
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Implementation Methods of LD-RLS

with Directional Forgetting for

Embedded Systems on a Chip

DOCTORAL THESIS

August 2010 Ing. Roman Bartosiński

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Implementation Methods of LD-RLS

with Directional Forgetting for

Embedded Systems on a Chip

by

Ing. Roman Bartosiński

Supervisor: Ing. Jǐŕı Kadlec, CSc

Dissertation submitted to the Faculty of Electrical Engineering of

Czech Technical University in Prague

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy (Ph.D.)

in the branch of study

Control Engineering and Robotics

of study program Electrical Engineering and Informatics

August 2010

PhD Programme:

Electrical Engineering and Information Technology

P 2612 Elektrotechnika a Informatika

Branch of Study:

Control Engineering and Robotics

2612V042 Ř́ıdićı Technika a Robotika

Supervisor:

Ing. Jǐŕı Kadlec, CSc

Department of Signal Processing

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic

Copyright c©2010 Roman Bartosiński

Preface

This work was carried out in the joint research between the Department of Control Engi-

neering, Czech Technical University in Prague and the Department of Signal Processing,

Institute of Information Theory and Automation of the ASCR.

The university supported me during my postgraduate studies. As a researcher at the

Department of Signal Processing I have had a great opportunity to work with the lat-

est development tools and I also participate in several projects which have brought me

knowledges useful for working on the thesis. Namely they were:

the European project RECONF2 which provided me with a deeper insight to FP-

GAs and their dynamical reconfiguration.

the Czech project SESAp which enabled me to increase knowledges about Mat-

lab/Simulink environment and automatic code generation from this tools.

the European project ÆTHER which brought me knowledges about multi-core

embedded systems and their possible programming.

the European project Apple-CORE with knowledges about detailed internal struc-

tures of some microprocessors.

the European project SMECY focused on multi-core embedded systems.

The last project SMECY works with UTIA DSP platform, which is also used in this thesis.

It allowed me to work on the thesis and to develop a software library and automatic code

generator for the platform.

Acknowledgement

First and foremost, I wish to express my appreciation to my supervisor, Ing.Jǐŕı Kadlec,CSc.,

for his shared experience, guidance, and patience. Additionally, I thank to my colleagues

at the department of Signal Processing, Institute of Information Theory and Automation

for providing stimulating environment, and special thanks go to Martin Daněk for his

i

proofreading services.

I am also grateful to Sir Terry Pratchett for his books and particularly his Discworld series.

It is the one and only world where everything is possible (Squeak).

Finally, I am forever indebted to my wife Pavla and my parents for their understanding,

endless patience and encouragement when it was most required.

Thank you.

Roman Bartosiński

Institute of Information Theory and Automation of the ASCR

Prague, August 2010

ii

Implementation Methods of LD-RLS with Directional

Forgetting for Embedded Systems on a Chip

Ing. Roman Bartosiński

Supervisor: Ing. Jǐŕı Kadlec, CSc

The thesis deals with an implementation of the recursive least squares (RLS) based on the

LDU decomposition (LD-RLS) with directional forgetting.

Today’s implementations of adaptive algorithms for embedded systems use mainly the

least mean square (LMS) algorithms for their simplicity and low computational complex-

ity which result in high speed and throughput. RLS algorithms aren’t so often used for

their higher computational complexity.

The LD-RLS algorithms can be attractive for control applications to identify an unknown

system or to track time-varying parameters. Solution of the LD-RLS algorithm directly

contains the estimated parameters. It also offers the possibility to use a priori information

about the identified system and its parameters.

Directional forgetting (DF) is an alternative to exponential forgetting (EF). DF was de-

vised 25 years ago, but it is completely omitted in current implementations of RLS algo-

rithms. It’s meant mainly for more complicated computation and thus higher computa-

tional complexity. It is omitted despite it ensures more robust identification in systems

with insufficiently excited inputs.

A possible implementations of the EF LD-RLS and DF LD-RLS algorithms were discussed

in the thesis. Implementations for a systolic array were discussed to demonstrate the high

data dependences in LD-RLS algorithms. The second architecture was used for the im-

plementation of LD-RLS algorithms. It is based on the UTIA DSP platform which has

been developed recently at the department of Signal Processing, ÚTIA AV ČR. The plat-

form is designed to be a highly reconfigurable hardware accelerator for systems on a chip

based on FPGAs. The thesis describes the extension of the platform with new features for

implementation of DF LD-RLS. Another objective in the thesis is to improve the imple-

mentation methodology for the platform. Automatic code generation was developed and

used to speed up the development process of implementation algorithms on the platform.

Finally,the EF LD-RLS and DF LD-RLS algorithms were implemented in the hardware

and compared with corresponding versions in software.

iii

iv

Contents

Preface i

Abstract iii

Contents v

List of Figures ix

List of Tables xiii

List of Algorithms xv

Acronyms and Symbols xvii

1 Introduction 1

1.1 Objectives of the Dissertation . 4

1.2 Structure of the Dissertation . 5

2 State of the Art 7

2.1 Adaptive Algorithms . 7

2.2 Embedded Systems . 10

2.2.1 FPGA Architecture . 12

v

2.2.2 Arithmetics Used in FPGA . 13

2.2.3 Automatic Generation of Code . 16

2.3 Summary . 17

3 Adaptive Algorithms 19

3.1 Introduction . 19

3.1.1 Models of the Unknown System . 21

3.2 Adaptive Algorithms . 24

3.2.1 Least Mean Square . 24

3.2.2 Least Squares . 24

3.2.3 Recursive Least Squares . 25

3.3 Forgetting Used with RLS . 27

3.3.1 Exponential Forgetting . 28

3.3.2 Data-Dependent Forgetting . 31

3.4 LD-RLS Algorithms . 34

3.4.1 Direct Update of LD-RLS . 36

3.5 Comparison of the Adaptive Algorithms . 37

3.6 Summary . 44

4 Implementation 49

4.1 Introduction . 50

4.2 Implementation on a Systolic Array . 52

4.2.1 Systolic arrays . 52

4.2.2 The EF LD-RLS Algorithm . 53

4.2.3 The DF LD-RLS Algorithm . 56

4.3 Implementation on the UTIA DSP platform 62

vi

4.3.1 The Basic Computing Element . 62

4.3.2 Implementation in the BCE Platform 67

4.3.3 The EF LD-RLS Algorithm . 71

4.3.4 The DF LD-RLS Algorithm . 71

4.3.5 Design Flow of the Implementation 72

4.3.6 New Operations in the BCE Accelerator 77

4.3.7 Algorithm Vectorization . 83

4.3.8 Automatic Generator of Firmware for the BCE Platform 87

4.3.9 Use SIMD Mode of the BCE platform for DF LD-RLS 103

4.4 Implementing a Systolic Array with the BCE Platform 106

4.4.1 Structure of a Systolic Array with BCE Accelerators 107

4.4.2 SoC with a Systolic Array . 108

4.5 Summary . 109

5 Results of the Implementation and Experiments 111

5.1 The Modified BCE Platform . 111

5.2 LD-RLS Algorithms on the UTIA DSP Platform 115

5.2.1 EF LD-RLS Accelerator . 115

5.2.2 DF LD-RLS Accelerator . 118

5.3 Test Cases . 121

5.4 Summary . 121

6 Conclusion 127

Biblioghraphy 131

A The derivation of direct update of L and D I

vii

B DF LD-RLS unfolded data-flow graph III

List of Author’s Publications V

viii

List of Figures

2.1 Generic embedded system . 11

2.2 Format of the FP numbers . 14

3.1 Adaptive Filter for System Identification . 20

3.2 Adaptive Filter for Noise/Echo Cancellation 21

3.3 Adaptive Filter for Channel Equalization 21

3.4 A model for System Identification . 22

3.5 Evolution of a variable exponential forgetting factor 30

3.6 An example of evolution of the ellipse of concentration for EF 30

3.7 An example of evolution of the ellipse of concentration for DF 33

3.8 An example of a dependence of E(SEN) on the forgetting factor 40

3.9 A comparison of different RLS algorithms for system identification 42

3.10 A comparison of different RLS algorithms for insufficient excitation of inputs 45

3.11 A comparison of different RLS algorithms for slow time-varying parameters 46

3.12 A comparison of different RLS algorithms for fast time-varying parameters 47

4.1 Matrix multiplication on systolic array . 53

4.2 Dependence graph for EF LD-RLS on a systolic array 53

4.3 EF LD-RLS on a systolic array . 54

ix

4.4 Dependence graph for DF LD-RLS on a systolic array 56

4.5 DF LD-RLS on a systolic array . 58

4.6 Timing of the DF LD-RLS systolic array . 61

4.7 BCE from the point of view of the host CPU 62

4.8 The origin BCE data-flow unit . 64

4.9 EF LD-RLS Data-flow graph . 70

4.10 DF LD-RLS Data-flow graph generated by the automatic tool 74

4.11 DF LD-RLS algorithm flowchart . 75

4.12 Design flow for building a SoC with the BCE accelerator 76

4.13 Two implementations of CSUM function . 79

4.14 CSUM - Time of computation (latency 1/3 ClC) 80

4.15 CSUM - Time of computation (latency 5/7 ClC) 81

4.16 Detail of the CSUM graph with l(ADD)=3ClC 81

4.17 Times of computations for the serial and parallel CSUM 82

4.18 Vectorization of the basic type of variables 84

4.19 A new format of the internal VLIW word and its effect on the DFU 85

4.20 Diagram of the modified Data Flow Unit . 86

4.21 Lifetimes of all variables in the EF LD-RLS algorithm 96

4.22 Lifetimes and placement of variables in the EF LD-RLS 96

4.23 Two mappings of variables in EF LD-RLS 97

4.24 Space in the data memories occupied by variables in EF LD-RLS 98

4.25 Simulink model for testing platform firmware 102

4.26 Simulink model for testing platform firmware - detail of init memories . . . 102

4.27 Schematic of the implementation methodology for the UTIA DSP platform 103

4.28 BCE in SIMD configuration . 104

x

4.29 Modified BCE for switchable SISD/SIMD mode 106

4.30 Proposed concept of a systolis array with BCEs used as PEs 107

4.31 PE concentrator . 109

5.1 Floorplan of a SoC with both BCE accelerators 112

5.2 The computation time of one pass of the EF LD-RLS algorithm 115

5.3 Detail of the computation time of one pass of EF LD-RLS 116

5.4 FLOP of HW and SW implementation of EF LD-RLS 116

5.5 Accelerator performance for the EF LD-RLS 117

5.6 Accelerator speed-up for the EF LD-RLS 117

5.7 The computation time of one pass of the DF LD-RLS algorithm 118

5.8 Detail of the computation time of one pass of DF LD-RLS 119

5.9 FLOP of HW and SW implementation of DF LD-RLS 119

5.10 Accelerator performance for DF LD-RLS . 120

5.11 Accelerator speed-up for DF LD-RLS . 120

5.12 Test case: System identification - Evolution of parameters 122

5.13 Test case: System identification with insufficiently excited inputs 123

5.14 Test case: Tracking slow time-varying parameters 124

5.15 Test case: Tracking fast time-varying parameters 125

B.1 Unfolded Data-flow graph of DG LD-RLS IV

xi

xii

List of Tables

2.1 Commonly used IEEE 754 formats of FP numbers 15

3.1 The RLS algorithms used in the experiment 39

4.1 EF LD-RLS on a systolic array, operations in PEs 55

4.2 DF LD-RLS on a systolic array, operations in L and Di PEs 59

4.3 DF LD-RLS on a systolic array, operations in D1 and Dn PEs 60

4.4 Basic BCE FP operations . 65

4.5 Implementation parameters of the added FP comparator 78

4.6 An example of allowed combinations of data memories for an operation. . . 89

4.7 An example of the data-dependence graph in the matrix form 91

5.1 The resources for the modified BCE accelerator with SP FP units 112

5.2 The BCE accelerator with SP FP units . 113

xiii

xiv

List of Algorithms

1 EF LD-RLS suitable for the vector architecture 69

2 DF LD-RLS suitable for the vector architecture 73

3 Mapping variables into data memories . 93

4 Mapping variables inside the memories (computation of memory offsets) . . . 95

xv

xvi

Acronyms and Symbols

Acronyms

ASIC Application Specific Integrated Circuit

ClC Clock Cycles

CPU Central Processing Unit

DF Directional Forgetting

DF LD-RLS RLS based on the LDU decomposition with directional forgetting

DSP Digital Signal Processing

EDK Xilinx Embedded Development Kit

EF Exponential Forgetting

EF LD-RLS RLS based on the LDU decomposition with exponential forgetting

ES Embedded System

FP Floating Point Arithmetic

FPGA Field-Programmable Gate Array

FxP Fixed Point Arithmetic

HW Hardware

LD-RLS RLS based on the LDU decomposition

LMS Least Mean Square

LNS Logaritmic Arithmetic

MAC Multiply-Accumulate function

xvii

MIMO Multiple Input Multiple Output system

MISO Multiple Input Single Output system

MSE mean squared error

NoC Network on a Chip

PE Processing Element

PU Processing Unit - structure which can be consist of PEs

RLS Recursive Least Square

RNS Residue Number System

SA Systolic Array

SEN system error norm

SIMO Single Input Multiple Output system

SISO Single Input Single Output system

SNR signal noise ratio

SoC System on a Chip

XCG Xilinx CORE Generator

XSG Xilinx System Generator

Symbols

Θ Vector of parameters

z Data vector

d Extended data vector

C Covariance matrix

Vz,R Information matrix Vz = C−1

V Extended information matrix

λ Scalar forgetting factor

.̂ denotes estimation of the variable

xviii

Chapter 1

Introduction

Adaptive algorithms are used in many fields of human activities. Many adaptive algo-

rithms have been devised, described and implemented in the last 40 years. They are

implemented in hardware devices or software programs to adapt parameters of behaviour

of the system in unknown or time-varying conditions in the application or its environment.

More specifically, in control and digital signal processing (DSP) systems they are used for

their ability to change the behaviour of the controller or filter according to the incoming

signals and the environment of the system. The most frequent applications of adaptive

algorithms in these domains are system identification, noise and echo cancellation and

signal enhancement.

The linear systems or systems with linear models based on the moving average (MA),

autoregressive (AR) or autoregressive moving average (ARMA) models mostly use adaptive

algorithms based on the least mean square (LMS) or recursive least squares (RLS).

The standard or modified LMS algorithm is usually used in DSP applications where up

to hundreds of parameters are adapted. The main advantage of the LMS algorithms is

their simplicity, and so their implementation is computationally simple with the compu-

tational complexity O(n) (in other words they are fast). On the other hand, their main

disadvantage is a slow convergence rate.

Therefore many applications use the RLS algorithm and its modifications. This algorithm

is more complicated, and in general its computational complexity is O(n2). There are

1

2 CHAPTER 1. INTRODUCTION

some modifications of the RLS algorithm known as the fast RLS with the computational

complexity only O(n), but they are prone to numerical instability, which makes them

unreliable.

Because the RLS algorithm is recursivelly computed in a finite-word length arithmetic,

it can suffer from numerical instability of updated statistics due to round-off errors. To

avoid this inconvenience the computed statistics aren’t updated directly, but a decompo-

sition of covariance matrix is updated. There are several decompositions used with the

RLS algorithm: QR, LU, Cholesky, LDU and UDL decomposition are examples of such

algorithms. The most frequently used decomposition is QR which is very suitable for

parallel and pipelined processing. Therefore it is often used when implementing RLS in

hardware parallel structures like field programmable gate arrays (FPGAs).

The LD-RLS algorithms are based on the LDU decomposition. The LDU decomposition

has some advantages – it doesn’t need to compute the roots, and it includes the estimated

parameters directly in the solution of the decomposition. The second issue brings one more

advantage – a priori estimation of parameters with their uncertainties can be used directly

to initialize the algorithm. This property can be very useful in control applications.

The RLS has been used for a long time as a simple alternative to Kalman filtering for

tracking time-varying parameters. The Kalman filter as an estimator is well known to be

optimal under the state-space model assumption. One of the shortcomings of the Kalman

filter is the requirement of complete prior knowledge of the state-space model and its

parameters.

The standard RLS algorithms are not directly applicable for parameter estimation when

the unknown parameters vary with time, but they can be used with discounting (for-

getting) old data. There are many variants of discounting methods. One of the most

simple methods is the exponential forgetting (EF) and it is based on using a time- and

data-invariant scalar forgetting factor, then old information is discounted uniformly. This

uniform discarding can lead to a numerical instability called ”wind-up” when the system

is not sufficiently excited.

Several methods to avoid this wind-up has been devised. One of them is the restricted

exponential forgetting named also directional forgetting derived in (Kulhavý, 1983). This

method forgets old information only in the direction in which new data bring new informa-

3

tion. The concept of the directional forgetting exists in several variants, but none of them

is used widely in practical applications. It’s meant mainly for more complicated compu-

tation and thus higher computational complexity. It also adds more data dependences in

the computation, and then the RLS algorithm with the directional forgetting cannot be

parallelized or pipelined in a simple way.

Many embedded systems need for their function some adaptive algorithm, therefore the

implementation of an adaptive algorithm in embedded systems is often one of important

tasks in the design of such systems.

An embedded system is a special-purpose system designed and embedded in a larger

system, where it is used to perform dedicated functions like data or signal processing or

system control. Today’s embedded systems are based on more universal microcontrollers

or microprocessors which are used as the cheapest solution. Another component used as

the core of embedded systems is an application specific integrated circuit (ASIC). ASICs

are used mainly in consumer electronic, because such systems are most profitable in large

volumes. Systems with ASICs (and partially with microcontrollers) provide a fixed set of

functions which cannot be changed or upgraded.

The embedded systems often use programmable logic devices like FPGAs for some spe-

cific functions, mainly for signal or data processing accelerators. The FPGAs have been

often used for building the whole system on a chip (SoC) recently. Embedded systems

with SoCs became very popular for their main advantages, which are flexibility, high speed,

high throughput, dependability(fault-tolerant systems), parallel processing, dynamic re-

configuration and other. The SoCs based on FPGAs have another big advantage – they

can be simply configured as a multiprocessor system or a network on a chip NoC. Systems

with many processing units (PU) or processing elements (PE) allow to use the parallel

implementation of algorithms. One of the possible parallel implementation is a systolic

array (SA) which is a regular network of interconnected processing elements.

4 CHAPTER 1. INTRODUCTION

1.1 Objectives of the Dissertation

This work focuses on the implementation of the recursive least squares algorithm based

on the LDU decomposition with directional forgetting.

Directional forgetting and the LDU decomposition of RLS are not commonly used in

practice. It is due to their higher computational complexity which can decrease their

advantages against classical RLS with exponential forgetting. The main disadvantage of

the directional forgetting (DF) method is its higher data dependence which is added to

the RLS algorithm, it means that an RLS algorithm with DF cannot be implemented

in pipelined parallel while the same RLS algorithm with EF can. The hypothesis based

on the analysis of the DF method is that parallel implementation of the DF LD-RLS

algorithm can be only partially possible. To verify this hypothesis we will try to design

DF LD-RLS on a systolic array as one of the possible parallel structures.

A set of independent hardware accelerators connected to a processor can be regarded as

another parallel platform. Such a platform is the UTIA DSP platform which has been

developed recently. It is a flexible, re-programmable and reconfigurable hardware acceler-

ator. In the basic version it contains pipelined floating-point operations such as addition,

multiplication and division. The platform has been developed as an accelerator for the

soft-core processor MicroBlaze for SoCs in the Xilinx FPGAs. To use this platform, it must

be extended for implementation of the DF LD-RLS algorithm. Because the UTIA DSP

platform is relatively new, the methodology for implementating algorithms on this plat-

form is not finished. Then the improvement of the present methodology can be identified

as one of the next objectives.

The current development in computing architectures is aimed at using many small pro-

cessing cores with basic mathematical operations in one chip and their connection by

on-chip network (Silvano et al, 2010). The UTIA DSP platform can be used as such a

processing core, therefore possibilities to implement LD-RLS in such systems should be

discussed.

1.2. STRUCTURE OF THE DISSERTATION 5

Summary of Objectives

This summary shows the objectives of this thesis

• To summarize theoretical background for implementation of recursive least squares

based on the LDU decomposition with directional forgetting.

• To design a structure of LD-RLS with directional forgetting mapped to architecture

based on systolic arrays.

• To extend the vector-like UTIA DSP platform with functions required for imple-

menting LD-RLS with directional forgetting.

• To implement effectively LD-RLS with directional forgetting on the vector-like UTIA

DSP platform.

• To improve the implementation methodology for the UTIA DSP platform.

• To develop tools for the improved methodology.

• To discuss the possibility to use the UTIA DSP platform in multi-core systems like

a NoC.

1.2 Structure of the Dissertation

The next chapters treat the following topics:

Chapter 2 presents the survey of the developed methods for recursive least squares

algorithms and their implementations. An emphasis is put on the directional forgetting

algorithm which is an alternative to the exponential forgetting that prevents numerical

instability known as estimator wind-up. The second part of the chapter contains a de-

scription of embedded systems and especially system on a chip implemented in FPGAs.

Information about arithmetic used in embedded systems is presented at the end of the

chapter.

6 CHAPTER 1. INTRODUCTION

Chapter 3 contains background information about adaptive algorithms used in linear

models of unknown systems. One of them is described in detail, it is the recursive least

squares (RLS) algorithm based on the LDU decomposition. An essential part of the

chapter deals with forgetting methods used in adaptive algorithms. The chapter ends

with a discussion of the correct comparison of different adaptive algorithms.

Chapter 4 contains a description of implementations of LD-RLS algorithms on two

platforms. The first of the two architectures is the well known systolic array. The second

architecture is the UTIA DSP platform which has been developed recently. The platform

with pipelined floating-point operations such as addition, multiplication and division is

used and extended in this work. In this chapter, an implementation of the LD-RLS

algorithm for an embedded system is discussed. The chapter ends with a discussion of

ways to implement systolic arrays in the network of UTIA DSP platforms used as the

processing elements.

Chapter 5 summarizes the results reached in the work. Parameters of the modified

UTIA DSP platform and implemented LD-RLS algorithms on the platform are presented.

The chapter also contains several experiments with test cases - the RLS algorithm based

on the LDU decomposition with directional forgetting used in system identification and

tracking slowly time-varying parameters.

Chapter 6 contains the conclusions of the dissertation, where the results are summa-

rized, dissertation objectives are evaluated.

Chapter 2

State of the Art

Many adaptive algorithms for control and DSP applications have been devised, described

and implemented in the last 40 years. In this chapter, historical development of adaptive

algorithms with directional forgetting, which is an alternative to exponential forgetting,

is presented. Both forgetting algorithms used for time updates in RLS algorithms have

advantages and drawbacks which are mentioned.

The algorithm will be implemented on a system-on-a-chip built in an FPGA and so

information related to embedded systems and FPGAs are in this chapter. Automatic

code generation will be used to speed up the development process of implementation

algorithms on the selected UTIA DSP platform, therefore some references to this issue are

provided at the end of the chapter.

2.1 Adaptive Algorithms

Adaptive identification and parameter tracking require the use of on-line identification

techniques. Variations of the working conditions may change the model parameters and

therefore an estimator designed for the time-varying case should be used. Such an estima-

tor can be based on the standard recursive least squares method supplemented with an

algorithm for discounting (forgetting) old data. The common and mostly used algorithm is

exponential forgetting (EF) which is based on assumption that recent information is more

7

8 CHAPTER 2. STATE OF THE ART

valuable than older data. The EF algorithm forgets old data uniformly in all directions of

a data vector.

The recursive least squares algorithm based on the LDU decomposition of the covariance

matrix with exponential forgetting (EF LD-RLS) suitable for systems based on micropro-

cessors with small memory consumption has been published in (Peterka, 1982).

The main drawback of the EF method is called wind-up, and it comes when a data vector

is not persistently exciting, i.e. when it does not carry sufficient information. The old data

is discounted continuously, but only a part of the old data can be replaced by new data.

As a consequence, some eigenvalues of the covariance matrix will tend to be zero and the

Kalman gain will tend to be unbounded. In that case the algorithm is very sensitive to

noise and thus the estimation may be completely unreliable.

One of the methods to avoid the EF windup is directional forgetting DF which is attractive

for its potential performance and algorithmic simplicity. The disadvantage of the DF

technique is its higher data dependence in algorithm than for EF. In DF algorithms, the

data is considered to have directions, and the old data is exponentially forgotten only in

the specific directions. How to implement the directional forgetting remains a question.

The theory and basic algorithm for RLS with DF for traditional microprocessors has

been described in the UTIA internal report (Kulhavý, 1983). (Kulhavý and Kárný, 1984)

and (Kulhavý, 1987) propose a DF algorithm based on the Bayesian estimation approach.

The RLS with UDL factorization of the covariance matrix (UD-RLS) were used besides

the QR factorization in several works (Kadlec, 1986), (Chisci and Mosca, 1987). In (Chisci

and Mosca, 1987) the authors proposed two architectures for UD-RLS with DF based on

systolic architectures with O(n) and O(n2) processing elements. It is similar to RLS with

LD factorization with some differences and therefore it is assumed that the structure of

the systolic array for LD-RLS will be very close to the structure for UD-RLS.

This algorithm can prevent the estimator windup, but it may lose its tracking capability

in some directions because eigenvalues of the information matrix may become unbounded

in this algorithm as discussed in (Bittanti et al., 1990a).

The authors in (Parkum et al., 1992) tried to formulate a general forgetting algorithm

from algorithms which were known in that time. The resulting algorithm is based on

2.1. ADAPTIVE ALGORITHMS 9

the assumption that the parameter covariance matrix is bounded from below and from

above, and it implies that the forgetting is non-uniform in space. So the authors proposed

another method for forgetting - selective forgetting presented in (Parkum et al., 1990).In

this method the covariance matrix is written as

C(t) =
p∑
i=1

αi(t)vi(t)vTi (t), (2.1)

where α1(t), ..., αp(t) are eigenvalues of C(t) and v1, ..., vp are the corresponding eigenvec-

tors. The time update of the covariance matrix in the selective forgetting is computed as

C(t+ 1 | t) =
p∑
i=1

αi(t | t)
λi(t)

vi(t)vTi (t) 0 < λi(t) < 1, (2.2)

i.e. each eigenvalue of the covariance matrix is not divided by one common forgetting

factor λ, but each eigenvalue is divided by its own forgetting factor λi chosen as a function

of the amount of information received in the direction vi.

In (Moonen, 1993) the author proposed a systolic array for computation of RLS with

directional forgetting based on SVD factorization. It allows to reach O(1) throughput rate

unlike O(n) reached in (Chisci and Mosca, 1987). Unfortunately, the data dependences in

RLS with DF are such that efficient parallel architectures for DF LD-RLS are not easily

obtained.

Apart from the directional forgetting, there are many attempts to avoid wind-up by

modifications of exponential forgetting - from various methods of variable forgetting factor

to, for example, preventing the information matrix from becoming singular with adding a

positive definite matrix to ensure that it is always invertible (Gunnarsson, 1996).

In (Cao and H., 2000) the authors proposed a novel algorithm for directional forgetting

based on matrix decomposition. In the paper the authors replaced a uniform exponential

forgetting factor with forgetting matrix F (t).

Vz(k) = F(k)Vz(k − 1) + z(k)zT (k), (2.3)

where the forgetting matrix is given by

F(k) = I−M(k) = I− {(1− λ)α(k)Vz(k − 1)z(k)zT (k)} (2.4)

10 CHAPTER 2. STATE OF THE ART

and

α(k) =
1

zT (k)Vz(k − 1)z(k)
(2.5)

Another proposal how to avoid wind-up in EF RLS is in (Stenlund and Gustafsson, 2002).

The authors mention some of the methods described above and compared them with the

authors’ proposal. They consider the filter as a control system where the goal is to achieve

a pre-specified covariance matrix.

C(t) = C(t− 1)− C(t− 1)z(t)zT (t)C(t− 1)
R(t) + zT (t)C(t− 1)z(t)

+ Q(t) (2.6)

Q(t) =
Pdz(t)zT (t)Pd

R(t) + zT (t)Pdz(t)
, (2.7)

where Pd is the desired convergence point for the matrix P. They denote this algorithm

as adaptive Kalman filter algorithm.

The question is where a compromise between the tracking capabilities and the misad-

justment and stability is.

Adaptive identifiers have the advantage that the system is continuously modeled and

controller parameters are evaluated on-line, thus resulting in superior performance. They

can be realized in several ways according to requirements. Recently such algorithms have

been often used in embedded systems.

2.2 Embedded Systems

The term embedded system (ES) represents every computer system with a processing unit

(PU) which is dedicated to control specific device or to serve specific purpose. An embed-

ded system can be defined as a specialized computer system that is part of a larger system

or machine designed to perform a specific function (Barr, 1998). Each PU contains one or

more processing elements (PE) which actually process data in the system.

Embedded systems are everywhere around us. They are, for example, in multi-media de-

vices (MP3s, televisions), household devices (refrigerators, microwave ovens, air-conditioners),

electronic devices (printers, mobile telephones), traffic (information and control systems)

and so on.

2.2. EMBEDDED SYSTEMS 11

Figure 2.1: Generic embedded system

From the technical point of view the computer system in ES is mostly made as a

system-on-a-chip (SoC), i.e. all parts in the upper left box in Figure 2.1 are implemented

in one chip. Embedded systems for high production volumes are mostly designed as appli-

cation specific integrated circuits (ASIC) which also often include other parts as shown in

Figure 2.1. For smaller designs or lower production volumes, ESs are based on a universal

central processing unit (CPU), micro-controller unit (MCU) or field programmable gate

array (FPGA) which mostly contains the whole SoC.

Development in computer architectures is aimed at increasing performance and efficiency

with decreasing power consumption. The parallelism is mainly used to reach these require-

ments. A lot of parallel architectures are proposed each year. There are several classifica-

tions used to compare such architectures. One of them is the Flynn’s classification which

categorizes systems into four major classes according to number of instruction and data

streams in the system (Flynn, 1966) as described below.

• Single-Instruction Single-Data Stream (SISD) category contains all computers with

one PE, i.e. sequential systems which cannot perform parallel operations.

• Single-Instruction Multiple-Data Stream (SIMD) category is very often mentioned

in papers. Architectures in this group have more PEs with one common program

(set of instructions) and each PE processes its own data stream. It implies that all

PEs must process data equally and their program cannot contain branches. It is

suitable mainly for DSP applications where a huge amount of data in independent

channels is processed equally. Most vector and array architectures belong to this

12 CHAPTER 2. STATE OF THE ART

group. Popularity of the SIMD concept is also due to its simple programming.

• Multiple-Instruction Single-Data Stream (MISD) category contains mainly architec-

tures with pipelined PEs and PEs which process data stream simultaneously in

independent parallel ways. A MISD system is suitable for applications aimed at

image processing or classification (e.g. robot vision, neural networks).

• Multiple-Instruction Multiple-Data Stream (MIMD) is the most common and widely

used form.

The thesis describes implementation on highly reconfigurable UTIA DSP Platform based

on FPGAs which can contain more PEs with pipelined basic operations and so it can be

directly used as a SISD or SIMD architecture or with more units as a MIMD or also as a

MISD architecture.

2.2.1 FPGA Architecture

The used UTIA DSP Platform is a hardware accelerator for SoCs on FPGAs (Kadlec

et al., 2007), (Daněk et al., 2008). FPGAs are reprogrammable chips with regular struc-

ture of configurable logic blocks and other hardwired blocks, such as memories, multipliers,

circuits for clock distribution, DSP blocks, input/output blocks. These blocks are intercon-

nected by programmable routing resources - switches and lines. And any custom function

can be implemented in the hardware from these blocks. The chips are programmed by

bitstreams which are a binary form of configuration of the blocks and interconnections

prepared as a design in a hardware description language (HDL) (e.g. VHDL, Verilog); or

in a high-level language (e.g. C, Handel-C) or a visual tool (e.g. Xiling System Generator).

FPGAs are truly parallel architectures where each independent function is assigned to a

dedicated part of the chip and can work autonomously. It is a big advantage which allows

to reach high performance of the implemented functions. Performance of many functions

can be increased by parallel implementation of several instances of the required function.

FPGAs offer another advantage - arithmetic used in the implemented functions is not

hardwired in the chip, but it can be selected and implemented as needed.

2.2. EMBEDDED SYSTEMS 13

2.2.2 Arithmetics Used in FPGA

There are several alternatives which arithmetic could be used to implement algorithms on

embedded systems. A selected arithmetic is dependent on considered or used hardware

where the algorithm will be running. The most well known and used are floating- and

fixed-point binary arithmetic and they are the ones supported by standard processors

(common processors or digital signal processors).

Fixed-Point Arithmetic

The fixed-point FxP arithmetic is mainly used because of the high-speed which can be

achieved with relatively simple arithmetic units (with small amount of used resources).

On the other hand ,the dynamic data range is small and therefore it can be difficult or

impossible to adapt some algorithms for fixed-point arithmetic.

Generally, every number in fixed-point arithmetic can be written as

r = R−B

[
−bl−1R

l−1 +
l−2∑
i=0

biR
i

]
, bi∈0,...,l−1 ∈ 0, ..., R− 1 (2.8)

where R is a radix. For R = 2 it is a binary FxP arithmetic.

The usual fixed-point data formats in digital signal processing make use of the binary

two’s complement representation. Then, the value of a number is

r = 2−B
[
−bl−12l−1 +

l−2∑
i=0

bi2i
]
, bi ∈ 0, 1, (2.9)

where l is the total word length, B is the location of the binary point, bl−1 is the sign

of the number. There are two special cases, r is an integer when B = 0, and r is a

fractional number when B = l−1. The second case is commonly used in DSP. In this case

positive numbers are represented by sign = 0 and the value |r| in all other bits whereas

the negative numbers have sign = 1 and all other bits represent number 2 − |r|. And

therefore −(−r) = r (2− (2− |r|) = 2− |r| − 2).

The main advantage of two binary two’s complement representation compared to other

representations is in the simplicity of hardware for adding and subtracting with no distinc-

tions between the sign and binary digits (Hanselmann, 1987). Subtraction is implemented

14 CHAPTER 2. STATE OF THE ART

by addition of the complemented number (a−b = a+(−b)). The sum of two l-bit numbers

requires l + 1 bits.

The FxP multiplication is more complicated. The operation can be written as

yI = aI ∗ bI ,
yF = aF ∗ bF ,

(2.10)

where parts with I are the integer parts of the numbers and F are the fractional parts.

The product of two l-bit numbers is a (2l − 1)-bit number. This is because there is a

sign-bit in each factor but the product needs only one.

The division is obviously the most complex among the basic operations. It has to solve

y =
a

b
, (2.11)

which can be computed sequentially as

a = Q · b+R, 0 5 R < b

where Q is an integer quotient and R is an integer remainder. The result y is a combination

of quotients obtained from a recursively divided remainder from a previous recursion.

Floating-Point Arithmetic

The floating-point (FP) arithmetic has usually a higher dynamic range and accuracy than

fixed-point (if a standard word length of the FP arithmetic is used). The 32-bit single pre-

cision format (standard IEEE 754) consists of the mantissa’s sign bit s, an 8-bit exponent

e and 23 bits of mantissa for the fraction f .

Figure 2.2: Format of the FP numbers

The decimal value is given by

r = (−1)s · 2e−127 · (1 + f). (2.12)

The IEEE standard also defines the following special values

2.2. EMBEDDED SYSTEMS 15

IEEE-754 format sign [bits] exponent [bits] mantissa [bits]

single (32bits) 1 8 23

double (64bits) 1 11 52

Table 2.1: Commonly used IEEE 754 formats of FP numbers

• NaN - Not a Number - result of an invalid operation such as
0
0

, sqrt(−1) or ∞ · 0.

• +∞/−∞ - positive/negative infinity

• −0 - negative zero

A fundamental difference from the fixed-point quantization is that there the error is an

absolute one, i.e. the additional noise is independent of the signal, but with the floating-

point arithmetic the error is a relative one - dependent on the signal amplitude. The

dynamic range spans 2−126 ≈ 10−38 up to 2+128 ≈ 3 · 1038 and the accuracy according to

2−23 as the value of the least significant bit in f .

Another difference between FP and FxP is their precision, which is worse for FP. An

integer number can be represented exactly in the FP format only if its absolute value fits

the mantissa, i.e. it is less than 223 and 253 for single and double formats respectively.

FP operations are more complicated than in the FxP arithmetic, they use data formats

with more bits in most cases and FP numbers must be checked and corrected after opera-

tions with rounding and normalizing if necessary. For adding and subtracting the operands

must have common fractional order and therefore their mantissas and exponents have to

be corrected. The multiplication and division is simpler than addition, mantissas are

processed similarly to the FxP arithmetics and then exponent must be added/subtracted.

Other arithmetic systems

There are two other arithmetic systems - logarithmic and residual, but they are not so

usual in commonly used computers or embedded systems.

The logarithmic number system (LNS) is an alternative representation of floating point

numbers (Matousek et al., 2002), (Tichý, 2006). It brings very simple multiplication and

16 CHAPTER 2. STATE OF THE ART

division when the arguments are only added or subtracted, respectively. But addition

and subtraction is more complicated, and they lead to evaluation of non-linear functions.

Another advantage of LNS is an undemanding computation of power and root when a

value of the exponent e is multiplied or divided by a constant.

The format of a logarithmic number is

r = (−1)s2e, (2.13)

where s is the sign bit and e is the fixed-point number.

The theoretical basis for the residue number system (RNS) has its ground roots in Fermat

and Gauss (Svoboda, 1957). The RNS allows the decomposition of a given dynamic range

(bit-width) in slices of smaller range on which the computation can be implemented in

parallel at higher speed (Omondi and Premkumar, 2007), (Chokshi et al., 2009). The

advantages of RNS are simplified and fast addition and multiplication.

In a residue number system (RNS) an integer r is represented as an ordered set of n

residues {r1, r2, ..., rn} , where ri = r mod mi. The system is defined by a set of different

prime numbers {m1,m2, ...,mn} called the moduli. Any integer in the range 〈0,M) can

be uniquely represented where M =
n∏
i=1

mi is called the dynamic range of the moduli set.

2.2.3 Automatic Generation of Code

HW/SW co-design and partitioning of the problem between HW and SW are related to

implementations on embedded systems and especially ESs based on DSPs or FPGAs. It

always strongly depends on the target architecture, and therefore many specific projects

and solutions are available for automatic partitioning and code generation.

For the UTIA DSP Platform, which is a specific vector architecture, there aren’t any

tools for automatic partitioning and code generation. Therefore a part of this work deals

with the development of a generator of firmware code from algorithms in the Matlab

environment.

Some works aimed to automatic code generation for ES are (Niemann, 1998), (Zhao and

Malik, 1999), (Ramanujam et al., 2001), (Glesner et al., 2002), (Baleani et al., 2002),

(Labrecque et al., 2007).

2.3. SUMMARY 17

2.3 Summary

Historical background of recursive least square algorithms with directional forgetting and

relation with some other RLS algorithms has been presented.

The need for higher sampling rates mainly in signal processing applications encourages

development of algorithms for parallel architectures with higher throughput. In the work,

such development is described for the UTIA DSP platform which is used as a vector

architecture for implementing RLS based on the LDU decomposition with directional for-

getting. The platform is built in an FPGA with floating-point arithmetic, therefore some

of arithmetics employed in algorithms implemented in FPGAs have been also described.

18 CHAPTER 2. STATE OF THE ART

Chapter 3

Adaptive Algorithms

This chapter contains background information about adaptive algorithms used in linear

models of unknown systems, namely the recursive least squares (RLS) algorithm based on

the LDU decomposition. An essential part of this chapter deals with forgetting methods

used in adaptive algorithms. The chapter ends with a discussion of the correct comparison

of different adaptive algorithms.

3.1 Introduction

Generally, an adaptive algorithm changes its behaviour or parameters based on its current

state and inputs. Adaptive algorithms used in control and signal processing are mainly

used for automatic adjustment of filter coefficients. A filter with an adaptive algorithm is

called adaptive filter. Adaptive algorithms are classified according to the following features:

• the rate of convergence is speed of approaching the optimal solution,

• tracking is the ability to follow changes in time-varying systems,

• numerical robustness depends on specific implementations when numerical inac-

curacies can cause instability,

• computational complexity is a complexity of the algorithm expressed as the

number of operations or the spent time.

19

20 CHAPTER 3. ADAPTIVE ALGORITHMS

There are several basic types of applications of the adaptive filter:

System Identification

The purpose of the adaptive filter is to approximate parameters of an unknown system

from system inputs and outputs. If the unknown system is dynamical with time-varying

parameters, the used adaptive algorithm must be able to track such changes.

In this case both the system and the filter have common inputs, and the filter is adjusted

by the difference between their outputs. Then the filter represents a model of the unknown

system.

Figure 3.1: Adaptive Filter for System Identification

Noise Cancellation and Echo Cancellation

The input signal for the adaptive filter is a noise which is correlated with a noise in the

desired signal. The filter can eliminate the noise from the desired signal if the desired

signal contains an uncorrelated noise. One of possible applications of noise cancellation

is echo cancellation when the unknown system represents the echo path, and the filter

eliminates the echo from the required signal.

3.1. INTRODUCTION 21

Figure 3.2: Adaptive Filter in task of the Noise Cancellation and the Echo

Cancellation

Channel Equalization

The adaptive filter provides an inverse model of an unknown system. One of typical appli-

cations is mobile communication when the unknown system is the transmission channel,

and the filter eliminates channel distortion.

Figure 3.3: Adaptive Filter for Channel Equalization

Many adaptive algorithms have been devised for both linear and non-linear filtering. Each

of them has some advantages and some disadvantages. Among the classic algorithms the

least mean square LMS and recursive least squares RLS are the most frequently used for

linear filtering. Many modifications of these algorithms have been developed.

3.1.1 Models of the Unknown System

The selection of an adaptive algorithm depends on the used model of the unknown system.

Figure 3.4 shows notations used for the following models of systems. In the model, Θ is

a vector of parameters of the unknown system, it can contain parameters a, b, c according

to the selected model; Θ̂ is a vector of parameters of the adaptive filter; y is an output of

22 CHAPTER 3. ADAPTIVE ALGORITHMS

the system; and ŷ is an output of the filter. Outputs of the system and the filter are given

by the functions

y(k) = f(Θ(k),u(k),y(k − 1), k) (3.1)

and

ŷ(k) = f(Θ̂(k),u(k), ŷ(k − 1), k) (3.2)

respectively.

Figure 3.4: A model for System Identification

The RLS algorithm can be used with the following linear models:

• Moving average (MA) model. In this model the system output depends only on the

current and past system inputs

y(k) =
nb∑
i=0

biu(k − i), (3.3)

where y(k) is the system output at time k, u(k) is the system input at time k and

bi is the i-th parameter of the system. The MA model is essentially a finite impulse

response (FIR) filter where nb is its order.

• Autoregressive (AR) model. This model contains a dependence on past outputs

y(k) = −
na∑
i=1

aiy(k − i). (3.4)

It is a infinite impulse response (IIR) filter where na is its order.

3.1. INTRODUCTION 23

• Autoregressive moving average (ARMA) model is the combination of the two models

mentioned above

y(k) = −
na∑
i=1

aiy(k − i) +
nb∑
i=0

biu(k − i). (3.5)

• Autoregressive moving average model with exogenous inputs (ARMAX) is an ARMA

model with an extra input mainly for measurable noise.

y(k) = −
na∑
i=1

aiy(k − i) +
nb∑
i=0

biu(k − i) +
nc∑
i=0

ciη(k − i). (3.6)

In the following text we will suppose that a system is modeled by ARMA with its output

defined as a function of its inputs, past outputs and unmeasurable white error. The output

is then

y(k) = ΘT (k)z(k) + es(k), (3.7)

where Θ(k) is a vector of model parameters

ΘT (k) = [a1, a2, ..., ana, b0, b1, ..., bnb], (3.8)

and z(k) is a data regressor, i.e. a vector of the current input data and past input and

output data

zT (k) = [−y(k − 1),−y(k − 2), ...,−y(k − na), u(k), u(k − 1), ..., u(k − nb)]. (3.9)

The adaptive algorithms tries to minimize the error between the output of an unknown

system y and the output of the filter ŷ as shown in Figure 3.4,

e(k) = y(k)− ŷ(k). (3.10)

There are more ways to minimize the error, two of them are described in the following

text.

24 CHAPTER 3. ADAPTIVE ALGORITHMS

3.2 Adaptive Algorithms

3.2.1 Least Mean Square

The basic least mean square (LMS) algorithm uses the mean square error (MSE) as the

optimization cost function

JMSE(Θ)) = E(e2) = E(|y − ŷ|2), (3.11)

The LMS algorithm is very popular among other adaptive algorithms for its properties.

The key property is its linear computational complexity O(n). The main disadvantage of

the LMS algorithm is its slow convergence.

3.2.2 Least Squares

The technique of the least squares (LS) was proposed by Karl Gauss around 1795 to predict

the motion of planets and comets using telescopic measurements. The LS and its many

variants have been extensively applied to solving estimation problems in many application

fields.

The cost function of LS is the time-averaged squared error

JLS(Θ) =
k∑
i=1

e2(i) =
k∑
i=1

[y(i)− ŷ(i)]2 =
k∑
i=1

[
y(i)− Θ̂T (i)z(i)

]2
. (3.12)

The cost function can be written in the matrix form (Bobál et al., 1999)

JLS(Θ) = eTe = (y −UΘ)T (y −UΘ), (3.13)

where y is a vector of system outputs

yT = [y(1), y(2), y(3), ..., y(k)] , (3.14)

e is a vector of errors

eT = [e(1), e(2), e(3), ..., e(k)] , (3.15)

3.2. ADAPTIVE ALGORITHMS 25

and U is a matrix of data regressors z(k)

U =

zT (0)

zT (1)

zT (2)
...

zT (k − 2)

zT (k − 1)

. (3.16)

The estimated parameters to minimize the cost function (3.13) can be evaluated from

∂JLS
∂Θ

∣∣∣∣
Θ=Θ̂

= 0. (3.17)

The solution of Equation (3.17) is then

Θ̂ = (UTU)−1UTy = C.czy, (3.18)

where C = UTU is the covariance matrix of inputs, and czy = UTy is the cross-covariance

vector.

3.2.3 Recursive Least Squares

The LS algorithm is used for system identification. When we have already measured

all data, we can compute the estimation in one batch. If we consider that we need the

estimation during measurement when we have only past data, the recursive least squares

(RLS) algorithm can be used.

It computes estimations by the LS method from the past data at time k. The main idea

of RLS is to compute a solution at time k from the results of the previous computation at

time (k − 1). This approach to the problem increases the efficiency of the LS algorithm,

and it allows ”on-line” identification of systems with time-varying parameters.

Although the RLS algorithm is theoretically equivalent to the block LS algorithm, it

suffers from the following shortcomings:

• numerical instability due to round-off errors caused by its recursive operations in a

finite-word length environment,

26 CHAPTER 3. ADAPTIVE ALGORITHMS

• slow tracking capability for time-varying parameters,

• big sensitivity to the initial conditions of the algorithm.

These shortcomings can be suppressed by extra forgetting methods as will be described

in the next section.

The derivation of the RLS algorithm has been described in many papers. It is for example

in (Peterka, 1982). In the following text we provide a short summary of its derivation.

The cost function of the LS algorithm (3.12) for the ARMA model at time k is

JLS(Θ(k)) =
[

1 −ΘT
] k∑
i=1

d(i)dT (i)

[
1

−Θ

]
=
[

1 −ΘT
]

V(k)

[
1

−Θ

]
, (3.19)

where we denote a new vector composed of y and z as an extended data regressor d

d(k) =

[
y(k)

z(k)

]
. (3.20)

We denote the sum of data dyads as an extended information matrix V . The extended

information matrix can be evaluated recursively

V(k) =
k∑
i=1

d(i)dT (i) = V(k − 1) + d(k)dT (k). (3.21)

It consists of block matrices

V(k) =

[
Vy(k) VT

zy(k)

Vzy(k) Vz(k)

]
, (3.22)

where the information matrix Vz(k) = C−1(k) is the inverse of the covariance matrix

C(k). From Equations 3.21 and 3.22 one can see that the information matrix is updated

as

Vz(k) = Vz(k − 1) + z(k)zT (k). (3.23)

The direct update of the covariance matrix can be obtained by applying the matrix inver-

sion lemma (Golub and Van Loan, 1996) to Equation 3.23.

C(k) = C(k − 1)− C(k − 1)z(k)zT (k)C(k − 1)
1 + zT (k)C(k − 1)z(k)

(3.24)

3.3. FORGETTING USED WITH RLS 27

The update of the estimated parameters is

Θ̂(k) = Θ̂(k − 1) +
C(k − 1)z(k)

1 + zT (k)C(k − 1)z(k)
ê(k), (3.25)

where ê(k) is the priori estimation error defined as

ê(k) = y(k)− Θ̂T (k − 1)z(k), (3.26)

and e(k) is the posteriori estimation error

e(k) = y(k)−ΘT (k)z(k). (3.27)

3.3 Forgetting Used with RLS

The conventional RLS algorithm is suitable for systems with constant parameters and

without a measurable noise. Such an RLS does not provide enough adaptivity to the

estimator. Several methods were devised to improve the RLS algorithm for systems with

a noise or time-varying parameters and to avoid numerical instability of the RLS algorithm.

The most widespread and essentially single method is called weighting or forgetting. The

common idea of all forgetting methods is based on an assumption that a recent information

is more valuable than older data.

There are many papers where forgetting algorithms or their modifications are suggested.

All of them try to improve the stability and robustness of adaptive algorithms with for-

getting. The main forgetting method is exponential forgetting (EF). Most papers that

describe it are from between 1980 and 2000, when many classical forgetting methods were

devised, and many improvements of the exponential forgetting have been published. In

that time many papers were published about other groups of forgetting algorithms which

are based on a concept of restricted exponential forgetting known also as directional for-

getting (DF). In these algorithms, the forgetting factor is set according to information in

the input data.

In this section we will describe basic forgetting methods used in adaptive algorithms

based on RLS.

28 CHAPTER 3. ADAPTIVE ALGORITHMS

3.3.1 Exponential Forgetting

Exponential forgetting (EF) is the basic forgetting method used as the minimal extension

of conventional RLS. The principle of EF is to reduce impacts of older data on the cost

function in RLS by multiplicating the last extended information matrix V(k − 1) by a

forgetting factor (FF) λ ∈ (0, 1) in each step. It brings exponential reduction of the

impact in time.

The evolution of the extended information matrix with exponential forgetting is

V(k) = λV(k − 1) + d(k)dT (k). (3.28)

Of course, the evolution of the information matrix Vz(k − 1) is the same, and it affects

the covariance matrix C(k − 1). The evolution of the covariance matrix is then

C(k) =
1

λ(k)

(
C(k − 1)− C(k − 1)z(k)zT (k)C(k − 1)

λ(k) + zT (k)C(k − 1)z(k)

)
. (3.29)

The evolution of the parameter estimation is the same as for pure RLS

Θ̂(k) = Θ̂(k − 1) +
C(k − 1)z(k − 1)

1 + zT (k − 1)C(k − 1)z(k − 1)
ê(k), (3.30)

In (Peterka, 1981), (Kulhavý, 1983), (Kadlec, 1986) the update step is divided into two

steps - the data update and the time update, in that case the denotation of the time

indices is as follows

a(k|k − 1) a in the previous time step after the time update

a(k|k) a in the current time step after the data update and before the time update

a(k + 1|k) a in the current time step after the time update

The data update of V,C and Θ̂ is

V(k|k) = V(k|k − 1) + d(k)dT (k)

C(k|k) = C(k|k − 1)− C(k|k − 1)z(k)zT (k)C(k|k − 1)
1 + zT (k)C(k|k − 1)z(k)

Θ̂(k|k) = Θ̂(k|k − 1) +
C(k|k − 1)z(k)

1 + zT (k)C(k|k − 1)z(k)
ê(k),

(3.31)

and the time update of V,C and Θ̂ is

V(k + 1|k) = λV(k|k)

C(k + 1|k) =
1
λ

C(k|k)

Θ̂(k + 1|k) = Θ̂(k|k).

(3.32)

3.3. FORGETTING USED WITH RLS 29

For the forgetting factor λ = 1 it is an RLS algorithm without exponential weighting

(without forgetting). In this case all data in history have the same influence on the

cost function. This means that such an RLS algorithm can produce a correct estimation

of parameters only for the problem of system identification with static parameters and

without noise. If there is noise or time-varying parameters in the model, then we can

obviously suppose that new data describe the model better than older data. The simplest

way to model this behaviour is to use exponential forgetting with the forgetting factor

λ(k) ∈ (0, 1). The forgetting factor controls the rate of forgetting, i.e. newer data have

smaller impact on the information matrix with a lower value of λ(k). But with lower

λ(k) the estimator has a worse ability to predict the evolution of the system. Finding

the optimal1 value of the forgetting factor λ(k) is crucial for the correct behaviour of the

system. A commonly used interval of the forgetting factor values is λ(k) ∈< 0.95, 0.999 >.

In some approaches variable exponential forgetting is used to increase the quality of EF.

An example is in (Navrátil and Bobál, 2005). It doesn’t use one static value of λ(k) = λ0,

but the value evolves in time, for example as

λ(k) = λ0λ(k − 1) + 1− λ0, (3.33)

where is λ(0) = λ0 ∈< 0.95, 0.99 >. The identification forgets more at the beginning and

then the forgetting is slower (see Figure 3.5) with this function of the forgetting factor.

The function asymptotically goes to one, which means the latest data isn’t weighted for

long running filtering/identification. λ0 controls the speed of forgetting deceleration at the

beginning of filtering. It tries to compensate the wrong initial behaviour of the algorithm

when the estimator starts up from unknown state.

The standard exponential forgetting has proved to be a simple method of discarding ob-

solete information. It suppresses all accumulated information regardless of the character

of the measured data, and it does not admit the incorporation of available information

about parameter variations other than through the choice of the forgetting factor. There-

fore more complicated models of forgetting have been proposed.

Figure 3.6 shows an example of the evolution of estimated parameters and the covari-

ance matrix and their relation in the parameter space. The step of the data update with

1It means optimal for the required purpose.

30 CHAPTER 3. ADAPTIVE ALGORITHMS

0 20 40 60 80 100 120 140 160 180 200
0.94

0.95

0.96

0.97

0.98

0.99

1

time step k[−]

fo
rg

et
tin

g
fa

ct
or

 λ
[−

]

λ
0
=0.95

λ
0
=0.96

λ
0
=0.97

λ
0
=0.98

λ
0
=0.99

Figure 3.5: Evolution of a variable exponential forgetting factor

Θ
1

Θ
2

Θ(k|k−1)
C(k|k−1)
Θ(k|k)=Θ(k+1|k)
C(k|k)
C(k+1|k)

Figure 3.6: An example of evolution of the ellipse of concentration for ex-

ponential forgetting

3.3. FORGETTING USED WITH RLS 31

newly incoming data shifts time indices from (k|k− 1) ≡ (k− 1) to indices (k|k). It shifts

the estimated parameters to new positions and reduces the covariance matrix (and thus

the area of the ellipse of concentration). The time update, which shifts the time indices

from (k|k) to (k + 1|k) ≡ (k)), contains forgetting which extends the area of the ellipse.

3.3.2 Data-Dependent Forgetting

The aim of these methods is to eliminate the main problem with the evolution of the co-

variance matrix (and, of course, the evolution of the ellipse of concentration) in exponential

forgetting, when the information is discarded without respecting the distribution of an in-

formation in the incoming data (demonstrated in Figure 3.6). This uniform discarding can

cause wind-up of the covariance matrix (flattening of the ellipse of concentration). There

are several different methods which implement some of the data-dependent forgetting as

mentioned in Chapter 2, only directional forgetting is shown in the following text.

Directional Forgetting

It has been devised as one possible way to avoid the wind-up in exponential forgetting.

The described version is from (Kulhavý, 1983), and this forgetting method is used in the

implementation in the following chapter. The information matrix evolves according to the

incoming information

‖ζ(k − 1)‖ > 0

Vz(k) = Vz(k − 1) +
(
λ(k)− 1− λ(k)

ζ(k − 1)

)
z(k)zT (k),

‖ζ(k − 1)‖ = 0

Vz(k) = Vz(k − 1).

(3.34)

The evolution of the covariance matrix is then

‖ζ(k − 1)‖ > 0

C(k) = C(k − 1)− C(k − 1)z(k)zT (k)C(k − 1)
ε−1(k − 1) + ζ(k − 1)

,

‖ζ(k − 1)‖ = 0

C(k) = C(k − 1),

(3.35)

32 CHAPTER 3. ADAPTIVE ALGORITHMS

and the evolution of the parameter estimation is

‖ζ(k − 1)‖ > 0

Θ̂(k) = Θ̂(k − 1) +
C(k − 1)z(k)
1 + ζ(k − 1)

ê(k),

‖ζ(k − 1)‖ = 0

Θ̂(k) = Θ̂(k − 1),

(3.36)

where
ζ(k − 1) = zT (k)C(k − 1)z(k),

ε(k − 1) = λ(k)− 1− λ(k)
ζ(k − 1)

.
(3.37)

The update can also be written in two steps as the data update and the time update.

The data update of V,C and Θ̂ is

Vz(k|k) = Vz(k|k − 1) + z(k)zT (k)

C(k|k) = C(k|k − 1)− C(k|k − 1)z(k)zT (k)C(k|k − 1)
1 + ζ(k|k − 1)

Θ̂(k|k) = Θ̂(k|k − 1) +
C(k|k − 1)z(k)
1 + ζ(k|k − 1)

ê(k),

ζ(k|k − 1) = zT (k)C(k|k − 1)z(k),

(3.38)

and the time update of V,C and Θ̂ is

Θ̂(k + 1|k) = Θ̂(k|k)

‖ζ(k|k − 1)‖ > 0

Vz(k + 1|k) = Vz(k|k)− 1− λ(k)
ζ(k|k − 1)

z(k)zT (k)

C(k + 1|k) = C(k|k) +
1− λ(k)
λ(k)

C(k|k)z(k)zT (k)C(k|k)
zT (k)C(k|k)z(k)

,

‖ζ(k|k − 1)‖ = 0

V(k + 1|k) = λ(k)V(k|k)

C(k + 1|k) = C(k|k)

(3.39)

Figure 3.7 illustrates evolution of the estimated parameters and the covariance matrix

depicted by the ellipse of concentration. The data update contains the same operations

as it was described for the exponential forgetting. But in the time update the ellipse is

blown up only in the direction of the new incoming information, which is parallel with the

line between the old and new positions of the estimated parameters.

3.3. FORGETTING USED WITH RLS 33

Θ
1

Θ
2

Θ(k|k−1)
C(k|k−1)
Θ(k|k)=Θ(k+1|k)
C(k|k)
C(k+1|k)

Figure 3.7: An example of evolution of the ellipse of concentration for di-

rectional forgetting

Directional Adaptive Forgetting

This method is a case of directional forgetting with the maximal restriction based on the

assumption that the time updated density of unknown parameters is not purely Gaus-

sian (Kulhavý, 1987). Then the value of the forgetting factor evolves according to the

following equations

ε(k − 1) = ϕ(k)− 1− ϕ(k)
ζ(k − 1)

,

ϕ(k) =
{

1 + (1 + ρ) [ln (1 + ζ(k − 1))] +
[

(ν(k − 1) + 1) η(k − 1)
1 + ζ(k − 1) + η(k − 1)

− 1
]

ζ(k − 1)
1 + ζ(k − 1)

}−1

,

η(k) =
ê2(k)
λ(k)

,

ν(k) = ϕ(k)(ν(k − 1) + 1),

λ(k) = ϕ(k)
[
λ(k − 1) +

ê2(k − 1)
1 + ζ(k − 1)

]
,

(3.40)

where ϕ(k) is a variable forgetting factor, and ρ is a heuristic parameter.

This section presented information about forgetting methods used in the RLS algorithm

to improve its properties, such as stability and robustness.

34 CHAPTER 3. ADAPTIVE ALGORITHMS

3.4 LD-RLS Algorithms

There are many ways how the RLS algorithm can be implemented. In cases when the

extended information matrix Vk is numerically ill-conditioned (nearly singular), we must

use a computation which numerically ensures positive semi-definiteness of V(k) for all k.

Otherwise the entire identification can numerically collapse. This problem has been solved

with radical algorithms which use suitable decompositions of the inversion of the matrix

V(k). Algorithms with QR, Cholesky, LDU and UDL decompositions are examples of

such algorithms.

In this section we summarize the derivation of the LD-RLS algorithm2 based on the

LDU decomposition. The derivation is described for example in (Peterka, 1982). The

computation of roots is not necessary in this method. Another advantage of the LD-RLS

algorithm is that the estimated parameters Θ̂ are directly included in the solution of the

decomposition.

In the following derivation we omit the time indices for clarity. The inversion of the

extended information matrix V can be decomposed to a lower triangular matrix L with

ones on the diagonal, and a diagonal matrix D as follows

V−1 = LDLT (3.41)

Matrices D and L can be decomposed into blocks

D =

[
Dy 0

0 Dz

]
L =

[
1 0

Lzy Lz

]
(3.42)

The cost function (3.19) is then

JRLS(Θ) =
[

1 −ΘT
]

V

[
1

−Θ

]
=
[

1 −ΘT
]

(L−1)TD−1L−1

[
1

−Θ

]
. (3.43)

2The LD-RLS algorithm with exponential forgetting is called LDFIL in (Peterka, 1982), and the LD-

RLS with directional forgetting is called LDDIC in (Kulhavý, 1983).

3.4. LD-RLS ALGORITHMS 35

The inversion of the triangular matrix L and the diagonal matrix D (3.42) is

L−1 =

[
1 0

−L−1
z Lzy L−1

z

]
,

D−1 =

[
D−1
y 0

0 D−1
z

]
,

(3.44)

then the cost function (3.43) is

JRLS(Θ) =
[

1 −ΘT
] [1 −LTzy(L

−1
z)T

0 (L−1
z)T

][
D−1
y 0

0 D−1
z

][
1 0

−L−1
z Lzy L−1

z

][
1

−Θ

]
=

= D−1
y + (−Lzy −Θ)T (L−1

z)TD−1
z L−1

z (−Lzy −Θ)
(3.45)

The second part of the cost function (3.45) depends only on parameters Θ. Therefore the

absolute minimum for Θ̂ is

Θ̂ = −Lzy, (3.46)

and the minimum of the cost function (3.45) is for Θ = Θ̂ and its value is

JRLS(Θ̂) = min
Θ

(JRLS(Θ)) = D−1
y . (3.47)

By comparing Equations (3.42) with (3.46) and (3.47) we can see that the solution is

directly contained in matrices L,D. The matrix L contains negative values of the esti-

mated parameters, and the matrix D contains an inverted value of the cost function for

the estimation of parameters

L =

[
1 0

−Θ̂ Lz

]
D =

[
(JRLS(Θ̂))−1 0

0 Dz

]
. (3.48)

The LD-RLS algorithm also has an advantage in the possibility to use directly a priori

information about the system when the RLS algorithm is initialized. The matrix L can

contain an initial estimation of parameters Θ(0), and matrix D contains values which

36 CHAPTER 3. ADAPTIVE ALGORITHMS

represent the uncertainty of the initial estimation of parameters Θ(0)

L(0) =

1 0 0

1 0

−Θ̂(0)
. . .

0 1

 ,

D(0) =

[
Dy(0)

Dz(0)

]
, Dz(i,i)(0) > 0.

(3.49)

3.4.1 Direct Update of LD-RLS

The LD-RLS algorithm and other similar algorithms can be updated directly. In this part

we present equations for updating the EF LD-RLS and DF LD-RLS algorithms which are

used in implementations in the next chapter. The derivation is described in Appendix A.

EF LD-RLS

Li,j(k) = Li,j(k − 1)−
fj(k)g(j+1)

i (k)
λ+ hj+1(k)

Di(k) = Di(k − 1)
λ+ hi+1(k)
λ(λ+ hi(k))

where

f(k) = L(k − 1)d(k)

gi(k) = Di(k − 1)fi(k)

hi(k) =
n∑
l=i

fl(k)gl(k), hn+1(k) = 0;

g
(m)
i (k) = gm+1

i (k) +Dm(k − 1)Li,m(k − 1)fm(k)

(3.50)

3.5. COMPARISON OF THE ADAPTIVE ALGORITHMS 37

DF LD-RLS

If input data are sufficiently excited (h2(k) > 0)

Li,j(k) = Li,j(k − 1)−
fj(k)g(j+1)

i (k)
αj(k) + hj+1(k)

D̄i(k) = Di(k − 1)
αi(k) + hi+1(k)
αi(k) + hi(k)

D1(k) =
D̄1(k)
λ

, Di(k) = D̄i(k) ∀i ∈ (2..n)

where

f(k) = L(k − 1)d(k)

gi(k) = Di(k − 1)fi(k)

hi(k) =
n∑
l=i

fl(k)gl(k), hn+1(k) = 0;

g
(m)
i (k) = gm+1

i (k) +Dm(k − 1)Li,m(k − 1)fm(k)

α1(k) = 1, αi(k) = ψ(k) ∀i ∈ (2..n)

ψ(k) =
h2(k)

h2(k)(λ+ 1)− 1

(3.51)

If input data aren’t sufficiently excited (h2(k)→ 0)

D1(k) =
D1(k − 1)

λ(1 + h1(k)− h2(k))
Di(k) = Di(k − 1) ∀i ∈ (2..n)

(3.52)

Summary

In this part the basic derivation of the LD-RLS algorithm together with the direct update

of EF LD-RLS and DF LD-RLS were presented to provide background information for

the next chapter where the implementation of these algorithms is described.

3.5 Comparison of the Adaptive Algorithms

When a new algorithm is devised or implemented, it is necessary to compare the new

algorithm with other existing algorithms. The comparison of an adaptive algorithm can

38 CHAPTER 3. ADAPTIVE ALGORITHMS

be done in several typical applications such as system identification, channel equalization

(inverse modeling) or noise cancellation. Of course, the algorithms should be tested in a

kind of application for which they were designed.

The comparison between the adaptive algorithms is based on using them in the same

testing application with the same system and input signals. Then one or more parameters

of the quality of the adaptation are compared. These observed parameters depend on the

purpose of adaptation.

Characteristics often used for comparison are the mean squared error (MSE) and in

adaptive signal processing, and the system error norm (SEN) in adaptive control. The

first characteristic MSE statistically reflects differences between output signal from the

identified system and output signal from the adaptive filter. It can be calculated as

MSE =
1
n

n∑
i=1

e2i , (3.53)

which is the average of the square of the estimation error. It is often expressed in decibels

(dB) in the literature as

MSEdB = 10 log10(MSE) [dB]. (3.54)

The second statistic, SEN reflects the squared norm of the difference between the true

parameters of an unknown system and their estimated values. It can be expressed in

decibels as

SENdB = 10 log10(‖Θ̂−Θ‖2) [dB]. (3.55)

Most of the adaptive algorithms use some forgetting technique. Therefore all these al-

gorithms have at least one heuristic parameter which is adjusted by hand. Typically it is

forgetting factor in the LMS and RLS algorithms with exponential forgetting. In many

papers where different algorithms for forgetting were compared, the authors used examples

with one concrete value of the forgetting factor for all the compared algorithms.

And this poses questions such as ”How was the forgetting factor chosen?” or ”Why

did they use just that value?” and the most important question ”Can two algorithms

be compared with the same value of the forgetting factor?”. The last question means

that the forgetting factor can have a different meaning or impact on the convergence

3.5. COMPARISON OF THE ADAPTIVE ALGORITHMS 39

and behaviour of each algorithm. And, of course, some algorithms have more than one

tunable parameters, e.g. in the maximally restricted forgetting in (Kulhavý, 1987) where

the second heuristic parameter is used.

In practice, the forgetting factor is chosen from one’s own experience and from the interval

where the identification algorithm can guarantee robustness. But when algorithms are

proposed and simulated, the algorithms should be compared under similar conditions.

For example, when the forgetting factor ensures optimality of identification in some ways.

We expect that such conditions are ensured for different settings (e.g. the value of the

forgetting factor) of each algorithm. We guess that some algorithms can have much worse

behaviour than other algorithms with the same value of their forgetting factor. And there

may be a case when an algorithm is better than another with equal factors, and it is worse

with ”optimally” chosen factors.

In the following experiments we will try to answer the mentioned questions. These

experiments are based on some of the RLS algorithms mentioned above. The SEN statistic

was selected as the cost function to find the forgetting factor in which the algorithms are

comparable. Table 3.1 shows all RLS algorithms with different forgetting methods which

were used in the experiments.

Algorithm Implemented by

Conventional RLS (Diniz, 2007)

EF LD-RLS (Peterka, 1982)

RLS with variable FF (Navrátil and Bobál, 2005)

DF LD-RLS (Kulhavý, 1983)

DDF RLS (Cao and H., 2000)

Table 3.1: The RLS algorithms used in the experiment

All statistics used in the RLS algorithms depend on the input data (i.e. on the structure

of the unknown system and its input data). Therefore we used the mean value of the SEN

statistic as a cost function to find the value of the forgetting factor for each algorithm.

We selected the mean value of the SEN statistic as an example for its simplicity.

λcomp = λ if SEN(λcomp) = min
λ
E(SEN(λ)), λ ∈ (0, 1) (3.56)

40 CHAPTER 3. ADAPTIVE ALGORITHMS

We known that this selection is not really usable in real applications because such a

cost function optimizes the forgetting factor for minimizing the difference between the

estimated and true parameters. The more useful cost function should be more complex

to respect the application requirements such as the convergence rate and tracking ability

together.

To minimize the selected cost function we used an iterative algorithm of interval halving

on λ ∈ (0.1, 1) because we assumed the SEN is a continuous function of the forgetting

factor with one minimum in all tested algorithms. An example of such a function is in

Figure 3.8. The example also shows that changing the forgetting factor doesn’t have to

have significant influence on the cost function in some cases.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−90

−80

−70

−60

−50

−40

−30

Forgetting factor [−]

S
E

N
 [d

B
]

Conventional RLS with Exponential Forgetting

Figure 3.8: An example of a dependence of the mean value of the SEN

statistic on the forgetting factor for an identification problem

Because the mean value of the SEN depends on the input data and their length (mainly

in an identification problem) we prepared several groups of experiments. All algorithms

were tested on problems of system identification, system identification with insufficient

excitation of inputs, slow tracking of parameters and fast tracking of parameters. In the

experiments we computed the average of the SEN from 2000 time samples.

We tried our concept on the following problems

• Identification of system with sufficiently excited inputs (Figure 3.9),

3.5. COMPARISON OF THE ADAPTIVE ALGORITHMS 41

• Identification of system with insufficiently excited inputs (Figure 3.10),

• Tracking slow time-varying parameters with insufficiently excited inputs (Figure 3.11),

• Tracking fast time-varying parameters with insufficiently excited inputs (Figure 3.12),

The result of each experiment contains a set of charts

• the MSE(k) with the forgetting factors evaluated to minimize the average SEN for

each algorithm,

• the SEN(k) with the forgetting factors evaluated to minimize the average SEN for

each algorithm,

• the MSE(k) with the same value of the forgetting factor λ = 0.98 for all algorithms,

• the SEN(k) with the same value of the forgetting factor λ = 0.98 for all algorithms,

• the MSE(k) with the same value of the forgetting factor λ = 0.8 for all algorithms,

• the SEN(k) with the same value of the forgetting factor λ = 0.8 for all algorithms.

The experiments have been selected as simple and regular cases of using adaptive algo-

rithms in such systems. We didn’t try any extreme cases because these experiments should

only demonstrate the proposed method. We used the ”optimal” computed forgetting fac-

tors, the value λ = 0.98 used in (Parkum et al., 1992), and the very low value λ = 0.8

which is out of range of the commonly used interval of the forgetting factor. Charts in

Figures 3.9, 3.10, 3.11 and 3.12 show that forgetting methods, which use the forgetting

factor differently in the computation, have a slightly different behaviour than others for

the same value of the forgetting factor. From the charts we see that for ”optimal” values

of the forgetting factors the SEN statistics are the best; it is because we use the mean

value of SEN as a cost function to optimize the forgetting factor. For real applications a

more complex cost function must be used.

Summary

This part discusses the common practice described in many papers concerning the com-

parison of adaptive algorithms with different forgetting methods which need not necessary

42 CHAPTER 3. ADAPTIVE ALGORITHMS

0 20 40 60 80 100 120 140 160 180 200
−40

−35

−30

−25

−20

−15
Mean Square Error, System Identification, FF factors with minimal SEN

Time step[−]

M
S

E
 [d

B
]

C−RLS,INV−RLS,LD−RLS(ff=0.7632)
DDF−RLS(ff=0.6925)
DF−RLS(ff=0.531)
VFF−RLS(ff=0.9455)

0 20 40 60 80 100 120 140 160 180 200
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, System Identification, FF factors with minimal SEN

C−RLS,INV−RLS,LD−RLS(ff=0.7632)
DDF−RLS(ff=0.6925)
DF−RLS(ff=0.531)
VFF−RLS(ff=0.9455)

0 20 40 60 80 100 120 140 160 180 200
−36

−34

−32

−30

−28

−26

−24

−22

−20

−18

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, System Identification, FF factors equal for all algorithms (µ=0.98)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−40

−35

−30

−25

−20

−15

−10

−5

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, System Identification, FF factors equal for all algorithms (µ=0.98)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−40

−35

−30

−25

−20

−15

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, System Identification, FF factors equal for all algorithms (µ=0.8)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, System Identification, FF factors equal for all algorithms (µ=0.80)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

Figure 3.9: The comparison of different RLS algorithms for system iden-

tification. The first couple of graphs is for forgetting factors

with minimal E(SEN) in each algorithm, the second couple is

for λ = 0.98 and the third couple is for λ = 0.8

3.5. COMPARISON OF THE ADAPTIVE ALGORITHMS 43

be correct. Many authors compare their new adaptive algorithm or modification with

others by using a uniform value of the forgetting factors. They don’t analyze which value

of the forgetting factor should be used.

We proposed a simple method to ensure that algorithms with different forgetting methods

will be certainly comparable. It is based on searching the ”optimal” value of the forgetting

factor (or ”optimal” values of all factors used in the forgetting algorithm) separately for

each algorithm. Then the algorithms are compared with their own ”optimal” forgetting

factor instead of one common value of the forgetting factor. The ”optimal” value can be

searched from various statistics used to test the qualities of the adaptive algorithms. The

statistic should be chosen according to the purpose of the concrete adaptive algorithm.

Examples of such statistics are mean squared error (MSE) or system error norm (SEN).

The value of both the statistics SEN and MSE always depends on the identified system

together with the input data. Therefore the ”optimal” values of forgetting factors depend

on specific experiments, and they must always be evaluated.

To test our hypothesis we performed several experiments with the RLS algorithms and five

different forgetting methods. We used them to identify an unknown system and parameter

tracking with four sets of parameters and input vectors. We didn’t try any extreme cases

because these experiments were demonstrated the proposed method. Of course we know

that the average of the SEN is not quite appropriate for finding the ”optimal” value of

forgetting factor, but it should only demonstrate the concept of comparability between

algorithms with different forgetting methods. According to the performed experiments

we can say that it is more appropriate to use forgetting factors evaluated from common

optimization task for each algorithm independently than to use one selected forgetting

factor for all algorithms when comparing adaptive algorithms with different forgetting

methods. The difference between ”optimally” selected factor for each algorithm and any

common value of factor can be significant and it depends on concrete experiment used for

comparison.

44 CHAPTER 3. ADAPTIVE ALGORITHMS

3.6 Summary

This chapter deals with adaptive algorithms with forgetting methods. First general infor-

mation about adaptive algorithms used in linear models of unknown systems is discussed.

Then there the recursive least squares (RLS) algorithm is briefly described. The next part

summarizes the LDU decomposition used in LD-RLS algorithms.

The main part of the chapter is aimed at the description of forgetting methods used in the

RLS algorithms. We described the classical exponential forgetting and not so commonly

used directional forgetting.

The chapter ends with a discussion of comparability of adaptive algorithms with dif-

ferent forgetting methods. Authors of most papers where they propose new methods or

modifications of a forgetting method use any value of the forgetting factor to compare

their method with other existing methods. Because they don’t discuss where or how they

obtained the value they used, we proposed a method for comparing adaptive algorithms

with different forgetting methods.

3.6. SUMMARY 45

0 20 40 60 80 100 120 140 160 180 200
−30

−25

−20

−15

−10

−5

0

5

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, System Identif.−bad excitation, FF factors with minimal SEN

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, System Identif.−bad excitation, FF factors with minimal SEN

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, System Identif.−bad excitation, FF factors equal for all algorithms (µ=0.98)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−30

−25

−20

−15

−10

−5

0

5

10

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, System Identif.−bad excitation, FF factors equal for all algorithms (µ=0.98)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−25

−20

−15

−10

−5

0

5

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, System Identif.−bad excitation, FF factors equal for all algorithms (µ=0.8)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 20 40 60 80 100 120 140 160 180 200
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, System Identif.−bad excitation, FF factors equal for all algorithms (µ=0.8)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

Figure 3.10: The comparison of different RLS algorithms for system with

insufficient excitation of inputs. The first couple of graphs

is for forgetting factors with minimal E(SEN) in each algo-

rithm, the second couple is for λ = 0.98 and the third couple

is for λ = 0.8

46 CHAPTER 3. ADAPTIVE ALGORITHMS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−8

−7

−6

−5

−4

−3

−2

−1

0

1

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, Slow tracking parameters, FF factors with minimal SEN

C−RLS(µ=0.9941)
DDF−RLS(µ=0.9823)
DF−RLS(µ=0.9821)
INV−RLS(µ=9941)
LD−RLS(µ=0.9941)
VFF−RLS(ff=0.9977)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−30

−25

−20

−15

−10

−5

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, Slow tracking parameters, FF factors with minimal SEN

 C−RLS(µ=0.9941)

DDF−RLS(µ=0.9823)

DF−RLS(µ=0.9821)

INV−RLS(µ=9941)

LD−RLS(µ=0.9941)

VFF−RLS(ff=0.9977)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−8

−7

−6

−5

−4

−3

−2

−1

0

1

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, Slow tracking parameters, FF factors equal for all algorithms (µ=0.98)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−35

−30

−25

−20

−15

−10

−5

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, Slow tracking parameters, FF factors equal for all algorithms (µ=0.98)

C−RLS

DDF−RLS

DF−RLS

INV−RLS

LD−RLS

VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−5

0

5

10

15

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, Slow tracking parameters, FF factors equal for all algorithms (µ=0.8)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−30

−20

−10

0

10

20

30

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, Slow tracking parameters, FF factors equal for all algorithms (µ=0.8)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

Figure 3.11: The comparison of different RLS algorithms for system with

slow time-varying parameters. The first couple of graphs is for

forgetting factors with minimal E(SEN) in each algorithm,

the second couple is for λ = 0.98 and the third couple is for

λ = 0.8

3.6. SUMMARY 47

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−15

−10

−5

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, Fast time−varying parameters, FF factors with minimal SEN

C−RLS(µ=0.998)
DDF−RLS(µ=0.9937)
DF−RLS(µ=0.9879)
INV−RLS(µ=998)
LD−RLS(µ=0.998)
VFF−RLS(ff=0.9934)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, Fast time−varying parameters, FF factors with minimal SEN

C−RLS

DDF−RLS

DF−RLS

INV−RLS

LD−RLS

VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−15

−10

−5

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, Fast time−varying parameters, FF factors equal for all algorithms (µ=0.98)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−35

−30

−25

−20

−15

−10

−5

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, Fast time−varying parameters, FF factors equal for all algorithms (µ=0.98)

C−RLS

DDF−RLS

DF−RLS

INV−RLS

LD−RLS

VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Time step[−]

M
S

E
 [d

B
]

Mean Square Error, Fast time−varying parameters, FF factors equal for all algorithms (µ=0.9)

C−RLS
DDF−RLS
DF−RLS
INV−RLS
LD−RLS
VFF−RLS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−30

−25

−20

−15

−10

−5

0

Time step[−]

S
E

N
 [d

B
]

System Errors Norm, Fast time−varying parameters, FF factors equal for all algorithms (µ=0.9)

C−RLS

DDF−RLS

DF−RLS

INV−RLS

LD−RLS

VFF−RLS

Figure 3.12: The comparison of different RLS algorithms for system with

fast time-varying parameters. The first couple of graphs is for

forgetting factors with minimal E(SEN) in each algorithm,

the second couple is for λ = 0.98 and the third couple is for

λ = 0.8

48 CHAPTER 3. ADAPTIVE ALGORITHMS

Chapter 4

Implementation

This chapter deals with implementations of LD-RLS and especially the DF LD-RLS al-

gorithm on embedded systems. First we will briefly discuss the implementation aspects

on embedded systems. Because the term embedded system is obviously too wide, then the

work will focus on two architectures with potential to be used in embedded systems, and

in parallel processing (being aware of the fact that DF LD-RLS has limited possibilities

for parallelisation).

The first of the two architectures is the well known systolic array. This architecture is

researched here to confirm the hypothesis that the final structure of DF LD-RLS will be

similar to the structure for the DF UD-RLS algorithm described in (Chisci and Mosca,

1987). The second reason to use this architecture is that the development in computer

architectures is aimed at many-core computing (Silvano et al, 2010).

The second architecture is the UTIA DSP Platform1 which has been developed recently.

It is a flexible, re-programmable and reconfigurable hardware accelerator. The plat-

form with pipelined floating-point operations such as addition, multiplication, division,

multiply-accumulate and dot product is used and extended in this work.

In all of these implementations we will consider the worst case, when an algorithm is used

to estimate parameters in one-step prediction or filtering, i.e. matrices L and D must be

1The UTIA DSP platform has been developed for DSP applications by J.Kadlec at the Department of

Signal Processing, ÚTIA AV ČR, v.v.i, therefore its called UTIA DSP platform.

49

50 CHAPTER 4. IMPLEMENTATION

updated before the next data comes. It means the implementations must expect that

they cannot be fully parallelized or pipelined due to data dependence in the DF LD-RLS

algorithm as shown in the previous chapters.

The chapter ends with a discussion of a possible building systolic arrays with UTIA DSP

platforms as processing elements.

4.1 Introduction

An architecture of the processing unit (PU) where the algorithm will be implemented

is one of the crucial criteria of an implementation. This criterion is important mainly

in embedded systems where the number of possible architectures is huge. The number of

computing elements in one processing unit and their structure is one of the main properties

along with efficiency of the implementation and power consumption of the PU. Therefore

the development of future architectures for embedded systems is directed to multi-core and

many-core processors (Silvano et al, 2010), i.e. to processing units with many processing

elements. There are many structures of the processing elements in the parallel units, e.g.

PE in a systolic array, SIMD, MIMD, stream processing, distributed processing.

Of course, the implementation depends on the structure of the algorithm, and it depends

on the structure of the process and its model whose parameters are estimated. One of

the characterizations of processes is based on the number of system inputs and outputs.

Algorithms with the directional forgetting can be directly used only for systems with

single output (SISO or MISO), but parameters of systems with multiple outputs (SIMO or

MIMO) can be estimated separately in parallel. Then a set of estimators with directional

forgetting can be used for each output of a MIMO system. Identification should use

a correct model which will contain all relations between inputs and outputs to avoid

erroneous estimations.

There are always more ways to implement an algorithm on embedded system, there-

fore the selected way depends on the required optimization criteria. In the past when

algorithms were implemented on systems with a single microprocessor and small external

memory, the main criterion was memory consumption and data organization in the mem-

ory because of the price of a memory was too high. Today’s implementations are mainly

4.1. INTRODUCTION 51

oriented to minimize the time of computation or efficiency and power consumption. The

efficiency in parallel multi-core processing units is often expressed in terms of utilization

of all processing elements. The utilization can be influenced by rescheduling of operations

in the algorithm or swapping parts of the algorithm between processing elements.

The following criteria of algorithm implementation should be observed:

• utilization of processing elements, i.e. the ratio between the time when a PE is

working and whole computation time.

UPE(i) =
TworkPE(i)

Tcomp

• overall utilization, i.e. the combination of utilization over all PEs

Uall =

n∑
i=1

UPE(i)

n.Tcomp

• numerical robustness,

• data throughput,

• speed of computation (input/output data sampling rate),

• latency for pipelined implementations

• computational complexity,

• amount of used resources,

• power consumption,

The preferred criterion depends on the purpose of the embedded system. For real-time

systems the crucial criterion is the time of computation and the related data throughput

and the computational complexity. For mobile systems it is mainly power consumption

and the related amount of used resources and their utilization.

Implementations of the DF LD-RLS described in this chapter is essentially aimed at

numerical robustness; improvement of some of the mentioned criteria will be only a side

effect.

52 CHAPTER 4. IMPLEMENTATION

4.2 Implementation on a Systolic Array

In this section a possible implementation of the DF LD-RLS algorithm on a systolic array

will be discussed. First we will briefly describe a generic systolic array. Implementation-

specific details of the algorithm will be presented subsequently.

4.2.1 Systolic arrays

A systolic array (SA) is a network of PEs working in parallel with a regular structure and

interconnections ((Kung, 1982)). Input and output data are processed by outer elements,

and all data travel through the neighbouring elements. Each PE can work only with its

local data or data from its neighbours. Systolic arrays with broadcast signals are also pos-

sible. In that case PEs can provide data to other PEs which aren’t their neighbours. Such

connections are dedicated to share only one signal, i.e. it is a point-to-point connection

all the time. This structure has a drawback - it doesn’t contains only short connections

between PEs - which makes parameters of implementation worse for systolic arrays on

FPGAs.

For maximal regularity the systolic array should have as few different PE flavours as

possible, ideally it should contain PEs of one type only. Systolic arrays have an advantage

over other architectures, they can process some complex algorithms with the computa-

tional complexity O(n2), with the time complexity O(n) and in some cases even O(1).

Decreasing the time complexity is always balanced with increasing the space complexity,

i.e. the number of PE increases from O(n) up to O(n2).

The concept of systolic arrays is convenient for implementations of an algorithm that

work with vectors and matrices. Systolic arrays are suitable for data pipelining, but real

use of this technique depends on the algorithm and its data dependences.

An example of a pipelined systolic array is shown in Figure 4.1, where the matrix multi-

plication is depicted. In this case each PE performs the same multiply-accumulate (MAC)

function and also passes the input data to its neighbours. The input matrices are pushed

through the SA in synchronous steps so that each PE multiplies the corresponding items

from the input matrices.

4.2. IMPLEMENTATION ON A SYSTOLIC ARRAY 53

Figure 4.1: Matrix multiplication on systolic array

The big advantage of systolic arrays is their relatively simple practical use, when the

implementation has only several types of elements and therefore the complexity of their

programming is not growing when increasing the size of the array.

4.2.2 The EF LD-RLS Algorithm

At first the EF LD-RLS has been implemented in the form of a systolic array as a testing

case. As shown in the previous chapter the EF LD-RLS has part of the algorithm identical

to DF LD-RLS, so we can expect the structure of this part to be the same or at least similar.

Figure 4.2: EF LD-RLS data dependence graph and PE dependence graph

(for n=3)

54 CHAPTER 4. IMPLEMENTATION

Figure 4.2 depicts the data dependences in the algorithm and the dependence graph

of PEs. The graphs are derived from Equations 3.50 in the Chapter 3. f is computed as

a multiply-accumulate function of input vector d and matrix L. f is immediately used for

computation of g with D. Vectors f and g together constitute hp which is an input to

cumulative summation of vector h. The coefficients gl necessary to update matrix L are

computed from the vector g and matrix L. The next coefficients are additions of items of

vector h and forgetting factor λ. They are required to update values in both matrices L

and D.

Figure 4.3: EF LD-RLS on a systolic array (for n=3)

4.2. IMPLEMENTATION ON A SYSTOLIC ARRAY 55

The final systolic array with space complexity O(n2) is shown in Figure 4.3.

The systolic array consists of three types of processing elements. The first type of PE

uses elements of the matrix L and the second and third type use elements of the matrix

D. The third type labeled Dn is a special case of the second type with different inputs

and outputs but with a similar function.

Li,j type Di type Dn type

Registers: L Registers: D, f, g, λ Registers: D, f, g, λ

I.phase

Inputs: din, fpin Inputs: din, fpin, hin, λ, α Inputs: din, λ

Outputs: dout, fpout Outputs: fout, gout, hfout, Outputs: Gsout, hout, λ

dout = din Gsout, hout, λ f = din

fpout = fpin + L.din f = fpin + din g = D.f

II.phase gout = D.f hout = f.g

Inputs: fin, gin, hin, Gsin hfout = λ+ hin Gsout = g

Outputs: fout, gout, fout = f D = D
1

λ+ f.g

hfout, Gsout hp = f.g

fout = fin hout = hin + hp

gout = gin Gsout = g

hfout = hfin if α = 1 then

Gsout = Gsin + L.gin D = D
λ+ hin

λ(λ+ hout)

L = L− fin.Gsin
hfin

else

D = D
λ+ hin
λ+ hout

Table 4.1: EF LD-RLS on a systolic array, operations in PEs

Particular types of processing elements perform FP operations shown in Table 4.1. The

elements Li,j work in two phases, in the first phase the partial summation of f is prepared

and it is completed in elements Di . Then elements of matrix D is updated in SA elements

Di. f is used in the second phase to update elements of matrix L in SA elements Li,j .

This proposed systolic array is only for study purposes, therefore it doesn’t solve initial-

ization of the array, i.e. how the initial values of L and D are loaded into the processing

56 CHAPTER 4. IMPLEMENTATION

elements.

4.2.3 The DF LD-RLS Algorithm

The LDU and UDL decompositions are very similar as described in Chapter 2. So we

expect that the structure of the designed LD-RLS SA will be close to the structure of the

UD-RLS SA. The implementation of the DF UD-RLS on systolic array has been described

in (Chisci and Mosca, 1987).

At first the algorithm must be decomposed to fundamental vector and matrix operations.

The result is based on Equations 3.51 in the Chapter 3 and it is relatively the same as in

listing of Algorithm 2 in the part about the UTIA DSP platform.

Figure 4.4: DF LD-RLS data dependence graph and PE dependence graph

(for three estimated parameters)

Then the dependence graph must be prepared and analyzed. It is depicted in Figure 4.4.

A one can see it has a structure similar to EF LD-RLS except for the forgetting factor.

The directional forgetting factor is computed from forgetting factor λ chosen by the user

and statistic ζ = h2 computed from the covariance matrix (i.e. from submatrices L2:n,2:n

and D2:n,2:n).

4.2. IMPLEMENTATION ON A SYSTOLIC ARRAY 57

The dependence graph shows that the computation will be performed in two steps. In

the first step, which is the same for the EF LD-RLS algorithm, variables f, g, h will be

computed, and then the directional forgetting factor is evaluated and L and D matrices will

be updated. The graph also determines the sequence of input data in time and movements

of variables in the array. They must come in a correct order to the appropriate elements,

therefore some delays will have to be introduced. If we make use of the obvious triangular

shape of the array with
n(n+ 1)

2
elements, the computation of the array will have time

complexity O(n).

The proposed systolic array is shown in Figure 4.5. The systolic array consists of four

types of processing elements. The first type works with elements of matrix L, and all

others compute with elements of matrix D. The elements labeled Dn and D1 are special

cases of element Di. Element D1 computes the directional forgetting factor ψ apart from

all variables computed in elements Di.

The processing elements perform FP operations shown in Tables 4.2 and 4.3. All the

processing elements work in two phases. In the first phase vectors f, g, h are evaluated

along columns from left(j = 1) to right(j = n), where the incoming input data are shifted

in time as shown in Figure 4.6. Data go through the array to the right side and then

through the diagonal processing elements up to D1, where the directional forgetting factor

ψ is computed. Then if ψ is not equal to zero, elements of the matrices L and D are

updated from the top elements to the bottom elements.

Figure 4.6 depicts the timing in the array, the left part depicts the first phase, and the

right part is for the second phase. Small boxes with numbers in the left figure are delays

which are shown to indicate the possibility to use the array in a synchronous mode when

all input data arrive on the same time. Numbers written close to the processing elements

are times when the elements work.

Figure 4.6 also shows that the proposed array has time complexity O(n) = 3n+ 1. This

is a worse result than reached by the authors in (Chisci and Mosca, 1987), but they had

an array where the number of elements was greater by (n+1) elements. They reached the

time complexity O(n) = 2n+ 3 of the DF UD-RLS algorithm with (n+1)(n+2)
2 processing

elements. We use array with n(n+1)
2 processing elements.

58 CHAPTER 4. IMPLEMENTATION

Figure 4.5: DF LD-RLS on a systolic array (for three estimated parame-

ters)

4.2. IMPLEMENTATION ON A SYSTOLIC ARRAY 59

Li,j type Di type

Registers: L Registers: D, f, g, h

I.phase I.phase

Inputs: din, fpin Inputs: din, fpin, hin
Outputs: dout, fpout Outputs: hout
dout = din f = fpin + din

fpout = fpin + Li,j .din g = Di.f

h = hin

hout = h+ f.g

II.phase II.phase

Inputs: gin, hfin, Gsin Inputs: αin
Outputs: gout, hfout, Gsout Outputs: αout, gout, Gsout, hfout
gout = gin gout = g

hfout = hfin Gsout = g

Gsout = Gsin + L.gin αout = αin

if hfin 6= 0 then if αin 6= 0 then

Li,j = Li,j − hfin.Gsin Di = Di
αin + h

αin + (h+ f.g)
hfout = αin + h

else

hfout = 0

Table 4.2: DF LD-RLS on a systolic array, operations in L and Di PEs

60 CHAPTER 4. IMPLEMENTATION

D1 type Dn type

Registers: D, f, g, h, ψ Registers: D, f, g, h

I.phase

Inputs: din, fpin, hin, λ Inputs: din
Outputs: gout, hfout, ψ Outputs: hout
f = fpin + din f = din

g = D1.f g = Dn.f

h = hin h = f.g

gout = g hout = h

if hin 6= 0 then II.phase

ψ1 = λ.h− 1 + λ Inputs: ψ

hfout = 1 + h Outputs: Gsout
if ψ1 6= 0 then Gsout = g

ψ =
λ

ψ1
if ψ 6= 0 then

D1 = D1
1 + h

λ(1 + (h+ f.g))
Dn = Dn

ψ

ψ + h

else

ψ = 0

D1 = D1
1 + h

λ(1 + (h+ f.g))
else

ψ = 0

D1 =
D1

λ
hfout = 0

Table 4.3: DF LD-RLS on a systolic array, operations in D1 and Dn PEs

4.2. IMPLEMENTATION ON A SYSTOLIC ARRAY 61

Figure 4.6: Timing of the DF LD-RLS systolic array (for three estimated

parameters). Left side is the first phase and right side is the

second mode

62 CHAPTER 4. IMPLEMENTATION

4.3 Implementation on the UTIA DSP platform

In this work the UTIA DSP Platform2 is used for implementation of the DF LD-RLS

algorithm. The UTIA DSP platform is a generic concept of a flexible, reprogrammable

and reconfigurable hardware accelerator. The domain of use depends on the configuration

of the platform, because its concept is based on the FPGA technology and its hardware

reconfigurability. The platform is intended to be a hardware accelerator for a general-

purpose processor in a system-on-chip.

The basic implementation of the UTIA DSP platform with pipelined floating-point op-

erations such as addition, multiplication and division is denoted as the Basic Computing

Element3 (BCE). The BCE platform is used and extended in this work, so it is described at

first. Then we present all partial steps necessary for platform extensions and the modified

methodology for implementing the algorithms.

4.3.1 The Basic Computing Element

This part briefly describes the BCE platform, information about the BCE platform can

be also found in (Kadlec et al., 2007) and (Daněk et al., 2008).

Figure 4.7: BCE from the point of view of the host CPU
2The UTIA DSP platform has been developed for DSP applications by J.Kadlec at the Department of

Signal Processing, ÚTIA AV ČR, v.v.i, therefore its called UTIA DSP platform.
3The BCE platform has been developed and implemented by J.Kadlec. The implementation of the

BCE platform is not an object of the thesis. The thesis is aimed at the implementation of algorithm on the

BCE platform, extensions of the BCE platform, and the improvement of the implementation methodology.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 63

Figure 4.7 depicts the BCE platform which consists of a data-flow unit (DFU), dual-

ported data memories which can be connected to a host system for direct data exchange,

a micro-controller (uC) and memories with programs for the micro-controller.

The BCE platform is highly configurable on several levels.

On the lowest level, i.e. hardware description in VHDL or another hardware description

language, different computing units can be selected from libraries of units to achieve

application requirements. Such units can be prepared for computation in fixed-point or

floating-point, single, double or another precision, pipelined vector or matrix operations,

etc. The original BCE used in this thesis contains three computing units. All of them use

the pipelined floating-point single precision arithmetic. The pipeline latency for addition

is 3 clock cycles (ClC); for multiplication it is 4 clock cycles and for division it is 16 clock

cycles.

On the middle level, i.e. hardware integration as a model in Xilinx System Generator

in the Matlab environment, the entire BCE accelerator is assembled. These tools allow

simple integration and configuration of the platform parameters. For example, the fol-

lowing parameters can be configured: the number of computing units, the number of

data memories, the micro-controller used, programmability of the data-flow unit from

micro-controller, the number of data-flow units which allows to build accelerator with a

SIMD-like structure. The data-flow unit consists of a finite state machine (FSM) which

controls data paths and internal registers to perform the required macro-operation.

The DFU is able to read data or write data to each local data memory on each clock

cycle. It also manages the initial and wind-up phases related to the pipelined opera-

tions. The initial configuration of the DFU used in the thesis is shown in Figure 4.8. It

contains three computing units as mentioned above, three data memories and the Xil-

inx PicoBlaze3 as a re-programmable micro-controller with two interchangeable program

memories. Switching between the program memories can be used as a substitute of slower

hardware reconfiguration (Daněk et al., 2008).

The highest level is a program level where the micro-controller firmware is used to control

the data-flow unit in the BCE by a sequence of operations or batches of operations. The

micro-controller prepares VLIW instructions (Very Long Instruction Word) to control the

DFU. Each VLIW contains the following information

64 CHAPTER 4. IMPLEMENTATION

Figure 4.8: The origin BCE data-flow unit

• operations to be used,

• data memories that contain input arguments,

• data memory to store the result,

• the number of data items (the length of the vectors) to be processed in the operation.

A special level above the others is a program in the host CPU which controls the BCE

accelerator, uploads firmwares to the micro-controller, and communicates with the BCE

accelerator through the control and status registers. It also stores and reads data in the

data memories. The user application (or system) in a CPU can prepare, compile and

upload firmware to the BCE accelerator on the fly if necessary.

The data path is completely separated from the control path in the accelerator. Such

a structure offers several advantages, it allows to change the data format and arithmetic

for the same algorithm, to work with special data formats, to use the platform as a

SIMD parallel accelerator. When the platform is used in a SIMD-like configuration, it

contains one or more identical data-flow units with separate computational units and data

memories, and it is one way how to increase data throughput.

The used BCE accelerator is suitable for operations with vectors because it uses pipelined

FP computation units. So the next part is aimed at using FP operations.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 65

FP Pipelined Operations in the BCE

The used BCE accelerator supports basic pipelined vector operations shown in Table 4.4.

The operation COPY is realized in the data-flow unit, and it is used to copy data between

data memories. It is useful when the sequence of operation needs the data distributed in

different memories. The basic operations (ADD, MULT, DIV) are implemented directly

in hardware as mentioned above. The other operations are performed in the DFU as

sequences of the basic operations. All operations in Table 4.4 except DPROD are element-

wise operations, i.e. each element of one input vector is processed with the corresponding

element from the second vector, and the result is stored at the same position in the output

vector as shown in the table.

Operation latency[ClC] Description

VCOPY 0 Zi = Ai

VADD 3 Zi = Ai +Bi

VSUB 3 Zi = Ai −Bi
VMULT 4 Zi = Ai +Bi

DPROD ≥ 3 Z0 =
∑

i(Ai ∗Bi)
VMAC 8 Zi = Zi +Ai ∗Bi
DIV 16 Zi = Ai/Bi

Table 4.4: Basic BCE FP operations

Utilization

The utilization of a computational unit for each pipelined operation4 in the BCE can be

expressed as

Uop = 100.
n

lop + n+ 2
[%] (4.1)

where n is the number of elements in the vector calculated in the pipelined unit, and

lop is the latency of the pipelined unit. The latency is introduced by initialization of the

pipeline.

4Operation which returns one result each clock cycle after a certain latency.

66 CHAPTER 4. IMPLEMENTATION

The utilization can be between 0% and 100%. It grows asymptotically to 100% with the

rising number of elements in the computed vector. Therefore all equal operations in the

algorithm should be combined in operations on the longest possible vectors. Because of

memory reading/writing between operations 2 clock cycles must be added to the time of

operation.

The utilization of one computational unit for the entire algorithm can be expressed as

Uunit =
∑
ni

Talg
, (4.2)

where ni is the number of vector elements in the operation i which is processed in the

unit, and Talg is the total time of the algorithm in clock cycles5.

One of the main advantages of the BCE platform is its predictable duration of computa-

tion. The number of clock cycles for all three steps (pipeline initialization, data processing,

wind-up) for all the operations is known. Thus the accelerator is suitable for real-time

applications where the time of a computation must be known.

The BCE platform is a universal accelerator with possible on-the-fly software reconfigu-

ration of its hardware function by changing the micro-controller firmware which controls

the data flow between the computing units and data memories. Due to its universality

the utilization of the computing units is low. If the utilization is the main criterion of an

implementation the algorithm should be implemented in hardware as a new computation

unit. The solution with an algorithm implemented in firmware has the advantage of rapid

algorithm implementation possibly with fast debugging.

The basic BCE platform has separate data and control flow (i.e. the data don’t go through

the control micro-controller). There is only one feedback signal DONE from the DFU to

the micro-controller. The separate data path enables to use the same firmware with the

same control algorithm for computation in different arithmetic domains, e.g. single/double

precision floating-point, fixed-point, etc. Alternatively the arithmetic can be switched on-

the-fly through hardware reconfiguration. In this case the data transformation between

different arithmetic should be solved. This can decrease the power consumption when the

double precision FP units are used only when necessary.

5We assume that the unit is pipelined and processes one element per clock cycle.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 67

The DF LD-RLS algorithm contains branching that depends on the decision if the inputs

are excited sufficiently. The micro-controller makes the decision according to the result

of a comparison, so a new signal from a newly added comparative unit must be added.

Therefore the structure of the BCE platform must be modified at this point.

The LD-RLS algorithms work with data in vectors and triangular matrices. To maximize

the utilization of the pipelined operations all data in the matrices should be vectorized.

Therefore the BCE platform is extended with programmable address counters in the DFU

for vectorizing such data in the matrices.

4.3.2 Implementation in the BCE Platform

The BCE platform allows to implement algorithms on several levels, or divide computation

between these levels. As described in the previous subsections the platform has four levels

where the algorithm can be implemented :

• software in the host CPU,

• firmware in the micro-controller,

• hard-wired data path control in the DFU,

• hardware IP cores with a new computing unit for the whole algorithm.

Each level has its advantages and disadvantages. On lower levels, a design and prototyping

is more complicated, but the implementation is more efficient with better utilization. The

choice where the algorithm should be implemented depends on selected criteria as shown

in the book (Niemann, 1998).

For maximal performance the lowest level should be the most suitable, because there are

minimal overheads with the operations. But there are drawbacks of implementations on

lower levels, the major one is the development process. The process is slower and needs

an experience in hardware design. The adjustment and debugging of the implemented

algorithm is also slower and more complicated on lower levels.

For these reasons the best way to implement LD-RLS algorithms in the BCE platform is

to divide the algorithms between the micro-controller firmware and the hardware control

68 CHAPTER 4. IMPLEMENTATION

of the data path. The DF LD-RLS algorithm has a high data dependence, therefore imple-

menting it as one hardware IP core is impractical. On the other hand, its implementation

in the host CPU software wouldn’t be efficient enough.

Implementation Steps

Generally, the algorithm implementation in the BCE platform is done in the following

steps:

• prepare the algorithm as a sequence of basic pipelined operations supported by the

platform,

• the hardware part

– implement the required but missing basic pipelined operations as HW IP cores

for the selected arithmetic,

– prepare and generate the hardware for the BCE accelerator,

• the software/firmware part

– sort and group the operations according to the data dependences in the algo-

rithm,

– organize the data in the memories according to the algorithm data-flow graph

and possible configurations of the DFU data paths,

– write the firmware for the control micro-controller,

– write the software (application) for the host CPU (MicroBlaze),

• simulate / test the implemented function

All these steps will be discussed in the same order for DF LD-RLS in the following text.

In many projects, people develop software tools which perform these steps automatically

for platforms used in their projects. Unfortunately none of them is generic because each of

these tools is specific for each platform or a class of platforms with the same architecture

or structure. Several examples are shown in the book (Niemann, 1998). These tools must

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 69

analyze, synthesize and generate code for building software and/or hardware parts. The

code is highly hardware specific.

For the BCE platform, there isn’t any tool and therefore such a tool has been implemented

as a part of this work. The developed tool automates the generation of the software part,

i.e. generates source codes for the host CPU and the micro-controller firmware from

an algorithm specified in the Matlab environment. The tool increases productivity in

implementation of algorithms because algorithms can be developed and simulated in the

Matlab environment and then the verified algorithm is automatically converted to the

software/firmware for the BCE platform without any other intervention. The tool is

described in the next chapter as one of the results.

Implementation of the two LD-RLS algorithms, i.e. LD-RLS with exponential and direc-

tional forgetting, are described in the following section. Then the text continues with the

description of all implementation steps.

Algoritmus 1: EF LD-RLS suitable for the vector architecture
Data: L,D

Input: d,λ

f1 fi = L:,i · d:

f2 gi = fi ∗Di

f3 hpi = gi ∗ fi
f4 hi =

n∑
j=i

hpj

f5 hfi = λ+ hi

f6 Gsi,j = gj ∗ Li,j
f7 Gli,j =

n∑
k=j

Gsi,k

f8 Hli,j = fi ∗Gli,j
f9 Du = D ∗ hfi+1

f10 D̄ = Du/hfi

f11 D̄1,2 = D̄1,2/λ

f12 Lui,j = Hli,j/hfj+1

f13 L̄ = L− Lu

70 CHAPTER 4. IMPLEMENTATION

f1 (dprod)

f2 (mult)

f

f3 (mult)

f

f8 (mult)

f

g

f6 (mult)

g

f4 (csum)

hp

f5 (add)

h

f7 (csum)

gs

gl

f12 (div)

hl

f9 (mult)

hff

f10 (div)

hff

hff

(copy)

hff

hff

hff

Dupd

(copy)

D

f11 (div)

D1tmp

D

D

f13 (sub)

Lupd

(copy)

Ltmp

L

L

c1

c1

mu

mu

mu2

mu2

d

d

L

L

L

L

D

D

D

Figure 4.9: EF LD-RLS Data-flow graph

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 71

4.3.3 The EF LD-RLS Algorithm

The EF LD-RLS algorithm was implemented first. It was implemented mainly to test the

developed automated tools and to compare the implementations of EF LD-RLS and DF

LD-RLS.

Algorithm 1 is the implemented vectorized form of the EF LD-RLS algorithm. The

data-flow graph of the algorithm is in Figure 4.9.

The first part of the EF LD-RLS algorithm, where the h and gl statistics are evaluated,

is the same in both algorithms. Then the exponential forgetting factor λ is used to update

all elements of matrices L and D.

The operations with operand ∗ are element-wise multiplications. All operations in the

algorithm can be computed as pipelined vector operations with two exceptions: f4 and

f7. These two operations require cumulative summation (CSUM). The function can be

implemented as a sequence of individual additions in program in the host CPU, or as a

new operation of the BCE platform. The second option is certainly more efficient, and

the implemented CSUM operation is described below.

In Figure 4.9 there are operations labeled ”copy”. These operations copy data from one

memory to another. This is necessary when the input and output variables are the same

or if both input variables are stored in the same memory.

4.3.4 The DF LD-RLS Algorithm

The DF LD-RLS algorithm is implemented in the BCE platform as listed in Algorithm 2.

The first part of the algorithm, which is the same as for the EF LD-RLS algorithm,

evaluates the statistic ζ = h2 = zTCz. Then the algorithm branches in two ways. In one

way, when input data doesn’t bring a new information about the estimated parameters

(ζ ≤ ε0), the L and D matrices don’t get updated and then only the element D1 is updated

with the forgetting factor λ. The second way, when the matrices are updated, contains

the computation of the directional forgetting factor ψ and update of L and D. There

the algorithm checks if ψ is not too small (ψ ≤ ε0). And according to this comparison

the algorithm updates only the estimated parameters or it updates also elements of the

72 CHAPTER 4. IMPLEMENTATION

decomposed covariance matrix.

In the algorithm operations are organized to maximize the potential of the platform

in vector computing. Hence the operations f27 and f28 are computed from temporary

variables prepared in steps f23-f26. From this point of view, one problematic variable is

ψ (f13,f14,f22) which is computed from scalar variables and constants. For the platform,

this is the worst case because the operations have the greatest overhead (the pipelines

must be initialized and wound-up to compute one value).

Algorithm 2 is depicted as a vector data-flow graph in Figure 4.10, and its control-flow

graph is in Figure 4.11 where the branching of the algorithm is shown.

Due to branching in the algorithm a new operation for comparing two values is necessary.

The function must be reachable from the data path, therefore it should be implemented

in hardware as a new computing unit.

4.3.5 Design Flow of the Implementation

The design flow used for building the hardware and software of a system-on-chip with the

BCE accelerator is shown in Figure 4.12. The flow consists of two main parts which can

be divided as described below

• Hardware part

– IP cores of the computational units

– IP core of the BCE platform as a SoC peripheral

– complete system on chip with the soft-core processor MicroBlaze

• Software part

– firmware for the BCE micro-controller

– software for the host processor MicroBlaze

In our case, the basic computing units for single precision floating-point arithmetic

are generated by the Xilinx CoreGen tool (XCG). They are connected together with the

configuration of the data-flow unit, data memories and the PicoBlaze micro-controller in

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 73

Algoritmus 2: DF LD-RLS suitable for the vector architecture
Data: L,D

Input: d,λ,λ1 = (λ− 1)

f1 fi = L:,i · d:

f2 gi = fi ∗Di

f3 hpi = gi ∗ fi
f4 hi =

n∑
j=i

hpj

f5 if h2 ≤ ε0 then
f6 α = 1 + hp1

f7 β = λ ∗ α
f8 Dt = D1/α

f9 D̄1 = Dt

else
f10 gs = g ∗ L
f11 gl =

∑n
j=i gsj

f12 hl = f ∗ gl
f13,f14 ψd = (λ ∗ h2) + λ1

f15 if ψd ≤ ε0 then
f16 α1:2 = 1 + h1:2

f17 β = λ ∗ α1

f18 γ = D1 ∗ α2

f19 D̄1 = γ/β

f20 Lupd:,1 = hl:,1/γ2

f21 L̄:,1 = L:,1 − Lupd:,1

else
f22 ψ = h2/ψd

f23,f24 a1(1 : n) = {1, ψ, ψ, ..., ψ}
f25,f26 a2(1 : n+ 1) = {h1, h2, ..., hn, 0}

f27 γ = a1(1 : n) + a2(2 : n+ 1)

f28 δ = a1(1 : n) + a2(1 : n+ 1)

f29 Dupd = D ∗ γ
f30 D̄ = Dupd/δ

f31 D̄1 = D̄1/λ

f32 Lupd = hl/γ

f33 L̄ = L− Lupd

74 CHAPTER 4. IMPLEMENTATION

f1 (dprod)

f2 (mult)

f

f3 (mult)

f

f12 (mult)

f

g

f10 (mult)

g

f4 (csum)

hp

f6 (add)

hp

f5 (greater)

h

f13 (mult)

h

f16 (add)

h

f22 (div)

h

(copy)

hf7 (mult)

dw1

f8 (div)

dw2

(copy)

D1tmp

D

D

f11 (csum)

gs

gl

f20 (div)

hl

f32 (div)

hl

f14 (add)

psi1

f15 (greater)

psi3psi3

f17 (mult)

up3

f18 (mult)

up3 up3

f19 (div)

up4 Dupd2

D

f21 (sub)

Lupd2

(copy)

Ltmp2

L

L

(copy)

psi

f27 (add)

v_h

f28 (add)

v_h

(copy)

v_hv_h v_psiv_psi

(copy)

v_psiv_psi

f29 (mult)

up1 up1

f30 (div)

up2

Dupd

(copy)

D

f31 (div)

D1tmp2

D

f33 (sub)

Lupd

(copy)

Ltmp

L

c1

c1 c1

c1

c0

c0

mu

mu

mu

mu

mu

mu1

mu1

eps

eps

eps

d

d

L

L

L

L

LD

D

D

D

D

D

Figure 4.10: DF LD-RLS Data-flow graph generated by the automatic tool

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 75

f1 (dprod)

f2 (mult)

f3 (mult)

f4 (csum)

f5 (greater)

f6 (add) f10 (mult)

f7 (mult)

f8 (div)

f9 (copy)

(end)

f11 (csum)

f12 (mult)

f13 (mult)

f14 (add)

f15 (greater)

f16 (add) f22 (div)

f17 (mult)

f18 (mult)

f19 (div)

f20 (div)

(copy)

f21 (sub)

(end)

f23 (copy)

f24 (copy)

f25 (copy)

f26 (copy)

f27 (add)

f28 (add)

f29 (mult)

f30 (div)

(copy)

f31 (div)

f32 (div)

(copy)

f33 (sub)

Figure 4.11: DF LD-RLS flowchart generated by the automatic tool

76 CHAPTER 4. IMPLEMENTATION

Figure 4.12: Design flow for building a SoC with the BCE accelerator

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 77

the Simulink model of the whole BCE accelerator in the Matlab/Simulink environment

with the Xilinx System Generator tool (XSG). There a cycle-accurate and bit-exact sim-

ulation and testing can be performed with firmware prepared automatically based on the

algorithm described in Matlab function.

In the Xilinx Embedded Development Kit environment (EDK), the IP core of the BCE

accelerator generated by the XSG tool in a standard way is added as a peripheral into

whole system together with a processor, memories and other peripherals. The system is

synthesized and implemented in a bitstream for FPGA configuration. The final bitstream

is a representation of the hardware of the system on chip with the BCE accelerator.

The system needs a software to perform the required functions. It consists of two parts

at least. The first is an application which runs on the MicroBlaze processor. And the

BCE accelerator needs a firmware. The firmware contains sequences of operations of the

required algorithm. The sequence can be written by hand in the PicoBlaze assembler.

Newly it can be automatically generated from an algorithm in the Matlab. This generator

has been developed as apart of this thesis. Steps which have been modified for this work

are described in the following text in the same order as the design flow of building SoC

goes.

4.3.6 New Operations in the BCE Accelerator

The original BCE accelerator contains several basic vector operations, see table 4.4. Both

algorithms, EF LD-RLS and DF LD-RLS need extra operations which must be added to

the BCE accelerator if they are not to be implemented in software. And, of course, if we

are trying to improve the implementation for speed and throughput, all operations must

be as close to hardware as possible.

Both algorithms (Algorithm 1 and Algorithm 2) show which operations are required in

addition to the common operations. Both the algorithms need cumulative summation,

and the DF LD-RLS algorithm also needs comparison of a variable with a constant.

78 CHAPTER 4. IMPLEMENTATION

FP Comparator

The function for comparing two FP numbers is necessary for the DF LD-RLS algorithm.

This function can be classified as a basic operation because it works directly with two

values, and it can process them in a pipeline. The XCG tool contains this operation

for the FP arithmetic, and so it has been prepared with the tool as an IP core with

parameters shown in Table 4.5. The IP core is connected to the BCE data-flow unit

similarly as all other basic operations (ADD, MULT, DIV). The DF LD-RLS algorithm

needs this function for algorithm branching, therefore the operation has a non-standard

connection in the path data unit. The result is normally stored in the data memory if

necessary, but it also sets a new flag in the status register which is accessible to the BCE

micro-controller. The flag is used for branching in the algorithm. The generated core

FP Comparator (CMP unit) is pipelined and can process vectors. In the DF LD-RLS

algorithm we need it only to compare a scalar variable with a constant.

Slices FF 4 input LUTs Occupied Slices Block RAMs DSP48 Latency[ClC]

10 80 35 0 0 2

Table 4.5: Implementation parameters of the added FP comparator

FP Cumulative Summation

This function computes the vector of cumulative summations (CSUM) z from the input

vector a

z(i) =
i∑

j=1

a(j). (4.3)

The cumulative summation is necessary for LD-RLS algorithms, and since it can be im-

plemented in more ways, it should be analyzed for more efficient implementation in the

BCE platform. The serial implementation is directly visible from Equation 4.3 and the

first diagram in Figure 4.13. In this case, the input values are summed sequentially. The

function can also be implemented in parallel (the second diagram in Figure 4.13), but it

has worse parameters for our BCE platform than the serial form as shown in the following

analysis.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 79

Figure 4.13: Two possible implementations of the cumulative summation

(a-sequential; b-parallel)

80 CHAPTER 4. IMPLEMENTATION

The function has a data dependence in one direction (i.e. for the next output we need all

previous inputs or the last output). In a serial implementation, the next value is computed

only when the previous summation is evaluated, so the throughput of the CSUM function

is determined by the adder latency. The first result is a direct copy of the first input, thus

the delay of the operation for a vector of N numbers is

t(N) = 2 + (tadder + 1) · (N − 1) [ClC]. (4.4)

For the parallel implementation of the CSUM function in the BCE platform with one

pipelined ADD unit, when each set of summation is processed as one pipelined operation,

the delay of the operation with a vector of N numbers is

t(N) = 2 + (k · tadder) +
k−1∑
i=0

(N − 2i), (4.5)

where k is the number of sets of pipelined additions at one time.

2k < N 5 2k+1, k = b1 + log2(N − 1)c. (4.6)

These two functions can be compared by the latency of the ADD unit and the number of

summands.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000
CSUM with ADD latency = 1[ClC]

Number of summands[−]

T
im

e[
C

lC
]

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of summands[−]

T
im

e[
C

lC
]

CSUM with ADD latency = 3[ClC]

serial CSUM

parallel CSUM

Figure 4.14: Time of computation of the CSUM operation in the BCE with

one ADD unit(latency = 1 and 3 clock cycles)

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 81

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
CSUM with ADD latency = 5[ClC]

Number of summands[−]

T
im

e[
C

lC
]

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of summands[−]

T
im

e[
C

lC
]

CSUM with ADD latency = 7[ClC]

serial CSUM

parallel CSUM

Figure 4.15: Time of computation of the CSUM operation in the BCE with

one ADD unit(latency = 5 and 7 clock cycles)

A set of graphs in Figures 4.14 and 4.15 shows that the serial implementation of the

CSUM function is faster than the parallel implementation in the BCE platform with one

ADD unit if the latency is lower than 5 clock cycles, for higher latencies it depends on the

number of summands.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Number of summands[−]

T
im

e[
C

lC
]

CSUM with ADD latency = 3[ClC]

serial CSUM

parallel CSUM

Figure 4.16: Detail of the beginning of the CSUM graph with the latency

of ADD unit equal to 3 clock cycles

The graph in Figure 4.16 is a detailed view of the beginning of the graph in Figure 4.14

for the ADD latency equal to 3 clock cycles. It shows similar times for both implementa-

82 CHAPTER 4. IMPLEMENTATION

tions. The parallel realization has a non-linear dependence on the number of summands

with jump shifts with new sets of summations, i.e. after the numbers of summands (Ns)

is equal 2k. It implies that parallel CSUM is the most effective for Ns = 2k.

A general view of both realizations can be seen in Figure 4.17. The figure shows times of

computation for both implementation in relation to the number of summands and latency

of the ADD unit. The parallel CSUM is drawn with the dark surface, and the serial

CSUM has the light surface. It shows that the serial CSUM is better for an ADD unit

with low latencies. The border is depicted in the right figure, where the surfaces of the

worse implementations are shown (it is a top view of the 3D graph).

0

10

20

30

40

50 0

5

10

15

20

0

500

1000

1500

Time of computation of the CSUM function

T
im

e
of

 c
om

pu
ta

tio
n

[C
lC

]

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Figure 4.17: Times of computations for the serial and parallel CSUM. The

dark surface is a parallel CSUM and the light surface is a serial

CSUM.

The serial implementation has an advantage over the parallel implementation from the

point of view of the BCE platform. It can use one memory for input and output operands

simultaneously due to the intervals between reading the input memory when the addition

is running. The parallel implementation can use one memory for input and output only

if it skips one clock cycle between reading two input values and then the pipeline of the

ADD unit will have only 50% utilization.

The analysis shows that the serial CSUM is better for the BCE platform with one ADD

unit with the latency equal to 3 clock cycles.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 83

4.3.7 Algorithm Vectorization

The used basic BCE platform contains pipelined computing units which have the highest

throughput for operations with the longest vectors. To maximize the platform throughput

we must optimize the data and operations in the algorithm.

Extension of the BCE Data Flow Unit

The LD-RLS algorithm can be computed as two nested loops with an element-wise compu-

tation, or it can be computed in vectors and triangular matrices. The basic BCE platform

uses a DFU that works directly with vectors because of the pipelined computing units,

and the data are organized in memories sequentially. The data must always be organized

correctly in the data memories, i.e. as sequentially organized column vectors.

For this reason the DFU has been extended with programmable address counters to

process all data as vectors (as shown in Figure 4.18). This extension has been done

mainly to support triangular matrices which are necessary in the LD-RLS algorithms. For

such shapes of data the address counters don’t change the address linearly. This extension

saves space in the data memories because all variables are organized in memories as linear

vectors, and only elements with non-zero values from the diagonal and triangular matrices

are stored. Triangular matrices stored this way obviously save about half the space. But

their processing needs two nested address counters. It has a positive implication that loops

controlled in the host CPU or in the micro-controller firmware can be moved closer to the

computing units, which can save processing time.

For correct setting of both nested address counters their configuration in operations must

contain the following information

• starting element in the variable (if it is a vector or matrix),

• increment in the inner loop,

• increment of the starting offset in the outer loop,

• flags how to use the increments in the loop (don’t use, add, subtract).

84 CHAPTER 4. IMPLEMENTATION

Figure 4.18: Vectorization of the basic types of variables in column vectors

stored in the data memories. The arrows depict neighbour

elements in the corresponding representations

Thus a VLIW instruction (see Figure 4.19) has been modified to take the required con-

figurations of counters for all data memories. The figure depicts effects of the VLIW word

on a generalized double loop processed in the modified DFU. The field Dir in the VLIW

word controls multiplexers that select memories for operands O1,O2 and result R. Flags

RMode,O1Mode,O2Mode control if the counters get incremented or decremented or they

stay the same.

The second modification of the DFU done in this work is addition of multiplexers and

demultiplexers in the data path between the DFU and the data memories.

The original BCE platform supports the use of operations only with specific data memo-

ries. This solution has an advantage in a shorter critical path in the hardware design, thus

the accelerator can run with a higher clock frequency. The platform supports the function

for copying data from one memory to another, and it can compensate for the required but

missing combinations of data memory organizations. For simpler algorithms with fewer

variables this is sufficient.

In cases when the COPY function should be used many times in a complex algorithm

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 85

Figure 4.19: A new format of the internal VLIW word and its effect on the

DFU

86 CHAPTER 4. IMPLEMENTATION

(e.g. DF LD-RLS), a better solution is to change the VLIW instruction to take not

only the type of operation (COPY, ADD, MULT, ...), but also use of the data memories

(which memory will contain operands and where to store the results). Thus the VLIW

instruction will directly control the multiplexers and demultiplexers, and it will allow to

use an operation with any combination of data memories.

The solution decreases the maximal clock frequency of the BCE platform about 2 MHz

due to the longer critical path in the design (for the clock frequency of the BCE platform

62.5MHz). A benefit of this modification is a simplification for users when they have more

freedom in scheduling operations and variables in their algorithms.

The last modification of the DFU is the above mentioned feedback signal from the FP

comparator (CMP) unit. A result of the CMP unit is not only stored in the data memory

as a result of a normal operation, but it is saved as a logical (one-bit) flag in the status

word which can be read by the micro-controller. Then the firmware can use the flag to

branch the program according to its value.

All hardware modifications of the BCE platform are schematically depicted in Figure 4.20.

The next step in the design flow is generation of the IP core of the BCE accelerator in

a standard way by the XSG tool. The following text is aimed at software development

which computes the DF LD-RLS algorithm.

Figure 4.20: Diagram of the modified Data Flow Unit

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 87

4.3.8 Automatic Generator of Firmware for the BCE Platform

Software for a SoC with the BCE accelerator consists of two parts - an application in the

MicroBlaze processor and firmware for the BCE micro-controller (PicoBlaze in our case).

The firmware is originally written in assembler by hand.

The motivation to develop an automatic generator is mainly the simplification and ac-

celeration of development and implementation of algorithms in the BCE platform. Then

the generated code is errors free for any algorithm. The generator is written as a set of

Matlab functions and its input is a special form of an algorithm in a Matlab script, so

the algorithm can be tested before implementation and then implemented without manual

interventions.

Another advantage of this approach is a possibility to write a scalable algorithm as

a function of its order N , i.e. a universally written algorithm can be implemented for

different sizes of its inputs, outputs and internal states by changing the value of order N

during the generation. It is possible due to the description of variables and operations

that contain their sizes as parametric polynomial functions with the parameter N .

The whole process of generation is still so simple that it can be implemented as an

application in an embedded system where the BCE accelerator is connected. It would

enable to use such systems with other tools to automate the generation and optimization

of an accelerator.

Automated code generation for controlling the data path in the DFU unit consists of the

following steps:

• generate a data-dependence graph from the algorithm

• determine the size of variables and their lifetime in the algorithm

• place variables in the data memories according to the restrictions from the possible

data paths in hardware and the required placement (placing of variables in memories

is independent of their sizes)

• compute offsets of variables in the memories (memories can be filled with/without

the space reusing if the variable is no longer needed)

88 CHAPTER 4. IMPLEMENTATION

• generate the source code of the data path micro-controller firmware and two functions

for initiation and starting a computing step from the host CPU.

Special Form of the Algorithms in the Matlab Environment

The generation starts from a Matlab script with an algorithm written as a sequence of

operations in a special form. The generation tool can be extended with an algorithm which

converts the algorithm in a normal form to the required one. But the tool needs some

information which is not available in the normal form, e.g. a description of operations

and their relations to hardware, the relation between the size of the variables and the

algorithm order.

Inputs to the automatic generation are :

• A description of the platform data memory organization. Each data memory is

described by its size (all sizes are in units according to the implemented algorithm,

e.g. for single precision FP arithmetic it is a 32-bit word)

• A description of the operations. Each operation is described by:

– a function which represents the behaviour of the operation when it is simulated,

– a matrix of allowed combinations of transfers between data memories for ar-

guments and results. Generally, operands have a fixed order because some

operations are not commutative, therefore all allowed combinations must be

in the matrix. In the version described in the thesis this matrix is not used

because the BCE platform has been extended with mutliplexers and demulti-

plexers in data paths, and then the platform supports all combinations for all

operations. It makes one of next steps, mapping variables in the data memo-

ries, significantly simpler. An example of such a table for operation DIV and

the BCE used in the work is in Table 4.6. In the example, combinations where

memory Z is a dividend is not allowed.

– flags which indicate how many operands the function has, if the function has

a result, and if the function has a control output which is used to control

branching of the program in the firmware.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 89

operand 1 operand 2 result

A B Z

B A Z

A Z B

B Z A

Table 4.6: An example of allowed combinations of data memories for an

operation.

• A description of variables. Each variable is described by

– an identifier used in the operations,

– a type of a variable for generation of correct data vectorization in the memories

and the corresponding settings for address counters in the DFU. It can be a

scalar; column vector; row vector; diagonal matrix; lower triangular matrix;

upper triangular matrix; or full matrix.

– the length of the basic vector of the variable as a set of coefficients of polynomial

functions of N .

l(N) = a0 + a1N + a2N
2 + ...+ anN

n

The size of the variable depends on its type – for all vector-like types it is

directly the size of the variable; for a full matrix it is the length raised to the

second power; and for triangular matrices it is equal to l(l+1)
2 .

– flags which indicate if the variable is a static constant which is set only once

in the initialization phase, or if it is an input of the algorithm and must be set

from the host CPU in each algorithm cycle, or an output variable which can be

read after each cycle by the host CPU.

• A description of the algorithm as a sequence of operations. Each step is described

by

– a used operation from the defined set,

– variables used as operands and to store results,

– for each variable the description contains information for controlling the DFU

address counters – initial offsets, and relative increments of the element index

90 CHAPTER 4. IMPLEMENTATION

in the inner and outer loops,

– an increment of the number of cycles in the inner loop for each cycle in the

outer loop,

– a number of cycles in the inner and outer loops.

– a number of skipped operations if it is a control operation. The value is used

when the flag in the status word is set.

The algorithm described this way can be used directly to run the simulation of the

algorithm or to generate the code.

Generate Dependence Graphs of the Algorithm

The graph is generated as two matrices (an example of such matrices in Table 4.7) from

the algorithm. The first matrix T is the translation matrix, and it describes the control

flow in the algorithm. It is necessary because algorithms can contain branching with

conditional operations. The second matrix V establishes relations between the steps and

the variables. Each row in the matrix represents one step in the algorithm and contains

positive values in the columns where the variables are used as inputs to the operation; a

negative value is used for the output variable. The data-dependence graph is built from

these matrices, and they also show the lifetime of the variables.

The dependence graph can be generated from the matrices in these steps:

• each operation in the algorithm (row in the matrices) is a node in the graph,

• for each column where the first row i with a positive value is before the first row

j with a negative value (i < j) add a node with an input variable which must be

initialized outside the algorithm.

• for each variable marked as output add a node.

• for each column add an edge from row i in the matrix (step in the algorithm, node

in the graph) with a negative value to row j with a positive value if j > i and any

row between them doesn’t contain a negative value. It is a simplified method usable

when the algorithm doesn’t contain any branching.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 91

T =

s1 s2 s3 s4 s5

s1 1

s2 1

s3 1

s4 1

s5

V =

P1 x1 P2 x2 P3 x3 a b c d y

s1 1 2 −1

s2 1 2 −1

s3 1 2 −1

s4 1 2 −1

s5 1 2 −1

Table 4.7: Example of data-dependence graph in form of matrices. Each

row in matrix V corresponds to an operation in the algorithm

and columns represents variables.

A graph for EF LD-RLS is in Figure 4.9 and a graph for DF LD-RLS is in Figure 4.10.

The matrices are also used to map variables in the data memories as shown in the next

part.

Mapping Variables in the Data Memories

The problem with mapping variables in the data memories can be divided in two separate

problems on the condition that the sizes of the memories are sufficiently big the towards

sizes of variables. The problem can be divided because all the operations in the BCE

platform have access to the whole data memories, and we don’t use any algorithm to

balance the memory usage.

The first part is a placement of variables to a selected memory according to the operations.

The second part is a computation of offsets of the variables and it will be discussed in

92 CHAPTER 4. IMPLEMENTATION

the next subsection. Algorithms for both parts are universally usable for any number of

memories. For better clarity, we will describe the problem for the BCE platform with

three data memories (A, B, Z).

We consider that each operation has defined the data memories which can be used with

each operation. Memory selection is a mapping problem when one data memory from all

possible memories (in our case they are labeled A, B and Z) is assigned to each variable

so that all operations which work with the variable can access the selected memory for

the required purpose. We consider that the BCE platform has only such operations which

cannot use one data memory for more inputs/outputs, in other words, all variables related

to the operation are mapped to different data memories.

Because of the modified platform allows to use all operations with all data memories,

the mapping problem can be translated to the vertex coloring6 algorithm. It can be

solved with heuristic algorithm with the complete graph construction. The graph can be

constructed from the data-dependence graph in form of matrices (matrix V in Table 4.7)

in a simple way. Variables (columns in matrix V) are vertices and algorithm steps (rows

in the matrix) represent edges between variables. We can distinguish between direct and

indirect connections. The direct connection is between the input and output variables of

one operations. The indirect bond is between two inputs of the same operation. In the

current mapping algorithm both types of bonds (direct and indirect) are the same, but

we assume that we will use type of bonds in the next version of the mapping algorithm

for optimizing the solution. In the current version, the mapping algorithm only tries to

construct complete graph by the recurrent merging of variables which are interconnected

neither directly nor indirectly.

Algorithm 3 describes the heuristic algorithm used in the current version for mapping.

If dependence graph or other restrictions don’t allow to map variables to the data mem-

ories, the mapping algorithm informs about error. There isn’t implemented any algorithm

to solve or improve mapping by manipulations of operations, since it hasn’t be the aim

of the work. The algorithm will be updated in the future work. The update will add

an algorithm for solving simpler impossibilities of mapping by adding copy operation and

6Graph coloring, with coloring the vertices of a graph such that no two adjacent vertices share the same

color.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 93

Algoritmus 3: Mapping variables into data memories
Input: Data dependence matrix V of the algorithm

Output: Reduced matrix V̄ describes a complete graph. If it has more columns

than platform has data memories, variables cannot be mapped

Vm = V

Recursion:

n = number of columns of Vm
m = number of rows of Vm
prepare c a vector of zeros (size=n)

/* evaluate connectivity c for all columns, c(i) then contains number

of connected columns with the i-th column (The connectivity for

i-th column is computed as a number of columns which have a

non-zero value on one of rows where the i-th column has a non-zero

value.) */

c = evalconnect(Vm)

for i = 1 : n do

if c(i) = m then
c(i) = −1 // the column is connected with all other columns

Vm = sortcolumns(Vm,c) // sort columns according to their connectivity c(i) in

decreasing sequence

i = 1

while i < n do
a = V(:,i) // get the first column with the biggest c(i)
j = i+ 1

while j < n do

/* find the first next column b which hasn’t a non-zero value

on any row from all rows where the a has a non-zero value.

*/

b = V(:,j)

if nolinkbetween(a,b) then
// merge columns (variables) - output column will contain all non-zero

values from both columns

V = mergecolumn(V ,i,j)

go to Recursion
j = j + 1

i = i+ 1
V̄ = Vm // no other possible reduction of the dependence graph

94 CHAPTER 4. IMPLEMENTATION

another improving of the mapping algorithm will be in balancing of utilization of the data

memories.

Lifetime of Variables - Offsets in Memories

The lifetime of each variable is obtained from the matrix V as an interval between the

step when the variable is set for the first time and the step when the variable is used for

the last time. After the previous step, mapping variables in the data memories, we have

variables sorted to N lists of variables, where N is the number of data memories. For each

list, the algorithm tries to place the variable at the first empty place, and it tries to re-use

the memory if a variable is no longer used.

In the present version, the greedy algorithm is used (as listed in Algorithm 4). The

algorithm needs variables sorted according to their lifetimes and sizes. And it also needs

the current offset which is set to the beginning of the memory. Then the first variable

with the longest lifetime is placed at the current memory offset. If the variable is not

necessary in all the steps, the algorithm tries to add the next variable without overlapping

the lifetimes. All placed variables are removed from the list. If no other variable can be

added, then the current offset is increased and the algorithm repeats until all variables are

placed or the current offset exceeds the size.

Lifetimes of all variables in the EF LD-RLS algorithm are shown in Figure 4.21.

Placement in the data memories generated with Algorithm 4 is shown in Figure 4.22.

A note to the mapping algorithm

The mapping algorithm uses a heuristic algorithm for vertices coloring and then more

solutions are possible. The implemented EF LD-RLS algorithm is an example, it can be

mapped in two ways, when a part of the dependence graph has too few restrictions. The

variables in the part can be mapped to more data memories as shown in Figure 4.23.

In the figure boxes represent operations and ellipses are variables (letters in brackets are

mapped memories). Variables with bigger labels can be mapped into two memories.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 95

Algoritmus 4: Mapping variables inside the memories (computation of memory

offsets)
Input: V = list of variables with their properties

sort V according to their lifetimes and sizes respectively

n = size of V

Vi.offset = 0,∀i ∈ 1, ..., n

og = 0 (set the global offset to the beginning of memory)

prepare L = an array of zeros (size = the number of time steps)

prepare C an empty list of variables with currently assigned offsets

while V is not empty do
f = V1 (get the first variable)

set Lj = 1,∀i ∈ lifetime(f)

f → C (add the variable to working list)

while Lj 6= 1, ∀j and all unassigned variables haven’t been tested do
get the next unassigned variable n

if the lifetime of n is only in the unmarked time steps in lw then
add the variable n to the list vw
mark the time steps in lw as used according to the lifetime of n

assign the global offset og to all variables in the working list lw
increase og with the greatest size of all the variables in lw

96 CHAPTER 4. IMPLEMENTATION

c1 mu mu2 d L D f g hp h gs gl hl hff Dupd Lupd LtmpD1tmp
0

2

4

6

8

10

12

14

16

18

Variables

S
te

p
of

 a
lg

or
ith

m

Lifetime of all variables

Figure 4.21: Lifetimes of all variables in the EF LD-RLS algorithm

c1 mu L D hp, hl d, h, Dupd, Lupd, D1tmpg, gl mu2 f, hff, Ltmp gs
0

2

4

6

8

10

12

14

16

18

Variables separated to data memories

S
te

p
of

 a
lg

or
ith

m

Lifetime and placement of all variables

Figure 4.22: Lifetimes and placement of all variables in the EF LD-RLS

algorithm. The greedy algorithm was used to place variables.

The left, middle and right part of the figure shows variables

placed in data memories A,B and Z respectively.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 97

(A) c1

#9-copy

(A) mu

#8-add

(Z) mu2

#13-div

(B) d

#1-dprod

(A) L

#5-mult

#15-copy

(A) D

#2-mult

#10-mult

#12-copy

(Z) f

#3-mult

#7-mult

(B) g

(A) hp

#4-csum

(B) h

(Z) gs

#6-csum

(B) gl

(A) hl

#14-div

(Z) hff

#11-div

(B) Dupd

(B) Lupd

#16-sub

(Z) Ltmp

(B) D1tmp

(A) c1

#9-copy

(A) mu

#8-add

(B) mu2

#13-div

(B) d

#1-dprod

(A) L

#5-mult

#15-copy

(A) D

#2-mult

#10-mult

#12-copy

(Z) f

#3-mult

#7-mult

(B) g

(A) hp

#4-csum

(Z) h

(Z) gs

#6-csum

(B) gl

(A) hl

#14-div

(B) hff

#11-div

(Z) Dupd

(Z) Lupd

#16-sub

(B) Ltmp

(Z) D1tmp

Figure 4.23: Data dependence graph of EF LD-RLS with two possible map-

ping of variables

98 CHAPTER 4. IMPLEMENTATION

The current version of the mapping tool finds the first possible mapping, but it can

be worse than another. It can have significant influence on the occupation of the data

memories. Figure 4.24 shows occupied data memories on the algorithm order. It depicts

how the change of the placement of seven variables reduces occupied space by half. In

case of the EF LD-RLS algorithm, the change of placement doesn’t increase order of the

algorithm because occupied space in all three memories must be lower than size of memory

(straight line in the figure), and the second mapping (Figure 4.23) decreases size of used

space only in one memory.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400
Occupied space by variables in each data memory

Order [−]

S
iz

e
[w

or
ds

]

size of the memories

var.1, memory A

var.1, memory B

var.1, memory Z

var.2, memory A

var.2, memory B

var.2, memory Z

Figure 4.24: Space in the data memories occupied by variables in EF LD-

RLS for two possible mappings

This issue is not considered in this version of the mapping tool. The tool only tries map

variables with the required order, and it returns an error message if the variables cannot

fit in the memories. Then steps to correct the graph can be done by hand.

Generate the Source Code for the Micro-Controller (BCE Firmware)

When the variables are mapped to the platform data memories, the source code of the

micro-controller firmware can be generated as described in the next paragraphs.

The source code of the firmware is generated from the algorithm (represented as a se-

quence of operations with specified variables as operands and results); array of the mapping

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 99

variables to data memories and assigned offsets where are all variables placed. The gen-

erator produces codes which are sequences of macro-instructions. Each macro-instruction

consists of the following parts

• preparing the VLIW instruction,

• waiting for the DONE signal until the previous operation is finished,

• sending the VLIW instruction to the DFU unit which starts the current operation,

• if it is a control operation (e.g. comparison in the DF LD-RLS algorithm) then

wait for the DONE signal and use the result of the operation for branching in the

program.

This sequence minimizes the total time of the whole algorithm, because the firmware

processes these macro-instructions simultaneously with the computation in the DFU unit.

Only if an operation is too short (an operation on too short data vectors), the hardware

must wait until the micro-controller prepares the next VLIW instruction.

The source code for the used micro-controller PicoBlaze3 (PB) can be compiled to the

binary code with the Xilinx tool KCPSM3 or with the open source tool picoasm. The

original tools support only compilation to ROM memories as a VHDL code. We use the

picoasm tool with some modifications. Besides the VHDL code it generates also a C code

with the firmware in the form of a static array, and a Matlab function which can be used

to simulate the hardware in the Matlab environment.

Generate a Source Code for the Host CPU

The developed tool also automatically generates a source code of two functions for the host

CPU which communicates with the BCE platform through the data and control memories.

The CPU accesses the accelerator data memories directly, and therefore the procedure in

C must be generated from the same array of variables as the firmware.

The first function initiates all variables marked to pre-set. This function should be called

from an user application only one when computation is initiated. The example in the

following listing is generated from EF LD-RLS algorithm for three estimated parameters.

100 CHAPTER 4. IMPLEMENTATION

/* bce_init - initiate algorithm */

int bce_init(wal_worker_t *worker, float *p_c1, float *p_mu,

float *p_mu2, float *p_L, float *p_D)

{

int res = WAL_RES_OK;

res |= wal_mb2dmem(worker, 0, 0, 0, p_c1, 1); /* initiate variable ’c1’ */

res |= wal_mb2dmem(worker, 0, 0, 1, p_mu, 1); /* initiate variable ’mu’ */

res |= wal_mb2dmem(worker, 0, 2, 0, p_mu2, 1); /* initiate variable ’mu2’ */

res |= wal_mb2dmem(worker, 0, 0, 2, p_L, 10); /* initiate variable ’L’ */

res |= wal_mb2dmem(worker, 0, 0, 12, p_D, 4); /* initiate variable ’D’ */

return res;

}

The second function writes all input variables in the data memories, runs the accelerator,

then it waits until the accelerator finishes, and then it reads all output variables from the

data memories.

/* bce_cycle - compute one cycle of the algorithm */

int bce_cycle(wal_worker_t *worker, float *p_d, float *p_pars)

{

int res = WAL_RES_OK;

res |= wal_mb2dmem(worker, 0, 1, 0, p_d, 4); /* set input variable ’d’ */

res = wal_start_operation(worker, WAL_PBID_P0); /* start algorithm in the accelerator */

if (res!=WAL_RES_OK) return res;

res |= wal_pb2mb(worker, NULL); /* wait for sync end of algorithm */

res |= wal_pb2mb(worker, NULL);

res |= wal_end_operation(worker);

res |= wal_dmem2mb(worker, 0, 1, 0, p_pars, 3); /* get parameters */

return res;

}

Then the main part of the user application can be

wal_worker_t *worker;

...

wal_init_worker(worker);

bce_init(worker, &c1, &lmb, &lmb2, &L, &D);

...

while(running) {

/* measure data to ’d’ */

bce_cycle(worker, float &d, &pars);

/* use estimated parameters from ’pars’ */

}

...

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 101

The generated codes use a special low-level library for communication with the accel-

erator. The library Worker Abstraction Layer (WAL) has been developed to simplify

and unify access to hardware accelerators based on UTIA DSP platform from user ap-

plications, in other words it offers unified Application Programming Interface (API). The

library WAL has been developed for European project SMECY and for this thesis.

The library is too close to hardware and therefore it is divided into two parts - common

API for using in applications and low level functions specific for each worker. This concept

allows to use the same functions in user application for accelerators (based on the concept

of the UTIA DSP platform) with various differences, e.g. different size and number of

data and control memories, different functions and different format of the VLIW instruc-

tion. The common API hides differences between workers and it is very easy to use in

applications. Following steps must be done:

1. Add library to compilation process

2. Include header files of the library

3. Define worker structure or use the macro WAL REGISTER WORKER

4. Initiate worker

5. Use worker (set worker firmware, run operations, ...)

Testing and Simulation

The generated firmware can be tested and simulated directly in the Matlab/Simulink

environment on the initial model used to generate the IP core with the BCE platform.

The XSG tool with Simulink provide a bit- and cycle-accurate simulation.

The model must be modified to initialize all memories of the accelerator. The EDK

block in the model was replaced with a subsystem (Figure 4.25) with the second instances

(Figure 4.26) of dual-ported memories used in the platform. This instances have contents

initialized with Matlab functions. The memories with the micro-controller firmware are

initiated by function directly generated from the automatic tools. The data memories can

102 CHAPTER 4. IMPLEMENTATION

be initiated also from the automatic generator which contains placement of variables in

data memories.

Figure 4.25: Simulink model for testing platform firmware

Figure 4.26: Simulink model for testing platform firmware - detail of init

memories

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 103

Summary of implementation methodology

The implementation methodology for the UTIA DSP platform was described in this chap-

ter. The methodology was improved during the thesis and the improvement is based on

an automation of the development process in preparing firmware for the platform and

software for the host CPU. The affected step in the development process is highlighted in

Figure 4.27 which is schematically redrawn Figure 4.12.

Figure 4.27: Schematic of the implementation methodology for the UTIA

DSP platform

The improvement speedup of the implementation development. From experience the

implementation of the firmware for EF LD-RLS by hand consumed about 20 hours, when

the most of the time took placement of variables in the data memories and coding in the

PicoBlaze assembler. The improvement of the development consumed about 30 minutes,

when the algorithm in the Matlab environment had to be transformed to a special form.

4.3.9 Use SIMD Mode of the BCE platform for DF LD-RLS

In this section a possible use of the BCE platform in SIMD mode is discussed. The platform

can work as a SIMD with more DFUs and computation units, hence in the following part

we try to contemplate if the DF LD-RLS algorithm can be modified to use this feature.

The basic platform can be prepared with one common control part of the data flow unit

and more identical computing parts of the data flow unit, each computation part having

its own data memories. The control of all the computing units is provided by one firmware

in the common micro-controller (see Figure 4.28).

104 CHAPTER 4. IMPLEMENTATION

Figure 4.28: BCE in SIMD configuration

It highly increases the data throughput, but this feature cannot be used in all situations.

The main condition to use the SIMD mode is when an algorithm is compact. It means

such an algorithm which can process uniformly all data channels.

The DF LD-RLS algorithm contains branches that depend on processing the data, there-

fore the algorithm in the presented form cannot use the SIMD mode for simultaneous

computation of independent data channels. Several changes in the algorithm must be

done to implement it on SIMD for independent data channels.

The branching should be changed to operations whose results will be saved as new vari-

ables in the data memory. The variable should influence all operations in individual

branches in the algorithm. It means the algorithm should execute the code in all the

branches, and only the results of the valid branches should be used in the common parts.

4.3. IMPLEMENTATION ON THE UTIA DSP PLATFORM 105

The following code demonstrates this approach.

common part

btest = {
1 if A less B

0 if A ≥ B

branch A

...

CA = btest · ...
branch B

...

CB = (1− btest) · ...
common part

C = CA + CB

Such modifications for some algorithms need not be possible or profitable. Generally this

method of using SIMD for algorithms with branching is practically usable for algorithms

with few operations in branches.

We can try to use SIMD partially, it can be helpful in the case when we need to identify

systems with the same inputs and more outputs. But it is usable only for systems which

can be modeled with the Moving Average models, i.e. systems without dependence on

previous output values. For these systems the common part of the L and D matrices

is computed in one data flow unit, and then the estimated parameters for all outputs

are computed simultaneously in the SIMD mode. In this case the structure of the BCE

platform must be modified to a new structure (see Figure 4.29) where the common micro-

controller controls one data flow unit (master) by the VLIW instruction. With a special

instruction or with an added signal in VLIW instruction it can control all data-flow units

together. Such a layout of the accelerator needs an extra shared memory at least. Or one

of the data memories of each data flow unit wouldn’t be connected to the system bus and

the host CPU, but it would be shared with the master unit.

Theoretically, the proposed hybrid SISD/SIMD mode can be used for DF LD-RLS in

these cases

• N independent channels with the same number of inputs and outputs (the structure

of the identified system doesn’t matter). It can be used with a modified algorithm

106 CHAPTER 4. IMPLEMENTATION

Figure 4.29: Modified BCE for switchable SISD/SIMD mode

with branches transformed to variables. Practically, for DF LD-RLS it is not of

much use.

• N independent outputs of the MA models (FIR filters) with common inputs. It can

be used with the hybrid SISD/SIMD mode of the BCE platform. In the common part

the pre-computation of the ζ and update of the common part of L and D matrices

are done, then parameters estimated separately can be computed in parallel. It can

rapidly increase the throughput for filters with long data vectors. Practically, this

organization is suitable for arrays of sensors.

For the presented reasons, using of SIMD for the DF LD-RLS algorithm is not too

practical except in special cases when the parameters of a set of FIR filters with the same

inputs are estimated.

4.4 Implementing a Systolic Array with the BCE Platform

This section discusses a conceptual proposal to use the BCE platform to build a systolic

array. This concept hasn’t been verified in a real hardware or in a simulator, it is only a

theoretical contemplation.

4.4. IMPLEMENTING A SYSTOLIC ARRAY WITH THE BCE PLATFORM 107

The previous works with both architectures instigate us to use BCEs as processing ele-

ments in any structure based on systolic arrays. Such a structure can be one of the next

steps in the development of the BCE platform.

4.4.1 Structure of a Systolic Array with BCE Accelerators

The concept is based on high configurability of the BCE platform and its preparation in

the high level Matlab/Simulink environment. It allows to add more data memories to the

DFU unit, and so each BCE platform (as a processing element in the array) can have as

many neighbours as it needed (see Figure 4.30).

Figure 4.30: An example of the proposed concept of a systolic array with

BCEs as Processing Elements

The data memories will be used as data links between the neighbouring PEs, and they

will be able to transfer data in both directions. Outer memories which are used for the

incoming and outgoing data, will be connected to the memory bus of the host system -

system on chip.

A potential problem is the notification when new data sent to neighbours. Some notifi-

cation flag must be added for each link and each direction.

Another potential problem is the proposed structure of the SA. Systolic arrays are based

on fast and short links between PEs, but with a shared dual-port memory as a link between

PEs all data can be stored and read with a limited speed - one word per clock cycle. Of

108 CHAPTER 4. IMPLEMENTATION

course the PEs can process data as a pipelined vector - the notification flag informs that

the first value is written in memory and then the second PE can read the first value while

the second is written by the first PE. This method supposes that both PEs run at the

same sample rate.

The Logic of the flag can be as follows. Let’s assume two PEs, one is a transmitting

PE and one is a receiving PE. The transmitting PE has prepared data for the receiving

PE. There is also one dual-port data memory between the PEs. The data memory is the

common memory for all variables transfered between the PEs, and each variable has its

specific position in the memory. Each variable also has a notification flag located in the

data memory

At first, the transmitting PE checks the notification flag of the variable to detect if the

receiving PE has already processed the previous value of the variable. If the flag is set,

the transmitting PE can wait or perform another computation. If the flag is cleared, the

variable has been stored in the data memory and the flag set. When the receiving PE

reads the data, it will clear the flag (also if it no longer requires the data).

The computation in the current BCEs are started by the flags in the control register

which are controlled by the host CPU. BCEs in systolic arrays should be started by the

notification flags from their neighbours. In the BCE firmware all these notification flags

should be tested to wait for all input variables necessary for the computation.

4.4.2 SoC with a Systolic Array

From the point of view of an entire system, it is impractical to connect each PE directly

to the system bus like a BCE unit is normally connected.

The solution can be to use a special module which can be called a PE concentrator.

It would be able to read the status register and write the control register of all BCEs

in a systolic array. It would also upload the firmware to all BCEs. For these purposes

it would have a one-way bus to broadcast the firmwares to more PEs at the same time

and point-to-point links with each PE to enable firmware loads and to set or read the

control/status registers.

The computation at the first BCE is started by the host CPU, by MicroBlaze in the case

4.5. SUMMARY 109

Figure 4.31: An example of the proposed concept of the PE concentrator

of our platform. Individual PEs in the systolic array start to compute when they have

all their input data ready. In this concept, the notification flags described above notify

that the data have been prepared and so the host CPU or another peripheral must set the

notification flags in addition to the input data to start the computation.

4.5 Summary

Two possible implementations of the RLS algorithm based on the LDU decomposition

with exponential and directional forgetting were designed and described in this chapter.

The first implementation was designed for a triangular-shaped systolic array with O(n) =
n(n+1)

2 processing elements. The implementations demonstrate strong data dependences

in the DF LD-RLS algorithm.

The main part of the chapter deals with an implementation of algorithms in the Basic

Computing Element (BCE) accelerator with floating-point pipelined computing units. The

platform is a vector accelerator for SoCs in FPGAs. It allows to change its accelerating

function by program in the host CPU. Both the implemented algorithms require basic

operations which the original platform doesn’t provide, therefore the platform has been

expanded with these operations.

The operation cumulative summation (CSUM) was analyzed to select the better of two

possible implementations of the CSUM function. The original accelerator has also been

110 CHAPTER 4. IMPLEMENTATION

expanded with a crossbar switch between the data memories and the computing units. It

enables to access all memories from all functions in the accelerator, and so implementations

of algorithms are simpler and faster. A support for processing two nested loops for com-

putations with diagonal and triangular matrices has been added. The last modification is

the support of algorithms with branches.

The implemented algorithms were reordered to a suitable form for the vector architecture

by hand. Then the following implementation steps were done automatically by a newly

developed tool. The tool generates firmwares from algorithms written in the Matlab

environment. It maps variables of an algorithm to the accelerator data memories, and it

also computes the maximal possible order N of the algorithm.

At the end of the chapter possible implementation of the DF LD-RLS on a SIMD archi-

tecture has been discussed. The result of the analysis was that such an implementation is

useful only for identification of a system which can be modeled by more MA models (FIR

filters) with identical inputs. Then their parameters can be identified partially in parallel.

A structure of a systolic array has also been proposed that uses BCEs as processing

elements. Its potential implementation has been discussed to resolve problematic issues.

Chapter 5

Results of the Implementation and

Experiments

This chapter summarizes some properties of the implemented hardware accelerator. Pa-

rameters of the modified BCE platform and LD-RLS algorithms implemented in the UTIA

DSP platform will be presented. Then the chapter will continue with several test cases.

5.1 The Modified BCE Platform

One of the comparable parameters for IP cores in an FPGA is the amount of resources

required to implement the core in hardware. These values determine the occupied area of

the chip and they depend on the configuration of the core and the FPGA device used.

All results presented in this section have been obtained from an implementation in a

Xilinx ’Embedded Development HW/SW Kit - Spartan-3A DSP S3D1800A MicroBlaze

Processor Edition’ with Xilinx FPGA XC3SD1800A. The implementation has been real-

ized with these tools: Mathworks Matlab/Simulink R2008b, Xilinx ISE Design Suite 11.4

(Xilinx CORE Generator, Xilinx System Generator, Xilinx Embedded Development Kit).

The embedded system used for testing consisted of the 32-bit CPU MicroBlaze, 32KB

SRAM, 128MB DDR SDRAM and peripherals: LEDs, buttons, timer, RS232.

The BCE accelerators have been prepared with the single precision FP computing units

111

112 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

ADD, MULT, DIV and furthermore the modified accelerator also used a CMP unit. Both

versions had three data memories, each for 1024 values.

The resources required for the modified accelerator are shown in Table 5.1. The table

also contains resources required for the original accelerator. The values are for the whole

accelerators as pcore peripherals directly connected to the MicroBlaze SoC. The third

column in the table contains values for the MicroBlaze SoC without any accelerator.

Resource Classic BCE Modified BCE MicroBlaze SoC

Occupied Slices 2729 2848 8442

Slice Flip Flops 2381 2483 7119

4 input LUTs 4593 4837 11115

Block RAMs 10 10 34

DSP48 0 0 8

Table 5.1: The resources for the modified BCE accelerator with SP FP

units

Figure 5.1: Floorplan of a SoC in an FPGA (Xilinx Spartan-3A DSP 1800)

with both the BCE accelerators. The original accelerator is in

green and the modified accelerator is in yellow

Modifications of the BCE accelerator require about one hundred more slices. It contains

5.1. THE MODIFIED BCE PLATFORM 113

an additional CMP unit, multiplexers to data memories in the data path and additional

complex address counters with an extended format of the VLIW word. The maximal

clock frequency of the modified BCE accelerator in this implementation was 69.7 MHz.

The floorplan of the implemented system-on-chip can be seen in Figure 5.1. The system

contains both the BCE accelerators, the original one (in green in the figure) and the

modified one (in yellow in the figure).

The DF LD-RLS algorithm is not implemented as a classical stand-alone IP core, but it

is implemented as a function of the modified UTIA DSP platform, i.e. it is a firmware

for the modified BCE accelerator. Therefore the required resources are not appropriate

parameters to describe such an IP core.

Much better and comparable parameters between accelerators based on the BCE platform

can be: space required for the firmware; space required for variables in data memories; time

to compute one pass of the algorithm; the maximal order of the algorithm (RLS order)

with the same space in the data memories. These parameters for the two implementations

described above are shown in Table 5.2.

Parameter EF LD-RLS DF LD-RLS

The size of the firmware[instr.words] 395 583

The maximal order of RLS 31 29

The time of one cycle (max.order) [ClC] 7340 9850 / 48751

Occupied space in all three data memories

together (max.order) [FP numbers] 2886 2361

Table 5.2: The BCE accelerator with SP FP units

The first parameter, the size of the firmware, is directly proportional to the algorithm

complexity. It is an important parameter mainly to check if the algorithm can be imple-

mented in the micro-controller program memory.

The maximal number of estimated parameters is the second parameter. It is given by

the distribution of variables in the data memories and, of course, by their sizes which

depend on the order of the RLS algorithm. The distribution of the variables in the data

1The first number was measured for sufficiently excited inputs when the parameters were updated; the

second one was measured when the parameters weren’t updated

114 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

memories is given by the computed algorithm and by the mapping of the variables in the

memories which was done automatically by both parts of the mapping process. The value

is relatively low because the BCE platform in the used version has only 3× 1024 memory

words, and the modification of the platform has been aimed at allowing the computation of

the LD-RLS algorithm with minimal changes. The LD-RLS algorithms need to store the

triangular matrix L and the diagonal matrix D, which is a vector, and because operations

in the platform don’t allow to use one memory for inputs and outputs, these two matrices

must be duplicated in the memory to be able to update them. From this point of view the

storage of the L and D matrices consume one whole memory for the order of the algorithm

equal to 31 (matrices L and D occupy exactly 992 words for 30 estimated parameters).

If we increase the size of the memories twice, the order can be increased only up to 42

estimated parameters, because the size of the variables L, gs, gl, hl in both algorithm grows

with n(n−1)
2 .

The value in the table was reached by the mapping algorithm which tried to reuse the

empty space after releasing other variables. For both algorithms, this strategy increases

the maximal order by one parameter against the simple strategy when all variables occupy

the whole space in memory all the time.

The number of clock cycles has been taken from a cycle-accurate simulation with real

values as described in the chapter about implementation. The time of one cycle, shown

in Table 5.2, isn’t used for comparison with other implementations because it does not

include communication with the host CPU or acquisition of new data. The communication

contains mainly waiting for DDR memory where all data in the system were stored. This

waiting cannot be predicted especially if a cache memory is used. Therefore all times

presented in the next part are measured for storing the input data in the data memories

in the accelerator and getting the output data from the data memories. The time of one

cycle from Table 5.2 can be used as a teoretical boundary if the communication with CPU

and data transfers don’t take any time.

5.2. LD-RLS ALGORITHMS ON THE UTIA DSP PLATFORM 115

5.2 LD-RLS Algorithms on the UTIA DSP Platform

5.2.1 EF LD-RLS Accelerator

Figure 5.2 shows the averages of the measured times of computation one pass of the EF

LD-RLS algorithm. The times are measured with transferring data from the CPU to the

accelerator before computation and reading the data from the accelerator to the CPU

after the computation.

It can be seen that the HW accelerator is faster for a system with six or more parameters.

For a system with fewer parameters the algorithm in software is quicker, it is because the

accelerator is pipelined. Transferring data from the system memory (DDR SDRAM) to

accelerator memories and the initiation of pipelines in operations takes much time than

computation in system CPU.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Order [−]

T
im

e
[s

]

Time of one cycle of EF LD−RLS

EF LD−RLS in BCE accel.
EF LD−RLS in SW
EF LD−RLS in SW with FPU

Figure 5.2: The computation time of one pass of the EF LD-RLS algorithm.

Figure 5.5 shows how the performance increases with the growing number of parameters.

It’s because the utilization of pipelined computing units is higher.

116 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

−3

Order [−]

T
im

e
[s

]
Time of one cycle of EF LD−RLS

EF LD−RLS in BCE accel.
EF LD−RLS in SW
EF LD−RLS in SW with FPU

Figure 5.3: The lower segment of the chart in Figure 5.2.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

Order [−]

F
LO

P
s

[−
]

Number of FLOPs in EF LD−RLS algorithm

HW MULT

HW ADD

HW DIV

HW all

SW MULT

SW ADD

SW DIV

SW all

Figure 5.4: The number of FP operations in hardware and software imple-

mentation of the EF LD-RLS algorithm in UTIA DSP platform

5.2. LD-RLS ALGORITHMS ON THE UTIA DSP PLATFORM 117

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Order [−]

P
er

fo
rm

ac
e

[M
F

LO
P

S
]

Performace of EF LD−RLS (FP32M24)

EF LD−RLS in BCE accel.

EF LD−RLS in SW with FPU

Figure 5.5: Accelerator performance for the EF LD-RLS

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Order [−]

S
pe

ed
−

U
p

[−
]

Speed−Up of Computation of the EF LD−RLS

Figure 5.6: Accelerator speed-up for the EF LD-RLS

118 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

The last Figure 5.6 shows speed-up of the hardware accelerator against computation in

software with FP co processor. For computation in software without FPU the speed-

up is about hundred times better than for software with FPU. The speed-up is so low

because the algorithm of EF LD-RLS is not suitable for BCE accelerator due to high data

dependencies in LD-RLS algorithms.

5.2.2 DF LD-RLS Accelerator

Figure 5.7 shows the averages of the measured times of computation one pass of the DF

LD-RLS algorithm. The times are measured with transferring data from the CPU to the

accelerator before computation and reading the data from the accelerator to the CPU

after the computation. The computation is more complicated, therefore the hardware

accelerator is faster from the computation in software from two estimated parameters.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Order [−]

T
im

e
[s

]

Time of one cycle of DF LD−RLS

DF LD−RLS in BCE accel.

DF LD−RLS in SW

DF LD−RLS in SW with FPU

Figure 5.7: The computation time of one pass of the DF LD-RLS algo-

rithm.

5.2. LD-RLS ALGORITHMS ON THE UTIA DSP PLATFORM 119

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

−3

Order [−]

T
im

e
[s

]
Time of one cycle of DF LD−RLS

DF LD−RLS in BCE accel.
DF LD−RLS in SW
DF LD−RLS in SW with FPU

Figure 5.8: The lower segment of the chart in Figure 5.7.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Order [−]

F
LO

P
s

[−
]

Number of FLOPs in algorithm

HW MULT

HW ADD

HW DIV

HW all

SW MULT

SW ADD

SW DIV

SW all

Figure 5.9: The number of FP operations in hardware and software imple-

mentation of the DF LD-RLS algorithm in UTIA DSP platform

120 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

0 5 10 15 20 25 30
0

5

10

15

20

25

Order [−]

P
er

fo
rm

ac
e

[M
F

LO
P

S
]

Performace of DF LD−RLS (FP32M24)

DF LD−RLS in BCE accel.

DF LD−RLS in SW with FPU

Figure 5.10: Accelerator performance for DF LD-RLS

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Order [−]

S
pe

ed
−

U
p

[−
]

Speed−Up of Computation of the DF LD−RLS

Figure 5.11: Accelerator speed-up for DF LD-RLS

5.3. TEST CASES 121

5.3 Test Cases

Both the algorithms EF LD-RLS and DF LD-RLS were tested with several cases of adap-

tive identification. In this section some of them are presented for illustration

• System identification

• Slow parameter tracking

• Fast parameter tracking

Parameters and input signals for all cases were generated automatically, therefore the

charts don’t show the main advantage of the directional forgetting which is ability to

avoid windup when inputs are not sufficiently excited. It can be seen in the case with fast

time-varying parameters.

5.4 Summary

This chapter summarizes some of parameters of the modified BCE accelerator. In compar-

ison with the original BCE accelerator it provides more flexibility and usability. Presented

charts with performances of the implementated LD-RLS algorithms show that algorithms

with high data dependencies are not suitable for pipelined architectures and their speed-

ups are not so significant.

122 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3

−2

−1

0

1

2

3

4

Time sample [−]

u,
y

Course of u,y for System Identification

u1
u2
y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−60

−50

−40

−30

−20

−10

0

Time sample [−]

S
ys

te
m

 E
rr

or
 N

or
m

 [d
B

]

System Error Norm for System Identification

EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time sample [−]

Θ
1

Estimation of parameter Θ
1
 for System Identification

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time sample [−]

Θ
2

Estimation of parameter Θ
2
 for System Identification

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

Figure 5.12: Test case: System identification - Evolution of parameters

5.4. SUMMARY 123

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

20

Time sample [−]

u,
y

Course of u,y for System Identification with insufficient input

u1
u2
y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−70

−60

−50

−40

−30

−20

−10

0

10

Time sample [−]

S
ys

te
m

 E
rr

or
 N

or
m

 [d
B

]

System Error Norm for System Identification with insufficient input

EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Time sample [−]

Θ
1

Estimation of parameter Θ
1
 for System Identification with insufficient input

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Time sample [−]

Θ
2

Estimation of parameter Θ
2
 for System Identification with insufficient input

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

Figure 5.13: Test case: System identification with insufficiently excited in-

puts

124 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time sample [−]

u,
y

Course of u,y for Tracking slow time−varying parameters

u1
u2
y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−35

−30

−25

−20

−15

−10

−5

0

Time sample [−]

S
ys

te
m

 E
rr

or
 N

or
m

 [d
B

]

System Error Norm for Tracking slow time−varying parameters

EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time sample [−]

Θ
1

Estimation of parameter Θ
1
 for Tracking slow time−varying parameters

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time sample [−]

Θ
2

Estimation of parameter Θ
2
 for Tracking slow time−varying parameters

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

Figure 5.14: Test case: Tracking slow time-varying parameters

5.4. SUMMARY 125

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

0.5

1

1.5

Time sample [−]

u,
y

Course of u,y for Tracking fast time−varying parameters

u1
u2
y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−30

−25

−20

−15

−10

−5

0

Time sample [−]

S
ys

te
m

 E
rr

or
 N

or
m

 [d
B

]

System Error Norm for Tracking fast time−varying parameters

EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time sample [−]

Θ
1

Estimation of parameter Θ
1
 for Tracking fast time−varying parameters

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time sample [−]

Θ
2

Estimation of parameter Θ
2
 for Tracking fast time−varying parameters

True value
EF LD−RLS in SW
EF LD−RLS in HW
DF LD−RLS in SW
DF LD−RLS in HW

Figure 5.15: Test case: Tracking fast time-varying parameters

126 CHAPTER 5. RESULTS OF THE IMPLEMENTATION AND EXPERIMENTS

Chapter 6

Conclusion

The thesis deals with an implementation of the recursive least squares based on the LDU

decomposition (LD-RLS) with directional forgetting.

Today’s implementations of adaptive algorithms use mainly the least mean square (LMS)

algorithms for their simplicity and low computational complexity which result in high

speed and throughput. RLS algorithms aren’t so often used, and if so, they use mainly

QR decomposition with exponential forgetting for parallel signal processing applications.

The LD-RLS algorithm is interesting for control applications to identify an unknown

system or to track time-varying parameters. It is interesting because its solution directly

contains the estimated parameters and their uncertainties can be evaluated in a simple way.

The next advantage is the possibility to use a priori information about the identified system

and its parameters. From the point of view of the implementation this algorithm has an

advantage that it doesn’t need to compute the roots. The disadvantage of the LD-RLS

algorithm is its higher computational complexity than for LMS and more complicated data

dependences in the algorithm. The complexity of the LD-RLS with exponential forgetting

is O(n) = 7
2n

2 + 13
2 n− 3 FLOP, where n is the number of parameters.

Directional forgetting (DF) was devised 25 years ago, but it is completely omitted in

current implementations of RLS algorithms. The idea of the directional forgetting is to

discard only part of the old information which is replaced by a new information in new

data. From the point of view of the implementation the complexity of the DF LD-RLS

127

128 CHAPTER 6. CONCLUSION

algorithm is O(n) = 6n2 − 2n FLOP.

Two possible implementations of the EF LD-RLS and DF LD-RLS algorithms were

designed and described in the thesis. The first implementation was designed for a systolic

array with O(n) = n(n+1)
2 processing elements. It demonstrated the high data dependences

in the EF LD-RLS and DF LD-RLS algorithms.

The second implementation described in this thesis used concept of the vector-like UTIA

DSP platform which has been developed recently. The basic version of the platform is the

Basic Computing Element(BCE) which is a flexible, re-programmable and reconfigurable

hardware accelerator with pipelined floating-point operations for addition, multiplication,

division, multiply-accumulate and dot product. The platform had to be modified in hard-

ware for the implementation of the EF LD-RLS and DF LD-RLS algorithms. The platform

was expanded with new operations for comparison and cumulative summation. The two

possible implementations of the cumulative summation operation were analyzed to choose

implementation better for the BCE platform. The platform was also expanded with a

crossbar switch between the data memories and the computing units. It enabled to ac-

cess all memories from all computing units. The support for the second nested loop was

also added to the platform. The last, but for the DF algorithm the most important,

modification was the support for algorithms with branches.

The implemented algorithms were reordered to a suitable form for the vector architecture

by hand. All the following implementation steps were done automatically by a newly

developed tool. The tool maps variables of an algorithm to the accelerator data memories.

Then it generates firmware for the platform and code for the host CPU from an algorithm

written in the Matlab environment. The generated code for the host CPU communicates

with the platform through a specially developed library WAL which unifies the access to

different accelerators based on the UTIA DSP platform. The platform was integrated in a

system on a chip with the soft-core processor MicroBlaze in an FPGA. The prepared SoC

contains one accelerator based on the modified BCE platform with switchable EF LD-RLS

and DF LD-RLS algorithm with the maximal order N = 31 or N = 29 respectively.

When we studied existing papers about RLS algorithms, we found that many authors

compared their new adaptive algorithms or modifications with others by using a uniform

value of the forgetting factors, and they didn’t analyze which value of the forgetting

129

factor should be used. A simple method was proposed to ensure that algorithms with

different forgetting methods are certainly comparable. The method is based on searching

the ”optimal” value of the forgetting factor (or ”optimal” values of all factors used in the

forgetting algorithm) separately for each algorithm.

Objectives Revisited

The dissertation objectives are briefly reviewed and the results reached are presented:

• To summarize theoretical background for implementation of recursive least squares

based on the LDU decomposition with directional forgetting.

Theoretical background for the implementation of the EF LD-RLS and DF LD-RLS

has been described in Chapter 2 and Chapter 3.

• To design a structure of LD-RLS with directional forgetting mapped to an architec-

ture based on systolic arrays.

In the first part of Chapter 4, specifically in Section 4.2, description of proposed

structure of a systolic array for EF LD-RLS and DF LD-RLS has been presented.

• To extend the vector-like UTIA DSP platform with functions for implementing LD-

RLS with directional forgetting.

The UTIA DSP platform has been described in the second part of Chapter 4,specifi-

cally in Section 4.3. This section contains parts with a description of the performed

modifications.

• To implement effectively LD-RLS with directional forgetting on the vector-like UTIA

DSP platform.

The implementation has been described in Section 4.3 and the results of the imple-

mentation have been presented in Chapter 5.

• To improve the implementation methodology for the UTIA DSP platform.

The improved implementation methodology for the UTIA DSP platform has been

described in Section 4.3.

130 CHAPTER 6. CONCLUSION

• To develop tools for the improved methodology.

Tools have been developed as scripts and functions for the Matlab environment. The

concept of their behaviour has been described in Chapter 4 Sub-section 4.3.8.

• To discuss the possibility to use the UTIA DSP platform in a Network on Chip.

The possibility of using UTIA DSP platform in a Network on Chip has been discussed

in the Chapter 4 Section 4.4.

Summary of Contributions

The author’s contribution includes

• the extension of the basic UTIA DSP Platform with the operation cumulative sum-

mation, crossbar switch in the data path, the support of the second nested loop and

the support of algorithms with branches,

• the implementation of the vector form of EF LD-RLS and DF LD-RLS algorithms

in the extended UTIA DSP Platform,

• the improvement of the implementation methodology for the UTIA DSP Platform,

• the development and implementation of the automatic generator of a firmware for

the UTIA DSP Platform from an algorithm in the Matlab envorinment,

• the development of the host CPU software library for a unified access to the UTIA

DSP Platform,

• the suggestion of the generic method to compare different adaptive algorithms with

different forgetting factors.

Bibliography

Baleani, M., Gennari, F., Jiang, Y., Patel, Y., Brayton, R. K. and Sangiovanni-Vincentelli,

A. (2002), Hw/sw partitioning and code generation of embedded control applications

on a reconfigurable architecture platform, in ‘CODES’02: Proceedings of the tenth

international symposium on Hardware/software codesign’, ACM, New York, NY,

USA, pp. 151–156.

Barr, M. (1998), Programming Embedded Systems in C and C++, O’Reilly & Associates,

Inc., Sebastopol, CA, USA. ISBN 1565923545.

Bittanti, S., Bolzern, P. and Campi, M. (1990a), ‘Convergence and exponential con-

vergence of identification algorithms with directional forgetting factor’, Automatica

26(5), 929 – 932.

Bittanti, S., Bolzern, P. and Campi, M. (1990b), ‘A counter example to the exponential

convergence of the directional forgetting algorithm’, International Journal of Adaptive

Control and Signal Processing 4(3), 237–244.

Björck, A. (1996), Numerical Methods for Least Squares Problems, SIAM, Philadelphia.

Bobál, V., Bohm, J., Prokop, R. and Fessl, J. (1999), Praktické aspekty samočinně se

nastavuj́ıćıch regulátor̊u:algoritmy a implementace, VUTIUM, Brno.

Campi, M. (1994), ‘Performance of rls identification algorithms with forgetting factor: A

φ-mixing approach’, J. Math. Systems, Estimation and Control 7(3), 1–25.

Cao, L. and H., S. (2000), ‘A directional forgetting algorithm based on the decomposition

of the information matrix’, Automatica 36(11), 1725 – 1731.

131

132 BIBLIOGRAPHY

Chisci, L. and Mosca, E. (1987), ‘Parallel architectures for rls with directional forgetting’,

International Journal of Adaptive Control and Signal Processing 1(1), 69 – 88.

Chokshi, R., Berezowski, K. S., Shrivastava, A. and Piestrak, S. J. (2009), Exploiting

residue number system for power-efficient digital signal processing in embedded pro-

cessors, in ‘CASES ’09: Proceedings of the 2009 international conference on Compil-

ers, architecture, and synthesis for embedded systems’, ACM, New York, NY, USA,

pp. 19–28.

Daněk, M., Kadlec, J., Bartosinski, R. and Kohout, L. (2008), Increasing the level of

abstraction in fpga-based designes, in ‘Proceedings 2008 International Conference on

Field Programmable Logic and Applications’.

Diniz, P. S. R. (2007), Adaptive Filtering: Algorithms and Practical Implementation,

Springer-Verlag New York, Inc., Secaucus, NJ, USA. ISBN 0387312749.

Dogançay, K. (2008), Partial-Update Adaptive Signal Processing, Academic Press, Oxford.

ISBN 978-0-12-374196-7.

Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L. and White, A.

(2003), Sourcebook of parallel computing, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA. ISBN 1-55860-871-0.

Flynn, M. (1966), ‘Very high-speed computing systems’, Proceedings of the IEEE

54(12), 1901 – 1909.

Glesner, S., Geiß, R. and Boesler, B. (2002), ‘Verified code generation for embedded

systems’, Electronic Notes in Theoretical Computer Science 65(2), 19 – 36. COCV’02,

Compiler Optimization Meets Compiler Verification (Satellite Event of ETAPS 2002).

Golub, G. H. and Van Loan, C. F. (1996), Matrix Computations (Johns Hopkins Studies in

Mathematical Sciences)(3rd Edition), 3rd edn, The Johns Hopkins University Press.

ISBN 0801854148.

Gunnarsson, S. (1996), Combining tracking and regularization in recursive least squares

identification, in ‘Proceedings of the 35th Conference on Decision and’, Vol. 3,

pp. 2551–2552.

BIBLIOGRAPHY 133

Hagglund, T. (1983), New estimation techniques for adaptive control, PhD thesis, Lund

Institute of Technology, Lund, Sweden.

Hanselmann, H. (1987), ‘Implementation of digital controllers—a survey’, Automatica

23(1), 7–32.

Haykin, S. (1996), Adaptive filter theory (3rd ed.), Prentice-Hall, Inc., Upper Saddle River,

NJ, USA. ISBN 0-13-322760-X.

Heřmánek, A. (2005), Study of the next generation equalization algorithms and their

implementation, PhD thesis, Université Paris XI, UFR Scientifique d’Orsay.

Jiang, J. and Zhang, Y. (2004), ‘A revisit to block and recursive least squares for parameter

estimation’, Computers and Electrical Engineering 30(5), 403 – 416.

Kadlec, J. (1986), Probabilistic Identification of Regression Model in a Fixed-Point Arith-

metic, PhD thesis, Institute of Information Theory and Automation of the Academy

of Sciences of the Czech Republic, Prague, Czechoslovakia.

Kadlec, J., Gaston, F. and Irwin, G. (1992), Parallel implementation of restricted pa-

rameter tracking, in ‘Third IMA International Conference on Mathematics in Signal

Processing’.

Kadlec, J., Gaston, F. M. F. and Irwin, G. W. (1995), ‘The block regularised parameter

estimator and its parallelisation’, Automatica 31(8), 1125 – 1136.

Kadlec, J., Gaston, F. M. F. and Irwin, G. W. (1997), ‘A parallel fixed-point predictive con-

troller’, International Journal of Adaptive Control and Signal Processing 11(5), 415–

430.

Kadlec, J., R., B. and Daněk, M. (2007), Accelerating microblaze floating point operations,

in ‘Proceedings 2007 International Conference on Field Programmable Logic and

Applications (FPL)’.

Kulhavý, R. (1983), Směrové zapomı́náńı a pr̊uběžná identifikace systémů s pomalu se

měńıćımi parametry, Technical report, Ústav teorie informace a automatizace ČSAV,

Praha, CZ.

134 BIBLIOGRAPHY

Kulhavý, R. (1987), ‘Restricted exponential forgetting in real-time identification’,

Automatica 23(5), 589 – 600.

Kulhavý, R. and Kárný, M. (1984), Tracking of slowly varying parametrs by directional

forgetting, in ‘Proceedings 9th IFAC World Congress’, Vol. 10, pp. 78–83.

Kulhavý, R. and Zarrop, M. B. (1993), ‘On a general concept of forgetting’, International

Journal of Control 58(4), 905–924.

Kuneš, M., Heřmánek, A. and Tichý, M. (2009), Reducing power measurements of utia

dsp platform by cloack-gating technique, report on experimental results, Technical

report, Ústav teorie informace a automatizace AV ČR, v. v. i.

Kung, H. (1982), ‘Why systolic architectures?’, Computer 15(1), 37–46.

Labrecque, M., Yiannacouras, P. and Steffan, J. G. (2007), ‘Custom code generation for

soft processors’, SIGARCH Comput. Archit. News 35(3), 9–19.

Lindoff, B. (1997), ‘On the optimal choice of the forgetting factor in the recursive least

squares estimator’.

Lindström, A., Nordseth, M. and Bengtsson, L. (2003), Vhdl library of nonstandard arith-

metic units, Technical report, Chalmers University of Technology.

Ljung, L. (1998), System Identification: Theory for the User (2nd Edition), Prentice Hall

PTR. ISBN 0136566952.

Ljung, L. and Gunnarsson, S. (1990), ‘Adaptation and tracking in system identification—a

survey’, Automatica 26(1), 7–21.

Matousek, R., Tichý, M., Pohl, Z., Kadlec, J., Softley, C. and Coleman, N. (2002), Log-

arithmic number system and floating-point arithmetics on fpga, in ‘FPL ’02: Pro-

ceedings of the Reconfigurable Computing Is Going Mainstream, 12th International

Conference on Field-Programmable Logic and Applications’, Springer-Verlag, Lon-

don, UK, pp. 627–636.

Moonen, M. (1993), A systolic array for recursive least squares computations - part ii:

Mapping directionally weighted rls on an svd updating array, Technical report, ESAT

- Katholieke Universiteit Leuven.

BIBLIOGRAPHY 135

Moonen, M. (1995), ‘Systolic algorithms for adaptive signal processing’, Institute for Math-

ematics and Its Applications 69, 125–138.

Navrátil, P. and Bobál, V. (2005), Adaptivńı ř́ızeńı systému tř́ı nádrž́ı v prostřed́ı matlab

simulink, in ‘Technical Computing Prague 2005 13th Annual Conference Proceed-

ings’, VŠCHT, Praha.

Niemann, R. (1998), Hardware/Software CO-Design for Data Flow Dominated Embedded

Systems, Kluwer Academic Publishers, Norwell, MA, USA. ISBN 0792382994.

Omondi, A. and Premkumar, B. (2007), Residue Number Systems: Theory and Implemen-

tation, Imperial College Press, London, UK, UK. ISBN 1860948669, 9781860948664.

Parkum, J., Poulsen, N. K. and Holst, J. (1990), Selective forgetting in adaptive proce-

dures, in ‘The 11th IFAC World Congress in Tallinn’, Vol. 3, pp. 180–185.

Parkum, J., Poulsen, N. K. and Holst, J. (1992), ‘Recursive forgetting algorithms’, Inter-

national Journal of Control 55(1), 109–128.

Peterka, V. (1981), Bayesian approach to system identification, in ‘Trends and Progress

in System Identification, P. Eykhoff, Ed’, Pergamon Press, pp. 239–304.

Peterka, V. e. a. (1982), Algoritmy pro adaptivńı mikroprocesorovou regulaci techno-

logických proces̊u, Technical report, Ústav teorie informace a automatizace ČSAV,

Praha, CZ.

Pohl, Z. (2008), Adaptive Order Linear Predictor for Speech Coding Algorithms, PhD

thesis, FEL ČVUT.

Proakis, J. G., Nikias, C. L., Rader, C. M., Ling, F., Moonen, M. and Proudler, I. K.

(2001), Algorithms for Statistical Signal Processing, Prentice Hall PTR, Upper Saddle

River, NJ, USA. ISBN 0130622192.

Ramanujam, J., Hong, J., Kandemir, M. and Narayan, A. (2001), Reducing memory

requirements of nested loops for embedded systems, in ‘DAC ’01: Proceedings of the

38th annual Design Automation Conference’, ACM, New York, NY, USA, pp. 359–

364.

136 BIBLIOGRAPHY

Rangarao, K. V. and Mallik, R. K. (2006), Digital Signal Processing: A Practitioner’s

Approach, Wiley Publishing. ISBN 0470017694.

Schier, J. (1994), Parallel Algorithms for Robust Adaptive Identification and Square-Root

LQG Control Synthesis, PhD thesis, FJFI ČVUT.

Silvano et al, C. (2010), 2parma: Parallel paradigms and run-time management techniques

for many-core architectures, in ‘2010 IEEE Annual Symposium on VLSI’.

Sjö, A. (1992), ‘Updating techniques in recursive least-squares estimation’.

Stenlund, B. and Gustafsson, F. (2002), Avoiding windup in recursive parameter estima-

tion, in ‘Preprints of reglermöte’.

Svoboda, A. (1957), Rational numerical system of residual classes, in ‘Stroje na zpracovani

informaci’, Vol. V, pp. 1–29.

Tichý, M. (2006), Fast Adaptive Filtering Algorithms and their Implementation using

Reconfigurable Hardware and Log Arithmetic, PhD thesis, FEL ČVUT.

Tokhi, M. O., Hossain, M. A. and Shaheed, M. H. (2003), Parallel computing for real-time

signal processing and control, Springer. ISBN 1852335998.

Yazdi, H. S., Yazdi, M. S. and Mohammadi, M. R. (2009), ‘A novel forgetting factor

recursive least square algorithm applied to the human motion analysis’, International

Journal of Applied Mathematics and Computer Sciences 5(2), 128–135.

Yokoyama, Y., Minseok, K. and Arai, H. (2006), Implementation of systolic rls adaptive

array using fpga and its performance evaluation, in ‘Vehicular Technology Conference,

2006. VTC-2006 Fall’.

Zhao, Y. and Malik, S. (1999), Exact memory size estimation for array computations

without loop unrolling, in ‘DAC ’99: Proceedings of the 36th annual ACM/IEEE

Design Automation Conference’, ACM, New York, NY, USA, pp. 811–816.

Zheng, Y. and Lin, Z. (2003), ‘Recursive adaptive algorithms for fast and rapidly time-

varying systems’, Circuits and Systems II: Analog and Digital Signal Processing,

IEEE Transactions on 50(9), 602 – 614.

Appendix A

The derivation of direct update of

L and D

The appendix contains derivation of the direct update of matrices L and D in the LD-RLS

algorithms. The derivation can be found in (Peterka, 1982).

Matrices L(k) and D(k) can be updated directly instead of the information matrix V (k)

update. Its derivation will be shown for the exponential forgetting in the following text.

The LD factorization of matrix V (k) has been introduced in Equation 3.43. The update

of matrices L(k − 1) and D(k − 1) is taken from Equation 3.28 and is

L(k)D(k)LT (k) =
[
λ
(
L(k − 1)D(k − 1)LT (k − 1)

)−1
+ d(k)dT (k)

]−1
. (A.1)

It can be rewritten to the form

L(k)D(k)LT (k) =
1
λ
L(k − 1)MLT (k − 1), (A.2)

where

M =
[
D−1(k − 1) + f

1
λ
fT
]−1

, (A.3)

and

f = LT (k − 1)d(k). (A.4)

Because matrix M is positive definitive, its factorization must exist and it is

M = HD̄HT , (A.5)

I

II APPENDIX A. THE DERIVATION OF DIRECT UPDATE OF L AND D

where H is a lower triangular matrix with ones on the diagonal and D̄ is a diagonal matrix.

We need find the factorization of Equation A.5. Then the update is

L(k) = L(k − 1)H

D(k) = 1
λD̄

. (A.6)

Here we show only results of the derivation. Full derivation is shown in (Peterka, 1982).

The update of the diagonal matrix D is

Dii(k) = Dii(k − 1)
σ2

(i+1)

λσ2
(i)

, (A.7)

where we use

σ2
i = 1 +

n∑
i

Diif
2
i . (A.8)

The update of the lower triangular matrix L is

Lij(k) = Lij(k − 1)−
fjg

(j+1)
i

σ2
j+1

, (A.9)

where gi is

gi =
i−1∑
l=1

DllLilfl +Diifi. (A.10)

The Equations A.4 and A.7-A.10 describes the update of the EF LD-RLS algorithm.

Appendix B

DF LD-RLS unfolded data-flow

graph

This appendix shows unfolded data-flow graph of DF LD-RLS for 3 parameters. This

graph shows impossibility to parallel algorithm due to data dependence of directional

forgetting. The highlighted way is a cumulative summation of h2 = ζ = ϕ(t)TC(t−1)ϕ(t).

III

IV APPENDIX B. DF LD-RLS UNFOLDED DATA-FLOW GRAPH

Figure B.1: Unfolded Data-flow graph of DG LD-RLS

List of Author’s Publications

The author percentage share in all publications is equal to 100%/na, where na is

the number of authors.

Journal Publications

[A1] R. Matoušek, M. Daněk, Z. Pohl, R. Bartosinski, and P. Honźık. Reconfigurable

System-on-a-Chip. Syndicated, 5(2):1–3, 2005.

[A2] R. Bartosinski, P. Ṕı̌sa. Jednotka pro ř́ızeńı pohybu s FPGA a operačńım systémem

RT Linux. Automa, 11(5):46–49, 2005.

Conference Publications

[B1] R.Bartosinski, P.Ṕı̌sa. Universal Motion Controller Platform with Real-Time Linux

and FPGA. In Proceedings of the 6th International Scientific-Technical Conference

on Process Control (Řı́p 2004), p.266, Pardubice, 2004. University of Pardubice.

[B2] R.Bartosinski, M.Daněk, P.Honźık, R.Matoušek. Dynamic reconfiguration in

FPGA-based SoC designs. FPGA 2005 - ACM/SIGDA Thirteenth ACM Interna-

tional Symposium on Field-Programmable Gate Arrays, p.274, Monterey, 2005. ACM.

[B3] R.Bartosinski, M.Daněk, P.Honźık, R.Matoušek. Dynamic reconfiguration in

FPGA-based SoC designs. DDECS 2005 - Proceedings of the 8th IEEE Workshop

on Designs and Diagnostics of Electronic Circuits nad Systems, pp 129-136, Sopron,

2005. University of West Hungary.

V

VI LIST OF AUTHOR’S PUBLICATIONS

[B4] R.Bartosinski, M.Daněk, P.Honźık, R.Matoušek. Dynamic reconfiguration in

FPGA-based SoC designs. ACACES 2005. Advanced Computer Architecture and

Compilation for Embedded Systems, p.35-38, Ghent, 2005. HiPEAC Network of Ex-

cellence.

[B5] R.Bartosinski, P.Stružka, L. Waszniowski. PEERT-blockset for processor expert

andmatlab/simulink integration. Technical Computing Prague 2005 13th Annual

Conference Proceedings, p.1-8, Praha, 2005. VŠCHT.

[B6] R.Bartosinski, Z.Hanzálek, P.Stružka, L.Waszniowski. Processor Expert Enhances

Matlab Simulink Facilities for Embedded Software Rapid Development ETFA 2006

Proceedings, p.625-628, Piscataway, 2006. IEEE.

[B7] R.Bartosinski, J.Kadlec. Hardware co-simulation with communication server from

MATLAB/Simulink. In Technical computing Prague 2006. 14th annual conference

proceedings. p. 13-20. 2006, Prague.

[B8] R.Bartosinski, Z.Hanzálek, P.Stružka, L.Waszniowski. Integrated Environment for

Embedded Control Systems Design. Proceedings 21st International Parallel and Dis-

tributed Processing Symposium. p.147, Piscataway, 2007. IEEE.

[B9] J.Kadlec, R.Bartosinski, M.Daněk. Accelerating MicroBlaze Floating Point Oper-

ations. In Proceedings 2007 International Conference on Field Programmable Logic

and Applications (FPL). Delft : IEEE, 2007, FPL 2007, Amsterdam.

[B10] R.Bartosinski, J.Kadlec. Simulation of MCU hardware peripherals. In Technical

Computing Prague 2007. 15th annual conference proceedings, 2007, Prague.

[B11] P.Stružka, L.Waszniowski, R.Bartosinski, T.Bysterský. Design of Control Appli-

cation Using Processor Expert Blockset. In Technical Computing Prague 2007. 15th

annual conference proceedings, 2007, Prague.

[B12] R.Bartosinski, M.Daněk, P.Honźık, J.Kadlec. Modelling Self-Adaptive Networked

Entities in Matlab/Simulink. In Technical Computing Prague 2007. 15th annual

conference proceedings, 2007, Prague.

LIST OF AUTHOR’S PUBLICATIONS VII

[B13] M.Daněk, J.Kadlec, R.Bartosinski, L.Kohout. Increasing the Level of Abstraction

in FPGA-based Designes. In International Conference on Field Programmable Logic

and Applications 2008, Heidelberg, 2008. Kirchhoff Institute for Physics.

[B14] M.Daněk, J.-M.Philippe, R.Bartosinski, P.Honźık, Ch.Gamrat. Self-Adaptive

Networked Entities for Building Pervasive Computing Aschitectures. In Interna-

tional Conference on Evolvable Systems: From Biology to Harware, 8th International

Conference, ICES 2008, Heidelberg : Springer, 2008. Praha.

Non-Peer Reviewed and Unpublished Work

[C1] M.Ĺıčko, R.Bartosinski, M.Kühl A High-Level Design Approach Towards FPGA-

based Filter Design. 8th International Student Conference on Electrical Engineering,

POSTER 2004, FEL ČVUT v Praze, 2004.

[C2] R.Bartosinski. Dynamic Partial Reconfiguration on Xilinx FPGA. In POSTER

2005 [CD-ROM]. CTU Faculty of Electrical Engineering, 2005.

[C3] R.Bartosinski. Adaptive Identification Based on RLS Algorithms in Embedded

Systems. PhD Thesis Proposal. 2006.

[C4] R.Bartosinski. RCCOM knihovna - podpora hardware-in-the-loop simulace na

FPGA z prostřed́ı Matalb/Simulink. Application Note, 2007, ÚTIA AV ČR.

[C5] L.Kafka, R.Bartosinski, M.Daněk. Accessory Tools for Partial Dynamic Reconfig-

uration on Xilinx FPGAs. Application Note, 2007, ÚTIA AV ČR.

[C6] R.Bartosinski. RCCOM - podpora komunikace s kartami s FPGA z prostřed́ı

Matlab a Matlab/Simulink. Application Note, 2007. ÚTIA AV ČR.

[C7] R.Bartosinski. Knihovna Processor Expert-Simulink. Licensed software, 2008.

ÚTIA AV ČR.

[C8] R.Bartosinski. Processor Expert AutoSAR-Simulink Library. Licensed software,

2008. ÚTIA AV ČR.

