strain gage Element Type 24 capacitive cells per sensor pad
Range +-1N-m Range 10 Nlem®

Paim: 0.02 Nicell; cell area 1.0 cm’
Resolution Finger: 0.01 Nicell; cell area 0.3 cm®
Fingertip: 0.01 Nicell; cell area 0.15 cm®

Resolution 0.04 N-m

Measured Torque
-
N
. .
: J

Figure 2.6: Barrett Hand — fingertip torque and tactile sensors. Fig. from [17].

the blue plastic covers. Each of the tactile pads includes 24 capacitive cells
of various surface areas, as seen in Figure Fig.

Default recording frequency is 200 Hz, but the effective rate of tactile sensor
readings was around 25 Hz. As some communication errors occurred when
using the default frequency, 40 Hz was used.

B Control

All hardware necessary for hand operation is enclosed in the Barrett Hand
itself. The low-level messages communicate via the CAN bus protocol. Two
control modes are possible: position and velocity, both controlled by PID
regulators. Velocity control suits my purpose better.

I developed my own package [14] (BarrettHand/2021-MichalPliska/
Control/) based on Michal Mares’s work. His work, explained in his bachelor
thesis, stands on the following ROS packages supplied to us by Robotnik:

barrett_hand [18], bhand_controller [17] and [19]. My package

11
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BarrettHand/2021 - Michal Pliska/Control/
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2. Materials and methods

builds on two main scripts:

1. Improved Mares’s script for squeezing, now also saving time of events
like: start of a script, start of squeezing, hand stopping and the reason
for stopping (maximal position, pressure threshold or getting stuck).

2. Script for calling previous one, which executes only one squeeze. It is
possible to set the order of objects, a number of series, and a number
of squeezes in one series per object. This script also saves progress, and
work can be divided into more days, which is absolutely necessary since
measuring a reasonable number of samples (60 squeezes per object) takes
a lot of time (2 days). Discarding unsuccessful measurements after each
squeeze is also implemented.

Source of this informations is Michal Mares’s work [7].

B 2.2.3 OnRobot RG6

The third gripper (see Fig.[2.7/and the first industrial-like is OnRobot RG6 [20].
It is a collaborative gripper with a 160mm stroke, easily changeable fingertips,
adjustable force, and gripper status feedback (digital and analog). The gripper
fingertips surface area is 866 mm?. During the measuring, the gripper was
mounted on a UR10e manipulator similarly to the gb Softhand.

Figure 2.7: OnRobot RG6 gripper. Picture from [21].

12



2.2. Robot hands and grippers

Bl Sensors

OnRobot RG6 has two sensor channels: gripper position (a gap between jaws)
and the force between jaws in N.

Il Control

Continuous closing with different speeds while recording the force feedback is
not possible. Instead, the gripper was commanded to close until a certain
force threshold is reached. Then, the threshold was incrementally increased.

I was not doing any measurement with this robot myself and I was using
data collected by Pavel Stoudek [22]. Instead, I only processed them in a
different manner, which will be explained in [3.2.1|

Source of this information is Pavel Stoudek’s work [6].

B 2.2.4 Robotiq 2F-85

The last gripper (see Fig. 2.8)) used was Robotiq 2F-85 [23]. This gripper has
two fingers with 85mm stroke and offers a grip force from 20N to 235N. The
fingertips dimensions can be approximated with a rectangle of 37.5 x 22 mm.
Velocity control was used for squeezing. This is quoted in % of the maximum
closing speed. The gripper was mounted on a Kinova Gen3 [24] manipulator.

o
EroBOTIQ

Figure 2.8: The Robotiq 2F-85 gripper. Picture from [25].

13



2. Materials and methods

Bl Sensors

The Robotiq 2F-85 gripper can provide various feedback options like motor
temperature and voltage. However, for object classification, we used two
channels: gripper position (gap between jaws 0-85 ¢cm) and motor current

(A).

Il Control

It is possible to control the gripper’s speed. I was not doing any measurement
on this robot directly since some data [26] was already measured. Instead, I
only processed them in a different manner, which will be explained later on.

Source of this information is Pavel Stoudek’s work [6].

B 2.2.5 Gripper comparison

In this section, I will compare all grippers—see Fig. for an overview.

107

number of sensory channels

number of fingers / anthropomorphism

Figure 2.9: Robot hands and grippers. Two parallel jaw / two-finger grippers
were employed: Robotiq 2F-85 and OnRobotRG6, with gripper position and
effort (current/force) feedback. The gb Soft Hand has five fingers but only one
motor and its position and current as feedback. The Barrett hand has three
fingers that can be rotated around the wrist, 96 tactile sensors, 3 fingertip torque
sensors, and 8 joint encoders.

Three of the four hands/grippers have only two sensory channels; the
Barrett Hand has 107. All grippers have some type of position sensor. The
gb SoftHand measures the position of its single motor; the Barrett Hand
has angular sensors on every joint. The OnRobot RG6 and Robotiq 2F-85
measure width (gap between jaws).

The gb SoftHand and Robotiq 2F-85 measure the motor current, while
the Robotiq 2F-85 measures force. The Barrett Hand has a variety of tactile
sensors and also measures the torque at each finger tip.
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2.3. Objects classification and unsupervised analysis of data

B 23 Objects classification and unsupervised
analysis of data

The first task is the classification of deformable objects using sensory time
series from the grippers during compression (squeezing) and possibly decom-
pression of the objects. I will use multiple different classifiers and compare
results. The second task is the unsupervised analysis of data as an attempt
to get more insight into the data’s structure.

B 2.3.1 Objects classification
Generally, we have two options when classifying time series:

® Use raw time series. Channels then can be concatenated or used as
many-dimensional arrays.

® Extract features from all channels and concatenate. Each measurement
(originally the time series) is then a point in a multidimensional space.
Temporal character of the data is suppressed.

I used four classifiers: K-Nearest Neighbors with time series, K-Nearest
Neighbors with features, SVM with features, and LSTM with time series.
The first was used as the baseline. The second uses hand-designed features to
deal with the time series characters of the data and varying lengths. Its main
purpose is to reveal the quality of features later used in the unsupervised
analysis. As state of the art before the boom of neural networks, SVM
was picked. It also uses features and is more sophisticated. This task is
very interesting since fitting SVM even with the employed grid search over
hyperparameters takes 10 minutes on a personal computer, unlike searching
for the optimal LSTM model, which takes approximately three days on GPU
grid. As nowadays state of the art, LSTM was trained to see the maximal
potential of classifying soft objects with robotics grippers.

B Problem formulation

Consider the input space X = R5*™ of all possible measurements, where s is
the number of sensory channels and n number of measurements (timesteps).
Consider output space Y = {0,1,...,C} of labels, where C + 1 is the number
of object categories. We are searching for a function g which will map an
input vector x € X to a label y € Y.

g: X =Y, (2.1)
This problem formulation is the same as in Michal Mares work [7].
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2. Materials and methods

As a metric for classifiers, accuracy, defined as the number of correctly
classified measurements divided by the total number of measurements was
used.

B K-Nearest Neighbors Algorithm

K-nearest neighbors algorithm (kNN) is a simple algorithm that stores all
available classified cases and classifies the new ones based on similarity
measurement [27]. It is often used as a baseline classification algorithm with
low generalizing capacity.

Figure 2.10: Visualisation of kNN decision process. K is here set to one. Picture

from [27].

With kNN, two tuning decisions are needed. The number of nearest
neighbors to form the classification rule and the distance metric. As we use
kNN as the baseline classifier, I chose Euclidean distance as a metric. K is
determined empirically by testing the accuracy on the validation sets of all
datasets. K with the highest average accuracy on all validation sets is then
chosen. This means that each gripper has its own K for all created datasets.

I used the implementation from the popular Python data science package
Scikit-learn [2§]. My code with dataset loading, searching for the optimal
K and plotting all results can be viewed here [14] in *robot*/*gripper*/
Classification/NearestNeighbors/|

B K-Nearest Neighbors Algorithm with features

All features are computed for each sensory channel and concatenated in one
vector. This vector now represents the original sample. I implemented feature
extraction in pythons numpy [29]. Here is the list of them:

® Minimum value ® Mean ® Skewness

® Maximum value ® Kurtosis 8 Median
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® Standard deviation ferences sum of values
8 Maximum and ® Approximation of ® Amplitude of the
Mean values of the the integral of val- Hilbert transform
first and second dif- ues via a simple of the values
Feature Formula
Mean value T = % SNz
Standard deviation o= \/% SN (z; —T)2
. _ 1 N (zi—3)*
Kurtosis K= 5>l
_7)3
Skewness Sk = % SN (%03"”)
Integral aproximation | I = Zf\il x;

Table 2.4: Time domain features

Later, I found out that the derivation features (first and second differences)
degrade the classification performance on at least two grippers, and I stopped
using them.

Features values vary in different intervals. Therefore, scaling (or normal-
ization) is needed. I use the scaler from Scikit-learn package [30], which sets
the mean and standard deviation values across all dimensions of the feature
vector to zero and one. The rest of the method was implemented the same as
in the previous part [2.3.1. My code on dataset loading and features extrac-
tion, searching for optimal k, and plotting all results can be viewed here [14] in
xrobot*/*gripper*/Classification/Nearest~Neighbors~with~features/|

B Support Vector Machine (SVM)

Support vector machine is a more sophisticated tool primarily designed for
binary classification in N-dimensional space (N-Number of features), see [31].
The first principle is searching for the optimal separating hyperplane. This is
done by maximizing the margin (margin is the minimal distance from points
from both classes; the points closest to the hyperplane are called support
vectors). The second principle is the use of kernel transformations. This
allows separating even classes which are normally not linearly separable.

There are three main hyperparameters that can be configured:

1. Kernel, which defines the transformation of data to the space with higher
dimensionality.

2. (), which controls the trade-off between smooth decision boundary and
classifying training points correctly. A large value of C' means getting
more training points correctly.

3. 7y, which defines how far the influence of a single training example reaches.
If it has a low value, it means that every point has a far reach, and
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O

Figure 2.11: This picture visualizes the idea of maximal margin in SVM. There
are infinitely many separating hyperplanes. However, optimal is only one. Fully
colored markers are called support vectors. Picture from [31].

(b) : After transformation, data di-

(a) : Data in the plane. We can mensionality increased, and they can
see that classes are linearly non- now be separated with a linear clas-
separable. sifier.

Figure 2.12: Tllustration of kernel transformation (can also be seen as increasing
dimensions). Picture from [32].

conversely high value of v means that every point has a close reach. It
can be used only with rbf kernel.

Since there is no analytical rule how to choose an optimal setting, I
used grid search. Features were computed the same as before. I used an
implementation of SVM from the popular Python data science package
Scikit-learn [33]. This package also allows defining a grid search with the
use of cross-validation [34]. My code with dataset loading and features
extraction, grid search and plotting all results can be viewed here[l4] in
[krobot*/*gripper*/Classification/SVM/|

B Long short-term memory neural network

LSTM is a type of recurrent neural network (RNN), and it is a popular option
for sequence learning, such as text or speech recognition and translation [35].
The general architecture of an LSTM cell is shown in Figure My code
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[14] (*robot*/*gripper*/Classification/LSTM/)) builds on Michal Mares’s
work [14] in BarrettHand/2020-MichalMares/neural/|

® )
I t

@f)
| : TE; |

© © 2]

Figure 2.13: Architecture pf LSTM cell. Yellow rectangles are learnable layers,
pink circles are pointwise operations, lines merging represent concatenation,
forking copies the data into two vectors. This cells are stacked horizontaly and
usually also verticaly (rows of cellls are callled layers). Citation from Mares [7].

\ 4

Picture from [36].

Data are loaded with specified batch sizes and are padded with zeros to

the length of the longest measurement. Then, the time series is passed into
the LSTM layer. According to the original length, the output of the last
LSTM cell (representing the LSTM-computed features) with nonzero input
is selected. The features are then passed into two linear layers to compute
the output. Object’s category is selected using the softmax layer. During
training, the PyTorch automatic differentiation engine is called and used to
backpropagate from the loss of output, and the weights are updated according
to the set optimizer. This information is taken from Mares’s work [7].

When using LSTM, some parameters have to be set:

Number of layers
Size of hidden dimension
Learning rate

Batch-size

As I need to train approximately thirty networks (one for each dataset

and ablation experiments), hand-tuning is not an option. I rather used grid
search once again. I tried:

1.

Two layers: 2, 4;
Size of hidden dimension: 32, 64, 128, and 256;
Learning rate: logarithmic distribution over [107°, 1073];

Batch-size: memory of GPU is limit, I used highest possible (some
training sets can be surprisingly only one batch)

Therefore, each LSTM training consists of training 336 LSTM models.

This usually takes three to four days on GPU grid. The total number of
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trained networks is around 10 000. The final model was then picked by
the best accuracy on the validation set (if there were multiple models with
the same accuracy, the one with the most stable learning curve was used).
Complete grid search results can be seen on my drive [37] in the folder
¥gripper*/Classification/LSTM/Gridsearch/|

Bl 2.3.2 Unsupervised analysis
B Principal component analysis

Principal Component Analysis (PCA) is a dimensionality reduction method
that is often used to reduce the dimensionality by transforming a large set of
variables into a smaller set by preserving as much variance as possible. This
allows us to plot vectors from the feature space in a plane and gain some
insight into the structure of the data.

original data space

component space

10

A

Gene 3
%44

T
0l
s

Gene 2 Gene 1

Figure 2.14: Visualisation of the PCA technique. On the left image, a plane
define by the first two principal components is visualized in the original space. On
the right image, original data are projected into the plane. Picture from [38].

By computing the covariance matrix, finding eigenvectors, and sorting
them with the eigenvalue as the key, we can find a new basis with axes
that are uncorrelated and ordered by variance. This allows us to visualize
high-dimensional data. A proportion of variance represented by each principal
component can be computed from eigenvalues, showing how reliable clusters
are visible in a plane. I used implementation of SVM from popular python
data science package Scikit-learn [39]. My code with dataset loading and
features extraction, grid search, and plotting all results can be viewed here [14]
in xrobot*/*gripper*/Unsupervised~analysis/PCA/|
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Chapter 3

Data collection, preprocessing and dataset
creation

In this section, I will explain how I collected, preprocessed, and split all data
used later for classification and in unsupervised analysis.

. 3.1 Data collection

Bl 3.1.1 gb SoftHand

I already described the way to control gb SoftHand in Section [2.2.1. The
goal was to reach at least 60 samples per object—one sample being one
object compression (squeeze) or compression and decompression (squeeze and
release)—with the intention of always measuring in the same configuration
and preserving some variance. Therefore, measuring in certain configurations
was split into series having twenty samples per object each. I managed to do
five series on each configuration, attacking 100 samples per object.

It is important to note that we found gqb SoftHand was not robust enough
for this type of data collection — it had to be repaired four times. The main
issue was tearing of the string, which moves all fingers. Moreover, there is
some problem with the position encoder, which leads to losing the reference
position from time to time. In total, I have done measuring of 6000 samples.
However, only 3200 can be considered valid.

B Action primitives

No hand parameters can be changed, but we can choose where we place the
object. I supposed two actions to maximize and minimize contact with the
thumb. The motivation was to study its impact on classification, as thumb
opposition is important for primates. I will refer to them as action 1 (al)
and action 2 (a2). In total, we are getting four configurations. Actions
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3. Data collection, preprocessing and dataset creation

can be seen in Fig. Later during processing, I split the actions also by
considering only “squeeze” and “squeeze and release” part of the recorded
time series.

(a) : action I - minimizing contact (b) : action 2 - maximizing contact
with thumb. with thumb.

Figure 3.1: gb SoftHand — Action configurations.

I used two velocities inducted by the waypoints setting:

1. si - waiting 1s; closing 1.5s; waiting 0.5s; closing 1.5s

2. s2 - waiting 1s; closing 2.5s; waiting 0.5s; closing 2.5s

I will refer them as sf and s2.

B Overview

Roughly 100 samples per object were acquired. Measurements were done
only on the ordinary object set ( see Fig.[2.2). Two actions and two velocities
give four configurations in total. Data was later also processed to “squeeze’
and “squeeze and release” parts. Therefore, we will have eight basic datasets.
Every measurement has also been video-taped. All my measurements and
videos can be found here [40].

)

B 3.1.2 Barrett Hand

Similarly as with the gb SoftHand, the goal was to get at least 60 samples
per object—one sample being one object compression (squeeze). Putting the
device into operation took more time than expected, so I did not aim to reach
a higher number. In total, I have collected 3500 samples. However, only 2500
can be considered valid.

B Action primitives

There is a much bigger degree of freedom in setting actions than with gb
SoftHand, thanks to two fingers rotating around the base, each mirroring
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another. I used the following configurations (the same as Michal Mares used

in [7]; see Fig. 3.2):

1. action 1 — opposite finger configuration (refered as al), Fig.
2. action 3 — lateral finger configuration (refered as a3%), Fig.

(a) : action 1 — opposing fingers (b) : action 3 — lateral fingers

Figure 3.2: Barrett Hand — action configurations used.

Action 2 also exists, but has not been used.

And similarly as before, two velocities have been chosen:

1. 0.6 - all three fingers’ motors turn at speed 0.6 rad/s

2. v1.2 - all three fingers’ motors turn at speed 1.2 rad/s

I will refer to them as v0.6 and v1.2.

Bl Overview

Roughly 65 samples per object were collected. Measurements were done
only on the ordinary objects set. Two actions and two velocities give four
configurations in total. Therefore, we will have eight basic datasets. Every

measurement has also been recorded. All my measurements and videos can
be found here [41].

B 3.1.3 OnRobot RG6

I did not perform any measurements with this gripper. Instead, I used the
measured data available here [22].

B Action primitives

Since the gripper is commanded only by the desired force, which is increased
incrementally, there is no possibility to set the speed. With a two-finger gripper
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3. Data collection, preprocessing and dataset creation

and highly symmetrical objects (cubes), no other gripping configurations are
available.

B Overview

Roughly 36 samples per object were collected. Measurements were done only
on the ordinary objects set. Speed can not be changed. Therefore, we will
have only one configuration. Already measured data was used [22].

B 3.1.4 Robotiq 2F-85

I did not perform any measurements with this gripper. Instead, I used already
measured data [26].

B Action primitives

With a two-finger gripper and highly symmetrical objects (cubes), no other
gripping configurations are available. Closing/opening speed can be com-
manded. Four different nominal squeezing velocities were executed:

1. 0.68% (1.6 mm/s)
2. 14.45% (30 mm/s)
3. 50.85% (80 mm/s)

4. 100% (131.33 mm/s)

I will refer to them as 0068, 1445, 5085 and 10000.

B Overview

Roughly 60 samples per object were collected. Measurements were done on

the ordinary objects set (Fig. [2.1)), foams set (Fig. [2.3), and foams subset —
Tab. 2.3 Four velocities give four configurations in total. Velocity 0068 was
used during measurements on objects set and foams set. All velocities have
been used during measurements on the foams subset. Therefore, we will have
six basic datasets. Already measured data was used [26].

B 3.2 Data processing

In the beginning, let us define some useful terms:
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3.2. Data processing

1. Sample means one squeeze and release of object. On the Barrett Hand,
sample is only one squeeze, since recording of releasing was not possible.
This was not a problem on other three grippers.

2. Measurement means series of samples—squeeze (and release) cycles—
usually 20 — 30. On the Barrett Hand, data were collected in individual
object compressions, so every measurement was one sample.

B 3.2.1 gb Softhand, OnRobot RG6 and Robotiq 2F-85

For all of these three grippers, the same processing pipeline was used. Mea-
sured time-series (measurements) have two channels and contain 20 samples.
The first task is to normalize data. Each channel was scaled by the inverse
value of global maxima. The second necessary step is to split the time series
in individual samples.

Some samples have errors and need to be discarded. I wanted to do this as
precisely as possible, so I decided not to rely only on the automatic splitting
triggered, for example, by a position event, and instead wrote a program with
a graphical user interface allowing to check each supposed sample and in case
of errors marked it as wrong. My first attempt was splitting the signal only
by the number of samples, sample length, and starting position — see Fig. |3.3.

B Parsing time series by hand

eoe Figure 1: bluecube_2_10.txt
File Edit View Insert Tools Desktop Window Help
Deae @8 0@ KE

AN VPALATATANAT AN

Figure 3.3: First attempt to split measurements. Red rectangles shows discarted
measurements.

The upper subplot in Fig. |3.3| shows the recorded time series. The user
can set a start just by clicking on a mouse and then use arrows to fine-tune a
starting position or increase the number of samples. By pressing F'1 or F2,
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the sample length can be shortened or increased. Problematic samples can
be marked on the second subplot. This can be changed by clicking. When
everything is done, by pressing enter all samples are split, saved, and a new
measurement is loaded. This approach works fine to later feed the LSTM
classifier. However, the starting position is not consistent over all samples in
relation to, for example, the rising edge of the position signal, which can be
problematic when using classification algorithms such as kNN (on the raw
data). Therefore, I searched for a more precise way.

B Parsing time series using cross-correlation

I noticed that gb SoftHand’s position regulation is very precise and tried to
take advantage of it. By choosing one representative sample of the position
signal and using matlab functions xcorr (cross-correlation) and findpeaks
(maximal position), all samples can be synchronized and cut at the same
positions. A new program (see Fig. 3.4) loads measurements in the same way
as the first version and saves them by pressing enter. Indexes for cutting can
be set in the smaller right subplot, and not error-free samples can be once
again marked by clicking with a mouse.

eoce Figure 1: bluedie_2_10.txt
File Edit View Insert Tools Desktop Window Help
Dede @ 08 »[E

w‘“\

AT AR AR AR AR AR AR AN AR AR e
/\‘/\'\,/ /\/\\M\'K\/\/\
AT A RIS

Figure 3.4: Final solution. Green rectangles show selected parts on left subplot.
This can be set in right subplot. Samples marked as red will be not saved. By
pressing enter, all valid samples will be saved and new measurement loaded.

The figure |3.5| illustrates precision of the procedure.

For OnRobot RG6 and Robotiq 2F-85, similarly chosen representative parts
of a signal were used. Furthermore, with these grippers, it was impossible to
have all samples of the same length; therefore, some of them were artificially
enlarged by repeating the starting value. All code is here [14] in xrobot*/
*xgripper*/Processing/|

When processing is done, the samples are shuffled (this is an important
step) and split into train, validation and test sets.
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(b) : Two lines can show indexes for cutting.
Line can be changed by mouse clicking or
pressing backspace; position can be set with
use of arrows.

(a) : Green rectangles show the used
part of the sample.

Figure 3.5: Splitting signals into samples with the use of this procedure is
precise. Compare green parts of recorded measurement with selected parts of
the signal.

B 3.2.2 Barrett Hand

The Barrett Hand differs from the other grippers by the number of sensory
channels and their characteristics. Since some work on it has been already
done by Mares [7], I had a good starting position to decide which way of
collecting data will lead to simple processing. As I mentioned in the subsection
about Barrett Hand’s control in Section |2.2.2) T added saving of events such
as start of a script, start of squeezing, hand stopping and its reason (maximal
position, pressure threshold or getting stuck). Processing is based mainly on
the use of these events.

All code for preprocessing is in BarrettHand/2021-MichalPliska/Processing/
at [14].

When all measurements are done, the first step is to run|check_rosbag.py
to check and delete bad measurements. I have been doing this manually
since I wanted as much control as possible. Then, make_dataset.py| is
next. All channels are scaled by inversion of the highest possible value of
a channel (this is known from the beginning). Also, as the hand runs, it
is getting hotter, causing a growing offset on tactile sensors. All feature-
based methods relying on features such as Minimum value, Maximum value,
Mean, etc. can be affected by this. Therefore, for each channel, the average
from last one hundred values before start of squeezing event is calculated
and subtracted. Measurements are already samples by themselves (every
compression cycle of the object was collected as a separate measurement).
However, measurements have to be the same length in order to use kNN.
Before collecting measurements used for dataset generation, I measured few (
2-4) pilot measurements on each object and calculated minimal waiting time
needed before every squeeze to achieve the same length for all measurements.
Thanks to this, measurements can be aligned from the end and cut to the
length of maximal global squeezing time (this is simply the time between
events start of squeezing and hand stopping). Samples before and after
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processing can be seen in Fig. Files are saved in .npz format. The last

script [split_dataset.py divided the data into train, validation and testing

sets with specified amounts.
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Figure 3.6: Measurement/Sample (same on Barrett Hand) before and after

processing.

. 3.3 Generated datasets

In this section, I briefly present all datasets generated from measurements
later used for classification and unsupervised analysis.

B 3.3.1 gb Softhand

Per each object, 20 samples are in the test set, 20 in the validation set, and
the rest (60+) in the train set. With 9 objects in the dataset, this makes
in total 180 samples in validation and testing set and the rest for training
(between 500 and 600 samples).

Dataset Set Action Velocity Train Validation Test
alsl-s objects al sl 573 180 180
als2-s objects al s2 604 180 180
a2sl-s objects a2 sl 578 180 180
a2s2-s objects a2 s2 577 180 180
alsl-sq objects al sl 583 180 180
als2-sq objects al s2 576 180 180
a2sl-sq objects a2 sl 577 180 180
a2s2-sq objects a2 s2 539 180 180
squeeze objects all all 1894 600 600
squeeze and release objects all all 1849 600 600

Table 3.1: gb SoftHand datasets.
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Shorter “s” denotes datasets using only the “squeeze” part of the samples,
the longer “sq” denotes using of “squeeze and release” part. Dataset labels in
italics denote datasets formed by merging several individual datasets (here
squeeze and squeeze and release). Notice that validation and test sets in
squeeze and squeeze and release do not have 720 samples, but only 600. That
is because for objects yellowsponge, bluedie and ycbcube, there is no difference
between actions and samples measured as the action 1 was also used as the
action 2. This means that part of af and a2 datasets is shared and when
they are merged, overlap occurs. No dataset should contain proportionally
fewer measurements in order to avoid getting better results by solving an
easier problem.

B 3.3.2 Barrett Hand

Per each object, 15 samples are in the test set, 15 in the validation set and
the rest (35+) in the train set. With 9 objects in the dataset, this makes in
total 135 samples in validation and testing set and the rest for training (over
300 samples).

Dataset Set Action Velocity Train Validation Test

alv0.6  objects al v0.6 333 135 135
alvl.2 objects al v1.2 346 135 135
a3v0.6  objects a3 v0.6 341 135 135
a3vl.2  objects a3 v1.2 346 135 135
al objects al all 679 270 270
a3 objects a3 all 687 270 270
all objects all all 1336 540 540

Table 3.2: Barrett Hand datasets.

B 3.3.3 OnRobot RG6

Per each object, 6 samples are in the test set, 6 in the validation set and the
rest (£22) in the train set. This dataset is generally too small for robust

Dataset Set Action Velocity Train Validation Test
objects objects 198 54 54

Table 3.3: OnRobot RG6 datasets.

results. However, in this case, the classification was so accurate that it is not
a problem.
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B 3.3.4 Robotiq 2F-85

Per each object, 15 samples are in the test set, 15 in the validation set and
the rest (£28) in the train set.

Dataset Set Action Velocity Train Validation Test

objects objects 0.68% 244 135 135

foams foams 0.68% 502 300 300
foams-smaller-0068  foams subset 0.68% 145 90 90
foams-smaller-1445  foams subset 14.45% 158 90 90
foams-smaller-5085  foams subset 50.85% 143 90 90
foams-smaller-10000 foams subset 100.00% 167 90 90

Table 3.4: Robotiq 2F-85 datasets.
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Chapter 4

Results

The first part of this chapter deals with classification. I used four classifiers
described back in subsection (kNN with time series, kNN with features,
SVM with features and LSTM with time series). After evaluating each gripper
separately (data from only one gripper), the results are compared together to
make conclusions about the gripper’s utility. The last two sections then speak
about knowledge transfer (how well the models perform on datasets that
they were not trained on) and the ablation effect (ablation in the meaning
of suspending some channels, like position or current, for example). The
classifier used for the last two tasks is LSTM because we can expect the
greatest generalisation from it.

In the second part, PCA is done on selected datasets, looking further to
find patterns in the data.

. 4.1 Classification

All results presented are performance on the test sets. I used a heatmap and
not a classic table for visualizing the results. Although the labels may be
harder to read, I think it gives better insight. All classifiers’ hyperparameters
and training parameters can be found in Appendix [Al

Bl 4.1.1 gb Softhand

Here, “squeeze” and “squeeze and release” datasets can not be evaluated
with kNN, as they contain samples of various lengths from different actions.
Best results are delivered by LSTM. It is also interesting that such a simple
algorithm as kNN performs similarly. On the other hand, feature-based
classification is the most unreliable one (see Fig. [4.1)).
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Figure 4.1: gb Softhand — Overview of classification performance over datasets.
Performance of different classifiers is in rows, with increasing complexity of the
classifier from top to bottom. Different datasets used are in columns. Please
note, that “s” means “squeeze” and “sq” means “squeeze and release” datasets.
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Confusion matrices illustrate the pattern of misclassification—one repre-
sentative is shown in Fig. Note how misclassification correlates with the
distance between objects in the material elasticity dimension in Fig.

Confusion matrix of the classifier
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Figure 4.2: gb Soft Hand — confusion matrix. The model used here as a
representative is LSTM a2s1-a.
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B 4.1.2 Barrett Hand

All classifiers perform stunningly well on the Barrett Hand (see Fig. 4.3). In
fact, kNN performs better than LSTM. This probably means that the data
are straightforward and there is not too much hidden information. It agrees
with my observation that samples can be classified just by visual inspection.
Confusion matrices are not shown here due to the almost perfect performance
of classification.
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06 v, 100
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100.00 100.00 .26 40

20
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Figure 4.3: Barrett Hand — Overview of classification performance over datasets.
Performance of different classifiers is in rows, with increasing complexity of the
classifier from top to bottom. Different datasets used are in columns.

B 4.1.3 OnRobot RG6

Again, all classifiers perform really well with a slump on kNN features (see
Fig. 4.4). However, almost 90% is still high accuracy.
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Figure 4.4: OnRobot RG6 — Overview of classification performance over datasets.
Performance of different classifiers is in rows, with increasing complexity of the
classifier from top to bottom. Different datasets used are in columns.

B 4.1.4 Robotiq 2F-85

Performance on 0.68% of maximal velocity on all object sets looks similar to
the Barrett Hand and OnRobot RG6. However, it drops with higher speeds
and simple classifiers, and we can finally see the expected power of LSTM
(see Fig. . Interestingly, SVM performs the same. This trend can be seen
across all grippers. Because the training of LSTM with grid search takes two
days and SVM only ten minutes, it should be highlighted.
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Figure 4.5: Robotiq 2F-85 — Overview of classification performance over datasets.
In the left column, classifiers are ordered from the simplest to the most sophisti-
cated ones. Different datasets used are in columns.

Best performance is achieved with velocity 0.68%, but 14.45% also works
well. Surprisingly, not only objects but also foams can be classified well — see
Fig. Misclassification does not seem significant.
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Confusion matrix of the classifier
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Figure 4.6: Robotiq 2F-85 — confusion matrix — Foams classification. Squeezing
with 0.68% of maximal velocity. The model used here is SVM foams.

B 4.1.5 Gripper comparison

Now, let us compare all grippers together (see Fig. 4.7). For gb SoftHand, I
pick “squeeze’ and “squeeze and release” datasets as representatives. However,
kNN can not be run on those. Therefore, the average of individual actions is
used to get at least some idea. Then for the Barrett Hand, I used the “all”
dataset. I tried to isolate the influence of individual actions, as they do not
exist on the last two grippers. With OnRobot RG6 and Robotiq 2F-85, only
the “objects” datasets are available as an option.
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Figure 4.7: All grippers — Overview of classification performance over datasets.
Performance of different classifiers is in rows, with increasing complexity of the
classifier from top to bottom. Different datasets used are in columns.

We can see that the worst performances are delivered by gb SoftHand.
Surprisingly, it looks that the classification works better on samples only
with the “squeeze” part, even though we hypothesized that the “release” part
could add additional information. The best grippers are probably Barrett
Hand and Robotiq 2F-85 (showing that it can also correctly classify foams).
Note that Robotiq 2F-85 has only two channels, unlike Barrett Hand with
107. OnRobot RG6 also works well. However, data may be more complex
because we can see a slump when using only features.

B 4.1.6 Knowledge transfer

When all models are trained, we can test how well each of them generalizes
to other datasets. In addition, to bring another insight to the structure of
the data, it may also reveal if training on some actions and velocity is more
effective. It is worth mentioning that due to the fact of having 9 objects in the
objects set, the random classifier accuracy should be 11.11%. All experiments
are done with LSTM classifiers.
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B b SoftHand

For better orientation, I marked the areas of transfer on the “squeeze” domain
(big left upper frame), “squeeze and release” domain (big middle frame),
“merged datasets” domain (small right lower frame), and “merged datasets
decomposition” domain (left lower dashed frame). The diagonal shows the
accuracy on the datasets used for training.
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Figure 4.8: gb SoftHand — Knowledge transfer. In rows, classifiers are ordered
according to the datasets they were trained on. Columns are labeled with the
dataset on which they were tested.

0

First, the knowledge transfer between the “squeeze” and “squeeze and
release” domains is poor (see Fig. . High accuracy on the “s” type
dataset does not correlate with accuracy on the “sq” type dataset—otherwise,
we would see parallel diagonals in the blue areas. Moreover, the transfer
over action does not perform very well (follow 2x2 squares on the main
diagonal). However, we can see some correct classification over speeds, but
this is expected as 33.3% of al and a2 datasets is shared (this is mentioned in
Chapter there is no difference between actions on three of all nine objects).
Therefore, I suggest that it is more about the use of the same samples than
about actual knowledge transfer. In summary, it seems that the primary
source of variability is the “squeeze” vs. “squeeze and release” type of data,
followed by squeezing speed and then action type. This hypothesis will be
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verified later using PCA analysis.

The right upper strip shows what is now expected. Models trained on
the basic dataset can achieve only partial accuracy on the merged datasets.
Even on the merged datasets, transfer between the “squeeze”’ and “squeeze
and release” domains does not occur. The “merged datasets decomposition”
domain reveals the accuracy on the basic datasets of models trained on the
merged ones. Accuracy correlates with accuracy achieved with training on
basic sets less than I would expect.

B Barrett Hand

With the Barrett Hand, generalization between velocities works surprisingly
well. However, there is little transfer between actions (see Fig. 4.9)—the
right upper strip reflects that. This is completely opposite from what we
have seen for qb SoftHand and constitutes again a hypothesis to be tested
in unsupervised analysis—principle clusters should form based on finger
configuration rather than squeezing speed.
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Figure 4.9: Barrett Hand — Knowledge transfer. In rows, classifiers are ordered
according to the datasets they were trained on. Columns are labeled with the
dataset on which they were tested.

B Robotiq 2F-85

Note that this time, models on the foams subset instead of objects set are
studied. Any generalization can hardly be found since there is no visible
pattern.
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Figure 4.10: Robotiq 2F-85 — Knowledge transfer. In rows, classifiers are ordered
according to the datasets they were trained on. Columns are labeled with the
dataset on which they were tested.

B 4.1.7 Ablation study

Since there are multiple sensory channels, we can study their impact on
classification and look for the main source of information. All experiments
are done with the LSTM classifier.

B gb Softhand

From Fig. it is obvious that the primary source of information is the
motor current channel. It is interesting that when using only this channel,
accuracy is better than when using both current and position.
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100

[9&] £2eUnDDYW

0

Figure 4.11: b Soft Hand — Ablation. Datasets are in rows. Columns are
labeled based on which sensory channel was suspended.

B Barrett Hand

It is good to point out that 96 of the 107 Barrett Hand channels are tactile
sensors (pressure-sensitive). However, even without tactile data, the classi-
fication is nearly 100% (see Fig.[4.12)). In addition, let us consider the fact
that without tactile channels, the rest of the channels (position and effort)
have similar characteristics as the other grippers.
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Figure 4.12: Barrett Hand — Ablation. Datasets are in rows. Columns are
labeled based on which sensory channel was suspended.

M OnRobot RG6

Data can be classified without error by using only width data. Force seems
unnecessary. However, it still holds some information—see Fig.
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Figure 4.13: OnRobot RG6 — Ablation. Datasets are in rows. Columns are
labeled based on which sensory channel was suspended.

B Robotiq 2F-85

This gripper already shows high utility when classifying all foams well (see
Fig. From this experiment can be seen that each channel holds information
sufficient for good classification (see Fig. 4.1.7). However, the current signal
is a little bit more critical.
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Figure 4.14: Robotiq 2F-85 — Ablation. Datasets are in rows. Columns are
labeled based on which sensory channel was suspended.

B a2 Unsupervised analysis

To complement the classification results from the previous section and to get
additional insights into the structure of sensory data collected during squeezing
soft objects, I used Principal Component Analysis (PCA) to visualize what the
main sources of variability in individual datasets are. In particular, is it the
properties of the gripper, the action parameters (speed, finger configuration),
or the objects being compressed by the gripper?
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The color matches the colors of objects. If two objects have the same color,
a lighter shade is used for a smaller one (see Fig. . I suggest looking
at Fig. before further reading. Each gripper has a unique symbol used
for plotting: gb SoftHand uses horizontal triangles, Barrett Hand vertical
triangles, OnRobot RG6 is marked with circles, and squares were chosen for
samples from Robotiq 2F-85. Three of the four grippers have two sensory
channels and therefore is PCA made in twenty-dimensional space (2 time
series and 10 features per channel). Barrett Hand has 107 channels; therefore,
the number of dimensions is 1070.

yellowsponge
bluedie
pinkdie
kinovacube
whitedie
ycbcube
yellowcube
bluecube
darkbluedie

(b) : Color map of
(a) : The objects set. the objects.

Figure 4.15: Objects and their color map. The color matches the colors of
objects. If two objects have the same color, a lighter shade is used for a smaller
one.

Bl 421 gb Softhand

At first, T analyzed all samples together from gb SoftHand. Fig. reveals
that the main source of variance is “squeeze” or “squeeze and release” attribute
(a small black dot is used for differentiation)—see the two principal clusters.
It looks like both of them have other subclusters.
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Figure 4.16: gb SoftHand — PCA. All measured samples were analyzed together.
The first principal component captures 59% of variance, and the first two then
77%. We can see two clusters: “squeeze” vs. “squeeze and release” samples.

Therefore, I plotted “squeeze” and “squeeze and release” samples separately
in Fig. Subclusters are formed by velocity change. This agrees with the
prediction made in Section

qb SoftHand

qb SoftHand

«t <l

Principal Component 2
Principal Component 2

%6 -4 -2 0 2 4 6 8

=50 -25 00 25 50 75 100 125 Principal Component 1
Principal Component 1

(b) : Only “squeeze and release” samples.
The first principal component captures
45% of variance, and the first two then
74%.

(a) : Only “squeeze” samples. The first
principal component captures 53% of
variance, and the first two then 79%.

Figure 4.17: gb SoftHand — PCA. A detailed look at two main clusters (“squeeze”
vs. “squeeze and release” samples) — their individual subclusters form based on
velocity.
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I also wanted to take a look only at one action configuration independently.
From Fig. it seems that clusters are made based on effort during
squeezing (go from lower right corner to upper left).

qb SoftHand

Principal Component 2

o
oo

-8 -6 -4 -2 0 2 4
Principal Component 1

Figure 4.18: gb SoftHand — PCA. alsl-s samples separately. The first principal
component captures 49% of variance, and the first two then 81%. The clusters
roughly match with the effort during grasping.

B 4.2.2 Barrett Hand

The feature space of Barrett Hand has 1070 dimensions. The first subfigure
in Fig. shows all measured samples together. Some clusters are visible,
but it is hard to distinguish. However, notice that the plane can be split
into action 1 and action 3 regions. To point this out clearly, I made a
second subfigure where colors code only actions and drew a separating line.

This agrees with the prediction made in Fig. grasping configuration is
indeed the primary source of variance.
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Figure 4.19: Barrett Hand — PCA. All samples. The first principal component
captures 12% of variance, and the first two then 22%.

I also explored samples from one action only — see Fig. [4.20. I picked alv0.6
(lateral finger configuration and lower velocity) samples as representative.
We can see clusters forming. Going along the axis of the first quadrant, size
seems to be the main factor. Samples above the axis are those measured on
harder objects.
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4.2. Unsupervised analysis
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Figure 4.20: Barrett Hand — PCA. alv0.6 samples separately. The first principal

component captures 18% of variance, and the first two

then 31%. It seems that

the first principle roughly matches size and second stiffness.

B 4.2.3 OnRobot RG6

Only one dataset was measured on OnRobot RG6. One direction in the
plane forms clusters and the second keeps intra-class variance (see Fig. |4.21)).

Clusters are well pronounced, which is consistent

with high classification

accuracy. It also seems that the elasticity rather than volume is separating

the objects. This was expected for a 2-finger grippe
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Onrobot RG6
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Figure 4.21: OnRobot RG6 — PCA. Objects samples ( only one grasping
configuration exists). The first principal component captures 60% of variance,
and the first two then 81%. The clusters roughly matches with the effort during
grasping.

B 4.2.4 Robotiq 2F-85

Similarly to OnRobot RG6, there is only one dataset measured on ordi-
nary objects to evaluate. This gripper delivers the best pronounced cluster
(see Fig. 4.22)). This matches with the observations in ablation study (Sec-
tion 4.1.7)), where we could see that information from any channel is sufficient
for classification.
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Robotiq 2F-85
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Figure 4.22: Robotiq 2F-85 — PCA. Objects samples (only one grasping config-
uration exists). The first principal component captures 59% of variance, and the
first two then 82%.

49



50



Chapter 5

Conclusion, discussion and future work

. 5.1 Conclusion

In this work, I studied the classification of deformable objects by grasping
them using 4 different robot hands/grippers: Barrett hand (3 fingers with
adjustable configuration), gb SoftHand (5 fingers, 1 motor), and two industrial
type parallel jaw grippers (Robotiq 2F-85 and OnRobot RG6). The time series
collected during object compression (and sometimes decompression) were fed
into four different classifiers: k Nearest Neighbors (kNN) and LSTM applied
on raw data and kNN and SVM on features. I systematically compared the
grippers’ performance, together with the effects of: (i) action parameters
(grasping configuration and speed of squeezing), (ii) knowledge transferability,
and (iii) individual sensory modalities.

Three object sets were used: (i) 9 ordinary deformable objects, (ii) 20
polyurethane foams, and (iii) 6 polyurethane foams subset. All hands/grippers
reached a good performance on the first set (“ordinary objects”). The Robotiq
2F-85 and the Barrett Hand performed best. The OnRobot RG6 was closely
in line, and gb SoftHand performed significantly worse. On the second
set (polyurethane foams), only the Robotiq 2F-85 gripper was tested and
performed well. Note that this is clearly a superhuman performance on the
foams set.

Regarding the performance of different classifiers, SVM performed similarly
to LSTM over all hands/grippers. Because the training of SVM takes 10
minutes on a PC and the training of LSTM takes three to four days on GPU
a grid, the performance of SVM should be highlighted.

Comparing the individual grippers, the Robotiq 2F-85 and the Barrett
Hand performed best. However, the Barrett Hand has 107 sensory channel,
while the Robotiq 2F-85 only 2. The OnRobot RG6’s performance is closely
in line. The gb SoftHand performed worst. The 2-finger grippers thus provide
a parsimonious solution to deformable object classification relying only on the
stress/strain characteristics in the 2 sensory channels—provided that there is
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a difference in the stiffness/elasticity of the objects.

The utility of Robotiq 2F-85 has been confirmed by ablation experiments.
They clearly showed that only one channel is sufficient for high accuracy
classification. The same is true for OnRobot RG6’s position channel. The
Barrett Hand’s performance with sensor’s modalities also sustained high.
However, the ablation experiment here was not so systematic (training LSTM
models on the Barrett Hand’s datasets took more time). In addition, the
generalization rate was tested by evaluating the model on other than its
training set. However, knowledge transfer has proven to work only on the
domain of same Barrett Hand’s actions.

To complement supervised learning, PCA was done, showing that the
structure of the data is not complicated at all and can be explained quite well.
The conjectures from the knowledge transfer experiment have been confirmed
here. The quality of clusters also strongly correlates with the accuracy of
kNN with features. On most of the hands/ grippers, +60% variance was
captured by the first two principal components. On the Barrett Hand, it was
only £30%.

. 5.2 Discussion and future work

In this section, I am going to discuss the limitations of the taken approach
and possible future work.

One of the main problems were difficulties with the robot hardware during
the extensive data collection. The gqb SoftHand broke down several times
and had to be repaired (typically by replacing the string pulling all the
joints). This may be part of the reasons behind the poorer classification with
this device, since the internal hand configuration may have differed between
measurements. The Barrett Hand was not sending the sensory feedback for a
long time until a cable was replaced. Additionally, much time was spent on
attempts to record the release (decompression) part of a single grasp, but I
later found out that the internal controller of the hand does not allow such
measurements and issues a protective stop.

In the future, several concepts would be worth pursuing, such as:
1. Doing more systematic ablation study on the Barrett Hand

2. Completing measurements on foams set and subset also with other
grippers

3. Doing PCA on foams datasets

4. Finding real ground true values of stiffness and density in order to try
regression

5. Decrease LSTM models capability by lowering its number of layers and
hidden dimensions in order to see hand’s/gripper’s limitation
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6. Try the autoencoder architecture and do PCA of latent space in order
to see how model-free learning can be useful when manipulating unseen
objects
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Appendix A

Classifiers’ hyperparameters

Bl A0.1 gb SoftHand

alsl-squeez

als2-squeez

a2sl-squeez

a2s2-squeez

alsl-squeez_and_ release

als2-squeez__and_ release

a2sl-squeez_and_ release
a2s2-squeez_and_ release

ol Bt B Ml K e e e BN

Table A.1: gb SoftHand - kNN

alsl-squeez

als2-squeez

a2sl-squeez
a2s2-squeez
alsl-squeez_and_ release
als2-squeez__and_ release

a2sl-squeez__and_ release

CﬂO‘lO‘!O‘!O‘lO‘lO‘lCﬂW

a2s2-squeez__and_ release

Table A.2: gb SoftHand - kNN with features
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A. Classifiers’ hyperparameters

Kernel

Dataset C ~

alsl-squeez linear | 215.5 | -

als2-squeez linear | 10 -

a2sl-squeez linear | 10 -

a2s2-squeez linear | 46.5 | -

alsl-squeez_and_ release | rbf 1000 | 0.001

als2-squeez_ and_release | linear 1000 | -

a2sl-squeez_ and_release | rbf 1000 | 0.01

a2s2-squeez__and_ release | rbf 58.3 0.1

squeez rbf 1000 | 0.1

squeez__and_ release rbf 1000 | 0.1

Table A.3: gb SoftHand - SVM

Dataset Layers | Hidden dim | bs Learning rate
alsl-squeez 4 256 575 | 0.001
als2-squeez 4 256 604 | 0.0001854
a2sl-squeez 4 256 578 | 0.0008937
a2s2-squeez 4 256 539 | 0.001
alsl-squeez_ and_ release 4 256 537 | 0.0004071
als2-squeez_ and_ release 4 256 586 0.0007139
a2sl-squeez_and_ release 4 256 577 0.0001854
a2s2-squeez__and_ release 4 256 502 0.0007139
squeez 4 256 1894 | 0.0002597
squeez__and_ release 4 256 1849 | 0.0006380
squeez - pos ab 4 256 1894 | 0.0007988
squeez__and_ release - pos ab | 4 256 1849 | 0.0008937
squeez - curr ab 2 32 1894 | 0.0002906
squeez__and_ release- curr ab | 4 128 1849 | 1.7534865e-05

Table A.4: gb SoftHand - LSTM

B A.0.2 Barrett Hand

Dataset

alv0.6

alvl.2

ad3v0.6

a3vl.2

all

ol il el e BN

Table A.5: Barrett Hand - kNN
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A. Classifiers’ hyperparameters

Dataset

alv0.6

alvl.2

a3v0.6

advl.2

all

el B N o

Table A.6: Barrett Hand - kNN with features

Dataset | Kernel | C | v
alv0.6 linear | 10 | -
alvl.2 linear | 10 | -
a3v0.6 linear | 10 | -
advl.2 linear 10 | -
all linear 10 | -

Table A.7: Barrett Hand - SVM

B A.0.3 OnRobot RG6

Dataset

K

objects

1

Table A.9: OnRobot RG6 - kNN

Dataset

K

objects

1

Table A.10: OnRobot RG6 - kNN with features

Dataset

Kernel

C

2

objects

rbf

215.5

0.001

Table A.11: OnRobot RG6 - SVM
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Dataset Layers | Hidden dimensions | Batch size | Learning rate
alv0.6 2 256 128 0.00005
alvl.2 2 256 128 0.00005
a3v0.6 2 256 128 0.00005
advl.2 2 256 128 0.00005
all 2 256 128 0.00005
all - tactile ablation | 2 256 128 0.00005
all - effort ablation | 2 256 128 0.00005
Table A.8: Barrett Hand - LSTM




A. Classifiers’ hyperparameters

Dataset Layers | Hidden dimensions | Batch size | Learning rate
objects 4 256 198 0.0002597
objects - width ab | 2 32 198 0.0002597
objects - force ab | 4 256 198 0.0005702

Table A.12: OnRobot RG6 - LSTM

B A.0.4 Robotiq 2F-85

Dataset

objects

foams

foams-smaller-0068

foams-smaller-1445

foams-smaller-5085

foams-smaller-10000

I L I ] R BN

Table A.13: Robotiq 2F-85 - kNN

Dataset

objects

foams

foams-smaller-0068

foams-smaller-1445

foams-smaller-5085

foams-smaller-10000

NN NN

Table A.14: Robotiq 2F-85 - kNN with features

Dataset Kernel | C 0%
objects linear 10 -
foams rbf 10 0.01
foams-smaller-0068 | linear 10 -
foams-smaller-1445 | linear 100 | -
foams-smaller-5085 | sigmoid | 1000 | -
foams-smaller-10000 | sigmoid | 46.5 | -

Table A.15: Robotiq 2F-85 - SVM
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A. Classifiers’ hyperparameters

Dataset Layers | Hidden dim | bs | Learning rate
objects 4 256 244 | 0.0001657
foams 4 128 502 | 0.0002906
foams-smaller-0068 4 256 145 | 9.4538728e-05
foams-smaller-1445 4 128 158 | 3.4402132¢-05
foams-smaller-5085 4 128 143 | 0.0005702
foams-smaller-10000 2 128 167 | 0.0003638
objects - pos ab 4 256 244 | 7.5517704e-05
foams - pos ab 4 128 502 | 6.7494485e-05
foams-smaller-0068 - pos ab | 4 128 145 | 6.7494485e-05
objects - curr ab 4 256 244 | 8.4494661e-05
foams - curr ab 4 256 502 | 0.0001183
foams-smaller-0068 - curr ab | 4 256 145 | 9.4538728e-05

Table A.16: Robotiq 2F-85 - LSTM

63




64



S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
s N
Student's name: Pliska Michal Personal ID number: 483708

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

L Study program: Cybernetics and Robotics

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Deformable Object Classification Through Robot Grasping

Bachelor’s thesis title in Czech:

Klasifikace mékkych predméti skrze mackani robotickymi uchopovaci

Guidelines:

1. Familiarization with the gripper set: Barrett Hand (BH8-282, 3 fingers, 4 motors, 96 tactile sensors, 3 fingertip torque
sensors), QB SoftHand (5 fingers, 1 motor, motor current sensor), 2-finger parallel grippers: Robotiq 2F-85 and OnRobot
RG6 gripper (1 motor and current / force sensor).

2. Collect datasets by squeezing two deformable objects sets (9 everyday objects; 20 polyurethane foams) and recording
sensory feedback. The objects sets have been already prepared and some data collected (Mare$§ 2020, Stoudek 2020).
Grasping configuration and squeezing speed should be varied.

3. Unsupervised analysis of time series data. Clustering of time series in order to study whether the principal clusters
formed will be dominated by the differences in objects or by factors related to gripper or grasping action parameters.
Multivariate Singular Spectrum Analysis followed by k-means clustering is a possibility. Assess whether material properties
like stiffness can be extracted (Liarokapis et al. 2015).

4. Object classification from collected time series using LSTM neural network (follow up on Mare$ 2020).

5. Assess the effect of gripper type, action parameters (gripper configuration and squeezing speed), sensory channels
availability (including ablation experiments), and LSTM network size on recognition results.

Bibliography / sources:

[1] Bednarek, J., Bednarek, M., Kicki, P., & Walas, K. (2019). Robotic Touch: Classification of Materials for Manipulation
and Walking. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 527-533). IEEE.

[2] Hoffmann, M., Stepanova, K. & Reinstein, M. (2014), 'The effect of motor action and different sensory modalities on
terrain classification in a quadruped robot running with multiple gaits', Robotics and Autonomous Systems 62, 1790-1798.
[3] Mare$§, M. (2020), 'Exploratory Action Selection to Learn Object Properties from Haptic Exploration Using a Robot
Hand', Bachelor's thesis, Czech Technical University, Faculty of Electrical Engineering.

[4] Liarokapis, M. V., Calli, B., Spiers, A. J., & Dollar, A. M. (2015, September). Unplanned, model-free, single grasp object
classification with underactuated hands and force sensors. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 5073-5080). IEEE.

[5] Sanchez, J., Corrales, J. A., Bouzgarrou, B. C., & Mezouar, Y. (2018). Robotic manipulation and sensing of deformable
objects in domestic and industrial applications: a survey. The International Journal of Robotics Research, 37(7), 688-716.
[6] Stoudek, P. (2020), 'Extracting material properties of objects from haptic exploration using multiple robotic grippers',
Master's thesis, Czech Technical University, Faculty of Electrical Engineering.

CVUT-CZ-ZBP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC



Name and workplace of bachelor’s thesis supervisor:
Mgr. Matéj Hoffmann, Ph.D., Vision for Robotics and Autonomous Systems, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:

Ing. Zdenék Straka, Vision for Robotics and Autonomous Systems, FEE

Date of bachelor’s thesis assignment: 06.01.2021 Deadline for bachelor thesis submission: 21.05.2021

Assignment valid until:  30.09.2022

Mgr. Mat&j Hoffmann, Ph.D. prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

\ Supervisor’s signature Head of department’s signature

Dean’s signature

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC




	Introduction
	Motivation
	Goals
	Related work
	Objects classification
	Terrain classification
	Prior work at FEE, CTU
	Thesis contribution

	Outline

	Materials and methods
	Objects and foams
	Polyurethane foams set
	Polyurethane foams subset

	Robot hands and grippers
	qb SoftHand
	Barrett Hand
	OnRobot RG6
	Robotiq 2F-85
	Gripper comparison

	Objects classification and unsupervised analysis of data
	Objects classification
	Unsupervised analysis


	Data collection, preprocessing and dataset creation
	Data collection
	qb SoftHand
	Barrett Hand
	OnRobot RG6
	Robotiq 2F-85

	Data processing
	qb Softhand, OnRobot RG6 and Robotiq 2F-85
	Barrett Hand

	Generated datasets
	qb Softhand
	Barrett Hand
	OnRobot RG6
	Robotiq 2F-85


	Results
	Classification
	qb Softhand
	Barrett Hand
	OnRobot RG6
	Robotiq 2F-85
	Gripper comparison
	Knowledge transfer
	Ablation study

	Unsupervised analysis
	qb Softhand
	Barrett Hand
	OnRobot RG6
	Robotiq 2F-85


	Conclusion, discussion and future work
	Conclusion
	Discussion and future work

	Bibliography
	Classifiers' hyperparameters
	qb SoftHand
	Barrett Hand
	OnRobot RG6
	Robotiq 2F-85


	Project Specification

