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Abstract

Object-oriented Java library for operating on polynomial matrices was created in this work.
It provides developers and control engineers with a programming interface for implementing
applications relying on manipulation with polynomial matrices. A polynomial matrix is a math-
ematical tool for description of both continuous and discrete dynamical systems. A new efficient
object structure of classes storing various information about polynomial matrices was designed
and it enables very efficient and reliable object oriented development of applications. Basic lin-
ear algebra operations with polynomial matrices were implemented. These algorithms are based
on computation with constant matrices. Therefore existing Java library for computing with con-
stant matrices was chosen. Syntax and semantics of implemented methods were documented
and shown in simple examples of usage. Functionality of all methods was exceedingly tested
and computational performance of more demanding operations was assessed by means of ex-
haustive numerical experiments. This initial version of Java library is fully functional and can be
used in practice by applications that require operations on polynomial matrices.

Abstrakt

V této práci byla vytvǒrena objektová knihovna v jazyku Java pro práci s polynomiálními
maticemi. Knihovna poskytuje vývojářům a návrhá̌rům regulátorů programátorské rozhraní pro
implementaci aplikací, které využívají polynomiální matice. Polynomiální matice je matema-
tický nástroj sloužící k popisu dynamických systémů jak spojitých tak diskrétních. Byla navržena
objektová struktura tříd uchovávajících informace o polynomiální matici. Byly implementovány
základní algebraické operace nad polynomiálními maticemi. Tyto algoritmy jsou založeny na
výpočtech s konstantními maticemi, proto byla použita existující javovská knihovna pro práci
s konstantními maticemi. Je popsána syntaxe a sémantika implementovaných metod a jejich
použití je ukázáno na jednoduchých příkladech. Správná funkčnost všech metod byla otestována.
Dále byla zm̌ěrena a vyhodnocena doba výpočtu časov̌e nárǒcnějších operací. Tato první verze
javovské knihovny je plňe funǩcní a může být použita v praxi v aplikacích, které vyžadují
výpočty s polynomiálními maticemi.
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Chapter 1

Introduction

Polynomial matrix is a mathematical tool for description of dynamical systems. A dynamical
system can be described by set of differential or difference equations or by polynomial matrices.
Properties of dynamical system can be found by solving differential equations or by studying
algebraic properties of polynomial matrix. Furthermore, polynomial matrix can be used for
advanced controller design (LQG,H2, H∞, etc.) or in signal processing applications (Wiener
filters, Kalman filters, etc.) [18].

Only a few packages for computing with polynomial matrices exist. Namely, Polynomial
Toolbox [19] for Matlab, a commercial package developed and distributed by PolyX company,
Scilab [12], a library in a free Matlab clone developed by researchers at INRIA and finally,
Maple [14], a commercial CAS system (Computer Algebra System), whose support of polyno-
mial matrices is very simple. But things are changing now, reflecting a growing need for reliable
tools for polynomial matrices on diverse platforms. There are also rumours that some polyno-
mial package is being prepared for Mathematica, a commercial CAS system produced by Wol-
fram Research company. At the same time, a very mature Mathematica package for polynomial
matrices has been developed by Jiri Kujan and the development still continues. An astonishingly
efficient C++ package named PolPack++ [7] has been developed by Leos Halmo. A simple li-
brary for TI-89/TI-92 programmable calculators was coded by Petr Stefko. Last but not least, a
purely symbolic package is being developed by Petr Augusta for commercial MuPAD package.
All these new packages have been developed at the Department of Control Engineering at CTU
FEE in Prague.

The aim of this work is to create object-oriented package for polynomial matrices similar to
mentioned products. It should be operating system independent and therefore Java language is
used for implementation. It should offer functional and fast enough application programming
interface for basic linear algebra operations on polynomial matrices to enable develop software
using polynomial matrices. Created package should be basis of graphical user interface of ap-
plications for design of robust controllers or optimal filters. These applications should run espe-
cially on the Internet and Java is the best solution for creating web applications. The portability of
Java allows deploying applications both on Unix and Windows platforms without any changes in
code. The advantage is that Java is distributed for free, it can be extended with existing libraries
and it is independent on universal, expensive environments as Matlab or Mathematica.
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CHAPTER 1. INTRODUCTION

1.1 Contribution of the Work

1. A rigorous analysis of suitability of Java for numerical computation.

2. Complete list of available software packages and their comparison.

3. Design of classes.

4. Implementation of the package.

5. Web page.

1.2 Features of the Library

I created package that is collection of classes that enable storing continuous and discrete-time
(two-sided) polynomial matrices. These classes also enable performing basic linear algebra op-
erations - addition, subtraction, multiplication, conjugation, transposition, norm, value, scaling,
determinant, rank and roots of polynomial matrix. I based algorithms for computing determi-
nant, rank and roots of polynomial matrix on evaluation of a polynomial matrix at a set of points
equally distributed along the unit circle using FFT and on interpolation of a set of constant ma-
trices by a polynomial matrix using inverse FFT. The package offers solvers of linear equations
A(s)B(s)=X(s),A(z)B(z)=X(z) andA(s)X(s)+B(s)Y(s)=C(s). Furthermore, I created supportive
classes for exporting polynomial matrices into MathML and other formats, functionality tests
with graphical outputs, testing framework for performance tests. Executed performance tests
generate outputs for further statistical processing and corresponding tests of Polynomial Toolbox
for Matlab. The package is fully documented programming interface with number of examples
for better understanding.

1.3 Overview of the Document

This document is divided into chapters describing proposal of library, implemented appli-
cation programming interface (API) and tests. TheAnalysis and Designchapter starts with
discussing issue of numerical computing in Java. Then the most suitable existing Java library
for basic linear algebra computations with constant matrices and complex numbers is chosen.
Basic classes and their structure are designed in the final part. TheLibrary Descriptionchapter
describes implemented API. Syntax and semantics of each method are described. Examples of
usage and basic idea of implemented algorithm are shown for more complex methods. Function-
ality and performance tests are discussed in theTestschapter. Frameworks used for both types
of tests are described and pieces of implemented tests are shown. Test results are summarized in
theConclusionchapter.

Source codes (i.e. method names, code examples. class names, etc.) are written in courier
font (e.g.toString() ). Comments of code are written in courier font in italic (e.g.this is
a comment ).
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CHAPTER 1. INTRODUCTION

Attached CD

The CD attached to this document contains:

• This document in PDF format,

• Offline version of project’s web pages, includes:
- browsable examples,
- outputs of performance tests,
- builds to download,
- documents related to project (proposal, poster, polynomial research group information),
- browsable version of design diagrams,
- links related to project,
- contact information,

• Build of Java package for operating on polynomial matrices from January 2004,

• Complete source codes including examples,

• Java documentation of created programming interface,

• Useful downloads (Java Runtime Environment, MathPlayer, etc.).

For more information seeindex.htmlfile in the root directory of CD.

13



Chapter 2

Analysis and Design

It is necessary to consider suitability of Java for numerical computing and find an existing
Java library for basic linear algebra algorithms. Design of the important objects (especially
classes keeping information about polynomial matrices) must be done. A few Java libraries that
enable performing basic linear algebra algorithms on constant matrices exist. It is necessary to
choose one of them, which fits best the needs of implementation polynomial matrices library.
Its structure must be taken into account during design as well. All these mentioned issues are
discussed in this chapter.

2.1 Java and Numerics

In this section general advantages and disadvantages of Java language are mentioned first,
then issues concerned to Java and numerics are described more particularly and the best solutions
reducing disadvantages are explained.

Java is the platform independent language (the same code works on Windows, Unix and
the other platforms). It supports modern technologies as Internet applications, working with
databases, multithreading, networking, etc. It has protected memory access (i.e. there are no
pointers, only object references exist), automatic memory allocation and deallocation (garbage
collector). Java is the object language easy to understand for developers. Java documentation is
standard documentation that very effectively introduces to developers usage of API (application
programming interface) [6].

Java and numerics issues are discussed at the Numerics Working Group of the Java Grande
Forum [5]. The goals of the Numerics Working Group of the Java Grande Forum are to assess
the suitability of Java for numerical computation, to work towards community consensus on ac-
tions which can be taken to overcome deficiencies of the language and its run-time environment,
and to encourage the development of APIs for core mathematical operations. The Group hosts
open meetings and other forums to discuss these issues. It is supported by the Mathematical and
Computational Sciences Division of the NIST Information Technology Laboratory. The Numer-
ics Working Group has contributors from many companies and universities involved in Java and
numerics (Sun, IBM, MathWorks - professor Cleve Moler contributed, Visual Numerics, etc.).

14



CHAPTER 2. ANALYSIS AND DESIGN

Java language is not always suitable for implementation of numerical algorithms. Java as
interpreted language is slower than compiled languages and executing of code is therefore slower.
This disadvantage is partly removed by Just-In-Time compiler [10], included in the Java HotSpot
Virtual Machine [22], that increases performance of executed code. Arrays and multidimensional
arrays (need for operating on matrices) are in Java treated similarly as objects. There is no
primitive data type for complex numbers. It is not possible to define overloaded operator.

2.1.1 Multidimensional Arrays

Arrays and multidimensional arrays (needed for operating on matrices) are treated similarly
as objects in Java. It means that each array element is referenced and it is the reason why multi-
dimensional arrays are allowed to have different sizes of arrays in each dimension - multidimen-
sional array is array with references to arrays (e.g. in two-dimensional case each row of matrix
might have different numbers of columns). Because of reference behaviour array elements might
access the same memory area.

Once allocated arrays cannot be resized any more. Java automatically checks array bounds
whenever an arrays is accessed.

It is proposed [5] to store matrices, i.e. multidimensional arrays of primitive data types (e.g.
double , int ), as classes. Constructors of such classes should check the rectangularity of an
array. New array must be allocated when a matrix is resized.

2.1.2 Complex Numbers

There is no primitive data type for complex numbers. Primitive data types are kept in stack
memory, which has fast access. Dynamically allocated objects are stored in heap having slower
access [6]. Complex numbers must be defined as objects having defined operations on com-
plex numbers. It is necessary to distinguish between semantics of operators. Operator= sets
value of primitive data type or it sets reference to memory area with an object instance. Op-
erator == compares values of primitive data types or it compares two references pointing to
memory areas with object instances [5].

2.1.3 Operator Overloading And Lightweight Classes

It is more readable to use operators instead of methods substituting operator (e.g.a + b
instead ofa.add(b) ) but Java does not enable overload operators (which would be useful e.g.
for class storing complex numbers, see 2.1.2) [5].

It would be useful to create classes having some properties of primitive data types (e.g. op-
erator semantics, see 2.1.2) which could have positive influence on performance (object would
be stored in stack with faster access than heap). Properties of lightweight classes are described
in [5]. Lightweight classes are not taken in account because it is non-standard Java usage.

15



CHAPTER 2. ANALYSIS AND DESIGN

2.2 Library Choice

Algorithms for polynomial matrices are based on operating on constant matrices. It is there-
fore a right strategy to base this polynomial package on some existing high quality library for
constant matrices. There are both commercial and open source Java libraries for basic linear
algebra algorithms. Their properties are listed in table 2.11.

JNL JMSL JMAT NINJA JAMA COLT

Open Source no no yes yes yes yes
Last Update 1997 2003 2003 1999 1999 2001

Java Grande Req. no no yes yes yes yes
Real Vector yes yes yes yes yes yes
Real Matrix yes yes yes yes yes yes

Complex Vector yes yes no yes no no
Complex Matrix yes yes no yes no no
Linear Algebra yes yes yes no yes yes

Table 2.1: Libraries for basic linear algorithms

JMSL 2.0 by Visual Numerics has been chosen for its complexity, availability, graphical
interface, web application interface and support as the most suitable library for further design
and implementation.

2.2.1 The JMSL Library and Visual Numerics

The JMSL Library [24] marketed by Visual Numerics is a complete collection of mathemat-
ical, statistical and charting classes that are used for developing network-centric, cost effective
applications. It is written 100% in Java and easily fits into any Java application. It includes linear
algebra, zero finding, splines, ordinary differential equations, linear programming, nonlinear op-
timization, FFTs, special functions, regression, ANOVA, ARMA, Kalman filters. It can be used
in both standalone and Web environments. The library can be typically applied in these areas:

• Risk Management and Portfolio Optimization in Finance and Insurance,

• Manufacturing Yield Analysis, Process Control,

• R&D Analytical Tools for Data Analysis and Product Optimization,

• Energy Consumption Analysis,

• Customer and Market Visual Data Analysis,

1Information were gathered in February 2003
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CHAPTER 2. ANALYSIS AND DESIGN

• Extending Analysis and Visualization Capabilities for ISVs
- Business Intelligence
- Databases
- Supply Chain.

Created library for polynomial matrices uses JMSL 2.0 but new JMSL 2.5 was released in June
2003. New version includes new, more robust, non-linear optimization routines, curve fitting
functions for graphical display, data mining and statistical algorithms and charting enhance-
ments.

There is a few disadvantages or missing functionalities of JMSL 2.0 required for implemen-
tation and using library for polynomial matrices:

• JMSL is a commercial product,

• Class for complex matrix is missing some linear algebra methods,

• 2-D and 3-D FFT algorithm is missing.

Cooperation with Visual Numerics

The license was obtained from Visual Numerics for free. It is valid until this work is fin-
ished (spring 2004). People from Visual Numerics are interested in the package for polynomial
matrices and would like negotiate further cooperation with Faculty of Electrical Engineering,
CTU in Prague.

2.3 Design

The purpose of created library is to provide a developer with an efficient application program-
ming interface (API) for operating on polynomial matrices. It should be primarily object-oriented
library and its structure and algorithms should consider Java limits for numerical computing men-
tioned above (see 2.1). Algorithms for polynomial matrices should use methods for calculating
with constant matrices provided by JMSL 2.0 from Visual Numerics (see [23], 2.2).

The API should enable to developer define object of polynomial matrix, its properties and
execute mathematical operations using interface methods.

The most important issue of design is to decide how to store coefficients of polynomial matrix
in array. Often used mathematical operations on polynomial matrices are effectively calculated
when coefficients of polynomial matrix are stored as 3-dimensional arrays having degrees in the
first dimension, rows in the second dimension and columns in the third dimension (i.e. polyno-
mial matrix is a polynomial having constant matrices as coefficients). An example of coefficients
storage is shown in figure A.7. Polynomial matrix object should keep information about degree
of polynomial matrix, its number of rows and columns, etc. All of these information are needed
later when performing operations on polynomial matrix.
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CHAPTER 2. ANALYSIS AND DESIGN

It is useful to distinguish continuous-time polynomial matrices and discrete-time polynomial
matrices. Discrete polynomial matrices are allowed to have polynomials with negative powers.
Discrete-time polynomial matrices are also called two-sided polynomials or Laurent polynomial
matrices. They are supported only by the Polynomial Toolbox for Matlab out of the existing
few packages (see chapter 1). The advantage of having both positive and negative powers in one
polynomial matrix stands out in optimal control and estimation problems. Most of algorithms
for both continuous and discrete polynomial matrices have common basis and therefore it is
reasonable to define abstract class (PolynomialMatrix ). PolynomialMatrix class is
ancestor of continuous and discrete polynomial matrix classes (ContinuousPolynomial-
Matrix , DiscretePolynomialMatrix ).

Designed principal classes, their structure and relations between classes are found in ap-
pendix A. Semantics of diagrams is explained in [1]. The following chapter describes imple-
mented API and its usage.
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Chapter 3

Library Description

In this chapter application programming interface (API) of implemented library is described.
This chapter is divided into sections according to existing classes. They are ancestor of polyno-
mial matrix objects (PolynomialMatrix ), class for operating on continuous polynomial ma-
trices (ContinuousPolynomialMatrix ), class for operating on discrete polynomial matri-
ces (DiscretePolynomialMatrix ), class performing fast Fourier transform on polynomial
matrices (PolynomialMatrixFFT ), class solving linear equation with polynomial matrices
(ContinuousAXB, DiscreteAXB, AXBYC ) and class enabling exporting polynomial ma-
trix into MathML format and its transforms (MathMl ). Class usage is shortly explained and its
location (package) is given at the beginning of each section. Each section is divided into subsec-
tions describing constants and API methods of class (public methods). The functionality of each
method is shortly explained, the syntax is described (i.e. method’s parameters, return values,
thrown exceptions), usage of method is shown on a simple example and finally implementa-
tion of more complex algorithms is described. Special section describing exceptions used for
handling errors is found at the beginning of this chapter. More detailed information about all
implemented classes and their API can be found in Java documentation [16], see example on
figure E.7.

3.1 Exceptions

All exceptions are stored in one package reserved for them. All of them are inherited from
java.lang.Exception [22, 10, 6]. Only these exceptions can be thrown by library meth-
ods. It is said in each section describing method whether and which exceptions is thrown. In case
of throwing exception by method, it must be wrapped in try-catch block [10, 6]. Each exception
contains text describing reason for throwing exception.

Package

cz.ctu.fee.dce.polynomial.exceptions

All exceptions are listed in table 3.1.
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Exception Description

IllegalPMCoefficientsException Exception indicates illegal polynomial matrix co-
efficients (e.g. coefficients, i.e. constant matrices,
have different sizes for each degree or are not rect-
angular.)

PMAXBException Exception indicates that linear equation
A(s)X(s) = B(s) with polynomial matrices cannot
be computed.

PMAXBYCException Exception indicates that linear equation
A(s)X(s) + B(s)Y(s) = C(s) with polynomial ma-
trices cannot be computed.

PMDeterminantException Exception indicates that determinant of polyno-
mial matrix cannot be computed (e.g. when poly-
nomial matrix has different number of rows and
columns).

PMNormException Exception indicates than norm of polynomial ma-
trix cannot be computed.

PMRootsException Exception indicates that roots of polynomial ma-
trix cannot be computed.

PMsAddException Exception indicates that polynomial matrices can-
not be added or subtracted.

PMScaleException Exception indicates that polynomial matrix cannot
be scaled.

PMsMultiplyException Exception indicates the polynomial matrices can-
not be multiplied.

Table 3.1: List of exceptions

3.2 ClassPolynomialMatrix

PolynomialMatrix class is the ancestor ofContinuousPolynomialMatrix and
DiscretePolynomialMatrix classes. It is abstract class and therefore it cannot be in-
stanced. It contains implemented functionalities common for both descendants. Some function-
ality is the same for both continuous and discrete polynomial matrix. It is the reason why some
methods implemented inPolynomialMatrix class do not need to be overloaded in its de-
scendants. Some of the overloaded methods might use functionality from this class. In this case
subsections describing descendant class’s (ContinuousPolynomialMatrix , Discrete-
PolynomialMatrix ) methods will refer to subsections described in this section explaining
inherited functionality.

Package

cz.ctu.fee.dce.polynomial
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Constants

• public static final char S_SYMBOL - symbol “s ” used for displaying poly-
nomials

• public static final int MULTIPLY_DEFAULT - default multiplication of poly-
nomial matrices (see 3.3.10)

• public static final int MULTIPLY_DFT - multiplication of polynomial ma-
trices using discrete Fourier transform (see 3.3.10)

• public static final int NORM_ABSOLUTE - absolute norm (1-norm) of poly-
nomial matrix (see 3.2.17)

• public static final int NORM_QUADRATIC - quadratic norm (2-norm) of poly-
nomial matrix (see 3.2.17)

• public static final int NORM_INFINITE - infinite norm (∞-norm) of poly-
nomial matrix (see 3.2.17)

• public static final int NORM_FROBENIUS - Frobenius norm of polynomial
matrix (see 3.2.17)

• public static final int NORM_METHOD_BLOCK - block method used for com-
putation of norm of polynomial matrix (see 3.2.17)

• public static final int NORM_METHOD_LEAD - leading coefficient method
used for computation of norm of polynomial matrix (see 3.2.17)

• public static final int NORM_METHOD_MAX - maximal norm method used
for computation of norm of polynomial matrix (see 3.2.17)

3.2.1 Constructor(double[][][], char)

Creates instance of polynomial matrix. It cannot be used for creating instance ofPoly-
nomialMatrix class becausePolynomialMatrix is the abstract class. It used by con-
structors of descendants (ContinuousPolynomialMatrix andDiscretePolynomial-
Matrix classes).

Syntax

public PolynomialMatrix(double[][][] aCoef, char aSymbol)
throws IllegalPMCoefficientsException
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Example

See 3.3.1 or 3.4.2.

Algorithm

ConstructorPolynomialMatrix(double[][][]) (see 3.2.2) is called for passed co-
efficients and passed symbol for displaying polynomials is set to private attribute holding its
value.

3.2.2 Constructor(double[][][])

Creates instance of polynomial matrix. It cannot be used for creating instance ofPoly-
nomialMatrix class becausePolynomialMatrix is the abstract class. It used by con-
structors of descendants (ContinuousPolynomialMatrix andDiscretePolynomial-
Matrix classes).

Syntax

public PolynomialMatrix(double[][][] aCoef)
throws IllegalPMCoefficientsException

Example

See 3.3.2 or 3.4.1.

Algorithm

First of all rectangularity of passed coefficients is checked. It means that each coefficient
of polynomial must be matrix (i.e. each row must have the same number of columns) and all
coefficients of polynomial must have the same sizes. If any of mentioned conditions is not
satisfied, then the exception is thrown.

3.2.3 Constructor(PolynomialMatrix)

Creates instance of polynomial matrix. It cannot be used for creating instance ofPoly-
nomialMatrix class becausePolynomialMatrix is the abstract class. It used by con-
structors of descendants (ContinuousPolynomialMatrix andDiscretePolynomial-
Matrix classes).

Syntax

public PolynomialMatrix(PolynomialMatrix aPm)
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Example

See 3.3.3 or 3.4.5.

Algorithm

All encapsulated attributes (i.e. coefficients of polynomial matrix, its degree, its number of
rows, its number of columns, symbol used for displaying and zeroing coefficient) are copied
from passed polynomial matrix (passed argument). Attributes are just copied. Rectangularity
and sizes of coefficients do not need to be checked because they have been already checked
when instance of passed polynomial matrix has been created.

3.2.4 Methodequals()

Compares polynomial matrix with another object.

Syntax

public boolean equals(Object aObject)

Algorithm

Object compared to polynomial matrix must be an instance ofPolynomialMatrix , de-
grees and matrix sizes must equal, symbols used for displaying polynomials must be the same
and coefficients must equal.

This method is used in JUnit tests for comparing expected and computed polynomial matri-
ces (see chapter 4).

Equal objects must have equal hash code and therefore methodhashCode() (see 3.2.13)
must be implemented when methodequals exists [22].

3.2.5 MethodgetCoefficients()

Returns coefficients of polynomial matrix.

Syntax

public final double[][][] getCoefficients()

3.2.6 MethodgetColumnDegrees()

Returns array containing degrees of columns. The i-th array element corresponds to degree
of i-th column of polynomial matrix.
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Syntax

public int[] getColumnDegrees()

Example

Figure 3.1 shows the example of getting column degrees of polynomial matrix. The polyno-
mial matrix

A(s) =

(
7 + s 2s 9

4 −s 6

)
(3.1)

is created and its column degrees are  1
1
0

 .

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// gets column degrees of polynomial matrix A
int[] columnDegrees = cpmA.getColumnDegrees();

Figure 3.1: Example ofgetColumnDegrees() method usage

Algorithm

Non-zero coefficient belonging to highest degree in each column is found and the degree is
stored in return value for given column.

3.2.7 MethodgetNumberOfColumns()

Returns number of columns of polynomial matrix.
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Syntax

public final int getNumberOfColumns()

3.2.8 MethodgetNumberOfRows()

Returns number of rows of polynomial matrix.

Syntax

public final int getNumberOfRows()

3.2.9 MethodgetRowDegrees()

Returns array containing degrees of rows. The i-th array element corresponds to degree of
i-th row of polynomial matrix.

Syntax

public int[] getRowDegrees()

Example

Figure 3.2 shows the example of getting row degrees of polynomial matrix. The polynomial
matrix 3.1 is created and its column degrees are(

1
1

)
.

Algorithm

Non-zero coefficient belonging to highest degree in each row is found and the degree is stored
in return value for given row.

3.2.10 MethodgetSylvesterMatrix(int)

Creates Sylvester matrix [8] from coefficients of polynomial matrix. Coefficients are put in
column.

Syntax

public double[][] getSylvesterMatrix(int aNumberOfColumns)
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// gets row degrees of polynomial matrix A
int[] rowDegrees = cpmA.getRowDegrees();

Figure 3.2: Example ofgetRowDegrees() method usage

Example

Figure 3.3 shows creation of Sylvester matrix. The continuous polynomial matrix 3.1 is
created and then Sylvester matrix

7 0 9 0 0 0 0 0 0
4 0 6 0 0 0 0 0 0
1 2 0 7 0 9 0 0 0
0 −1 0 4 0 6 0 0 0
0 0 0 1 2 0 7 0 9
0 0 0 0 −1 0 4 0 6
0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 −1 0


having three coefficients in a row is created.

Algorithm

There is polynomial matrix

A(s) = A0 + A1s + . . . + Ans
n

At first the constant matrix

B =


A0

A1
...

An
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA = new

ContinuousPolynomialMatrix(aCoef);

// creates Sylvester matrix from A
// having 3 coefficients in a row
double[][] sylvester = cpmA.getSylvesterMatrix(3);

Figure 3.3: Example ofgetSylvesterMatrix() method usage

is created from polynomial matrix’s coefficients by putting them under each other. Sylvester
matrix S is created by putting matrixB in diagonal of zero matrix having desired number of
columns

S =


B 0 · · · 0
0 B 0
...

. ..
0 0 · · · B

 .

3.2.11 MethodgetSymbol()

Returns symbol for displaying polynomials in polynomial matrix.

Syntax

public final char getSymbol()

3.2.12 MethodgetZeroingCoefficient()

Returns number of decimal places used for zeroing (evaluating numbers as zeros). It is
number of decimal places following decimal point which must be equal to zero to evaluate double
number as zero. Used for "inaccurate" operations (e.g. computation of determinant using FFT).
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Syntax

public final int getZeroingCoefficient()

3.2.13 MethodhashCode()

Returns hash code of polynomial matrix object. Equal objects must have equal hash code and
therefore methodhashCode() must be implemented when methodequals() (see 3.2.13)
exists [22].

Syntax

public int hashCode()

3.2.14 MethodisSquare()

Returns true when polynomial matrix is square, otherwise returns false.

Syntax

public final boolean isSquare()

Algorithm

Number of rows and number columns must be the same when a polynomial matrix is square
matrix.

3.2.15 MethodisZero()

Checks whether polynomial matrix is zero polynomial matrix.

Syntax

public final boolean isZero()

Algorithm

Zero polynomial matrix must have degree 0 and its coefficient must be zero matrix.

3.2.16 Methodmultiply(double)

Multiplies polynomial matrix by real number.
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Syntax

public final void multiply(double aNumber)

Example

Figure 3.4 shows the example of multiplication polynomial matrix by real number. The
polynomial matrix 3.1 is created. After multiplication by2 polynomial matrix

A(s)=

(
14 + 2s 4s 18

8 −2s 12

)
.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// multiplies polynomial matrix A by 2
cpmA.multiply(2);

Figure 3.4: Example ofmultiply() method usage

Algorithm

Each coefficient (i.e. constant matrix belonging to degree) is multiplied by given number.

3.2.17 Methodnorm(int, int)

Computes norm of polynomial matrix.

Syntax

public double norm(int aType, int aMethod)
throws IllegalArgumentException, PMNormException
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Example

Figure 3.5 shows the example of computation norm of polynomial matrix. The polynomial
matrix 3.1 is created and its absolute norm computed using “block” method is15.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// computes absolute norm of polynomial matrix A
// using "block" method
double norm = cpmA.norm(

PolynomialMatrix.NORM_ABSOLUTE,
PolynomialMatrix.NORM_METHOD_BLOCK

);

Figure 3.5: Example ofnorm() method usage

Algorithm

Norm of polynomial matrix is computed as norm of constant matrix [21, 23] created from
coefficients of polynomial matrix. There are several ways for creating constant matrix from
coefficients of polynomial matrix [17]:

• Block method (PolynomialMatrix.NORM_METHOD_BLOCK )
There is polynomial matrix

A(s) = A0 + A1s + . . . + Ans
n.

Constant matrix

A =
(

A0 A1 · · · An

)
is created from coefficients of polynomial matrixA(s).

• Leading coefficient method (PolynomialMatrix.NORM_METHOD_LEAD )
Leading coefficient is coefficient of polynomial matrix by highest degree.
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• Maximal norm method (PolynomialMatrix.NORM_METHOD_MAX )
Norm for each coefficient of polynomial matrix is computed and norm of polynomial ma-
trix is the maximum of these norms.

3.2.18 Methodrank()

Computes rank of polynomial matrix. Uses interpolation algorithm [9].

Syntax

public int rank()

Example

Figure 3.6 shows the example of evaluating rank of polynomial matrix. The polynomial
matrix 3.1 is created and its computed rank is2.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// computes rank of polynomial matrix A
int rank = cpmA.rank();

Figure 3.6: Example ofrank() method usage

Algorithm

Polynomial matrix is evaluated in set of complex values. The appropriate method for evalu-
ating polynomial matrix in set of complex values is direct discrete Fourier transform (see 3.5).
Number of iterations and number of complex values evaluating polynomial matrix are given by
estimated degree of determinant of polynomial matrix [9]. Rank of constant complex matrix is
computed in each iteration of interpolation and maximal value of computed ranks is chosen. If
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some of evaluations has maximal possible rank of polynomial matrix, rank of polynomial matrix
was found and algorithm stops.

3.2.19 Methodroots()

Computes roots of polynomial matrix. Roots of polynomial matrix are defined as roots of its
determinant [17].

Syntax

public Complex[] roots() throws PMRootsException

Example

Figure 3.7 shows the example of computing roots of polynomial matrix. The polynomial
matrix 3.1 is created and no roots were found.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// computes roots of polynomial matrix A
Complex[] roots = cpmA.roots();

Figure 3.7: Example ofroots() method usage

Algorithm

Roots of determinant (i.e. roots of polynomial) are found in case of square polynomial ma-
trix. In case of non-square or singular polynomial matrix two square polynomial matrices are cre-
ated by multiplying original polynomial matrix by random constant matrices from left and right.
Determinants for both ”squared” polynomial matrices are found. Then roots of first ”squared”
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polynomial matrix are found. Each of these found roots is used as point for evaluation of deter-
minant of second ”squared” matrix and it is root of original polynomial matrix when evaluation
of determinant is zero (i.e. both ”squared” polynomial matrices have common roots).

3.2.20 MethodsetSymbol(char)

Sets symbol used for displaying polynomials in polynomial matrix.

Syntax

public final void setSymbol(char aSymbol)

3.2.21 MethodsetZeroingCoefficient(int)

Sets number of decimal places used for zeroing (evaluating numbers as zeros). It is number
of places following decimal point which must be equal to zero to evaluate double number as zero.
Used for "inaccurate" operations (e.g. computation of determinant using FFT).

Syntax

public final void setZeroingCoefficient(int aDigits)
throws IllegalArgumentException

3.2.22 MethodvalueAt(Complex)

Computes value of polynomial matrix at specified complex point. Horner scheme algorithm
is used computation [25].

Syntax

public Complex[][] valueAt(Complex aPoint)

Example

Figure 3.8 shows the example of evaluating polynomial matrix in complex number. The
polynomial matrix 3.1 is created and its value in complex pointj is

A(j)=

(
7 + j 2j 9

4 −j 6

)
.

3.2.23 MethodvalueAt(double)

Computes value of polynomial matrix at specified real point. Horner scheme is used compu-
tation [25].
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// computes value of polynomial matrix A
// at complex point j
Complex[][] value = cpmA.valueAt(new Complex(0, 1));

Figure 3.8: Example ofvalueAt() method usage

Syntax

public double[][] valueAt(double aPoint)

Example

Figure 3.9 shows the example of evaluating polynomial matrix in real number. The polyno-
mial matrix 3.1 is created and its value in real point1 is

A(1) =

(
8 2 9
4 −1 6

)
.

3.3 ClassContinuousPolynomialMatrix

This class enables operating on continuous polynomial matrices.

Package

cz.ctu.fee.dce.polynomial

3.3.1 Constructor(double[][][], char)

Creates instance of continuous polynomial matrix.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// computes value of polynomial matrix A at point 1
double[][] value = cpmA.valueAt(1);

Figure 3.9: Example ofvalueAt() method usage

Syntax

public ContinuousPolynomialMatrix(double[][][] aCoef,
char aSymbol) throws IllegalPMCoefficientsException

Example

Figure 3.10 shows how the instance of continuous polynomial matrix(
1− 3x2 8x− 4x2 3− 5x2

−6x2 2− 7x2 −2x− 8x2

)

is created.

Algorithm

ConstructorPolynomialMatrix(double[][][], char) from ancestor class is
called (see 3.2.1).

3.3.2 Constructor(double[][][])

Creates instance of continuous polynomial matrix.

Syntax

public ContinuousPolynomialMatrix(double[][][] aCoef)
throws IllegalPMCoefficientsException
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at x^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at x^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at x^2

};

// polynomial matrix A is created
ContinuousPolynomialMatrix cpmA = new

ContinuousPolynomialMatrix(aCoef, ’x’);

Figure 3.10: Creation of continuous polynomial matrix instance

Example

Figure 3.11 shows how the instance of continuous polynomial matrix(
1− 3s2 8s− 4s2 3− 5s2

−6s2 2− 7s2 −2s− 8s2

)

is created.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A is created
ContinuousPolynomialMatrix cpmA = new

ContinuousPolynomialMatrix(aCoef);

Figure 3.11: Creation of continuous polynomial matrix instance
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Algorithm

ConstructorPolynomialMatrix(double[][][]) from ancestor class is
called (see 3.2.2).

3.3.3 Constructor(ContinuousPolynomialMatrix)

Creates instance of continuous polynomial matrix.

Syntax

public ContinuousPolynomialMatrix(
ContinuousPolynomialMatrix aCpm)

Example

Figure 3.12 shows how the instance of continuous polynomial matrix(
1− 3s2 8s− 4s2 3− 5s2

−6s2 2− 7s2 −2s− 8s2

)

is created from the existing instance of continuous polynomial matrix.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A is created
ContinuousPolynomialMatrix cpmA = new

ContinuousPolynomialMatrix(aCoef);

// polynomial matrix B is created from existing
// continuous polynomial matrix A
ContinuousPolynomialMatrix cpmB = new

ContinuousPolynomialMatrix(cpmA);

Figure 3.12: Creation of continuous polynomial matrix instance
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Algorithm

ConstructorPolynomialMatrix(PolynomialMatrix) from ancestor class is
called (see 3.2.3).

3.3.4 Methodadd(ContinuousPolynomialMatrix)

Adds continuous polynomial matrix.

Syntax

public void add(ContinuousPolynomialMatrix aCpm)
throws PMsAddException

Example

Figure 3.13 shows the example of polynomial matrices addition. Polynomial matrices

A(s) =

(
1− 3s2 8s− 4s2 3− 5s2

−6s2 2− 7s2 −2s− 8s2

)
(3.2)

and

B(s) =

(
7 + s 2s 9

4 −1s 6

)

are created. Polynomial matrixB(s) is added to polynomial matrixA(s). After addition

A(s) =

(
8 + s− 3s2 10s− 4s2 12− 5s2

4− 6s2 2− 1s− 7s2 6− 2s− 8s2

)

andB(s) remains unchanged.

Algorithm

Sizes of added polynomial matrices are checked at first. The exception is thrown in case of
different sizes. Then corresponding coefficients (constant matrices) are added. Finally degree of
result is lowered when coefficients at highest degrees are zero matrices.

3.3.5 Methodconjugate()

Conjugates polynomial matrix [17].

Syntax

public void conjugate()
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// coefficients of polynomial matrix B
double[][][] bCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// polynomial matrix B
ContinuousPolynomialMatrix cpmB =

new ContinuousPolynomialMatrix(bCoef);

// adds B to A
// A changes: A=A+B
// B is unchanged
cpmA.add(cpmB);

Figure 3.13: Example ofadd() method usage

Example

Figure 3.14 shows the example of polynomial matrix conjugation. The polynomial matrix 3.2
is created. After conjugation

A(s) =

(
1− 3s2 −8s− 4s2 3− 5s2

−6s2 2− 7s2 2s− 8s2

)
.

Algorithm

Each coefficient at odd degree is multiplied by-1.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// conjugates A
cpmA.conjugate();

Figure 3.14: Example ofconjugate() method usage

3.3.6 MethodconjugateAndTranspose()

Transposes and conjugates polynomial matrix [17].

Syntax

public void conjugateAndTranspose()

Example

Figure 3.15 shows the example of polynomial matrix conjugation and transposition. The
polynomial matrix 3.2 is created. After conjugation and transposition

A(s) =

 1− 3s2 −6s2

−8s− 4s2 2− 7s2

3− 5s2 2s− 8s2

 .

Algorithm

Polynomial matrix is transposed and then it is conjugated (see 3.3.5).

3.3.7 Methoddeterminant()

Computes determinant of continuous polynomial matrix.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// conjugates and transposes A
cpmA.conjugateAndTranspose();

Figure 3.15: Example ofconjugateAndTranspose() method usage

Syntax

public ContinuousPolynomialMatrix determinant()
throws PMDeterminantException

Example

Figure 3.16 shows the example of computing determinant of polynomial matrix. The poly-
nomial matrix

A(s) =

(
1− 3s2 8s− 4s2

−6s2 2− 7s2

)

is created and its determinant

detA(s) =
(

2− 13s2 + 48s3 − 3s4
)

is computed.

Algorithm

The FFT algorithm [11] is used. At first it is checked whether polynomial matrix is square
matrix (if not exception is thrown). Then degree of determinant is estimated. Polynomial matrix
is transformed using direct FFT algorithm (see 3.5), where number of points used for trans-
formation equals to estimated degree. Direct FFT produces set of constant complex matrices.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0}, { 0, 2}}, // coefficients at s^0
{{ 0, 8}, { 0, 0}}, // coefficients at s^1
{{-3,-4}, {-6,-7}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// computes determinant of A
ContinuousPolynomialMatrix det = cpmA.determinant();

Figure 3.16: Example ofdeterminant() method usage

Determinant for each of this constant matrix is computed, i.e. set of constant complex numbers
is produced. These numbers are transformed using inverse FFT (see 3.5). This transformation
produces determinant (coefficients of determinant) of polynomial matrix.

3.3.8 MethodgetDegree()

Returns degree of continuous polynomial matrix.

Syntax

public int getDegree()

3.3.9 Methodmultiply(ContinuousPolynomialMatrix)

Multiplies polynomial matrix by polynomial matrix using default method (see 3.3.10)

Syntax

public void multiply(ContinuousPolynomialMatrix aCpm)
throws PMsMultiplyException

3.3.10 Methodmultiply(ContinuousPolynomialMatrix, int)

Multiplies polynomial matrix by polynomial matrix using given method for multiplication.
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Syntax

public void multiply(ContinuousPolynomialMatrix aCpm,
int aMethod) throws PMsMultiplyException

Example

Figure 3.17 shows the example of polynomial matrices multiplication. Polynomial matri-
ces 3.2 and

B(s) =

 7 + s 4
2s −1s
9 6


are created. Polynomial matrixA(s) is multiplied with polynomial matrixB(s) using DFT
method. After multiplication

A(s) =

(
34 + s− 50s2 − 11s3 22− 50s2 + 4s3

−14s− 114s2 − 20s3 −14s− 72s2 + 7s3

)

andB(s) remains unchanged.

Algorithm

First of all algorithm for multiplication is chosen, then sizes of matrices for multiplication
are checked (in case of incorrect sizes exceptionPMsMultiplyException is thrown). It is
possible to choose one of these multiplication methods:

• default method (PolynomialMatrix.MULTIPLY_DEFAULT ) - coefficients (constant
matrices) of multiplied polynomial matrices are multiplied, added and set to corresponding
degrees of result polynomial matrix. Degree of polynomial matrix is lowered in case of
zero coefficients by highest degrees.

• DFT method [17, 11] (PolynomialMatrix.MULTIPLY_DFT ) - multiplied polyno-
mial matrices are transformed using direct FFT algorithm (see 3.5). Direct FFT produces
set of constant complex matrices, where number of points used for transformation equals
to estimated degree of result matrix. Corresponding matrices from each set are multiplied,
i.e. set of complex multiplied matrices is produced. This set is transformed using inverse
FFT (see 3.5). This transformation produces result of multiplication. Result is zeroed
(see 3.2.21).

3.3.11 Methodscale()

Scales polynomial matrix with automatically set scaling coefficient.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// coefficients of polynomial matrix B
double[][][] bCoef = {

{{ 7, 4}, { 0, 0}, { 9, 6}}, // coefficients at s^0
{{ 1, 0}, { 2,-1}, { 0, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// polynomial matrix B
ContinuousPolynomialMatrix cpmB =

new ContinuousPolynomialMatrix(bCoef);

// multiplies A with B using DFT method
// A changes: A=A*B
// B is unchanged
cpmA.multiply(cpmB, PolynomialMatrix.MULTIPLY_DFT);

Figure 3.17: Example ofmultiply() method usage

Syntax

public ContinuousPolynomialMatrix scale()
throws PMScaleException

Example

Figure 3.18 shows the example of scaling polynomial matrix. The polynomial matrix 3.2 is
created. Methodscale() produces scaled polynomial matrix(

4− 3s2 17s− 4s2 13− 5s2

−6s2 9− 7s2 −4s− 8s2

)
.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// scales matrix A with scaling coefficient
// set automatically
ContinuousPolynomialMatrix scaledCpm = cpmA.scale();

Figure 3.18: Example ofscale() method usage

Algorithm

Scaling coefficient [17] is set as

d

√
normAn

normAx

,

where
A(s) = A0 + A1s + . . . + Ans

n, (3.3)

Ax is first non-zero coefficient of polynomial matrixA(s) by lowest degree andd = n−x. Then
methodscale(double) (see 3.3.12) with passed scaling coefficient is called.

3.3.12 Methodscale(double)

Scales polynomial matrix with given scaling coefficient.

Syntax

public ContinuousPolynomialMatrix scale(double aScaling)
throws PMScaleException
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Example

Figure 3.19 shows the example of scaling polynomial matrix. The polynomial matrix 3.2 is
created. Created polynomial matrix is scaled with scaling coefficient0.1and scaled polynomial
matrix (

0.01− 3s2 0.8s− 4s2 0.03− 5s2

−6s2 0.02− 7s2 −0.2− 8s2

)

is produced.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// scales matrix A with scaling coefficient 0.1
ContinuousPolynomialMatrix scaledCpm =

cpmA.scale(0.1);

Figure 3.19: Example ofscale() method usage

Algorithm

Polynomial matrix 3.3 scaled with coefficienta is polynomial matrix

anA0 + an−1A1
s

a
+ . . . + An

(
s

a

)n

,

i.e. each coefficient of polynomial matrix is multiplied by given scaling [17].

3.3.13 Methodsubtract(ContinuousPolynomialMatrix)

Subtracts continuous polynomial matrix.
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Syntax

public void subtract(ContinuousPolynomialMatrix aCpm)
throws PMsAddException

Example

Figure 3.20 shows the example of polynomial matrices subtraction. Polynomial matrices 3.2
and

B(s) =

(
7 + s 2s 9

4 −1s 6

)

are created. Polynomial matrixB(s) is subtracted from polynomial matrixA(s). After subtraction

A(s) =

(
−6− 1s− 3s2 6s− 4s2 −6− 5s2

−4− 6s2 2 + s− 7s2 −6− 2s− 8s2

)

andB(s) remains unchanged.

Algorithm

Subtracted polynomial matrix is multiplied by-1 (see 3.2.16) and then it is added (see 3.3.4).

3.3.14 MethodtoString()

Converts continuous polynomial matrix toString . Method should be used for debugging
purposes only.

Syntax

public String toString()

3.3.15 Methodtranspose()

Transposes continuous polynomial matrix.

Syntax

public void transpose()
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// coefficients of polynomial matrix B
double[][][] bCoef = {

{{ 7, 0, 9}, { 4, 0, 6}}, // coefficients at s^0
{{ 1, 2, 0}, { 0,-1, 0}} // coefficients at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// polynomial matrix B
ContinuousPolynomialMatrix cpmB =

new ContinuousPolynomialMatrix(bCoef);

// subtracts B from A
// A changes: A=A-B
// B is unchanged
cpmA.subtract(cpmB);

Figure 3.20: Example ofsubtract() method usage

Example

Figure 3.21 shows the example of polynomial matrix transposition. The polynomial ma-
trix 3.2 is created. After transposition

A(s) =

 1− 3s2 −6s2

8s− 4s2 2− 7s2

3− 5s2 −2s− 8s2

 .

Algorithm

Each coefficient of polynomial matrix is transposed.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// transposes A
cpmA.transpose();

Figure 3.21: Example oftranspose() method usage

3.4 ClassDiscretePolynomialMatrix

This class enables operating on discrete or two-sided polynomial matrices.

Package

cz.ctu.fee.dce.polynomial

Constants

• public static final char Z_SYMBOL - symbol “z ” used for displaying poly-
nomials

3.4.1 Constructor(double[][][])

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef)
throws IllegalPMCoefficientsException
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Example

Figure 3.22 shows how the instance of discrete polynomial matrix(
1− 3z2 8z − 4z2 3− 5z2

−6z2 2− 7z2 −2z − 8z2

)

is created.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at z^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at z^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at z^2

};

// polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new

DiscretePolynomialMatrix(aCoef);

Figure 3.22: Creation of discrete polynomial matrix instance

Algorithm

ConstructorPolynomialMatrix(double[][][], char) from ancestor class with
attributeaSymbol set to value of constantZ_SYMBOL(see 3.4) is called (see 3.2.1) and the
attribute holding value of lowest power of polynomial is set to zero.

3.4.2 Constructor(double[][][], char)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef,
char aSymbol) throws IllegalPMCoefficientsException
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Example

Figure 3.23 shows how the instance of discrete polynomial matrix(
1− 3x2 8x− 4x2 3− 5x2

−6x2 2− 7x2 −2x− 8x2

)

is created.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at x^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at x^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at x^2

};

// polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new

DiscretePolynomialMatrix(aCoef, ’x’);

Figure 3.23: Creation of discrete polynomial matrix instance

Algorithm

ConstructorPolynomialMatrix(double[][][], char) from ancestor class is
called (see 3.2.1) and the attribute holding value of lowest power of polynomial is set to zero.

3.4.3 Constructor(double[][][], int)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef,
int aLowestPower) throws IllegalPMCoefficientsException
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Example

Figure 3.24 shows how the instance of discrete polynomial matrix(
z−1 − 3z 8− 4z 3z−1 − 5z
−6z 2z−1 − 7z −2− 8z

)

is created.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at z^-1
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at z^0
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at z^1

};

// polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new

DiscretePolynomialMatrix(aCoef, 1);

Figure 3.24: Creation of discrete polynomial matrix instance

Algorithm

ConstructorDiscretePolynomialMatrix(double[][][], int, char) with at-
tributeaSymbol set to value of constantZ_SYMBOL(see 3.4) is called (see 3.4.4).

3.4.4 Constructor(double[][][], int, char)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef,
int aLowestPower, char aSymbol)
throws IllegalPMCoefficientsException
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Example

Figure 3.25 shows how the instance of discrete polynomial matrix(
x−4 − 3x−2 8x−3 − 4x−2 3x−4 − 5x−2

−6x−2 2x−4 − 7x−2 −2x−3 − 8x−2

)

is created.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at x^-4
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at x^-3
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at x^-2

};

// polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new

DiscretePolynomialMatrix(aCoef, 4, ’x’);

Figure 3.25: Creation of discrete polynomial matrix instance

Algorithm

ConstructorPolynomialMatrix(double[][][], char) from ancestor class is call-
ed (see 3.2.1). Positive value of parameteraLowestPower is checked and the attribute hold-
ing value of lowest power of polynomial is set to value of parameteraLowestPower . In case
or negative or zero value of parameteraLowestPower the IllegalPMCoefficients-
Exception informing about wrong value of parameter is thrown.

3.4.5 Constructor(DiscretePolynomialMatrix)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(
DiscretePolynomialMatrix aDpm)
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Example

Figure 3.26 shows how the instance of discrete polynomial matrix(
z−2 − 3 8z−1 − 4 3z−2 − 5
−6 2z−2 − 7 −2z−1 − 8

)

is created from the existing instance of discrete polynomial matrix.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at z^-2
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at z^-1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at z^0

};

// polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new

DiscretePolynomialMatrix(aCoef, 2);

// polynomial matrix B is created from existing
// continuous polynomial matrix A
DiscretePolynomialMatrix dpmB = new

DiscretePolynomialMatrix(dpmA);

Figure 3.26: Creation of discrete polynomial matrix instance

Algorithm

ConstructorPolynomialMatrix(PolynomialMatrix) from ancestor class is called
(see 3.2.3) and the attribute holding value of the lowest power of polynomial is the lowest power
of passed discrete polynomial matrix instance.

3.4.6 Methodadd(DiscretePolynomialMatrix)

Adds discrete polynomial matrix.

Syntax

public void add(DiscretePolynomialMatrix aDpm)
throws PMsAddException
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Example

Figure 3.27 shows the example of polynomial matrices addition. Polynomial matrices

A(s) =

(
2 + z 1

z−1 + 1 z

)
(3.4)

and

B(s) =

(
7z−1 + 1 9z−1

4z−1 6z−1

)

are created. Polynomial matrixB(s) is added to polynomial matrixA(s). After addition

A(s) =

(
7z−1 + 3 + z 9z−1 + 1

5z−1 + 1 6z−1 + z

)

andB(s) remains unchanged.

Algorithm

See algorithm in 3.3.4.

3.4.7 Methodconjugate()

Conjugates discrete polynomial matrix.

Syntax

public void conjugate()

Example and Algorithm

See example and algorithm in 3.3.5.

3.4.8 MethodconjugateAndTranspose()

Transposes and conjugates discrete polynomial matrix.

Syntax

public void conjugateAndTranspose()

Example and Algorithm

See example and algorithm in 3.3.6.
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 0, 0}, { 1, 0}}, // coefficients at z^-1
{{ 2, 1}, { 1, 0}}, // coefficients at z^0
{{ 1, 0}, { 0, 1}} // coefficients at z^1

};

// coefficients of polynomial matrix B
double[][][] bCoef = {

{{ 7, 9}, { 4, 6}}, // coefficients at z^-1
{{ 1, 0}, { 0, 0}} // coefficients at z^0

};

// polynomial matrix A
DiscretePolynomialMatrix dpmA =

new DiscretePolynomialMatrix(aCoef, 1);

// polynomial matrix B
DiscretePolynomialMatrix dpmB =

new DiscretePolynomialMatrix(bCoef, 1);

// adds B to A
// A changes: A=A+B
// B is unchanged
dpmA.add(dpmB);

Figure 3.27: Example ofadd() method usage

3.4.9 Methoddeterminant()

Computes determinant of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix determinant()
throws PMDeterminantException

Example and Algorithm

See example and algorithm in 3.3.7.
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3.4.10 Methodequals()

Compares discrete polynomial matrix with another object.

Syntax

public boolean equals(Object object)

Algorithm

See algorithm in 3.2.4

3.4.11 MethodgetDegree()

Returns degree of discrete polynomial matrix part with positive powers.

Syntax

public int getDegree()

3.4.12 MethodgetLowestPower()

Returns degree of discrete polynomial matrix part with negative powers.

Syntax

public int getLowestPower()

3.4.13 MethodisTwoSided()

Returns true if polynomial matrix is two-sided (it has both positive and negative powers),
otherwise returns false.

Syntax

public boolean isTwoSided()

3.4.14 Methodmultiply(DiscretePolynomialMatrix)

Multiplies discrete polynomial matrix by discrete polynomial matrix using default method
(see 3.4.15).
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Syntax

public void multiply(DiscretePolynomialMatrix aDpm)
throws PMsMultiplyException

Example and Algorithm

See example and algorithm in 3.3.10.

3.4.15 Methodmultiply(DiscretePolynomialMatrix, int)

Multiplies discrete polynomial matrix by discrete polynomial matrix choosing method for
multiplication.

Syntax

public void multiply(DiscretePolynomialMatrix aDpm,
int method) throws PMsMultiplyException

Example and Algorithm

See example and algorithm in 3.3.10.

3.4.16 Methodscale()

Scales polynomial matrix with scaling coefficient set automatically.

Syntax

public DiscretePolynomialMatrix scale()
throws PMScaleException

Example and Algorithm

See example and algorithm in 3.3.11.

3.4.17 Methodscale(double)

Scales polynomial matrix with given scaling coefficient.

Syntax

public DiscretePolynomialMatrix scale(double scaling)
throws PMScaleException
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Example and Algorithm

See example and algorithm in 3.3.12.

3.4.18 Methodsubtract()

Subtracts discrete polynomial matrix.

Syntax

public void subtract(DiscretePolynomialMatrix aDpm)
throws PMsAddException

Example and Algorithm

See example and algorithm in 3.3.13.

3.4.19 MethodtoString()

Converts polynomial matrix toString . Method should be used for debugging purposes
only.

Syntax

public String toString()

3.4.20 Methodtranspose()

Transposes discrete polynomial matrix.

Syntax

public void transpose()

Example and Algorithm

See example and algorithm in 3.3.15.

3.4.21 MethodvalueAt(Complex)

Computes value of polynomial matrix at specified complex point. Horner scheme [25] is
used computation.
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Syntax

public Complex[][] valueAt(Complex point)

Example

See example in 3.2.22.

3.4.22 MethodvalueAt(double)

Computes value of polynomial matrix at specified complex point. Horner scheme [25] is
used computation.

Syntax

public double[][] valueAt(double point)

Example

See example in 3.2.23.

3.5 ClassPolynomialMatrixFFT

This class enables performing direct and inverse fast Fourier transform (FFT) on polynomial
matrices.

Package

cz.ctu.fee.dce.polynomial

3.5.1 MethoddirectFFT(ContinuousPolynomialMatrix, int)

Evaluates real continuous polynomial matrix at given number of points equally distributed
along the unit circle in complex plane. Direct fast Fourier transform (FFT) is used for evaluation.

Syntax

public static Complex[][][] directFFT(
ContinuousPolynomialMatrix aCpm, int aSamples)
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Example

Figure 3.28 shows the example of direct and inverse FFT on continuous polynomial matrix.
The polynomial matrix

A(s) =

(
1− 3s2 8s− 4s2 3− 5s2

−6s2 2− 7s2 −2s− 8s2

)

is created. Direct FFT is applied on polynomial matrixA(s) at three points. It produces set of
constant complex matrices{(

−2 4 −2
−6 −5 −10

)
,

(
2.5± j2.6 −2± j10.39 −5.5± j4.33
3± j5.2 5.5± j6.06 5± j5.2

)}
.

This set is transformed back using inverse FFT and polynomial matrixA(s) is reconstructed.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0, 3}, { 0, 2, 0}}, // coefficients at s^0
{{ 0, 8, 0}, { 0, 0,-2}}, // coefficients at s^1
{{-3,-4,-5}, {-6,-7,-8}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// direct FFT transform on polynomial
// matrix A in 3 samples
Complex[][][] cpmATransformed =

PolynomialMatrixFFT.directFFT(cpmA, 3);

// inverse FFT transform producing continuous
// polynomial matrix of degree 3
ContinuousPolynomialMatrix cpmB =

PolynomialMatrixFFT.inverseFFTContinuous(
cpmATransformed, 3);

Figure 3.28: Example of direct and inverse FFT on continuous polynomial matrix
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Algorithm

Discrete Fourier transform of polynomial matrix is described in [11]. Set of polynomials

pij = [p0,ij, p1,ij, . . . pr,ij], i ∈< 1; x >, j ∈< 1; y > (3.5)

from polynomial matrix
P(s) = P0 + P1s + . . . + Prs

r (3.6)

of degreer with x rows andy columns, where

Pk =


pk,11 pk,12 · · · pk,1y

pk,21 pk,22 · · · pk,2y
...

...
.. .

...
pk,x1 pk,x2 · · · pk,xy

 , k ∈< 0; r >, (3.7)

is created. Each polynomialpij is transformed ins samples using FFT algorithm [23], i.e. sets
of complex numbersqij are computed. Finally set of constant complex matrices

Ql =


ql,11 ql,12 · · · ql,1y

ql,21 ql,22 · · · ql,2y
...

...
...

...
ql,x1 ql,x2 · · · ql,xy

 , l ∈< 0; s > (3.8)

is reconstructed fromqij corresponding to discrete Fourier transform of polynomial matrixP(s).

3.5.2 MethoddirectFFT(DiscretePolynomialMatrix, int)

Evaluates real discrete polynomial matrix at given number of points equally distributed along
the unit circle in complex plane. Direct fast Fourier transform (FFT) is used for evaluation.

Syntax

public static Complex[][][] directFFT(
DiscretePolynomialMatrix aDpm, int aSamples)

Example

See example in 3.28.

Algorithm

See algorithm in 3.5.1.
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3.5.3 MethodinverseFFTContinuous(Complex[][][], int)

Interpolates real continuous polynomial matrix from set of constant complex matrices. These
constant complex matrices correspond to real polynomial matrix evaluated at points equally dis-
tributed along the unit circle. Inverse fast Fourier transform (FFT) is used for interpolation.

Syntax

public static ContinuousPolynomialMatrix
inverseFFTContinuous(Complex[][][] aTransformedCPM,
int aDegree)

Example

See example in 3.28.

Algorithm

Inverse discrete Fourier transform of polynomial matrix is described in [11]. Sets of complex
numbers

qij = [q0,ij, q1,ij, . . . qs,ij], i ∈< 1; x >, j ∈< 1; y >

are created from transformed polynomial matrix 3.8. Each setqij is transformed inr samples
using inverse FFT algorithm [23], i.e. sets of numberspij are computed. Finally coefficients 3.7
of polynomial matrix 3.6 are reconstructed from set of polynomials 3.5 corresponding to inverse
discrete Fourier transform of 3.8.

3.5.4 MethodinverseFFTDiscrete(Complex[][][], int, int)

Interpolates real discrete polynomial matrix from set of constant complex matrices. These
constant complex matrices correspond to real polynomial matrix evaluated at points equally dis-
tributed along the unit circle. Inverse fast Fourier transform (FFT) is used for interpolation.

Syntax

public static DiscretePolynomialMatrix inverseFFTDiscrete(
Complex[][][] aTransformedDPM, int aDegree, int aLowestPower)

Example

See example in 3.28.
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Algorithm

See algorithm in 3.5.3.

3.6 ClassContinuousAXB

This class enables solving of linear equationA(s)X(s) = B(s) with continuous polynomial
matrices.

Package

cz.ctu.fee.dce.polynomial

3.6.1 Constructor

Solves linear equationA(s)X(s) =B(s) with polynomial matrices.

Syntax

public ContinuousAXB(ContinuousPolynomialMatrix aA,
ContinuousPolynomialMatrix aB) throws PMAXBException

Example

Figure 3.29 shows how linear equation(
1 0
s 1

)
X(s) =

(
s
1

)

is solved. The solution

X(s) =

(
s

1− 1s2

)

is found.

64



CHAPTER 3. LIBRARY DESCRIPTION

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{1, 0}, {0, 1}}, // coefficient at s^0
{{0, 0}, {1, 0}} // coefficient at s^1

};
// coefficients of polynomial matrix B
double[][][] bCoef = {

{{1, 0}, {0, 1}}, // coefficient at s^0
{{0, 0}, {1, 0}} // coefficient at s^1

};
// polynomial matrix A
ContinuousPolynomialMatrix cpmA = new

ContinuousPolynomialMatrix(aCoef);

// polynomial matrix B
ContinuousPolynomialMatrix cpmB = new

ContinuousPolynomialMatrix(bCoef);

// instance of A(s)X(s) = B(s)
// equation solver is created
// solution X(s) is found
ContinuousAXB axb = new ContinuousAXB(cpmA, cpmB);
ContinuousPolynomialMatrix cpmX = axb.getX();

Figure 3.29: Solving of linear equation

Algorithm

The algorithm is described in [8, 17]. The linear equation with continuous polynomial ma-
tricesA(s)X(s) = B(s), whereA(s), B(s) are known polynomial matrices andX(s) is searched
polynomial matrix, is converted to the linear equation with constant matrices

ASXC = BC, (3.9)

where
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AS =



A0 0 · · · 0
A1 A0 · · · 0
...

...
... 0

AnA
AnA−1

... A0
...

...
...

...
0 0 · · · AnA


, XC =


X0

X1
...

XnX

 , BC =



B0

B1
...

BnB

...
0


and

A(s) = A0 + A1s + . . . + AnA
snA ,

X(s) = X0 + X1s + . . . + XnX
snX ,

B(s) = B0 + B1s + . . . + BnB
snB .

At first lower and upper bounds of degreenX of searched polynomial matrixX(s) are found. Bi-
nary halving algorithm finds the minimal degreenX, if exists (ranks of Sylvester matrixASmust

equal to rank of extended matrix
(

AS BC

)
). Then solution of equation 3.9 is found. And

finally polynomial matrixX(s) is recreated from column matrixXC.

3.6.2 MethodgetX()

Gets solutionX(s) of linear equationA(s)X(s) =B(s).

Syntax

public ContinuousPolynomialMatrix getX()

Example

See example in 3.29.

3.7 ClassDiscreteAXB

This class enables solving of linear equationA(z)X(z) = B(z) with discrete (one-sided only)
polynomial matrices.

Package

cz.ctu.fee.dce.polynomial

3.7.1 Constructor

Solves linear equationA(z)X(z) = B(z) with polynomial matrices.
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Syntax

public DiscreteAXB(DiscretePolynomialMatrix aA,
DiscretePolynomialMatrix aB) throws PMAXBException

Example

Figure 3.30 shows how linear equation(
1 0

z−1 1

)
X(z) =

(
z−1

1

)

is solved. The solution

X(z) =

(
z−1

−1z−2 + 1

)

is found.

Algorithm

One sided discrete polynomial matricesA(z) andB(z) are converted to continuous polyno-
mial matrices. Continuous solution (see 3.6) is found and it is converted to discrete polynomial
matrix.

3.7.2 MethodgetX()

Gets solutionX(z) of linear equationA(z)X(z) = B(z).

Syntax

public DiscretePolynomialMatrix getX()

Example

See example in 3.30.

3.8 ClassAXBYC

This class enables solving of linear equationA(s)X(s) + B(s)Y(s) = C(s) with continuous
polynomial matrices.

Package

cz.ctu.fee.dce.polynomial
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 0, 0}, { 1, 0}}, // coefficients at z^-1
{{ 1, 0}, { 0, 1}} // coefficients at z^0

};

// coefficients of polynomial matrix B
double[][][] bCoef = {

{{ 1}, { 0}}, // coefficients at z^-1
{{ 0}, { 1}} // coefficients at z^0

};

// polynomial matrix A
DiscretePolynomialMatrix dpmA =

new DiscretePolynomialMatrix(aCoef, 1);

// polynomial matrix B
DiscretePolynomialMatrix dpmB =

new DiscretePolynomialMatrix(bCoef, 1);

// instance of A(z)X(z) = B(z)
// equation solver is created
// solution X(z) is found
DiscreteAXB axb = new DiscreteAXB(dpmA, dpmB);
DiscretePolynomialMatrix dpmX = axb.getX();

Figure 3.30: Solving of linear equation

3.8.1 Constructor

Solves linear equationA(s)X(s) +B(s)Y(s) =C(s) with polynomial matrices.

Syntax

public AXBYC (ContinuousPolynomialMatrix aA,
ContinuousPolynomialMatrix aB, ContinuousPolynomialMatrix aC)
throws PMAXBYCException
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Example

Figure B.1 shows how linear equation(
1 0
s 1

)
X(s)+

(
1 0
s 1

)
Y(s) =

(
2s
2

)

is solved. Solutions

X(s) =

(
2s
−2s2

)
andY(s) =

(
0
2

)

are found.

Algorithm

The linear equation with continuous polynomial matricesA(s)X(s) +B(s)Y(s) =C(s) is con-
verted to the linear equation

(
A(s) B(s)

)( X(s)
Y(s)

)
= C(s), (3.10)

whereA(s), B(s), C(s) are known polynomial matrices andX(s), Y(s) are searched polynomial
matrices. Solution of equation 3.10is found with usage of classContinuousAXB (see 3.6).
This solution in split into two searched polynomial matricesX(s),Y(s).

3.8.2 MethodgetX()

Gets solutionX(s) of linear equationA(s)X(s) +B(s)Y(s) =C(s).

Syntax

public ContinuousPolynomialMatrix getX()

Example

See example in B.1.

3.8.3 MethodgetY()

Gets solutionY(s) of linear equationA(s)X(s) +B(s)Y(s) =C(s).

Syntax

public ContinuousPolynomialMatrix getY()
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Example

See example in B.1.

3.9 ClassMathMl

This class enables exporting polynomial matrices into commonly used formats.

Package

cz.ctu.fee.dce.polynomial.utils

3.9.1 The MathML Format

MathML defined by W3C is intended to facilitate the use and re-use of mathematical and
scientific content on the web, and for other applications such as computer algebra systems, print
typesetting, and voice synthesis. MathML can be used to encode both the presentation of mathe-
matical notation for high-quality visual display, and mathematical content, for applications where
the semantics plays more of a key role such as scientific software or voice synthesis.

MathML is cast as an application of XML. As such, with adequate style sheet support, it
will ultimately be possible for browsers to natively render mathematical expressions. For the
immediate future, several vendors (e.g. MathPlayer by Design Science) offer applets and plug-
ins which can render MathML in place in a browser [3].

Robert Hornych, a graduate of class 2001 at CTU FEE Department of Control Engineering,
devised a couple of Matlab functions for converting polynomial matrix objects from Matlab
to MathML and vice versa. Mathematica and Maple claim the same features in their latest
releases. Converting polynomial matrix objects to MathML is also available in this package
using class MathMl. An example of polynomial matrix displayed by an Internet browser is
shown in figure E.3.

3.9.2 MethodpmToMml(String, PolynomialMatrix)

This method converts polynomial matrix (both continuous and discrete) into MathML format.
Polynomial matrix stored in MathML format can be for example very easily presented on web
pages [15].

Syntax

public static void pmToMml(String aFile, PolynomialMatrix aPm)
throws Exception
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Example

Figure 3.31 shows implementation of conversion polynomial matrix(
1− 3s2 8s− 4s2

−6s2 2− 7s2

)

into MathML format. Generated file is shown in figure B.2.

// coefficients of polynomial matrix A
double[][][] aCoef = {

{{ 1, 0}, { 0, 2}}, // coefficients at s^0
{{ 0, 8}, { 0, 0}}, // coefficients at s^1
{{-3,-4}, {-6,-7}} // coefficients at s^2

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA =

new ContinuousPolynomialMatrix(aCoef);

// saves matrix A into matrix.mml
// file(MathML format)
MathMl.pmToMml("matrix.mml", cpmA);

Figure 3.31: Conversion of polynomial matrix into MathML

Algorithm

At first DOM (Document Object Model) [2]is created from existing polynomial matrix ob-
ject. Created DOM corresponds to MathML structure having presentation markup elements [15].
It is transformed [2] to the standard XML format and saved as a file.

3.9.3 MethodtransformMml()

This method transforms polynomial matrix stored in MathML format into format defined by
given transformation.

As it was said in subsection 3.9.1 the MathML format is universal format for mathemat-
ical notations. It is transformable by XSLT into any other format by existing transformation
file (XSL) [2]. For example polynomial matrix saved in MathML format can be transformed into
both HTML or TEX format.
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Syntax

public static void transformMml(String, String, String)
throws Exception

Example

Figure 3.32 shows conversion of file in MathML format (it can be polynomial matrix) into
file having TEX format using XSLT transformation.

// transforms existing matrix matrix.mml in MathML
// format into matrix.tex file in TeX format using
// XSLT transformation defined in mmltex.xsl file
MathMl.transformMml("matrix.mml", "xsl/mmltex.xsl",

"matrix.tex");

Figure 3.32: Conversion of MathML file into TEX file

Algorithm

The XSLT transformation [2] is used.
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Tests

It is necessary to test implemented methods in order to provide usable library. All methods
must prove correct functionality of implemented algorithms. Functionality tests are discussed
in the first section. If an error was reported by functionality test, it was fixed. Functionality
tests can be launched by library user to see the error report. It is also necessary to have as fast
as possible algorithms enabling on-line usage. Performance tests of methods are described in
the second section. The performance of algorithms was taken in account concerning Java and
numerical computing during implementation. The performance was improved where necessary
and possible.

4.1 Functionality Tests

In this section it is described how functionality tests are constructed. It is explained how tests
are implemented using JUnit framework and simple example of functionality test is shown.

Functionality test are called JUnit tests because JUnit testing framework [4, 13] is used.
Functional testing is based on comparing expected and computed output data for the same input
data. Input and expected data are easily generated by Polynomial Toolbox for Matlab [17] and
exported to Java format or they can be created by hand. Expected and computed data are com-
pared using some of overloaded static methodsAssert.assertEquals() . Each method
of provided programming interface (all public methods are tested) is tested for several different
data. It is tested for randomly generated data and then for special cases, i.e. case when exception
is thrown or zero division, etc. Not only output data are tested but input data are tested that they
were not changed as well. Test of each method for particular data is implemented in particular
test methods. Figure 4.1 shows the example of test method for polynomial matrices addition.
The following paragraph describes tests structure.

The test class calledtest caseextendingTestCase class is created for each class of pro-
vided programming interface. It contains test methods. Most of test methods uses same input
data. This data are set in overloaded methodsetUp() and destroyed in overloaded method
tearDown() . These methods are launched before, respectively after, running of each test
method automatically by JUnit framework. All test cases are launched from class calledtest suite.
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public void testAdd() {

// expected matrix A for comparison
ContinuousPolynomialMatrix expectedA =

new ContinuousPolynomialMatrix(expectedCoef1);

// expected matrix B for comparison
ContinuousPolynomialMatrix expectedB =

new ContinuousPolynomialMatrix(bCoef);

try {
// tested method variables cpmA and cpmB
// were set in setUp() method
cpmA.add(cpmB);

} catch (Exception e) {
// handle exception
System.out.println(e);

}

// comparison of expected and output data
Assert.assertEquals(expectedA, cpmA);
Assert.assertEquals(expectedB, cpmB);

}

Figure 4.1: The example of test method

Test suite displays tests structure and their results. MethodsAssert.assertEquals() pro-
duce messages when errors occur. Classes with JUnit tests are placed in packagecz.ctu.fee.-
dce.polynomial.tests.junit and they are listed in appendix A. Examples of JUnit test
output can be found in appendix C.

4.2 Performance Tests

It is described how performance tests are constructed in this section. It is explained how tests
are implemented using framework for performance tests and simple example of performance test
is shown.

The framework for launching performance tests (see appendix A) was written. Performance
tests are based on measuring duration of tested method. Input data are randomly generated for
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tests. Time is measured by usingTime.init() andTime.getElapsedTime() methods
(see figure A.4, [16]). Test of each method is implemented intest method. Each test method
writes result of test (elapsed time) to a text file and generates Matlab command into m-file for
launching the same test in Polynomial Toolbox for Matlab [17]. Figure 4.2 shows the example of
test method for polynomial matrices addition. The following paragraph describes tests structure.

public void testMutliplyDefault() throws Exception {

// saves the initial time
Time.init();

// performs test method, cpmA and cpmB
// are created by setUp() method
cpmA.multiply(cpmB,

PolynomialMatrix.MULTIPLY_DEFAULT
);

// saves elapsed time to file and
// generates Matlab command A*B to m-file
writeResult(Time.getElapsedTime(), "A*B");

}

Figure 4.2: The example of test method

The test class calledtest caseextendingPerformanceTest class is created for each class
of provided programming interface. It contains test methods. Most of test methods use the
same input data. This data are set in overloaded methodsetUp() and destroyed in overloaded
methodtearDown() . These methods are launched before, respectively after, running of each
test method automatically by test framework. Test cases are launched fromPerformance-
Runner class. It uses Java Reflection [22] for launching test cases. Each test case is launched
several times for different sizes of matrix and different degrees of matrix. Number of runs,
maximal matrix size and maximal matrix degree are given as parameters. Results of test (test
case) are written to the text file for further statistical processing and Matlab m-file is generated
for performing the same test case in Polynomial Toolbox for Matlab [17]. All test cases are
launched from classAllPerformanceTests called test suite. Classes with performance
tests are placed in packagecz.ctu.fee.dce.polynomial.tests.performance and
they are listed in appendix A.

Both JUnit and performance tests were described. Graphical results of performance tests can
be found in appendix D. Test results are assessed in the following chapter.
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Conclusion

This chapter includes summary of the whole thesis with comparison of the proposed package
with Polynomial Toolbox for Matlab. Some future plans for the package are outlined.

5.1 Comparison with Polynomial Toolbox for Matlab

Methods that use more complex algorithms were tested for their time performance on several
environments and compared to corresponding methods of Polynomial Toolbox version 3.0.10 for
Matlab 6.5 (see appendix D). These results were found out:

• Computational times increase slower with increasing degree than with increasing size of
the polynomial matrix. It is due to proposed storage of coefficients of polynomial matrix.
Coefficients are stored as 3-dimensional array where degree index is at the first dimension
and row and column indexes are at the second and at the third index of array.

• The method for computing value of polynomial matrix at given point is faster than corre-
sponding method in Polynomial Toolbox for Matlab. Polynomial Toolbox converts scalar
to constant matrix of the same sizes as sizes of polynomial matrix and evaluates polyno-
mial matrix in three nested loops contrary to one loop without any conversions of scalar in
Java package.

• Scaling method has got much better performance than the scaling method in Polynomial
Toolbox for Matlab. It might be caused by several checks of input arguments correctness
in Polynomial Toolbox contrary to no need to check input arguments in Java package.

• All algorithms for two-sided polynomial matrices seem to be as fast as the algorithms
for one-sided polynomial matrices contrary to slower methods for two-sided polynomial
matrices in Polynomial Toolbox for Matlab.

• Methods which use discrete Fourier transform (determinant, roots, rank) have worse per-
formance than methods in Polynomial Toolbox for Matlab. ClassPolynomialMatrix-
FFT uses fast Fourier transform algorithm of set of points. It would be more efficient if
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existed method for fast Fourier transform of set of constant matrices (at the time of im-
plementation library JMSL 2.0 included classes for fast Fourier transform of set of points
only). This is the reason why default algorithm for multiplication of polynomial matrices
is faster than the algorithm using discrete Fourier transform of polynomial matrix.

• The performance of the other methods is comparable to performance of corresponding
methods in Polynomial Toolbox for Matlab.

5.2 Summary

An object-oriented library application programming interface enabling operating on polyno-
mial matrices was created. It was designed, implemented and properly tested both for function-
ality and for performance.

The structure of classes was designed while considering advantages and disadvantages of
Java language for numerical computing. Working with multidimensional arrays and complex
numbers are the most important issues that were considered during analysis. These aspects
had the main influence on choice of Java library for computing with constant matrices. The
algorithms for operating on polynomial matrices are based on algorithms for operating on con-
stant matrices. The JMSL 2.0 library by Visual Numerics was chosen. There are two classes
ContinuousPolynomialMatrix andDiscretePolynomialMatrix inheriting from
abstract classPolynomialMatrix . Base functionality common for both child classes is
included inPolynomialMatrix . ContinuousPolynomialMatrix enables operating
on continuous polynomial matrices andDiscretePolynomialMatrix enables operating
discrete-time polynomial matrices or two-sided polynomial matrices.

Base classes were implemented in correspondence with proposed structure. They contain
methods that enable performing basic linear algebra operations on polynomial matrices. The
classPolynomialMatrixFFT for inverse and direct discrete Fourier transform of polynomial
matrix was implemented using fast Fourier transform algorithm. This algorithm is used in some
algorithms like computing determinant or rank of polynomial matrix. ClassesContinuousAXB ,
DiscreteAXB andAXBYCwere created. They can be used for solving linear equations with
polynomial matrices.

All methods of programming interface were tested for functionality using JUnit framework.
About 100 successful tests were launched. Methods that use more complex algorithms were
tested for their time performance on several environments and compared to corresponding meth-
ods of Polynomial Toolbox for Matlab.

This is fully functional, usable and documented initial version of library providing applica-
tion programming interface for operating on polynomial matrices. It is operating system inde-
pendent. The JDK (Java Development Kit) distributed for free and JMSL 2.0 by Visual Numer-
ics are needed for its usage. Such a library can be used by programmers who want to develop
software (deployed on the Internet or locally) for automatic control system design and signal pro-
cessing applications, it can be used for educational purposes or by researchers. More information
about project can be found at [16], screenshots of project’s home page are found in appendix E.
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5.3 Future Extensions

It is planned to implement other functionalities like:

• Greatest common divisor (right and left) of two polynomial matrices,

• Fast solvers forA(s)X(s)=0 based on displacement rank theory for block Toeplitz matri-
ces [26],

• Reliable triangularization of a polynomial matrix [8],

• Spectral factorization of a para-Hermitian polynomial matrix,
i.e. a quadratic equationX(-s)X(s)=A(s) andX(z-1)X(z)=A(z,z-1) [20],

• J-spectral factorization of a para-Hermitian polynomial matrix,
i.e. a quadratic equationX(-s)JX(s)=A(s) andX(z-1)JX(z)=A(z,z-1) [20].
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Figure A.1: Package diagram
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Figure A.2: Class diagram of packagecz.ctu.fee.dce.polynomial
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Figure A.3: Class diagram of packagecz.ctu.fee.dce.polynomial.exceptions
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Figure A.4: Class diagram of packagecz.ctu.fee.dce.polynomial.utils
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Figure A.5: Class diagram of packagecz.ctu.fee.dce.polynomial.tests.junit

Figure A.6: Class diagram of packagecz.ctu.fee.dce.polynomial.tests.performance
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Figure A.7: Storage of coefficients
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// coefficients of polynomial matrix A
double[][][] aCoef = {

{{1, 0}, {0, 1}}, // coefficient at s^0
{{0, 0}, {1, 0}} // coefficient at s^1

};
// coefficients of polynomial matrix B
double[][][] bCoef = {

{{1, 0}, {0, 1}}, // coefficient at s^0
{{0, 0}, {1, 0}} // coefficient at s^1

};
// coefficients of polynomial matrix C
double[][][] cCoef = {

{{0}, {2}}, // coefficient at s^0
{{2}, {0}} // coefficient at s^1

};

// polynomial matrix A
ContinuousPolynomialMatrix cpmA = new

ContinuousPolynomialMatrix(aCoef);

// polynomial matrix B
ContinuousPolynomialMatrix cpmB = new

ContinuousPolynomialMatrix(bCoef);

// polynomial matrix C
ContinuousPolynomialMatrix cpmC = new

ContinuousPolynomialMatrix(cCoef);

// instance of A(s)X(s) + B(s)Y(s) = C(s)
// equation solver is created
// solution X(s) and Y(s) is found
AXBYC axbyc = new AXBYC(cpmA, cpmB, cpmC);

// solution X(s) and Y(s)
ContinuousPolynomialMatrix cpmX = axbyc.getX();
ContinuousPolynomialMatrix cpmY = axbyc.getY();

Figure B.1: Solving of linear equation
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<?xml version="1.0" encoding="UTF-8"?>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<mfenced close=")" open="(">
<mtable>

<mtr>
<mtd><mrow>

<mo/><mn>1</mn>
<mo>-</mo><mn>3</mn>
<msup><mi>s</mi><mn>2</mn></msup>

</mrow></mtd>
<mtd><mrow>

<mo/><mn>8</mn><mi>s</mi>
<mo>-</mo><mn>4</mn>
<msup><mi>s</mi><mn>2</mn></msup>

</mrow></mtd>
</mtr>
<mtr>

<mtd><mrow>
<mo>-</mo><mn>6</mn>
<msup><mi>s</mi><mn>2</mn>
</msup>

</mrow></mtd>
<mtd><mrow>

<mo/><mn>2</mn>
<mo>-</mo><mn>7</mn>
<msup><mi>s</mi><mn>2</mn>
</msup>

</mrow></mtd>
</mtr>

</mtable>
</mfenced>

</math>

Figure B.2: Polynomial matrix in MathML format
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Figure C.1: Output of JUnit tests - all tests passed
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Figure C.2: Output of JUnit test - tests with errors
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Figure D.1: Test protocol of performance tests
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Figure E.1: Home page
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Figure E.2: News page
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Figure E.3: Code example
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Figure E.4: Performance tests
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Figure E.5: Downloads
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Figure E.6: Design
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Figure E.7: Java documentation
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Figure E.8: Links
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