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Abstract

Huge natural disaster events can be so devastating that they often overwhelm human
rescuers and yet, they seem to occur more often. The TRADR (Long-Term Human-
Robot Teaming for Robot Assisted Disaster Response) research project aims at devel-
oping methodology for heterogeneous teams composed of human rescuers as well as
ground and aerial robots. While the robots swarm the disaster sites, equipped with
advanced sensors, they collect a huge amount row-data that cannot be processed ef-
ficiently by humans. Therefore, in the frame of the here presented work, a semantic
interpreter has been developed that crawls through the raw data, using state of the art
object detection algorithms to identify victim targets and extracts all kinds of informa-
tion that is relevant for rescuers to plan their missions. Subsequently, this information
is restructured by a reasoning process and then stored into a high-level database that
can be queried accordingly and ensures data constancy.
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1 Introduction

Earthquakes, hurricanes, tsunamis or simply fire, just to name a few, are common disas-
ter scenarios especially in the era of climate change, that can be so devastating in mag-
nitude that they often overwhelm human rescuers. Robots however don’t fatigue from
multi day operations or suffer emotional distress. Therefore, equipped with advanced
sensors, they are perfect assistants and have the potential to make a crucial difference
when it comes to saving lives. Project TRADR (Long-Term Human-Robot Teaming
for Robot Assisted Disaster Response (http://www.tradr-project.eu)) aims at de-
veloping methodology for heterogeneous teams composed of human rescuers as well as
ground and aerial robots. [1] As the robots swarm the disaster sites they scan their
environment and collect all sorts of raw data. After such a sortie the data of all robots
is stored into a main low-level database.
The ultimate goal of this project is to develop and implement a semantic interpreter
that will search the for humans unmanageable amount of raw data (mainly images) for
potential targets and then lift extracted information about its findings into a high-level
database where it can be easily accessed by rescuers to plan further operations. To
accomplish this task, state of the art objected detection and recognition software, in
particular faster-rcnn was used and integrated into the semantic interpreter. There-
fore, prior to this work, its performance was experimentally evaluated on artificial
disaster datasets. Moreover, in this work, a simulation pipeline was implemented for
the purpose of developing and testing the semantic interpreter.
In the following the content and structure of this work is briefly presented:

• Chapter 2 gives a brief review of fast-rcnn’s (faster-rcnn’s predecessor) perfor-
mance results on artificial victim datasets that have been evaluated prior to this work.
Furthermore, basic knowledge about state of the art convolution neural networks is
provided before faster-rcnn’s main features of are outlined.
• Chapter 3 aims to equip the reader with all knowledge about the TRADR framework

required for the understanding of the semantic interpreter’s working principles and
the content provided in this work.
• Chapter 4 is the main chapter of this work and explains the semantic interpreter in

great detail. First fundamental knowledge about databases in general is given with
regard to the presented work. Subsequently all methods of low-level data extraction
process including object detection and recognition are illustrated. In addition to
that, all aspects and methods of the high-level reasoning process are demonstrated.
Finally the implementation of the simulation pipeline is discussed.
• Chapter 5 evaluates and discusses the performance of the semantic interpreter as

it was developed during this work. Therefore, the two main simulation scenarios
are illustrated and the corresponding results presented. Besides that, weaknesses are
outlined and improvement suggestions are made.
• Chapter 6 simply provides a user manual of how to install and run the semantic

interpreter.
• Chapter 7 finally summarizes the whole work and derives a conclusion based on the

evaluation made in the previous chapter and with respect to the original goal.
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2 Previous work

The heart of the semantic interpreter is faster-rcnn which is a special type of a convo-
luted neural network (CNN)[2](https://github.com/rbgirshick/py-faster-rcnn).
It was mainly chosen for its extremely fast performance. There are tow reasons for
that: First, multiple robots crawling and recording a disaster side with multiple cam-
eras can produce a huge amount of data in little time. As the semantic interpreter
has to process at least most of those images and with object detection being a compu-
tational expensive task, the detection speed is of importance. Although the semantic
interpreter is not supposed to run in real time on each robot but rather offline on a
central main computation unit, this is still true. Second, TRADR’s ultimate goal is
to rescue victims of disastrous events. Therefore, successfully detecting and localizing
targets is essential to accomplish this task. Whether a victim is detected or not could
therefore make the difference between life and death.
For those reasons and also because disaster-site data naturally differs from conventional
training data, the performance of the fast-rcnn object detection algorithm was anal-
ysed on an artificial victim dataset in preparation to this work. Therefore, the most
important results are restated in section 2.2 below. The semantic interpreter however
uses fast-rcnn’s improved and newer version called faster-rcnn. In the following its
features are briefly explained.

2.1 Detection using faster-rcnn

In particular, the Caffe network model VGG CNN M 1024 was used, which is capable
of detecting and classifying objects of 20 different classes. It was pre-trained using
faster-rcnn and provided by their authors as well.[2]
Since this work is mostly concerned with the implementation of the semantic interpreter
with the corresponding data extraction, reasoning process and simulation pipeline, the
detection algorithm will be treated rather as a black box that is plugged into the
interpreter. However a few basic features and concepts that are of relevance for this
work are explained in the following:

2.1.1 Convolutional neural networks (CNNs)

Convolutional neural networks are a special type of so called artificial neural networks
(ANNs). They are statistical learning algorithms that are inspired by natural neural
networks like the human brain. Similar to that, they can be viewed as a system of inter-
connected neurons that propagate information given as the input through the network,
in order to compute a output. The amount of inputs is usually large compared to the
output. This is because each neuron computes a single output for multiple inputs and
the same amount of weights (inner product). The weights can be adjusted by different
machine learning algorithms (e.g. backward-propagation in supervised learning) until
the network produces the desired output for a given input. [3] [4]
Neural networks are usually composed of different layers that serve different purposes.
CNNs however are special in that they are composed out of specific types of layers. The
most important are therefore briefly explained in the following.

6
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2.1 Detection using faster-rcnn

2.1.2 Layers

Convolutional neural networks are mainly composed of three different layer-types.
Those are:

• Convolutional layers are the core building blocks of a CNNs. Such a layer receives a
single 2-dimensional input, usually the feature map computed by the previous layer or
a image. It then computes multiple feature maps as an output by convolving filters
across the input feature map (one output feature map for each filter). Figure 2.2
provides a visualization. The filters can be seen as the parameters of a convolutional
layer and are adjusted during training. [5] [6] [4] [3]
• Max-pooling layers are mainly used for dimensional reduction of propagating fea-

ture maps and often present after a convolutional layer. There are many different
pooling layer types. Here only the most commonly used max-pooling layer is ex-
plained. Neurons in this layer take rectangular sub-regions of 2-dimensional input
feature maps and find the maximum among all elements within that sub-region which
in turn is send to the output. This is operation is illustrated by figure 2.1. [3][6]
• Fully connected layers perform high-level reasoning. As the name suggests a fully

connected layer connects all outputs of the previous layer to all neurons present in the
current layer (figure 2.2). Since their output does not form a rectangular grid, they
are often followed by layers of the same type instead of convolutional and max-pooling
layers. That is also why they normally occur at the end of a network. [3][4]

Figure 2.1 Illustration of max pooling. Provided by [7]

2.1.3 Feature vectors

Feature vectors exist for every layer of a CNN. They are simply the output of a specific
layer that can also be located in the middle of the network. It is therefore dependent
on all previous layers in the network but not on any of the following ones. Their length
depends on the structure of the neural network and on the layer itself for which the
features are extracted.
In this work, feature vectors are extracted for the last two layers of the VGG CNN M 1024

network model and then used to compare similarity between multiple detection. Section
4.2.1 provides more detailed information about that.

7



2 Previous work

Figure 2.2 Architecture of a convolutional neural network. In this case, the convolutional
layers are fully connected. Both convolutional layers use a kernel of 5 x 5. Provided by [4]

2.1.4 Region proposal network (RPN)

In order to recognize and classify objects in images, they have to be identified as a
region of interest (ROI) within the scene of the image first. This task is referred to
as object detection. Here lies the main difference and improvement of faster-rcnn

compared to it’s predecessor. Fast-rcnn uses the region proposal algorithm ”selective
search” that is executed prior to the classification task. Those regions of the image are
then cropped and fed to the network as an input. Figure 2.3 gives a illustration of that.
In contrast to that, faster-rcnn uses so called region proposal networks. Here the
whole image is fed to the network at once and only then, after convolution and pooling
was applied, region of interests are generated based on the size reduced feature map.
Those ROIs are then fed to the fully connected layers. Mainly due to the reduced size
of the feature map compared to the full image, faster-rcnn is able to compute region
proposals a lot faster compared to the classical approach.
Although the region proposal method increases detection speed a lot, the classification
performance does not suffer. Consequently it can be assumed that the evaluation results
for fast-rcnn described in the following section also apply to faster-rcnn at worst.
[2] [6]
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2.2 Performance analysis on artificial victim dataset

Figure 2.3 Object detection system overview. The system (1) takes an input image, (2) extracts
around 2000 bottom-up region proposals, (3) computes features for each proposal using a large
convolutional network (CNN), and then (4) classifies each region using class-specific linear
SVMs. Provided by [2]

2.2 Performance analysis on artificial victim dataset

In the following, the main evaluation results are shortly restated without a detailed
explanation. However, the full information about conducted experiments and results
can be found here: (https://gitlab.fel.cvut.cz/students/kashammer-phillip/
blob/master/idp/report/report.pdf)[8]
Performance analysis of fast-rcnn was done by feeding the algorithm with artificial dis-
aster datasets and evaluating the receiver operation characteristic (ROC) graph which
is generated by plotting the true-positive-rate (TPR) against the false-positive-rate as
the discrimination threshold varies. Examples of artificial victim images are illustrated
by figure 2.4. Three similar experiments have been conducted which only differ in the
composition of the input dataset. For the purpose of this work, it is enough to refer
the reader only to experiment number three as there the most realistic input dataset
was used which contains the same amount of background images (negatives) as victim
images (positives).
The resulting ROC curve is depicted green in image 2.5. It implicates a reasonable
good performance with an area under the curve (AUC) of 0.8973, while a value of 1.0
would describe a perfect binary classifier. In contrast, a value of 0.5 would describes
a classifier with a 50% chance of making the right decision. Thus, it would be useless.
The result lead to the conclusion that the satisfactory performance of faster-rcnn

also holds for victim detection in unconventional disaster surroundings. Also it should
be mentioned here that the detection result can be improved by partly retraining the
neural network with real victim data, once a sufficient amount exists.[6]
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2 Previous work

a) Background Example b) Victim Example

Figure 2.4 Example images of the artificial disaster dataset
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Figure 2.5 Resulting ROC curves of conducted experiments as labelled in the legend. Graphs
are obtained using Matlab.

10



3 TRADR framework

”The TRADR system enables humans and robots to work as a team, exchange infor-
mation and operate together to accomplish complex rescue scenarios.” It is therefore
composed of many hardware (e.g. ground and aerial robots) and software elements.
”The robot operationg system (ROS) is used as a middleware-framework in TRADR
to facilitate reuseable, decoupled modules for an aggregated and integrated system.”[1]
This section aims to provide preliminary information about those components that are
relevant for understanding of the here presented work. Those are in particular the
TRADR ground rover (section 3.1) and ROS (section 3.2).

3.1 The ground rover

In order to explain the functionality of the semantic interpreter, who’s task is to extract
highly relevant information from the raw data that was acquired by a swarm of robots,
knowledge about the robot’s sensors and data acquisition is required.
The semantic interpreter in this work was developed only using data recorded by the
TRADR ground rover shown in figure 3.1. As depicted, the robot is equipped with a
ladybug3 - 360◦ camera and a SICK LMS-151 laser-scanner mounted at the front and
with a field of view of 270◦.[9][10] For the detection of victims, which is one of the core
task of the semantic interpreter not all six camera frames are used but only camera
frame 1, 2, 3 and 5 as labelled in the figure 3.1. Camera frame 4 is pointing backward
and its field of view is blocked by other sensors. Camera frame 6 is pointing upwards and
therefore useless for victim detection. Moreover, the lasers field of view is overlapping
with the camera’s field of view only for the four cameras frames listed before. This
is relevant as the point-cloud acquired by the robot provides depth information that
is used for target localization later as described in section 4.2.2. However this is not
completely true for camera frame 3 and 5. Consequences are discussed in section 5.2.5.

3.2 The Robot Operating System (ROS)

As stated above, TRADR uses the Robot Operating System (ROS) which is a flexible
framework for writing robot software. It provides a collection of tools, libraries, and
conventions with the goal to simplify the task of creating complex and robust robot
behaviour. ROS not only organizes the control and operation of the robots but also the
databases used by the semantic interpreter (see section 4.1). ROS is using three main
logical components: nodes, topics and messages.[11] In the following, those and a view
more core features of the powerful architecture are briefly explained:

• ROS-Nodes are simply executables that use the ROS client library. Nodes commu-
nicate with each other by exchanging ROS-messages over the publisher/subscriber
middleware-architecture based on ROS-topics. [11]

11



3 TRADR framework

Figure 3.1 Picture of the TRADR ground rover with illustration of the cameras’ (green) and
laser’s (red) field of view. Note that the angles are not accurate and only serve as illustration.

• ROS-Messages are a simple data structures that are comprising typed fields. Stan-
dard primitive types (integer, floating point, boolean, etc.) are supported as well as
arrays of them, even in arbitrarily nested structures. ROS also provides a set of pre-
defined messages, however, new ones can easily be created to fit individual purposes.
[11]
• ROS-Topics are named buses over which nodes exchange messages. Multiple nodes

can therefore register as publishers or subscribers of the same topic. Every time a
node publishes a message to a topic, all the nodes that subscribe to that topic receive
the message. Therefore nodes are not aware of who they are communicating with.[11]
• ROS-Bag is file format in ROS named after its .bag extension. ROS-bags are basi-

cally recordings of the whole system, storing all ROS-messages that were published
during recording time. Afterwards, ROS-bags can be played again and thus simulat-
ing the whole system.[11]
• ROS-Transformations are simply coordinate transformations between two differ-

ent coordinate frames. ROS-transformations can be buffered and looked up again
later for specific frames and times.[11]

12



4 The semantic interpreter

A semantic interpreter links low-level raw data (e.g. images) to high-level percepts (e.g.
victims, detections or locations). Low- and high-level data is therefore organized by and
stored in specific software tools called ”databases”. In other words, the interpreter con-
nects a low-level database to a high-level database. Both provide different functionality
and serve different purposes. Those are explained in detail in the following section 4.1.
The word ”semantic” is defined as ”relating to the meanings of words and phrases”[12].
In that sense, a semantic interpreter’s main purpose is to crawl through the for humans
unmanageable amount of raw image data, while extracting and refining meaningful
information first. This information is then stored into the high-level database, in a
format, that is easy for human rescuers to query and visualize, so that they can plan
rescue missions accordingly. The predefined ontology, a directed graph structure, is
necessary to determine which high-level concepts can exist and also, in what kind of
relation these can stand to each other. Note also that multiple semantic interpreters
can exist in parallel. Each is then responsible for handling a certain type of low-level
raw data and corresponding high-level objects.
In this main chapter the semantic interpreter’s structure, algorithms as well as its sim-
ulation environment are explained in detail. After introducing properties, functionality
and purpose of both databases, consecutively, the low-level side of the interpreter is
explained including victim detection, feature vector extraction and victim localization
(section 4.2). On top of that, the high-level side of the interpreter is illuminated, de-
scribing how new detections are processed and assigned to a specific victim (section
4.3). The final section 4.4 of this chapter is providing a closer look on the simulation
pipeline which differs from the real case scenario in that it imposes timing constraints
on the interpreter. This is inevitable, as project TRADR is still in a developmental
stage and required features have to be implemented first.

4.1 Databases

In order to demonstrate how the interpreter is managing data and to explain the main
reasoning process, a fundamental understanding of a database is required and therefore
provided to the reader first. Furthermore, differences between the low-level and high-
level database are outlined in this section.
Project TRADR is still in its developing stage. Therefore, as a design choice, both
databases are deployed in two separate virtual machines, so called ”Docker Container”.
This provides a certain hardware architecture independence and also enables developers
to replace a database without much complication if necessary.[13]

Definition: Database. ”Often abbreviated DB, a database is basically a collection
of information organized in such a way that a computer program can quickly select
desired pieces of data. You can think of a database as an electronic filing system.”[14]

Definition: Database management system. ”A database management system
(DBMS) is a computer software application that interacts with the user, other applica-

13



4 The semantic interpreter

tions, and the database itself to capture and analyse data. A general-purpose DBMS
is designed to allow the definition, creation, querying, update, and administration of
databases.” [15]

4.1.1 The low-level database (LLDB)

In general, the purpose of the LLDB is to store all kinds of raw sensor data like images,
point-clouds and depth information that describe the robots surroundings, but also
housekeeping data like accelerations, position and coordinate-frame transformations.
In other words: Information about the robot itself. That is why each robot has its own
low-level database on board. Once the robots return from a sortie to their stations,
the acquired data is downloaded and merged into a main LLDB. For that reason it is
necessary to attach meta-information like time-stamp and origin to every data package
that is saved. Also, the main database is not located on any robot but on a stationary
computer that provides more powerful computation resources, e.g. a strong graphics
processing unit (GPU) to accelerate detection.
To the extent of this project, the open-source database MongoDB is used for low-level
purposes. Its database management system is classified as NoSQL.[16]
”MongoDB avoids the traditional table-based relational database structure in favor of
JSON-like documents with dynamic schemas, making the integration of data in certain
types of applications easier and faster.”[16]
As just stated, its main features are among others speed and easy usage as no sophis-

Figure 4.1 Scheme depicting the data-layers of TRADR’s databases.[13] Note that this scheme
was coined at the beginning of the TRADR project. Thus, the actual structure might differ
from that by now.
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ticated query language is needed but rather a simple key in the form of a universally
unique identifier (UUID), by which the according data can be extracted. The LLDB
can therefore considered to be a simple dictionary. Speed is of relevance because some
sensors can provide data at high rates up to 1000Hz. Figure 4.1 depicts a scheme of
TRADR’s data layers. The actual structure might differ from that, however, it serves
well to illustrate the differences between both databases with respect to sensor rates
and content. The lower two layers marked as sub-symbolic can be regarded to repre-
sent the low-level database, whereas the upper three, marked as symbolic, represent the
high-level database.

4.1.2 The high-level database (HLDB)

The high-level database is more complex than its low-level opponent as it is used for
all kinds of abstract reasoning. Therefore its content has to be structured based on the
TRADR ontology and can be queried accordingly.[13] Also, in contrast to the low-level
database where speed was the main feature, here consistency is the keyword. As men-
tioned, in a real scenario, there can be multiple semantic interpreters or other reasoning
threads that are writing into the database simultaneously. Therefore consistency must
be assured at all times.
To the extent of this work Stardog was used as high-level database. ”It is a semantic
graph database, implemented in Java. It provides support for Resource Description
Framework (RDF) and all Web Ontology Language (OWL) profiles providing extensive
reasoning capabilities and uses SPARQL (section 4.1.2) as a query language.”[17]

Resource Description Framework (RDF)

”The RDF data model is based upon the idea of making statements about resources
in the form of subject - predicate - object expressions. These expressions are known as
triples in RDF terminology. The subject denotes the resource, and the predicate denotes
traits or aspects of the resource and expresses a relationship between the subject and
the object. For example, one way to represent the notion ”The sky has the color blue”
in RDF is as the triple: a subject denoting ”the sky”, a predicate denoting ”has the
color”, and an object denoting ”blue”.”[18]
Tables 4.1, 4.2 and 4.3 provide complete triple representations of high-level image- ,
detection- and victim-objects respectively, as used in this work.

Query language (SPARQL)

SPARQL (pronounced ”sparkle”) is the standard RDF query language. It is able to
access and manipulate data stored in Resource Description Framework (RDF) format.
There are three types of queries used by the interpreter. Those are INSERT, SELECT
and DELETE-INSERT-WHERE queries. The last one serves as update query.
Listing 1 depicts the SPARQL SELECT query used to query for all victims in the
database with all corresponding detections, images and attributes. For simplicity rea-
sons example insert and update queries are not depicted here. All syntax definitions
can be found under https://www.w3.org/
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4 The semantic interpreter

PREFIX : <http://www.semanticweb.org/ontologies/tradr#>

SELECT ?vic ?vic_ref ?avgConf ?vic_loc ?vic_loc_ref ?vic_long

?vic_lat ?vic_alt ?vic_coo?im ?im_ref ?im_stamp ?im_loc

?im_loc_ref ?im_long ?im_lat ?det ?det_ref ?box ?conf ?dt ?fc6

?fc7 ?tar_loc ?tar_loc_ref ?tar_long ?tar_lat ?tar_alt ?tar_coo

WHERE{

?im a :Image;

:reference ?im_ref;

:hasTimestamp ?im_stamp;

:hasLocation ?im_loc;

:hasDetection ?det.

?im_loc a :Location;

:latitude ?im_lat;

:longitude ?im_long.

?det a :Detection;

:reference ?det_ref;

:fromImage ?im;

:hasBox ?box;

:wasDetectedAs "Victim";

:hasConfidence ?conf;

:hasDetectionTime ?dt;

:hasFC6Features ?fc6;

:hasFC7Features ?fc7;

:hasTargetObject ?vic;

:hasTargetLocation ?tar_loc.

?tar_loc a :Location;

:latitude ?tar_lat;

:longitude ?tar_long;

:altitude ?tar_alt;

:mapCoordinates ?tar_coo.

?vic a :Victim;

:reference ?vic_ref;

:avgConf ?avgConf;

:depictedIn ?im;

:hasLocation ?vic_loc.

?vic_loc a :Location;

:latitude ?vic_lat;

:longitude ?vic_long;

:altitude ?vic_alt;

:mapCoordinates ?vic_coo.

}

Listing 1 SPARQL SELECT query to receive all high-level victim objects in the database with
all corresponding images, detections and attributes.
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High-Level Image and Location Triples

Subject Predicate Object

image-id a Image

image-id hasReference reference

image-id hasTimestamp stamp

image-id hasLocation location-id

location-id a Location

location-id hasReference reference

location-id hasLatitude latitude

location-id hasLongitude longitude

Table 4.1 RDF triples representing a high-level image-object with corresponding location-
object. High-level objects as predefined by the ontology are highlighted bold and blue. Place
holders for the actual data are highlighted italic and green. Note that some predicates might
differ slightly from the implementation.

4.2 Low-level data extraction

In the following the low-level side of the semantic interpreter will be illuminated. In-
cluded are the object detection, feature vector extraction, as well as the two target
localization methods that have been developed in the frame of this work. Although
there can be several semantic interpreters for different raw data types and high-level
content, in this work however, we are only concerned with victims, that have been de-
tected in normal rgb-images. Thus, in the following, we will pretend there is only one
semantic interpreter.
The goal of this process is to collect all required information to create RDF triples
according to table 4.1 for images and table 4.2 for detections. Most of this informa-
tion is required by the high-level reasoning process later on. Therefore, the semantic
interpreter is polling the relevant low-level data collection periodically for new images.
Each image already contains a time-stamp and GPS-coordinates of the robot’s location
that are both coined at recording time. In case multiple new items are found in the
database, the data collection process described in the following sections will then be ex-
ecuted for each of them. Similarly, localization and feature vector extraction is applied
for every detection within the same image. When finished, new triples are inserted into
the high-level database and the image is marked as processed. Otherwise, if nothing is
detected at all, then there is no need to create detection nor image triples. The image
is then marked as processed only.

4.2.1 Detection and feature vector extraction

Chapter 2 provided a brief overview of fast-rcnn’s performance results on artificial
victim dataset. A ”victim” in our case is simply a detection of a person. The pre-
trained neural network model used for this work is called VGG CNN M 1024 and can be
found here: https://github.com/rbgirshick/py-faster-rcnn. It is already trained
to classify 20 (21 if you count background) different classes like aeroplanes, bicycles,
cars, boats, . . . , just to name a few. [2] Therefore, the victim in this work can easily
be replaced by a car or barrel or any other high-level objects that are of interest to
the rescuers, as long as the corresponding classifier is provided by the network. If not,
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High-Level Detection Triples

Subject Predicate Object

image-id hasDetection detection-id

detection-id a Detection

detection-id hasReference reference

detection-id fromImage image-id

detection-id hasBox bounding-box

detection-id wasDetectedAs ”Victim”

detection-id hasConfidence confidence

detection-id hasDetectionTime detection-time

detection-id hasFC6Features fc6-feature vector

detection-id hasFC7Features fc7-feature vector

detection-id hasTargetObject victim-id or ”None”

detection-id hasTargetLocation location-id or ”None”

detection-id hasOccupationPyramid pyramid-id or ”None”

target-location-id a Location

target-location-id hasReference reference

target-location-id hasLatitude latitude

target-location-id hasLongitude longitude

target-location-id hasMapCoordinates coordinates

pyramid-id a OccupationPyramid

pyramid-id hasOrigin origin

pyramid-id hasTopLeftDirection top-left vector

pyramid-id hasTopRightDirection top-right vector

pyramid-id hasBotLeftDirection bot-left vector

pyramid-id hasBotRighDirectiont bot-right vector

Table 4.2 RDF triples representing a high-level Detection-object with corresponding Loca-
tion and occupation-pyramid. Note that the target object, target location and occupation-
pyramid can be ”None”. High-level objects as predefined by the ontology are highlighted
bold and blue. Place holders for the actual data are highlighted italic and green. Also note
that some predicates might differ slightly from the implementation.

classifiers can also be exchanges or retrained without much effort to fit the rescuers
specifications. Moreover, one could think of using even deeper network models in order
to improve performance, given the necessary requirement like enough GPU memory.

Detection Parameters

The performance of the neural network and therefore of the semantic interpreter de-
pends on some crucial parameters. Here only the two most important are quickly
discussed:

The Detection threshold is most relevant as it decides if a potential victim will be
detected or not. Consequently one would like to choose it rather small. On However,
this will lead to unwanted detections and multiple detections of a target in the same
image. Latter is not that much of a problem as None Maximum Suppression (NMS)
filters overlapping detections. Unwanted detection (false-negatives) though, will result
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in false victims to be created and thus cause even more miss-assignments of detections.
But most importantly, more detections lead to more computational costs due to lo-
calization and assignment effort. (More about computational cost and timing can be
found in sections 5.2.1 and 5.6).

The Number of Region of Interest (ROI) proposals calculated for each image is
the second most relevant parameter. It is the number of boxes within a image, proposed
by a RPN, for which the classifiers are applied. The higher this number, the more likely
a target will be detected because a certain box might enclose the target more accurately
and consequently achieve a higher score. However, there is a limit to improvement as
at some point proposed regions are redundant. A compromise has to be found here as
detection time increases proportional to this number.

Feature vector extraction

Feature vectors can be seen as the particular pattern of how neurons in the neural
network ”fire” on a given input (see 2.1.3). For the development of all feature similarity
related methods in this work, the assumption has been made that multiple detections
of the same target have a overall higher similarity between their feature vectors than
detections of different targets.
Moreover, feature vectors extraction in the frame of this work simply means saving the
output of the last two layers of the neural network, in case a target was detected. The
vector extracted from the last layer called fc7 (fully connected) contains 1024 elements,
whereas the vector of the penultimate layer called fc6, contains 4096 elements. ”Layer
fc6 is fully connected to pool5. To compute features, it multiplies a 4096×9216 weight
matrix by the pool5 feature map. Layer fc7 is implemented by multiplying the features
computed by fc6 by a 4096×4096 weight matrix.”[2]
The idea behind using two different layers for similarity computation and comparison
is to take a bigger variety of features into account. This is because each layer can be
seen as detector itself reacting on slightly different features.

4.2.2 Target localization

This section explains the derivation of location information for detected targets. This is
particularly important as the subsequent reasoning process that is assigning detections
to its corresponding victims is mainly based on location comparison.
Let’s assume a image was acquired by one of the robots cameras that are used for
detection at a certain point in time and at a certain location. Each of the four cameras
has its own camera coordinate frame. Let’s further assume that the data was uploaded
into the main LLDB and is now available to the semantic interpreter.
Two methods have been developed during this work to derive information about a tar-
get’s location. First uses depth information extracted from a point-cloud in order to
find a precise location of the detected target. This algorithm is explained in detail in
the following section 4.2.2. However, 3d-points representing the target are not always
available at the time of interest. Reasons for that are given in sections 5.2.4 and 5.2.5.
Without this information, a exact position can not be derived and thus corresponding
detections not assigned to a victim. Consequently the detection would be useless. To
prevent that, a second less accurate localization method was developed.
The idea of the seconds method is: Although depth information is missing, by knowing
the position of the robot at the time the image was taken, plus the camera frame (direc-
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Figure 4.2 Pinhole Camera Terminology as provided by [19]

tion) and also the detection bounding-box, then a 3-dimensional occupation-pyramid
can by calculated. It describes an area of space in the global coordinate-frame that is
shaped like a tilted pyramid with the camera lens at its peak. But moreover it contains
the detected target. Section 4.2.2 is illustrating this method.
Depending on which location information was be derived for a particular detection, the
assignment algorithm also has to be adapted. See section 4.3 for detailed explanation.

Position derivation

In order to determine the global position of detected target, depth information is needed
to calculate its position relative to the robot first. This is achieved by extracting those
3d-points from the point-cloud that represent the target. For this to be possible, the
camera and point-cloud’s field of view have to be overlapping. This mostly is the case
for four different cameras, as the laser-scanner has a field of view of 270 degree (sec-
tion3.1).[10]
Moreover, the point-cloud has to be recorded during the time the image was taken.
Here discrepancies naturally arise, due to the fact that newly recorded 3d-points are
published only every 3 seconds. Consequences on the implementation are discussed in
4.4.3.
Also required are the transformations from the point-cloud frame to the camera frame
as well as from the camera frame to the global map frame at image time. Furthermore,
calibrated camera information is necessary as it contains the camera matrix and dis-
tortion coefficients.

The first step is then to transform the whole point-cloud into camera frame using a
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translation vector t and a rotation matrix R. Subsequently, the point-cloud is projected
onto the 2-dimensional image plane. Both steps are provided by OpenCV function:

projectPoints [20]. For a so-called pinhole camera model, this is equivalent to equa-
tions 4.1 below. Also compare to figure 4.2. ”Real lenses usually have some distortion,
mostly radial distortion and slight tangential distortion.”[20] Therefore, equations 4.2
- 4.5 are equivalent to equations 4.1 above (for z 6= 0), but extended by the distortion
coefficients.

p′ = A [R|t] P ′ (4.1a)uv
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r2 = x′2 + y′2 (4.4c)

u = fx × x′′ + cx (4.5a)

v = fy × y′′ + cy (4.5b)

where:

• (x, y, z) are the coordinates of a 3D point P in the world coordinate space
• (u, v) are the coordinates of the 2D projection point p in pixels
• (cx, cy) is a principal point that is usually at the image center
• (fx, fy) are the focal lengths expressed in pixel units
• A is the camera matrix, or a matrix of intrinsic parameters
• [R|t] is the joint rotation-translation matrix
• k1, k2, k3, k4, k5, and k6 are radial distortion coefficients
• P ′ and p′ are the augmented representations of the points P and p respectively
as provided by [20]

Note that in the implementation both steps just described are conducted separately,
so that, before projecting all 3d-points to the image plane, all those with z < 0.5 are
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filtered. In other words: All points that lie behind the camera and those less than half
a meter in front of the camera. This operation prevents points to be projected onto
the image plane that cannot represent a victim as they do not lie in the field of view of
the current camera frame. It also reduces computation effort as point-clouds contain
several thousands of points.
Now that we have projected the filtered 3d-points onto the 2d-plane, we can identify
those 3d-points, whose 2d-equivalents fall into the detection bounding-box of the target
we want to locate. Figure 4.3 depicts two detections with corresponding bounding-
boxes in red. Since bounding-boxes never enclose a target perfectly, the set of 3d-points
obtained so far still contains ”background” points. To make sure only target points are
used to derive a position, a simple assumption is made, that is: Target points are most
likely found in the middle of the bounding-box. Therefore points are identified that
are projected into a smaller bounding-box at the center of the target’s bounding-box.
These smaller boxes are depicted green in figure 4.3. Their initial box size is set to a
tenth the size of the original one. It is then iteratively enlarged in 10% steps of the
target’s box size until a minimum number (arbitrary threshold - 50 was used here) of
3d-points are identified or the original box size is reached. In the first case a simple
outlier filter is applied, that filters points who’s root mean square error (RMSE) is
smaller than λ σ in any axis:

√
(x− x̄)2 < (λ σx)√
(y − ȳ)2 < (λ σy)√
(z − z̄)2 < (λ σz)

where (x, y, z) are the coordinates of a 3d-point P , P̄ being the mean of all 3d-points,
σ the standard deviation and λ a variable threshold. Finally all successful 3d-points
are averaged to a single position vector that is then transformed into the global frame.
In the case that not enough points are found, the algorithm fails to obtain a location.
Furthermore, inaccurate positions can be obtained if the detection is not located in the
middle of its bounding-box, as it is the case for detection 2 in figure 4.3. More about
that in 5.2.4.

Occupation-pyramid derivation

When depth information is missing, the robots position, the camera frame plus the de-
tections bounding-box can still be combined to derive global location information about
the target. The only difference is that without depth, the target cannot be located along
the line of sight.The alternative idea presented here is to reduce the cameras field of
view (FOV) as depicted in figure 4.4 to a smaller sub-field of view, defined by the detec-
tion’s bounding-box. This sub-field of view will be referred to as ”occupation-pyramid”
in this work. Therefore the four corner pixel that describe the bounding-box (compare
to figure 4.3) are projected into 3-dimensional space. This is the same projection oper-
ation as described in the previous section 4.2.2 but in the opposite direction. Therefore
the equations have to be solved for the 3d-point coordinates (x, y, z) as depicted below:
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a) Detection 1 - good box b) Detection 2 - bad box

Figure 4.3 Example detections with bounding-boxes in red. Filtering boxes are depicted green.
Detection 1 serves as positive example, whereas the algorithm fails to filter victim points for
detection 2. It illustrates that the target does not always have to be located in the center of
the bounding-box.

x′ = (u− cx) / fx

y′ = (v − cy) / fy

x = x′ · z
y = y′ · z
where z = 1.0

where:

• (x, y, z) are the coordinates of a 3D point in the world coordinate space

• (u, v) are the coordinates of the projection point in pixels

• (cx, cy) is a principal point that is usually at the image center

• (fx, fy) are the focal lengths expressed in pixel units

as provided by [20]

This time however, the distortion model as shown by equations 4.4 is not taken into
account for simplicity reasons. Section 5.5 comments on that.
The resulting four vectors or rays then describe the directions from the camera lens
towards the four corner pixel in the image plane. Combined with one more vector
pointing to the position of the lens, an occupation-pyramid is therefore fully described
by a set of 5 vectors. Those can now be transformed from the camera frame into the
map frame. Care must be taken here: The four ray vectors are directions and must
therefore be transformed by rotation only. In contrast, the position vector of the lens
has to be translated as well.
If the occupation-pyramid was derived successfully, the new detection can now be as-
signed to existing victims by testing whether they are located within the occupation-
pyramid. This will be discussed in section 4.3.2.
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Figure 4.4 Classical camera field of view. Example occupation-pyramid is marked in red.

4.3 High-level victim reasoning

Now that the reader is familiar with the concept of a semantic interpreter, its databases
and the low-level data extraction, this section discusses the high-level reasoning process.
Its main goal is to create and manage high-level objects as a representation of the
extracted data. This must be done in a way that high level consistency is assured.[13]
As mentioned, the high level database uses RDF language in order to create a directed
graph structure. After the low-level process has gathered all information, it creates high-
level detection objects and inserts them into the database. Table 4.1 and 4.2 provide
the RDF triple representations of high-level image and detection objects respectively.
The reasoning process begins with querying the database for detections with attribute
hasTargetObject = "None" . The query result represents new detections. Those must
have a Location or a OccupationPyramid attribute, that determines which of the two
assignment processes discussed below will be executed.
Then the database is queried for detections with targetObject = Victim-id (compare
to SPARQL query 1), returning detections that have already been assigned to a high-
level victim. Those are then sorted by victim-id into a dictionary structure that
represents the temporal working copy of the high-level status. High-level RDF victim
triples are shown in table 4.3.

4.3.1 Assignment of detections with position

This section illuminates the core of the reasoning process for detections with available
position information (hasLocation 6= "None"). The goal is to find the victim which is
most likely represented by the current detection (best-fit candidate). Subsequently a
”yes or no” decision is required that tells whether or not the best-fit victim candidate
is actually represented by the new detection. If the result is positive the detection will
be assigned to the candidate, otherwise a new victim will be created with the detection.
Thus the whole process discussed here has to be executed for every new detection that
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High-Level Victim Triples

Subject Predicate Object

victim-id a Victim

victim-id hasReference reference

victim-id hasAvgConfidence avg. confidence

victim-id hasLocation location-id

victim-id hasDetection detection1-id

victim-id hasDetection detection2-id

victim-id depictedIn image1-id

victim-id depictedIn image2-id

Table 4.3 RDF triples representing a high-level victim-object with corresponding location,
detections and images. Note that a victim can have several detections and images. High-
level objects as predefined by the ontology are highlighted bold and blue. Place holders for
the actual data are highlighted italic and green. Also note that some predicates might differ
slightly from the implementation.

has to be assigned.
The idea behind this algorithm is to combine location, as well as feature vector com-
parison in a way to obtain the best possible result. However, feature vector comparison
is rather experimental and was not evaluated at all prior to this work. As a conse-
quence, the developed algorithm is implemented in a way that it can make its decisions
only based on location comparison or that similarity comparison is used only if there is
sufficient information available to make accurate predictions. In particular that means
only if a minimum number (see section 4.3.1) of detections have already been assigned
to the victim of interest.

Location comparison

Comparing the locations of a new detection to those of existing victims is quite intuitive.
First, the positions of each temporal victim is recalculated as the mean value of all
positions of its detections. This is necessary as a new detection might have been assigned
to that victim in a previous iteration which would then have changed the average victim
position. Second, the distances from the current detection to all existing victims are
obtained simply by calculating the 3-dimensional euclidean distance deu defined as:

deu(p,q) = d(p,q) =
√

(p1,q1)2 + (p2,q2)2 + · · ·+ (pn,qn)2 =

n∑
i=1

(pi,qi)
2 (4.6)

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are vectors and p,q ∈ <n.

Those are then sorted by increasing distance. Subsequently a simple threshold filter
dismisses all those victims with a distance bigger than a certain threshold to the newly
detected target. The threshold can be arbitrarily high but should not be less than 3.0
meters so that the true candidate (if exists) will not be filtered as well.
We now have a set of possible victims whose distances to the new target are smaller
than the chosen threshold and which are sorted by increasing distance as well. This set
can also be empty which leads to the creation of a new victim.
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Feature similarity comparison

The method of comparing feature vector similarities is primarily used to decide whether
or not the best-fit victim candidate is represented by the detection that has to be as-
signed. Furthermore, it can be used to identify a best-fit candidate among a set of
possible victims, similar to the location comparison method explained above, however,
this time by comparing similarity instead of distance. This secondary usage will only
become relevant in section 4.3.2 but is explained here in the context of the equations.
Moreover, as a requirement to computing feature similarities, the victims must already
have at least three detections assigned to them so that the equations can be applied.
In case of the primary usage, this applies only for the candidate that is to be tested.
Note that this value is a minimal threshold and can be increased to archive a higher re-
liability of this method which is especially important for the primary usage. Moreover,
by setting it absurdly high (> 100) feature comparison can be deactivated completely
which leads to assignment ”by distance only”.
The comparison is done in the following way: At first, for every possible victim can-
didate a mean similarity vector is derived which is a measurement of how similar the
current detection is to all those assigned to that specific victim in average. Therefore
the similarity for both feature vectors (fc6 and fc7, see 4.2.1) between the new detection
and every detection of the victim has to be calculated first. Three well known methods
are used to compare them namely: The Euclidean Distance, the Manhattan or Taxicap
Distance and the Cosine Distance. They are given by equations 4.6, 4.7 and 4.9 and
are here denoted as deu, dman, dcos, respectively. Note that higher similarity results in
smaller distances for all three comparison methods because similarity and distance are
inverse proportional to each other.

dman(p,q) = d1(p,q) = ‖p− q‖1 =

n∑
i=1

|pi,qi| (4.7)

scos(p,q) = cos θ =
p · q
‖p‖‖q‖

=

∑n
i=1 piqi√∑n

i=1 p2
i

√∑n
i=1 q2

i

(4.8)

dcos(p,q) =
arccos (scos(p,q))

π
(4.9)

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are vectors with p,q ∈ <n and
scos representing the cosine similarity. Consequently two different feature vectors (fc6
and fc7), compared by three different methods, result in a similarity vector Vsim, ext of
length six:

Vsim, ext = [deu,fc6, dman,fc6, dcos,fc6, deu,fc7, dman,fc7, dcos,fc7]

Due to the fact that a possible victim must at least contain three detections to be tested
by this method, multiple of those similarity vectors are derived for a candidate, one
for ever detection. Subsequently the mean of all those similarity vectors is calculated,
resulting in only one mean feature similarity vector V̄sim, ext of same length. The index
ext indicates similarity between a specific victim and a external detection.

V̄sim, ext = [d̄eu,fc6, d̄man,fc6, d̄cos,fc6, d̄eu,fc7, d̄man,fc7, d̄cos,fc7]

We now have derived a vector that describes the similarity between the new detection
and a victim candidate. This is done for every possible candidate. To be able to decide,
if the similarity to a certain candidate is high enough, we need two things:
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4.3 High-level victim reasoning

First, the mean victim intern similarity which is the mean vector of all similarity vectors
obtained by comparing the victim’s detections to each other. Second, we need to know
how much the intern similarity varies. This corresponds to the mathematical concept
of variance and standard deviation. Finally we have all we need to make a decision
(primary usage):

The detection belongs to the candidate victim, if the root mean square error (RMSE)
between internal mean V̄sim, int and external mean V̄sim, ext lies within a given multi-
plicity λ of the intern standard deviation σsim, int, for at least 5 out of 6 comparison
methods, that is entries of the similarity vectors.√

(V̄sim, int, k − V̄sim, ext, k)2 < (λ σsim, int, k), for k ∈ {1, 2, 3, 4, 5, 6} (4.10)

where σsim, int = [σeu,fc6, σman,fc6, σcos,fc6, σeu,fc7, σman,fc7, σcos,fc7]

In the case of the secondary usage, only a single value has to be derived as a candidate
score. Based on this score, possible victims can be easily compared and finally a best-
fit candidate identified. Therefore, for every entry in the similarity vectors, the mean
square error is expressed in terms of a multiplicity λk of the corresponding standard
deviation. The final score is then simple the mean value:

λk =

√(
V̄sim, int, k − V̄sim, ext, k

)2
σsim, int, k

(4.11a)

score =

∑6
k=1 λk

6
, for k ∈ {1, 2, 3, 4, 5, 6} (4.11b)

This method is of relevance in the following section 4.3.2, where a best-fit candidate
cannot be derived by location comparison. For the purpose of making a accurate ”same
victim or not” decision however, it would be wrong to simply judge on the average score
as each method compares different properties and both feature vectors (fc6 and fc7)
model different properties as well.
Finally, the reason why this method cannot be applied for less than three internal
detections of a victim candidate is the following: Comparing only two internal detections
results in only a single similarity vector for which no variance and standard deviation
can be obtained. Thus no decision can be made.

Special case - multiple detections in the same image

There is one special case that should be discussed: Since it its possible that more than
one object can be detected in the same image, the easiest way to tell if those represent
the same victim is to calculate the overlap O of their bounding-boxes:

A1 = a1 · b1, A2 = a2 · b2

I = A1 ∩A2

U = A1 ∪A2 = A1 + A2 − I

O =
I

U

where A1, A2 are the box areas, I their intersection and U their union.
Let’s assume two detections have been detected in the same image and one has already
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4 The semantic interpreter

been assigned to a victim while the second one has yet to be tested. Compare to figure
4.6 where detection 6 represents the latter. If the percentage of the bounding-box
overlap is more than 50% then it is very likely that both detections depict the same
victim. In that case the detection can be safely assigned to this victim right away and
no further location or similarity comparison is necessary.
Otherwise, if the percentage of overlap is less than 50%, one can consider the victim
which is represented by the first detection as dismissed from the possible candidates,
since it cannot be the same victim. This should always be true as long as no miss-
assignments have been made earlier. However, if so, then this can lead to consecutive
failures. This will be discussed further in chapter 5.4. For now just notice that the
dismissal due overlap < 50% can be disabled in the implementation of this algorithm
if needed.

a) Two detections - Overlap < 50% b) Two detections - Overlap > 50%

Figure 4.5 Two detections in the same image. Non overlapping in figure a) which could
resemble Image 2 in the assignment scheme 4.6. In contrast, overlapping detections in figure
b) could resemble detections 1 & 2 depicted in image 1 (scheme). Detection boxes are marked
red.

The decision making

Now that the reader is familiar with the main reasoning building blocks, we can com-
bine them to describe and summarize the decision process for a new detection as a whole:

1. The location comparison is executed as explained in section 4.3.1 above. That leaves
us with a non empty set of possible victims, sorted by increasing distance to the newly
detected target. A new victim is created in case the set would be empty. In fact, this
is always the case, no matter for which reason all the candidates were dismissed.
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4.3 High-level victim reasoning

Figure 4.6 Exemplary scheme illustrating the assignment process

2. Feature similarities are calculated. Since the current detection has to be compared
to all victim detections anyway, it makes sense to test for the special case (section
4.3.1) here simultaneously. If detections are in the same image and their bounding-
box overlap is bigger than 50%, the victim is the represented one, otherwise it will
be dismissed (if not disabled).

3. Remaining possible candidates are tested in the previously arranged order of increas-
ing distance to the target by the feature comparison method. The detection is then
assigned to the first successful candidate. Again, if non succeeds, a new victim is
created.
As mentioned, a victim candidate must have at least three (or more depending on
the threshold) detections, otherwise this method fails. It would then be inequitable
to simply dismiss the current candidate and try the next one. Consequently, in this
case, the method cannot be used at all to derive a reasonable decision. The algorithm
will then switch to ”by distance only” mode.

4. If assignment is done ”by distance only”, the closest candidate is tested whether its
distance to the target detection is smaller than a threshold (around 0.5 - 1.5 meter).
Here the threshold is equivalent to the radius of a sphere with the new target at its
center. If the candidate is not located within this sphere, there is no need to test
others as well because it is the closest candidate already. A new victim will then be
created.

4.3.2 Assignment of detections with occupation-pyramid

The assignment algorithm for detections that have a occupation-pyramid instead of
precise location (hasLocation = "None", hasOccupationPyramid 6= "None") is quite
similar to the one explained above. However, there are a few differences that need to
be outlined:
First and most importantly, these detections can only be assigned to existing victims
for which locations already exist. In other words: No new victims can be created in case
a detection can not be assigned because the detection cannot provide a precise location
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4 The semantic interpreter

for the new victim. Second, location comparison by distance is not possible. Instead,
possible victims are identified if their positions lie within the occupation-pyramid.

Comparing occupation-pyramids with positions

Possible victims for a new detection that only has a target occupation-pyramid are
those victims, who’s position Pv fall within the 3-dimensional pyramid. The pyramid
itself does not have a cut-off value as bottom and is therefore mathematically infinitely
high or rather long if it extends horizontally. It is defined by a set of five vectors in
total: Four direction vectors (~r1, ~r2, ~r3, ~r4) are describing the pyramid’s four edges or
rays. They originate from the point P0 described by position vector ~p0, representing
the peak of the pyramid and the position of the camera lens (figure 4.4).

Mathematically, a point (victim position) lies within a pyramid if its distances to each
of the pyramid’s four faces (planes) all have the same sign.

In general, a 3-dimensional plane consists of all points P with position vector ~p, for
which the following equation (provided by [21]) holds:

~n0 · (~p− ~p0) = 0 (4.12)

when ~p0 is describing a point in the plain and ~n0 being a non zero vector standing
orthonormal on the plain and indicating its inclination. The dot here denotes the dot
product. This is equivalent to the so called ”point-normal form” of a plain (provided
by [21]) denoted as:

(~p · ~n0) + d = 0 where : (4.13)

d = − (~p0 · ~n0) (4.14)

We already have a point that lies within all of the four planes needed, that is the peak
P0. Furthermore, the four normal vectors can be derived by taking the cross-product
of each pair of adjacent ray vectors:

~n0,1 = ~r1 × ~r2
~n0,2 = ~r2 × ~r3
~n0,3 = ~r3 × ~r4
~n0,4 = ~r4 × ~r1

Care must be taken here, that all vectors are pointing either to the inside or the outside
of the pyramid, since the cross-product is non commutative. The distances di are then
derived analogue to equation 4.14 for all four planes:

di = − (~p0 · ~n0,i), for k ∈ {1, 2, 3, 4} (4.15)

Finally the four shortest distances Di of a candidate’s position Pv to the pyramids faces
can be obtained by:

Di = (~pv · ~n0,i) + di (4.16a)

Di =
|(~pv · ~n0,i) + di|√

~n0,i · ~n0,i
, for k ∈ {1, 2, 3, 4} (4.16b)

Where equation b) is the original one provided by [21]. Since we are only interested
in the sign rather than the magnitude, the absolute value of the nominator and the
normalization become unnecessary. This then results in simplified the equations a).

30



4.4 The simulation pipeline

The decision making

Now we can summarize the decision process for detections with occupation-pyramid
instead of a precise location:

1. In contrast to before (4.3.1), here the possible victims are identified by testing if
their locations fall into the new detection’s occupation-pyramid. Note that ideally
here only one or at least less victims should pass this selection than by comparing
location distances. This is because, for two victims to be possible at the same time,
they must be in the same line of sight from the robots perspective, whereas, by
comparing distances, possible victims lie within a sphere with a threshold radius. It
can not be generalized though, as it also highly depends on chosen thresholds and
the victims’ positions relative to each other.

2. If there is more than one candidate, a best-fit victim has to be identified. Since we
cannot compare locations as before to determine a candidate order, here the similarity
scores are used as calculated by equations 4.11. As mentioned, this method required
more than three detections of the candidates. If this requirement is not met, the
detection cannot be assigned now, but maybe at a later point in time, when the
possible victims are represented by more detections.

3. Finally the best-fit candidate, if exists, is tested by the similarity method’s primary
usage. If the candidate does fullfil equation 4.10 for at least 5 out of 6 elements in
the similarity vectors, then the candidate is successful.

4.4 The simulation pipeline

In the previous sections we have illustrated the interpreter’s core functionality and rea-
soning methodology without integrating it in or respecting its software environment.
The final interpreter is supposed to run on as a ROS-node on TRADR’s main computer
which has good computing resources and combines all the low-level databases acquired
by the robots into one. It can be assumed that all data required (see next section)
by the reasoning process will then be available instantly. Thus, the interpreter in the
final scenario does not have any timing constraints on how fast to process a image or
its detections in order to catch up with incoming data. However, project TRADR is
still in its development stage and those features are not implemented yet. Therefore a
pipeline was developed prior to the interpreter’s core functionality to make the simu-
lation possible. The pipeline is playing ROS-bags (see 3.2) to simulate a sortie and to
fill the LLDB with images. On top of that the semantic interpreter was developed on a
private computer using GPU acceleration for detection. Its implementation as well as
arising constraints will be discussed in the following.

4.4.1 Requirements of the reasoning process

Three points are important for simulating the semantic interpreter:

1. The low-level database has to be filled with ROS-messages of type common db msgs/

AnnotatedPicture which contains information about the camera frame, time stamp,
location and orientation of the robot when the image was taken.

2. Point-cloud data has to be available for the time the image was taken which leads
to problems as the new point-cloud message, containing the new points, in addition
to all previously recorded, is only published every three seconds, whereas images are
published several times a second.
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4 The semantic interpreter

3. Transformations have to be available from laser to camera frame and from camera
frame to the global map frame for the time the image was taken.

4. Camera calibration information is required that contains the camera matrix as well
as its distortion coefficients.

4.4.2 Filling the low-level datbase

In order to fill the database in a simulation scenario with image data in form of ROS-
message of type AnnotatedPicture, a simple ROS-node was implemented. Chapter
3.2 gives a brief introduction to ROS and its features.
The node operates by subscribing to the four image topics corresponding to the four
different cameras of the robot which are used for detection. This data comes in the
form of ROS-message type sensor msgs/Image which contains the image, time-stamp
and camera-frame. However, it is missing location information about where the image
was taken. Therefore the node also subscribes to a GPS-topic that provides the current
position of the robot. It then puts all information together into a AnnotatedPicture

message and publishes it under a new topic.
The node also provides the crucial functionality of controlling the data-flow of the
simulation. Since the picture rates of the cameras are much higher compared to what
the interpreter can process in a certain amount of time, a method is needed to regulate
the rate and amount of pictures saved to the database. This is achieved by buffering
the AnnotatedPicture messages at first. The four buffers, one for every camera frame,
are then handled at a given rate f , and then only every ith picture is published until
the buffer is empty again.
Subsequently a second simple node (which was already implemented) subscribes to this
topic and saves the images to the database under a generated image-id in the form of
an UUID. From this point on the data is available to the interpreter.

4.4.3 Point-clouds

Having a point-cloud available for the time the image was taken is crucial for obtaining
the locations of newly detected targets. Without a location, a detections can only
be assigned by occupation-pyramids and this helps only if the same target object was
detected and localized successfully before.
Point-cloud with new points are only published every three seconds whereas images
several times a second. The point-clouds time stamp marks the beginning of this three
second period. That means the best possible point-cloud for the localization task is
the one with a time-stamp difference: 0.0 < (timage − tpc) < 3.0 with (timage − tpc)
in seconds. That means the best point-cloud was recorded while the image was taken
also. However if that particular point-cloud is just not published yet, the localization
process has to wait for it, at the maximum, for the full three seconds if the image was
taken right after the last point-cloud was published.
The localization process is also buffering the last k point-clouds in case the the semantic
interpreter is lagging behind so that it does not have to wait then as well. It should
be mentioned again that a new cloud message always contains all the points recorded
since the beginning of the sortie.
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4.4.4 Transformations

Getting the required transformation is at least evenly important. Without them, nei-
ther target positions, nor target occupation-pyramids can be calculated. In the ROS-
environment, transformations can be buffered up to a desired duration as well. In case
however, that the interpreter is lagging more than the buffer’s duration behind, trans-
formations can become unavailable. Then the algorithm asks for later transformations
until it catches up with the last entry of the buffer. But in fact there is only one trans-
formation that should be used and that is stamped exactly at image time. Every other
transformation would result in erroneous calculations, unless the robot was not moving.
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The purpose of this chapter is to analyse the performance of the semantic interpreter and
outline its weaknesses. This is done by evaluating the different methods and building
blocks of the interpreter that have been developed during this work, separately. Prior
to that, tow main simulation scenarios that have been used for testing, are described.
Note that the main goal of the overall work was to implement the interpreter’s main
functionality together with the necessary simulation pipeline. Thus no sophisticated
evaluation methods have been implemented here. This means that the following analysis
is based on empirical experience acquired throughout iterative testing. However the
following statements will be reasonable justified.

5.1 Simulation scenarios

As explained in 4.4, the semantic interpreter is simulated by playing ROS-bags which are
recordings of a robot sortie. Since no data of real disaster events exist, some ”artificial”
disaster ROS-bags have been recorded that provide all necessary features for simulation
and test cases for evaluation. Necessary features are basically the following:

1. The scene of the recording should contain at least tow persons which can be detected
as ”victims” so that the interpreter has to distinguish between them. Optimally those
persons should not change position.

2. The mapping process has to be running, optimally during the recording or while
replaying the bag for simulation, so that transformations and positions can be ob-
tained.

3. The laser and the omni-camera have to calibrated and and publishing data.

Two ROS-bag scenarios have been recorded that were mainly used for evaluation. In
the following, those will be illustrated and their assignment results presented.

5.1.1 Scenario 1

In this scenario two targets can be detected that are stationary for most of the record-
ing time. Only one changes position during the first and last seconds of the recording.
The targets are located roughly 3 meters apart from each other and initially less than
4 meters away from the robot. This distance is decreasing as the robot moves slowly
towards them. The resulting victims are depicted in figures 5.1 and 5.2.
Moreover, the robot in this scenario acquired images during the recording that depict
both targets at the same time. This provides a useful test-case to evaluate the corre-
sponding assignment mode (explained in 4.3.1, evaluated in 5.4) where decisions are
derived, based on the targets bounding-box overlap.
Another feature of this scenario is that one target is detected in two different camera
frames (victim 3 a) and b) in figure 5.2) and is still successfully identified as the same
victim. This verifies the localization process with respect to conducted point-cloud
transformations.
It is worth mentioning that the robot does not move more than 2 meters but is climbing
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down a 30 centimetre step and therefore resides in tilted positions during data acquisi-
tion (compare angles in figure 5.1 c) and d)). Furthermore, for the purpose of testing
the occupation-pyramid assignment in this simulation, precise localization was skipped
for every third detection and instead an occupation-pyramid was derived although all
required information was available.
Overall, this simulation scenario serves as positive example of the semantic interpreter’s
performance. Out of 27 detections 25 were assigned correctly whereas only 2 detections
without location could not be assigned as no victim fell into their occupation-pyramid
(see 5.5). However, the fact that 7 detections out of 9 have been correctly assigned
by occupation-pyramid verifies that at least the true candidate was not filtered and
that this method (4.3.2) works in principle. Moreover, the primary usage of the feature
similarity comparison method (4.3.1) also had to work at least 7 times correctly in this
simulation. Furthermore, comparing the position of Victim 1 in figures 5.1 a) and b)
to the position of victim 3 in figure 5.1 gives a good demonstration of the localization
precision. The stated results are derived by simulating bag ugv 2016-05-17-11-25-49

with the following main parameters:

• Detection confidence threshold: 0.75 (4.2.1)

• Number of region proposals: 350 (4.2.1)

• Location comparison - "by distance" threshold: 1.2 meter (4.3.1)

• Location comparison - filter distance: 3.0 meter (4.3.1)

• Similarity comparison - minimal detections: 7 (4.3.1)

• Similarity comparison - lambda thresh: 2.0 (4.3.1)

• Same image overlap threshold: 0.5 (4.3.1)

• Minimal 3d-points: 50 (4.2.2)

• Pipeline publish rate: 0.25 Hz (4.4.2)

• Pipeline image rate: every 10th per camera (4.4.2)

5.1.2 Scenario 2

Compared to the first one, this recording serves rather as a worst case scenario. Here
multiple targets are passing the robot while the robot itself is moving and turning
rapidly. Moreover, targets are located further away up to circa 10 meters. The assign-
ment still works fairly good, however some weaknesses of the assignment process and
the pipeline could be identified that are treated in the following sections.
The here stated results are derived by simulating bag ugv 2016-05-17-12-15-54 with
the same parameters as in the previous scenario. Notice that results for this recording
can vary for different test runs although all configuration parameters are the same.
This happens due to small timing fluctuations in the pipeline. The ROS-nodes filling
the database is then selecting different images from its buffers that are fed to the inter-
preter. Consequently different detections are obtained and the result changes as well.
Furthermore, here occupation-pyramids are not calculated on purpose for every third
detection in contrast to the scenario above but still if the precise localization method
fails.
In the conducted test run, 7 out of 9 detections were successfully assigned. 2 detections
were miss-treated as a result of inaccurate localization. Figure 5.3 depicts 4 detections
of 3 victims that should actually be the same. The reason for the assignment failure is
that the targets c) and d) are not located in the middle of their bounding-boxes, nor
are they enclosed tightly. However, the three detection of victim 1 demonstrate that
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localization can be accurate although the robot drove roughly 5 meters while passing
the target.

5.2 Victim localization

Under ideal conditions, the victim localization algorithm developed in this work, is able
to derive very precise position estimations. Errors smaller than 0.5 meter have been
achieved repeatedly. However there are a few factors that can have a strong influence
on the localization algorithm and consequently reduce accuracy.

5.2.1 Timing constraints

It has been stated before that timing is a crucial issue for the interpreter in its current
state. When pictures are saved to the LLDB at higher rates than the interpreter can
process in real time, then the discrepancy by which the interpreter is lagging behind
increases slowly until it exceeds the buffer length for transformations or point-cloud
data. It is trivial to see that localization is then erroneous. Therefore, the picture
rate was to decreased for simulation purposes. During this work the upper image-rate
for which localization was still successful was: Every tenth image of each of the four
cameras while publishing and thus saving them to the low-level database every four
seconds. For optimal results only every twentieth image was saved. This is discussed
in more detail in timing section 5.6.
However, once all point-clouds and transformations are saved to the LLDB as well and
therefore available at all times, this will not be of relevance any more.

5.2.2 Odom drift

For now the global location of the robot in the map frame is obtained by integrating ac-
celerations measured by a inertial measurement unit (IMU) on the robot. A well-known
problem of IMU’s is that they are drifting over time and therefore create localization
errors.[22] TRADR plans to design a process to update the IMU data and reset this
error, however, not during this work. Once that feature is integrated in the framework,
it might be necessary to recompute the whole HLDB content as transformations could
change retroactively.

5.2.3 Movements during point-cloud acquisition

It takes about 3 seconds until newly recorded 3d-points are published in a new point-
cloud message. Taking an image only a few milliseconds. If the robot is not moving at all
during acquisition time, no problems occur. Otherwise, if it is moving and especially
rotating then, it is possible that ”wrong” 3d-points are projected into the detection
bounding-box and therefore the localization will be erroneous. This is still true although
a laser-assembler node is looking up the corresponding transformations to the global
frame many times during those 3 seconds of acquisition time so that movements are
considered in that calculations. However, transformations are derived from the IMU
which contains drift errors as explained above. Those errors are therefore also reflected
in the in the transformations and thus in the point-cloud.
Still, this is not so much of a problem as the TRADR’s ground vehicle move rather
slow. Even though some detection might by unusable, if the robot stops for just a
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short period of time, then it is likely that sufficient accurate data was acquired so that
localization will be successful, at least once. Furthermore, operators can be trained to
control the robot smoothly so that this problem is minimized.

5.2.4 Filtering victim points

When the localization process explained in section 4.2.2 filters for 3d-points that rep-
resent the target out of all those points projected into the bounding-box, it assumes
that the target is most likely located in the middle of it while background occurs more
towards the edges of the box. This algorithm was illustrated by figure 4.3.
In the results of test scenario 2 two example detections are presented (see figure 5.3 c)
and d)) for which this assumption does not apply. Here the targets are located slightly
of the middle and the bounding-box does not enclose it tightly. Consequently more
background than target points are filtered and thus, the outlier filter removes true tar-
get points. The final position then rather resembles the background than the target.
Alternatively one could use detection algorithms that segment resulting detections pixel-
wise providing a detection mask instead of a bounding-box. This would lead to much
higher accuracy as background outliers become less likely. Also, if this kind of segmen-
tation is not provided by the detection algorithm, state of the art image processing
segmentation algorithms could be used to identify 3d-target-point more precisely.

5.2.5 Point-cloud coverage

Section 3.1 provided information about the robots sensors and especially the cameras’
and laser’s field of view. It is easy to see that the field of view of camera 3 and 5,
as depicted in figure 3.1, are not completely covered by the laser’s field of view and
therefore the point-cloud. Thus, it can happen that no 3d-point can be found that
represent the target as non exist. The target was simply not in the field of view of
the laser as well. However, it has been sufficiently explained that then, a occupation-
pyramid is derived instead to be able to assign the detection anyway. See section 5.5.

5.3 Similarity comparison

Let’s assume we have a set of possible victims for a new detection that has to be as-
signed, then there are two scenarios where feature-similarity comparison can be applied:

1. If a candidate order was already derived e.g. by location comparison, then similarity
comparison can be used to decide whether or not the best candidate is represented
by the detection in case the candidate contains enough detections already. Enough
here means more than three or the minimal threshold. In general, this method was
developed as an alternative and more sophisticated way of deriving such decisions in
contrast to simply decide upon a simple statical similarity threshold.

2. If no candidate order has been derived yet then similarity comparison can be applied
for that purpose in case all candidates have at least three detections. Although this
method has been developed for the previous purpose, it is more reliable for deriving
a candidate order than to decide one the best-fit candidate. This is because two
detections of the same target can have small similarity due to changes in perspective
or in the background. But for two detections of different targets (let’s say target 1
and 2), it is unlikely that a third detection also representing target 1, has a higher
similarity to target 2.
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Additionally, since similarity comparison is based on variance and standard deviation
which is a statistical concept, accuracy will increase the more empirical data is available.
In our case that means the more detections are already assigned to possible candidates.
This applies to both methods described above. For the same reasons however, similarity
comparison can not be used independent of other methods like location comparison. It
only serves as an additional decision maker.
As a more sophisticated comparison algorithm, one could also think of training the
network itself to compare its own detection output in order to assign them. This could
provide a much higher reliability than the methods derived here.

5.4 Special case

In section 4.3.1 we saw how in the special case, that both detections are in the same
image, the assignment process can be abbreviated: If the overlap of both detections is
bigger than the threshold, the victims is identified sufficiently.
In the other case however when overlap is smaller that the threshold, it is assumed that
it cannot be the same victim and will thus be dismissed from the possible candidates.
Here problems can occur. For illustration, let’s assume two target have been detected
in the same image and their bounding-boxes are not overlapping more than the thresh-
old (usually 50%). Let’s further assume both victims have been detected before and
therefore already exist in the HLDB: Now if the assignment process starts and incor-
rectly assigns the first new detection to the other victim in the image, then the second
detection can not be assigned to the same and this time correct victim any more. This
is exactly because the assignment algorithm finds that this victim already contains a
detection in the same image and the overlap is smaller the threshold. It will therefore
be excluded from possible candidates.
This will repeat for every upcoming image in which both victims have been detected
and consequently lead to more miss-assignments. In addition, similarity comparison
will decrease in prediction reliability as well.
So why dismiss victims at all if the overlap is smaller than the 50% threshold? The
main argument is that it is still a strong reasoning criterion that works perfectly as long
as that initial miss-assignment does not occur, which is a rather rare phenomena. Also
for victims to be detected in the same image, they must be located closely together.
That in turn implicates a higher probability of miss-assignment due to location inac-
curacy. It also implicates the same for similarity comparison as victims in the same
environment might share a higher similarity as well, due to similar background. How-
ever, this feature can be deactivated easily in the launch file of the semantic interpreter
if necessary.

5.5 Occupation-pyramid

The concept of occupation-pyramids was developed during this work as an alternative
and backup to the original localization method which can fail for various reasons dis-
cussed before. Due to the fact that detections with pyramid can only be assigned to
existing victims, this method serves only as a secondary process.
Furthermore, in 4.2.2 it has been stated that the distortion model was neglected for
simplicity reasons. Using the distortion as well when projecting 2d-pixels to 3d-space
would require equations 4.4a and 4.4b to be solved for x′ and y′ respectively, which are
differential equations of second order. Moreover both equations depend on r (equation
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4.4c) which in turn depends on x′ and y′, which we are trying to derive. Consequently,
the decision has been made to stick with the simpler version as it works satisfactorily for
the purpose of this work. However, there are a few advantages outlined in the following:

1. Being able to successfully assign those detection for which localization failed as well,
will provide more data, based on which the similarity comparison method can derive
more reliable scores and decisions.

2. The method only depends on transformations and not on depth information.
3. Deriving occupation-pyramids and checking if a candidate lies within it is a simple

task that does not need much computational effort compared to the primary lo-
calization method where big point-clouds are handled and filtered leading to many
iterations.

4. In section 4.2.2 and figure 4.3 b) we saw how precise localization can fail due to
sloppy bounding-boxes. The occupation-pyramid method is immune to this kind of
problem, therefore it could be used as a double check or verification mechanism in
the assignment process so that both methods would cooperate more effectively and
annulling each others weaknesses.

5. Ultimately, one could think of a assignment process that calculates 3-dimensional
intersections of occupation-pyramids to derive smaller and more precise habitation
zones. Localization would then be completely independent of depth information,
however, computing such intersection is not trivial and can be computational much
more expensive.

5.6 Timing anlalysis

In the following, timing results for the computational most expensive and therefore
most time consuming building blocks of the semantic interpreter are briefly presented
and timing related issues are discussed.
With regard to the all timing statements made in this section, notice that the simu-
lations were conducted using the parallel computing platform CUDA for GPU (GeForce
GT 730M with 2048 MB memory) acceleration and a intel-core i5-4200U processor.
Overall, the semantic interpreter in its current state and using above resources, is ca-
pable of processing every tenth image of each of the for camera frames when saved to
the low-level database every four seconds in real time. However, if no stronger platform
is used, it is advised to only process every twentieth image in order to obtain optimal
results. For the following statements, this parameter was used as well. The cameras
itself capture images at 15 FPS, or raw uncompressed images at just under 7 FPS.[9]
During this work uncompressed images were used.

5.6.1 Detection

Detection is the most expensive part of the interpreter as it is executed for every new
image saved to the database. All subsequent task are only required for detections. Al-
though there can be multiple detections in the same image, the a amount of detections
is usually still small compared to the amount of images.
Detection for one image takes in average about 0.85 second per image when 350 region
proposals are calculated by the RPN. That means if 4 images (one from every camera
frame) are saved to the low-level database every 4 seconds than the interpreter is al-
ready busy without any further reasoning.
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5 Test results and evaluation

5.6.2 Localization

The main localization method which is executed for every detection can take up to
roughly 4.5 seconds. This however does usually not happen multiple times in a row
because at most 3.0 seconds of that time the localization thread is waiting for the up-
coming point-cloud message. Next time localization is executed, there is no need to
wait any more as the whole pipeline is already lagging those 3.0 seconds behind. While
waiting, the thread is also being suspended between subsequent point-cloud availability
checks so that other threads are not blocked. However, if waiting time is zero, the
localization precess can finished within 0.4 seconds.

Besides waiting, the two main point-cloud filters together consume second most time
up to roughly 1.5 seconds. This varies depending on the point-cloud itself and the field
of view for which the cloud is filtered. The first filter discards all 3d-points behind the
camera and the second one filters all those that are not projected into the bounding-
box. 1.5 seconds still seem surprisingly long. Here might be room for improvement as
of the python library numpy was not probably used to its full potential.
Furthermore, notice that the point-cloud messages published under /dynamic point cloud

are getting bigger with every new cloud acquired. This is because it contains all points
that has been recorded so far all along the way, instead of only those points recorded
in the last 3.0 seconds.
Also, computation time of the target filter varies because it iterates up to 10 times over
the amount of 3d-points that have been projected into the bounding-box, however,
usually this iteration breaks much earlier when enough 3d-points have been identified
successfully and most points have been filtered before as well.

5.6.3 Extraction

There is one issue that should be mentioned here: When images are extracted from the
LLDB, they are not processed in the same order by which they have been acquired.
That means if a image is processed much later as it has been saved the corresponding
transformations and messages for that point in time are not buffered any more. The
current low-level application programming interface (API) does not provide a method
to fetch all new element at the same time or at least their stamps so that they could be
sorted prior to processing them. But, once again, this issue is will not be of relevance
any more once all information required by the reasoning process are saved to the low-
level database and real time constraints dissolve.

5.6.4 Reasoning

The high-level assignment process is also time relevant. Exemplary, for 12 detection
with locations and 7 detections without, but occupation pyramid instead, both assign-
ment processes (one full update of the HLDB) took around 12 seconds. Hereby, feature
similarity comparison is the most expensive task due to their length of 1024 and 4096
elements for fc7 and fc6 respectively.
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5.6 Timing anlalysis

a) Victim 1 - Detection 1 b) Victim 1 - Detection 2

c) Victim 2 - Detection 1 d) Victim 2 - Detection 2

Figure 5.1 Resulting ”victims” for test scenario 1 part 1 (see 5.1.1). Figure a) and b) depict
Victim 1 whereas c) and d) victim 2. Detection boxes are marked red. More results (part 2)
for the same scenario are depicted in figure 5.2
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5 Test results and evaluation

a) Victim 3 - Detection 1 b) Victim 3 - Detection 2

c) Victim 3 - Detection 3 d) Victim 4 - Detection 1

Figure 5.2 Resulting ”victims” for test scenario 1 part 2 (see 5.1.1). Figure a), b) and c) depict
Victim 3 whereas d) shows victim 4. Notice that Victim 3 in a) is detected in a different
camera frames than in b). Detection boxes are marked red.
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5.6 Timing anlalysis

a) Victim 1 - Detection 1 b) Victim 1 - Detection 2

c) Victim 2 - Detection 1 d) Victim 3 - Detection 1

Figure 5.3 Resulting ”victims” for test scenario 2 (see 5.1.2) Figure a) and b) depict Victim 1
whereas c) and d) show separate victims as assignment failure example. Detection boxes are
marked red.
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6 User manual

This chapter aims to provide all information and links required to install and launch
the semantic interpreter. To avoid confusion, notice that the semantic interpreter in
the implementation is called semantic modeler instead. The code is written in python.

6.1 Software requirements

The following software packages are required by the semantic modeler:

• The full desktop version of ROS-indigo or newer version has to be installed preferable
on ubuntu. The installation should be done according to ros.org.
• Faster-rcnn must be installed on the system. Full installation instructions can be

found here including Caffe and py-caffe. Moreover, download links for the pre-
trained network models are also provided there. After successful installation, don’t
forget to export python-path to your faster directories and CUDA libraries if used.
Type the following commands into a terminal or append them at the end of your
local /home/.bashrc file to make changes permanently.

$ export PYTHONPATH="${PYTHONPATH}:/path-to-faster/py-faster-rcnn/lib/"

$ export PYTHONPATH="${PYTHONPATH}:/path-to-faster/py-faster-rcnn

/caffe-fast-rcnn/python"

$ export PATH="/usr/local/cuda/bin:$PATH"

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64

• GPU acceleration is not absolutely necessary but strongly advised as it will increase
object detection speed by a factor of 10. Moreover the interpreter was never tested
for CPU usage only. CUDA download link and installation instructions can be found
here.

6.2 TRADR installation and build

A basic installation guide can be found in the ciirc-redmine pages. The source code
can be downloaded from gitlab. Notice that a account is required for accessing gitlab

and redmine web-pages. Therefore please contact my supervisor Tomáš Svoboda (svo-
boda@cmp.felk.cvut.cz). In order to set up the databases properly please have a look
at the database qiuckstart quide and the launch database guide.
Not all the TRADR’s software components are required by the semantic interpreter.
As a minimal build only the branches listed below should be cloned from git. For
compilation catkin tools are recommended which can be found here. If some packages
are complaining during the compilation type:

$ roscd [package-name]

$ touch CATKIN_IGNORE
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6.3 Usage

Branches:
• tradr-database [branch modeler dev]

• tradr-msgs [branch master]

• tradr-user-interaction [branch master]

• tradr-ugv-base [branch master]

• tradr-payload [branch tradr cloud services]

• tradr-utils [branch master]

• tradr-vision [branch master]

• tradr-loc-map-nav [branch master]

• librover [branch master]

6.3 Usage

Once everything is set up properly, the semantic interpreter can be easily launched
using ROS-launch-files. All parameters of the interpreter and the pipeline are included
and commented accordingly. Have a look at the provided launch files and make sure
the paths to the caffe network model, the corresponding prototxt-file and the
rosbag-file are set accordingly.

Start the databases by typing the following command into a terminal:

$ rosrun tradr_docker_images start_db.sh [mission name]

To start the semantic interpreter separate from the pipeline (advised) enter the following
command:

$ roslaunch semantic_modeler semantic_modeler.launch

Then open another terminal and enter one of the commands below. Both will start
the pipeline, however play bag and fill lldb adv.launch provides a few more op-
tions.

$ roslaunch semantic_modeler play_bag_and_fill_lldb.launch

$ roslaunch semantic_modeler play_bag_and_fill_lldb_adv.launch

To launch the interpreter and the pipeline all at once just enter:

$ roslaunch semantic_modeler semantic_modeler_plus_bag.launch
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7 Summary and Conclusion

In the here presented work, a semantic interpreter was developed. Its purpose is to
assist human rescue teams, within the framework of the TRADR research project, to
detect, localize and identify victims of disastrous events so that rescue missions can
be easily planed based on the extracted and restructured information. Therefore the
state of the art machine-learning algorithm faster-rcnn was used for victim detection
and recognition. In addition, two localization methods have been developed so that
multiple detections can be compared as a basis for the subsequent reasoning process.
On top of that a feature similarity comparison method has been designed which can
be used to derive decisions about victim candidates in two different ways: Either to
decide if a best-fit victim candidate is represented by a certain detection or to identify
a best-fit candidate among multiple candidates. Furthermore, a high-level reasoning
process was developed, that assigns detections to victims and creates new ones. In
general, it manages the high-level database in a way that data consistency is assured
and information can be queried accordingly. A pipeline was also implemented based on
ROS, so that different recorded scenarios can be simulated. Finally every aspect of the
semantic interpreter was evaluated and discussed in detail.

It can be concluded that the original goal was accomplished and on top of that method-
ology has been developed to lift the performance of reasoning process to a satisfactory
extent. Many problems that occurred during the development with regard to the sim-
ulation pipeline, timing constraints in particular, will become irrelevant once the inter-
preter can collect all required information from the low-level database directly. However,
there is still a lot of room for improvement.
A segmentation algorithm could be used that identifies the target more accurately
within its bounding-box in order to extract 3d-target points from the point-cloud. Also
occupation-pyramid intersections could be derived as an alternative localization method
that would allow complete independence of depth information. Finally the object de-
tection can be enhanced in many ways: Classifiers could be retrained on real disaster
datasets that vary from usual data. Deeper neural networks could be used that make
more accurate predictions, and eventually the network could be trained to compare its
own detections to perfect the assignment process. Thus, the semantic interpreter in
its current state is not meant to be the final version but instead, it serves as a strong
foundation and template, based on which more sophisticated versions can be derived.
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