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MASTER‘S THESIS ASSIGNMENT 

I. Personal and study details 

474744 Personal ID number:  Procházka  Ondřej Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Cybernetics and Robotics Study program: 

Cybernetics and Robotics Branch of study: 

II. Master’s thesis details 

Master’s thesis title in English: 

Trajectory Planning for Autonomous Landing of a Multirotor Helicopter on a Boat  

Master’s thesis title in Czech: 

Plánování trajektorie pro autonomní přistání vícerotorové helikoptéry na loď  

Guidelines: 

The thesis aims to tackle the problem of path and trajectory planning for autonomous landing of a multirotor Unmanned 
Aerial Vehicle (UAV) on top of a catamaran Unmanned Surface Vehicle (USV). UAV helicopters might be soon become 
useful in autonomous scanning and gathering litter from the surface of water bodies. Autonomous UAV docking onboard 
a small ship becomes a challenging and vital sub-task of such a large endeavor. This thesis will focus on the problem of 
designing an approach and safe landing strategy that could cope with the nonlinear motion of a boat on a wavy water 
surface. The thesis consists of the following tasks: 
• Familiarize yourself with the MRS UAV System [1] for control, estimation, and simulation of multirotor helicopters. 
• Study the existing approaches of autonomous trajectory generation and planning for autonomous landing of a UAV on 
top of a moving USV. 
• Prepare a realistic simulation environment in the Gazebo/ROS simulator that includes a catamaran boat. Prepare a 
path-following feedback controller for the boat in order to automate testing during development. 
• Define a set of estimated states (e.g., the USV’s position, velocity) that are needed for autonomous landing on the boat. 
The requirements will be conveyed to a fellow student, the designer of a state predictor for the USV. 
• Design and implement a method for automated path and trajectory generation for autonomous landing of a quadrotor 
UAV on top of a moving catamaran USV. 
• Verify the proposed system using the simulation environment. If possible, given the current social situation, and if the 
hardware allows, conduct experiments using a real-world robotic setup. 

Bibliography / sources: 

[1] Tomas Baca, Matej Petrlik, Matous Vrba, Vojtech Spurny, Robert Penicka, Daniel Hert and Martin Saska. The MRS 
UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous 
Unmanned Aerial Vehicles. Journal of Intelligent & Robotic Systems 102(26):1–28, May 2021. 
[2] Tomas Baca, Petr Stepan, Vojtech Spurny, Daniel Hert, Robert Penicka, Martin Saska, Justin Thomas, Giuseppe 
Loianno and Vijay Kumar. Autonomous Landing on a Moving Vehicle with an Unmanned Aerial Vehicle. Journal of Field 
Robotics 36(5):874-891, 2019. 

Name and workplace of master’s thesis supervisor: 

Ing. Tomáš Báča, Ph.D.    Multi-robot Systems  FEE 

Name and workplace of second master’s thesis supervisor or consultant: 

   

Deadline for master's thesis submission:   10.01.2023 Date of master’s thesis assignment:   25.01.2022 

Assignment valid until:   30.09.2023 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Tomáš Svoboda, Ph.D. 

Head of department’s signature 
Ing. Tomáš Báča, Ph.D. 

Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 



III. Assignment receipt 
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 



iv

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Ing. Tomáš
Báča, Ph.D., for his invaluable guidance, support, and encouragement throughout the creation
of my diploma thesis. I am also grateful for my fellow students and colleagues from Multi-robot
Systems group’s invaluable support, especially with real-world experiments. Finally, I would
like to extend my sincere thanks to my family and friends for their love and support. Their
unwavering belief in me has been a constant source of motivation and strength, and I am
forever grateful for their presence in my life.



v

Abstract

This thesis focuses on the design, implementation and verification of trajectory plan-
ning for the landing of an unmanned multirotor helicopter on the deck of a moving
boat. The work builds on an already existing system that provides accurate esti-
mation and prediction of vessel’s states, as well as a system of precise autonomous
control of an Unmanned Aerial Vehicle (UAV). The main focus of this work lies
in designing a trajectory generator that uses Unmanned Surface Vehicle (USV)’s
states and creates trajectories for the unmanned helicopter. The concept of Model
Predictive Control, which takes advantage of an optimisation problem solver based
on first-order solution methods, is utilised in the process. This allows the use of a
relatively accurate model of the UAV to describe its dynamics. Thanks to that, it
is possible to include position, orientation, linear velocities and Euler rates in the
planning of the trajectory. The trajectory generator is capable of creating trajecto-
ries from take-off to touch-down while all the computations are performed onboard
the UAV in real-time. The overall system’s functionality is verified in different sim-
ulations and real-world experiments.

KeywordsUnmanned Aerial Vehicles, Unmanned Surface Vehicles, Trajectory Plan-
ning, Model Predictive Control, Landing

Abstrakt

Tato práce se zabývá návrhem, implementaćı a ověřeńım systému plánováńı trajek-
toríı pro přistáńı bezpilotńı multirotorové helikoptéry na palubě pluj́ıćı lodi. Práce
navazuje na již existuj́ıćı systém, který poskytuje odhad a predikci stav̊u lodi, a
také na systém přesného autonomńıho ř́ızeńı bezpilotńı helikoptéry. Hlavńı náplńı
této práce je návrh generátoru trajektoríı, který implementuje sledováńı stav̊u lodi
a vytvář́ı trajektorie pro bezpilotńı prostředek. V procesu je využit koncept predik-
tivńıho ř́ızeńı (Model Predictive Control), který k řešeńı optimalizačńıch problémů
využ́ıvá metody prvńıho řádu. To umožňuje použit́ı relativně složitého modelu bezpi-
lotńıho prostředku pro popis jeho dynamiky. Diky tomu je možné do plánováńı
trajektorie zahrnout pozici, úhel natočeńı, lineárńı rychlost a rychlost změny Eu-
lerových úhl̊u. Generátor trajektoríı je schopný vytvářet trajektorie od vzletu až po
přistáńı, zat́ımco všechny výpočty jsou prováděny na palubě bezpilotńıho prostředku
a prob́ıhaj́ı v reálném čase. Funkcionalita celkového systému je ověřována v simu-
laćıch i během reálných experiment̊u.

Kĺıčová slova Bezpilotńı Prostředky, Bezpilotńı Plavidla, Plánováńı Trajektoríı,
Automatické Ř́ızeńı, Přistáváńı
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Chapter 1

Introduction

There has been a significant development in the domain of Unmanned Aerial Vehi-
cles (UAVs) in the past decades. Electronic components have been reduced in size, and the
capacity of batteries has increased as well as their energy density. Thanks to technological
advancements, powerful on-board computers provide good performance for demanding control
algorithms that ensure precise and agile manoeuvrability. Therefore, drones have enormous po-
tential in the public and industrial realm. The general public is the most familiar with UAVs
that are made for capturing photos and videos. These multirotor helicopters are equipped
with a high-resolution camera and can fly long distances. Even if these UAVs have function-
alities like “follow me” or “predefined shot”, a pilot is still required to issue these commands.
However, as was mentioned before, powerful hardware, which allows for an implementation of
planning algorithms for generating flight path based on surrounding world observation is avail-
able. This enables the operation of fully autonomous UAVs, which can carry out sophisticated
tasks, such as surveillance of certain areas or searching for missing persons [1].

Search and Rescues (SARs) multirotor helicopters are specialised UAVs equipped with
professional sensors and use self-determining evaluation systems for autonomous operation [2].
Moreover, these drones can be used for monitoring people’s offshore safety and warn against
sharks or identify swimmers in distress [3]. An illustration of such a drone can be seen in
Fig. 1.1. These drones can also be used to detect garbage on the water surface that can be
picked up by the drone itself or information about the waste’s location can be shared with
an Unmanned Surface Vehicle (USV) which secures the trash collection [4]. The UAVs are
designed to operate mainly above the sea without the possibility of landing on land, hence the
presence of a mother ship is required in the vicinity. This means that the UAVs must be able
to take-off and land on the boat’s deck, even in case of large waves. Since the take-off rarely
represents many complications, this thesis focuses on trajectory planning for the autonomous
landing of a multirotor helicopter on a boat.

Figure 1.1: Shark spotter. Adopted from [5].
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1.1 State of the art

In order to study the landing on a floating vessel, it is necessary to start with definition of
the word “landing”, which is an act or process carried out by the multirotor UAV that leads
to contact with the ground or with a determined platform for touch-down. In a standard
situation, when the drone is operating above land and landing can be performed almost
anywhere, it is not a problem to execute such a manoeuvre even without knowing the exact
altitude and height above the ground. The UAV uses a set predefined descent speed and the
touch-down is determined by monitored output thrust. This allows it to detect when the drone
entirely sits on the ground only from the force which is required for hover [6].

If the UAV utilizes a sensor, which provides information about the drone’s height, the
landing can be performed more precisely with regard to descending speed. Unfortunately, both
manoeuvres mentioned above can not ensure that the landing will be done in a suitable place.
As a solution, the Global Navigation Satellite System (GNSS) is typically used outdoors to
provide the drone’s exact location. Based on the knowledge of the drone’s precise position, a
fail-safe “return to home” can be implemented to ensure that the drone will land in the same
place where the take-off was carried out. Of course, the spot for the landing can be chosen
wherever since that the Earth’s surface is well documented and the safe spots for landing can
be selected. However, this method still suffers from low accuracy and weak or interrupted
signal from the GNSS.

To increase precision of the UAV’s landing, a camera or a stereo camera can be mounted
to the UAV to obtain visual information about the landing spot. Thanks to these sensors,
data for computer vision is available and therefore it is possible to attach a recognisable visual
landmark on the landing site, which can improve the stability and accuracy for autonomous
landing even if the Global Positioning System (GPS) is not available. On heliports, a big
letter H or X is commonly used, however, this does not provide as much information as the
usage of special tags. In [7], the proposal of a coloured marker with Vision-based position and
attitude estimation for a UAV is presented. Similarly, the AprilTag is a black and white flexible
visual reference system that has many methods of use and therefore it is more studied in [8].
Nevertheless, both tags can be used as a reference to obtain UAV’s orientation and location
relatively to the landing pad and thus this information can be used in control algorithms.
In [9], the algorithm for real-time estimation of the landing pad using AprilTag is presented.
Moreover, Proportional-Integral-Derivative (PID) controller described in [10] was used for
vision-based autonomous landing which calculates with a USV without roll, pitch and heave
motions. Therefore, the USV must float straight in constant speed and as smooth as possible.

Other method, which uses Open Source Computer Vision Library (OpenCV) to detect
ArUrco markers [11] for robust and accurate landing on a moving target, is presented in [12].
Using two tags enables utilisation of the first marker to guide the UAV during the approach
and tracking whereas the second tag is placed on the helipad. The Visual Slide Landing (VSL)
approach enables landing on a boat, in a situation where it’s not possible to hover above the
helipad and perform a regular landing because of sails or cables.

Information from the vision sensors can be used to control the UAV, thus the Position-
Based visual servoing (PBVS) and Image-Based Visual Servoing (IBVS) are mentioned in [13].
The PBVS method works in Cartesian space and whereas the IBVS approach works with the
image input from sensors directly. The IBVS suffers from camera calibration errors, however,
the PBVS may suffer from position estimation errors. Moreover, it is worth mentioning that
the method assumes that the UAV’s attitude changes are small and therefore can be neglected.
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Furthermore, this method uses future estimation of the landing spot for smoother control,
using the Kalman filter. The output from the IBVS controller is yaw rate, descent speed
and linear lateral velocities. The solution described above was tested using a real world deck
simulation platform which proves that the controller is capable to land in such conditions.

As long as the UAV’s computer is capable of computing the estimated state and position
of the USV in real-time, it can be assumed that the Central Processing Unit (CPU) is powerful
enough to also calculate a prediction of the USV’s states in the future. The information
about the position or even the knowledge of movements of the boat in the future can be
used by a method called Model Predictive Control (MPC), which is also known as receding
horizon control or moving horizon control [14], [15]. The use of the MPC finds application
in many projects. One of the most closely related projects could be landing on a moving car
[16]. This study may be used as a starting point for this thesis, but naturally, many other
aspects, like heave and side slips caused by waves, must be studied further. Landing on a
floating vessel is more closely studied in [17]. Moreover, there already exists a research that
implements not only Linear Model Predictive Control (LMPC) but also Nonlinear Model
Predictive Control (NMPC) for helicopters [18].

Expansion of the aforementioned approaches for the UAV’s precise landing on the boat’s
deck can be found in [19]–[21]. This work summarises usage of Signal Prediction Algorithm
(SPA), Active Heave Compensation (AHC) and Landing Period Indicator (LPI). The SPA
includes mode detection, estimation and prediction of the USV’s states, which uses Fast
Fourier Transformation (FFT) to identify frequency, amplitude and phase of the roll and pitch
movements. During the landing phase the algorithm increases and decreases the prediction
horizon based on the estimated time to landing and also validates the size of the roll, pitch
movements using thresholds. On the other hand, LPI uses the estimation of the ship’s energy
to determine an opportunity to land. To increase safety during landing the AHC is proposed
in the same papers. The approach of this algorithm is to stabilise the UAV above the deck to
ensure a smooth landing taking into account raising and lowering of the deck, therefore it can
be used together with SPA or LPI. Moreover, the same algorithm is used to estimate time to
landing. Unfortunately, these methods are not perfect and have their limitations, which are
derived from the parameters of the boat used for the experiment (30m long, with 5.9m beam,
a draft of 2m and mass of 218 t) and thresholds for roll (±5°) and pitch (±2°). To determine
the ship’s movements, three Light Detection and Rangings (LiDARs) sensors are used, which
is highly dependent on the boat being in the Field of View (FOV), and there is no verification
that the followed object is in fact the intended vessel. On the other hand, the UAV was able
to follow and land on a Navy patrol vessel moving roughly 5m s−1 (10 kn) in 10m s−1 wind.

Due to the fact, that the weather and wind conditions at sea are often severe, the UAV
must be capable of flight in such conditions. It is not only more challenging to fly in such
conditions, but bigger and more frequent waves are formed. The dynamic landing on moving
platform in turbulent wind conditions is studied in [22].

Last but not least it is necessary to mention that also the boat itself can participate in
the landing. For example, Wave Adaptive Modular Vessel (WAM-V) boats are equipped with
joints on its floats which reduces rocking caused with waves. Moreover, in [17] the UAV and
the USV collaborate to reach their goal.
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1.2 Contributions

This thesis presents a customisable trajectory generator for a precise landing of a mul-
tirotor helicopter on top of a moving vessel. The system is fully autonomous and capable
of creating a trajectory for the UAV from take-off to touch-down in real time. The trajec-
tory generator is built on MPC based full-state tracker. Therefore, the generated trajectories
already include the UAV’s dynamics. As an internal model of the MPC, a linear model of
the UAV consisting of twelve states is being used. Thanks to that, not just position but also
orientation, linear velocities and Euler rates are taken into account during the creation of
the full-state requirement for the trajectory generator. Nevertheless, the system would not
work without the prediction of the USV’s states. These states are being used during the final
approach manoeuvre to reduce the harshness of impact of the UAV’s legs on the deck. More-
over, the attitude angles of the UAV can be aligned with the USV’s. The presented trajectory
generator was incorporated into the Multi-robot Systems (MRS)’s UAV control system and
tested in realistic simulations. The system was also deployed in real-world experiments.

1.3 Outline

This thesis consists of seven major chapters, excluding Introduction chapter (Chap. 1)
and Conclusion chapter (Chap. 9). The Chap. 2 which follows after the chapter Introduction is
called Preliminaries. This chapter describes all preliminaries, from the mathematical notation,
over the definition of the coordinate frame and modelling of the USV, to the MRS UAV control
system, on which this thesis relies. The next chapter, Chap. 3, introduces the concept of
trajectory tracker based on MPC. The chapter also contains a mathematical derivation of the
objective function. Chap. 4 describes the UAV’s nonlinear mathematical model. This chapter
also includes the identification of the parameters that describe the UAV. The trajectory
creation is introduced in Chap. 5. The Chap. 6 is devoted to the development tools which
were used to develop and verify the proposed solution in this thesis. These development
tools include ROS, MATLAB, Gazebo simulator and quadratic programming solvers. The
simulation validations are described in Chap. 7. The last Chap. 8, is devoted to real-world
experiments and includes images taken during those experiments.
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Chapter 2

Preliminaries

This chapter is dedicated to introducing the foundations, that are used as a basis for
the trajectory planner designed in this thesis. Therefore, common reference frames (Sec. 2.2),
mathematical modelling of the USV (Sec. 2.3.1), description of the USV’s states estimation
and prediction (Sec. 2.3.2), description of the MRS UAV control pipeline (Sec. 2.4) and hard-
ware used in real-world experiments (Sec. 2.5) are presented in the following sections.

2.1 Definitions

2.1.1 Mathematical notation

The mathematical notation, nomenclature and notable symbols used in this thesis are
shown in the table Table 2.1.

x, α vector, pseudo-vector, or tuple
x̂, ω̂ unit vector or unit pseudo-vector
ê1, ê2, ê3 elements of the standard basis
X,Ω matrix
I identity matrix
0 zero matrix
x = a⊺b inner product of a, b ∈ R3

x = a× b cross product of a, b ∈ R3

x(n) = x⊺ên nth vector element (row), x, e ∈ R3

X(a,b) matrix element, (row, column)
xd xd is desired, a reference

ẋ, ẍ, ˙̈x 1st, 2nd, and 3rd time derivative of x
x[n] x at the sample n
SO(3) 3D special orthogonal group of rotations
SE(3) SO(3) × R3, special Euclidean group
R set of real numbers
Z set of integers
x⊤,x⊺ transposition of the vector x
diag([a, b, . . . , z]) diagonal matrix composed of a, b, . . . , z on its diagonal
X = A◦̂B takes matrix A and multiplies every element of the matrix B
W world reference frame
C,B body-fixed multirotor and body-fixed vessel frames of reference
Rb
w rotation matrix from the world frame to the vessel’s body-fixed frame

Rc
w rotation matrix from the world frame to the UAV’s body-fixed frame

Q objective function matrix (associated with process states)
P terminal penalty weight matrix (associated with process states)
R objective function matrix (associated with process inputs)
ϕ, θ, ψ roll, pitch and yaw angles
h heading
t time
k iteration step

Table 2.1: Mathematical notation, nomenclature and notable symbols.
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2.1.2 Path

Path is a set of waypoints defined as {(x1, y1, z1, h1), . . . , (xN , yN , zN , hN )}, where
N ∈ Z+ of points which define the position and heading in 3D space.

2.1.3 Trajectory

Trajectory is a path regularly sampled at ∆t time increments between individual points.

2.1.4 Linearity

A function f(x) is linear if and only if the Additivity and Homogeneity are satisfied:

f(x+ y) = f(x) + f(y), (2.1)

f(αx) = αf(x). (2.2)

2.1.5 Linear time-invariant system

Linear time-invariant (LTI) system is a system which meets the condition of linearity
and which is time-invariant. The system can be introduced in a discrete form as

x[t+1] = Ax[t] +Bu[t], (2.3)

y[t] = Cx[t] +Du[t], (2.4)

where x[t] ∈ Rn is the state vector at the sample t, u[t] ∈ Rm is the input vector, y[t] ∈ Rn is
the output vector, A ∈ Rn×n is the main system’s dynamics matrix, B ∈ Rn×m is the system
input matrix, C ∈ Rn×n represents output matrix and D ∈ Rn×m is a feed-forward matrix.

2.1.6 Solvers for Model Predictive Control

Solvers for MPC are online numerical algorithms for solving MPC problems.

2.2 Common reference frames

Since we operate in the open three-dimensional Euclidean space, defining various coor-
dinate frames of reference is crucial for increasing transparency and comprehensibility. Within
these systems, the mathematical model of the UAV and USV will be defined.

According to [23], it is convenient to define Earth-centered inertial (ECI) and Earth-
centered Earth-fixed (ECEF) coordinate frames. ECI is a non-accelerating reference frame
placed at the centre of Earth in which Newton’s laws of motion apply. On the contrary,
ECEF’s origin remains fixed to the Earth’s centre, but axes rotate relatively to the inertial
frame ECI. Therefore, the latter is usually used for global navigation and guidance.

The following coordinate system is defined relative to the Earth’s reference ellipsoid, and
its origin’s position is determined with longitude and latitude angles in ECEF. The geographic
reference frame is defined as North East Down (NED) or East North Up (ENU). The axis
of the NED points to the true north, east and directly to the Earth’s centre. On the other
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Figure 2.1: Coordinate systems illustration, where W represents local ENU frame, C denotes
multirotor’s body-fixed frame and B symbolises vessel’s body-fixed frame.

hand, ENU’s axes point to the east, true north and in the opposite direction from the Earth’s
centre. The NED frame is commonly used in the aerospace industry as well as in the marine
industry. However, the ENU is predominantly used in robotics. Both coordinate frames are
used for flat Earth navigation, and therefore, it is expected that the origin of this frame stays
fixed in one location on the Earth’s surface. Therefore, it is also necessary to assume that the
operating space is limited only to the local area.

The last coordinate system which will be used is a body-fixed frame. The origin of this
frame usually coincides with the object’s centre of gravity, and the x-axis points to the forward
direction. The directions of the remaining axes can be chosen, such as the coordinate frame
will be right-handed.

The position and orientation are described relative to the local navigation frame. The
linear and angular velocities should be expressed in a body-fixed frame. The illustration of
used reference frames is shown in Fig. 2.1.

2.3 State estimation of an unmanned surface vessel

In the thesis we rely on the prior work of Filip Novák, who wrote the thesis “State
Estimation of an Unmanned Surface Vehicle by an Unmanned Multirotor Helicopter” [24].
Therefore it is possible to build on proposed methods and ways of solving both USV estimation
and USV prediction.
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2.3.1 Mathematical modelling of a marine vessel

The aforementioned thesis models the boat in 6 Degrees of Freedom (DOFs), where
nomenclature for the individual components can be seen in Fig. 2.2. Whereas the designation
of the individual angles (roll ϕ, pitch θ, yaw ψ) and speed around individual axes (p rotation
around x-axis, q rotation around the y-axis, r rotation around the z-axis) is used in the
same way as for the UAV, the motion in the different axis uses different terminology. Surge
stands for longitudinal motion, sway for lateral motion and heave for vertical motion in the
body-fixed reference frame [25].

Figure 2.2: Standard notation and sign conventions for ship motion description (SNAME,
1950). Adopted from [26].

Derivation of the mathematical model was inspired by a handbook, which studies the
hydrodynamic modelling and marine craft motion control systems [27]. Moreover, this liter-
ature studies the derivation of the marine craft equations of motion in great detail. Firstly,
the theory around transformations is introduced, which is used to derive the kinematics part
of the equation of motion. Since the dynamics’ second part is kinetics, the literature deals
with the analysis of the forces causing the motion. This theory is hereafter enhanced with
hydrodynamic modelling.

The general form of vectorial representation of the 6 DOFs marine craft Equation of
Motion is

η̇ = JΘ(η)ν, (2.5)

where η = [x, y, z, ϕ, θ, ψ]⊤ ∈ R3×S3 is a vector composed of positions and orientations, where
Euler angles ϕ, θ and ψ are defined on the interval S = [0, 2π] and ν = [u, v, w, p, q, r]⊤ ∈ R6

is a vector, which contains linear and angular speed for all axes. JΘ(η) is a transformation
matrix from a body-fixed frame to a local frame, where subscript Θ denotes Euler angles and
therefore JΘ(η) ∼= (twb ,R

w
b ). The second part (kinetics) of the marine craft equation of motion

has the following form:

MRBν̇ +CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+MAν̇r +CA(νr)νr +D(νr)νr︸ ︷︷ ︸
hydrodynamic forces

+ g(η) + go︸ ︷︷ ︸
hydrostatic force

= τ + τwind + τwave,

(2.6)

where
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• MRB — rigid-body system inertia matrix
• CRB — rigid-body Coriolis and centripetal matrix
• MA — hydrodynamic system inertia matrix
• CA — hydrodynamic Coriolis and centripetal matrix
• D(νr) — damping matrix
• g(η) — vector of gravitational/buoyancy forces and moments
• go — vector used for pretrimming (ballast control)
• τ — vector of control inputs
• τwind — vector of wind forces
• τwave — vector of wave-induced forces
• νr = ν − νc is relative velocity vector with νc as the generalised ocean current velocity
of an irrotational fluid

Since the Equations of motion 2.5 and 2.6 are composed in total by 12 Ordinary Differ-
ential Equations (ODEs), the order of the system is 12. This leads to a very complex system,
and thus some assumptions and simplifications were made. According to [24], the simplified
nonlinear system is described as

η̇ = JΘ(η)ν, (2.7)

ν̇ = M−1(−C(ν)ν −D(ν)−Gη) + νwave, (2.8)

ẋwave,u = fwave(xwave,u), (2.9)

ẋwave,v = fwave(xwave,v), (2.10)

ẋwave,w = fwave(xwave,w), (2.11)

ẋwave,p = fwave(xwave,p), (2.12)

ẋwave,q = fwave(xwave,q), (2.13)

ẋwave,r = fwave(xwave,r), (2.14)

where g(η) ≈ Gη is a linear approximation of the restoring forces based on Archimedes’
principle. D(ν) represents damping of the system, C(ν) denotes Coriolis and centripetal
forces and M = MRB + MA. νwave is a comprehensive state vector, which contains output
signal from the wave systems and xwave includes individual states of the waves.

According to [24], the nonlinear model of the USV without the waves can be linearized
under the assumption that the roll and pitch angles are small. Moreover, the waves must
be described with the linear state space model. For the marine vessel, the resulting linear
equations are as follows

η̇L = ν, (2.15)

ν̇ = −M−1(Dν +GηL) +Cwave,ν , (2.16)

ẋwave,ν = Awave,νxwave,ν , (2.17)

where η̇L is the time derivative of the vessel’s parallel coordinate system. According to [27],
ηL is defined as

ηL = J⊺
ψ(ψ)η, (2.18)

which denotes the position and orientation in a global coordinate frame expressed in a body-
fixed coordinate frame, where roll and pitch angles are assumed to be small (close to zero).
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2.3.2 State estimation and prediction of a marine vessel

The precise USV’s state estimation and prediction is a crucial requirement for planning
the trajectory for landing the UAV on the boat’s deck or even for approach. As mentioned
in [24], the Kalman filter is used for this purpose. Kalman filter is a recursive algorithm
well known since 1960 when R.E. Kalman published a paper describing discrete data linear
filtering problem [28]. Thenceforth, many extensions of Kalman filters like Extended Kalman
Filter (EKF) [29], Iterated Extended Kalman Filter (IEKF) and Unscented Kalman Filter
(UKF) [30] were developed. The implementation and verification of the individual filters,
except IEKF, was implemented in [24]. Even though the results in [24] show that the UKF
has better results than the Linear Kalman Filter (LKF), the LKF was used. It is because the
LKF was managed to tune better during further experiments that are not stated in the thesis
mentioned above.

Figure 2.3: Diagram illustrating the operation of the linear Kalman filter. Adopted from [31].

The illustration of the LKF iteration steps is shown in Fig. 2.3. The measurement
update step uses the information from the sensors to correct the time update step. According
to [24], the following sensors were used to obtain the USV’s states. GPS and an Inertial
Measurement Unit (IMU) were mounted on the boat together with a computer and other
necessary electronics (commonly referred to as boat unit). While the GPS information is
shared using wireless communication between USV and UAV, when the boat is far away,
the measurements from IMU are used during the UAV’s precise landing. Since there are
also AprilTag and UltraViolet Direction And Ranging (UVDAR)’s UltraViolet (UV) Light-
Emitting Diodes (LEDs) on the board, the information about the boat’s state is also possible
to achieve by observing the USV’s deck from the UAV using AprilTag or UVDAR detector
[32]–[35].

The prediction step uses the vessel’s mathematical model derived in Sec. 2.3.1. The
estimation of the USV’s state depends on the correction update step, but they are made
separately. Therefore, the time update step can be used for the prediction of the USV’s future
states.
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2.4 Multi-robot Systems multirotor control

The Multi-robot Systems (MRS) UAV control1 was developed by the MRS group from
the Czech Technical University (CTU). Since the group’s field of interest is vast the control
system is very general and therefore it can be used for many projects without larger modifi-
cations [36]–[39]. The description of the system architecture is derived from the definition of
the MRS UAV system [6]. The control pipeline diagram is shown in Fig. 2.4.

Mission &

navigation

Reference

tracker

Reference

controller

Attitude rate

controller

IMU

UAV

actuators

Onboard

sensors

State

estimator

Odometry &

localization

trajectory reference

rd, hd

full-state reference

χd

initialization
only

ωd

Td

ad

τd

≈1 kHz

x, R, ω (100Hz)

R, ω

UAV
Embedded autopilot

Figure 2.4: A diagram of the Multi-robot Systems multirotor control architecture. According
to [6]: Mission & navigation software supplies the position and heading reference (rd, ηd) to a
reference tracker. Reference tracker creates a smooth and feasible reference χ for the reference
feedback controller. The feedback Reference controller produces the desired thrust and angular
velocities (Td, ωd) for the Pixhawk embedded flight controller. The State estimator fuses data
from Onboard sensors and Odometry & localization methods to create an estimate of the UAV
translation and rotation (x, R).

2.4.1 Embedded autopilot

The lowest level of the control pipeline structure is called the Attitude rate controller,
which is responsible for controlling individual motor’s Revolutions Per Minute (RPM) based
on the incoming reference such that the required attitude rates of the UAV are satisfied [40].
Overall thrust Td and angular rates ωd of the UAV are requested as the reference for this
controller. The UAV’s actual state is measured with the IMU, which measures the angular
rates and acceleration in individual axes using gyroscopes and accelerometers. Everything
mentioned above is part of the embedded PixHawk flight controller2.

2.4.2 Reference controller

A Reference controller generates the reference for the embedded controller based on the
full state description of the UAV defined as

χd = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈] (2.19)

and which is the desired position and its derivatives up to the acceleration dynamics. The
controller was created for UAVs that operate at their limits and perform agile manoeuvres.
It is a nonlinear SE(3) state feedback controller, which ensures precise control, fast response

1https://github.com/ctu-mrs
2https://pixhawk.org/
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and fast convergence [41]. The controller uses a nonlinear model of the UAV dynamics as
follows

ṙ = v, (2.20)

mv̇ = fRe3 +mge3, (2.21)

Ṙ = RΩ̂, (2.22)

JΩ̇+Ω× JΩ = M, (2.23)

where r = [x, y, z]T is the position, R(ϕ, θ, ψ) ∈ SO(3) is the orientation of the UAV,
Ω(p, q, r) ∈ R3×3 is the angular velocity in the body-fixed frame. According to [36], the
hat symbol ·̂ denotes the skew-symmetry operator according to x̂y = x× y for all x,y ∈ R3.
m denotes the UAV’s mass, J is an inertia matrix, M denotes total moment and g denotes
gravitation acceleration. f is the net thrust produced by the propellers.

2.4.3 Reference tracker

The third control layer generates the full state information about the UAV. The input
reference is a trajectory, which is a set {(x1, y1, z1, h1), . . . , (xN , yN , zN , hN )}, where N ∈ Z+

of points which define the position and heading in 3D space, regularly sampled at ∆t time
increments between individual points. The tracker is built on LMPC, which uses the linear
model not only as the subject for the optimisation but also to accomplish a simulated control
loop [42]. The graphical representation can be seen in Fig. 2.5. The LMPC was also sped up
with the move blocking technique [43], which allows having a prediction horizon of length 8
seconds (40 steps) without losing the accuracy and stability and still being able to solve the
optimisation problem in real-time [37]. A simulated closed loop ensures that the predicted
full-state reference is an evenly-sampled reference, which contains the desired position, its
derivatives up to the jerk, the heading, and the heading rate, supplied at 100 Hz.

LMPC Lin. model

reference

trajectory

rd, ψd

full-state

reference

χd

u

simulated control loop

Figure 2.5: An inner interconnection of the Reference tracker.

2.4.4 Mission & navigation

The Mission & navigation block is generally defined such that can be modified to meet
the requirements for the given task freely. Nevertheless, in most situations, the block ensures
the trajectory creation out of a path or a single point in the 3D space. In order to create
the trajectory, which will take into account the UAV’s dynamics, the polynomial trajectory
generation and optimisation are used [44], [45]. The generated trajectory also satisfies the
requirement that the UAV completes the path in the minimum possible time. To check that
the trajectory is feasible, the rigid-body model assumption and differentially flat dynamics
are used [46]. Before publishing the result, the trajectory is checked for low and high thrust,
high velocities, high roll, pitch, yaw rates and high yaw angular accelerations.

CTU in Prague Department of Cybernetics
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2.4.5 Summary

Since the system architecture mentioned above has been used in MRS group for a while
now, its implementation is very general, robust and well-tuned. Therefore, the MRS UAV
system has been taken as a starting point for developing the trajectory planner, which focuses
on creating the trajectory that is sent as a reference to the trajectory tracker mentioned in
Sec. 2.4.3.

2.5 Hardware

2.5.1 Description of the UAV

The drone which was used in real-world experiments is built on Tarot T650 Sport
frame. The motors are Brushless Direct Current (BLDC) Tarot 4114 320KV with Electronic
Speed Controller (ESC) Turnigy Multistar 51A. The control core of the drone is NUC8i7BEH
computer to which a Pixhawk 4 (an autopilot) with GPS either with H-RTK F9P GNSS
module or with standard one is connected. Everything is powered using a LiPo 6S 8000mAh
battery pack. This is standard UAV equipment in MRS group, however, some modifications
were needed due to the drone’s field of operation.

The drone’s design for flying over the water area is presented in the Bachelor’s thesis
[47], which was written by Ivan Čermák. The UAV was equipped with floats on its legs,
which ensures landing on the water surface in critical situations. All electronic components
were sprayed with water-resistant preparation and placed in the 3D-printed cover. For the
tag’s detection, the drone was equipped with the RealSense camera, and for the detecting
UV LEDs, the mvBlueFOX MLC200wG camera was used. The photo of the UAV is shown
in Fig. 2.6.

(a) (b)

Figure 2.6: Photo of the UAV. (a) Front view. (b) UAV floating on water.

2.5.2 Description of the USV

The vessel was created out of an inflatable boat and a landing platform by the MRS
group member. The landing platform was designed in the shape of a square with a side length
of 2 meters. The boat unit, which contains NUC8i7BEH computer, LiPo battery pack, GPS,
IMU units and other electronics, was mounted on the top of a deck, as shown in Fig. 2.7a.
ApriTag and UVDAR UV LEDs were placed on the boat’s deck as is shown in Fig. 2.7b. The
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area of a shape of a square of the side length 80 cm was covered with AprilTag. Since the
inflatable boat was not equipped with propulsion gear, the vessel with a landing platform was
towed behind a powered manned vessel.

Boat unit

(a) (b)

Figure 2.7: Photos of the USV. (a) Front view showing the location of the boat unit. (b)
Detailed photo of the landing pattern (AprilTag) with UV LEDs marked with blue circles.
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Chapter 3

Model Predictive Control

The MPC concept is known from the last century, but the most significant spread
has been experienced in the past two decades [48]. This is probably due to technological
advancement, which allows computations of complicated optimisation problems online. An
indisputable advantage is that the MPC is universal and intuitive, which increases the field
of interest enormously. A detailed overview with more than 2200 industrial applications of
MPC is summarised in [49], [50]. Even classical controllers like PID or Linear Quadratic
Regulator (LQR) are being replaced with MPC. Unlike common controllers, the MPC can
coordinate multiple inputs and outputs and requires a mathematical model of the system’s
dynamics. Such a model can be linear or nonlinear.

The model constrains the system’s future evolution until the end of the finite receding
horizon and calculates the input signal for the future states, where the length of the computed
outputs is called the control horizon. Fig. 3.1 shows the prediction horizon and control horizon
in discrete form, where the number of steps is the same for both. However, the length of the
prediction horizon and control horizon can be different. The prediction and control horizons
length selection affect the computational complexity and the desired performance of the opti-
misation problem [51]. The longer prediction horizon is useful in situations where the action
of the controlled system has a longer reaction time, e.g., due to the system’s physical limita-
tions like acceleration or deceleration. On the other hand, if the MPC is used for control, the
input signal value does not have to be computed far into the future. The computation time
is also affected by the accuracy of the result from the optimisation problem and, therefore,
sometimes is preferred less accurate solution that can be computed faster.

 Prediction Horizon 

FuturePast

Measured
Predicted

ymax

ymin

reference

t t+1 t+2 t+3
 t+4 t+5 t+6 t+7 t+8 t+9 t+10t-1t-2t-3

 Control Horizon 

FuturePast

Past inputs
Predicted inputs

umax

t t+1 t+2 t+3
 t+4 t+5 t+6 t+7 t+8 t+9 t+10t-1t-2t-3

umin

Figure 3.1: A graphical representation of the MPC algorithm.

The MPC problem is often extended with the system’s physical constraints, e.g., max-
imal speed, attitude angle and angular rates. These inequality constraints are called hard
constraints and limit the system’s states or outputs within lower and upper bounds. In some
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situations, it may be impossible to satisfy the hard constraints, for example, due to the dis-
turbances, and therefore the relaxation of these bounds must be made. The relaxed hard
constraints are called soft constraints [52].

Another MPC’s advantage is that it can be used not only for control but also for
tracking reference [53], [54]. In most cases, a reference is a point or a whole trajectory in three-
dimensional space. The trajectory trackers are solely studied when the desired trajectory is in
the vicinity. Therefore the solution to the optimisation problem can be found quickly. On the
other hand, when the desired position is far, the solver may need much more time to find an
accurate solution. Since the time duration is predominantly determined with the used solver
for the optimisation problem, more information can be found in the section Sec. 6.4.

3.1 Linear Model Predictive Control

According to [55], the linear MPC problem takes the form of Quadratic Programming
(QP) problem. The most general definition of the cost function for the regulation problem,
where the prediction and control horizon are the same length, is

min
x, u

J(u,x) =
1

2
x⊺
[t+N ]Px[t+N ] +

1

2

N−1∑
k=1

(x⊺
[t+k]Qx[t+k] + u⊺

[t+k]Ru[t+k]). (3.1)

The model, initial state and both state and input constraints are defined as

x[t+k+1] = Ax[t+k] +Bu[t+k] ∀k ∈ {0, . . . , N − 1}, (3.2)

x[t] = given, (3.3)

xmin ≤ x[t+k] ≤ xmax ∀k ∈ {1, . . . , N}, (3.4)

umin ≤ u[t+k] ≤ umax ∀k ∈ {1, . . . , N} (3.5)

where k = {1, . . . , N−1} and N ∈ Z+ is the size of the prediction horizon and control horizon
simultaneously. P, Q and R are penalisation, diagonal, positive semi-definite matrices. R is a
weighting matrix penalising input signals in every control step, and Q is a weighting matrix
penalising states in every prediction step except the last one, which is penalised with the
matrix P. The inequality constraints are defined for states with lower bound xmin and upper
bound xmax as well as for input signal, where the lower bound is defined as umin and upper
bound as umax. The lower and upper bounds are given constant vectors.

3.2 Linear Model Predictive Control based trajectory tracking

Reference tracking slightly differs from the regulation problem mentioned in Sec. 3.1.
Firstly, the reformulation of the reference needs to be done. Instead of bringing the system’s
outputs to zero, we minimise

e[t+k] = r[t+k] − y[t+k], ∀k ∈ {1, . . . , N}, (3.6)

which is an error between the reference r and the system output y. Thus the minimising
function (3.1) is rewritten into the form

min
e, u

1

2
e⊺[t+N ]Pe[t+N ] +

1

2

N−1∑
k=1

(
e⊺[t+k]Qe[t+k] + u⊺

[t+k]Ru[t+k]

)
. (3.7)
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Moreover, assuming a steady state, the objective function (3.7) is unaware that the control
input is not assumed to be zero. Therefore, in the minimising process, the solver tries to find
a solution and minimise the input values in the same way as the tracking error. On the other
hand, this can increase the deviation between the desired and actual state, which means that
the reference error grows. Imagine the UAV is in hover mode (the aircraft hovers in place
for a fixed time with requirements to stay in one position), the regulation error is near zero.
However, the control input u[t], which should be a required rotation of the motors, must be
nonzero. Therefore, the objective function is reformulated, and instead of using the input
signal itself, its increment is used as follows

∆u[t] = u[t] − u[t−1]. (3.8)

This leads to the reformulation of a linear model, which must be augmented with the new
state variable xu[t−1]

∼= u[t−1] and the control input is exchanged for ∆u[t]. The form of the
augmented model is as follows[

x[t+1]

xu[t+1]

]
=

[
A B

0m×n Im×m

]
︸ ︷︷ ︸

Aa

[
x[t]

xu[t]

]
︸ ︷︷ ︸
xa[t]

+

[
B

Im×m

]
︸ ︷︷ ︸

Ba

∆u[t], (3.9)

y[t] =
[
C 0p×m

]︸ ︷︷ ︸
Ca

[
x[t]

xu[t]

]
, (3.10)

where x ∈ Rn is a state vector containing n states, u ∈ Rm is control vector with m inputs
and y ∈ Rp is a system output vector. It is also assumed that the primary model omits direct
feed-through of the input signal.

3.2.1 Cost function

The optimisation cost function with an augmented model in the simultaneous form is
derived from (3.7) substituting e[t] with r[t] −Caxa[t] as

min
xa, ∆u

1

2
r⊺[t+N ]Pr[t+N ]︸ ︷︷ ︸
constant term

−r⊺[t+N ]PCaxa[t+N ] +
1

2
x⊺
a[t+N ]C

⊺
aPCaxa[t+N ] + . . .

N−1∑
k=1

1

2
r⊺[t+k]Qr[t+k]︸ ︷︷ ︸
constant term

−r⊺[t+k]QCaxa[t+k] +
1

2
x⊺
a[t+k]C

⊺
aQCaxa[t+k] +

1

2
∆u⊺

[t+k]R∆u[t+k]

 .

(3.11)

The equation (3.11) includes constant terms which are offsets that can be left out without
losing the objective function’s generality. Hence the cost function (3.11) is rewritten into the
simplified matrix form as

J(∆u, xa) =
1

2
xa diag(

[
CaQCa . . . CaQCa CaPCa

]
)︸ ︷︷ ︸

Q̄

. . .

. . . − r⊺ diag(
[
QCa . . . QCa PCa

]
)︸ ︷︷ ︸

T̄

xa +
1

2
∆u⊺ diag(

[
R . . . R

]
)︸ ︷︷ ︸

R̄

∆u,

(3.12)
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where

r =
[
r⊺[t] r⊺[t+1] . . . r⊺[t+N ]

]⊤
, (3.13)

xa =
[
x⊺
a[t] x⊺

a[t+1] . . . x⊺
a[t+N ]

]⊤
, (3.14)

∆u =
[
∆u⊺

[t] ∆u⊺
[t+1] . . . ∆u⊺

[t+N−1]

]⊤
. (3.15)

The augmented model’s representation is then rewritten into the matrix form. Therefore, the
update of the state vector takes the form of

xa =


0 0 . . . 0

Aa 0
. . .

...
...

. . .
. . . 0

0 . . . Aa 0


︸ ︷︷ ︸

Ā

xa +


Ba 0 . . . 0

0
. . .

. . .
...

0
. . .

. . . 0
0 . . . 0 Ba


︸ ︷︷ ︸

B̄

∆u+


Aa

0
...
0


︸ ︷︷ ︸
Ā[t]

xa[t]. (3.16)

The objective function includes states x and inputs u that are coupled through the model,
thus this form is called simultaneous. The simultaneous form can be simplified into the se-
quential form, where the cost function depends only on ∆u and x[t]. Therefore, the xa must
be eliminated. The states vectors are lined up into the one combined vector x̄a whose size
corresponds with the length of the prediction horizon similar to the equation denoted in [56]
or [57]. The matrix form looks as follows

xa[t+1]
...

xa[t+N ]


︸ ︷︷ ︸

x̄a

=


Ba 0 . . . 0

AaBa Ba
. . .

...
...

. . .
. . . 0

Aa[t+N−1]Ba . . . AaBa Ba


︸ ︷︷ ︸

C̄a

 ∆u[t]
...

∆u[t+N−1]


︸ ︷︷ ︸

∆u

+

Aa
...

AN
a


︸ ︷︷ ︸

Āa

x̄a[t], (3.17)

where N ∈ Z+ is the size of the prediction horizon and C̄a is called the controllability matrix
because every row is composed of the controllability matrix, which belongs to the individual
prediction step. After substituting xa[t] into the (3.12) the general form of the cost function
is rewritten into the matrix form as

J(∆u, xa) =
1

2
∆u⊺ (C̄⊺

aQ̄C̄a + R̄)︸ ︷︷ ︸
H

∆u+
[
x⊺
a[t] r⊺

] [Ā⊺
aQ̄C̄a

−T̄C̄a

]
︸ ︷︷ ︸

F⊺

∆u. (3.18)

3.2.2 Constraints

The cost function does not include any information about the system’s limits. Therefore,
to restrain the values in which the used model can operate the hard-constraints must be
defined. It is possible to bound the states, outputs or even the input signal. Since the cost
function was introduced in sequential form the constraints for the states must be calculated
using the (3.17) as follows

C̄a︸︷︷︸
Gxmax

∆u ≤ xmax︸ ︷︷ ︸
Wxmax

− Āa︸︷︷︸
Sxmax

xa[t], (3.19)
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where xmax ∈ R(n+m)·N . Moreover, the states can also be constrained from below using the
equation

−C̄a︸︷︷︸
Gxmin

∆u ≤ −xmin︸ ︷︷ ︸
Wxmin

+ Āa︸︷︷︸
Sxmin

xa[t], (3.20)

where xmin ∈ R(n+m)·N . The system’s output signal can also be limited. The inequality equa-
tions are following

Ca◦̂C̄a︸ ︷︷ ︸
Gymax

∆u ≤ ymax︸ ︷︷ ︸
Wymax

−Ca◦̂Āa︸ ︷︷ ︸
Symax

xa[t], (3.21)

−Ca◦̂C̄a︸ ︷︷ ︸
Gymin

∆u ≤ ymin︸︷︷︸
Wymin

−Ca◦̂Āa︸ ︷︷ ︸
Symin

xa[t]. (3.22)

The constraints on the input signal restrict the change of the input values, therefore it is
commonly called the slew rate. The slew rate constraints are defined as

∆u[t] ≤ ∆umax

−∆u[t] ≤ −∆umin
⇔



1 · · · 0
...

. . .
...

0 · · · 1
−1 · · · 0
...

. . .
...

0 · · · −1


︸ ︷︷ ︸

Gu

∆u ≤



∆umax
...

∆umax

−∆umin
...

−∆umin


︸ ︷︷ ︸

Wu

, (3.23)

where ∆umax ∈ R(m,N) is a vector which includes the limit values for the input signal.

It can happen that the optimisation problem may be infeasible, thus, no solution exists
within the hard-constrained model. The soft constraints can be used to violate the hard-
constrained limits to find the solution. To enlarge the region of the attraction, two approaches
of the soft constraints are presented in [58]. Using soft constraints ensures that the MPC can
find the solution for the optimisation problem. On the other hand, it increases the complexity
of the problem and the time needed for convergence. Therefore, soft constraints are mentioned
as a possibility that can be added at the expense of slower computation.

3.2.3 Summary

After all aforementioned computations and definitions, it is possible to introduce the
general form of MPC

min
∆u

J(∆u,x[t]) =
1

2
∆u⊺H∆u+

[
x⊺
[t] u⊺

[t−1] r⊺[t]

]
F⊺∆u (3.24)

subject to G∆u ≤W + S

[
x[t]

u[t−1]

]
, (3.25)

where

G =
[
G⊺

xmax G⊺
xmin G⊺

ymax G⊺
ymin G⊺

u
]⊤
, (3.26)

W =
[
W⊺

xmax W⊺
xmin W⊺

ymax W⊺
ymin W⊺

u
]⊤
, (3.27)

S =
[
S⊺
xmax S⊺

xmin S⊺
ymax S⊺

ymin 0m+n×N ·m·2
]⊤
. (3.28)
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This formulation can be used in many solvers that are able to solve quadratic problems.
Sec. 6.4 is dedicated to the topic of MPC solvers, where we study and compare them rigor-
ously. Moreover, the MPC requires a model describing the system’s dynamics, therefore the
derivation and identifications of the UAV model are shown in Sec. 4.

3.3 Nonlinear Model Predictive Control

Since industrial projects require more precise control and performance, the attention
is turning to the Nonlinear Model Predictive Control (NMPC) nowadays [59]. The main
difference between LMPC and NMPC is that the cost function can be nonquadratic and the
prediction model nonlinear. Moreover, the inequality and equality constraints can also be
nonlinear. According to [59], the mathematical formulation of the NMPC problem is defined
to find

min
ū(·)

J(x(t), ū(·);Tc, Tp), (3.29)

with objective function

J(x(t), ū(·);Tc, Tp) :=
∫ t+Tp

t
F (x̄(τ), ū(τ))dτ (3.30)

subject to:

˙̄x(τ) = f((x̄(τ), ū(τ)), x̄(τ) = x(t), (3.31)

ū(τ) ∈ U , ∀τ ∈ [t, t+ Tc], (3.32)

ū(τ) = ū(τ + Tc), ∀τ ∈ [t+ Tc, t+ Tp], (3.33)

x̄(τ) ∈ X , ∀τ ∈ [t, t+ Tp], (3.34)

where the Tp and Tc are the prediction and control horizon. The U is a set of feasible input
values and X is a set of feasible states. The bar denotes internal controller variables and
x̄(·) is the solution driven by the input ū(·) with initial condition x(t). The function F is a
cost function. A nonlinear model accurately describes the system’s dynamics even in severe
conditions because of the disturbances and aerodynamic forces that can be modelled as part
of the model’s dynamic [60]. Therefore, the NMPC perform nicely in agile manoeuvres at
high-speed [61].

3.4 Comparison of LMPC and NMPC

The comparison of the LMPC and NMPC is not an easy task. NMPC does not assume
a linearized operation point, and thus the optimisation problem solution is more precise, espe-
cially in agile manoeuvres. The nonlinear model and constraints should even better describe
the system’s limits. On the other hand, while solving the NMPC, some precautions must be
made to ensure stability. The computation of the problem is also not a simple task and may
need much more time to find a solution than a LMPC. The comparison of LMPC and NMPC
for the UAV control is stated in [62], where the authors claim that LMPC had smaller Root
Mean Square Error (RMSE) than the NMPC except the z-axis in the environment without
the wind. Since the core of the toolkits, which define and solve the NMPC problem, uses the
solvers for LMPC, this thesis will focus only on LMPC problem.
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Chapter 4

Mathematical modelling of the UAV

This chapter is dedicated to modelling the quadrotor dynamics. The Equations of Mo-
tion are derived in the Sec. 4.2 using coordinate frames presented in Sec. 2.2. Since the derived
model contains parameters that must be determined, the Sec. 4.3 is dedicated to the identifi-
cation of the model’s parameters. The last section Sec. 4.4 in this chapter is dedicated to the
creation of the linear model.

4.1 Mathematical overview of a quadcopter

Publication [63] describes two approaches for obtaining a quadrotor model in 3 DOFs
and in 6 DOFs, together with the linear approximations, rewritten into the state space repre-
sentation. In [64], the authors combine Earth-fixed frame and body-fixed coordinate frame to
obtain nonlinear equations using Newton-Euler method. On the other hand, in paper [65] the
equations of motion were derived using Euler-Lagrange equations, furthermore, the derived
equations use quaternions instead of Tait-Bryan angles. In study [66] Newton-Euler method
was used together with Euler-Lagrange method which shows that both methods lead to the
same result. Moreover, in [66], [67], the square of angular velocities is used as a control input
for the individual rotors. On the contrary, in [63], [68], [69] another system description using
upward force and body torque as the control input is presented.

4.2 The Quadcopter Equations of Motion

This section studies the dynamics of the drone and describes the UAV’s behaviour with
ODEs, firstly with kinematics and secondly with kinetics. Since the UAV is operating in 6
DOFs, the displacements and rotations are described by generalised positions

η = [η⊺
p ,η

⊺
o ]

⊤ = [x, y, z, ϕ, θ, ψ]⊤ ∈ R3 × S3, (4.1)

and velocities

υ = [υ⊺
l ,υ

⊺
a]

⊤ = [vx, vy, vz, vϕ, vθ, vψ]
⊤ ∈ R6, (4.2)

where vector η is composed of position ηp = [x, y, z]⊤ and orientation ηo = [ϕ, θ, ψ]⊤. Euler an-
gles are described in intrinsic zyx -convention, where yaw and roll angles are defined on the in-
terval [−π, π] and pitch range is [−π2 ,

π
2 ]. The vector υ includes linear velocity υl = [vx, vy, vz]

⊤

and Euler rate vector υa = [vϕ, vθ, vψ]
⊤. Moreover, the position η and velocity υ are defined in

the local ENU coordinate frame W (see Fig. 2.1), which simplifies the usage of the Equations
of Motion in the MPC prediction steps. The velocities can also be described in the body-fixed
coordinate frame as follows

ν = [ν⊺
l ,ν

⊺
a ]

⊤ = [u, v, w, p, q, r]⊤ ∈ R6, (4.3)
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where νl = [u, v, w]⊺ is linear velocity and νa = [p, q, r]⊺ denotes angular velocity. The detailed
drawing of the UAV in the body-fixed coordinate frame can be seen in Fig. 4.1.

ω1

ω2

ω4

ω3

ĉy

ĉx

ĉz
2l

(a)

ĉx
ĉy

ĉz

(b)

Figure 4.1: UAV body frame. (a) Top view with engine’s rotations representation. (b) Coor-
dinate image on a simulation model.

4.2.1 Nonlinear model

The nonlinear model of the UAV was derived in 6 DOFs. The position vector (4.1) and
velocity vector (4.2) were defined in the local coordinate frame, and thus the kinematics part
of the equations of motion is

η̇ = υ. (4.4)

The kinetics part of the equations of motion studies both the motions and their causes, and
therefore, the equations can be derived either using Newton-Euler method or Euler-Lagrange
approach. Both ways led to the same results and can be found in the articles that were cited
at the beginning of Sec. 4.1. According to [66], it can be assumed that the local frame is
inertial and therefore the centrifugal force

Fc = νa × (mνl) (4.5)

can be neglected. The equation for the translational dynamics (2nd Newton’s law) is defined
like in [70] as

η̈p = −g ê3 +Rw
c

TC

m
, (4.6)

where g denotes gravitation acceleration,m is the quadcopter weight,Rw
c ∈ SO(3) is a rotation

matrix that transforms from the copter’s body-fixed frame to the ENU local reference frame
and TC is a total thrust (total force). The force is generated in the body-fixed frame as

TC =

 0
0

k ·
∑4

i=1 ω
2
i

 , (4.7)

where k is a lift constant for the motor with a propeller and ω is an angular velocity of the
rotor (will be studied in further detail in the following section). To transform the (4.7) into
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the local frame of reference, the matrix Rw
c is used. The Rw

c is an intrinsic xyz -convention
Euler transformation matrix, which is equivalent to

Rw
c =

cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1


︸ ︷︷ ︸

Rz,ψ

·

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)


︸ ︷︷ ︸

Ry,θ

·

1 0 0
0 cos (ϕ) − sin (ϕ)
0 sin (ϕ) cos (ϕ)


︸ ︷︷ ︸

Rx,ϕ

, (4.8)

where Rx,ϕ ∈ SO(3), Ry,θ ∈ SO(3) and Rz,ψ ∈ SO(3) are rotation matrices which define
individual rotations around axes ĉx, ĉy and ĉz, accordingly in body-fixed frame.

The Euler angles acceleration is given by the Euler-Lagrange equation together with
the transformation from the body-fixed coordinate frame to the local coordinate frame as

η̈o = (Tw
c IBT

c
w︸ ︷︷ ︸

J

)−1 (τC −Ctη̇o) , (4.9)

where Ct is the Coriolis term, which contains centripetal and gyroscopic terms as is shown in
[71]. The τC stands for total torque and has following form

τC =

l · k · (−ω2
1 − ω2

2 + ω2
3 + ω2

4)
l · k · (−ω2

1 − ω2
4 + ω2

2 + ω2
3)∑4

i=1 bω
2
i + IMω̇i

 . (4.10)

Assuming that the drone is symmetrical X-configuration, propellers are in one plane and the
rotor’s distance from the centre of mass is

l = d cos (45°), (4.11)

where d is equal to the length of the drone’s arm. The b is the drag constant for the motor
with propeller and IM denotes the inertia moment of the motor. However, IM can be left
out due to its negligible effects on a quadcopter, the moment of inertia for the UAV’s body
(frame) can not be forgotten. The inertial matrix is IB ∈ R3x3 and denotes how much force
is needed to start or stop rotating around the specific axis, where the off-diagonal terms are
products of inertia and diagonal terms are moments of inertia. Since quadcopters are build
symmetrically about both ĉx and ĉy axes, inertia matrix has the form

IB =

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (4.12)

The transformation from the body-fixed frame to the local coordinate frame is done by the
transformation matrix Tw

c . According to [72], the transformation matrix Tc
w = (Tw

c )
⊤ is

defined as

Tc
w = R⊺

x,ϕR
⊺
y,θR

⊺
z,ψê3 +R⊺

x,ϕR
⊺
y,θê2 +R⊺

x,ϕê1 =

1 0 − sin (θ)
0 cos (ϕ) cos (θ) sin (ϕ)
0 − sin (ϕ) cos (θ) cos (ϕ)

 . (4.13)

Moreover, Tw
c is not defined for θ = π

2 + kπ, k ∈ Z. Fortunately, it is not expected that the
UAV will do such a manoeuvre.

The nonlinear description of the drone can be expanded by the various forces which
affect the behaviour of the UAV in flight. Such forces can be blade flapping, aerodynamic
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drag, total thrust variation in translational flight and vortex [73]–[75]. However, all these
extensions increase the complexity of the model, which increases the difficulty of identifying
individual parameters. Moreover, in [76] with reference to Mahony et al. (2012) is mentioned
that “is widely shown in the literature that the control can achieve high performance with the
simplified model of the rotor.”

The final Equations of motions (12 ODEs) are defined as follows

η̇ = υ, (4.14)

η̈p = −g ê3 +Rw
c

TC

m
, (4.15)

η̈o = J−1 (τC −Ctη̇o) . (4.16)

4.3 Model identification

In the previous section, the equations of motion were defined. Since the aforementioned
equations contain parameters that can be either directly measured or calculated indirectly
based on other measurements, this section is dedicated to finding the numerical values for
these parameters. Methods for identification of variables can be found in the publications
[65], [67], [77]. The UAV chosen for this thesis is built on a Tarot T650 frame with all the
necessary electronics — computer, battery and sensors for detecting a USV. Furthermore,
Sec. 2.5.1 is dedicated to a detailed description of the Hardware (HW) of the UAV.

The overall weight of the UAV differs for simulation and the real world and therefore the
model’s identification must be made separately for the simulation and real world. Since the
simulation does not take into account the weight of the cover (which protects the drone against
water) and with floats on the drone’s legs, the drone’s weight considered for the simulation is
msim = 3.5 kg and for the real world is mreal = 4.9 kg. Quadcopter’s dimensions are stated in
the table Table 4.1.

Symbol Value Description

d 0.325 m length from the Center Of Gravity (COG) to the rotor shaft
rb 0.25m body radius
hb 0.15m body height

Table 4.1: Quadrotor’s dimensions.

Moment of inertia

Moment Of Inertia (MOI) can be calculated using an assumption that the quad-copter
body can be replaced with a solid cylinder of radius rb and height hb. To compute the MOI
more precisely, a motor with a propeller can be used as a point mass at the end of the drone’s
arm. Since there is a difference between the simulation and real-world drone the computation
must be done for both. Firstly, for the simulation, the calculation of the MOI is identical for

Ixxsim = Iyysim = 2(mm +mp)l
2︸ ︷︷ ︸

point mass

+(msim − (mm +mp))
3r2b + h2b

12︸ ︷︷ ︸
perpendicular moment of inertia

= 0.0761 kgm2, (4.17)
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due to the symmetrical shape of the UAV, where mm = 0.148 kg stands for BLDC motor
weight including cables andmp = 20.2 g stands for carbon fiber propeller weight. The moment
around the third axis (Izz) is calculated as

Izzsim = 4(mm +mp)l
2︸ ︷︷ ︸

point mass

+(msim − (mm +mp))
r2b
2︸ ︷︷ ︸

parallel moment of inertia

= 0.1397 kgm2. (4.18)

Secondly, the MOI must be computed for the real-world drone and therefore the results
are stated in Table 4.2.

Ixxreal (kgm
2) Iyyreal (kgm

2) Izzreal (kgm
2)

0.1006 0.1006 0.1835

Table 4.2: Calculated moment of inertia for the real-world drone.

Another approach that can be used to obtain the MOI is called a Bifilar torsional
method [78]–[80]. This method uses a Bifilar pendulum to determine a MOI by an experiment
and therefore it can be used to clarify the results calculated above. Thanks to this method
the resulting MOI should be much more precisely determined, because the calculation method
assumes a homogeneous object, which the UAV is not. The equation which is used to calculate
MOI using the Bifilar pendulum method is

Ireal =
mgd2sT

2

16π2hs
(kgm2), (4.19)

where m is mass of the measured object, g is the gravitational acceleration, ds is the distance
between the attachment of two strings, hs is length of the strings and T is period of the
measured movement. The results from this method are shown in the Table 4.3.

Ixxreal (kgm
2) Iyyreal (kgm

2) Izzreal (kgm
2)

0.1169 0.1218 0.1721

Table 4.3: Moment of inertia obtained from experimental Bifilar pendulum method.

These results clearly illustrate that the real-world UAV is not as symmetrical as was
assumed in the calculation of the MOI. On the other hand, it must be taken into account
that the measurements used in Bifilar pendulum were not made in laboratory conditions,
which would ensure precise measurement of the pendulum period. Nevertheless, to decrease
the measurement error the pendulum test was performed three times for each axis, which
reduces the error caused be the human factor. Therefore it is possible to use these outcomes
in real-world experiments instead of using calculated MOI.

Both methods have pros and cons, where each of these methods is used to determine the
MOI for either real-world UAV or simulation UAV. MOI used in simulation and in real-world
experiments are denoted in Table 4.4.
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Symbol Value Description

Ixxsim = Iyysim 0.1168 kgm2 MOI around ĉx and ĉy for the simulated experiments
Izzsim 0.2204 kgm2 MOI around ĉz for the simulated experiments
Ixxreal 0.1169 kgm2 MOI around ĉx for the real-world experiments
Iyyreal 0.1218 kgm2 MOI around ĉy for the real-world experiments
Izzreal 0.1721 kgm2 MOI around ĉz for the real-world experiments

Table 4.4: Resulted moment of inertia both for simulated and for real-world drone.

Propeller model

The propeller constants k and b are linear to to the ω2, therefore, they can be obtained
indirectly from measuring the Tarot 4114 320KV motor paired with the propeller Tarot 1555
on a measuring device. The measuring stand was created to measure the thrust and the
angular speed. The result from the measurement can be found on MRS github page in section
Hardware/Motor tests1. Unfortunately, the stand used for this experiment was not capable of
measuring the motors torque directly, therefore it had to be computed using the model

τm =
UIϵ

2π
nrpm
60

, (4.20)

where the U is measured voltage, I measured current, ϵ is an estimated efficiency (85%) and
nrpm stands for the measured propeller’s RPM. The motor constants can be calculated as

k =
fi
ω2
i

, (4.21)

b =
τMi

ω2
i

. (4.22)

The resulted lift constant and drag constant are stated in Table 4.5.

Symbol Value Description

k 6.6936 · 10−5 lift constant
b 1.9692 · 10−6 drag constant

Table 4.5: Calculated propeller constants.

4.4 Linear approximation and discretization

In order to provide the linear approximation of the equations of motion which were
derived in Sec. 4.2, an equilibrium point is needed [81]. Such a point could be hover, which
is defined as a static position of the UAV with zero derivatives of position. Thus, both linear
and angular speeds must be near zero, which also implies that the roll and pitch must be
near zero as well. Position and yaw angle can be arbitrary, therefore the state vector looks as
follows

xh = [χ, χ, χ, 0, 0, χ, 0, 0, 0, 0, 0, 0]⊤, (4.23)

1https://ctu-mrs.github.io/docs/hardware/motor tests.html
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where χ ∈ R. The input vector

uh = [ω2
1, ω

2
2, ω

2
3, ω

2
4]

⊤ (4.24)

is composed of ω2
i . . . i ∈ {1, 2, 3, 4}, where each ω represents the angular speed of individual

motors, from which the thrust can be calculated. Therefore, the overall sum of these four
thrust figures must be equal to the drone’s weight and also to ensure that the drone does not
make any unwanted, potentially destabilising movements, these values must be identical. By
linearizing and discretizing, using zero-order hold on the inputs, the aforementioned model in
the operational point we get discrete LTI system.
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Chapter 5

Trajectory planning

This chapter is dedicated to the methods for trajectory planning. Firstly, the reformu-
lation of the MRS UAV control pipeline is shown in Sec. 5.1. The state automaton, which was
developed to monitor the individual states of the UAV’s flight, is introduced in Sec. 5.1.1. The
trajectory generator itself was built on the MPC based full-state tracker mentioned in Sec. 3.2
and is responsible for creating the constraint and feasible trajectory for the UAV. Therefore,
the methodologies mentioned in this chapter extend a classical usage of the MPC and ensure
smoother and much more precise properties, not only for the landing on the marine vessel’s
deck but also for the phase of the approach and tracking.

5.1 The principle of creating trajectories

The modification of the MRS pipeline, which was mentioned in Fig. 2.4, is a necessary
step in the process of developing the trajectory generator. The modified pipeline is depicted in
Fig. 5.1. The new pipeline is extended with Observation & position sharing block, Localisation

Mission &

navigation

Trajectory

planner

Reference

tracker

Localisation &

prediction

Observation &

position sharing

Reference

controller

Attitude rate

controller

IMU

UAV

actuators

Onboard

sensors

State

estimator

Odometry &

localization

m

trajectory reference

rd, hd

full-state reference

χd

initialization
only

ωd

Td

ad

τd

≈1 kHz

x, R, ω (100Hz)

PWM

R, ω

pd, ee

UAV

USV State Estimation & Prediction

Figure 5.1: A modified diagram of the system architecture, which expands Fig. 2.4 with
reformulation of the Mission & navigation.

& prediction block and finally with a Trajectory planner block. Furthermore, the Mission &
navigation block is reformulated to contain the state machine responsible for determining flight
mode (m). The estimation of the USV’s and UAV’s states is used as input. The information
about the flight mode is shared with the Trajectory planner. The Trajectory planner also
accepts the estimation (e) of the USV’s states, as well as the full-states prediction (pd) from
the Localisation & prediction block. The embedded autopilot shares the information about
the actual Pulse Width Modulation (PWM) signal command, which is sent to motors. Last
but not least, the information about the UAV’s current state (x,R,ω) is provided by the
UAV’s state estimator.
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5.1.1 Mission & navigation

As was already mentioned above, the Mission & navigation block was modified, and
therefore, this pipeline’s stage is responsible for determining the mode in which the UAV
is currently operating. The individual modes or states can be divided into three phases:
APPROACH, FOLLOW and LANDING, as shown in Fig. 5.2. The state automaton starts in

Get height

approach

altitude has been

reached

Approach

tracking

distance has been

reached

UAV is

stable above landing

pattern

Tracking

USV is ready &

UAV took-off

Idlestart

Tracking stable

conditions

for landing are

met

height for

flare has been

reached

Descent

Flare

touch-down

was detected
Landed

YES

NO

YES

NO

NO

NO
YES

YES

NO

YES

NO YES

YES

NO

APPROACH

FOLLOW LANDING

Figure 5.2: Mission & navigation state machine.

the state Idle, which awaits the USV’s estimation and prediction. The UAV also waits until
the end of the UAV’s take-off manoeuvre. After the verification, the state machine passes into
the state Get height.

State Get height is a member of the group, which denotes the APPROACH phase. The
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position of the UAV after the state Idle can be very close to the water. Therefore, during
the state Get height, the UAV reaches the desired approach altitude and modifies the yaw
angle of the UAV to aim in the USV’s direction. After that, the state automaton passes to
the state Approach. This state denotes the stage in which the UAV approaches to the USV’s
x and y positions. The flight level is maintained, and the yaw angle is continuously updated
to aim directly in the USV’s position, throughout the approach stage. This reduces the threat
of possible collisions with other vessels, which can be in the direction of flight while the UAV
approaches the USV’s position. Moreover, the yaw angle adjustment ensures that the USV is
found in the FOV of the optical sensors at the earliest possible moment. In a moment when
the UAV is not far from the USV, the state automaton changes phase from the APPROACH
to the FOLLOW.

The FOLLOW phase is divided into two stages. The first state is called Tracking and
denotes the final approach above the vessel’s deck. The approach altitude is exchanged for
tracking altitude. In a moment when the UAV is above the boat’s deck stable the state
automaton passes to the state Tracking stable. The UAV remains in this state until the
conditions for landing are met, and then the state automaton passes into the LANDING
phase.

The LANDING phase is the most challenging, hence, it is divided into three stages. The
first stage is called Descent. It denotes an event in which the UAV starts descending towards
the USV’s deck and continues until the UAV’s height reaches the distance from the boat’s
deck determined for the beginning of the Flare manoeuvre. This manoeuvre is quite similar
to the manoeuvre that is commonly known from the aeroplane’s final stage of the approach,
just before the aircraft touches down on the runway. The procedure involves slowing down the
vertical speed to smooth out the landing and reduce the impact of the wheels touching the
ground. Since the boat’s deck is rarely stationary, the predicted attitude angles of the USV’s
deck are taken into account during the Flare manoeuvre.

The touch-down is verified using an estimation of the needed thrust to maintain the
flight. After touching down, the UAV’s motors are turned off, and the state automaton passes
to the state Landed.

5.1.2 Trajectory planner

The trajectory planner sometimes called a trajectory generator ensures the generation
of a trajectory which is supplied to the MRS trajectory reference tracker. A graphical repre-
sentation of the trajectory creation process is shown in Fig. 5.3. According to this figure, the
actual UAV’s mode, together with the predicted USV’s states, are supplied to the Full-state
reference block. Based on this information, the full-state reference (sr) is created and provided
to the LMPC optimisation. The LMPC can also be modified based on the UAV’s phase of
flight. The penalisation matrices and hard constraints matrices can be dynamically adjusted
according to the UAV’s mode. For example, during the APPROACH phase, the penalisation
matrix is changed to mainly penalise the position and yaw angle. During the TRACKING
phase, it is appropriate to penalise the position, linear velocities and yaw angle. On the other
hand, during the flare manoeuvre, the penalisation matrix is modified such as the roll and
pitch angles are taken into account.

The output from the LMPC optimisation is conditioned by the used model, which was
derived in Chap. 4. Thanks to that, a vector (u) of the individual motor’s angular speeds
is obtained. This is then fed into a linear model from which the states of the UAV into the
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Full-state

reference

LMPC
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Lin. model

xnew = Axprev. +Bu

mode

vessel’s predictions

UAV’s

odometry

sr

generated

trajectory

rd, hd

u

simulated control loop

Figure 5.3: A diagram of the trajectory planner, where the “mode” is a state from the state
automaton, sr is a modified full-state reference that needs to be tracked. The u is a sequence
of the outputs forwarded into the linear model. The linear model is responsible for creating
the desired trajectory.

future are obtained and from which only the position and heading are supplied to the MRS
trajectory reference tracker.

Phase APPROACH

The UAV’s approach above the USV’s position is possible thanks to the boat unit and
its communication with the UAV [24]. The USV shares the GPS position, and therefore, the
UAV knows roughly where to fly even if the USV is not in the FOV of the sensors. Thus
the trajectory can be generated from the start, and it is not necessary to search the area to
localise the USV. During the process of creating the trajectory, a point in the 3D Space or an
estimated position of the USV can serve as the reference states.

It is also appropriate to determine the UAV’s heading during the flight. The UAV is
equipped with a stereo camera placed in the exact position. Therefore, to maximise the FOV
of the camera, the UAV’s front must be rotated in the direction in which the USV’s position
is estimated. The heading is calculated as

h = atan2(yd − yn, xd − xn), (5.1)

where yd and xd are the y and x positions of the vessel and yn and xn are the estimated UAV’s
positions in individual axes.

The classical approach of the MPC is to minimise the tracking errors independently for
the x-axis and the y-axis as is shown in Fig. 5.4. This can lead to the not optimal solution
from the perspective of the length of the trajectory. Since the heading to the desired position
is known, the calculation of the maximal speed in the individual horizontal axes can be
calculated. This ensures that the resulting speed vector will point directly in the direction of
the vessel’s position and will limit the maximal horizontal speed such that the maximal velocity
of the UAV will be in every horizontal direction the same. Therefore, the hard constraints
must be modified dynamically based on the heading of the UAV. The overall horizontal speed
is calculated as

vh =
√
v2x + v2y , (5.2)

where vx is a velocity parallel with the x-axis and vy is parallel with y-axis in local (W)
coordinate frame. Since the horizontal speed is going to be limited, the velocity along the
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(a) UAV’s trajectory.
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(b) UAV’s horizontal velocities with maximal speed
7.07m s−1.

Figure 5.4: x-axis and y-axis velocities are constrained independently.

x-axis is

vx = cos (h)vh (5.3)

and the contribution of the velocity in the y-axis is

vy = sin (h)vh. (5.4)

The ideal solution for tracking distant paths or points and minimising the length of the UAV’s
trajectory is shown in Fig. 5.5. However, it should be noted that it is not an optimal solution
in terms of time.

(a) UAV’s optimal trajectory.

Horizontal velocities
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(b) UAV’s orizontal velocities.

Figure 5.5: The x-axis and y-axis velocities boundaries are based on a full velocity vector. The
time to reach the desired position is slower since the x-axis velocity was reduced.
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Phase FOLLOW

The USV is followed by the UAV using the vessel’s predicted trajectory and linear
velocities in the horizontal plane. This combination ensures smooth tracking even at the boat’s
speed, which achieves its maxima 4m s−1. The UAV’s heading is also controlled to ensure that
the vessel will be in the FOV of the sensors. During tracking, the UAV continuously monitors
the incoming prediction of the USV’s future states. These states must be within the USV’s
limits so that they can be tracked. The covariance of the predicted states is also monitored
to be within a predefined range.

Phase LANDING

The landing phase includes the descent, flare and touch-down manoeuvres. Firstly, the
descent manoeuvre provides the final approach above the vessel’s deck. Since the landing
is the most dangerous phase, the UAV’s position deviation from the vessel’s centre in the
2D plane is strictly monitored. In the case of a greater deviation, the landing is aborted to
prevent falling the UAV into the water. Since MPC was used for generating trajectory, the
operating space for planning can be limited using the dynamically changing hard constraints
on position. This ensures that the trajectory planner can not generate a trajectory into the
water. In case of UAV misses the landing platform, the trajectory generator ensures that the
UAV will stop at a safe distance above the water. The reference trajectory is created, so the
z-position is sampled to maintain the specific descent speed. This approach is more beneficial
during the flare manoeuvre.

By specifying the vertical approach velocity and not just the descent speed, the UAV
lands on the vessel’s platform with a predefined velocity regardless of the USV’s vertical
motions. The illustration of the landing manoeuvre is shown in Fig. 5.6. Since the USV is not
moving linearly only, the tilt of the vessel’s deck must be taken into account. The information
about the vessel’s roll and pitch is supplied to the reference tracker to create the trajectory,
which will align the UAV’s attitude with the USV’s during the landing.

predicted USV's vertical motion

predicted UAV's z position 

Figure 5.6: The representation of the descent manoeuvre.
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Chapter 6

Development tools

The tools which were used to design and verify the proposed solution in this thesis are
described in this chapter. The description of the simulation environment in Sec. 6.3 makes up
majority of this chapter. Another important topic is about optimisation solvers and tool-kits
described in Sec. 6.4.

6.1 Robot Operating System

The Robot Operating System (ROS) is an integral part of the MRS UAV control system
[82]. The control pipeline was displayed in the previous chapters — block schemes intercon-
nected with arrows showing that data is exchanged there. And this is precisely for what the
ROS was made.

The ROS implements a peer-to-peer network of processes to share the information syn-
chronously or asynchronously using ROS communication infrastructure. The process, which
performs some computation, is in the ROS language called a node, e.g., a node responsible for
estimating the UAV’s actual state. However, the node can not be assigned without the master.
Without the ROS Master, the nodes would not be able to find each other and communication
between them could not be established. Asynchronous communication is done by streaming
the data over topics using the publisher on one side and the subscriber on the other. The data
are packed into structures called messages. On the other hand, synchronous communication
uses request and replay interactions between two nodes via services.

Packages, which are the main unit for organising codes, are defined on the ROS Filesys-
tem level. The code may be written in MATLAB, C++ or Python. The ROS Package also
includes the definition of the messages and services data structures. Since the ROS has many
distributions nowadays, it is necessary to mention that the Noetic distribution was used.

6.2 MATLAB

MATLAB is a powerful programming and numeric computing platform which was used
to design and verify elementary tasks in this thesis. In MATLAB was described the UAV’s
nonlinear model, proposed in Sec. 4, which was then linearized and discretized. The resulting
LTI model was used in the definition of the UAV in C++ code. Moreover, the MATLAB
version 2021a already supports a ROS and also custom ROS messages, and therefore, the first
simplified tests were implemented using MATLAB directly. These tests included the stand-
alone simulations verifying the QP solvers and their settings. Then the interconnection with
MRS simulation environment was made. MATLAB was also used to gather the results from
the simulations and real-world experiments to examine the proposed trajectory generator.
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6.3 Simulation environment

Before testing the proposed solution in the real world, it is always good to validate and
verify the results in some simulator. Therefore, the simulation environment in the Gazebo1

simulator was created for this purpose. The Gazebo simulator is a very popular physics sim-
ulator with a realistic environment, which natively supports ROS. Thanks to its popularity,
many robotics groups create plugins, models and environments [83]–[86]. And this turned
out to be a great advantage. The simulation’s environment core was inspired by the project
called Virtual RobotX (VRX) [87], which was created for the maritime VRX Competition.
The GitHub vrx repository2 was merged with MRS Gazebo-based simulations3 to obtain the
simulation environment with the USV and UAV located on the offshore.

The screenshot with the running simulation and its graphical interface can be seen in
Fig. 6.1. The ROS 3D visualisation, tmux session and dynamic reconfigurator are also shown
in the same picture.

(a) (b)

(c) (d)

Figure 6.1: Screenshot of the running simulation. (a) Gazebo 3D simulation. (b) ROS visual-
isation (Rviz) 3D visualisation. (c) Tmux terminal. (d) Dynamic reconfigurator.

6.3.1 Water and Wave-field modelling

Modelling the water and its motion is a key aspect of the simulations. The closer the
simulated environment is to reality, the better and safer the tests are in the real world.
Therefore, the Gazebo plugins were developed to model the ocean waves and simulate their

1https://gazebosim.org
2https://github.com/osrf/vrx
3https://github.com/ctu-mrs/simulation
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physical behaviour [87]. Water is modelled as a liquid which forces on the object according to
Archimedes’ principle

FB = −ρV g, (6.1)

where ρ is the density of the medium, V is the object’s volume, which is submerged in the
water, and g is the gravitational acceleration. The water’s drag force

Fd = βlm
V

VT
(vw − vc) (6.2)

is modelled to prevent oscillations. βl is the linear drag coefficient, m is the mass of the object,
VT is the total volume of the object, vw is the velocity of the fluid current and vc is the velocity
of the object. To eliminate angular velocity oscillations, the drag torque is modelled as

Td = βam
V

VT
L2ω, (6.3)

where βa is the angular drag coefficient, L is the average width of the object and ω is the
angular velocity of the object in a body-fixed frame.

According to [87], water motion is modelled using the summation of Gerstner waves,
representing the water surface as a trochoidal shape [88]. The horizontal and vertical displace-
ments of the wave-field to the undisturbed horizontal location x0 = [x0, y0]

⊤ with a vertical
height of ζ0 = 0 are defined as

x(x0, t) = x0 −
N∑
i=1

qi(ki/ki)Ai sin (kix0 − ωit+ ϕi), (6.4)

ζ(x0, t) =
N∑
i=1

Ai cos (kix0 − ωit+ ϕi), (6.5)

where each component wave is defined with steepness (qi), amplitude (Ai), angular frequency
(ωi), random phase (ϕi) and wavevector (ki) in the direction of travel with the magnitude ki.
The N is the number of wave components at time t.

The component wave characteristic can be determined empirically or more robustly by
sampling parametric wave spectrum SB(ω). The second method ensures that the simulated
waves are very close to the realistic open ocean waves. According to [87], the two-parameter
(peak frequency ωp and significant wave height Hs) Pierson-Moskowitz wave spectrum was
used to obtain the wave-field [89]. The resulting expression for the wave-field is

SB(ω) =

(
H̄s

Hs

)2
αg2

ω5
exp

(
−5

4

(ωp
ω

)4
)
, (6.6)

where ω is an angular frequency, α = 8.1×10−3 and H̄s denotes independent significant wave
height. The amplitude of the particular wave can be obtained using the equation

A2
i ≈ 2S(ωi)∆ωi , (6.7)

where ωi are the sample locations along the spectrum and ∆ωi is the width of the frequency
band associated with the individual samples. Moreover, the direction of the wave travel can
be taken into account by using the following equation

E(ω, θ) = S(ω)D(ω, θ), (6.8)
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where θ represents the wave direction and D(ω, θ) is the directional spreading function [90].

The VRX wave plugin enables setting up the peak period Tp =
2π

ωp
, steepness q, mean

wave direction vector, and wave height gain expressed as KH =
H̄s

Hs
. Therefore, the height

of the waves can be simulated. According to Table 6.1, the most represented height of the
waves is between 1.25m – 2.5m. The wave’s size is also associated with a wind [20, p. 13].
The wind’s intensity, which corresponds with the wave’s size described as a moderate sea, is
a fresh breeze (8.0m s−1–10.7m s−1).

Percentage probability %

Description
of sea

Wave height
observed (m)

World
wide

North
Atlantic

Northern
Nort Atlantic

Calm (glassy) 0
11.2486 8.3103 6.0616Calm (rippled) 0–0.1

Smooth (wavelets) 0.1–0.5
Slight 0.5–1.25 31.6851 28.1996 21.5683
Moderate 1.25-2.5 40.1944 42.0273 40.9915
Rough 2.5–4.0 12.8005 15.4435 21.2383
Very rough 4.0–6.0 3.0253 4.2938 7.0101
High 6.0–9.0 0.9263 1.4968 2.6931
Very high 9.0–14.0 0.1190 0.2263 0.4346
Phenomenal Over 14.0 0.0009 0.0016 0.0035

Table 6.1: Definition of sea state (SS) codes (Price and Bishop, 1974). Notice that the per-
centage probability for SS codes 0, 1 and 2 is summarised. Adopted from [27, p. 200].

6.3.2 Multirotor Unmanned Aerial Vehicle

The multirotor Unmanned Aerial Vehicle (UAV) model for the simulation is based on
the Tarot t650 frame, which was used for real-life experiments. The UAV model copies and
simulates the equipped electronic from the real-life drone mentioned in Sec. 2.5.1 including
necessary sensors. In Fig. 6.2 are depicted the screenshots from the Gazebo simulator.

(a) The screenshot of the UAV. (b) The screenshot of the UAV from the bottom show-
ing the placement of the sensors.

Figure 6.2: The UAV build on Tarot t650 frame used in Gazebo simulator.
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6.3.3 Marine Unmanned Surface Vehicle

The USV was modelled as Wave Adaptive Modular Vessel (WAM-V), which is a special
type of watercraft. WAM-V uses a system of suspensions connected to pontoons that reduce
the movement created by waves [91]. Unfortunately, this improvement was not created in the
simulation, and the USV was modelled as a rigid body which only looks like WAM-V. The
vessel’s model with the dimensions is shown in Fig. 6.3(a). The complete catamaran has an
engine with a propeller at the back of each float. The landing platform is 2.4m wide and 3m
long. On the top of the platform are situated UVDAR LEDs and AprilTag.

(a) The marine vessel’s dimensions used in simulation. (b) The screenshot of the USV from the Gazebo
simulator.

Figure 6.3: (a) WAM-V model and (b) the screenshot from the simulator.

Vessel’s propulsion system

As was mentioned above, the USV has two motors which are located on the vessel’s
stern. To control these motors in simulation, the Gazebo plugin was created according to [87].
The plugin specifies the thruster’s type, characteristics, and position on the vessel. Moreover,
the plugin ensures that the engines rotate around the joint at the attachment point. The
maximal angle to angle of rotation is ±π. Modelling of the thrust force can be linear or even
nonlinear using Generalised Logistic Functions (GLFs). The thrust force is limited between
−100N – 250N. Therefore, the maximal USV’s velocity is (4m s−1).

To speed up the tests, the keyboard control4 of the thrusters was added also according
to [87]. The control key inputs are depicted in the Fig. 6.4, where the left diagram shows how
the thrust can be controlled, for example, the left arrow marked as “left” uses the differential
thrust of the two motors to make a vessel’s turn. On the right side are shown keys that are
used to control the motor’s angle and the keys which are used to change the maximal or
minimal velocities.

Path following

To prepare the simulation for the automated testing of the UAV’s landing on the mov-
ing vessel, the USV controller was developed. The control was inspired by the conventional
navigation system used in aviation, where the aircraft’s path leads over the beacons. In our
case, the beacons can be exchanged for virtual buoys that are placed on the water. Therefore,

4http://wiki.ros.org/teleop twist keyboard
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Figure 6.4: Keys for controlling the vessel using the keyboard.

the vessel’s path is created from the set of waypoints, which are one by one visited in the
determined order. In this case, the heading value of the waypoints is left out.

The USV’s controller ensures that the boat’s heading is set and that the motion vector
points directly to the next waypoint. The heading towards the goal waypoint is calculated as

hb = atan2(yw − yb, xw − xb), (6.9)

where the subscript w denotes the actual waypoint and subscript b denotes boat. Since the
current vessel’s heading is known, the proportional component of the classical PID controller
[92] is used to manage the motors’ angle. The controller does not change the thrust of the
motors. After reaching the current waypoint, the next waypoint is set as a goal (this can
run in an infinite loop). The close loop system runs at 10 Hz and the user can tune the P-
controller using dynamic reconfiguration. The user can also define the positions and order of
the waypoints. The two illustrations of the USV’s trajectory together with boys are shown in
Fig. 6.5.

(a) Waypoints ordered in shape of square. (b) Waypoint ordered in shape of figure-eight.

Figure 6.5: Waypoints in square order Fig. 6.5a and waypoints ordered in figure-eight Fig. 6.5b.
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6.4 Optimisation Solvers and Tool-kits

Since the usage of MPC expanded in recent years, the number of solvers and even tool-
kits for solving linear and nonlinear MPC problems have increased too. Choosing a proper
solver is crucial for this thesis, and therefore, a few solvers were studied and investigated to
determine the most suitable one. According to [93], the three types of optimisation strategies
{Active-set methods, Interior-point methods, First-order methods} for solving the QP exist.
The following section describes the QP solvers in a nutshell and chooses the proper one for
this thesis.

Active-set methods, also known as the projection methods, were derived from the sim-
plex algorithm [94] and were the first methods for solving QPs. The algorithm has two phases.
The first phase tries to find the feasible point that satisfies all constraints without taking into
account the objective function. The second phase iteratively lowers the objective function up-
dating the active constraints. The disadvantage of this method is that the complexity grows
exponentially with the number of constraints. The implementation of active-set methods can
be found in solvers like MOSEK [95], GUROBI [96] and qpOASES [97]–[100]. Nowadays,
when the MPC is very popular, we must also mention the tool-kits like Automatic Control
and Dynamic Optimization (ACADO) [101] and its successor acados [102], [103].

Interior-point methods, also known as barrier methods, model the optimisation problem
as a parameterised penalty function. The optimum is achieved by iterating the unconstrained
optimisation problem with a varying barrier function. Contrary to the active-set methods,
this method runs in polynomial time and solves more complex linear programming problems.
The drawback of these methods is that they are not easily scaled for large problems. However,
they are still used in commercial algorithms like MATLAB’s quadprog [104], [105], OOQP
[106] and CVXGEN [107]. It should be noted that the CVXGEN is currently used in the
MRS trajectory tracker mentioned in Sec. 2.4.3. CVXGEN is a code generator for embedded
convex optimisation that can be used to solve quadratic programs at high speed in the order
of milliseconds. It is also very stable and robust for tasks up to hundreds of optimisation
variables, and therefore, it is suitable for tasks which are required to be computed in real-
time. There can also be pointed out the “connection” to this thesis because SpaceX uses the
same optimiser to land with Falcon 9’s first stage of the space rocket on the drone ship “Of
Course I Still Love You” [108].

First-order methods use only the first derivative of the cost function and iteratively
compute an optimal solution. Such algorithms can be Douglas–Rachford splitting [109] or
Alternating Direction Method of Multipliers (ADMM) [110]. The advantage of the ADMM
algorithm is its fast convergence with a relatively small number of iterations, which are compu-
tationally very cheap. Therefore, the solution is obtained fast, even for large-scale optimisation
problems. On the other hand, the algorithm does not provide high-accuracy solutions. An-
other problem is that the first-order methods are not capable of detecting infeasibility. Hence
the Operator Splitting Quadratic Program (OSQP) solver was proposed in [93]. The solver
uses ADMM algorithm and can provide high-accuracy solutions using solution polishing. The
primal and dual infeasibility detection was also resolved.

According to numerical examples shown in [93], the OSQP solver is very competitive
to the qpOASES, GUROBI and MOSEK. To verify the results from the [93], additional
experiments with qpOASES, quadprog and OSQP were done. The description and results of
these tests are shown in Appx. A. Nevertheless, these tests show that the OSQP solver is most
suitable for this thesis.
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6.4.1 Operator Splitting Quadratic Program

Operator Splitting Quadratic Program (OSQP) [93] is one of the many solvers which
can be used to solve the quadratic cost function with the linear constraints in a form

mimize
1

2
x⊺Px+ q⊺x, (6.10)

subject to l ≤ Ax ≤ u, (6.11)

where x ∈ Rn is the decision variable, P ∈ Sn+ denotes positive semi-definite matrix of the
objective function with a vector q ∈ Rn. The constraints are defined by matrix A ∈ Rm×n and
restriction vectors l ∈ Rm ∪{−∞}m, which denotes the lower bounds and u∪{−∞}m, which
denotes the upper bounds. The solver runs the ADMM algorithm which in every iteration
produces a tuple (x[k],y[k], z[k]) with x[k] ∈ Rn and y[k], z[k] ∈ Rm and auxiliary variables
x̃ ∈ Rn and z̃ ∈ Rm. The pseudo-code is shown in Alg. 1, where k ∈ Z+ denotes an iteration
step, σ > 0 and ρ > 0 are the step-size parameters, α ∈ (0, 2) is the relaxation parameter, and
Π denotes the Euclidean projection onto C, which is closed and convex set defined with the
boundaries l and u. ν ∈ Rm is the Lagrange multiplier associated with constraint Ax = z.

Algorithm 1 OSQP solver algorithm

Require: initial values x0, z0,y0 and parameters ρ > 0, σ > 0, α ∈ (0, 2)
1: while termination criteria is not satisfied do

2: (x̃[k+1],ν[k+1])← solve linear system

[
P+ σI A⊺

A −ρ−1I

] [
x̃[k+1]

ν[k+1]

]
=

[
σx[k] − q

z[k] − ρ−1y[k]

]
3: z̃[k+1] ← z[k] + ρ−1(ν[k+1] − y[k])
4: x[k+1] ← αx̃[k+1] + (1− α)x[k]

5: z[k+1] ← Π(αz̃[k+1] + (1− α)z[k] + ρ−1y[k])
6: y[k+1] ← y[k] + ρ(αz̃[k+1] + (1− α)z[k] − z[k+1])
7: end while

The algorithm’s convergence is checked by the termination criteria based on the specified
tolerance of the primal and dual residual’s norm of the optimisation problem. If the problem
is feasible, the primal and dual residuals in every iteration step of the algorithm are calculated
as

rprim[k] = Ax[k] − z[k], (6.12)

rdual[k] = Px[k] + q+A⊺y[k], (6.13)

where z ∈ Rm is an additional decision variable and y ∈ Rm is the Lagrange multiplier
associated with the constraint Ax = z and y ∈ NC(z) denotes the normal cone of C at z. The
termination criteria for stopping the algorithm are defined as

||rprim[k]||∞ ≤ ϵprim, (6.14)

||rdual[k]||∞ ≤ ϵdual, (6.15)

where the tolerance level is set as

ϵprim = ϵabs + ϵrealmax {||Ax[k]||∞, ||z[k]||∞}, (6.16)

ϵdual = ϵabs + ϵrealmax {||Px[k]||∞, ||A⊺y[k]||∞, ||q||∞}. (6.17)
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The absolute tolerance ϵabs and relative tolerance ϵrel are positive numbers definable by the
user, where the default value is set to ϵabs = ϵrel = 10−3 and for high accuracy is recommended
the number ϵabs = ϵrel10

−5. It may happen that the solution will be infeasible [111]. Therefore,
the OSQP check for these situations and generates the certificate of primal or dual infeasibility.

Polishing is an additional algorithm used to obtain the high-accuracy solution from
the final ADMM iterates. According to [93], the polishing procedure is done by solving an
additional system of linear equationsP+ δI A⊺

L A⊺
U

AL −δI
AU −δI

 x̂
ŷL
ŷU

 =

−qlL
uU

 (6.18)

where L and U are the active sets of constraints and δ > 0 is a regularisation parameter
with value δ ≈ 10−6. The linear system is always solvable, but by regularisation, the solution
includes a small error. To reduce this error, the iterative refinement procedure is applied [112].

Since the OSQP is an iterative method, the time duration for solving the optimisation
problem arises with a number of iterations. Therefore, the OSQP solver ensures a warm start
to reduce the number of iterations. It is also possible to reduce the maximal amount of iteration
and also define the check termination interval. The time duration can be limited by setting
the run-time limit. Other parameters that can be tuned are shown in OSQP documentation
[113].

It is also worth mentioning that the aforementioned solver can be called from C, C++,
Python, MATLAB and more. The OSQP source code is available online at github5. Since the
solver itself is written in C language, the additional library osqp-eigen6 was used.

5https://github.com/osqp/osqp
6https://github.com/robotology/osqp-eigen
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Chapter 7

Simulations and verifications

In order to verify the proposed solution of the trajectory generator for landing on the
marine vessel’s deck described in Chap. 5, a few analyses were performed. This chapter de-
scribes these experiments and shows their results. Most of the experiments were performed
in Gazebo simulation environment mentioned in Sec. 6.3, but some preliminary tests were
made in MATLAB. For example, the information on how to set up the OSQP solver was
obtained from the analysis done in Matlab. Graphs showing the behaviour of the solvers are
shown in Appx. A.4 and display the prediction horizon size change versus duration time and
RMSE. Based on these results, the length of the prediction horizon and also values of penali-
sation matrices were chosen. The settings of the MPC based trajectory generator are stated
in Table 7.1. It should be noted that penalisation matrices are dynamically modified, and
their values change based on the actual UAV’s state. Limitations of attitude angles, linear
velocities and angular rates are declared in the same table. According to this adjustment, a
trajectory reference tracker mentioned in Sec. 2.4.3 was set up.

Symbol Value Description

N 20 number of prediction horizon steps
Q [30, 30, 40, 1, 1, 50, 1, 1, 1, 1, 1, 1] diagonal objective function matrix
P [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] diagonal terminal penalty weight matrix
R [0.1, 0.1, 0.1, 0.1] diagonal objective function matrix
ϕ, θ ±0.7854 rad roll and pitch min/max angle
vx, vy ±4m s−1 horizontal min/max velocity in x and y axis
vz ±2m s−1 vertical min/max velocity
vϕ, vθ ±2 rad s−1 roll and pitch rotation min/max velocity
vψ ±1 rad s−1 yaw rotation min/max velocity

Table 7.1: Trajectory planner settings.

The trajectory generator is capable of generating trajectory from take-off to touch-
down, therefore, additional parameters which define altitude or approach speed are stated in
Table 7.2. The following sections focus on individual experiments that validate the proposed

Symbol Value Description

ha 15m approach height
ht 7m tracking height
vla 1m s−1 landing approach velocity
vfa 0.5m s−1 flare approach velocity

Table 7.2: Trajectory parameters.

trajectory generator in the Gazebo simulator. For every test it is common that waves are
different in amplitude or period. Thanks to the path-following controller developed in Sec. 6.3.3
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the experiments can be divided into two groups — based on whether the vessel is using the
engine and following the predefined path or not.

7.1 Marine vessel carried by a current

The first experiments investigate the trajectory planning used for approach and landing
on the USV which is influenced by waves. The waves affect the USV’s movements not only
heaving but also moving sideways. Therefore, the boat does not remain in one place and
continuously moves in the direction of a current. The size of the heave movement depends on
a wave’s peak amplitude and period. Both parameters were set up in the Gazebo simulation
environment in different combinations to test the proposed trajectory generator together with
MRS UAV control in various situations.

7.1.1 Landing on a vessel on a moderate sea

Landing with a UAV on a boat’s deck in calm water is not as challenging as landing on
a vessel, which is located on a moderate sea. According to the Table 6.1, the most probable
waves have a height between 1.25m and 2.5m. Thus the wave’s peak amplitude was set to
0.5m and period to 5 s to achieve these waves’ proportions in a simulation. The resulting
wave’s height in the simulation varied between 0.6m and 2.8m. To discuss the results from
these experiments, one of the most interesting tests was chosen to show results in the following
graphs.

Figure 7.1: The comparison of the UAV’s and USV’s position. The meaning of the background
colours is following — dark blue: idle, orange: get height, yellow: approach, purple: tracking,
green: tracking stable, light blue: landing and light red: flare.

This experiment started with an UAV and an USV located 40 meters away from each
other. The position of the UAV and USV throughout the experiment is shown in Fig. 7.1. In
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the beginning, the UAV was prepared to follow the trajectory, but the trajectory generation
was not turned on yet. This state is called Idle and lasted 1.6 s. After the trajectory generator
was turned on, the UAV ascended to a height of 15 meters and adjusted a yaw angle to
aim towards the vessel (see Fig. 7.3a). Then the UAV started approaching the USV’s location
maintaining an approach height and heading. The UAV was able to achieve USV’s coordinates
within 11 seconds at a speed of 4m s−1 as is shown in Fig. 7.3b. The tracking of the USV

Figure 7.2: Landing criteria showing in which time which criterion was fulfilled. The meaning
of the background colours is following — dark blue: idle, orange: get height, yellow: approach,
purple: tracking, green: tracking stable, light blue: landing and light red: flare.

began at time t = 20.3 s when the UAV started getting information from an AprilTag detector.
This event is illustrated in Fig. 7.2 when the estimated position covariance decreased under
a predefined limit. The UAV descended into a tracking flight level and aligned the yaw angle
with the USV. The landing phase started at time t = 27.5 s when landing criteria were met.
Nevertheless, the size of the waves increased during the final descent, and the USV was forced
to move more aggressively. This caused a deviation of the UAV from the vessel’s deck which
violated a landing distance criterion, and therefore, the landing phase was terminated at
time t = 33.5 s. The landing error criterion was set to 0.5m from the centre of the landing
platform. After returning to the tracking altitude and aligning the yaw angle, the UAV waited
monitoring a vessel’s movement until time t = 56 s. While the UAV was tracking the vessel,
the predicted trajectory was detected to be unfeasible by the UAV due to an excessive vertical
velocity.

The final landing occurred without problems, and a flare manoeuvre began at time
t = 62.4 s and lasted just 300ms before the UAV touched down on the vessel’s deck. Mea-
sured approaching speed was 0.5m s−1. Roll angle deviation was −1.5°, pitch angle deviation
−0.3° and yaw angle deviation −0.1°. The deviation of the position was 19 cm in x-axis and
−3 cm in y-axis . The aforementioned deviations are related to the USV’s precise position and
orientation obtained directly from the simulator. Hence, the estimation error can be one of
the reasons for these deviations. The screenshot of the landed UAV after this test is shown
in Fig. 7.4. This picture shows that even though the position error was not negligible, the
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UAV did not land outside of the AprilTag (a square with a side length of 1 meter). Additional
graphs from this experiment can be found in Appx. B.1.

(a) UAV’s attitude angles.

(b) UAV’s linear velocities in the body-fixed coordinate frame.

Figure 7.3: UAV’s odometry. Horizontal and vertical velocities Fig. 7.3b and attitude angles
Fig. 7.3a. The meaning of the background colours is following — dark blue: idle, orange: get
height, yellow: approach, purple: tracking, green: tracking stable, light blue: landing and light
red: flare
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(a) The screenshot from the Gazebo simulator. (b) The screenshot from the Rviz.

Figure 7.4: The snapshots from the simulation experiment after the touch-down.

7.1.2 Evaluation

To verify the proposed trajectory generator, 62 tests of landings on a moderate sea
were performed. The height, amplitude and frequency of waves were set up based on wave’s
simulation settings mentioned in Table 7.3. Settings for a landing manoeuvre are also denoted
in the same table.

Symbol Value Description

Tp 3 s, 4 s, 5 s wave’s peak period
A 0.2m, 0.3m, 0.4m, 0.5m, 0.6m wave’s amplitude
vla 1m s−1 landing approach velocity
vfa 0.5m s−1 flare approach velocity

Table 7.3: Simulation settings for landing on a vessel carried by a current.

During these experiments, the boat was carried by the water flow, so roll, pitch and
yaw values changed during individual tests based on a wave’s field intensity, direction and
amplitude. The waves’ height was varying from 30 cm to 2.8m. Roll and pitch values were in
a range ±10°. Another critical factor for landing is the velocity in the horizontal direction or
even more in the vertical. Since the boat was rocking due to the effects of waves, the vertical
velocity was ±1.5m s−1 and the horizontal velocity ±1m s−1. All performed landings were
examined, and the results are shown in Fig. 7.5.

An essential factor for evaluating the trajectory planner for the landing on the USV’s
deck is a position error for touch-down. Therefore, graph Fig. 7.5a evaluates the position
deviation of the UAV from the centre of the USV’ deck. The mean value of an error was
15.6 cm. Moreover, it can be seen from the graph that most of the touch-downs (19) were
performed about 10 cm far from the centre of the USV’s deck. This means that the UAV did
not land outside the area of the AprilTag. The observed landing error is apparently caused
by the fact that during the flare manoeuvre, the UAV does not strictly minimise only the
position deviation but also takes into account the attitude angles and velocities. It is also
worth mentioning that the position deviation was measured from the USV’s true position and
not from the estimated position. Therefore, an estimation error may also play a role in the
size of the deviation.
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(a) UAV’s position deviation from USV’s centre
during touch-down.
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(b) UAV’s approach speed during touch-down.
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(c) UAV’s yaw deviation from USV’s during touch-
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(d) UAV’s roll deviation from USV’s during touch-
down.
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(e) UAV’s pitch deviation from USV’s during touch-
down.

Figure 7.5: Landing on a vessel on a moderate sea verification.
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Another important aspect of the landing is the vertical approach speed during the flare
manoeuvre. The results from tests are plotted in Fig. 7.5b, which depicts the normal distribu-
tion together with the histogram of the landing approach speeds. The landing approach speed
was computed by subtracting the UAV descent speed and USV’s vertical speed. According to
this graph, the mean value of the measured approach speeds is 0.566m s−1, which is close to
the predefined value vfa. On the other hand, a few landings performed touch-down with an
approach speed equal to 1m s−1. This could be caused by the wrong prediction of the waves’
movement or by the acceleration/deceleration limitations of the trajectory tracker.

The remaining three graphs (Fig. 7.5d, Fig. 7.5e and Fig. 7.5c) depict roll, pitch and
yaw angles deviations during the touch-down. The graphs are shown together with the normal
distribution functions, where can be seen that the yaw angle deviation has a mean value close
to zero. This means that during the landing, the UAV was aligned with the USV almost
precisely with a standard deviation equal to 0.661°. Roll and pitch angle deviations had higher
standard deviations during tests, but nonetheless, the results are satisfying.

Summary

It was shown in the above experiments that the trajectory generator is capable of
generating complete trajectories from take-off to touch-down and that the landing is performed
with a reasonable amount of harshness even on a moderate sea. Despite that, the overall system
is not perfect yet.

During these experiments it was observed, that the accuracy of the estimation and
prediction of the USV depends on a wave’s field period. The lower the waves’ period is, the
less reliable estimation and prediction of the USV’s states is. This is most likely caused by a
fast change in a waves’ height. Therefore, waves with a higher amplitude do not present as
big of an issue as the smaller more erratic waves.

One of the trajectory generator’s shortcomings that could be observed is an absence of
accelerations in the UAV’s model. This causes a discrepancy between the generated trajectory
and MRS UAV trajectory tracker. Finally, yaw angle overshoot was observed during the
experiments.

7.2 Marine vessel following a predefined path

The trajectory planner was developed to be universal and capable of generating a trajec-
tory for landing on a moving vessel. A moving vessel is, in this case, the vessel which follows the
path’s waypoints (buoys) and performs desired changes of locations. The horizontal velocity
was set to be 2m s−1 on the non-wavy “glassy” sea. In a wavy environment, the vessel’s veloc-
ity varies based on the waves’ height, period and direction. The heaving frequency is changed
based on the direction of the waves and the direction of the vessel’s movement. Therefore,
the paths were created so that the USV was moving in different directions during individual
experiments. The path in a shape of a square ensures that the USV is moving lengthwise
along the x and y axes. On the other hand, the path in a shape of a figure-eight ensures that
the USV’s movement is diagonal to the x and y axes and includes many turns.
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7.2.1 Landing on a path-following vessel

The experiment started similarly to the test mentioned in Sec. 7.1.1, with the difference
that the vessel was assigned to follow the waypoints with a predefined velocity. The waypoints
were placed in a shape of a square with a side length of 80 meters. In the second phase, an
approach altitude of 15 meters was ascended by the UAV, as well as the yaw angle was
adjusted to aim towards the USV (see Fig. 7.7a). This manoeuvre was performed between
time t = 1.6 s and t = 9.15 s, after that, the UAV started to approach the moving vessel.
According to Fig. 7.7b, the approach horizontal velocity was roughly 5.6m s−1. It should be
noted that even though the dynamic change of the velocity constraints was introduced in
Sec. 5.1.2, it was not functioning correctly due to the absence of soft constraints. Therefore,
this system was not used. The UAV caught up with the vessel at time t = 32.2 s when the

Figure 7.6: The comparison of the UAV’s and USV’s position. The meaning of the background
colours is following — dark blue: idle, orange: get height, yellow: approach, purple: tracking,
green: tracking stable, light blue: landing and light red: flare.

USV passed one of the waypoints and changed the direction of movement as can be seen in
Fig. 7.6 which depicts the position of the UAV and the USV throughout the experiment. The
attitude angles and linear velocities of the vessel can be found in the figures that are enclosed
in Appx. B.2.

After an approach phase, the UAV started to track the USV which was accelerating in
the direction of the y-axis and decelerating in the direction of the x-axis. Despite the current
acceleration, landing criteria were met (see Fig. 7.8) and the UAV decided to perform the
landing manoeuvre at time t = 38.1 s. The USV was still accelerating during the landing, but
the UAV was able to fly in a stable way above the vessel’s deck. The flare procedure began
at time t = 44.3 s and lasted 400ms.

The touch-down was performed with an approach speed equal to 0.4m s−1 with a posi-
tion error 0.54m away from the vessel’s deck centre. The deviation of the roll angle was 7.67°,
the pitch angle −1.26° and the yaw angle 0.38°. The speed at which the USV was moving
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during the UAV’s touch-down was 0.05m s−1 in along the x-axis and 2.09m s−1 along the
y-axis. Since the UAV was aligned with the USV, the UAV’s x-axis velocity in the body-fixed
frame should be the same as the USV’s y-axis in the global coordinate frame. Nevertheless,
the reported velocity of the UAV was 1.8m s−1.

(a) UAV’s attitude angles.

(b) UAV’s linear velocities in the body-fixed coordinate frame.

Figure 7.7: UAV’s odometry. Attitude angles are shown in Fig. 7.7a, and horizontal and vertical
velocities are shown in Fig. 7.7b. The meaning of the background colours is following — dark
blue: idle, orange: get height, yellow: approach, purple: tracking, green: tracking stable, light
blue: landing and light red: flare
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Figure 7.8: Landing criteria showing in which time which criterion was fulfilled. The meaning
of the background colours is following — dark blue: idle, orange: get height, yellow: approach,
purple: tracking, green: tracking stable, light blue: landing and light red: flare.

7.2.2 Evaluation

To verify the reliability of the proposed system the landing on the moving vessel, 23
experiments were performed. The vessel was assigned to follow the path’s waypoints which
created the shape of a large square and the shape of a figure-eight. Thanks to their shape,
movement in various directions was ensured to examine the reliability of the USV’s estimation
and prediction. The simulation environment and trajectory generator were set up based on
the Table 7.4.

Symbol Value Description

Tp 5 s, 7 s wave’s peak period
A 0.2m, 0.5m wave’s amplitude
vla 1m s−1 landing approach velocity
vfa 0.5m s−1 flare approach velocity
vb 2.0m s−1 vessel’s velocity

Table 7.4: Simulation settings for path-following vessel.

The resulting graphs are depicted in Fig. 7.9. According to the Fig. 7.9a, it can be
seen that the mean value of the landing error was 0.466m. This means that the UAV landed
periodically on the edge of the area, which is covered with the AprilTag. In comparison with
the results that were obtained in Sec. 7.1 the position error mean increased by about 31 cm.
This can be caused by the inaccurate prediction or due to the UAV’s acceleration limits to
follow the trajectory.

In Fig. 7.9b, the landing approach speed is shown. The mean value is 0.443m s−1,
which is 0.057m s−1 smaller than vfa. Nevertheless, this can be due to measurement error.
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(a) UAV’s position deviation from USV’s centre
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(b) UAV’s approach speed during touch-down.

-10 -5 0 5 10

0

5

10

15

20
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(e) UAV’s pitch deviation from USV’s during touch-
down.

Figure 7.9: Landing on a path-following vessel verification.
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An interesting observation can be made in Fig. 7.9c which shows yaw deviation. The mean
value is close to zero, and most tests ended with a yaw deviation between ±1 degree. However,
values smaller than −5° were also appearing. This is probably caused by the fact that some
landing attempts were performed during the USV’s turning manoeuvre and the UAV was
slightly lagging behind. Whereas roll angle deviation (see Fig. 7.9d) seems to follow the normal
distribution with a mean value equal to 0.252° and standard deviation equal to 2.856°. The
pitch angle deviation (see Fig. 7.9e) behaves more randomly. It is worth mentioning that it
is expected that the pitch angle deviation will be larger due to the fact that the tilt around
the y-axis is responsible for forward/backward velocity. However, for better evaluation, more
tests are required.

Summary

It has been shown in the aforementioned experiments that the proposed trajectory
generator is capable of generating trajectories for landing on a path-following boat. The sea,
during the experiments, can be described as slight or moderate.

Based on these experiments it was observed that the accuracy of predicted states of the
USV’s depends on the direction of the vessel’s movement. For example, if the vessel’s direction
was against the waves, the predictions of the USV’s states were more accurate, and thus, the
landing was more precise.

The trajectory generator also shows its limits. For example, the system, which should
dynamically change linear velocities, was not tuned due to the absence of soft constraints.
Moreover, the slight difference between the trajectory generated with the proposed system and
the trajectory tracker was causing inaccuracy during the landing as well as in the experiments
mentioned in Sec. 7.1.1.
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Chapter 8

Real-world experiments

To verify the results that were obtained from simulations, two real-world experiments
were performed. Both experiments took place on Orĺık dam on the Vltava river (Fig. 8.1).
Since the water is very calm there, and we wanted to test landing on a rocking boat, there was a
need to rock the boat using human power. Naturally, this simplifies the vessel’s movements on
a water and can not be compared with real-world waves or even with the waves in a simulator
environment. Due to the calm nature of the body of water, it was impossible to simulate the
heaving motion in which the boat changes altitude compared to the water surface when still.
It was impossible to induce such movements that the boat should heave to change altitude
against the calm water surface while the vessel was rocking. Therefore, landing on rough
sea was possible to perform only in simulations (see Sec. 7.1.1). The experiments included
autonomous landing on a rocking vessel’s deck, tracking the boat at a predefined height and
even fully autonomous flight from the UAV’s take-off to landing on the moving boat. The
UAV and USV, which were described in Sec. 2.5.1, were used for real-world experiments.

The first round of experiments was performed together with testing the estimation and
prediction of the USV’s states. The results are shown in [24, p. 54-61]. This information was
given to the trajectory planner responsible for creating the feasible trajectory for the UAV to
approach, track and land on the vessel’s deck. Since the first experiments demonstrated only
simple solutions of the trajectory planner, we will refer to the results mentioned in [24]. The
state machine used in the trajectory planner was significantly improved and the MPC based
trajectory generator was tuned better thanks to these experiments. The prediction horizon
was increased as well as the generating trajectory frequency.

The second round of the experiments achieved better results. It verified that the trajec-
tory planner proposed in this thesis in Chap. 5, together with the estimation and prediction
of the vessel’s states, mentioned in [24], is suitable for autonomous landing on the vessel in
severe environment. The experiments and their results declaring this statement are presented
in the following graphs and pictures.

Figure 8.1: Orĺık dam on the Vltava river with a map showing the exact location where the
tests were performed. (map source: Mapy.cz).
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In Fig. 8.2, a fully autonomous test is presented, which is an experiment including all
events that may occur during planning of the trajectory from the UAV’s take-off to landing
on the boat’s deck. The weather conditions were measured in the nearest weather recording

(a) Comparison of the UAV’s and USV’s position.

(b) UAV’s linear speed in body-fixed frame.

Figure 8.2: Comparison of the UAV’s position and USV’s estimated position is shown in
Fig. 8.2a. UAV’s speed is displayed in Fig. 8.2b. The Touch-down was performed at 107
seconds from the start. The colour marks individual states in which the UAV was during the
test. The meaning of the background colours is following — dark blue: take-off, orange: get
height, yellow: approach, purple: descent for tracking, green: tracking USV and light blue:
landing. The graphs showing the UAV’s and USV’s attitudes are enclosed in Appx. C.
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station TEMELIN, EZ. According to the weather history1, the temperature was around 27 °C
and wind was circa 7 kmh−1 with wind gusts up to 17 kmh−1. Such wind speed is described
as a Light breeze, according to the wind specification mentioned in [20, p. 13]. Since the
measured data were recorded 20 km far away, the actual weather conditions could have been
slightly different during the experiment.

The first phase is the idle stage, when the trajectory planner awaits the end of the
take-off manoeuvre. After that, control was given to the safety pilot to verify that all the
necessary systems works well. During the verification, the pilot tested the UAV’s control and
climbed to 11m. From that moment on, control was given to the trajectory planner, which
started generating the trajectory to climb to 15m above the ground. The UAV started track-
ing the generated trajectory immediately. The approach manoeuvre started at time t = 33 s

(a) Get height manoeuvre at time t = 25 s. (b) Approach manoeuvre at time t = 35 s.

Figure 8.3: Snapshots from the real-world experiment — get height and approach phases

and continued for 21 s. The GPS position of the USV was provided by Nimbro network com-
munication, which is a ROS transport for high-latency, low-quality networks. Therefore, the
trajectory planner knew where to fly. However, the heading control was turned off for this
experiment. The photo of the flying UAV to the USV’s position can be seen in Fig. 8.3. From
the Fig. 8.2b is evident that the trajectory tracker was limited to fly only 2m s−1 in both x
and y axes and the vertical speed was limited to ±1m s−1.

According to the Fig. 8.2a, the UAV started descending to a predefined tracking height
at 54 s. Moreover, the estimated z-position of the boat was modified due to the updates of
the height received from the AprilTag detector and UVDAR system. The measurements from
these two systems were given to the Kalman filter, thus the vessel’s z-position was updated.
The tracking height above the boat’s deck was set to 5 meters. The USV was tracked from
time t = 67 s to time t = 101 s when the landing phase started. The snapshots from the camera
and DJI drone during the tracking and landing are shown in Fig. 8.4.

The landing stage started at time t = 101 s when all conditions for landing were met.
The UAV was flying stable above the vessel’s deck for some time, and the predicted states of
the USV were within limits. The absolute value of roll and pitch USV’s angles were smaller

1https://www.visualcrossing.com/weather-history/Jet%C4%9Btick%C3%A9%20samoty/metric/2022-07-
22/2022-07-22
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(a) Tracking the boat at time t = 70 s. (b) Tracking the boat at time t = 85 s.

(c) Landing on the boat at time t = 106 s. (d) Landing on the boat at time t = 106 s.

Figure 8.4: Snapshots from the real-world experiment — tracking and landing phases.

than 10°, and the USV’s velocity did not exceed the limitations that were set up on UAV’s
trajectory tracker. The UAV started descending at a speed 1m s−1 towards the vessel’s landing
platform. The views from the RealSense camera and UV camera during the landing are shown
in Fig. 8.5. From these pictures can be seen that both AprilTags (the smaller one is placed in
the middle of the bigger one) were detected and also the three of five UV LEDs were identified.
The estimated roll angle varied between ±1° and pitch angle varied between 3.7 − 5 degrees

(a) (b)

Figure 8.5: View from the UAV to the landing platform with (a) RealSense camera detecting
the AprilTag and (b) UVDAR camera detecting the position of the UV LEDs during landing.
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during the landing (see Appx. C.1b). Successful touch-down was identified at time t = 107 s.
The position of the UAV on the vessel’s landing platform after the landing is shown in Fig. 8.6.
The photo shows that the UAV landed almost into the centre of the deck. The deviation of
the position from the centre of the AprilTag was around 15 cm.

Figure 8.6: The position of the UAV after landing on the boat’s deck during experiments on
Orĺık dam.

8.1 Evaluation

In the first and second rounds of the experiments, a few imperfections were revealed. One
of the problems was the estimation of the USV’s velocity, which was inaccurately predicted to
be smaller than it was in reality (see Fig. C.2). Therefore, the predictions of the USV’s future
positions were wrongly predicted, and thus, the UAV was slightly lagging behind the vessel’s
deck centre. Other problems were induced oscillations and velocities, which cause an error in
estimation. Nevertheless, it is also worth mentioning that none of the UAVs were drowned
during both experiment rounds.

After the real-world experiments, we still saw an opportunity to improve the proposed
solution. Therefore, the MPC has undergone further tuning, and other improvements to the
trajectory planner have been made. These improvements were not tested in the real-world,
but only in simulations shown in the previous chapter Chap. 7.
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Chapter 9

Conclusion

This thesis aimed to develop a system for autonomous trajectory planning for landing an
unmanned multirotor helicopter on top of a moving vessel. The developed trajectory generator
was built on a system that provides accurate estimation and prediction of vessel’s states, as
well as a system of precise autonomous control of a UAV. For generating trajectories, the
full-state tracker based on MPC was designed.

The MPC was implemented using OSQP solver, which belongs to a group of solvers
that use first-order methods for solving the optimisation problem. These methods are usually
computationally cheap and require a small number of iterations, even for large-scale optimi-
sation problems. Thanks to that, a relatively accurate model of the UAV, consisting of twelve
states describing its dynamics, could be used.

The strategies that were developed, during this project, ensure that the trajectory gen-
erator is capable of creating trajectories from take-off to touch-down. The mission and navi-
gation state machine developed in this thesis is divided into three parts which are designed as
approach, follow and landing. Each of these phases is responsible for the creation of the full-
state reference, which is supplied to the full-state tracker. Special attention was given to the
landing phase. The final landing manoeuvre was inspired by the flare technique well-known
in the aerospace industry. Therefore, just before the UAV touches down, the approach speed
is reduced, and attitude angles are aligned with the USV to decrease the impact of the UAV’s
legs. Thanks to that, the UAV is capable of landing on a moderate sea.

In the first phase, the developed system was tested in MATLAB and then incorporated
into the MRS UAV control system. After that, the system was tested in various experiments
in a realistic Gazebo simulation. Furthermore, two rounds of real-world experiments were
conducted.

According to the thesis assignment, all these tasks have been successfully completed:

• The author of this thesis familiarised himself with the MRS UAV system for control,
estimation, and simulation of multirotor helicopters is described in Chap. 2.

• Existing approaches of autonomous trajectory generation and planning for autonomous
landing of a UAV on top of a moving USV were studied in Chap. 1.

• A realistic simulation environment in the Gazebo simulator that includes a catamaran
boat was prepared and is described in Chap. 6. The boat’s path-following feedback
controller for automation during the development was designed in Chap. 6.

• The estimated states needed for autonomous landing on the boat were defined as posi-
tion, attitude angles and linear velocities.

• The trajectory generator was designed based on the MPC full-state tracker mentioned
in Chap. 3. The way of preparing the trajectory for the autonomous landing of the UAV
on the top of a moving catamaran was designed in Chap. 5.

• The proposed system using the simulation environment was verified and the results were
shown in Chap. 7. Moreover, the simplified system was demonstrated by conducting real-
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world experiments using a real-world robotic setup which was mentioned in Chap. 1.
Results of these experiments were presented in Chap. 8.

9.1 Future work

A few imperfections in the proposed system were revealed during the development of
this work. Firstly, the designed mathematical model of the UAV does not model accelerations.
However, this does not apply for the MRS trajectory tracker, and therefore, the resulting
trajectory is not followed with expected precision. This deficiency should be resolved by in-
cluding the accelerations into the UAV model. Unfortunately, the computation complexity
will increase due to an increased amount of states. To solve this problem, the implementation
of the OSQP solver on a Graphics Processing Unit (GPU) can be used [114]. Moreover, if
we wanted to use the proposed system without the MRS trajectory tracker, soft constraints
would have to be implemented. Last but not least, it would be beneficial to tune and test the
proposed system in a more challenging environment.
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trum., 2022.

[48] D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica,
vol. 50, no. 12, pp. 2967–2986, 2014.

[49] S. J. Qin and T. A. Badgwell, “An overview of industrial model predictive control technology,”
in AIche symposium series, New York, NY: American Institute of Chemical Engineers, 1971-
c2002., vol. 93, 1997, pp. 232–256.

[50] ——, “An overview of nonlinear model predictive control applications,” Nonlinear model pre-
dictive control, pp. 369–392, 2000.

[51] K. Worthmann, “Estimates of the Prediction Horizon Length in MPC: a Numerical Case
Study,” IFAC Proceedings Volumes, vol. 45, no. 17, pp. 232–237, 2012, 4th IFAC Conference
on Nonlinear Model Predictive Control.

[52] M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model predictive control with
robust stability guarantees,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1190–
1202, 2014.

[53] D Limon, I Alvarado, T Alamo, and E. Camacho, “MPC for tracking of piece-wise constant
references for constrained linear systems,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 135–
140, 2005.

[54] A. Ferramosca, D. Limón, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking with
optimal closed-loop performance,” in 2008 47th IEEE Conference on Decision and Control,
IEEE, 2008, pp. 4055–4060.

CTU in Prague Department of Cybernetics



10. REFERENCES 65/77

[55] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic
regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[56] M Islam, M Okasha, and M. Idres, “Dynamics and control of quadcopter using linear model
predictive control approach,” in IOP Conference Series: Materials Science and Engineering,
IOP Publishing, vol. 270, 2017, p. 012 007.

[57] T. Baca, “Model predictive control of micro aerial vehicle using onboard microcontroller,” M.S.
thesis, Czech technical university in Prague, 2015.

[58] M. Zeilinger, C. Jones, and M. Morari, “Robust stability properties of soft constrained MPC,”
Jan. 2011, pp. 5276 –5282.
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Appendix A

Tests of solvers for MPC control

To develop, tune and verify the full-states tracker based on MPC, the MATLAB stand-
alone simulations were designed. Therefore, this appendix presents results from the MATLAB
simulation experiments. Firstly, the UAV’s nonlinear model dynamics were defined, and then
this model was linearised and discretised with a sampling period Ts = 0.1 s. The full-state
reference generator was developed for designing the trajectory using sine and cosine functions.
The full-state reference was later replaced by measured data of the USV’s states from the
Gazebo simulator.

The experiments were designed to verify the MPC setting and also compare a qudprog
solver, qpOASES solver and OSQP solver with respect to the length of the prediction horizon
and the time duration of the one iteration step. The illustration of the UAV’s trajectory
together with the reference trajectory is shown in Fig. A.1. The starting point of the UAV
was located far from the reference trajectory, but at the end, the UAV followed the reference
trajectory successfully. Therefore, the test of solvers was divided into two sub-tasks, where
the first one was to follow the trajectory from far but only for 5 s and the second one was to
follow the reference trajectory for 20 s when the starting point was already on the trajectory.

The settings of the MPC are stated in Table A.1. Moreover, the qpOASES’s default
setting was limited only to 1000 iterations. The OSQP’s default setting was limited to 4000
iterations, OSQP polishing was turned on, the absolute and relative tolerances were set to
10−5 and the check termination interval was set to 10.

Symbol Value Description

Q [30, 30, 40, 1, 1, 30, 1, 1, 1, 1, 1, 50] diagonal objective function matrix
P [30, 30, 40, 1, 1, 30, 1, 1, 1, 1, 1, 50] diagonal terminal penalty weight matrix
R [0.1, 0.1, 0.1, 0.1] diagonal objective function matrix
ϕ, θ ±0.7854 rad roll and pitch min/max angle
vx, vy ±5m s−1 horizontal min/max velocity in x and y axis
vz ±5m s−1 vertical min/max velocity
vϕ, vθ ±5 rad s−1 roll and pitch rotation min/max velocity
vψ ±5 rad s−1 yaw rotation min/max velocity

Table A.1: Model Predictive Control settings for MATLAB simulations.

In order to be able to compare the obtained results in the future, the hardware specifica-
tion of the computer on which the experiments were performed must be noted. The processor
unit was i7-8550U, and the installed Physical Memory was 16.0 GB. The resulting graphs are
shown in Fig. A.2, Fig. A.3 and Fig. A.4.
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Figure A.1: The graph from the MATLAB simulation. The UAV’s trajectory is marked with
a blue dotted line, and the path which was followed is marked with a red colour line.
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Figure A.2: Comparison of time duration and RMSE versus prediction horizon using quadprog.
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Figure A.3: Comparison of time duration and RMSE versus prediction horizon using
qpOASES.
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Figure A.4: Comparison of time duration and RMSE versus prediction horizon using OSQP.
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Appendix B

Simulations verification

B.1 Landing on a vessel on a moderate sea

Figure B.1: USV’s attitude angles displays roll, which was varying between ±5°, pitch angle
was varying between ±10° and yaw was varying between −17.5° and 5.6°. The meaning of
the background colours is following — dark blue: idle, orange: get height, yellow: approach,
purple: tracking, green: tracking stable, light blue: landing and light red: flare.
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Figure B.2: USV’s linear velocities in the global coordinate frame. The linear velocity in x-
axis was varying between −1.1m s−1 and 1.6m s−1, velocity in y-axis was varying between
−0.45m s−1 and 0.48m s−1 and vertical velocity was between −1.9m s−1 and 1.6m s−1. The
meaning of the background colours is following — dark blue: idle, orange: get height, yellow:
approach, purple: tracking, green: tracking stable, light blue: landing and light red: flare.
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B.2 Landing on a path-following vessel

(a) USV’s attitude angles.

(b) USV’s linear velocities in global coordinate frame.

Figure B.3: USV’s odometry. Roll was varying between ±2°, pitch angle was varying between
±4° and yaw was varying between −180° and 180°. The linear velocity in x-axis was varying
between −2.73m s−1 and 0m s−1, velocity in y-axis was varying between −0.64m s−1 and
2.28m s−1 and vertical velocity was between −1.26m s−1 and 1.08m s−1. The meaning of the
background colours is following — dark blue: idle, orange: get height, yellow: approach, purple:
tracking, green: tracking stable, light blue: landing and light red: flare.
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Appendix C

Real-world experiment

(a) UAV’s roll, pitch and yaw angles.

(b) USV’s roll, pitch and yaw angles.

Figure C.1: UAV’s attitude angles Fig. C.1a and USV’s estimated attitude angles Fig. C.1b.
The colour marks individual modes. The meaning of the background colours is following —
dark blue: take-off, orange: get height, yellow: approach, purple: descent for tracking, green:
tracking USV and light blue: landing.
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Figure C.2: USV’s linear velocities in global coordinate frame. The meaning of the background
colours is following — dark blue: take-off, orange: get height, yellow: approach, purple: descent
for tracking, green: tracking USV and light blue: landing.
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Appendix D

CD Content

In Table D.1 are listed names of all root directories on CD.

Directory name Description

thesis the thesis in pdf format
thesis sources LATEX source codes
matlab MATLAB source codes
repository software source codes
videos videos from real-world experiments

Table D.1: CD Content
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