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Abstract

Before a self-driving car becomes a mat-
ter of everyday life, it is essential to re-
liably solve safe driving in adverse con-
ditions, such as night. Computer vision
algorithms — that are vital for optimal
control and decision-making systems — are
typically data-driven.

Nevertheless, the acquisition of night-
time data is expensive, and hand-labeling
is extremely laborious. Therefore, we ad-
dress the challenging problem of data aug-
mentation and propose a novel approach
in day-to-night image translation with 3D-
aware light control. We leverage classical
rendering techniques as well as contem-
porary deep neural networks to produce
photorealistic nighttime images.

With the illuminated nighttime images,
we literally shed light on the real-world
problem of object detection. Using a re-
cent day-night driving dataset BDD100K
[1], we train the object detector on several
mixtures of real and fake (nighttime syn-
thesized) images with the original scene
annotations and evaluate its performance
on real nighttime testing data. Experi-
mental results show that our approach is
on par or even outperforms competitive
state-of-the-art methods for image transla-
tion. Furthermore, with a proper mixture
of real and fake data, our method pro-
posed boosts the detector performance.

Keywords: Artificial intelligence,
computer vision, deep learning,
generative adversarial networks,
day-to-night image translation, data
augmentation, object detection
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Abstrakt

Predtim nez se samotidici vozidla stanou
véci kazdodenniho zivota, je nezbytné spo-
lehlivé vytesit bezpeéné tizeni v neprizni-
vych podminkéch, jako je noc. Algoritmy
pocitacového vidéni — které jsou zdsadni
pro optiméalni fizeni a rozhodovaci sys-
témy — typicky vyzaduji mnoho dat.

Ziskavani noc¢nich dat je vsak drahé a
ru¢ni anotovani je extrémneé pracné. Proto
se zabyvame naro¢nym problémem roz-
Sirovani dat a navrhujeme novy pristup
v prekladu obrazku ze dne na noc s 3D
kontrolou osvétleni. Pro vytvoreni foto-
realistickych noc¢nich obrazkt vyuzivime
jak klasické renderovaci techniky, tak i
moderni hluboké neuronové sité.

S osvétlenymi nocnimi obrazky doslova
vrhame svétlo na skuteény problém de-
tekce objektt. Pomoci soucasného silnic-
niho datasetu dennich a nocnich obrazku
BDDI100K [1] trénujeme detektor objektu
na nékolika smésich realnych a falesnych
(syntetizovanych noc¢nich) obrazku s pu-
vodnimi anotacemi scény a vyhodnocu-
jeme jeho vykon na realnych nocénich
testovacich datech. Experimentdlni vy-
sledky ukazuji, ze nas pristup je srov-
natelny, nebo dokonce prekonava konku-
ren¢ni state-of-the-art metody pro pie-
klad obrazkt. Navic se spravnou smési
redlnych a falesnych dat nase navrzena
metoda posiluje vykon detektoru.

Klicova slova: Umeéla inteligence,
pocitacové vidéni, hluboké uceni,
generativni adversarialni sité, preklad
obrazku ze dne na noc, rozsiteni dat,
detekce objektu

Pteklad nazvu: Zména stylu
obrazovych dat z dennich na nocni s
kontrolou osvétleni
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Chapter 1

Introduction

. 1.1 Motivation

Before a self-driving car becomes a matter of everyday life, it is essential to
reliably solve safe driving in adverse conditions, e.g., rain, snowstorms, fog,
dawn or dusk, and even complete darkness at night. The primary concern of
this thesis is the challenging problem of driving at night.

To make the control of the autonomous vehicle possible, we must first
perceive and understand the road context. That involves a range of high-level
computer vision tasks, such as object detection, semantic segmentation, or
object tracking. These techniques are usually data-driven, i.e., a large volume
of diverse data is required.

Nevertheless, the acquisition of nighttime data is expensive. In contrast
to clear daytime images, manual annotation of nighttime images is timely
and far more accuracy-demanding. Given these circumstances, public road
traffic datasets are usually lacking annotated nighttime data. Even though
they are occasionally available, the number of pedestrians and instances of
other classes is significantly reduced at night.

Common geometric augmentation techniques like cropping, flipping, or
rotation can be applied with satisfactory results. Still, they can only produce
limited variations of the same data. A tempting approach is to leverage afford-
able day images and synthesize their nighttime counterparts (see Figure 1.1).
This is a notoriously difficult problem known as image style transfer.

ETE T .
v W

(a) : Original daytime image. (b) : Artificial nighttime image.

Figure 1.1: Original daytime image and its nighttime counterpart by our method.



1. Introduction

Imagine, there would be an even more advanced level of transformation
that would allow us to manipulate the scene illumination.

B 12 our Approach

In this thesis, we propose a novel approach in day-to-night image style transfer
with 3D-aware light control. For the reader’s convenience, we present our
day-to-night translation pipeline in Figure 1.2. Let us now briefly describe
these five steps. First, we estimate a depth map from a single image. Next,
we reconstruct a 3D scene with the depth map guidance. Then, we illuminate
the reconstructed surface. Classical rendering tools are employed to generate
a 3D-aware lightmap. Based on the lightmap, we adjust the brightness of the
original daytime image afterwards. As a final step, we use contemporary deep
neural networks to turn the intermediate dimmed image into a photorealistic
nighttime image. For further details, consult Chapter 3.

This day-to-night translation framework can easily simulate street lighting
or turn on the ego-vehicle’s headlights. In Chapter 5, we show our synthesized
images along with translations by competitive state-of-the-art methods.

We anticipate that by training on synthesized images on its own or along
with real data, the proposed augmentation strategy will lead towards a
performance enhancement of computer vision algorithms. For testing purposes,
we design an object detection benchmark in Chapter 6.

All of this raises two big questions.

® How realistic night images can we produce?
® Does it help to improve the detection performance on real testing data?

We discuss the visual image quality and experimental results in Chapter 7.

Input daytime image Estimated depth map Reconstructed 3D scene

\‘/ —_—
/ ( Fake nighttime image Intermediate image Lightmap render

Figure 1.2: Day-to-night translation pipeline.



1.2. Our Approach

In summary, the contribution of this thesis is threefold.

1. Design of the day-to-night style transfer framework that allows us to
control the amount, position, and direction of light sources.

2. Inspection of the performance of the object detector trained on various
mixtures of real and fake (nighttime synthesized) images with the original
scene annotations.

3. Correction of time-of-day misclassifications in BDD100K dataset [1].






Chapter 2
Related Work

Nowadays, learning-based methods are almost exclusively used for image-to-
image style transfer. In particular, approaches leveraging generative adver-
sarial networks are the most prominent.

Generative Adversarial Network. The generative adversarial network (GAN),
introduced in [2], is a deep learning architecture based on a zero-sum game
between a generator and a discriminator. The generator aims to create real-
istic fake samples to fool the discriminator, while the discriminator detects
fake samples in a mixture of real and fake samples. See Section 3.7.1 for a
mathematical formulation and further details.

The advent of this phenomenon has sparked a “GAN-rush” in the entire
AT community and is receiving tremendous attention, with over 28 k papers
published! since GAN introduction in 2014.

Let us mention at least a few remarkable studies that used GAN architecture
in the past year. To enlarge a limited real dataset and enhance COVID-19
detection accuracy, CovidGAN [3] synthesizes chest X-ray images. Based on
the appearance of two people, FamilyGAN [4] can predict what their child
would look like. GAN helps to identify grape leaf disease in [5], segment skin
lesions from dermoscopy images in [6], or visualize floods in [7]. Finally, a
very recent House-GAN++ [8] automatically generates house floor plans.

Supervised Image-to-lmage Translation. A popular state-of-the-art con-
ditional GAN setting in [9], also known as a pix2pix framework, proved to
be useful in many image-to-image translation tasks, including day-to-night.
Nevertheless, a paired image dataset is required. That is too restrictive for
us, and for the rest of this chapter, we dive into the area of unsupervised
algorithms instead.

Unsupervised Image-to-lmage Translation. A widely used utilization of
GAN architecture for unpaired image-to-image translation is CycleGAN [10].
It basically consists of two generators and two discriminators. One generator
performs image translation from domain X to domain Y. The other one
translates in the opposite direction, i.e., from domain Y to domain X. To

!Papers from 2014 to 2021 related to generative adversarial networks according to
Google Scholar.



2. Related Work

determine the quality of the generated images, there is one discriminator
corresponding to each translation direction. On top of the standard adversarial
loss, a cycle consistency loss is defined to achieve higher authenticity and
retain the structure between the source and target domain. We devote
Section 3.7.2 to this attractive model design.

Many other unsupervised general-purpose, occasionally concurrent, meth-
ods like UNIT [11], DiscoGAN [12], DualGAN [13], CyCADA [14], Combo-
GAN [15], TransGaGa [16] are also built on the idea of the cycle consistency.

A more recent work on image synthesis from CycleGAN authors is CUT
[17] that uses a multilayer, patchwise contrastive loss to maximize the mutual
information between two patches, one of which is from the source domain
and the other from the target domain. It should be mentioned that the cycle
consistency loss is missing in this approach. For more information about the
loss function, see Section 3.7.3. Compared to CycleGAN, faster training and
memory efficiency are promised in CUT.

Day-to-Night Style Transfer. Let us now look at special methods that were
designed to perform a day-to-night image translation.

Preserving objects after the day-to-night image translation is a central
topic of [18] that introduces a structure-aware neural network AugGAN. As
the name suggests, AugGAN is also based on GAN architecture. AugGAN
incorporates a low-level semantic segmentation into the standard sum of
adversarial and cycle consistency loss. Interestingly, in addition to the
synthetic-to-synthetic and real-to-real, AugGAN can also perform synthetic-
to-real transformations or vice versa.

ForkGAN [19] is another image synthesizing framework explicitly related to
day-to-night image style transfer. Besides the adversarial loss, it also contains
the cycle consistency loss and presents a fork-shaped learning approach. One
of the branches provides a reconstruction loss, and the other is followed by a
refinement stage for achieving more precise output images during inference.

As deep learning-based methods are laborious to tune, not predictable,
produce lights at unnatural locations, cause deconvolution or checkerboard
artifacts [20], and other random failures, classical approaches in day-to-night
image translation are still emerging.

To the best of the authors’ knowledge, [21] is the first work that uses
classical techniques for day-to-night image translation with light control. This
approach relies on the prior knowledge of semantic image segmentation. After
converting the image to the HSV representation, the brightness is adjusted
— guided by the semantic segmentation — independently for each class, e.g.,
the lane marking is set brighter. Random light splatters are added, and the
final lightmap intensity is gradually decreased based on the coarse depth (see
Figure 2.1 for a day-to-night translation example).

Night-to-Day Style Transfer. The opposite approach of image time-of-day
attribute manipulation to improve visual tasks in adverse conditions is a
night-to-day image translation.
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(a) : Original daytime image. (b) : Artificial nighttime image.

Figure 2.1: Example of classical day-to-night translation [21].

In [18], the night-to-day image translation is viewed as a beneficial prepro-
cessing step to ease the labeling of real nighttime images. In [19], they use
the night-to-day transition direction to deal with the challenge of rainy nights.
However, while performing the night-to-day translation, black moving objects,
e.g., cars, may disappear. That is a safety shortcoming that can easily lead to
an accident when used in real traffic. Other studies that address night-to-day
image translation are [22], [23], [24], or [25].

Continuous Style Transfer. More advanced methods, such as DLOW [26],
DNI [27], SMIT [28], StarGAN v2 [29], HiDT [30], SAVI2I [31] or very
recent CoMoGAN [32], even provide a continuous transition between different
domains, e.g., day and night or various seasons and weather conditions.

Using these methods, a time-lapse effect can be created because all inter-
mediate stages® are available.

Style Transfer with Relighting. A difficult problem of light and shadow
manipulation has also been the subject of some recent papers.

To ensure proper shading, a 3D scene approximation is generally needed. In
[33], they use a geometry-aware neural network and synthetic stereo images
from multiple views. On the contrary, in [34], the geometry is acquired
by a monocular depth estimation and coarse semantic image segmentation.
Unfortunately, both methods consider the sun as the only source of light.

Impressive results of the pix2pix framework [9], without explicit geometry
information involved, are presented in [35]. However, they plan to use 3D
information in future work since it has been shown beneficial in other studies.

An explicit focus on shadow casting is a great advantage of these light-
oriented approaches since it is not normally treated within general-purpose
methods. Emphasizing the importance of the residual shadow removal
for the translated image appearance, specialized methods are arising, e.g.,
DeshadowNet [36], Mask-ShadowGAN [37], RIS-GAN [38], or the recent one
from [39].

A classical image illumination technique is proposed in [40]. At first, a
random circular binary lightmap is generated. In order to obtain a more
realistic light attenuation, the initial binary lightmap is subjected to the

’E.g., [dawn — day — dusk — night] for time-of-day transitions.
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Fuclidean distance transform. The lightmap is then applied to the original
image, simulating a light source effect (brightening) or shadow effect (dark-
ening) by pixel-wise addition or subtraction, respectively. The illumination
changes can be global by modifying all pixel values uniformly or local by
randomly choosing small regions.

A more recent variant [41] extends the previous one by more sophisticated
ellipse-shaped lightmaps to simulate the illumination at different angles.
Furthermore, they study global changes in contrast, sharpness, and color
saturation. Note that the illumination changes in [40] and [41] are completely
stochastic and do not take the 3D geometry of the scene into account, thereby
generating naive lighting effects lacking realism.

Day-to-Night Style Transfer for Data Augmentation. In the context of our
work, it is worth mentioning that the resulting artificial images are abundantly
used for data augmentation and improvement of high-level computer vision
tasks, such as car detection [18], [19], [25], [42], pedestrian detection [25], lane
detection [43], semantic segmentation [23], [24] or background subtraction
[40], [41].

Closely related to our work, in [42], they examine the influence of synthetic
nighttime image augmentation on the car detection task. For day-to-night
image translation, they use pure CycleGAN without further architecture
modifications. To simplify the task, they exclude problematic situations from
the data, i.e., only the images with clear or partly cloudy weather and at
least one car present are chosen. The remaining images are cropped such that
a car’s lane is centered and resized to 256 x 256 resolution to overcome high
computational demands. Thereafter, small and occluded bounding boxes are
removed. Leaving the simplification of the input data aside, it is exciting to see
that these artificial nighttime images help improve the detection performance
on real testing data.



Chapter 3
Method Proposed

This chapter describes a theoretical basis of the novel approach in day-to-
night image style transfer with 3D-aware light control. Along the way, we
extensively illustrate individual steps.

B 31 Depth Estimation

Before we can build the 3D geometry model of the scene, we need to acquire
depth information. In particular, a pixel-wise depth map associated with
the input image is of our primary interest. Ordinarily, depth maps are not
part of datasets®. Therefore, we are looking for a suitable monocular depth
estimation technique.

The monocular depth estimation is an active and fast-growing area of
research, and a lot of successful learning-based methods with amazing perfor-
mance have been published in the past years, e.g., SfMLearner [44], DORN
[45], Monodepth [46], its improved version Monodepth2 [47] or PackNet-SfM
[48]. See Figure 3.1 for a side-by-side comparison.

As a depth estimation framework, we choose Monodepth2 (the official
PyTorch implementation) since it is one of the most recent methods with

Input image PackNet-SfM Monodepth2

Figure 3.1: Comparison of recent depth estimation methods [48].

3Indeed, having a real dataset with exact per-pixel depth maps is not even possible.

9
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promising results and a leading position among the unsupervised methods
[49]*. Compared to PackNet-SfM, it supports not only monocular but also
stereo training modality. While processing stereo images is naturally con-
venient for this task, the stereo training modality becomes handy when the
stereo images are present in the dataset. With respect to depth estimation of
temporal objects (e.g., moving cars), Monodepth2 claims to be superior to
other methods.

To learn more about the training process of Monodepth2, see Section 5.3.1.

B 3.2 3D Point Cloud Back-projection

The input image extended by the estimated (or ideally, ground truth) depth
map is used to recover the original 3D scene. In other words, our goal here
is to back-project each image coordinate x € P? of the input image to the
corresponding 3D point X € P3, as shown in Figure 3.2.

Besides the precise depth information, the quality of the point cloud back-
projection also relies on accurate knowledge of the intrinsic parameters, i.e.,
the focal length f and the coordinates of the principal point p, of the camera
used.

(a) : Input daytime image. (b) : Estimated depth map.

(c) : Back-projected point cloud.

Figure 3.2: 3D scene recovery.

4An independent overview paper.

10



3.3. Surface Mesh Reconstruction

\—z

principal axis

centre image plane

Figure 3.3: Pinhole camera projective geometry [50].

Following the core idea of the central projection mapping of the pinhole
camera model from [50], we define an inverse mapping (see a geometric
motivation in Figure 3.3).

T T
Definition 3.1. Letx = {x y} be image coordinates and X = {X Y Z}

T
world coordinates. Let f be the focal length and p = { z py} be the

T
coordinates of a principal point. Given a depth value dg, at [m y} , an

inverse central projection mapping of a pinhole camera model from the image
T T
coordinates [m y} to the world coordinates {X Y Z} is defined as

X — W’ (3.1)
Yy — dffy(yf_]%)7 (3.2)
Z = dy,. (3.3)

An open-source 3D data processing library Open3D 0.9.0 [51] is used for
the practical implementation of this procedure.

. 3.3 Surface Mesh Reconstruction

To illuminate the 3D scene, it is necessary to reconstruct a surface representa-
tion of the back-projected point cloud that will reflect light. In our pipeline,
this is done by a memory and time-efficient ball-pivoting algorithm [52] that
performs a triangular mesh interpolation.

The ball-pivoting algorithm is motivated by the physics of a rolling ball
(see Figure 3.4a). As an initialization step, we drop the virtual ball onto the
point cloud. If the ball is large enough and does not fall through, it will get
caught between three points. These three points form a seed triangle. From
this place, the ball is rolling along the edges of the seed triangle until it settles
in a new place and forms another triangle from the previous two points and
the new one. The ball keeps pivoting and adding more triangles in the same
manner until a complete mesh is formed.

11



3. Method Proposed

\Mmm/'

(a) : Optimal radius. (b) : Too small radius. (c) : Too large radius.
Figure 3.4: The ball-pivoting algorithm in 2D [52].

The radius of the ball is to be determined empirically based on the scale of
the mesh, usually as a multiple of the mean distance between neighboring
points dp. If the ball is designed too small, some of the edges will be missed
(cause of holes, see Figure 3.4b). On the other hand, if the ball is designed too
large, some of the points will not be reached (loss of details, see Figure 3.4c).
As shown in Figure 3.5, the reconstructed mesh provides the best visual
experience with the ball radius five times larger than the mean distance
between neighboring points. This radius is used in further steps.

To incorporate the ball-pivoting algorithm into our pipeline, we use the
recently released PyMeshLab [53], a Python library interface to the 3D mesh
processing open-source software MeshLab [54].

(c) : Ball radius of 5 x dy. (d) : Ball radius of 7 x dy.

Figure 3.5: Reconstructed mesh surface for various ball radii
in terms of the mean distance between neighboring points d .

12



3.4. Lightmapping

N 34 Lightmapping

After obtaining the surface representation of the 3D scene geometry, it is
time for enlightenment and shading.

Without a doubt, street lamps are significant and important light sources
at night. Another dominant source of illumination are cars’ headlights. In
particular, the headlights of the ego vehicle are inherently present in the
picture. We can model both types of light sources as a spotlight that emits a
cone-shaped beam of light from the tip of the cone, in a given direction [55].

Figures 3.6a-3.6¢ depict various power settings with simple lightmap renders.
Along with the intensity, this approach elegantly allows us to fully control the
position and orientation of the light source. Figures 3.6d-3.6f demonstrate
the controllability and 3D awareness of the illumination.

The desired light setup is an essential input of the method. Note that the
light sources are to be engineered manually®. This is no exception since the
lights are normally hand-crafted by the user, even in some state-of-the-art
methods that focus on light control, e.g., [33].

The illuminated mesh is rendered and projected into the camera plane.

For the light source rendering, we use a 3D computer graphics open-source
software Blender 2.82 [55].

: 100W. (b) : 250 W. (c) : 400W.

(d) : Front. (e) : Front-right. (f) : Front-left.

Figure 3.6: Lightmap renders for various power settings (a)-(c),
positions and rotations (d)-(f) of the spotlight.

5See Appendix A for possible automation of this step.

13



3. Method Proposed

B 35 Lightmap Filtering

Due to inaccurate mesh reconstruction, unenlightened black segments may
appear in the lightmap render. To diminish the significance of these faults, we
smooth the lightmap by implementing a closing morphological transformation,
a useful technique for closing small holes in the picture [56].

Before we define the closing transformation, we need to introduce two
fundamental operations, erosion and dilation. Quoting essentially verbatim
from [57], we formally define erosion and dilation as follows.

Definition 3.2. Let A and B be sets in 72, assuming B to be a structuring
element.

The erosion of A by B is the set of all points z such that B, translated by
z, is contained in A. In the equation form,

Ao B=1{z|(B). C A}. (3.4)

The dilation of A by B is the set of all displacements, z, such that B and
A overlap by at least one element, where B denotes the reflection of B about
its origin. In the equation form,

Ao B={:[(B).nA+0}. (3.5)

The definition above assumes a binary image. Let us extend this definition
to a gray-scale image.

Definition 3.3. [57]
Let the function f(x, y) : Z2 v Z represent a gray-scale image and assume
that b(x, y) : Z*? — Z is a structuring element.

The erosion of the image f by structuring element b at any location (z, y)
1s defined as the minimum value of the image in the region coincident with b
when the origin of b is at (x, y). In the equation form,

[febl(z,y) = (glti)gb{f(w +5,y+1t)}, (3.6)

where x and y are incremented through all values required so that the origin
of b visits every pizel in f.

The dilation of the image f by structuring element b at any location (x, y)
is defined as the mazximum value of the image in the window outlined by b
when the origin of b is at (x, y), where b denotes the reflection of b about its

origin. In the equation form,

£ 8] (. v) = max, (f(z s,y 1). (37)

where x and y are incremented through all values required so that the origin
of b visits every pizel in f.

14



3.5. Lightmap Filtering

(a) : Original lightmap. (b) : 3 x 3 kernel.
(c) : 6 x 6 kernel. (d) : 9 x 9 kernel.

Figure 3.7: Closing the lightmap with various kernel dimensions.

Finally, we can define the closing transformation for gray-scale images.

Definition 3.4. [57]
Let the function f(x, y) : Z? v Z represent a gray-scale image and assume
that b(x, y) : Z2 ~ Z is a structuring element.

The closing of image f by structuring element b is defined as a dilation
followed by erosion. In the equation form,

feb=(f@b)ob (3.8)

In the case of an RGB image, each channel is processed independently [58].

In Figure 3.7, we can see the effect of the smoothing operation for various
dimensions of the kernel. The lightmaps filtered by the morphological closing
transformation form a more coherent impression. As a tradeoff between
filtering intensity and preserving sharp details, we choose the 6 x 6 kernel
dimension.

In this step, we take advantage of a computer vision open-source library
OpenCV 3.4.8 [59].

15



3. Method Proposed

B 3.6 Intermediate Image

Once the processing of the lightmap is accomplished, we adjust the brightness
of the input daytime image proportionally to the pixel values in the lightmap.

First of all, the RGB input image is converted to an alternative HSV® color
representation [60], where the V-component allows us to directly access the
brightness of the image. The lightmap is scaled so that the brightest pixel is
at the maximum of the numerical representation range’. Then, we perform
a pixel-wise multiplication of the scaled lightmap and the V-component of
the input image to produce a dimmed variant, hereinafter referred to as
an intermediate image. The intermediate image with adjusted brightness is
shown in Figure 3.8c.

The OpenCV 3.4.8 [59] is employed for the RGB-to-HSV conversion.

B 3.7 Touch of Deep Learning

In this section, we introduce the concept of a generative adversarial network
(Section 3.7.1) and its two adaptations for unsupervised image-to-image
translation CycleGAN (Section 3.7.2) and CUT (Section 3.7.3).

There are two main purposes of the translation framework.

1. A direct translation of the daytime image to its nighttime counterpart,
i.e., only day-to-night style translation without light control.

2. A finalizing step of our pipeline. The intermediate image is subjected
to the deep learning-based generative model to obtain an authentic and
photorealistic nighttime image (see Figure 3.8d). From now on, we will
refer to this translation as intermediate-to-night.

We are going to learn more about the training of these methods in Chapter 5.

B 3.7.1 Generative Adversarial Network

As we stated in Chapter 2, the generative adversarial network (GAN) [2] is
a popular concept for generating new artificial samples from a given data
distribution pgata. It consists of two differentiable functions, a generator G
and a discriminator D. Both functions are typically represented by neural
networks.

According to [61], the process of learning can be viewed as a competition
between the generator and the discriminator. The generator produces fake
samples & = G(z) from a random noise z (e.g., uniform distribution). The
discriminator adversarially tries to distinguish between real samples and
samples produced by the generator. More closely, the discriminator estimates
the probability that the input sample is from the real data distribution. The

SHSV stands for hue, saturation, value. It is also known as HSL (hue, saturation,
lightness) or HSB (hue, saturation, brightness).
"E.g., 255 in the case of an 8-bit unsigned integer.
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3.7. Touch of Deep Learning

(a) : Input daytime image. (b) : Filtered lightmap.

(c) : Intermediate image. (d) : Fake nighttime image®.

Figure 3.8: Key results of the image manipulation.

generator and discriminator alternate periodically in the training phase. One
is always kept constant during the training phase of the other one.
Defining a loss function”

Laan(G, D) = Egpin(@) log D(x)] +
+ Epioie(z) 108 (1 = D(G(2)))],

this competition can be mathematically expressed as a zero-sum game

(3.9)

G* = arg mGin max Lcan(G, D). (3.10)

An optimum — called Nash equilibrium [62] — is reached when the generator
produces samples so realistic that the generator cannot distinguish between
real and fake samples, i.e., its decision for any input is equivalent to flipping a
coin. At such a moment, the training is at the end, and the desired generator
of plausible artificial data G* is obtained.

8Translated from the intermediate image by CUT [17] (see details in Section 5.3.2).
9The symbol E denotes an expected value over all data instances of the corresponding
distribution.
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3. Method Proposed

Bl 3.7.2 CycleGAN

M
Let {ccz}fv, where z; € X for each 4, and {yj}j , where y,; € Y for each j,
be two unaligned image sets'’ from different domains X, Y and let pqata (),
Pdata(y) be the respective data distributions. The main goal of CycleGAN

[10] is to learn a transformation
G: XY, (3.11)

i.e., a generator that translates the image from domain X to domain Y, such
that the resulting artificial image y = G(x), € X fits into the distribution
of images from the domain Y.

The generator is trained in a similar way as the general GAN in Section 3.7.1.
However, the source domain image is taken as input instead of the random
noise. The adversarial loss of the generator G is then

Lcan(G, Dy, X, Y) = Eprdam(y) [log Dy (y)] +

(3.12)
+ Egrpgaa (@) 108 (1 — Dy (G(2)))]-
Simultaneously, an inverse transformation
F .Y+~ X, (3.13)

is learned. The generator F' yields a fake image & = F(y), y € Y, imitating
the style of domain X. Analogously to (3.12), we define the adversarial loss
of the generator F' as

LaaN(F, Dx, Y, X) = Eqrpy o) log Dx ()] +
+ Eypana(y) 108 (1 = Dx (F(y)))] .

In effect, the CycleGAN architecture consists of two GANs (i.e., two generators
G, F, and two associated discriminators Dx, Dy ), as shown in Figure 3.9a.
To avoid structural changes during translation, CycleGAN introduces a cy-
cle consistency regularization based on the composition of the two generators.
The forward cycle consistency, i.e., F' composed with G, can be written as

(3.14)

FGx)=a2~z, =xe€lX, (3.15)
and likewise, the backward cycle consistency, i.e., G composed with F', as
G(F(y)=9~y, yev. (3.16)

In other words, by transforming the image back and forth, we should get
close to the input image. Consult Figures 3.9b and 3.9¢ for the block schemes
of (3.15) and (3.16), respectively.
Next, we follow [10] by defining a cycle consistency loss
ﬁcyc(Gv F7 Xa Y) = Exwpdam(m) [HF (G(:I))) - m”l] +
Byt (16 (F) — g,

0For simplicity, hereafter, we omit the subscript ¢ and j as in the original paper [10].

(3.17)
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3.7. Touch of Deep Learning

D Dx
Dx Dy G ¥ LIge
TN " 17 2~
a1 k5] 5]
X Y X H y| |X Y )
cycle-consistency
\_/ cycle-consistency \./ > <’ﬂ.\s u loss
F loss * O/ __/.
(a) : Principal (b) : Forward (c) : Backward
architecture. cycle consistency. cycle consistency.

Figure 3.9: Block diagrams of the CycleGAN model [10].

Both adversarial losses (3.12), (3.14) — the key expressions of GANs to
generate realistic images — combined with the cycle consistency loss (3.17)
form a full objective of CycleGAN

L(G, F, Dx, Dy, X,Y) = Lgan(G, Dy, X, Y)+
+ Lean(F, Dx, Y, X)+ (3.18)
+ Aoy (G, F, X, Y),

where A € R is a scaling factor. The optimization problem is then

G*, F* = arg lgil,il{“lDT?gy L(G, F, Dx, Dy, X, Y). (3.19)
At the end of the training, we obtain a pair of plausible generators G*, F™*.
Assuming X and Y represent the day and night domains, respectively, we only
need to keep the generator G* for our purposes. The rest can be discarded.

B 3.7.3 Contrastive Unpaired Translation

Another approach to designing the generator G is proposed in [17]. The
notation and task requirements in the following are adopted from Section 3.7.2.

The spirit of contrastive learning in CUT is a calculation of cross-entropy
loss

exp (v-vt/T)

{(v, vt v7) = —log
exp (v-vt/7) + 3N exp ('v . 'vﬁ/r)

. (3.20)

where v € RE, vt € RE and v— € RV*K are the output, corresponding, and
N noncorresponding vectorized (K-dimensional) image patches, respectively,
and 7 € R is a scaling factor.

Equation (3.20) yields the probability that the corresponding patch v will
be selected from all provided input patches v and v—.

Patches from multiple layers of the network are passed through a two-layer
perceptron H and combined to form a loss called PatchNCE!.

" Please refer to [17] and [63] for the exact Lpatcnnce formulation.
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3. Method Proposed

A final loss combines the adversarial loss (3.12) with the PatchNCE loss
on images from domain X. To penalize structural changes, the PatchNCE
loss on images from domain Y is involved. The full objective of CUT is then

E(Ga DY7 H7 Xa Y) - EGAN(Gu DY7 X7 Y)+
+ AXL:Pat(‘/hN(j}ZJ(C:7 H7 X)+ (321)
+ )\YEPatchNCE(Ga H7 Y)a

where A\x € R and Ay € R are scaling factors.
Equation (3.21), as usual, is to be optimized

G* = arg minmax L(G, Dy, H, X,Y), (3.22)
G Dy

to get a plausible generator G*.
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Chapter 4

Datasets

A vast amount of diverse datasets exist within the autonomous driving
community. What is more, new datasets are constantly being released. In the
last two years, these are, for example, nuScenes [64], Honda 3D Dataset (H3D)
[65], PreSIL [66], Argoverse [67], A*3D [68], Dark Zurich [69], Waymo Open
Dataset [70], Lyft Level 5 [71], Audi Autonomous Driving Dataset (A2D2)
[72] or Aachen Day-Night Dataset [73]. Most notably, with an emphasis on
3D scene understanding.

There are various specializations of datasets, and it can be difficult to find
the right one. As we may have noticed, some datasets, such as Cityscapes
[74] or KITTI [75], became more popular over time and were frequently used
in various benchmarks due to their versatility.

Nevertheless, a lack of night images is a common drawback of the majority
of publicly available datasets. On the contrary, the NightOwls dataset [76] —
a rare exception — contains only night images. Fortunately, there are a few
datasets that involve both daytime and nighttime images, and we focus on
them in Section 4.1.

B a1 Day-Night Datasets

Unlabeled Day-Night Datasets. Although they contain day and night data,
some datasets do not provide any form of content annotation.

The Alderley Day/Night Dataset [77] offers one lap (22km) of driving
at the Nurburgring racing circuit in Germany and a short journey (8 km)
through the suburb of Alderley in Australia. The same routes were traveled
and recorded at both daytime and nighttime. Pairs of images — capturing
the same scene under different lighting conditions — were manually aligned
but not annotated.

The Oxford RobotCar Dataset [78] consists of over 100 traversals of the
same route (10km) through Oxford in England and addresses a long-term
road vehicle autonomy in different weather conditions and times of day (6 %
of traversals are at night). Like in the Alderley Day-Night Dataset, neither
bounding boxes nor semantic segmentations are provided in the Oxford
RobotCar Dataset. For some tasks, this is enough, but we essentially rely on
object annotations.
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4. Datasets

(Partially) Labeled Day-Night Datasets with Limitations. In the Rain-
couver dataset [79], there are 326 semantically segmented images with 95
nighttime frames. The Dark Zurich dataset [69] comprises 8377 images with
a great night ratio (36 %). However, only 151 nighttime images are annotated
with pixel-wise semantic segmentation. The Nighttime Driving dataset [80]
contains 35000 images. In addition to daytime (18 %) and nighttime (22 %),
they also distinguish civil (20 %), nautical (20 %), and astronomical (20 %)
twilight. For testing purposes, a pixel-wise semantic segmentation is provided
for 50 manually chosen highly diverse night frames. The testing data are the
only available at the moment'?.

We are concerned that these datasets contain too few annotated images to
work well with deep learning approaches. Therefore, we are more interested
in bigger day-night datasets.

The Mapillary Vistas Dataset [81] promises a large dataset with day
and night images and a comprehensive pixel-wise instance-level semantic
segmentation. Since the night ratio is not specified and time-of-day labels are
not provided, we decided to assign the labels manually on our own. Several
tens of thousands of images later, we found 28 and a single night image in
the whole training and validation set, respectively.

Similar to Mapillary Vistas, night images — without the actual ratio being
specified — are also announced in other huge state-of-the-art datasets, such
as ApolloScape [82] or Argoverse [67]. Further analysis is needed for these
datasets. Nevertheless, the manual revision is extremely time-consuming, and
the utility is apparently not guaranteed. In the following, let us look at large
datasets explicitly stating the portion of night images.

Suitable Day-Night Datasets. Table 4.1 summarizes in more detail the rest
of the day-night datasets that suit our needs.

Because no dataset in Table 4.1 contains semantic image segmentation,
we are limited to object detection experiments in Chapter 6. We also list
the capturing frequency since it is essential for the depth estimator to have

training videos or consecutive temporal frames'>.

Dataset Annotated Annotation Night Capturing
Images Type'4 Images [%] Frequency [Hz]
A*3D [68] 39k 2D/3D-BB 30.0 55
BDD100K |[1] 80k 2D-BB 39.9 30
KAIST [83] 95k 2D-BB 34.4 20
nuScenes [64] 40k 3D-BB 11.6 12
Waymo OD [70] 230k  2D/3D-BB 11.2 10

Table 4.1: Suitable day-night datasets.

12The training data are still being prepared for public release.

13In this case, daytime records are sufficient.

4 Available for all images.

5Not yet publicly available. The download link is still marked as in progress.

22



4.2. Berkeley DeepDrive Dataset

In relation to night traffic, it is noteworthy that the KAIST dataset [83] also
provides FIR (far-infrared) images aligned with RGB images. The KAIST
community is working on a newer version of the dataset [84]. It should include
stereo images, LiDAR point clouds, and dense depth maps. We tried to obtain
these nonpublic data directly from the authors but met with little success.

According to our analysis, a total of four publicly available datasets, i.e.,
BDD100K [1], KAIST [83], nuScenes [64], and Waymo OD [70], are suitable
for our purposes. Reasonable size, the uppermost ratio of night images, and
high frame rate are the clear motivation for choosing BDD100K dataset.
Moreover, it is widely used in related studies [19], [24], [25], [42].

B a2 Berkeley DeepDrive Dataset

B 4.2.1 Dataset Overview

The BDD100K [1] is a large-scale driving dataset. It is one of the richest, if
not the richest, publicly available day-night road traffic datasets regarding
night images. Nearly the same number of day and night images brings a great
opportunity to study day-night image style transfer.

Adverse weather conditions, including snow, rain, or fog, are naturally
present in the dataset. The crowdsourcing model with tens of thousands of
drivers ensures diverse geographical distribution and variable camera positions.
Challenging but realistic scenarios (e.g., a wiper in motion, hood or dashboard
in camera view, reflections of the interior on the windshield, or drops on the
windshield) are very frequent in BDD100K (for better insight, see Figure 4.1).

The dataset is based on 100k video clips (40 seconds each). One image
frame is taken for annotation from each video clip at the tenth second, yielding
a set of 100k different images. Ten classes are extensively annotated with
bounding boxes. We choose a subset of six common moving objects, i.e., car,
person, bus, truck, bicycle, and motorcycle, for the evaluation of our models.

(c) : Wiper.

[ My l

S==8 Ill[“

O
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e

IE“‘

(d) : Reflections. (e) : Hood, dashboard. (f) : Fence in view.
Figure 4.1: Challenging scenarios in BDD100K [1].
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4. Datasets

A pixel-wise instance-level'® semantic image segmentation is available for a
10k sample — also referred to as BDD10K — of the dataset. Indirectly proving
the difficulty of such a task, only 230 (about 2.9 %) public night images are
segmented. Beyond the bounding box labels and semantic segmentation, the
BDD100K also covers lane marking detection, drivable area segmentation, or
multiple object tracking.

B 4.2.2 Custom Data Split

The data are split into training (70 k), validation (10k), and testing (20 k) sets.
Ground truth labels are hidden within the testing set, which is intended to
be evaluated via a submission server. However, due to ongoing maintenance,
it is not available!”. To overcome this inconvenience and evaluate the models
properly, we make use of the abundance of data in the training set by
separating a subset (20k) for testing.

As aresult, a new data split arises, i.e., training (50k), validation (10k), and
testing (20 k), where the validation set is left as is and the original unlabeled
test set is not considered at all. Keep in mind that individual images were
acquired from different video clips and are sufficiently independent. The
custom split does not change the time-of-day distribution.

B 4.2.3 Correction of Time-of-Day Misclassifications

To easily distinguish between day and night domains, images are provided
with time-of-day labels. To bridge the gap between day and night, a conjoint
dawn/dusk label is introduced. Sometimes, e.g., in the tunnel, it is hard to
decide, and the time-of-day label is set as undefined.

Nevertheless, the time-of-day labels are relatively often wrong. This has
already been noticed in [42]. Some errors are at a day-night boundary (soft
error). More seriously, some dark night images are marked as daytime and
vice versa (hard error). Figure 4.2 shows several misclassified examples.

(a) : Nighttime images labeled as daytime.

. N
2 N0

(b) : Daytime images labeled as nighttime.

Figure 4.2: Examples of time-of-day misclassifications in BDD100K [1].

6The instance IDs were not released until April 2021.
"The submission server is expected to be launched by summer 2021.
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4.2. Berkeley DeepDrive Dataset

Nighttime Label (31890 images)

Error Type Absolute Error Relative Error [%]

Daytime 129 0.40
Dawn/Dusk 207 0.65

Daytime Label (41986 images)

Error Type Absolute Error Relative Error [%]
Nighttime 237 0.56
Dawn/Dusk 214 0.51

Dawn/Dusk Label (5805 images)

Error Type Absolute Error Relative Error [%]
Daytime 139 2.39
Nighttime 25 0.43

Table 4.2: Incorrect time-of-day labels in BDD100K [1]'8:19.

Driven by suspiciousness, we checked all images in the dataset and found a
total of 951 (about 1.2 %) incorrect time-of-day labels (see Table 4.2). In our
opinion, the amount of errors is far from being negligible.

Having a list of misclassifications, the correction of time-of-day labels is
an obvious and straightforward step. The correction is important so that
our results (e.g., a performance of an object detector?’) are not distorted.
Table 6.1 analyzes the discrepancy in terms of object detection performance.

We shared the list of misclassifications — an outcome of this laborious task
— with the BDD100K community. Much to our delight, it will be incorporated
into the future updates of the BDD100K dataset. The list of misclassifications
is also available in the attachment of this thesis.

8The numbers correspond to the sum of errors in the training and validation sets.

9The remaining 319 images belong to the undefined class.

20Tf trained on daytime and tested on nighttime images, the error could severely affect
both the training phase (challenging nighttime images are seen) and the testing phase
(much easier daytime images improve the performance).
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Chapter 5

Artificial Images Generation

B 51 Quality Measures

B 5.1.1 Fréchet Inception Distance

To assess the quality of the generated images quantitatively, we compute a
conventional and widely accepted metric, Fréchet Inception Distance (FID)
[85], defined as

FID = [|pty = 13 + Tr (S + B — 2(2,5,)"/?), (5.1)

where (., X,) and (pg, X4) are the mean and covariance of the real and
generated data, respectively. Since (5.1) measures the distance between the
real and generated data distributions, the lower FID score indicates higher
quality images.

It is able to detect intraclass mode dropping or various types of artifacts
[86]. Furthermore, the FID score was shown to be a suitable quality measure
even for high-resolution images [87], [88].

We use the official PyTorch implementation [89] for practical calculation.

B 5.1.2 User Study

As no metric is perfect, a user study might be helpful to assess the realism
of the generated nighttime images. Using a randomly chosen batch of 30
real daytime images, three non-expert participants were shown an epoch-wise
sequence of generated nighttime images®' and asked to choose three best and
three worst epochs for each base image from the batch??.

Besides the overall authenticity of the synthesized images, the participants
considered the number and severity of various artifacts, the amount of night
style characteristics (e.g., some epochs generated non-night images with bright
sky), and other common failures (see Figure 5.8). For the images processed
by our pipeline, they also took into account the preservation of added lights
and shadows since some epochs tend to remove them.

210ne day-to-night translation of the base image for each epoch.
22Totaling 600 images for the entire batch and 20 epochs of training.
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5. Artificial Images Generation

The results are presented in the form of a histogram, where the best and the
worst epochs are shown. In addition, an unweighted combination (difference)
is computed to get a tradeoff. Alongside the FID score, this metric serves as
a simple detector of undesirable visual anomalies and should reveal epochs
with persistently ill-suited images.

The evaluation by people is expensive. Consequently, the metric is biased
as it only considers 30 images. Yet it gives us some basic understanding.

Are aesthetic images really better? By intuition, we would expect the
visually plausible data to be the most beneficial for boosting the performance
of vision tasks. However, despite common sense, this may not be true for
a computer algorithm, i.e., solely the criterion of aesthetic images may not
be enough. Conversely, even imperfect or unrealistic images can be helpful.
Although beyond our computational capabilities, this is a fascinating aspect
that needs to be tested experimentally, ideally, for every possible model.

B 52 Direct Day-to-Night Translation

B 521 CycleGAN and CUT

In order to have competitive artificial nighttime images, we train two existing
state-of-the-art methods, i.e., CycleGAN [10] — the most widespread baseline
in image-to-image translation — and its indirect successor CUT [17], to perform
day-to-night image translation directly.

Translation models are intended for offline data augmentation. We wish
to make the most of the available data, and we do not need the models
to generalize well to unseen images, i.e., there is no need to worry about
overfitting on the training set. However, we aim to use the same model
to transform the validation set. Therefore, images from the validation set
are incorporated among the training samples, yielding 31179 daytime and
23915 nighttime images. This is not ideal, as sharing the style distribution
between training and validation data slightly distorts the independence of
the validation set. It must be mentioned that the testing set — as designed in
Section 4.2.2 — is always kept separate.

Note that it is recommended to use a cropped image in the training phase.
Then, as the networks are fully convolutional, the trained models can be
applied for image inference of arbitrary resolution. Figure 5.1 shows an
evaluation of two training setups, i.e., crop and scale-crop.

In the crop setting, a 540 x 540 square is cut from the original image®®.
This crop size optimizes the memory usage of the GPU?*. Other parameters
are left default, e.g., learning rate 0.0002 or a single image batch size.

The scale-crop setting is the same as the crop setting, except the image is
scaled to a resolution of 960 x 540 at first. Although at the lower resolution,

ZThe original image size in the BDD100K is 1280 x 720.
24Considering a single NVIDIA GeForce GTX 1080 Ti GPU with 11 GB memory size.
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5.2. Direct Day-to-Night Translation
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(a) : FID evaluation.
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(b) : User study.

Figure 5.1: Evaluation of fake nighttime images
generated from daytime by CycleGAN [10] and CUT [17].

the crop captures a wider field of view. Hence, the model is effectively
provided with more contextual information about the scene.

Finally, we let both models train for 20 epochs. This could equivalently
be expressed as an approximately two-week computation task on a single
NVIDIA GeForce GTX 1080 Ti GPU.

Given the heavy memory demands of high-resolution image synthesis,
the FID score in Figure 5.1a is generally calculated between a batch of 3k
artificial night images®® and all training and validation real night images?®.
The minimum number of images in each batch required by [89] is 2048.
However, is our 3k subset variable enough? Out of curiosity, we translated a
larger sample of 10k artificial nighttime images per epoch with the models
based on the crop setting to see how it affects the FID score. In Figure 5.2,
we can see that the expansion of the batch of artificial night images does not
bring new insight. In other words, the distribution of artificial night images
is sufficiently described by the 3k subset.

Looking at Figure 5.1a, we quickly found out that the scale-crop setting is

25Sampled randomly but then kept fixed for all calculations.
26The number of images does not have to be equal. Data distribution is what matters.
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CycleGAN crop CUT crop
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Figure 5.2: FID dependence on sample size for the crop setting.

better for CycleGAN as well as for CUT. Results of the inspection by people
in Figure 5.1b show the outcomes of the corresponding best epochs to be
visually plausible. The trained models associated with the best epochs of
the scale-crop setting (according to the FID score) are used to generate two
complete datasets (one for each method) of artificial night images. These
data augmentations are then used to train the object detector in Chapter 6.

B 5.2.2 ForkGAN

The ForkGAN framework [19] complements the general-purpose methods
CycleGAN and CUT with an approach that explicitly focuses on day-to-night
image style transfer.

Thanks to the courtesy of Zigiang Zheng?’, who shared the original non-
public data with us, we have the opportunity to use the same images as they
did in [19] for our data augmentation experiments. Due to the computational
relief, we were able to use limited computing power for other experiments.

B 53 Day-to-Night Translation with Our Method

Recall the description of our method proposed in Chapter 3. In this section,
we broaden the explanation of both learning-based steps of the pipeline, i.e.,
the depth estimation (Section 5.3.1) and GAN-based intermediate-to-night
image translation (Section 5.3.2).

B 5.3.1 Monodepth2

Having the importance of the accurate depth estimation in mind (the rest of
the pipeline strongly relies on the depth map quality), we make an appropriate
effort to extensively test and analyze the Monodepth2 framework [47] —
selected in Section 3.1 — and choose the best model possible.

The Monodepth2 community offers several prediction models pretrained®®
on KITTI [75]. Namely, monocular (M), stereo (S), and mono plus stereo
(MS) training modalities, each with resolutions of 640 x 192 and 1024 x 320.

2T A leading author of ForkGAN from UISEE Technology (Beijing) Co., Ltd.
28The pretrained models are available from https://github.com /nianticlabs/monodepth2.
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(a) : Too close oncoming or too far parallel-driving cars.

(b) : Overtrained. (c) : Lateral car. : Sky.

Figure 5.3: Common depth estimation failures.

We compare the quality of the depth estimation for models pretrained on
KITTI, fine-tuned®® on BDD100K, and trained on BDD100K from scratch.

Monodepth2 needs the camera to move sufficiently between subsequent
frames. That is why we carefully select 200 training video clips®® in which
the ego vehicle is still in motion. As the camera captures images at a high
rate, even driving without stopping sometimes provides too little relative
movement. With a small motion between frames, it is very hard to train
the model. Therefore, we investigate the effect of frame skipping. Gradually
increasing the number of skipped frames, we take every second, fourth, sixth,
eighth, and tenth frame of the sequence.

We train with four different image resolutions®!, i.e., scaled to 1280 x 704,
1024 x576, 512 x 288 (for faster training) and cropped to 640 x 192 (to maintain
the KITTTI resolution). According to the resolution, we adjust a batch size to
fit into GPU memory (i.e., 12, 10, 4, and 1 for resolutions 640 x 192, 512 x 288,
1024 x 576, and 1280 x 704, respectively). Other parameters are left default,
e.g., learning rate 0.0001, and each model is trained for 20 epochs.

To have a rough idea of time complexity, the training on a single NVIDIA
GeForce GTX 1080 Ti GPU takes about five hours per epoch for the lower
resolutions (640 x 192, 512 x 288) and about ten hours per epoch for the
higher resolutions (1024 x 576 and 1280 x 704).

Our requirements for depth maps are hard to express by any metric. Instead,
a subjective visual evaluation is used to have a better insight and control
over specific objectives (which are indeed also visual). To assess the quality
of the predicted depth maps, we focus on sharp estimation of spatial objects,
correct sky prediction, continuous depth transition on the road, temporal
object deletion, and other common failures (see Figure 5.3). The quality of
the model is hard to be judged from only one image frame. Thus, we calculate
the depth prediction for entire video clips.

PTnitialized with KITTT pretrained (MS, 640 x 192).
39The limit was set because of the high computational demands of Monodepth2 training.
31Note that the height and width have to be divisible by 32.
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Figure 5.4: The best-trained Monodepth2 models. Row-wisely, (i) original image,

(if) KITTT pretrained (MS, 640 x 192), (iii) fine-tuned (1024 x 576, frame step 2,

epoch 5), (iv) fine-tuned (512 x 288, frame step 4, epoch 6), and (v) trained from
scratch (512 x 288, frame step 6, epoch 14).

In Figure 5.4, we can see a preview of the best performing models in various
complex scenes. The depth maps in the second row — corresponding to the
KITTI pretrained model — are stable but blurry. Presumably, the consistency
is due to the training with stereo images, while the blurriness is probably
caused by the different aspect ratio and resolution of the images in BDD100K.
On the contrary, the fine-tuned or trained-from-scratch models produce
sharper but locally inconsistent predictions. From the video perspective, in
some cases, the quality of depth estimation strongly oscillates.

A noticeable black area at the bottom of the images is an incorrectly
estimated hood of the car. The network associates objects which move
at the same velocity as the camera (e.g., the hood or parallel-driving car)
with being infinitely far [47]. Nowadays, the temporal object deletion is the
main problem of contemporary monocular depth estimation frameworks, and
finding a method to fix it is a research topic on its own. To remark, this failure
does not occur with the KITTI pretrained model due to the stereo training.

From the visual point of view, the fine-tuned (1024 x 576, frame step 2,
epoch 5) model appears to be the best of all models (consult the images in
the third row of Figure 5.4) and is used in our pipeline.
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Figure 5.5: Evaluation of fake nighttime images
generated from intermediate images by CUT [17].
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Inspired by the advantages and drawbacks of learning-based image translation
techniques, we leverage the observations from Section 5.2.1 for the final step
of our day-to-night translation pipeline. However, instead of day-to-night,
the translation model is trained to perform the intermediate-to-night style
transfer with a single fixed light setup — four random street lamps and ego-
vehicle’s headlights on (best viewed in Figure 5.7b). Considering the high
computational demands of the training, we adopt only the highest-rated
model, i.e., CUT [17] with the scale-crop setting. Compared to daytime, we
assume that the distribution of intermediate images is closer to the target
night domain. Hence, we find 10 epochs of training to be enough.

In Figure 5.5, there are results of both quality measures. The epoch with
the lowest FID score, i.e., the seventh epoch, is also one of the highest positive
peaks of the user study. Therefore, we take the model from the seventh epoch
as the final one. Analogous to day-to-night models, we generate a complete
dataset of artificial night images and use it for the object detector training in
Chapter 6.

B 54 Qualitative Comparison and Failure Cases

At the end of this chapter, we present a comparison of the final nighttime
images. City street and highway environments are shown in Figure 5.6 and
Figure 5.7, respectively. Common translation artifacts and failures follow in
Figure 5.8. The results are discussed in Chapter 7.

33



5. Artificial Images Generation

(e) : ForkGAN [19].

Figure 5.6: Visual comparison of fake nighttime images (city street).
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(e) : ForkGAN [19].

Figure 5.7: Visual comparison of fake nighttime images (highway).
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5. Artificial Images Generation

(d) : ForkGAN [19].

Figure 5.8: Common translation artifacts and failures.
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Chapter 6

Experimental Results

Object detection is a thoroughly researched area of computer vision and is
extensively used for benchmarking purposes. In this chapter, we train the
object detector on several mixtures of real and fake (nighttime synthesized)
images generated in Chapter 5.

The performance of trained models tested on real nighttime data is used as a
quantitative quality measure for the generated nighttime images. Specifically,
a mean average precision with 50 % threshold (mAP50) and COCO mean
average precision (mAP@[50:5:95]) are computed. If you are aware of the
concept of the mean average precision score, you can skip the following
paragraph and continue with the description of the data flow diagram.

Performance Measures. Let us denote the ground truth bounding box by
bgt and the predicted bounding box by byeq. To measure the prediction
accuracy of byreq, an intersection over union is computed

area of bpreq M byt

IoU = (6.1)

area of bpred U byt

We emphasize that the calculation of the bounding boxes overlap only makes
sense if they belong to the same class.

If the intersection over union exceeds the specified threshold, we count
bpred as true positive (TP). Predicted bounding boxes that do not exceed the
IoU threshold are counted as false positives (FP). Similarly, ground truth
bounding boxes without an associated correct prediction are counted as false
negatives (FN). With TP, FP, and FN, we can now express

TP
Precision = ———— 2
recision = (6.2)
TP
Recall = m (63)

A standard requirement for the correct detection is a single IoU threshold
of 50 %. Given the detection confidence, we follow [90] by constructing a
precision-recall curve. The AP50 score is then computed as an area under
this precision-recall curve®?. An analogous but stricter variant (in terms of

32For further clarification, please refer to the paper [90].
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Figure 6.1: Data flow diagram of the object detection benchmark. The color of
arrows in the upper part of the diagram encodes the time-of-day of data, i.e.,
, , nighttime, and all together.

bprea localization) is the AP@[50:5:95] score® that is averaged across ten IoU
thresholds between 50 % and 95 % (i.e., 5% step).

Finally, the average precision with 50 % threshold (AP50) and average
precision (AP@[50:5:95]) are averaged over all classes, yielding the mean
average precision with 50 % threshold (mAP50) and mean average precision
(mAP@[50:5:95]), respectively. Conventionally, when there is no possibility
of confusion, we shorten AP@[50:5:95] and mAP@[50:5:95] as AP and mAP,
respectively.

Description of the Data Flow Diagram. For clarity, we summarize our
experimental setup in an easy-to-follow diagram (see Figure 6.1).

In the upper left corner, there is a source of annotated day-night images.
In our case, this is the BDD100K [1] dataset. The upper right Artificial Data
Generator block — the core of our research — performs day-to-night image

33Motivated by the COCO competition at https://cocodataset.org.
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6.1. Object Detection Framework

style transfer. It can be either our method proposed, CycleGAN [10], CUT
[17], or ForkGAN [19].

Image annotations are not required by any translation method listed above
and are illustratively detached from the data stream. Since we keep the
semantic segmentation of the scene valid after the style transformation, we can
reuse the original daytime annotations and assign them to the corresponding
fake nighttime counterparts.

Besides the real-only and fake-only branches, we also mix some real and
fake data with each other. The contribution ratio of individual branches is
controlled by the blocks «, /3, and 7 (the respective subsets of images are
chosen randomly). The multiplexer component serves as a data selector. One
branch of data is selected for training the detector.

Lastly, we evaluate the trained model using the annotated real nighttime
testing data, i.e., we calculate the mAP50 and mAP metrics.

B 6.1 Object Detection Framework

Despite more recent — usually speed-oriented — promising approaches, such
as SSD [91], RetinaNet [92], CSP [93], or the later models of YOLO series
(e.g., YOLOv3 [94], YOLOv4 [95]), the Faster R-CNN [101] framework (as a
speed-accuracy tradeoff) still remains the gold standard in object detection
benchmarking. Of the related works listed in Chapter 2, it has been used, for
instance, in AugGAN [18], ForkGAN [19], or Arruda [42]. That encourages
us to train the Faster R-CNN detector for our purposes too.

The Faster R-CNN implementation is available within most contempo-
rary codebases, e.g., Detectron2 [96], MMDetection [97], or TensorFlow
Object Detection API [98]. Let us choose the lightweight and high-efficient
MDMDetection platform.

We initialize the network with the ResNet-50 [99] backbone pretrained®* on
the MS COCO dataset [100]. We adopt the SGD optimizer with momentum
0.9. Further, we set the batch size to 6, learning rate to 0.0025, and weight
decay to 0.0001. Other parameters are left default. Empirically, we found
that the optimum is reached within 16 epochs?”.

We choose the best epoch according to the mean average precision (mAP)
of the validation set. The same time-of-day is chosen for validation as for
training. In other words, we optimize the detector for the same time-of-day
domain from which the training data comes (e.g., when training on daytime,
the validation is performed on the daytime data as well). If not explicitly
stated otherwise, the best-selected models are tested exclusively on night
testing data.

Although every training requires plenty of computing resources and time,
we repeat each training procedure five times to ensure proper evaluation and
lessen the effect of randomness and “lucky situations”. Thereby, we get five

31The weights are available from https://github.com/open-mmlab/mmdetection.
35We trained several models for 30 epochs but experienced overfitting to training data.
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6. Experimental Results

different scores for each data mixture. Next, we compute the average and
standard deviation for each five-tuple. This good practice can also be seen in
the related study [42].

A great amount of time and effort was spent on detector training. The
training on a single NVIDIA GeForce GTX 1080 Ti GPU takes, on average,
about half an hour per 10k images per epoch. For example, a complete
(5 x 16)-epochs training with 26k daytime images takes over 100 hours.
The following sections comprise a total of 130 trained models. The overall
GPU-time consumption exceeded 4200 hours®.

B 6.2 Object Detection Baselines

In order to have a baseline, we train the detector on the original real data for
various times of day, i.e., daytime, daytime + dawn/dusk (non-night), night,
day + night, and all together. By the original real data, we mean the split
after the correction of time-of-day misclassifications in Section 4.2.3 (for the
comparison with the uncorrected data, see Table 6.1). In the diagram in
Figure 6.1, these baseline experiments are depicted by the first four branches
from the left. The results are presented in Table 6.2.

In general, the models are evaluated on night testing data. We make one
exception to this rule. The model corresponding to the last row of Table 6.2
is trained on all training data and tested on all testing data. If we look at
the same model a line above, there is a large performance downgrade when
the testing set is reduced to the challenging nighttime.

Mixture mAP50 mAP Car Person Bus Truck Bicycle M-cycle
Mode (%] (%] (%] (%] (%] (%] (%] (%]
Day (errors) 473+.8 25.6+.2 37.0+£. 268+.4 295+£20 296+.6 19.0+.0 11.3+ .6

4
Day (fixed) 445+1.0 23.7+£.6 351+.3 258+.4 273+£20 287+£.9 165+.6 9.2+ .6

Non-night (errors) 49.1+1.3 26.5+.6 383+.1 274+.3 323+.6 31.9+.9 17.7+.7 114+1.1
Non-night (fixed) 48.1+£.6 26.1+.3 376%+.3 27.0x.7 3188 314+.9 187%.5 9.9£.5

Night (errors) 527+ .6 285+£.1 419+.1 282+.1 376+.3 340£.1 183+.4 109+ .4
Night (fixed) 53.0+.7 285+.4 4224+.7 280+.6 363+£16 346+.6 18.0+1.0 12.0%.7

Table 6.1: Performance impact of the correction of time-of-day
misclassifications in BDD100K [1].

Mixture # mAP50 mAP Car Person Bus Truck Bicycle M-cycle
Mode Images (%] (%) (%] (%] (%) [%] [%] [%]
Day 26k  445+10 23.7+.6 351+.3 258+.4 273+20 287+.9 165+.6 9.2+ .6
Non-night 30k 481+.6 2613 376x.3 27.0£.7 31.8+£.8 314£.9 187+ .5 9.9+ .5
Night 20k 53.0+.7 285+.4 422+.7 280+.6 363+16 346+.6 18.0+1.0 12.0+.7
Day + Night 46k 56.1+.2 309+.2 425+.2 291+.4 399+17 3904 209+1.0 138=£1.1
All 50k 56.1+.5 31.1+.6 431+4 29.7+.6 399+.7 393+1.0 214+.9 134415
All (tested all) 50k 61.9+.3 358+x.3 481+.2 33.7+£.7 436x4 411+£.7 266x.5 220%+.6

Table 6.2: Object detection baseline (trained on real data only).

36Counting only the training phases of the presented experiments.
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6.3. Object Detection with Data Augmentation

N 63 Object Detection with Data Augmentation

In Table 6.3, there are the results of the object detector trained on several
mixtures of real and fake images. For the reader’s convenience, we reiterate
the relevant baseline in the first row of each subtable. The fake nighttime
images are always translated from the real daytime images. With this in
mind, the corresponding baseline for the fake night is the real day. The
training mixtures are illustrated in Figure 6.1 by the two lines on the right of
the multiplexer input. The rightmost blue line, i.e., fake night images only,
corresponds to the upper subtable. The training mixtures with a nontrivial
real data component in the other three subtables share the yellow-blue dashed
line and are specified by the associated triplet (o, 3, 7).

Fake Night (26 k images) (a=1,8=0,v=0)%
Training mAP50 mAP Car Person Bus Truck Bicycle M-cycle
Data (%] (%] (%] (%] (%] (%] (%] (%]
Day (real) 445+£10 23.7£.6 351+£.3 258+.4 273+20 28.7+.9 16.5 + .6 9.2+ .6
Our Method 402+13 21.3+.6 322+.7 232+.5 260+14 251+13 16.7+£.8 4.7+ .9
CycleGAN [10] 39.1+£.5 21143 31.7+.7 243£5 2679 240+£13 169+.3 28+ .6
CUT [17] 396+12 21.2+.6 31.7+£.7 23.0+.4 273+20 238+19 164+.7 50x14
ForkGAN [19] 475+.6 25.5+.4 373+.4 255+.9 343+13 302+18 17.8+1.1 75+.6
Real Day + Fake Night (26k images) (0, B=0,7y=1-0q)
a/~ Ratio mAP50 mAP Car Person Bus Truck Bicycle M-cycle
(%] (%] (%] (%] (%] (%] (%] (%] (%]
Day (real) 445+£10 23.7£.6 351+.3 258+.4 273+20 287+.9 16.5 + .6 9.2+ .6
25/75 415+11 223+.4 332+.5 248+.4 268+.8 272+21 161+.3 56+1.0
50/50 423+12 227+.6 327+.7 244+.4 287+8 279+12 171+.6 5.6£.7
75/25 416+13 224+.6 332+.5 241+.7 282+12 275+14 163+16 53+.6
Night (fake) 402+13 213+.6 322+.7 232+.5 260+14 251+13 16.7£.8 4.7+ .9
Real Day + Fake Night (52k images®®) (a=1,8=0,7=1)
Training mAP50 mAP Car Person Bus Truck Bicycle M-cycle
Data (%] (%] (%] (%] (%] (%] (%] (%]
Day (real) 445+10 23.7£.6 351+.3 25.8+.4 273+20 28.7+.9 16.5 + .6 9.2+ .6
Our Method 448+ .8 242+.3 347+.7 2494+ .6 3049 298+10 181+.8 72+19
CycleGAN [10] 434+.8 235+.4 3424+.7 255+.3 2849 27.7+.4 184+.9 66=+1.1
CUT [17] 426+.9 232+.4 334+.5 245+.2 291+14 284+.7 182+.6 55+1.0
ForkGAN [19] 493+.6 267+.4 385+.3 265+.5 356+.6 325+£15 188+11 86=+1.6
Real Night + Fake Night (46 k images) (a=1,8=1,v=0)
Training mAP50 mAP Car Person Bus Truck Bicycle M-cycle
Data (%] (%] (%] (%] (%] (%] (%] (%]
Day + Night (real) 56.1+.2 30.9+.2 425+.2 29.1+.4 399+1.7 39.0+.4 209+1.0 138+£1.1
Our Method 56.2+.2 31.0+£.3 43.0+£.3 288+.4 412+4 393+.5 212+.6 128+1.1
CycleGAN [10] 56.1+£.3 309+.3 426+.2 290+.6 402+.9 386+.5 21.7+.7 133+£.3
CUT [17] 56.0+£.3 31.0+£.3 428+.3 29.1+.2 403+£1.0 389+4 214+10 13.6=+.9
ForkGAN [19] 55.1+£1.0 303+.5 428+.1 286+.5 40.1+£13 379+£1.0 202+£1.0 124+.8

Table 6.3: Object detection performance for various training mixtures.

37 An alternative way of specifying the fake nighttime stream.
38To remark, there are just 26k unique base images.
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Chapter 7

Discussion and Conclusions

. 7.1 Discussion

Quality of Synthesized Images. As shown in Figures 5.6b and 5.7b, our
method can synthesize convincing nighttime images with high visual fidelity>.

The designed lights are sharp and bright. That was our intention, and it
demonstrates how the light reacts to the 3D geometry of the scene. However,
in spite of the overwhelming visual impression, we probably generated images
that have a different distribution than the majority of images in the nighttime
testing set. According to the FID score, our generated images are about 84 %
and 40 % farther from the target distribution than the images generated by
CycleGAN [10] and CUT [17], respectively. We suppose that it is caused
by the aforementioned sharp and bright lights. On the contrary, CycleGAN
and CUT produce a large number of small lights (see respective images in
Figures 5.6 and 5.7).

The most significant visual shortcomings of our method lie in two aspects.

® First, the shadow residuals — most notably on the road (see the left image
in Figure 5.8a). We use the original daylight to create the intermediate
image, and this approach does not take shadows into account.

B Second, the unenlightened black segments as a consequence of the inac-
curate mesh reconstruction (see the right image in Figure 5.8a). This is
a common artifact also in similar geometry-aware studies, e.g., [33].

In exceptional cases, the lights generated by CycleGAN or CUT are unnat-
urally green or red (see the middle and right images in Figures 5.8b and 5.8¢).
One can conjecture that it is due to traffic lights in night images. An extreme
case of this issue is a “polar light” effect (see the middle image in Figure 5.8b).
There is a sunny translation and a spectacular anomaly — sparkling sky — in
the left pictures in Figure 5.8c and Figure 5.8b, respectively.

Unlike our method, CycleGAN or CUT, the ForkGAN [19] network often
generates images with strong artifacts (see Figure 5.8d).

39Tn the attachment, you can watch a video teaser of our method.
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7. Discussion and Conclusions

Experimental Results. In Chapter 6, we used the synthesized images to
stimulate the object detector performance. It turned out that a proper data
augmentation that helps improve the detector performance is quite a tricky
task (even for state-of-the-art methods). Unfortunately, in most cases, it is
still better to train the detector merely on the original images than with the
contribution of synthesized images. Especially, the training on artificial night
data on its own is detrimental.

In the case of ForkGAN, we can see vastly higher scores. Nevertheless, we
have some doubts about the correctness of the experiments. The ForkGAN
model was most likely trained on our testing data since we are using the
split designed in Section 4.2.2, i.e., the network could have seen the style
of our testing data during training. Therefore, we must take the ForkGAN
experiments with caution and exclude ForkGAN from competitive methods.

Experimental results in Table 6.3 show that the advantage of data aug-
mentation heavily depends on the specific mixture of real and fake data.
Note, however, that the performance of our method equals or surpasses the
state-of-the-art in all experiments. Although CycleGAN and CUT are based
on different optimization strategies, the qualitative and quantitative results
are consistently comparable.

In the first subtable of Table 6.3, there are results of the training on fake
night data only, and the drop in performance of all methods compared to the
baseline is over 4 % in mAP50 and over 2% in mAP@Q[50:5:95].

In the second subtable, we can see that it is not that straightforward to
mix the training data. While we got the best results for real-only and the
worst for fake-only, the transition is not monotonous. Indeed, we got a higher
precision for 50 % contribution of fake night images than for 25% or 75 %
contribution.

In the case of the original daytime and synthesized nighttime mixture of
images in the third subtable, our method outperforms the daytime baseline
(i.e., it is better to train on this mixture than on the daytime only) and
both competitive state-of-the-art methods. In particular, the mAP50 score
is higher by 0.3 %, 1.4 %, and 2.2 % and the mAP@[50:5:95] score by 0.5 %,
0.7%, and 1.0 % compared to the daytime baseline, CycleGAN, and CUT,
respectively. Moreover, the standard deviation decreased by 20 % in mAP50
and by 50 % in mAP@[50:5:95] with respect to the daytime baseline, implying
a more robust model. These results reveal the potential power of our method.

The last subtable — corresponding to the mixture of original and synthesized
nighttime images — shows an almost balanced performance of all training
modes of the detector. Notwithstanding the favorable scores, we call the
results into question since we can interpret it as data saturation with real
nighttime images. An ablation study might be helpful. Surprisingly, in this
experiment, Fork GAN is the worst of all methods.

The caveat here is the current lack of diverse illumination conditions from
which the detector could profit. An investigation of the detector performance
with various light setups is the subject of future work. In Appendix A, we
propose a possible solution to reach this goal in a smart and automated way.
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7.2. Conclusions

Correction of Time-of-Day Misclassifications. The question to be answered
is how does the correction of time-of-day misclassifications (see Section 4.2.3)
influence the object detection performance. Table 6.1 shows the results of
both splits side-by-side (as usual, tested on nighttime testing data). We can
observe that after the correction, the daytime performance decreased by 2.8 %
in mAP50 and by 1.9% in mAP@[50:5:95]. It seems reasonable since the
testing data (i.e., nighttime images) are missing from the daytime training
set. In the same spirit, we can see that the non-night (daytime + dawn/dusk)
performance decreased by 1.0 % in mAP50 and by 0.4 % in mAP@[50:5:95].
On the other hand, the nighttime performance slightly increased by 0.3 %
in mAP50 (the mAP@[50:5:95] score remained the same). This makes sense
as well since there are only relevant data present in the nighttime training
set (i.e., nighttime images only). A complementary interpretation of both
performance differences is missing daytime data (much easier for the object
detection task) in the nighttime testing set.

. 7.2 Conclusions

In this thesis, we introduced a novel day-to-night image translation method
with 3D-aware light control. The method leverages classical rendering tech-
niques as well as contemporary deep neural networks and produces compelling
and photorealistic results.

This transformation technique allowed us to literally shed light on the
real-world problem of object detection. We trained the detector (Faster
R-CNN [101]) on several mixtures of real and fake (nighttime synthesized)
images. In terms of mAP50 and mAP@[50:5:95], our method is on par or even
outperforms the competitive state-of-the-art methods CycleGAN [10] and
CUT [17] trained to perform day-to-night image style transfer. Furthermore,
with a proper mixture of real and fake data, our method proposed boosts the
detector performance.

Even though it is not yet uniformly beneficial, the proposed innovative
solution has substantial potential. Our advantage over most previous works
is that one given image can generate a plethora of images by changing the
lighting conditions and thereby introducing a greater diversity in data.

A side contribution of this work is the correction of time-of-day misclassifi-
cations in the BDD100K dataset [1]. The dataset is still under development,
and our observations were warmly appreciated by the community®® and it
will be incorporated into the future updates of the dataset.

To conclude, the objectives of this thesis were met in general, with minor
concerns regarding the enhancement of the object detector performance that
is to be investigated in future work.

“0Special thanks go to Asst. Prof. Fisher Yu, Ph.D. from ETH Ziirich (Switzerland) for
his interest.

45



46



1]

Bibliography

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “BDD100K: A diverse driving dataset for heterogeneous

multitask learning,” in IEFEFE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ogzair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems (NIPS), 2014.

A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and
P. R. Pinheiro, “CovidGAN: Data augmentation using auxiliary clas-
sifier GAN for improved Covid-19 detection,” IEFE Access, vol. 8, p.
91916-91923, 2020.

R. Sinha, M. Vatsa, and R. Singh, “FamilyGAN: Generating kin face
images using generative adversarial networks,” in Furopean Conference
on Computer Vision (ECCV) Workshops, 2020.

B. Liu, C. Tan, S. Li, J. He, and H. Wang, “A data augmentation
method based on generative adversarial networks for grape leaf disease
identification,” IEEE Access, vol. 8, pp. 102 188-102 198, 2020.

B. Lei, Z. Xia, F. Jiang, X. Jiang, Z. Ge, Y. Xu, J. Qin, S. Chen,
T. Wang, and S. Wang, “Skin lesion segmentation via generative ad-
versarial networks with dual discriminators,” Medical Image Analysis,
vol. 64, p. 101716, 2020.

B. Liitjens, B. Leshchinskiy, C. Requena-Mesa, F. Chishtie, N. D.
Rodriguez, O. Boulais, A. Pina, D. Newman, A. Lavin, Y. Gal, and
C. Raissi, “Physics-informed GANs for coastal flood visualization,”
Computing Research Repository (CoRR), vol. abs/2010.08103, 2020.

N. Nauata, S. Hosseini, K. Chang, H. Chu, C. Cheng, and Y. Furukawa,
“House-GAN++: Generative adversarial layout refinement networks,”

Computing Research Repository (CoRR), vol. abs/2103.02574, 2021.

47



Bibliography

[9]

[10]

[11]

[21]

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image trans-
lation with conditional adversarial networks,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in IEEE
International Conference on Computer Vision (ICCV), 2017.

M. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” Computing Research Repository (CoRR), vol.
abs/1703.00848, 2017.

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover
cross-domain relations with generative adversarial networks,” Comput-
ing Research Repository (CoRR), vol. abs/1703.05192, 2017.

Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised
dual learning for image-to-image translation,” Computing Research
Repository (CoRR), vol. abs/1704.02510, 2017.

J. Hoffman, E. Tzeng, T. Park, J. Zhu, P. Isola, K. Saenko, A. A. Efros,
and T. Darrell, “CyCADA: Cycle-consistent adversarial domain adap-
tation,” Computing Research Repository (CoRR), vol. abs/1711.03213,
2017.

A. Anoosheh, E. Agustsson, R. Timofte, and L. V. Gool, “ComboGAN:
Unrestrained scalability for image domain translation,” Computing
Research Repository (CoRR), vol. abs/1712.06909, 2017.

W. Wu, K. Cao, C. Li, C. Qian, and C. C. Loy, “TransGaGa: Geometry-
aware unsupervised image-to-image translation,” Computing Research
Repository (CoRR), vol. abs/1904.09571, 2019.

T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning
for unpaired image-to-image translation,” in Furopean Conference on

Computer Vision (ECCYV), 2020.

C. T. Lin, S. W. Huang, Y. Y. Wu, and S. H. Lai, “GAN-based day-
to-night image style transfer for nighttime vehicle detection,” IEEE
Transactions on Intelligent Transportation Systems (T-1TS), vol. 22,
no. 2, pp. 951-963, 2021.

Z. Zheng, Y. Wu, X. Han, and J. Shi, “ForkGAN: Seeing into the rainy
night,” in Furopean Conference on Computer Vision (ECCYV), 2020.

A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and
checkerboard artifacts,” Distill, 2016. [Online]. Available: http:
//distill.pub /2016 /deconv-checkerboard

S. Y. Baek and S. Lee, “Day-to-night road scene image translation using
semantic segmentation,” in Pacific Graphics Short Papers, Posters, and
Work-in-Progress Papers. The Eurographics Association, 2020.

48


http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard

[22]

[23]

[24]

[25]

[30]

Bibliography

A. Anoosheh, T. Sattler, R. Timofte, M. Pollefeys, and L. V. Gool,
“Night-to-day image translation for retrieval-based localization,” Com-
puting Research Repository (CoRR), vol. abs/1809.09767, 2018.

E. Romera, L. M. Bergasa, K. Yang, J. M. Alvarez, and R. Barea,
“Bridging the day and night domain gap for semantic segmentation,” in
IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 1312-1318.

L. Sun, K. Wang, K. Yang, and K. Xiang, “See clearer at night: Towards
robust nighttime semantic segmentation through day-night image con-
version,” Computing Research Repository (CoRR), vol. abs/1908.05868,
2019.

M. Schutera, M. Hussein, J. Abhau, R. Mikut, and M. Reischl, “Night-
to-day: Online image-to-image translation for object detection within
autonomous driving by night,” IEEE Transactions on Intelligent Vehi-
cles (T-1V), pp. 1-1, 2020.

R. Gong, W. Li, Y. Chen, and L. V. Gool, “DLOW: Domain flow
for adaptation and generalization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

X. Wang, K. Yu, C. Dong, X. Tang, and C. C. Loy, “Deep network
interpolation for continuous imagery effect transition,” Computing
Research Repository (CoRR), vol. abs/1811.10515, 2018.

A. Romero, P. Arbelaez, L. Van Gool, and R. Timofte, “SMIT:
Stochastic multi-label image-to-image translation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, 2019.

Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “StarGAN v2: Diverse image
synthesis for multiple domains,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

I. Anokhin, P. Solovev, D. Korzhenkov, A. Kharlamov, T. Khakhulin,
A. Silvestrov, S. I. Nikolenko, V. Lempitsky, and G. Sterkin, “High-

resolution daytime translation without domain labels,” Computing
Research Repository (CoRR), vol. abs/2003.08791, 2020.

Q. Mao, H. Lee, H. Tseng, J. Huang, S. Ma, and M. Yang, “Continuous
and diverse image-to-image translation via signed attribute vectors,”
Computing Research Repository (CoRR), vol. abs/2011.01215, 2020.

F. Pizzati, P. Cerri, and R. de Charette, “CoMoGAN: Continuous
model-guided image-to-image translation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

49



Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Philip, M. Gharbi, T. Zhou, A. Efros, and G. Drettakis, “Multi-view
relighting using a geometry-aware network,” ACM Transactions on
Graphics (SIGGRAPH Conference Proceedings), vol. 38, no. 4, 2019.

A. Carlson, R. Vasudevan, and M. Johnson-Roberson, “Shadow transfer:
Single image relighting for urban road scenes,” Computing Research
Repository (CoRR), vol. abs/1909.10363, 2019.

P. Gafton and E. Maraz, “2D image relighting with image-to-
image translation,” Computing Research Repository (CoRR), vol.
abs/2006.07816, 2020.

L. Qu, J. Tian, S. He, Y. Tang, and R. W. H. Lau, “DeshadowNet:
A multi-context embedding deep network for shadow removal,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

X. Hu, Y. Jiang, C.-W. Fu, and P.-A. Heng, “Mask-ShadowGAN:
Learning to remove shadows from unpaired data,” in IEEE International
Conference on Computer Vision (ICCV), 2019.

L. Zhang, C. Long, X. Zhang, and C. Xiao, “RIS-GAN: Explore resid-
ual and illumination with generative adversarial networks for shadow

removal,” in AAAI Conference on Artificial Intelligence (AAAI), 2020.

F. Vasluianu, A. Romero, L. V. Gool, and R. Timofte, “Self-
supervised shadow removal,” Computing Research Repository (CoRR),
vol. abs/2010.11619, 2020.

D. Sakkos, H. P. H. Shum, and E. S. L. Ho, “Illumination-based data
augmentation for robust background subtraction,” 15th International

Conference on Software, Knowledge, Information Management and
Applications (SKIMA), 2019.

D. Sakkos, E. S. L. Ho, H. P. H. Shum, and G. Elvin, “Image editing-
based data augmentation for illumination-insensitive background sub-
traction,” Journal of Enterprise Information Management (JEIM),
2020.

V. F. Arruda, T. M. Paixao, R. F. Berriel, A. F. De Souza, C. Badue,
N. Sebe, and T. Oliveira-Santos, “Cross-domain car detection using

unsupervised image-to-image translation: From day to night,” Interna-
tional Joint Conference on Neural Networks (IJCNN), 2019.

T. Liu, Z. Chen, Y. Yang, Z. Wu, and H. Li, “Lane detection in low-light
conditions using an efficient data enhancement : Light conditions style
transfer,” in IEEE Intelligent Vehicles Symposium (1V), 2020.

T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning
of depth and ego-motion from video,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

50



[45]

[46]

[47]

[48]

[57]

[58]

Bibliography

H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal
regression network for monocular depth estimation,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 2002—-2011.

C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocu-
lar depth estimation with left-right consistency,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth prediction,” in IEEE International
Conference on Computer Vision (ICCV), 2019.

S. Pillai, R. Ambrus, and A. Gaidon, “SuperDepth: Self-supervised,
super-resolved monocular depth estimation,” in IEFE International
Conference on Robotics and Automation (ICRA), 2019.

C. Zhao, Q. Sun, C. Zhang, Y. Tang, and F. Qian, “Monocular depth
estimation based on deep learning: An overview,” Science China Tech-
nological Sciences, vol. 63, no. 9, p. 1612-1627, 2020.

R. I. Hartley and A. Zisserman, Multiple view geometry in computer
vision, 2nd ed. Cambridge University Press, 2004.

Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The ball-pivoting algorithm for surface reconstruction,” IEEE Trans-
actions on Visualization and Computer Graphics (TVCG), vol. 5, no. 4,
pp- 349-359, 1999.

A. Muntoni and P. Cignoni, “PyMeshLab,” Jan. 2021.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: An open-source mesh processing tool,” in Fu-
rographics Italian Chapter Conference. The FEurographics Association,
2008.

Blender Online Community, Blender - A 38D modelling and rendering
package, Blender Foundation, Blender Institute, Amsterdam, 2021.

R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using
mathematical morphology,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), vol. PAMI-9, no. 4, pp. 532-550,
1987.

R. C. Gonzalez and R. E. Woods, Digital image processing, 4th ed.
Prentice Hall, 2018.

The OpenCV reference manual, Itseez, April 2021.

o1



Bibliography

[59]

[60]

[62]

[63]

[64]

[65]

[68]

[69]

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

A. R. Smith, “Color gamut transform pairs,” in Proceedings of the 5th
Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’78. Association for Computing Machinery, 1978, p.
12-19.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the
National Academy of Sciences, vol. 36, no. 1, pp. 48-49, 1950.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” Computing
Research Repository (CoRR), vol. abs/2002.05709, 2020.

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A

multimodal dataset for autonomous driving,” Computing Research
Repository (CoRR), vol. abs/1903.11027, 2019.

A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The H3D dataset for
full-surround 3D multi-object detection and tracking in crowded urban
scenes,” in IEEFE International Conference on Robotics and Automation

(ICRA), 2019.

B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image and
LiDAR (PreSIL) dataset for autonomous vehicle perception,” in IEEE
Intelligent Vehicles Symposium (IV), 2019, pp. 2522-2529.

M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3D
tracking and forecasting with rich maps,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8740—
8749.

Q.-H. Pham, P. Sevestre, R. S. Pahwa, H. Zhan, C. H. Pang, Y. Chen,
A. Mustafa, V. Chandrasekhar, and J. Lin, “A*3D dataset: Towards
autonomous driving in challenging environments,” in Proceedings of the
IEEFE International Conference in Robotics and Automation (ICRA),
2020.

C. Sakaridis, D. Dai, and L. Van Gool, “Guided curriculum model
adaptation and uncertainty-aware evaluation for semantic nighttime

image segmentation,” in IFEFE International Conference on Computer
Vision (ICCV), 2019.

52


http://www.deeplearningbook.org

[70]

[71]

[72]

[78]

[79]

Bibliography

P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in percep-
tion for autonomous driving: Waymo Open Dataset,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 2443-2451.

R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Fer-
reira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah,
A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet,
“Lyft Level 5 perception dataset 2020,” https://level5.lyft.com/dataset/,
2019.

J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S.
Chung, L. Hauswald, V. H. Pham, M. Miihlegg, S. Dorn, T. Fernandez,
M. Jénicke, S. Mirashi, C. Savani, M. Sturm, O. Vorobiov, M. Oelker,
S. Garreis, and P. Schuberth, “A2D2: Audi autonomous driving dataset,”
Computing Research Repository (CoRR), vol. abs/2004.06320, 2020.

Z. Zhang, T. Sattler, and D. Scaramuzza, “Reference pose generation for
visual localization via learned features and view synthesis,” Computing
Research Repository (CoRR), vol. abs/2005.05179, 2020.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

L. Neumann, M. Karg, S. Zhang, C. Scharfenberger, E. Piegert, S. Mistr,
O. Prokofyeva, R. Thiel, A. Vedaldi, A. Zisserman, and B. Schiele,
“NightOwls: A pedestrians at night dataset,” in Asian Conference on
Computer Vision (ACCV). Springer, 2018, pp. 691-705.

M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual route-based nav-
igation for sunny summer days and stormy winter nights,” in IFEE
International Conference on Robotics and Automation (ICRA), 2012,
pp. 1643-1649.

W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics
Research (IJRR), vol. 36, no. 1, pp. 3—-15, 2017.

F. Tung, J. Chen, L. Meng, and J. J. Little, “The Raincouver scene
parsing benchmark for self-driving in adverse weather and at night,”

53


https://level5.lyft.com/dataset/

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 4, pp. 2188-
2193, 2017.

D. Dai and L. Van Gool, “Dark model adaptation: Semantic image
segmentation from daytime to nighttime,” in IEEFE International Con-
ference on Intelligent Transportation Systems (ITSC), 2018.

G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The
Mapillary Vistas Dataset for semantic understanding of street scenes,”
in IEEE International Conference on Computer Vision (ICCV), 2017.

P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang,
“The ApolloScape open dataset for autonomous driving and its applica-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2019.

S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multispectral
pedestrian detection: Benchmark dataset and baseline,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 1037-1045.

Y. Choi, N. Kim, S. Hwang, K. Park, J. S. Yoon, K. An, and I. S.
Kweon, “KAIST multi-spectral day/night data set for autonomous
and assisted driving,” IFEE Transactions on Intelligent Transportation
Systems (T-1TS), vol. 19, no. 3, pp. 934-948, 2018.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS), ser. NIPS’17. Curran
Associates Inc., 2017, p. 6629-6640.

A. Borji, “Pros and cons of GAN evaluation measures,” Computing
Research Repository (CoRR), vol. abs/1802.03446, 2018.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” Computing Research Repository
(CoRR), vol. abs/1812.04948, 2018.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of StyleGAN,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

M. Seitzer, “pytorch-fid: FID score for PyTorch,” https://github.com/
mseitzer/pytorch-fid, August 2020, version 0.1.1.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The PASCAL visual object classes (VOC) challenge,” Interna-
tional Journal of Computer Vision (IJCV), vol. 88, no. 2, pp. 303-338,
2010.

o4


https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

[91]

[94]

[95]

[98]

[99]

[100]

[101]

Bibliography

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European Conference on
Computer Vision (ECCV). Springer International Publishing, 2016,
pp- 21-37.

T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 42, no. 02, pp. 318-327, 2020.

W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic
feature detection: A new perspective for pedestrian detection,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 5182-5191.

J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
Computing Research Repository (CoRR), vol. abs/1804.02767, 2018.

A. Bochkovskiy, C. Wang, and H. M. Liao, “YOLOv4: Optimal speed
and accuracy of object detection,” Computing Research Repository
(CoRR), vol. abs/2004.10934, 2020.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com /facebookresearch /detectron2, 2019.

K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li,
X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy,
and D. Lin, “MMDetection: OpenMMLab detection toolbox and bench-
mark,” Computing Research Repository (CoRR), vol. abs/1906.07155,
2019.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
Computing Research Repository (CoRR), vol. abs/1611.10012, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” Computing Research Repository (CoRR),
vol. abs/1405.0312, 2014.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in Advances
in Neural Information Processing Systems (NIPS), vol. 28. Curran
Associates, Inc., 2015.

95


https://github.com/facebookresearch/detectron2

Bibliography

[102] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in European Conference on Computer Vision (ECCV). Springer
International Publishing, 2018, pp. 833-851.

[103] MMSegmentation Contributors, “MMSegmentation: OpenMMLab se-
mantic segmentation toolbox and benchmark,” https://github.com/
open-mmlab/mmsegmentation, 2020.

[104] K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask R-CNN,”
Computing Research Repository (CoRR), vol. abs/1703.06870, 2017.

56


https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

Appendix A

Detection of Light Sources for Smarter
Light Control

The light setup is a crucial prerequisite for our method. Thus far, we have
only relied on the ad hoc hand-operated design. Nevertheless, that is time-
consuming, and it is not reliably applicable to each and every image of the
entire dataset. For instance, almost every image in the BDD100K dataset
[1] is captured from a different camera position, which involves plenty of
nonstandard situations (see Figure 4.1).

It would be perfect if we could autonomously position the lights in a seman-
tically oriented manner and turn on the relevant light sources in each image
independently (regardless of the camera position). We shortly experimented
in this direction and achieved some satisfactory results.

B a1 Headlights and Taillights Detection

Leveraging a recently published annotation tool Hasty.ai’!, we manually
assigned more than 4200 headlights and taillights bounding boxes to 1000
training and 100 validation images. With the guidance of these annotations,
we trained the Faster R-CNN [101] object detector with the same configu-
ration as described in Section 6.1 and reached 69.2% mAP50 and 35.0%
mAPQ@[50:5:95] on the validation images. By adding more annotated images,
we would probably improve the detection performance even further.

In Figure A.1, we can see a few validation images with predicted bounding
boxes of headlights and taillights with associated detection confidence. High
detection performance and Figure A.1 show the feasibility of this approach.

The headlights and taillights annotations in the standard COCO [100] file
format are available in the attachment of this thesis.

B A2 Semantic Segmentation of Street Lamps

We also took advantage of the semantically segmented subset (10k) of the
BDD100K dataset that contains annotations of street poles. We trained

41 For more information, please visit https://hasty.ai.
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A. Detection of Light Sources for Smarter Light Control

Figure A.1: Validation images with predicted headlights and taillights.

the DeepLabv3+ [102] segmentation model for the purpose of street pole
inference in the unannotated part of the dataset. For efficient implementation,
we used the MMSegmentation platform [103]. We initialized the network
with the ResNet-50 [99] backbone pretrained?? on the Cityscapes dataset [74].
We adopted the SGD optimizer with momentum 0.9. Further, we set the
batch size to 2, learning rate to 0.0025, and weight decay to 0.0005. Other
parameters were left default. We let the network train for 40 epochs. Measured
on the validation set, in epoch 24, we achieved the highest performance of
60.6 % mAP50 and 51.9 % mAPQ[50:5:95].

Since April 2021, semantic instance segmentation is also available for
BDD10K. In addition to semantic segmentation, it includes detailed street
lamp annotations. This suits our intention (not every pole has to be a lamp),
and we are interested in training the instance segmentation model in a similar
way as for semantic segmentation of the poles. For instance segmentation,
we suggest using the Mask R-CNN framework [104] — available under the
MMDetection codebase [97].

42The weights are available from https: //github.com/open-mmlab/mmsegmentation.
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B A3 The Most Exciting Future Avenue

In future work, we would like to incorporate the headlights and taillights
detection and street lamp segmentation outcomes into our day-to-night trans-
lation pipeline for smarter light control. We believe that it will conveniently
complement manually defined lighting, provide a fantastic visual experience,
and allow for a greater variety of training data.
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