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Anotace

Moderní teleskopy, jako například Very Large Telescope (VLT) v Chile, vyžadují velmi
přesné polohování optické soustavy a současně rychlou odezvu polohovacího zařízení na
požadavky operátora. Přitom s narůstajícími rozměry teleskopů získává na významu také
potlačení vlivu poryvů větru na přesnost a stabilitu polohování. Tato práce se zabývá přes-
nější formulací zmíněných požadavků z hlediska návrhu řídicího algoritmu a poukazuje
na to, že jsou tyto požadavky zčásti konfliktní. Pro dodaný dynamický model VLT te-
leskopu je navržen regulátor pomocíH∞ optimalizace. Navržený regulátor ve sledovaných
parametrech překonává stávající řešení. Cenou za toto zlepšení je zvýšený řád regulátoru.
Při využití H∞ optimalizace vůbec se často setkáváme s dynamickými modely vysokého
řádu, které komplikují proces návrhu. Proto jako součást práce byl vytvořen i nástroj
pro pohodlný přístup k metodám redukce řádu modelu v prostředí Matlab. Praktická po-
užitelnost H∞ optimalizace je demonstrována na laboratorním experimentu polohování
pružného ramene na otočném kloubu.

Abstract

Modern telescopes, such as the Very Large Telescope (VLT) in Chile, require very precise
positioning of the optical system and fast response to reference signal at the same time.
On the other hand enlargements in the telescope size increase the importance of wind
disturbance attenuation. This work precisely formulates the mentioned control objectives
and points out that these objectives are somewhat conflicting. For the given dynamical
model of the VLT, controller is designed utilizing H∞ synthesis. The resulting controller
is superior to the existing solution, however, it has relatively high system order. Higher
order models are rather common within the H∞ synthesis, thus a tool for comfortable
access to reduction methods has been implemented in Matlab. Finally, practical aspects
of H∞ synthesis are shown on an exmple of flexible link positioning.
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Chapter 1

Introduction

This diploma thesis has been motivated by the control problem of the Very Large Tele-
scope (VLT) run by European Southern Observatory at Cerro Paranal, Chile. The VLT
is a complex structure with highly pronounced resonant frequencies. In addition, these
resonances are activated by wind buffets.

Recently, there have been efforts to further improve control of the VLT so as to obtain
higher attenuation of the disturbant wind. To do so, the existing 2-loop PI controller has
been tuned. Limited performance of the classical approach has lead to efforts to design
a new controller using modern advanced control techniques. The H∞ synthesis has been
considered as an appropriate one. Reason for this is that H∞ synthesis is able to give a
controller, that can be easily implemented into the currently used control scheme.

In context of the presented search for a better controller, the goal of this work has
been to create a background for an H∞ controller design. On the one hand to create a
graphical user interface (GUI) for a comfortable design of an H∞ controller in Matlab
and on the other to design one such controller for the VLT. The GUI should simplify the
design procedure and should consist of two components - one for model order reduction
and one for the actual H∞ design.

At the beginning it was expected that the time schedule of the work would should be
as follows. At first, several attempts to design a suitable controller for the VLT should be
performed. Consequently, the software tools for H∞ design should be developed. During
the time it has become clear that the H∞ design procedure is much more complicated
than it was expected to be. Moreover, algorithms for H∞ design implemented in Matlab
have been evaluated as immature for an automatic design procedure.

At the same time laboratory model for Quanser Rotary Experiment[Quanser] was
bought. This was considered as an opportunity to experimentaly verify the H∞ con-
troller design and gather new experience in the field. Thus, only the GUI for model
order reduction has been realized. Instead of developing GUI for H∞ design the Rotary
Experiment has been undertaken.

The layout of this document is as follows. Chapter 2 briefly summarizes the controller
design based on minimization of H∞ norms of the closed-loop transfer functions. Aspects
of this approach important for the VLT control problem are discussed in detail. Also
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2 Chapter 1

properties of the used state-space algorithm implemented in Robust Control Toolbox for
Matlab [6] are mentioned.

Chapter 3 describes the GUI for model order reduction. It gives a description of
model order reduction methods available within the Matlab Release 13 package [Matlab].
Consequently, it is gone through the GUI and the use of the GUI is shown on an example.

Chapter 4 is devoted to the respective VLT Telescope position control. The VLT
control problem is introduced and its main aspects are discussed. A frequency-domain
formulation of the control goals is stated and suitable controller is found using the H∞
synthesis methods. At last, the results are compared to the existing solution.

Chapter 5 copes with the Quanser Rotary Experiment. The Rotary Experiment states
for the developement of a controller for a flexible link attached to a DC motor. It is
shown that such plant suffers from vibrations in an analogous way to the aforementioned
VLT telescope system. This is the reason why the Rotary Experiment has been chosen
- as an opportunity to prove the worth of H∞ synthesis on an accessible laboratory
system. Thus it is possible to go through the whole identification procedure and learn
more about weaknesses and limitations of the plant model that are imposed by necessary
simplifications done during this process.

Finally, Chapter 6 gives a conclusion of the contributions of this thesis.



Chapter 2

H∞ Synthesis in a Nutshell

This chapter goes through the basics ofH∞ control. It formulates theH∞ control problem
and depicts important properties of the state-space algorithm used to solve this problem.

2.1 Introduction

Consider a plant with transfer function P . A typical control problem is to fulfill some
requirements set on the plant using a feedback controller C (see Figure 2.1). The controller
changes value of the plant’s input according to the difference between the required value
r and the measured output y of the plant.

Figure 2.1: Typical closed-loop system

Measurement of the output y contains sensor noise and usually external disturbances
enter the closed-loop system at the plant input and (or) output. Moreover the plant model
P is uncertain. This is caused partly by the simplifiactions done during modelling and
identification of P , partly by the change of plant parameters during its operation.

To design a controller C, that satisfies all the requirements set on the system and
that is robust to plant uncertainty, it is possible to employ H∞ synthesis methods. H∞
methods search for a controller C, that stabiliezis the closed-loop system and minimizes

3



4 Chapter 2

H∞ norm of a particular matrix function which comprises of weighted closed-loop transfer
functions.

In order to make the use of H∞ synthesis feasible, it is necessary to formulate control
goals in the frequency domain. Section 2.2 shows how to do that. Control goals cannot be
arbitrary and Section 2.3 goes through the limits of performance. Next section describes
the state-space algorithm of H∞ synthesis implemented in Robust Control Toolbox for
Matlab [6] and used within this work. The algorithm’s limitations are mentioned and
some ways how to get over them are proposed. Section 2.5 demonstrates the H∞ design
on an example. Finally, Section 2.6 concludes this chapter.

2.2 H∞ Formulation of a Control Problem

In order to specify a control problem in a way suitable for H∞ synthesis, let us summarize
typical control objectives at first. Typical objectives of the controller design are: to assure
internal stability of the closed-loop system subject to plant uncertainty, to obtain swift
and smooth time response on typical reference commands, to minimize the effects of
disturbances and noise on the plant’s output and not to exceed saturation bounds of the
controller output. All the control goals need to be satisfied simultanousely.

These control goals can be transformed into requirements on some closed-loop trans-
fer functions. To do so, we need to introduce them. Consider the system of Figure 2.1
once again. Define the closed-loop sensitivity S, complementary sensitivity T and input
sensitivity U as follows (cf. [10, 19, 29]). Let S be the transfer function from reference r
to controller input e, let T be the transfer from reference r to output y and let U be the
transfer from reference r to controller output u. For the purposes of the VLT controller
design the transfer function D from input disturbance di to output y is needed. In [12]
D is reffered to as disturbance sensitivity. For the system of Figure 2.1 S, T , U and D
can be evaluated as

S =
1

1 + P C

T =
P C

1 + P C

U =
C

1 + P C

D =
P

1 + P C
.

(2.1)

To evaluate the requirements set on the closed-loop transfer functions some norm
needs to be introduced. H∞ formulation of control problems uses the induced operator
norm H∞ [10]. Note that the name of H∞ synthesis is derived from the name of this
norm. The H∞ norm of a continous-time transfer function G is

‖G(j ω)‖∞ = sup
ω∈R

|G(j ω)|.
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Generally, the H∞ norm of a transfer function G, ‖G(j ω)‖∞, is equal to the largest
singular value of G (the largest eigenvalue of GTG), if it is finite. In the SISO case,
‖G(j ω)|∞ is equal to the peak value of the amplitude Bode plot.
As the H∞ norm has been introduced, the control goals can be formulated using the

H∞ norm of appropriate closed-loop transfer functions, namely [33]:

1. For disturbance rejection make ‖S‖∞ or ‖D‖∞ small.
2. For noise attenuation make ‖T‖∞ small.
3. For good reference tracking make ‖T‖∞ ≈ 1/‖T‖∞ ≈ 1.
4. For avoidance of control signal saturation make ‖U‖∞ small.

Note that the frequency domain formulation of control goals does not neccesarily
result in a request to minimize the closed-loop functions in the whole frequency range.
On the contrary, each closed-loop function needs to be minimized in a specific frequency
interval and with different intensity. To do so, frequency-dependent weights need to be
introduced to the closed-loop system.

Consider the SISO closed-loop system of Figure 2.2. Addition of the weights W1, W2,
W3 and W4 to the closed-loop system (taken from Figure 2.1) has modified the functions
S, T , U and D. The new closed-loop transfers are

S ′ = W1 S =
W1

1 + P C
,

T ′ = W3 T =
W3 P C

1 + P C
,

U ′ = W2 U =
W2C

1 + P C
,

D′ = W3D W4 =
W3 P W4

1 + P C
.

(2.2)

Using appropriate weights W1, W2, W3 and W4 it is possible to formulate the require-
ments on the closed-loop functions S, U , T and D, simply as a simultaneous minimization
of the norms ‖W1 S‖∞, ‖W2 U‖∞, ‖W3 T‖∞ and ‖W3D W4‖∞.
Internal stabilization of a closed-loop system will be discussed now. A closed-loop

system is internaly stable iff all the transfer functions within this system are stable [10].
For the system of Figure 2.1 this states for the stability of S, T , U and D. Stability of
the closed-loop system with an uncertain plant P can be evaluated using the Small Gain
Theorem (SGT) [29, 36]. Consider the closed-loop system in Figure 2.3a. Let ∆ be an
arbitrary transfer function with the H∞ norm ‖∆‖∞ < 1. Then the closed-loop system
is stable iff ‖M‖∞ ≤ 1.
Now let the uncertainty of P be described by a multiplicative model,

P (j ω) = P0(j ω) (1 + ∆(j ω)W3(j ω)), (2.3)

where ‖∆‖∞ < 1 is arbitrary, P0 is a nominal plant and W3 is a frequency-dependent
weight. Closed-loop system with multiplicative model of uncertainty of P is shown in



6 Chapter 2

W1 W2

W3

W4

PC
r’

u’

d’

e’

n’

y’

d
i
’

Figure 2.2: Setup for the H∞ formulation of a control problem

Figure 2.3b. According to the SGT this closed-loop system is internaly stable iff

‖M(j ω)‖∞ = ‖W3(j ω)T0(j ω)‖∞ ≤ 1,

where

T0(j ω) =
P0(j ω)C(j ω)
1 + P0(j ω)C(j ω)

is the nominal complementary sensitivity function.

(a) (b)

Figure 2.3: Setup for the Small Gain Theorem (a) and closed-loop system with multi-
plicative model of uncertainty of P (b)

Remark that three different bounds on the complementary sensitivity T have been
introduced. One for noise attenuation, another for reference tracking and at last one for
robust stability of the closed-loop system. Note that these objectives are conflicting, e.g.
noise attenuation needs T to be small, while good reference tracking results in T ≈ 1.
Many other conflicts can be found analyzing all the closed-loop requirements [7, 29,



H∞ SYNTHESIS IN A NUTSHELL 7

33]. Feedback design is therefore a trade-off over frequency objectives. Next section goes
through typical frequency-dependent requirements on S, T , U and D and summarizes
limitations that a feasible set of control goals must fulfill.

2.3 Weight Selection and Limits of Performance

Now the control objectives will be described in more detail to see what kinds of weighting
filters are appropriate to formulate the control goals.

At first, reconsider the multiplicative model of uncertainty (2.3). Typically, the model
uncertainty caused by dynamics neglecting becomes significant in high frequency range.
Thus the relative model error W3

W3 =
P

P0
− 1 (2.4)

increases with the increasing frequency and T needs to be made small in the high
frequency region.

Now consider the reference tracking. For a perfect reference tracking one would need
T to be identically equal to one in the whole frequency range. Except many other prob-
lems, this would lead to instability due to (always present) uncertainty of the plant P .
Fortunately, for a good reference tracking it is sufficient to have T ≈ 1 only for ω ≤ ω0.
For ω ≥ ω0, T should roll-off smoothly. The value of ω0 is different from case to case.

Inspection of (2.1) gives that for arbitrary C and P the following equality holds

S + T = 1. (2.5)

Thus reference tracking requires S ≈ 0 in the low frequency region. Moreover, based
on properties of the Laplace transform, it can be shown [19, 29] that for an asymptotic
tracking of type-k reference command the sensitivity S needs to have k + 1 zeros at zero
frequency. The type-k reference command is a signal with amplitude that can be bounded
in the following way

|r(t)| ≤ K tk,

where k = 0, 1, . . . and K > 0.

Disturbance rejection expects either S or D to be small. Note that D can be expressed
as

D = S P, (2.6)

so rejection of the input disturbance can be expressed in terms of requirements set on S.
Because of the needed robust stability and the link between S and T (2.5), rejection of
disturbances is (in a general case) possible only in the low frequency region.

Attenuation of noise is bound with the complementary sensitivity T . It is of no sur-
prise, that noise can be attenuated only in the high frequency region. Low frequency noise
(such as hum) cannot be mitigated by means of feedback.
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Finally, to prevent the control signal from saturation, the input sensitivity u should
be made small. Usually it is sufficient to bound u with a simple all-pass gain.

Summarizing the mentioned requirements set on both S and T , it is obvious, that T
should behave as a low-pass filter while S should behave as a high-pass filter. In the most
cases a bound set on u is an all-pass filter and a shape expected for d can be derived
according to (2.6).

To shape the closed-loop transfer functions, weighting filters are used [7, 29]. Usually
the weighting filters are desrcibed by the parametersM , k, ω1 and ε (Figure 2.4).M is the
maximal value of peaks of the weighted function, k is the the filter order, ω1 defines the
filter bandwidth (W (ω1) = 1) and ε states for the minimal attenuation in the stopband. It
is possible to find a stable weighting filter with real poles and zeros that exactly matches
specification

WR(s) =

[
a s+ b

s+ c

]k

,

where

a = k
√

M,

b = c k
√

ε,

c = ω1

√
k
√

M2 − 1
1− k

√
ε2

10
−2

10
−1

10
0

10
1

10
2

1

M

frequency [rad/s]

am
pl

itu
de

 [−
]

 ε

 ← ω
1

Figure 2.4: Parameters of the weighting filters
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Sometimes it can be advantageous to use a filter with pair of complex roots (e.g. when
steep roll-off is needed near the transient frequency)

WC(s) =
k ω2n

s2 + 2ξ ωn s+ ω2n
.

The roll-off near ω1 is determined by the damping coefficient ξ. If ξ > 1/
√
2 theWC(s)

peaks at the frequency ωM = ωn

√
1− 2 ξ2 and the peak has value

M =
k

2ξ
√
1− ξ2

.

One possible way how to fit the frequency domain specifications on weighting filters
has been proposed. Now the limits set on the specification itself will be discussed. There
are three important limitations on the shape of sensitivity S and complementary sensitiv-
ity T . The algebraic constraint, that has been already mentioned (2.5), Bode’s sensitivity
integral and Freudenberg-Looze equality [7, 29].

Bode has shown that if the series connection L = P C of the plant P and the controller
C has at least two more poles than zeros the sensitivity function S satisfies

∞∫
0

log |S(j ω)| dω = π
∑

i

Re{pi} (2.7)

where pi are right-half plane (RHP) poles of L [29]. At first suppose that L has no RHP
poles. Then the integral over all frequencies of log |S| is zero. For the feedback control
to be useful, |S| needs to be less than 1 over an effective low-frequency band. Bode’s
sensitivity integral implies that this can be achieved only at the cost of peaking of S at
high frequencies. This property of S is sometimes called the waterbed effect. In the case
that RHP poles of L are present, the right hand side of (2.7) is greater than zero and the
penalty for minimization of S at low frequencies becomes even more severe.

It is useful to derive a lower bound on the peak value of S so as to establish an insight
into the waterbed effect. Typical requirements on S can be expressed using templates as
in Figure 2.5 [12]. The approximation of |S| exhibits k-order roll-off at frequencies under
f1, between f1 and f2 it has value of m, the peak value is M and beyond f3 |S| is set to
1. Then the peak value of S can be given as a function of the other parameters k, m, f1,
f2 and f3

log(M) =
k f1 − log(m) f2

f3 − f2
. (2.8)

To demonstrate the waterbed effect, consider the requirements on S for the VLT
control problem. In Chapter 4 it will be stated that the highest possible f2 and the lowest
possible m is sought under the following restrictions: f3 is set to 8 Hz, M should not
exceed cf. 6 dB. Reasonable value for f1 is 0.1 Hz. According to (2.8), Figure 2.6 shows
the dependence ofM on f2 and m. It is obvious that extension of the bandwidth (increase
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10−3 10−2 10−1 100 101 102
10−3

10−2

10−1

100

101

f [Hz]

|S|

Figure 2.5: Template for a sensitivity function log|S|

in f2) can be achieved only at the cost of peaking of |S|. To put it differently, the crossover
region (i.e. the region between f2 and f3) cannot be arbitrarily narrow.

Freudenberg and Looze have further extended the Bode’s results. A central result of
their work is the Freudenberg-Looze equality [29]. Consider a stable closed-loop system
with open-loop RHP zero z = x+ j y, x > 0, then the sensitivity function S must satisfy∫ ∞

0
log |S| dWz(ω) = π log |B(z)| (2.9)

where B(z) is the Blaschke product formed from the open-RHP poles pi

B(z) =
pi − z

p̄i + z

and Wz(ω) is the phase of (z + j ω)/(z− j ω). The quantity dWz(ω) may be viewed as a
weighted length of the frequency integral and it equals the extra phase added by the RHP
zero z over the frequency interval. The larger dWz(ω) is, the more the interval contributes
to the right-hand side of (2.9). Thus the weighting function determines to what extent
small values of |S| at low frequencies need to be compensated by large values at high
frequencies.

Analyzing a template similar to the one in Figure 2.5 it is possible to show that if
the width of the band at which S may be made small is greater than the magnitude of
the RHP zero z, the peak value of S assumes excessive values [29]. This holds for any
RHP zero, in particular the one with smallest magnitude. Therefore, if excessive peaking
of S is to be avoided, bandwidth of the closed-loop system cannot be extended beyond
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0
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2.5

f
2
 [Hz]m

M

Figure 2.6: Dependence of the minimum achievable peak value M of sensitivity function
on the bandwidth f2 and attenuation m. The other parameters set to f1 = 0.1 Hz, f3 =
8 Hz.

the magnitude of the smallest RHP zero. B(z) is replaced with 1 if there are no RHP
poles. Otherwise, it is greater than 1. Hence, RHP poles make the plant more difficult to
control. The situation gets even worse when a RHP pole is close to RHP zero and results
in uncontrollable or unobservable unstable mode if they coincide.

In this section it has been summarized how to transform control objectives into the
form suitable for H∞ synthesis. That is, how to shape the weighting filters connected to
the original closed-loop system. It has been pointed at the fact that control objectives
are typically conflicting. Moreover, there are limitations that the closed-loop transfer
functions must satisfy. Thus it is not trivial to formulate a feasible control specification.
Usually it is relatively easy to shape the closed-loop transfer functions at very low and very
high frequencies. The region, where all the conflicts happen, is the crossover region. Note
that while requirements at both low- and high- frequency regions are clear, requirements
at the crossover region are somewhat vague. As the crossover region is a key region for
the closed-loop performance, the problem of weight selection is an iterative process. One
starts with certain filters and adapts them in subsequent iterations so as they lead to a
controller which gives acceptable behaviour of the closed-loop system. In the next section
it is shown how to synthesize the controller based on the specification of weighting filters.



12 Chapter 2

2.4 State-space Algorithm of the H∞ Synthesis

Recall the formulation of the H∞ control problem from previous sections: H∞ control
problem is a task to find controller C that simultanousely stabilizes the closed-loop sys-
tem and minimizes the frequency weighted norms of the closed-loop functions in (2.2).
However, for the purposes of algorithms that solve the H∞ problem, it is necessary to
incorporate this formulation in the augmented plant framework.

The definition of an augmented plant is best done by means of a diagram shown in
Figure 2.7. Notice that Figure 2.7 is just a reorganized closed-loop system from Figure 2.2
except that for simplicity the output disturbance d is not considered any longer. Nev-
ertheless, the augmented plant of figure 2.3 is sufficient to formulate the VLT control
problem. Loosely speaking, the augmented (or generalized) plant is everything except for
C in Figure 2.2. The augmented plant has three inputs r, di and u and four outputs z1, z2,
z3 and y. The closed-loop controller C is connected to the augmented plant output y and
drives the input u. Inputs r and d are driven by reference generator and external source
of disturbances, respectively, and are reffered to as a vector w of external (or exogenous)
inputs. The auxiliary outputs z1, z2 and z3 have the meaning of control errors and ideally
should be zero.

Let the matrix transfer function G of the augmented plant be partitioned as(
z

y

)
=

(
G11 G12

G21 G22

) (
w

u

)
. (2.10)

Then the closed-loop (matrix) transfer function H from external inputs w to the control

W1

W2

W3W4 P

C

r

d

u

z1

z2

z3

y

Figure 2.7: Augmented plant
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error z is

H = G11 +G12C (I −G22K)
−1G21. (2.11)

Now the actual H∞ control problem can be formulated. The standard H∞ problem
is the problem of determining a controller C that internally stabilizes the closed-loop
system (as defined in 2.2) and minimizes the H∞ norm of the closed-loop transfer matrix
H (2.11) from external inputs w to the control error z [33], i.e.

min
C
‖H‖∞ = min

C

∥∥∥∥∥∥∥
 W1 S −W1D W4

W2 U −W2 T W4

W3 T W3D W4


∥∥∥∥∥∥∥
∞

(2.12)

Note that there are two new components −W1DW4 and −W2TW4 in the matrix H,
that have not been considered in (Section 2.2). These functions are the weighted transfers
from input disturbance di to tracking error e and controller output u, respectively. The
appereance of −W2TW4 in the matrixH subject to norm minimization can be understood
so that request for simultaneous input disturbance attenuation (W3DW4) and controller
output boundedness (W2U) implicitely constraint influence of di on u. Explanation for
the introduction of −W1DW4 is analogous.

Within this work, a state-space algorithm implemented in Robust Control Toolbox
for Matlab [6] is used to solve the standard H∞ problem. To come up with an explicit
formula for an optimal solution C is generally very complicated if not impossible [29]. It
is easier to solve the suboptimal problem, i.e. the problem whether or not there exists
a stabilizing C that achieve ‖H‖∞ < γ for some given bound γ > 0. A line search in γ
then can bring us arbitrarily close to the optimal controller Copt. This approach is called
γ-iteration and is implemented in the Robust Control Toolbox [6] (as binary search).

There are two ways how to solve the standard problem – one in frequency domain
and one based on state-space definition. The frequency domain solution is based on J-
spectral factorization of particular matrix transfer function. Unfortunately, it is difficult
to perform the J-spectral factorization when assuming higher-order or MIMO systems.
Thus the state-space algorithm based on solution of two Ricatti equations is much more
common.

For the user, it is not important what happens inside the algorithm. However, the
user (controller designer) should be aware of the restrictions and assumptions on the
augmented plant that need to be satisfied. Otherwise, the state-space algorithm fails.
First, the state-space nomenclature will be introduced. Consider the augmented plant of
Figure 2.7 once again. According to the partition of G in (2.11), the state-space model
of the augmented plant is

ẋ = A x+B1w +B2 u,

z = C1 x+D11w +D12 u,

y = C2 x+D21w +D22 u.

(2.13)



14 Chapter 2

The assumptions on G are following ( [7, 29, 33, 36]):

(A1) (A, B2, C2) is stabilizable and detectable

(A2) D12 and D21 have full rank

(A3)

(
A− j ω I B2

C1 D12

)
has full column rank for all ω ∈ R

(A4)

(
A− j ω I B1

C2 D21

)
has full row rank for all ω ∈ R

Assumption (A1) is precisely equivalent to the existence of controllers that internally sta-
bilize the whole feedback system of Figure 2.7, not just the closed-loop transfer from u to
y. Assumption (A2) is sufficient to ensure the controllers are proper and hence realizable.
Assumptions (A3) and (A4) ensure that the optimal controller does not try to cancel
poles or zeros on the imaginary axis which would result in closed-loop instability. Note
that if DT12C1 = B1D

T
21 = 0, then (A3) and (A4) may be replaced with the assupmtion

of stablizable and detectable (A, B1, C1).

It is clear that for most practical situations both the assumptions (A1) and (A2) can
be satisfied. When they are not, the control objectives (the weight selection) should be
reconsidered. On the other hand the assumptions (A3) and (A4) cause serious problems
when the controlled plant P has weakly damped modes. Weakly damped modes prevent
the synthesis algorithm to converge because they are interpreted by the algorithm as if
they were on the imaginary axis. During the work this phenomena has been encountered
for damping under approximately 0.01.

To handle this situation, it is possible to either increase the damping in the plant
model or shift the augmented plant’s zeros and poles away from the imaginary axis.
When changing the damping, the plant uncertainty is increased and it is necessary to
assure that the upper bound of uncertainty (cf. W3 for multiplicative model) is sufficient.
When shifting the poles and zeros of augmented plant away from the imaginary axis, the
eigenvalues of the system matrix G are modified by a simple addition of a small multiple
(e.g. β = 0.01) of the identity matrix

A′ = A+ β I.

Finally, when the iterative algorithm approaches the optimum, some coefficients of
the controller C approach zero (or infinity). This leads to out-of-band roots of C and
they should be replaced with astatic roots or removed from the transfer C.

Let us end this section with two remarks on the weighting functions. Note that the
algorithm tries to cancel roots of the weights. So it is important (and natural at the same
time) to approximate the weighting functions with stable filters, as it has been proposed
in the 2.3. Until now one could build up the state-space model (2.13) simply by connecting
the state-space models of individual systems P ,W1,W2,W3 and W4. Unfortunately when
high frequency roll-off is among the design objectives, the corresponding weightW3 should
be nonproper and does not have state-space model.
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To handle this problem, [12] proposes an elegant remedy. Let the controlled plant P
have a state-space model AP ,BP ,CP ,DP . In case that W3 has the form

W3 = k3 s
2, (2.14)

and that with this degree of W3, the series connection of P and W3 is proper, the control
error z3 is

z3 = k3 ÿ = k3
(
CP A2P XP + CP AP BP (d+W4 u)

)
.

This observation can be generalized in order to have greater freedom when shaping
the weight W3. Consider a plant P with relative order k and filter W3 in the form

W3(s) =W0(s) p(s),

where W0(s) is an arbitrary biproper transfer function and p(s) is a polynomial with
degree m. Then there exist a state-space model of the series connection W3 P iff m ≤ k.
In Chapter 4 it will be shown that the weight

W3 =
k3 s

2

(s/ω3 + 1)

has given better results than the double derivator (2.14). Note that in this case the
reasoning about the state-space model is particularly straightforward, because only the
expression for the first derivative of y

ẏ = C A X + C B u+D u̇

needs to be evaluated. Assume that the plant has a relative order at least 1, then the
matrix D is zero. Moreover, this is invariant to any state-space transformations. Thus
there exists a state-space representation of the series connection of the plant G and the
weight W3. However, there exists yet another remedy to this problem. Without loss of
much of the closed-loop performance it is possible to add sufficient number of poles at
very high frequencies to obtain a proper weight W3.

2.5 Example

Properties of H∞ synthesis can be best shown on an example. Consider a simple DC
servo with transfer function from input voltage u to output velocity ω, that has been
theoretically evaluated as

Pmodel =
2.01 · 33.49
s + 33.49

The output speed is measured with tachometer, so the measured velocity contains ripple
noise. The tachometer’s data sheet contains information that the ripple frequency is
14 cycles per turn. The input voltage applied to the servo is bounded (due to supply
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voltage of the amplifiers) by ±5V. Data sheet of the motor warns against high frequency
input signals and insists that frequencies beyond 50 Hz could damage the gearbox and the
brushes. Finally, this DC servo is a small one, so noticeable static friction can be expected.
The design objectives are following:find a reliable controller that provides precise and fast
enough response of the servo and eliminates the influence of the ripple noise and possible
disturbances.

The servo’s dynamics have been identified from several step responses and it has been
found, that as a linear approximation, the following transfer function can be used

Pident =
1.688 · 19.46
s + 19.46

.

The expression for Pident is different from the one for Pmodel. Moreover, it depends on u
as a result of the present static friction. Thus the plant model is uncertain and an upper
bound for the multiplicative description of uncertainty ?? has been found to be

W3uncert =
0.743 (s + 2.744)

s + 19.46
.

The tachometer’s ripple has been analyzed and it has been found that influence of the
sensor noise can be bounded by a weighting filter

W3noise =
0.237 (s + 125.7)

s + 942.5
.

Requirements of precise and fast response on input command can be evaluated as fol-
lows. The request for fast response leads to high bandwidth of the closed-loop transfer T .
If the closed-loop bandwidth was set too high, it could result in excessive amplitude of the
input voltage u or even lead to instability of the closed-loop (due to model uncertainty).
So it is wise to set the desired bandwidth to e.g. twice the bandwidth of Pident.

The request for precise response can be satisfied by asymptotic tracking of step re-
sponses (type-1 control). Note that if higher order control was needed, it would be natural
to use a position sensor instead of tacho. Otherwise, potential slipping would cause irre-
versible errors.

Attenuation of disturbances needs the sensitivity S to be small. Above all, this means
minimal peaking at the crossover region. To avoid damaging the mechanical parts, closed-
loop bandwidth should not exceed 50 Hz. Finally, the input voltage is limited up to ±5V.
The plant alone has gain 1.688. In order not to loose much of the speed range let the
input sensitivity U be bound by 1.18 dB (this value corresponds to loss of 50% of the
velocity range).

All the mentioned objectives together formulate the controller synthesis problem and
should be satisfied by a controller with possibly the simplest structure, i.e. with low
system order. This means that the weighting functions should have low order too. W1,
that shapes sensitivity S, should guarantee the type-1 control (i.e. have pole at zero) and
should not permit larger peaking at crossover region. W3 should guarantee the roll-off
at frequencies beyond the bandwidth. −40dB/decade should be enough. This leads to
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nonproper W3 and has been remedied adding two high frequency poles to the weighting
filter.W2 shapes the input sensitivity U and should (together withW3) guarantee that the
input u of the servo would not include frequencies beyond 50 Hz. This leads to nonproper
weight once again and has been handled in the same manner as W3. There is no need to
minimize the disturbance sensitivity

After some iterations the following weights have been found to best satisfy the control
objectives

W1 =
0.8 (s + 47.12)

s
,

W2 =
100 (s + 469)2

(s + 5095)2
,

W3 =
1000 (s + 97.58)2

(s + 3670)2
.

The resulting controller has been found for γ = 1.43

C =
7.212e−5 (s + 1859) (s + 19.46) (s2 + 9923s + 2.516e7)

s (s + 2064) (s + 1946) (s + 857.1) (s + 361.7)
.

It is obvious that 2 of the 5 controller modes are beyond 300 Hz and can be taken
away without noticeably changing the closed-loop behaviour

Cred =
3.131e5 (s + 19.46)

s (s + 361.7) (s + 857.1)
.

Note that the compensator has canceled the pole of servo at 19.46 rad/s. This hap-
pened according to the equalizing property of particular type of solutions to the H∞
synthesis problem [29]. The equalizing property states for the fact that the H∞ synthesis
”tries” to find a controller that would minimize the weighted norm in 2.4 and, moreover,
assign it a constant value over all frequencies.

Figures 2.8 and 2.9 display results of the H∞ synthesis. Remark that the algorithm
has almost exhausted the given frequency weighted bounds. Thus the controller Cred
can be thought as nearly optimal in sense of the given frequency domain specification.
Further enlargements of the closed-loop bandwidth can be done only at the cost of larger
input voltage amplitude and (or) higher sensitivity to disturbances. Note that the fre-
quency domain specification has been constructed almost independently on the initial
vague control objectives. This is a typical situation and usually the controller designer
should make some preliminary tests and analyses of the plant to find out a feasible set of
(frequency domain) specifications. However, this is often an iterative process.

2.6 Conclusions

This chapter has proposed how to formulate control objectives in a way suitable for
H∞ synthesis. It has pointed at important problems that are faced during the controller
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Figure 2.8: Closed-loop transfer functions and their respective bounds - sensitivity (dashed
red) and 1/W1 (solid red), input sensitivity (dashed green) and 1/W2 (solid green), com-
plementary sensitivity (dashed blue) and 1/W3 (solid blue)

design. These theoretical remarks will be found useful during the controller design for
both VLT and Rotary Experiment. However, the next chapter is devoted to model order
reduction.
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Chapter 3

GUI for Model Order Reduction

This chapter goes through methods for reducing the order of a plant or controller model
and describes a Graphical User Interface (GUI) that has been implemented in Matlab to
speed up the model reduction procedure and make it easy.

3.1 Introduction

Modern controller design methods such asH∞ cope with higher order models of both plant
and controller. When designing for optimal control, it is necessary to use the best possible
plant model. Naturally, the need for precise model results in higher order plant description
(e.g. FEM modelling in the field of flexible structures). The higher order models typically
contain subsystems that are somehow less important than the rest. These parts of plant
models can be discarded without a greater loss of accuracy. Moreover, they can cause
failure of the synthesis algorithm. Hence, it is sometimes even necessary to reduce the
plant’s model order. Finally, H∞ optimal synthesis gives controller with order equal to
that of the augmented plant. Thus the model reduction can be applied on the designed
controller so as to reduce its complexity while preserving the closed-loop stability and
performance.

There are many model reduction techniques as the problem of simplifying the system
description has been found crucial not only for H∞ optimal control (e.g. statics or VLSI
circuits modelling). On the other hand many of these techniques are suitable rather for
larger scale models and therefore are not of interest. As this work is focused onH∞ optimal
control within the Matlab environment, only the methods implemented in Matlab will
be taken into account. Note that these reduction techniques are based on the state-space
system description and only the continous-time case is considered.

This Chapter is organized as follows. Section 3.2 introduces a measure for the afore-
mentioned ”importance” of model subsystems (i.e. grammians of observability and con-
trollability), precisely formulates the model reduction problem and describes the actual
reduction methods. Next section describes the implemented GUI and lists its capabilities.

20
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Section 3.4 demonstrates on the VLT model how to use the GUI. At last, Section 3.5
concludes this Chapter.

3.2 Order Reduction Methods

The model reduction problem can be formulated as follows. Given a higher order LTI
model G, find a lower order approximation Gr such that some norm of the difference
‖G − Gr‖ is small. By model order, the dimension of the state vector in a minimal
realization is meant (i.e. the McMillan degree) [33]. To evaluate the difference between
original and reduced model,H∞ and Hankel norms are used. The latter will be introduced
when needed.

During the model reduction it is necessary to decide which state variables should be
kept and which can be discarded. The controllability and observability grammiansWc and
Wo, respectively, help to do so [34, 36]. Consider a stable system with state-space model
A, B, C, D, then the grammians Wc and Wo are defined as solutions to the following
Lyapunov equations [36].

A Wc + Wc A∗ + B B∗ = 0

A∗ Wo + Wo A + C∗ C = 0
(3.1)

In case that the grammian is diagonal, i-th number on the diagonal of Wo reflects
how the state variable xi is observable at the output, and i-th number of Wc reflects the
energy cost to control xi. If G is stable and minimal, it is possible to find a state-space
realization in which both grammians are diagonal and equal to each other

Wc = Wo = diag(σ1, σ2, .. , σn). (3.2)

The numbers
σ1 ≥ σ2 ≥ σ .. ≥ σn > 0

are called Hankel singular values.

This realization is called balanced and an expression for the respective transformation
matrix can be found e.g. in [36, 35]. Consider the i-th state variable xi once again. If σi is
large, then the i-th numbers of both Wc and Wo are significant. This means that xi can
be easily controlled and has remarkable influence on the system output y. On the other
hand, if σi is small, then it is hard to excite the i-th system mode and difficult to observe
this mode at output at the same time. Hence state variables with large Hankel singular
value σ should be preserved and state variables with small σ can be discarded.

Formulation of the model order reduction procedure can be given as follows. Consider
a stable system G with balanced state-space realization

Gr =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 ,
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with Wc = Wo = diag(Σ1,Σ2) where

Σ1 = diag(σ1, σ2, . . . , σk),Σ2 = diag(σk+1, σk+2, . . . , σn)

are the diagonal submatrices of Wc and Wo corresponding to the partitioned state vector
x = (x1, x2). Then the reduced order model Gr

Gr =

(
A11 B1

C1 D

)
, (3.3)

obtained by truncation is asymptotically stable, minimal (and balanced) and the reduc-
tion error satisfies the bound

‖G − Gr‖∞ ≤ 2 (σk+1 + σk+2 + · · ·+ σn). (3.4)

Except for truncation it is possible to ”residualize” the states (xk+1, xk+2, . . . , xn).
This means simply setting ẋ2 = 0 in the state-space equations. The reduced order model
then has state-space realization [33]

Gr =

(
Ar Br

Cr Dr

)
, (3.5)

where

Ar = A11 − A12A
−1
22 A21, (3.6)

Br = B1 − A12A
−1
22 B2, (3.7)

Cr = C1 − C2A
−1
22 A21, (3.8)

Dr = D − C2A
−1
22 B2. (3.9)

(3.10)

Residualization satisfies the same error bound (3.4) as truncation. The difference between
both methods is that truncation preserves the steady-state gain while residualization
preserves the high frequency behaviour.

There exists an alternative to the balanced truncation. It is the so-called stochastic
balancing method based on spectral factorization [33]. Consider a square stable system
G with minimal realization

G =

(
A B

C D

)
, det(D) 6= 0

and let W be a minimal phase left spectral factor of G(s)GT (−s), i.e. W T (s)W (s) =
G(s)GT (−s). A realization of W (s) can be computed as

W (s) =

(
A BW

CW D

)
, (3.11)
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with
BW = P CT +B DT and CW = D−1 (C −BTW χ)

where P is the reachability grammian of G and χ solves the Ricatti equation

AT χ+ χ A+ (C −BTW χ)T (D DT)−1 (C −BTW χ) = 0.

Balanced stochastic realization of G is obtained by balancing P nad χ

P = χ = diag(µ1, µ2, .., µn).

The resulting state-space realization now can be partitioned in the same way as in 3.3.
Truncation of the state vector x2 leads to a reduced order model Gr that satisfies the
bound

‖G−1 (G−Gr)‖∞ ≤ 1 + µi

1− µi

− 1. (3.12)

Minimization of the approximation error norm ‖G − Gr‖∞ allows to derive upper
bounds on the error (viz 3.4 and 3.12). However, there exists a reduction procedure
that theoretically gives even an exact value for approximation error [33]. This reduction
method minimizes Hankel norm of the approximation error. The Hankel norm of stable
system G is defined as the largest Hankel singular value (σ1) of the system. Algorithm
proposed by Glover [18] computes the balanced realization of stable G, performs a special
(and tedious to describe - viz c.f. [33]) transformation of states and finally truncates the
last n − k states. So, except for the transformation, it is similar to classical balanced
truncation. On the other hand, the Hankel norm of the resulting approximation error is
exactly

‖G − Gr‖∞ = σk+1. (3.13)

function name minimized norm balancing step input parameters

modred H∞ classical1 model order and approximation2

balmr H∞ Schur model order, error bound

schmr H∞ Schur model order, error bound

obalreal H∞ classical model order

ohklmr Hankel via descriptor model order, error bound

ohkapp Hankel via descriptor model order, error bound

bstschml H∞ Schur model order, error bound

bstschmr H∞ Schur model order, error bound

srelbal H∞ unknown model order

Table 3.1: List of model reduction functions

1computed by balreal
2truncation or residualization



24 Chapter 3

The balancing methods introduced above try to approximate the full order model
G over all frequencies. However, within many controller design problems one is only
interested in a certain frequency range (see Chapter 2). This problem leads to the so-
called frequency weighted balancing, i.e. finding a reduced order approximation Gr of G
that minimizes the weighted error ‖Wo (G − Gr)Wi‖∞, where Wi and Wo are the input
and output weighting filters, respectively. This method first establishes the state-space
realization for the series connection of Wi, G and Wo, then finds its ordered balanced
realization and at last discards the selected states. Unfortunately, there is no known
a priori error bound for the approximation error and the reduced order model Gr is
not guaranteed to be stable either [36]. However, in the special case of multiplicative
error minimization (set Wi = I and Wo = G−1) the reduced order model Gr is stable
and minimum phase. At the same time it is possible to derive an upper bound for the
approximation error

‖G−1 (G−Gr)‖∞ ≤
n∏

i=k+1

(1 + 2σi

√
1 + σ2i + 2σ

2
i )− 1. (3.14)

The methods mentioned above are implemented in Matlab (namely the Control Sys-
tems Toolbox Matlab [37], the Robust Control Toolbox [6] and the µ–Synthesis Toolbox
for Matlab [2]). Note that for all the approximation methods, except for general frequency
weighted balancing, it is possible to compute the error bounds a priori. This is becuase
the error bounds are dependent only on the Hankel singular values σi corresponding to
state variables xi that are planned to be discarded. Hence the respective functions (in
Matlab) offer to the designer three possible scenarios how to use them. Direct selection
of the reduced order k, direct selection of the upper bound for the approximation error
(the function alone finds the best order of the approximation) or plotting the system’s
Hankel singular values and consequent prompting for reduced order k.

Some methods have been implemented in Matlab more than once. This is partly due
to the fact, that a variety of actual algorithms is related to each method ( [?, 6, 35, 36]),
partly due to coincidation of Matlab toolboxes. Table (3.1) lists Matlab functions that
have been covered in the GUI.

modred, obalreal, balmr and schmr perform the model reduction based on classi-
cal grammian balancing (3.3). modred is the only function cappable of residualization,
the other functions perform just truncation of states. bstschml and bstschmr find the
stochastically balanced realization according to 3.11. The difference between bstschml
and bstschml is that bstschml minimizes

‖G−1 (G−Gr)‖∞

(relative error), while bstschmr minimizes

‖(G−Gr)G
−1‖∞

(multiplicative error). srelbal implements the Zhou’s special case of frequency weighted
approximation that leads to multiplicative error minimization 3.14. Note that bstschmr
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and srelbal are equivalent. ohklmr and ohkapp perform optimal Hankel minimum degree
approximation 3.13. ohklmr uses the stabproj function to splitG into stable and antistable
parts and then applies ohkapp to each part.

All the mentioned model reduction techniques include a step when it is needed to
find the balanced realization of G. This is the weakest point of the model order re-
duction [6, 35]. There have been many (successfull) attempts to bypass the numerically
ill-conditioned balancing. The approximation functions above use either Schur method
or descriptor approach [6]. A more detailed discussion of the algorithms can be found
in [6, 2] and references therein.

3.3 Graphical User Interface

To provide an user-friendly interface to the mentioned approximation methods, the Order
Reduction GUI has been implemented (Section 3.1). It provides the designer with a simple
tool with the following key features:

1. easy access to all the functions in Chapter 3.1,

2. import/export of LTI models from/to both .mat files and workspace

3. link to LTI Viewer that enables the comparison of several reduced models with the
original

4. checks against possibly incorrect method selection (stability and minimality as-
sumptions)

Figure 3.1: The Order Reduction GUI

The GUI is organized as follows. On the left there are two PopUpMenus, the upper one
for selection of the approximation method and the lower one to select the input parameter
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(according to Table 3.1). Under these PopUpMenus there is an EditBox where a value
of the respective input parameter should be set. Once the approximation specification is
complete, it can be added to the list of currently sheduled approximations by clicking
the ”Add to the List” Button. Then a new row appears in the ListBox on the right.
Each row of this ”MethodList” describes the corresponding setting for model reduction
(approximation method, method type, input parameter value).

The bottom of the GUI contains four Buttons, COMP, VIEW, PrettyPrint and SAVE.
Pressing the COMP starts the actual computation of all the scheduled approximations as
they are displayed in the MethodList. VIEW opens in a new window the LTI Viewer [37]
showing all the reduced models and the original full-state model simultanousely. Pret-
tyPrint displays a table of results at the propmt (model name, order and approximation
method for each reduced order model). Finally, SAVE invokes the ”SaveResults” Dialogue
(Figure 3.2). SaveDialogue allows the user to specify the output variable names and where
the output should be written. The GUI saves the original model, all the reduced models
(as an LTI-array [37]) and the PrettyPrint table (character array). There is no variability
in this, all the three variables will be saved.

Figure 3.2: The Save Dialogue

The last feature that needs to be specified, is the import of the orioginal full-state
model. This is provided by the ”ImportSystem” Dialogue (Figure 3.3) which can be
invoked selecting ”Import. .” from the FileMenu. The Dialogue displays LTI systems
currently available in workspace and the designer should either select one of them or
use the browser to find a .mat file to load. After selecting a .mat file, the Dialogue
displays LTI systems found in the .mat file and lets the designer to choose one.
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Figure 3.3: The ImportSystem Dialogue

3.4 Example

Contribution of the GUI can be best demonstrated on an example. Consider the H∞
controller design for VLT. The given VLT model has 60 states. Though it is stable, it
has many nearly canceled pairs of complex poles and zeros, some of them located close
to the imaginary axis (nearly non-minimal). Hence it is very difficult for the state-space
algorithm of H∞ synthesis to even find a solution (see Chapter2). So it is wise to first
find a lower order approximation of the original model and use it for a preliminary H∞
synthesis. This can give an useful insight into the problem. Consequently, higher order
models can be used to obtain more accurate results.

First, let us find the lower order approximation of the original VLT model. So far
the approximation problem is slightly vague. Let the ”lower order model” state for an
arbitrary model of VLT with less than 20 state variables. The best lower order model
is, according to the definition in 3.2, the one that minimizes the multiplicative error
‖(G − Gr)G−1‖∞. One method after another has been chosen and the best reduced
model corresponding to each method in (3.1) has been found. The resulting lower order
models are shown in (3.4) and respective multiplicative errors are shown in (3.5). 3.5 is
focused only at particular frequency region important for the H∞ controller design.

Note that in (3.4) there is one lower order model, called ”zero-pole selection”, which
derivation has not been explained yet. This model was obtained simply by considering the
12 lowest poles and zeros of the original VLT model. Inspection of (3.4) and (3.5) shows
that this model (dashed blue) together with the one obtained by balanced residualization
(solid green) are by far the best. Above all, during the H∞ design the model obtained
by zero-pole selection has lead to smaller peaking of sensitivity functions S and T at the
crossover region. This can be explained by the observation that it gives more accurate
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Figure 3.4: The lower order models obtained by ohklmr (20 states, solid red), obalreal
(14 states, dashed red), modred residualization (18 states, solid green), schmr (18 states,
dashed green), srelbal (18 states, solid blue), zero-pole selection (12 states, dashed blue)
and the original model (solid black).

approximation of the first resonant peak than the balanced residualization.

The second task that has been stated at the beginning of this section, can be for-
mulated as follows. Find the best approximation of the original VLT model, that will
preserve as much as possible of the original behaviour and will be less ill-conditioned
than the original model at the same time, i.e. the model will be free of (some) nearly
canceled zero-pole pairs. To do so, one method after another has been chosen and the
best reduced model corresponding to each method in (3.1) has been found. The resulting
models are shown in (3.6) and respective multiplicative errors are shown in (3.7). Again,
3.7 is focused only at particular frequency region important for the H∞ controller design.

Without any doubt the best approximation we have got is the stochastically balanced
one (solid blue). Note that results of bstschmr and srelbal are the same. Moreover,
there has been never ever found any difference between results of schmr and balmr. This
is in consistence with [35], where the author says: ”Matlab has built in procedures for
computing balanced truncations, but these routines unfortunately do not precisely what
you expect them to do.”. However, the authors of the Robust Control Toolbox may be
aware of some differences, so both schmr and balmr have been included in the GUI for
completeness.
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Figure 3.5: Multiplicative error of the lower order models obtained by by ohklmr (20
states, solid red), obalreal (14 states, dashed red), modred residualization (18 states,
solid green), schmr (18 states, dashed green), srelbal (18 states, solid blue) and zero-
pole selection (12 states, dashed blue).

3.5 Conclusions

This Chapter has introduced the GUI for model order reduction and has summarized
approximation techniques that have been implemented within the GUI. The Order Re-
duction GUI speeds up the model reduction process as it offers the user quick access to
various approximation methods without learning unique syntaxes of respective Matlab
Toolboxes. At the same time it provides the designer with ability to immediately compare
results of the individual methods.

The contribution of the GUI has been demonstrated on the VLT model. The original
60-state model is inconvenient for the H∞ design. It has been arrived at the best ap-
proximation when using the stochastically balanced truncation method. Advantages of
simplified models will be mentioned in the next Chapter.
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Figure 3.6: The best reduced models obtained by modred residualization (52 states, solid
red), modred truncation (44 states, dashed red), balmr (48 states, solid green), obalreal
(48 states, dashed green), bstschml (48 states, solid blue), ohklmr (48 states, dashed
blue) and the original model (solid black).
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Figure 3.7: Multiplicative error of the best reduced models obtained by modred resid-
ualization (52 states, solid red), modred truncation (44 states, dashed red), balmr (48
states, solid green), obalreal (48 states, dashed green), bstschml (48 states, solid blue),
ohklmr (48 states, dashed blue).



Chapter 4

Position Control of the VLT Telescope

The objective of this chapter is to design an H∞ controller for the VLT telescope and
compare it to the existing solution. The goal is to control position in the VLT’s altitude
axis. The controller should avoid the structure from vibrations and eliminate the influence
of wind disturbances while preserving an acceptable response on reference commands.

Figure 4.1: VLT telescopes at Cerro Paranal

31
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4.1 Introduction

VLT telescope is an acronym for Very Large Telescope. A set of four VLTs, known as VLT
Interferometer (VLTI), is operated by the European Southern Observatory and located
on Cerro Paranal, Chile (Figure 4.1). The individual telescopes are referred to by their
South American Indian names, Antu, Kueyen, Melipal, and Yepun.

Each telescope possesses two-mirror optical configuration consisting of 8.2 m primary
mirror and convex secondary mirror located in front of the primary mirror focus. Once
operational, the VLTI will become the largest interferometric telescope of the world with
an equivalent aperture of 16.4 m [13].

Because of the 8 m mirror the supporting structure of VLT is fairly huge (Figure 4.2)
and the center of gravity needs to be placed exactly above the base of the mount. This
is the principle behind the altitude-azimuth mounting. The tube is oriented by rotation
around a vertical axis (the azimuth axis) and a horizontal axis (the altitude axis). Dur-
ing tracking, both axes must be rotated at variable speeds. Fortunately, the dynamical
coupling between axes is negligible and they can be controlled independently.

Requirements for axes control include an extremely low reference tracking error and
a good disturbance rejection. Typical references are step command and slow tracking.
The most important disturbances arise from internal excitation (generated within the
telescope itself) and from wind. Internal disturbances have been minimized during the
mechanical design process, but the impact of the external wind disturbance needs to be
attenuated by control algorithm.

Both axes already have suitable controllers for reference tracking including some dis-
turbance rejection. However, recently there have been efforts to further reduce the point-
ing error caused by wind buffets. The wind mainly affects the altitude performance,
because the altitude axis is exposed to a greater wind torque. The azimuth rotation
is much more protected by the co-rotating enclosure and usually influence of the wind
disturbance on azimuth is neglected.

Thus the goal of this chapter is to redesign the altitude controller in order to obtain
better disturbance attenuation while (at least) preserving the reference tracking accuracy
and swiftness. Section 4.2 introduces the altitude axis model and discusses the identifica-
tion procedure which lead to it. Section 4.3 goes through the existing control algorithm.
In Section 4.4 new controllers are designed using the H∞ formulation. Next section shows
results of this synthesis. Finally, Section 4.6 summarizes results of this chapter.

4.2 System Modelling and Identification

The VLT telescope is a fairly complex system. During the design process the altitude
structure (including mounted mirrors) was modeled using the Finite Element Method
with more than 100 000 elements. For the purposes of linear simulation and controller
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Figure 4.2: Supporting structure of VLT telescope

design the FEM model was reduced using the SMI Toolbox for Matlab [5].

However, the model used in this work was gathered the other way around (according
to the correspondence with ESO engineer T. Erm). It was obtained from a time response
of velocity sensors on an (not specified) input voltage applied to the altitude axes main
servo. The sampling frequency was set to fs = 200 Hz. The measured response was
processed by System Identification Toolbox for Matlab and subsequently the order of the
identified model was reduced using methods based on balanced state-space realization.
This identification procedure resulted in a 60 states model (Figure 4.3).

When the system’s transfer function is obtained from a response in time domain,
special attention should be payed to the following problems. Sampling of the time response
can give acurate results only if both aliasing and leakage are avoided (the usual ways to do
so, cf. antialiasing filtering and time-domain weighting, will be discussed in Chapter 5).
Figure 4.3 shows that aliasing probably was present in the measurement – notice relatively
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Figure 4.3: Altitude axis model - identified 60 state model (red), reduced 48 state model
(blue) and reduced 12 state model (green)

high gain at the Nyquist frequency fN = 100 Hz.

A crucial step of the identification is selection of the model order. Here the model order
was set ad hoc, without using any prior knowledge about the behaviour of the system.
In such a case one should be aware of the so-called overfitting. The overfitting occures
when an identified system is fitted with a model of higher order than the true plant itself
has. This happened during the identification of VLT, as can be seen in Figure 4.3. The
48 state model almost exactly matches the original 60 state model. Overfitting produces
nonminimal or nearly-nonminimal paires of poles and zeros located closely together. These
nearly canceled roots of the transfer function make it hard to control the plant.

Wind effects on the VLT’s structure are of two sorts: static and dynamic [3]. Static
wind load on the structure is given by

F = 0.5CD ρ V 2A, (4.1)

where CD is the drag coefficient, ρ is the density of air, V is the velocity of air, and A
is the cross-sectional area normal to wind direction. Dynamic effects come either from
the turbulence created by an obstructing surface in a flow with constant speed or from
turbulence in the incoming flow itself. Airflow around individual members can generate
forces normal to the wind direction due to vortex shedding. Vortex shedding can excite
natural resonances in the member and result in large-amplitude oscillations at frequencies
typically in the range of 1 to 100 Hz.

The turbulence content in a wind flow (wind gustiness) is characterized by the power
spectral density (PSD) of the wind speed. To model the PSD of wind speed at Cerro
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Paranal the von Karmán spectrum SV (ν) was used [32]

SV (ν) =
4 I2 V 2 L

(1 + 70.8 (ν L/V )2)5/6
, (4.2)

where ν is the frequency, I is the turbulence intensity in percent, V is the mean speed
(in m/s), L is the outer scale of turbulence in metres, and SV is the PSD (in m2/s2). The
resulting PSD of the wind torque around the altitude axis is given by

Sτ (ν) = τ 2SV (ν)χa(ν)
2, (4.3)

where τ is the static wind torque around altitude axis (related to the static force F from
(4.1)), SV (ν) is the wind speed power spectral density from equation (4.2), and χa(ν) is
the aerodynamic attenuation factor. The attenuation factor χa(ν) comes from the fact
that when wind acts on the VLT’s structure, one must take into account the partial
decorrellation of the wind speed over the telescope area facing the wind.

Inside the telescope enclosure, the incoming wind vortices are broken down into smaller
ones, with size driven by the dimension of the obstruction (dome slit, louvers, etc.). This
phenomena reduces amplitude of the wind buffets, but shifts wind PSD to higher fre-
quencies which are more prone to excite the telescope structure. Thus the wind gustiness
is the main source of external disturbances and for purposes of the controller design the
wind torque PSD can be replaced by a second order low-pass filter with the transient
frequency empirically found at approximately 1 Hz

PSD(s) =
(2π)2

(s + 2 π)2
.

4.3 Existing Controller

Controller currently used for the altitude axis tracking incorporates 2-loop PI compen-
sator with structural filters. The inner loop is derived from a velocity sensor and takes
care of the dynamics of the altitude structure, whereas the outer position loop assures
pointing accuracy. The structural filters avoid the most pronounced resonant frequencies
from excitation.

The controller configuration is shown in Figure 4.4. Cv, Cp and SF state for the
velocity controller, the loop controller and the structural filters, respectively. Amp and
c1 are scaling factors of the altitude axis servo and position sensor, respectively. The
reference command r is brought to the input of the outer position loop. The external
disturbance d, caused by wind buffets, enters the system at the altitude servo output.
During the identification c1 and Amp have been included into the plant model. This
should be taken into account when computing the closed-loop disturbance sensitivity
function D.

The closed-loop characteristics S, T and D (defined in Chapter 2) for the altitude
axis with the existing controller are shown in Figure 4.5. Note that the current setup has
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(a)

(b)

Figure 4.4: Altitude control systems - the existing 2-loop PI (a) and H∞ controller (b)

been obtained after many iterations and its performance can be thought as a limit for
the 2-loop PI structure. The complementary sensitivity T has a bandwidth of 2 Hz with
a peak about 2.5 dB. Sensitivity function S exhibits a 6 dB peak. These results can be
regarded as particularly satisfying for such a resonant system.

On the other hand the disturbance sensitivity function D exhibits an increase of
magnitude approximately in the range from 0.01 Hz to 7 Hz. In this frequency interval
the wind disturbances affect the altitude axis and it is desired to further diminish the
disturbance sensitivity D of the output position. Improvements in D should not be done
at the cost of swiftness or smoothness of the system’s time response. The step response
of the existing closed-loop system has a 20% overshoot and a settling time under 1.5 s
(Figure 4.10). Also the sensitivity to measurement noise (T ) should be kept as low as
possible. Thus the requirements on the closed-loop system can be summarized as

diminish the disturbance sensitivity D at frequencies below approximately 7
Hz, while at least preserving the following: asymptotic tracking of constant ref-
erences, low sensitivity to measurement noise, step response overshoot about
20%, settling time under 1.5 s.

4.4 Controller Design

As the control goals have been defined and the plant has been indetified, it is possible now
to design the controller. To do so, the state-space algorithm of H∞ synthesis (discussed
in Chapter 2) will be used.

The controller is assumed in the form shown in Figure 4.4b. Within this configuration
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Figure 4.5: The closed-loop characteristics of the existing configuration - sensitivity
S(red), complementary sensitivity T (blue) and disturbance sensitivity D(green)

the closed-loop functions S, T , U and D have the form

S =
1

1 + P C

T =
P C

1 + P C

U =
C Amp c1
1 + P C

D =
P/(Amp c1)
1 + P C

.

(4.4)

Note that within the configuration of Figure 4.4b the complementary sensitivity T
has only the meaning of output sensitivity to measurement noise. Transfer function from
reference r to output y (which determines shape of the closed-loop system’s step response)
is now

Tr =
Cr C P

1 + C P
= Cr T, (4.5)

Our task is to find a stabilizing controller that simultanousely minimizes the mag-
nitude of D at low frequencies (approximately below 7 Hz) and peaking of T and S at
the crossover region. The responsibility for shaping Tr has been lifted from the controller
C and is undertaken by the feedforward filter Cr. Thus the problem of finding suitable
controller is divided into two steps. At first, stabilizing C that best fits the requirements
on D, S and T will be found using the state-space algorithm of H∞ synthesis. Next, Cr

will be added to satisfy the demands set on Tr.
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To find the compensator C, approach formulated in Chapter 2 is followed. A stabilizing
C that minimizes the H∞ norm

min
C
H∞ = min

C

∥∥∥∥∥∥∥
 W1 S −W1D W4

W2 U −W2 T W4

W3 T W3D W4


∥∥∥∥∥∥∥
∞

(4.6)

is looked for. Shape of weighting filters is derived from requirements on the closed-loop
system and from properties of the controlled plant. The weighting filters should have
simple form in order to avoid numerical conditioning problems of the synthesis algorithm.

The highest possible attenuation of wind disturbances is called for. Thus the distur-
bance sensitivity D should be minimized at frequencies approximately below 1 Hz. On
the other hand there is no need in attenuating D at high frequencies, as the wind torque
PSD is negligible there. W4 can be chosen in the form

W4 =
k4 ω

2
4

s3 + 2 ξ4 ω4 s2 + ω24 s
.

At low frequencies W4 behaves like simple integrator. Introduction of the complex pair
of poles allows advanced shaping of W4 in the crossover region.

The requirement of constant reference tracking implies that the sensitivity function S
should have zero at 0. This is already ensured by the choice of W4 and by the fact that
the plant P has an astatic pole. In the crossover region peaking of S should be minimized.
This can be done considering the weights

W1a = k1 ω1s+ ω1,

W1b =
k1 ω1 (s+ ω1)

s
.

At low frequencies W1a and W1b have the same gain. The only difference between W1a

and W1b is that the state-space model of W1b has nonzero matrix D. Sometimes this can
help the algorithm to give better results.

The closed loop transfer function T is desired to have a high bandwidth so as to fast
step response of the closed-loop system can be established. Although Tr will be shaped by
the prefilter Cr, significant improvement of the shape of T could be done only at the cost
of overly large control input u. On the other hand, stability and performance robustness
to plant uncertainty require small T , especially at high frequencies. Inspection of the
controlled plant shows that P has a RHP zero at 6 Hz and lowest pronounced resonant
frequency at 8 Hz. According to Freudenberg-Looze equality (2.9), bandwidth above 6 Hz
would be reached at the cost of excessive peaking of both S and T . Transient frequencies
ω1 and ω3 of the weightsW1 andW3 should not exceed this bound. Consider the following
two forms of W3

W3a = k3 s
2,

W3b =
k3 s

2

s+ ω3
.
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Observe that the relative order of the plant P is only 1 and series connection of W3a

and P is not proper. The state-space algorithm cannot cope with such a configuration.
But there is a simple remedy. The slowest pole of P at 0.0016 Hz can be shifted to
0 Hz. This does not influence the key frequency range and results in a new plant Ptemp

with relative order 2. Then series connection of W3a and Ptemp is proper and the whole
augmented plant is feasible. The controller C, synthesized via the state-space algorithm,
has pole at 0.0016 Hz which can be shifted back to 0 Hz.

There are no direct limitations imposed on the input sensitivity U . Though the weight
W2 is introduced into the augmented plant to improve numerical performance of the H∞
synthesis algorithm. W2 in the form

W2 = k2,

is sufficient.

The weighting gains k1, k2, k3 and k4 have not been selected yet. Also the frequencies
ω1 and ω3 have only vague upper bound. Together these six parameters need to be
optimized to match the control objectives as much as possible. Table 4.1 shows values
of the respective parameters that have been found (after many iterations) to give the
best performance. Two controllers, Ca and Cb, have been synthesized. The former with
weights W1a and W3a, the latter with weights W1b and W3b.

k1 ω1 k2 k3 ω3 k4 ω4 ξ4

Ca 16 2.3 1 1050 – 100 0.25 8

Cb 3 10 10−4 10−2 10 100 0.35 6

Table 4.1: Selected parameters of the weighting filters

During the iterative search for optimal controller Ca it has been observed that it is
necessary to reduce order of the plant G. When using the original nonminimal model, the
synthesis algorithm often fails. With the balanced 48 state model, that almost exactly
matches the identified transfer function, poor results are obtained. Reduced order model,
that works best within the algorithm, is a 12 state model (Figure 4.3). To get this model,
the balanced 48 state model has been chosen as a starting point. Consequently, only 12
lowest poles and zeros have been considered and the rest has been taken away. In the
key frequency range, the crossover region (viz Chapter 2), the 12 state model fits the
identified transfer function better than any other reduced order model. Even the use of
more sophisticated frequency weighted reduction techniques has not beaten this model
(as it is described in Chapter 3).

After the design of closed-loop compensators Ca and Cb, prefilters Cra and Crb have
been found. The prefilters are needed to shape the transfer function Ta and Tb in order
to speed up and smooth the step responses of the closed-loop systems. To do so, the
respective closed loop transfer functions have been inverted, their inversions have been
simplified via modred reduction technique (described in Chapter 3) and multiplied by a
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low pass filter with bandwidth set to 6 Hz

Cra = F Tainv,

Crb = F Tbinv,

where

F =
2π 6

s + 2 π 6

is the low pass filter and Tainv and Tbinv are stable approximations of T−1
a and T−1

b ,
respectively. Tainv and Tbinv cancel peaks of Ta and Tb in the crossover region and the low
pass filter attenuates high frequency oscillations of the step response.

4.5 Results

The design procedure described in the previous section has lead to compensators Ca

and Cb and prefilters Cra and Crb. These ’compensator-prefilter’ pairs correspond to the
weight selection given in Table 4.1. In this section, performance of both solutions is shown
and compared to the existing 2-loop PI controller and a 1-DOF controller designed to
minimize the classical sensitivity S. In what follows, the existing controller is marked CPI

and the controller designed to minimize S is marked CS. Note that CS has been designed
only for benchmark purposes, that is, without thorough tuning of the weights.

Figures 4.6, 4.7 and 4.8 show the closed-loop disturbance sensitivity D, sensitivity S
and the closed-loop transfer T , respectively.

Inspecting the results, it is clear that disturbance attenuation improvement is possible.
The system has been made less sensitive to wind disturbances in the key range below
2 Hz. Simultanousely, sensitivity functions have been attenuated in the same frequency
region. This is of no surprise, as S and D are bound together by the relation D = P S.
Above 2 Hz, the disturbance sensitivity functions more or less copy the original DPI .
What is the trade-off?

The sensitivity functions and the closed-loop transfers exhibit peaking of magnitude
in the cross-over region and in the high frequency range . The maxima of Sa and Sb

have been increased from the original value of 6.1 dB to 7.4 dB and 7.5 dB, respectively.
However, this makes sense. It is desired to minimize effects of disturbances using the
output measurements. This is possible only when output sensors are not disturbed by a
too strong noise. Note that lower sensor noise is required only beyond 0.5 Hz, although
the improvement of D is situated below 2 Hz. The attenuation of D brings down S in
the low frequency range and, according to the Bode sensitivity integral and the algebraic
constraint on S and T (see Chapter 2), this leads to increase of T at high frequency
region. This trade-off is inevitable. Designer can only choose between high peaking of T
at the crossover region and slower roll-off at high frequencies.

Peaking of the Tr has been lowered using prefilters. Though very simple, the prefilters
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Figure 4.6: Disturbance sensitivity D of the closed-loop system with controller Ca(red),
Cb(blue), CS(green) and existing solution CPI(black)

Ca and Cb (see Figure 4.9) have lead to good results in the time domain (see Figure 4.10).
Closed-loop system with Cb even beats the existing solution.

When comparing the pair Ca - Cra to the pair Cb - Crb, it can be seen, that slightly more
complicated shape of weighting filters has given better results. Namely, the disturbance
sensitivity D is further attenuated, the step response is faster and has smaller overshoot
and control input ub has smaller amplitude than ua. Another remarkable property of the
solution with Ca is, that difference between the full-order and the 12-state reduced-order
model leads to higher peaking of S at the high frequency range.

Comparison with the 1-DOF controller CS brings to the following observation. Only
few attempts with weights have been performed, hence the poor results of DS have been
expected. To cure this, either more sofisticated weighting filter W1 should be used (the
plant dynamics should appear in W1 when indirectly shaping D via S), or D should be
shaped directly viaW4. The latter option leads to simpler weighting filters, that are easier
to shape, and should be preffered.

4.6 Conclusions

The VLT control problem has been precisely specified. It has been shown that requested
wind disturbance attenuation is important at the low frequency region (approximately
below 1 Hz). Two controllers, that further attenuate the effects of wind buffets, have been
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Figure 4.7: Sensitivity S of the closed-loop system with the controllers Ca(red), Cb(blue),
CS(green) and existing solution CPI(black)

designed. Obtained results have lead to conclusion that this deteriorates other closed-loop
benchmarks at the same time. The plant model has nonminimal zero at the crossover
region. This makes the trade-off even more severe. It has been pointed out that the given
plant model was possibly overfitted and thus this phenomeon could be less pronounced
in the real situation.
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Figure 4.8: Transfer function T of the closed-loop system with the controllers Ca(red),
Cb(blue), CS(green) and existing solution CPI(black)
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Figure 4.9: Closed-loop transfer functions Ta(solid red) and Tb(solid blue) and prefilters
Cra(dashed red) and Crb(dashed blue)
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existing solution TPI(black)



Chapter 5

Rotary Experiment

The objective of this chapter is to design and test an H∞ controller for the Quanser
Rotary Flexible Link Experiment [30]. The goal is to control tip position of a flexible
link attached to a DC servo. The controller should eliminate the link’s vibrations while
maintaining a fast response.

Figure 5.1: Quanser Rotary Experiment

45
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5.1 Introduction

As stated above, the plant consists of a DC servo and a flexible link attached to the mo-
tor’s shaft. The servo is voltage driven Quanser SRV02-ET model equipped with angular
speed and position sensors. The flexible link is Quanser FLEXGAGE thin aluminium
beam with strain gage mounted at its base. Interaction with the controled plant is pro-
vided by Quanser UPM 2405/1503 power module and by Quanser MultiQ PCI card, as
shown in 5.2. Quanser supports its laboratory system with WinCon software that allows
communication with Simulink. Thus the controller can be realized using Matlab.

The plant modelling is divided into three parts. In Section 5.2, model of the DC servo
with gear is briefly recapitulated. Then model of the flexible link based on Hamilton’s
principle and Euler-Bernoulli assumptions is derived. Consequently, the mutual servo-
beam interaction is introduced to the model. Having the plant satisfactorily identified,
5.4 is devoted to the controler design. Experimental results are shown and discussed. At
last, 5.5 summarizes results of this chapter.

5.2 Servo Modelling and Identification

shaft servobeam

sensorssensor

UPM

PC

PCI

WinCon

Simulink

Figure 5.2: Experimental setup

The Quanser SRV02 used in the Rotary Experiment consists of a DC servo in a solid
frame. The motor is equipped with a gear box. The gearbox output drives external gears.
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The unit is equipped with tachometer, potentiometer and optical encoder to measure the
output angular speed and position.

The servo model consists of electrical and mechanical component. The former converts
input voltage to electromotiveforce (emf), the latter converts emf to output velocity and
moment, see 5.3a. To derive the model, consider the electrical component of the motor
first

u = R i+ L i̇+ Eemf ,

Eemf = k i.
(5.1)

where u is the input voltage, R and L are resistance and inductance of the armature
circuit and Eemf is the voltage induced due to emf (Eemf is proportional to armature
current i).

The mechanical moment τm on the motor shaft, which is proportional to the armature
current i, must be balanced by the other moments acting on the shaft

τm = ηm k i = Jeq ω̇m + τfricteq + τexteq, (5.2)

where Jeq is total moment of inertia of bodies attached to the shaft, τfricteq is total
moment of friction forces and τexteq is moment of load not accounted for in the two
former components. Note that all moments comming from the output of the gear are
considered in the equivalent form (as seen by the motor).

SRV02 incorporates a MicroMo Coreless DC Motor. This model is a high efficiency
low inductance motor. Thus the motor inductance can be disregard and combining (5.1)
with (5.2) yields

τm =
ηm k

R
u− ηm k2

R
ωm. (5.3)

The gear is passive two-port that transmits power with efficiency ηg while the output
angular speed is n-times higher (n is called gear-ratio)

ηg τm ωm = τl ωl,

ωm = n ωl.
(5.4)

Using the result (5.3) the transfer function from input voltage u to gear output angular
speed ωl has been obtained in the form

Ωl(s)
U(s)

=
Ktacho ηg ηm k n

R J s+ n2 ηg (ηm k2 +R Beq)
, (5.5)

where Ktacho is tachometer sensitivity, J = Jl + ηg n2 Jm is equivalent inertia as seen
from the load side of the gear, Jl is load inertia and Jm is motor inertia, B = n2 ηg Beq is
coeficient of viscous friction that is the only admissible type of friction for LTI model

τfriction = B ωl = Beq ωm.

State space model is shown in 5.3b.
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Figure 5.3: DC servo - physical setup (a) and state-space model (b)

Substitution of system parameters (given in 5.1) into the transfer function (5.5) results
in the model

Ωl(s)
U(s)

= 2.01
5.33 · 2π

s+ 5.33 · 2π
. (5.6)

To evaluate the theoreticaly calculated model, step responses of both model and
physical plant (sampled with fs = 1kHz) have been compared in 5.4. Inspecting the
figure, two important observations can be done. The model (5.2) is rather poor estimate
of the real plant and the output signal suffers from strong noise. In what follows both
problems are discussed.

Since the system has very simple structure

G =
k

τ s+ 1
,

it can be identified directly from the step response. K can be found as a steady state
amplification and τ can be approximated as a slope of the step response between approx-
imately 20% and 80% of its steady state amplitude [22] in the sense of mean squares [19].

Deviation of the theoreticaly obtained model comes from several origins/reasons. Influ-
ence of the parameters variation is obvious (c.f. Table 5.1). Partially the model error comes
from the disregard of system’s nonlinear behaviour, especially static (Coulomb) friction.
This becomes clear when changing the input amplitude between/among its boundaries
0 and 5V. While increasing input amplitude Coulomb friction becomes negligible and thus
the steady state gain k increases, see 5.5. At the same time the time constant τ decreases
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parameter value units variation

R 2.6 Ω ±12%
L 180 · 10−6 H N/A

k 7.67 · 10−3 – ±12%
ηm 69 % ±5%
Jm 4.57 · 10−7 kgm2 ±10%
Jl 3 · 10−4 kgm2 N/A

Beq 0.01 Nms rad−1 ±20%
ηg 90 % ±10%
n 14 – –

Ktacho 0.09 V s rad−1 ±2%

Table 5.1: Servo parameters

a bit but this cannot be put down to static friction. This effect is rather caused by unmod-
elled dynamic properties of the physical plant. Note that influence of servo’s armature
inductance is negligible (electromagnetic time constant τa = R/L = 0.4 m s/rad).

Impact of model parameters variations on plant’s transfer function can be described
by the plant uncertainty. In 5.5 modeled and identified transfer functions are shown and
uncertainty is included. The uncertainty is of multiplicative type, obtained by comparing
the two utmost transfer functions according to (2.3). This gives an upper bound of the
uncertainty.

The noise present in the measured velocity signal can be investigated e.g. by spectral
analysis. Taking sequence of the signal in steady state (when there is no significant change
in the mean) and subtracting its mean gives the noise signal. Square root of power spectral
density Sxx of such noise is shown in 5.6. Sxx was obtained using FFT algorithm [38] on
the autocorrelation function of noise [8, 21].

FFT faces phenomena of leakage and aliasing [8, 21]. Leakage blurs peaks in the
frequency response through convolving them with functions of type sin(x)/x. Loosely
speaking, leakage is caused by different values at the opposite ends of FFT input signal.
To reduce leakage, noise signal was weighted using Hamming time window [8]. Alias-
ing mirrors components with frequency greater then half of sampling frequency (here
fs/2 = 500 Hz) to the basic period of FFT spectra. Aliasing is usually eliminated using
antialiasing filter [8, 21].

Unfortunately, antialiasing filtering is not possible here due to HW configuration of
the experiment. We are left only to thorough investigation of the results by which we
can conclude whether aliasing distorted the frequency spectra or not. The response of 5.6
has several frequency peaks with main peak at the frequency f1 = 93.7 Hz. Consider f1
as a basic resonant frequency. Thus can be found that the noise signal includes also 2nd
(187.4 Hz) and 3rd (281.1 Hz) resonant frequencies. Peaks at 344.1 Hz and 63 Hz are the
metioned aliasing mirrors of 7th and 10th resonant frequencies, respectively. Therefore
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Figure 5.4: Comparison of step responses - modelled (green), measured (blue), identified
(red) and the step command (black)

aliasing effects should be taken into account when gathering results from the spectral
analysis.

Analyzing amplitude and frequency of several resonant frequencies their dependence
on the steady state speed can be observed 5.7. Such results show that harmonic noise
components are produced by the tachometer due to its irregular shape and the noise
signal itself is made of white noise mixed with several discrete frequency components.

Although frequency of the noise depends on the input amplitude in a multiplicative
way , it is needed (for the purposes of H∞ synthesis) to develop linear noise description.
This has been done by finding an upper bound for the square root of noise power spectral
density Sxx. This upper bound can be used as an instance of the weighting filter W3

W3 =
0.237 (s + 125.7)

s + 942.5
. (5.7)

Thus we have arrived at a model of noise which is independent on the input level. At the
same time this model is quite conservative as it expects presence of noise at frequency
interval instead of discrete resonant frequencies.

So far only the tachometer has been studied. Now consider the other two sensors that
have been designed primarily for position measurement. The optical encoder measures
relative position (i.e. it has no home position) of the shaft. It has 4096 segments that give
a resolution approximately 5’. The effects of quantization error can be analyzed using
either describing function [1, 24] or stochastic description [14].

The describing function concept can be regarded as a generalization of the Nyquist
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criterion and is used to test stability of systems with one nonlinearity. The critical point
−1 is replaced by −1/Yc(A), where Yc(A) is the describing function of the nonlinearity.
The describing function chracterizies the transmission of a sinusoidal signal with ampli-
tude A through the nonlinearity. Evaluation of Yc(A) gives that for systems with gain
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margine at least 1.27dB the quantization will not cause oscillations or instability.

Stochastic analysis describes the round-off error as a white noise with amplitude
equally distributed over the interval (−q/2, +q/2), where q is the quantization step. The
variance σ2 of the round-off error is then (Figure 5.8)

σ2 =

q/2∫
−q/2

x2

q
dx =

q2

12
,

and contribution of the round-off error to the specification can be done via weighting
filter

W3 =
q

2
√
3
. (5.8)

Figure 5.8: Encoder noise density
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Note that the round-off error of the encoder, used for Rotary Experiment, can be disre-
gard, if reference commands are at least 5 ◦ and the controller bandwidth is not too high.
Both the conditions hold, the latter is forced by other control objectives.

The potentiometer output shows discontinuities, after each evolution it returns to the
starting position. Thus it is suitable rather for accurate measurement and for detction of
absolute position than for control tasks and position has been measured only with the
encoder.

5.3 Flexible Link Modelling and Identification

In this section, model of the flexible link attached to the servo shaft will be derived using
extended Hamilton’s principle. During the modelling, interaction between servo and the
beam will be incorporated into the model. The obtained model will be slightly modified
to match the real plant behaviour.

Typically, the derivation of equations of motion for a system proceeds down two
paths [31]. The first path uses Newton’s equations of motion, the second path utilizes
calculus of variations by defining a functional, which is based on the system energy.
Hamilton’s principle is the application of calculus of variations to dynamical systems. It
is often referred to as the principle of least(stationary) action. Loosely speaking, it states
that from a set of actions the one that minimizes variations in system’s energy will be
performed. The exact definition is following [25]. An action undertaken by the system
between moments t1 and t2 must satisfy

t2∫
−t1

δ(Ek − Ep) dt = 0,

where Ek is the total kinetic energy of the system, Ep is the potential energy of the system
and δ represents the variational operator. However, this holds only for purely conservative
systems and forces. Damping and external (time-dependent) forces need extension of the
classical Hamilton’s principle to the form ([11, 25])

t2∫
t1

δ(Ek − Ep) + δ Wnc d t = 0 (5.9)

called extended Hamilton’s principle. Note that δWnc is work of nonconservative forces.

Now consider a flexible link shown in 5.9. The flexible beam is controlled by torque
τ , acting on a hub. The hub has inertia JH and the beam is L long. According to the
Euler-Bernoulli assumptions [9, 25], motion of the beam has two components, rotation
θ(t) and transverse deformation w(x, t). Any other effects of τ are neglected. θ and w are
called generalized variables of the link’s motion. Generalized variables are a minimal set
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of independent variables needed to describe the system state [25]. Hence, they are known
in both moments t1 and t2 and their respective variations are zero

δ θ(t1) = δ θ(t2) = δ w(t1) = δ w(t1). (5.10)

Angular position αP of a point P , that lies on the beam in the distance x from the
shaft, is

αP (x, t) = θ(t) + arctan

(
w(x, t)

x

)
. (5.11)

Note that αP has been expressed with respect to the frame X, Y . Assuming that the
elastic deformation w(x, t) is small, (5.11) can be linearized and the arc length R of P
can be defined as [17]

R(x, t) = θ(t)x+ w(x, t).

Kinetic energy of a rotating flexible link undergoing transverse vibrations (all the
other mechanisms of deformation are neglected) is

Ek =
1
2

JH

(
θ̇ +

δẇ

δx

∣∣∣∣
x=0

)2
+
1
2

L∫
0

(
θ̇ x+ ẇ

)2
dx, (5.12)

where L is length of the link and ρ is the link’s mass per unit length. Potential energy
due to the flexible deformation is

Ep =
1
2

EI

L∫
0

(
∂2w

∂x2

)2
dx, (5.13)

where E is the Young’s modulus of elasticity and I is the cross-sectional area moment of
inertia. Work of external torque τ is

Wnc = τ

(
θ +

∂ w

∂ x

∣∣∣∣
x=0

)
. (5.14)

Introduction of the above expressions for Ek, Ep and Wnc into the extended Hamilton’s
principle (5.9), calculation of the respective variations δ Ek, δ Ep and δ Wnc (see c.f. [11]

Figure 5.9: Schematic diagram of the Euler-Bernoulli beam model
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for basics of variational calculus) and finally simplification with respect to (5.10) gives∫ t2

t1

(
τ − JH θ̈ − JH

∂ẅ

∂x

∣∣∣∣
x=0

+
∫ L

0
(θ̈ x+ ẅ)x dx

)
δθ d t−

−
∫ t2

t1

∫ L

0

(
EI w′′′′ + ρ (θ̈ x+ ẅ)

)
dxδw d t = 0,

(5.15)

where w′′′′ means ∂4w
∂x4
.

The generalized variables θ and w are independent. Thus both the integrands in (5.15)
must be identically equal to zero

τ = JH

(
θ̈ +

δẅ

δx

∣∣∣∣
x=0

)
+
∫ L

0

(
θ̈ x+ ẅ

)
x dx,

0 = EI
∂4w

∂x4
+ ρ (θ̈ x+ ẅ).

(5.16)

Note that the bending moment of the beam at its base is ([16])

− EI
∂2w

∂x2

∣∣∣∣
x=0

= ρ

∫ L

0

(
θ̈ x+ ẅ

)
x dx, (5.17)

so the equation (5.16a) can be rewritten as

τ = JH

(
θ̈ +

∂ẅ

∂x

∣∣∣∣
x=0

)
− EI

∂2w

∂x2

∣∣∣∣
x=0

. (5.18)

Now the input torque τ will be inspected. The input torque, that acts on the link’s
hub, is somehow generated by the DC servo. To find a relation between the input voltage
u of the servo and the input torque τ , return to the figure 5.3 for a while. Torque ηg n τm

that is delivered by the servo to the output of the gear, must be balanced by the viscous
friction B ωl, the inertia of motor and gear J ω̇l and the flexible link’s input torque τ

ηg n τm = J ω̇l +B ωl + τ, (5.19)

where the gear output velocity ωl is

ωl =
∂R(x, t)

∂x

∣∣∣∣
x=0

= θ̇ +
∂ẇ

∂x

∣∣∣∣
x=0

.

Angular velocity θ̇ is the velocity of rigid motion. It denotes velocity of the link’s center
of mass, thus the rigid body motion is connected to the torque τ in the following way

τ = (JH +
1
3
ρL3) θ̈. (5.20)

So far, we have arrived at one partial differential equation (PDE) and two ordinal
differential equations (ODE). The ODE (5.20) describes rigid body motion of the hub with
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beam. The PDE (5.16b) describes elastic bending of the link and ODE (5.19) says, how
does the bending moment influence rigid motion of the link. Now the equations need to be
solved. First the PDE will be undertaken. Since equation (5.16b) is a linear homogenous
PDE, the solution w(x, t) is sought using the separation of variables technique [25]

w(x, t) = F (x)Q(t). (5.21)

Substituting (5.21) into (5.16b) leads to the desired separation of variables

0 = EI
d4F (x)
dx4

− ρ ω2 F (x),

0 =
d2Q(t)
dt2

+ ω2Q(t).

(5.22)

Notice that ω is (yet) arbitrary frequency of harmonic motion of the solution

Q(t) = C cos(ω t+ φ).

Introduce β as

β4 =
ω2 ρ

EI
, (5.23)

then the general spatial solution F (x) of (5.22a) is

F (x) = C1 sin(β x) + C2 cos(β x) + C3 sinh(β x) + C4 cosh(β x). (5.24)

To find a particular expression for F (x) (that is, find values of C1, C2, C3 and C4)
corresponding to the current physical configuration, four boundary conditions (BC’s)
need to be introduced. They are

F ′′(L) = 0,

F ′′′(L) = 0,

F (0) = 0,

EI F ′′(0) + JH ω2 F ′(0) = 0,

(5.25)

where F ′ = ∂w
∂x
, F ′ = ∂2w

∂x2
and F ′ = ∂3w

∂x3
.

The first BC states that there is no bending moment at tip (free end) of the link, the
second BC states for zero shear force at tip of the link, the third is a geometric BC (in
the hub, deformation is not assumed) and the last condition is a bit tricky one. It has
arised from the equation (5.18). Note that the input torque τ has an unknown shape.
Such a BC would not help at all. Instead, steady rigid motion (τ = 0 and θ̈ = 0) has
been assumed and this has given the condition (5.25d).

Now substituting (5.24) for the BC’s (5.25) leads to a homogenous system of algebraic
equations. This system has nontrivial solution (C1, C2, C3, C4) iff the determinant of the
system matrix vanishes ([25, 26]), i.e.

JH β3 (1 + cos(β L) cosh(β L)) + ρ (sin(β L) cosh(β L)− cos(β L) sinh(β L)) = 0. (5.26)
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The equation (5.26) is called characteristic equation related to the PDE (5.16b) and
the set of BC’s (5.25). The characteristic equation is a transcendental equation with no
analytical solution available [9, 11, 25]. However, the characteristic equation has infinitely
many solutions βi and they can be found e.g. utilizing gradient algorithms. To do so, sim-
ple Newton method [4] has been implemented. The solution has been searched in the
frequency domain, i.e. for ω (ω and β are related by (5.23), so it is possible to change
domain of the algorithm). To find appropriate starting points, the frequency interval
(0, fs/2) has been sampled (higher frequencies are not admissible due to the Shannon’s
sampling theorem, c.f. [8, 21]) and the starting points have evaluated as samples, where
sign of the left side of (5.26) changes. This can be done, because the left side of charac-
teristic equation has a shape shown in Figure 5.11.
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Figure 5.10: Characteristic function and its roots

As the solutions βi to the characteristic equation (5.26) have been found, now it is
possible to evaluate the coefficients C1i, C2i, C3i and C4i (the corresponding expressions
are rather tedious. .). They are defined up to a scaling factor. So far we have arrived at
an infinite set of solutions to the PDE (5.16b) with BC’s (5.25) and the solutions are

wi(x, t) = Fi(x)Qi(t),

Fi(x) = C1i sin(βi x) + C2i cos(βi x) + C3i sinh(βi x) + C4i cosh(βi x),

Qi(t) = sin(ωi t),

ω2i = β4i
EI

ρ
.

(5.27)

The question is, how to incorporate this (infinite) set of solutions wi into an expression
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for the displacement w(x, t). An usual way is to consider wi as a partial mode of the
displacement and to assume w in the form

w(x, t) =
n∑

i=1

Fi(x)Qi(t). (5.28)

This method is called assumed modes method (ASM) and is in strong contrast with the
famous finite element method (FEM). ASM models the displacement as a sum of global
spatialy distributed modes that take place along the whole beam. On the other hand,
FEM cuts the modelled beam into pieces and locally approximates the deflection shape
by simple functions (e.g. low order polynomials). Note that ASM is feasible only for
geometrically simple shapes (c.f. beams). More complex structures lead to problems with
global solution of PDE and characteristic equation [11, 25].

It would be kind to establish the system model, at last. The equation (5.28) shows
how to incorporate modes wi into the equation of motion (5.18). Nonetheless, during the
derivation two approximations have been done and the error they have caused should be
minimized. At first, to derive the BC’s (5.25), τ and θ̈ were set to zero. The second ap-
proximation is the silent replacement of infinite set of wi’s by finite set of n spatial modes
(only 4 modes have been considered, the fourth resonant frequency at 129 Hz is already
out of bandwidth). The Galerkin’s method can be used to minimize the approximation
errors [11, 16]. The approximation error ε

ε(x, t) =
N∑

i=1

EI F ′′′′
i (x)Qi(t) +

N∑
i=1

ρ Fi(x) Q̈i(t) + ρ θ̈(t)x

is minimized in the following way. The error function is multiplied by one modal amplitude
Fs(x), integrated over the domain and set to zero∫ L

0
Fs(x) ε(x) dx = 0. (5.29)

To solve (5.29), the orthogonality property of modes Fi is used [11, 27]. After some
computations, (5.29) yields

JH θ̈ F ′(0) + ω2s Ms Qs +Ms Q̈s = τ F ′
s(0), (5.30)

where Ms is a constant dependent on the scale of coefficients C1, C2, C3 and C4.

Putting together (5.3), (5.19), (5.20) and (5.30) gives the final description of the
servo-beam plant

Q̈s + ω2s Qs =
F ′

s(0)
Ms

(
τ − JH θ̈

)
θ̈ =

τ

JH +
1
3
ρ L3

τ =
ηg ηm n k

R
u−

(
B +

ηg ηm n2 k2

R

)
ωl − J ω̇l.

(5.31)
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Measured velocity ωl and tip velocity ωtip are (Figure 5.9)

ωl = θ̇ +
∑N

s=1 F
′
s(0) Q̇s,

ωtip = θ̇ +
∑N

s=1 F
′
s(L) Q̇s.

(5.32)

As damping forces have not been taken into account when an expression for the work
of nonconservative forces Wnc has been constructed, the resulting equations of motion
(5.31) are undamped. On the other hand, real plant exhibits damping (see Figure5.11).
According to with [9] modal damping ξs can be easily included in the model (5.31)

Q̈s + 2 ξs ωs Q̇sω
2
s Qs =

F ′
s(0)
Ms

(
τ − JH θ̈

)
.

This leads to the same result as if the damping forces have been derived from the Rayleigh
dissipation function [25].

The equations of motion (5.31) would lead to complicated state-space model. The
situation can be simplified assuming that the beam deflection at the end with hub is
negligible. Then the measured velocity ωl is approximately the rigid motion velocity θ,

ωl = θ̇ +
∂ẇ

∂x

∣∣∣∣
x=0

,

and one possible state-space model of the plant is

x1 = θ, x2 = θ̇, x3 = Q1, x4 = Q̇1, x5 = Q2, x6 = Q̇2, . . .

y1 = ωl, y2 = σ

A =



0 1 0 0 0 0 0 0 . . .

0 −B/J E I F ′′
1 (0)/J 0 E I F ′′

2 (0)/J 0 E I F ′′
3 (0)/J 0 . . .

0 0 0 1 0 0 0 0 . . .

0 −F ′
1(0)B −ω21+E I F ′

1(0)F ′′
1 (0) −2 ξ1 ω1 E I F ′

1(0)F ′′
2 (0) 0 E I F ′

1(0)F ′′
3 (0) 0 . . .

0 0 0 0 0 1 0 0 . . .

0 −F ′
2(0)B E I F ′

2(0)F ′′
1 (0) 0 −ω22+E I F ′

2(0)F ′′
2 (0) −2 ξ2 ω2 E I F ′

2(0)F ′′
3 (0) 0 . . .

...
...


B =

(
0 k1/J 0 k1 F

′
1(0) 0 k1 F

′
2(0) 0 k1 F

′
3(0) . . .

)T
C =

(
0 1 0 F ′

1(0) 0 F ′
2(0) 0 F ′

3(0) . . .

0 0 −E I F ′′
1 (0) 0 −E I F ′′

2 (0) 0 −E I F ′′
3 (0) 0 . . .

)

D =

(
0

0

)
,

where σ is strain measured by strain gauge.

The flexible link’s parameters in (5.33) are of two types. L, E, I, ρ and JH are the
structural parameters needed to calculate the other parameters ωs, Fs(0), Fs(L), F ′

s(0)
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etc. However, only L = 30cm is known! (it should be remarked, that Quanser did not
include promised user manual to the SRV02 package and it was impossible to find it on
the quanser web pages [30] either)

On the other hand, it is possible to at least estimate the values of unknown E, I, ρ and
JH . The flexible beam is made of aluminium. So, typical values for E and ρm have taken
from [11]. ρm states for mass density, while ρ used above is the cross-sectional desntiy.
Thus the cross section A has been measured and ρ estimated as ρ = ρm/A.

To find out, what value I could have, the flexible beam has been removed from the
hub and put into a press screw. Response on initial excitation has been measured (Figure
??) and the dominant resonant frequency ωD and respective damping ξD have been found.
I has been estimated using (5.23) to be

I =
ω2 ρ

β4D E
,

where βD is the first solution of characteristic equation (5.26) for the setup with press
screw. In this cas JH is regarded to be infintely high [9] and (5.26) degrades to

1 + cos(β L) cosh(β L).

Thus βD depends only on known length L.
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Figure 5.11: Measured strain for clamped-free beam

To estimate JH , responses of the plant (beam attached to the servo again) on harmonic
input have been measured and evaluated. Data from the tachometer have been processed
through selective resonant filter tuned on the input signal frequency, so as to minimize
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the effects of tacho ripple (see section 5.2). The best value of JH has been iteratively
searched. After some iterations it has become clear that to fit the measured frequency
response, it would be necessary to slightly change values of the other parameters too. The
final parameter values are shown in Table 5.2. Comparison of measured and identified
frequency responses for both the tachometer and strain gauge are shown in Figure 5.12.
Note that frequency of the input signal must be under approximately 40 Hz. This limits
the bandwidth in which the identified model can be accurate. Beyond approximately
20 Hz the model is not much reliable.

parameter value units

E 6.9 · 1010 N m−2

I 2.6 · 10−12 m4

ρ 54 · 10−3 kg m−1

JH 31 · 10−3 kg m2

Table 5.2: Beam parameters
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Figure 5.12: Comparison of measured(blue) and identified(red) frequency responses
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5.4 Controller Design and Experimental Results

Problem of the flexible link tip position control is somewhat tricky. The plant is equipped
only with sensors located at (near) the hub of the link. On the other hand it is desired
to control position of the opposite end. Such a control problem is often reffered to as
noncollocated control [9]. To demonstrate this problem, two controllers will be designed.
The first has the 2-loop configuration of Figure 5.13. The inner loop is derived from the
tachometer and the outer loop is derived from the optical encoder. Thus it is possible to
control velocity ωl and position = θl of the hub. Note that steady position at the hub
does not assure steady position at the tip of the beam. On the contrary, poor results will
be shown.

The positioning control problem can be formulated as: arrive at asymptotic track-
ing of constant position reference and minimize sensitivity to output disturbances while
respecting limitations on the input voltage. It is useful to recall the limits set on u -
amplitude of u should not exceed 5V and u should be attenuated enough at frequencies
beyond 50Hz.

The 2-loop controller divides responsibility for the actual control goals between the
inner and the outer loop. The inner velocity loop ”smoothens” resonances of the plant
and assures wide bandwidth. Note that except for the limiations of u also the ripple
noise and model uncertainty limit the achievable bandwidth. After several iterations, the
following weighting filters have been found the best

W1 = 0.953
s+ 9.935

s+ 0.09473
,

W2 = 0.707,

W3 = 104
(s+ 58.57)2

(s+ 6966)2
.

Input disturbances are not considered (noise of the input voltage is neglected). Problem
with nonproper W3 is solved by a pair of high-frequency poles.

The outer position loop assures asymptotic tracking and reduces sensitivity to distur-
bances. The achievable bandwidth is limited by the plant model uncertainty. It would be
tedious to derive an uncertainty model of the inner closed-loop system based on original
uncertainty of the plant. Instead, best weighting filters have been found iteratively

W1 = 1.633
s+ 13.33

s
,

W2 = 4,

W3 = 2.453
s+ 25.13
s+ 87.2

.

To shape the step response, prefilter

Cp = 84.3
(s2 + 11.4s+ 361)

(s+ 251.3) (s2 + 8.8s+ 121)

has been used.
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Resulting step responses are shown in Figure 5.14. Asymptotic tracking has been ob-
tained and prefilter has limited the overshoot. However, the closed-loop system is very
sensitive to output disturbances. The second controller should cure this. According to
(5.32), the tip velocity can be estimated from the strain gauge and tachometer measure-
ment

ωtip = ωl + λ σ,

where σ is strain measured by the strain gauge and λ is a function of the spatial coefficients
Fs(0), F ′

s(0), F
′′
s (0), Fs(L), F ′

s(L), F
′′
s (L), s = 1, 2, .. ??. The following weighting filters

have been found to give best results for the velocity loop

W1 = 1.91
s+ 10.93
s+ 0.1042

,

W2 = 0.5,

W3 = 2.453
(s+ 68.34)2

(s+ 8126)2
.

Note that both velocity loops have similar controllers, but the noncollocated directly con-
siders the deflection measured by the strain gauge and thus it offers better disturbance
attenuation. Improvement of the step response in comparison with the original step re-
sponse is shown in Figure 5.15. Well, due to lack of time, I stopped right here and did
not complete the design with the outer position loop. But it is believed that this could
be done similarly to the collocated position control and finally obtain 2-loop controller
with improved disturbance attenuation.

Figure 5.13: Closed loop configuration

5.5 Conclusions

In this chapter the servo plant with attached flexible link has been modelled and identified.
The identification procedure has given model that describes the real plant very well, at
least at the key frequency region around the first resonant frequency. On the other hand
time spent on system modelling has been missed during the controller design phase. Only
the collocated controller has been completed. This controller assures asymptotic tracking
of constant reference and (with a prefilter) it gives sufficiently smooth time response.

The design of noncollocated controller, that would efficiently attenuate possible out-
put disturbances, was fulfilled only partialy - as a velocity controller. Note that the
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Figure 5.14: Closed loop time responses - position step response without prefilter(red)
and with prefilter(blue) and strin gauge step response(green). At the time t = 5s heavy
output disturbance occured (strike by a hand)

noncollocated velocity controller has been designed using weighting filters similar to the
weights for collocated controller. One can expect that it would be possible to design the
full noncollocated position controller.
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Conclusions

In this thesis the H∞ optimization approach has been used to define and solve control
problems. Common ways how to convert typical control objectives to frequency domain
specifiction have been summarized. Several remarks on their feasibility have been con-
cluded. These remarks have helped to explain some phenomena faced when designing the
controllers.

Two situations have been considered. The VLT position control problem and the
Quanser Rotary Experiment. Both plants have similar overall behaviour - 2nd order low-
pass filter with several resonant frequencies. Model of the VLT was given by the ESO
engineer and thus the VLT problem has been reduced only to controller design. After a
carefull inspection of the given model 2-DOF controller structure has been chosen. The
control objectives have been found too conflicting to get good performance with 1-DOF
controller only. After many iterations a controller that beats the existing solution has
been found. It has been concluded that the desired performance improvement sets tighter
limitations on the accuracy of measurement.

The Rotary Experiment has offered an opportunity to go through the complete con-
troller design including modelling and identification and testing on the real plant. Exten-
sive work on the plant modelling and identification has been done, resulting in a model
that matches the real plant fairly well at key frequency range. It has been noted, that
the tip positioning is a noncollocated control problem. Collocated controller has been
designed and it has been verified that, though it has stabilized the closed loop and it
has lead to smooth step tracking, the resulting closed loop system is very sensitive to
disturbances at the tip. Noncollocated controller design has not been completed due to
lack of time. However, it is believed that H∞ synthesis of such controller is possible.

During the VLT controller design a GUI for model order reduction has been often
used. The GUI has been implemented as a part of this work and its aim has been to
simplify and speed up the process of model reduction. The GUI has proven its worth
while it has helped to reveal, that the given VLT model has not been as reliable as it was
originally thought. This observation lead to a conclusion that, in the real situation, some
control trade-offs could be less pronounced.
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Appendix

The following function implements model approximation procedure called by the Order
Reduction GUI.

function NewModel = reduction(OldModel,method,type,new_order,tolerance);

warning off all;

switch method

case ’modred’

TempModel = balreal(minreal(OldModel,0.001));

[tmp_order temp_order] = size(TempModel.a);

NewModel = modred(TempModel,new_order+1:temp_order,type);

case ’balmr’

if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

switch type

case 1

[NewModel,totbnd,svh] = balmr(TempModel,1,new_order);

case 2

[NewModel,totbnd,svh] = balmr(TempModel,2,tolerance);

end

case ’schmr’

if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

switch type

case 1

[NewModel,totbnd,svh] = schmr(TempModel,1,new_order);

case 2

[NewModel,totbnd,svh] = schmr(TempModel,2,tolerance);

end

case ’obalreal’
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if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

TempModel = minreal(TempModel,0.001);

[Aobal,Bobal,Cobal,go,to] =

obalreal(TempModel.a,TempModel.b,TempModel.c);

NewModel=ss(Aobal(1:new_order,1:new_order),

Bobal(1:new_order,:),Cobal(:,1:new_order),TempModel.d);

case ’ohklmr’

if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

switch type

case 1

[NewModel,totbnd,hsv] = ohklmr(TempModel,1,new_order);

case 2

[NewModel,totbnd,hsv] = ohklmr(TempModel,2,tolerance);

end

case ’ohkapp’

if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

switch type

case 1

[NewModel,totbnd,hsv] = ohkapp(TempModel,1,new_order);

case 2

[NewModel,totbnd,hsv] = ohkapp(TempModel,2,tolerance);

end

case ’bstschml’

if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

TempD = TempModel.d;

[Rows Cols] = size(TempModel.d);

if rank(TempModel.d)<Rows && rank(TempModel.d)<Cols,

TempModel.d = 1e-006*eye(Rows,Cols);
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end

switch type

case 1

[NewModel,aug,svh] = bstschml(TempModel,1,new_order);

case 2

[NewModel,aug,svh] = bstschml(TempModel,2,tolerance);

end

if rank(TempModel.d)<Rows && rank(TempModel.d)<Cols,

NewModel.d = TempD;

end

case ’bstschmr’

if OldModel.Ts>0,

TempModel = d2c(OldModel,’tustin’);

else

TempModel = OldModel;

end

TempD = TempModel.d;

[Rows Cols] = size(TempModel.d);

if rank(TempModel.d)<Rows && rank(TempModel.d)<Cols,

TempModel.d = 1e-006*eye(Rows,Cols);

end

switch type

case 1

[NewModel,aug,svh] = bstschmr(TempModel,1,new_order);

case 2

[NewModel,aug,svh] = bstschmr(TempModel,2,tolerance);

end

if rank(TempModel.d)<Rows && rank(TempModel.d)<Cols,

NewModel.d = TempD;

end

case ’srelbal’

sssystem = balreal(ss(OldModel));

[A,B,C,D] = ssdata(sssystem);

[z,p,k] = ss2zp(A,B,C,D);

system = zp2sys(z,p,k);

[stochbal,relsv,sysfact] = srelbal(system);

[A,B,C,D] = unpck(stochbal);

ssstochbal = ss(A,B,C,D);

stochred = strunc(stochbal,new_order);

[A,B,C,D] = unpck(stochred);

NewModel = ss(A,B,C,D);

end

warning on all;


