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Abstract

In this work, we compare different meth-
ods for time series classification. The
methods cover KNN classification using
distances computed by Dynamic Time
Warping (DTW), Long-Short Term mem-
ory (LSTM), and GRU method. We com-
pare the quality of the classifiers on 4 dif-
ferent datasets, covering hand movements,
gestures, movements of robotic manipu-
lator, and audio recordings. We evaluate
the results for various settings and param-
eters of the methods. The difficulty of
individual datasets is compared.

Keywords: time series classification,
DTW visualisation LSTM, GRU, DTW

Supervisor: Mgr. Karla Štěpánová,
Ph.D
Český institut informatiky, robotiky a
kybernetiky, CIIRC,
Jugoslávských partyzánů 1580/3,
160 00 Dejvice

Abstrakt
V této práci porovnáváme různé metody
klasifikace časových řad. Metody pokrý-
vají klasifikaci algoritmem KNN pomocí
vypočítaných vzdáleností Dynamic Time
Warping (DTW), Long-Short Term me-
mory (LSTM) a metodou GRU. Porovná-
váme kvalitu klasifikátorů na 4 různých
datasetech, které zahrnují pohyby rukou,
gest, pohyby robotického manipulátoru a
audio nahrávky. Výsledky vyhodnocujeme
pro různá nastavení a parametry metod.
Porovnává se obtížnost jednotlivých data-
setů.

Klíčová slova: klasifikace časových řad,
vizualizace DTW, LSTM, GRU, DTW

Překlad názvu: Klasifikace časových
řad pro rozpoznání akcí v imitačním
učení

iv



Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related work . . . . . . . . . . . . . . . . . . 2

1.3.1 Gestures, actions and human
moves classification . . . . . . . . . . . . . 3

1.3.2 Audio signals classification . . . 3
1.3.3 Prior work at FEE, CTU . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . 4
2 Material and methods 5
2.1 Classification algorithms . . . . . . . . 5

2.1.1 Dynamic Time Warping . . . . . 6
2.1.2 K-nearest neighbours algorithm 6
2.1.3 Long short-term memory . . . . . 7
2.1.4 Gated recurrent units . . . . . . . . 7

2.2 Signal processing . . . . . . . . . . . . . . 8
2.2.1 Fast Fourier transform . . . . . . . 8

2.3 Experiments description . . . . . . . . 9
2.4 Reading and comparing the

results . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Confusion matrix . . . . . . . . . . 10

3 Data collection, preprocessing and
dataset creation 13
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Hand gesture dataset . . . . . . . 14
3.1.2 Bottle moving audio dataset . 15
3.1.3 CoppeliaSim dataset . . . . . . . 17
3.1.4 Human skeleton dataset . . . . 21

3.2 Data Preprocessing . . . . . . . . . . . 22
3.2.1 Hand gesture dataset . . . . . . . 22
3.2.2 Bottle moving audio dataset . 22
3.2.3 CoppeliaSim dataset . . . . . . . 24

4 Results 25
4.1 DTW . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Hand gesture dataset . . . . . . . 26
4.1.2 Bottle moving dataset . . . . . . 27
4.1.3 CoppeliaSim dataset . . . . . . . 27
4.1.4 Human skeleton dataset . . . . 30
4.1.5 Discussion . . . . . . . . . . . . . . . . 30

4.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Hand gesture dataset . . . . . . . 33
4.2.2 Bottle moving dataset . . . . . . 34
4.2.3 CoppeliaSim dataset . . . . . . . 36
4.2.4 Human skeleton dataset . . . . 38

4.2.5 Discussion . . . . . . . . . . . . . . . . 40
4.3 GRU . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Hand gesture dataset . . . . . . . 42
4.3.2 Bottle moving dataset . . . . . . 44
4.3.3 Confusion matrices . . . . . . . . . 45
4.3.4 CoppeliaSim dataset . . . . . . . 46
4.3.5 Human skeleton dataset . . . . 48
4.3.6 Discussion . . . . . . . . . . . . . . . . 50

5 Conclusion and future work 53
Bibliography 55

v



Figures
2.1 LSTM cell. . . . . . . . . . . . . . . . . . . . . 7
2.2 GRU cell. . . . . . . . . . . . . . . . . . . . . . 8
2.3 FFT example illustration. . . . . . . . 9
2.4 DTW distance matrix example . 10
2.5 Confusion matrix example. . . . . . 11

3.1 Opposite gesture sequence
example. . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Same gesture sequence example. 16
3.3 Bottle dataset sequances. . . . . . . 18
3.4 Action in CoppeliaSim simulator. 19
3.5 Pepper camera’s picture . . . . . . . 21
3.6 Bottle - modified data. . . . . . . . . 23
3.7 Bottle - FFT visualisation. . . . . . 24

4.1 Hand - DTW distance matrix. . . 26
4.2 Hand, 80:20 - KNN (DTW)

confusion matrix. . . . . . . . . . . . . . . . 26
4.3 Bottle - DTW distance matrices. 27
4.4 CoppeliaSim - DTW distance

matrices . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Coppelia, Forces - KNN (DTW)

confusion matrix. . . . . . . . . . . . . . . . 29
4.6 Coppelia, ObjOriPos - KNN
(DTW) confusion matrix. . . . . . . . . 29

4.7 Coppelia, TipMinObjPos - KNN
(DTW) confusion matrix. . . . . . . . . 29

4.8 Skeleton - DTW distance matrix. 30
4.9 Skeleton - KNN (DTW) confusion

matrix. . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 Hand - LSTM grid search . . . . . 33
4.11 Hand, 80:20 - LSTM confusion

matrix. . . . . . . . . . . . . . . . . . . . . . . . . 34
4.12 Bottle - LSTM grid searches . . 35
4.13 Bottle - LSTM confusion

matrices. . . . . . . . . . . . . . . . . . . . . . . 35
4.14 CoppeliaSim - LSTM grid

searches . . . . . . . . . . . . . . . . . . . . . . . 37
4.15 Coppelia - LSTM confusion

matrices. . . . . . . . . . . . . . . . . . . . . . . 38
4.16 Skeleton - LSTM grid search . . 39
4.17 LSTM grid search averages for

Skeleton. . . . . . . . . . . . . . . . . . . . . . . 39
4.18 Skeleton - LSTM confusion

matrix. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.19 Hand, 80:20 - GRU grid search 43

4.20 Hand, 80:20 - GRU confusion
matrix. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.21 Bottle - GRU grid searches . . . . 45
4.22 Bottle - confusion matrices. . . . 45
4.23 CoppeliaSim - GRU grid searches 47
4.24 Coppelia - GRU confusion

matrices. . . . . . . . . . . . . . . . . . . . . . . 48
4.25 Skeleton - GRU grid search . . . 49
4.26 Skeleton - GRU confusion

matrix. . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



Tables
3.1 Datasets review summary . . . . . . 14
3.2 Distribution of individual dynamic

gestures in the dataset. . . . . . . . . . . 15
3.3 Distribution of the Bottle dataset. 17
3.4 Dimensions of each feature in the

CoppeliaSim dataset. . . . . . . . . . . . . 18
3.5 Hand dataset splitting review . . 22

4.1 Datasets summary . . . . . . . . . . . . 25
4.2 Table of the KNN (DTW)

accuracy for different splitting in the
Hand gesture dataset, K = 1. . . . . 27

4.3 Grid search parameters. . . . . . . . 33
4.4 The best accuracy from the LSTM

grid search per each set in Hand
Gesture dataset. . . . . . . . . . . . . . . . . 34

4.5 Grid search parameters . . . . . . . . 42
4.6 The best accuracy from the GRU

grid search per each set in Hand
Gesture dataset. . . . . . . . . . . . . . . . . 43

vii





Chapter 1

Introduction

1.1 Motivation

Time series data can be found all around the world without even noticing.
Changes in the weather, flow of money on the stock market or airlines delay
statistics. These all are data collected during a time and show the progress of
some variable. This representation can serve us to find out more information
about the process behaviour affecting the variable changes. Examples of the
usage are variable value prediction or variable classification. Both can be
very useful and can improve our lives. In this thesis, we will look only into
the classification problems.

The application of the time series classification can be seen as action detection
in imitation learning. In the not so distant future, it will be necessary to
make a robot understand the human more easily than nowadays. One way
to improve this is to learn a machine to recognise human gestures, actions
and activities. For example, a worker in a factory shows a robot how to work
using simple gestures, and the machine starts to work.

If we want to achieve this idea, we need first to compare the classification
algorithms. Some of them can be used only in one case, meanwhile others
in the second case. Which type of program is suitable for all cases? Is there
even the best one? In the last few years, neural networks have risen and
become very popular because of their performance.

One type of network is a recurrent neural network (RNN), which suits for
work with the time series. These networks can require a large amount of
training data and are demanding to train. On the other hand, there are
still old fashioned methods for measuring the distance, similarity and other
features of the time series. In our thesis, we will work with 2 RNN networks
called Long short-term memory (LSTM) and Gated recurrent units (GRU)
and with the method Dynamic time warping (DTW), which measures the
distance between 2 samples of time series.
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1. Introduction .....................................
Can a program based on those features be better than RNN in the classification
problem? We will try to answer this question by comparing those classification
methods on four datasets.

1.2 Goals

For a start, we need some data to work with. Our first goal is to create,
generate or obtain the datasets. We have to describe and understand data
behaviour and see how they perform. We will also prepare them for the
algorithms by preprocessing, if it is necessary.

The time series data can be sometimes hard to visualise since there can be
more than one dimension (value) to observe. For example, if there were
2-dimensional sequences, it would be the same as displaying 2 different time
series. Unfortunately, in most cases, these two values are not independent.
Therefore the second goal of the thesis is to visualise the time series data
in the way that correlation between individual series can be easily observed.
Ideally, we would like to observe the classification algorithms that could
cluster the samples in the datasets.

The last and the main goal of the thesis is to compare results of individual
classification methods. Performance of the methods with different parameter
settings will be evaluated on different prepared datasets. We will discuss if
some of the features of the datasets work better than the other ones and try
to figure out the reasons. In the end, we try to select the best method for
each dataset in the classification problem.

1.3 Related work

This section will focus on previous related work in based-distance measured
and deep-learning models, especially applications on classification problems.
The development of deep-learning algorithms has been increasing last decades.
Studies from Wang et al. [1] contain eight different representations of time
series, nine similarity measures and their variants, and testing their effective-
ness on 38 time series data sets from various application domains. Dynamic
time warping (DTW) and its variants were also included.

Conclusions of DTW mention its effectiveness and simpler implementation
compared to the LCSS, EDR and ERP [2]. Jiang’s article [2] went even
further and compared 1NN classifiers with eight different distance measures
and three state-of-the-art deep learning models on 128 time series datasets.
Their works show no significant difference between using the 1NN algorithm
using DTW metric or edit distance with the real penalty and deep-learning
models in their measurement.
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.....................................1.3. Related work

1.3.1 Gestures, actions and human moves classification

Another study, from Jenny Cifuentes et al. [3] tries to apply LSTM to
hand gestures. Recognition results were based on gesture dynamics, and a
comparison of gesture trajectories between novice the expert motion was
presented. The LSTM was performed with 99.1% accuracy. "Exploiting
LSTM-RNNs and 3D Skeleton Features for Hand Gesture Recognition" [4]
shows similar results on the 3D skeleton data acquired by the Kinect sensor.

Accuracy led to 92.1%. Shenglin Zhao et al. [5], using the DTW algorithm
and recurrent neural network (BiLSTM and GRU), mentions that RNN
networks have better classification than DTW. By all those related studies,
we can expect better or at least the same accuracy of the RNN network
compared to DTW in our project.

In work from Phat Nguyen Huu et al. [6] we see how RNN can improve
classification problems by extracting the features from the OpenPose algo-
rithm. His team used the mobilenetV2 backbone and LSTM networks to get
corresponding labels of the indoor human poses. In the end, the result led to
99% accuracy.

1.3.2 Audio signals classification

The study from Yinhui Yi et al. [7] focused on music genre classification with
the LSTM network. LSTM was used to produce in-depth features from the
preprocessed audio signal, and the output was fed to SVM [8] and the KNN
classifier. The best result without using LSTM was 61.7 % when combining 2
features extracted before, like zero-crossing rate and Mel Frequency Cepstral
Coefficients (MFCC). Meanwhile, with the LSTM, it raised to 98.9 %. This
difference shows how the RNN can handle extracting deep features from the
sound wave.

DTW was used in D. McGibney’s et al. study [9], where he uses KNN with
DTW metric for MFCC feature. The KNN boosted the classification system
by 24 %, indicating the usefulness of the combination of KNN and DTW.

1.3.3 Prior work at FEE, CTU

In the work of Petr Vanc [10], there is a comparison of the same dataset which
we are going to use in our thesis. He used the DTW for computing the distance
between the "mean", computed by Probabilistic movement primitives [11]
sampler and compared it with the test sample. He does not suggest computing
DTW distance to all samples since it is computationally demanding. Our
thesis will use this slow computing because we would like to compare the
DTW metric performance with the neural networks. Since the metric does

3



1. Introduction .....................................
not classify independently, we will build a simple classifier based on the KNN
algorithm.

1.4 Outline

First, we will describe the classification algorithms, materials and other
methods which we will use in Chapter 2.

In the next Chapter 3, we will describe the data we will use and how we will
prepare them for the experimental part.

Then we will perform the experimental part, describe and discuss the results
in Chapter 4.

We will compare the classifications and try to suggest the best one per dataset.
We will open the topic of future work. This will be done in Chapter 5.

4



Chapter 2

Material and methods

This chapter will describe which methods, materials and experiments we will
use. We will start with the classifications algorithm and their usages. Next,
we will focus on the method of audio signal preprocessing since the dataset
will consist of sounds. Then we tell which experiments we will run on the
data. In the end, we explain how to read the results and compare them with
each other.

2.1 Classification algorithms

Generally, we could say that we use two types of methods for classification in
our work.

The first one is the method based on employing different time series measures.
These measures provide us information like similarity, distance or number of
equal samples, depending on the selected method. This information can be
then used for clustering or classifying the data. In our thesis, we will work
only with one method called Dynamic Time warping (DTW), which measures
the distance between 2 samples of time series sequences. The DTW itself is
just a metric - it provides with the degree of similarity between series. To use
it for classficiation, we will employ K-nearest neighbours algorithm (KNN)
with DTW as a metric.

The second method is based on recurrent neural networks (RNN). Unlike
traditional neural networks, these networks seem very useful for working
with time sequence data. RNN uses the output from the previous state
as the input to the new one, which provides better learning through the
all sequence. Applications of RNNs cover, for example, speech recognition,
music composition and time series prediction. This thesis will compare long
short-term memory (LSTM) and gated recurrent units (GRU) networks.

5



2. Material and methods .................................
2.1.1 Dynamic Time Warping

Dynamic time warping, also known as DTW, counts the optimal alignment [2]
between two time series. If we imagine 2 sequences X = {x0, x1, · · · , xN−1}
and Y = {y0, y1, · · · , yM−1} then DTW algorithm could be count as it is in
equation 2.1, where N and M represents length of sequences, d(x0, y0) means
euler distance between vector x0, y0, Rest(X) = X \ {x0} and Rest(Y ) =
Y \ {y0}.

DTW(X, Y ) =



if M = N = 0 :
0
else if M = 0 or N = 0 :
∞
otherwise :
d(x0, y0) + min(DTW(Rest(X), Rest(Y )),
DTW(Rest(X), Y ), DTW(X, Rest(Y )))

(2.1)

2.1.2 K-nearest neighbours algorithm

This algorithm, mainly used in statistics, can also be very useful in data
classification. K-nearest neighbours algorithm (KNN) holds the labelled
data and counts the distances between these data and testing sample with
selected metrics. The distances across the whole dataset then decide which
class should be the testing sample. The label’s decision is made from the K
smallest distances from them all. The algorithm selects the label from the
majority of the labels represented in the K distances. The pseudocode of
1NN is described below in algorithm 1.

Input Training data, test sample
Output label of the testing sample
distance ← -1
for sample in TrainData do

distance ← DTW(train sample,test sample);
if distance ≥ result then

result ←distance;
result label ← train sample label

end
end

Algorithm 1: 1NN, metric set to DTW, pseudocode.

6



................................2.1. Classification algorithms

2.1.3 Long short-term memory

The neural network called Long short-term memory (LSTM) has shown
reasonable solutions in classifying time series. The network consists of blocks
whose quantity is equal to the length of the sequence. Suppose we have a
time series as X = {x0, x1, · · · , xN−1}. Every block m then takes the output
of the previous block M − 1 and states xM as input.[12] Figure 2.1 shows
LSTM block architecture.

Figure 2.1: LSTM cell with 3 input values ct−1, ht−1 from previous state and
actual state xt, where σ is sigmoid and tanh is hyperbolic tangent. Outputs are
ct, ht which are used in the next step. Source: https://upload.wikimedia.org/
wikipedia/commons/9/98/LSTM.png.

2.1.4 Gated recurrent units

GRU is another type of recurrent neural network. It is similar to LSTM,
described higher but includes only the update gate and reset gate. GRU
was proposed in 2014 by Kyunghyun Cho [13]. Like LSTM, the block of
GRU takes previous output with time series value as input and computes the
result. Due to a more straightforward architecture, GRU is faster training
than LSTM [14]. The Block of GRU is shown in figure 2.2.

7



2. Material and methods .................................

Figure 2.2: GRU cell with only 2 input values ht−1 from previous state and
actual state xt, where σ is sigmoid and tanh is hyperbolic tangent. Output is ht

which is used in the next step. Source: https://technopremium.com/blog/rnn-
talking-about-gated-recurrent-unit/.

2.2 Signal processing

To enable classification of audio signals, it is necessary to extract from the
signal some features. This process procedure may consist of more components.
However, to make our comparison more simple, we decided to use only one of
them, like J. Guerro-Turrubiates et al. in his work [15], where he did pitch
estimation using an artificial neural network. This method is described below
2.2.1.

2.2.1 Fast Fourier transform

The algorithm called The Fast Fourier transform (FFT) performs the discrete
Fourier transform (DFT) over the input. The Fourier transform is the
integral transform converting the data from time depending on frequency
depending. Since the data input cannot be represented in the computer as
continuous, we must count discrete transform. Considering the sequence
X = {x0, x1, · · · , xN−1} as our time series, then the DFT would compute as
equation 2.2, where i stands for imaginary unit.

yk =
N−1∑
n=0

xn · e− i2π
N

kn (2.2)

The result of the equation is data Y = {y0, y1, · · · , yN−1} showing the depen-
dence of frequency. We can use this new data as an input to our algorithms.
The example of the FFT is shown in figure 2.3.

8



................................ 2.3. Experiments description

Figure 2.3: The illustration of Fast Fourier transform (FFT). There is an
original signal on the right. The new one is shown on the left side. Source:
https://www.mathworks.com/discovery/fft.html.

2.3 Experiments description

Our main goal is to compare the algorithms for the classification of our
datasets. Then we will also provide a visualisation of datasets where we can
observe if it is even possible to use some of the classifiers.

We will compute the DTW distance matrix for all subdatasets (sets) of
datasets, which we will prepare in Section Preprocessing 3.2. This matrix
can visualise how DTW can hold the datasets and separate them into classes.
We will calculate the distances between each sample in the set. An example
of this can be seen in figure 2.4. The brighter space means a bigger distance.
Meanwhile, the darker one represents close samples. Ideally, we should see
the diagonal squares of the single classes, which should be dark, while the rest
of the matrix should be bright. Thanks to this visualisation, we can observe
the interference between the classes across the whole dataset.

LSTM and GRU neural networks have a couple of hyperparameters that
need to be tuned based on the working dataset. The manual tuning does
not make sense because it is very time-consuming and random selection is
not possible thanks to the high variability of the performance based on the
selected parameters. As the solution, we decide to perform the grid search
that tries to find the best hyperparameters to fit the training data. We
will use the accuracy of the testing data as the index of network perfection.
That information can provide us with the best hyperparameters and the best
accuracy of the network on our testing data.

9
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Figure 2.4: The example of DTW distance matrix. The brighter space means a
bigger distance. The darker one represents close samples.

2.4 Reading and comparing the results

The confusion matrix seems to be the best way to observe the classification
behaviour of the current algorithm. We can efficiently compute that matrix for
the LSTM, GRU network and KNN (DTW). We will use the information from
the grid searches to build a new model of the neural networks. Then we apply
it to the testing data and plot the confusion matrix from the classification
results per sample. We also apply testing data to the KNN algorithm, and
we will plot the confusion matrix.

2.4.1 Confusion matrix

This matrix can tell us the interference between real labels and the pre-
dicted ones. It contains true positive(TP)/negative(TN) and false posi-
tive(FP)/negative(FN) values of the classification. There are many variants
of this matrix. An example is shown in figure 2.5. The matrix can also
contain the information of recall and precision per class. Description is in
equation 2.3 and 2.4.

Precision = TP

TP + FP
(2.3)

Recall = TP

TP + FN
(2.4)

10



........................... 2.4. Reading and comparing the results

Figure 2.5: The example of confusion matrix.
Source:https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-
d1c0f8feda5.
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Chapter 3

Data collection, preprocessing and dataset
creation

3.1 Datasets

We use four datasets for our thesis. Two of them were obtained from the
previous works. One is from G. Šejnová [16], produced by an OpenPose
algorithm [17] from the pepper humanoid robot’s camera data. We call it
the Human skeleton dataset (Skeleton). The other one, that we named the
Hand gesture dataset (Hand), comes from P. Vanc [18], which consists of
hand gestures. Then we generated one, called CoppeliaSim dataset (Coppelia)
in the simulator CoppeliaSim via the code provided by K. Kubecová. This
dataset contains information about the robot moving the object. We created
the fourth one. It is named Bottle moving dataset (Bottle), describing the
movement of the bottle using the sound records. The summary of the datasets
and their prepared subdatasets (sets) can be seen in table 3.1

13



3. Data collection, preprocessing and dataset creation ....................
Dataset Set Dim Train Test
Hand 50:50 4 150 150
Hand 60:40 4 181 119
Hand 70:30 4 211 89
Hand 80:20 4 238 62
Hand 90:10 4 270 30
Bottle Max 2 500 75
Bottle Fft 2 500 75

Coppelia Forces 7 500 75
Coppelia ObjOri 3 500 75
Coppelia ObjPos 6 500 75
Coppelia ObjOriPos 3 500 75
Coppelia TipPos 3 500 75
Coppelia TipMinObjPos 3 500 75
Skeleton Skeleton 8 60 30

Table 3.1: Review of the all prepared datasets. Set means part or prepared
dataset for our algorithms. Dimension (Dim) stands for a number of the values
in each timestamp. The Train represents the amount of all training data. The
Test shows the number of all testing data in the set of the dataset.

3.1.1 Hand gesture dataset

In our project, we operated with a hand gestures dataset created by Petr
Vanc [18] recorded via Leap Motion sensor. One gesture is represented by
time series with length of 101. The number of values in one state equals
4. These values are normalized coordinates of palm in Cartesian coordinate
system x, y, z and the last one is the euclidean distance d from palm to point
fingertip. Data are described in equation 3.1.

Hand = {Hi} i = 1, ..., 300
Hi = [⃗h1

i , ..., h⃗T
i ] T = 100

h⃗t
i = [xi,t, yi,t, zi,t, di,t]

(3.1)

Hand stands for all data, Hi represents a single sample. T means the biggest
time t of the samples. The t is time, therefore concrete h⃗t

i is one timestamp.
The last line shows the meaning values (Cartesian coordinates and euclidean
distance from palm to point fingertip) in each timestamp.

Data contains dynamic and static gestures. For our case, we decided to
work only with dynamic gestures. They are called pin, rotate, touch, swipe
left/right and swipe up/down. For distribution of the gestures see table 3.2.
Dynamic gestures can be also seen as a movement of the hand when the user
is moving it across the whole working space. On contrary, in the case of
static gestures, the user moves only with his fingers, and the palm is located
in one place, moving minimally. Therefore, dynamic gestures are better for
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...................................... 3.1. Datasets

comparing our algorithms because the palm values change significantly in
time.

The dataset contains 301 samples for dynamic gestures. There are seven
types of motion with a variable amount of samples. This instability could
lead to the suppression of less represented data while classifying or clustering.
Detailed data distribution is shown in table 3.2.

Label No. of samples No. of dim.
pin 28 4

rotate 33 4
touch 38 4

swipe left 51 4
swipe right 54 4
swipe up 38 4

swipe down 59 4

Table 3.2: Distribution of individual dynamic gestures in the dataset.

Figure 3.1: Example of time series for two dynamic gestures swipe right,swipe
left. The x value is shown.

The demonstration of this dataset could be problematic due it is four-
dimensional. Therefore we decided to plot only one value, which differs
across the classes. We can see the x value comparison of two different labels
in figure 3.1. We decided to show left and right-swiping. We observe the most
significant difference, because swipe right and swipe left are opposite gestures.

We can recognize the same motion represented by two sequences in figure 3.2.
The time series are not the same, but the patterns in time are very similar.

3.1.2 Bottle moving audio dataset

The world can give us lots of information about its behaviour, which can
be used to classify some phenomena. The previous dataset describes the
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3. Data collection, preprocessing and dataset creation ....................

Figure 3.2: Comparison of two different samples of the same dynamic gesture
pin. The x value is shown.

movement of the hand by spatial coordinates. If this hand gesture would create
the sound, for example, while moving some object, we can use this additional
information for classifying. Therefore, we created a dataset containing sounds
of bottle movements on the wooden table to see how sound can be helpful in
classification.

The description of the dataset can be seen in equation 3.2. We also created a
new set of datasets in the Preprocessing section 3.2.2 for better performance
of classification. They are described in equation 3.3 and named fft and max,
based on their features. We used a laptop microphone with two channels for
recording. We recorded for 1.5 seconds with a frame rate of 1000 frames per
second leading to the samples with the length 1500 frames. Dataset consists
of 100 training and 15 testing samples for each class. Data distribution is
described in table 3.3.

Original = {Di} i = 1, ..., 575
Di = [d⃗1

i , ..., d⃗T
i ] T = 1500

d⃗t
i = [ch1

i,t, ch2
i,t]

(3.2)

Di represents a single sample. T means the length of the longest sample.
The t is time, therefore concrete d⃗t

i is one timestamp. The last line shows the
meaning values (microphone channels) in each timestamp.
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...................................... 3.1. Datasets

max = {Mi} i = 1, ..., 575
Mi = [m⃗1

i , ..., m⃗T
i ] T = 500

m⃗t
i = [max(ch1

i,t, ch1
i,t+1, ch1

i,t+2), max(ch2
i,t, ch2

i,t+1, ch2
i,t+2)]

fft = {Fi} i = 1, ..., 575
Fi = [f⃗1

i , ..., f⃗T
i ] T = 750

f⃗ t
i = [fft(ch1

i,t), fft(ch2
i,t)]

(3.3)
fft stands for all Fast Fourier transform data. Max stands for all max set
data. Mi, Fi represents a single samples. The m⃗t

i, f⃗ t
i are one timestamps of

the data. T means the length of the longest sample. The t is time.

The vector [max(ch1
i,t, ch1

i,t+1, ch1
i,t+2), max(ch2

i,t, ch2
i,t+1, ch2

i,t+2)] represents
downsampling and selecting the maximum of the channels values in time t in
sample i. The vector [fft(ch1

i,t), fft(ch2
i,t)] stands for Fast Fourier transform of

the value of the channel in time t in sample i.

label No. of training samples No. of testing samples No. of dim.
P 100 15 2
D 100 15 2
I 100 15 2
Z 100 15 2
O 100 15 2

Table 3.3: Distribution of the Bottle dataset.

There are five classes called by individual letters P, D, I, Z and O. The letters
represent the shape of the movement. We can imagine this as writing a letter
with a pencil, but we use the bottle instead of the pencil. In our conditions,
human ears could not recognise the difference between similar gestures like
pushing forward and backwards. This feature depends on the material of the
bottle and surface. Visualisation of the raw data is shown in figure 3.3. We
can hardly observe differences between single classes except for the letter I,
which protrudes. We can also see dissimilarity between the letters P and D
compared to Z and O.

3.1.3 CoppeliaSim dataset

Experiments in the real world are still increasingly inefficient, expensive and
time-consuming. On this side, the simulation comes to the scene. We created
the new time series dataset with the simulation program called CoppeliaSim.
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3. Data collection, preprocessing and dataset creation ....................

Figure 3.3: Example of raw Bottle dataset, all letters. The first channel is shown.

Our concrete simulation was provided by simulation workspace miracle_sim
[19], which simulates 7DoF-axis mechanical arm robot. We used the work of
K. Kubecová [20], who programmed the simulation to create the data. We
used her code and generated a new data collection.

feature No. of values
tip position 3

joints velocities 7
joints forces 7
joints angles 7

object orientation 3
object position 3

gripper info 2

Table 3.4: Dimensions of each feature in the CoppeliaSim dataset.

The dataset consists of the robot motion and action with the block. There
are three labels (actions): push, bump and lift, describing the interaction
between the robot’s arm and the object, in our case, the cube. We collected
115 samples per class and split the data into the training (100 samples) and
the testing (15 samples) data. The same division we made in the Bottle
dataset 3.1.2. The creation of the one sample can be seen in figure 3.4.

The Bottle dataset (see Sec. 3.1.2) held one type of data with different
dimensions. The simulator allowed us to measure more information in time.
Thanks to this feature, we collected time series of gripper force and position,
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...................................... 3.1. Datasets

Figure 3.4: Example of the object lifting in the CoppeliaSim simulator.

tip position, joint velocities, angles and forces, object orientation and position.
Dimensions for each feature are described in table 3.4. This may lead to
combinations of those features like adding or computing new data, which
can help with the classification and show us the importance of the original
single information. We created sets of dataset called: Forces, ObjOri, ObjPos,
ObjOriPos, TipPos, TipMinObjPos. The detailed information can be seen in
the equations 3.4. The creation of the new prepared datasets is described in
section 3.2.3. Table 3.1 shows the final datasets’ dimensions and numbers of
the testing and training data.
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3. Data collection, preprocessing and dataset creation ....................

Forces = {Ai} i = 1, ..., 345
Ai = [⃗a1

i , ..., a⃗T
i ] T = 47

a⃗t
i = [f1

i,t, f2
i,t, f3

i,t, f4
i,t, f5

i,t, f6
i,t, f7

i,t]

ObjOri = {Bi} i = 1, ..., 345
b⃗i = [⃗b1

i , ..., b⃗T
i ] T = 47

b⃗t
i = [anglex

i,t, angley
i,t, anglez

i,t]

ObjPos = {Ci} i = 1, ..., 345
Ci = [⃗c1

i , ..., c⃗T
i ] T = 47

c⃗t
i = [xobj

i,t , yobj
i,t , zobj

i,t , ]

ObjOriPos = {Di} i = 1, ..., 345
Di = [d⃗1

i , ..., d⃗T
i ] T = 47

d⃗t
i = [xobj

i,t , yobj
i,t , zobj

i,t , anglex
i,t, angley

i,t, anglez
i,t]

TipPos = {Fi} i = 1, ..., 345
Fi = [f⃗1

i , ..., f⃗T
i ] T = 47

f⃗ t
i = [xtip

i,t , ytip
i,t , ztip

i,t ]

TipMinObjPos = {Ei} i = 1, ..., 345
Ei = [e⃗1

i , ..., e⃗T
i ] T = 47

e⃗t
i = [abs(xobj

i,t − xtip
i,t ), abs(yobj

i,t − ytip
i,t ), abs(zobj

i,t − ztip
i,t )]

(3.4)

The T means the length of the longest sample. The t is time, therefore
concrete Datasett

i is one timestamp of the data. The last line shows the
meaning values in each timestamp. The vector [f1

i,t, f2
i,t, f3

i,t, f4
i,t, f5

i,t, f6
i,t, f7

i,t]
stands for the forces torque sensor readings from the individual robot joints in
sample i at the time t. The vector [anglex

i,t, angley
i,t, anglez

i,t] means the object
orientation angles measured around the axis in sample i at the time t. The
vector [xobj

i,t , yobj
i,t , zobj

i,t ] represents object position in the euclidean coordinates
system in sample i at the time t. The vector [xtip

i,t , ytip
i,t , ztip

i,t ] stands for the tip
position in the euclidean coordinates system in sample i at the time t.
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...................................... 3.1. Datasets

3.1.4 Human skeleton dataset

This dataset was produced by the OpenPose algorithm [17] from data coming
from Pepper humanoid robot’s camera, scanning the person who performs
different moves. The goal is to recognise the move from the time series where
each timestep consists of 8 values. These values are computed from the RGB
picture that the robot scanned. The characters in order are Left Shoulder
Roll, Left Elbow Roll, Right Shoulder Roll, Right Elbow Roll, Left Arm
Direction, Right Arm Direction, Left Hand Open, and Right Hand Open.
Roll values stand for joint angles in degrees. Arm directions are a binary

Figure 3.5: Example of the picture from Pepper humanoid robot’s camera with
the skeleton structure, which was produced by the OpenPose algorithm

value since we cannot extract an angle. The value 100 stands for arm pointing
upwards meanwhile 0 means pointing downwards. We apply the same rules
for open hand information where value 0 is a closed hand, and 100 is an open
one. The detailed information can be found in equation 3.5. There are three
moves, called dance, fly and wave. The dataset consists of 20 train samples
and 10 test samples per class. The ratio of the training and testing data can
be seen in table 3.1.

Skeleton = {Di} i = 1, ..., 300
Di = [d⃗1

i , ..., d⃗T
i ] T = 33

d⃗t
i = [LeftShoulderRolli,t, LeftElbowRolli,t, RightShoulderRolli,t,

RightElbowRolli,t, LeftArmDirectioni,t, RightArmDirectioni,t,

LeftHandOpeni,t, RightHandOpeni,t]
(3.5)

Di represents a single sample. T means the length of the longest sample.
The t is time, therefore concrete d⃗t

i is one timestamp. The last line shows the
meaning values in each timestamp in sample i.
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3. Data collection, preprocessing and dataset creation ....................
3.2 Data Preprocessing

Processes in nature are rough, varied and unstable, which leads to the raw
measured signals. We can use these data, but we may also extract some
features using algorithms or create a data selection for better performance of
our classifiers.

3.2.1 Hand gesture dataset

This dataset does not contain training and testing data separately, so we
must split it. The suggested ratio we will use to compare the classification
will be 70:30, which means that we split our data into training data (70% for
each class) and testing data (30% for each class). We also decided to create
datasets with different ratios. We can see how algorithms will manage the
different sizes of the training and testing data by those combinations. The
new datasets distribution is shown in table 3.5. The algorithm provided this
splitting takes N, described in equation 3.2.1, random samples from each class
and sets them as new testing data. Meanwhile, the rest of the samples are
training one.

N=̇(wanted percentage of testing data) · (current class size)
100 (3.6)

ratio: 50:50 60:40 70:30 80:20 90:10
label train test train test train test train test train test
pin 14 14 17 11 20 8 22 6 25 3

rotate 16 16 20 13 23 10 26 7 30 3
touch 19 19 23 15 27 11 30 8 34 4

swipe left 26 26 31 20 36 15 41 10 46 5
swipe right 27 27 32 22 38 16 43 11 49 5
swipe up 19 19 23 15 27 11 30 8 34 4

swipe down 30 30 35 24 41 18 47 12 53 6

Table 3.5: New hand gesture datasets from splitting the original data into
training and testing. The ratio of each dataset is shown with the data distribution
for each class. Numbers represents the amount of the training and testing
samples.

3.2.2 Bottle moving audio dataset

As we said before in the description of the data 3.1.2, we cannot observe
big contrast between each sound. That is the first reason we have to change
the data for the computer, so it works better. The second reason is the
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.................................. 3.2. Data Preprocessing

computational time which we may decrease by shrinking the data while also
extracting some features.

We started by computing the median, maximum and mean of the amplitude
of the defined calculating window. For example, we can set the window to 3
points which leads to shortening the signal 3x times and selecting the feature
mentioned before from those points. In figure 3.6 we observe the letter D
modified.

Figure 3.6: Audio signal for letter F. Example of the raw and modified data.
The first channel is shown.

The shape of the signal is significant in our work which means if the shapes
of each class diverges, the classifier will work better. Because of that, the
selection of maximal amplitude seems to be the best decision. We can also
try median or mean, but their shapes are very similar to the original signal.
We may also try the raw data as the input and see the result. We decided
to use the max feature since the shape difference is the most significant. We
will name this subdataset Max.

Another practical algorithm which we have decided to use is called Fast Fourier
transform 2.2.1 which changes our data from amplitude-time depending to
amplitude-frequency depending. This transformation may bring us a new
dataset where all labels are shaped in significant contrast. The original length
of the signal is 1500 points. We compute only real numbers as input. Then
the output will be half (750 points) of the original length because we omit the
negative frequencies since they are complex conjugates of the corresponding
positive-frequency terms. We will name this subdataset Fft. Thanks to this
attribute, the computing speed will also increase. An example of the Fft is
shown in figure 3.7.
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3. Data collection, preprocessing and dataset creation ....................

Figure 3.7: Example of the Fast Fourier transform of all letters. The first
channel is shown for 1 sample per class.

3.2.3 CoppeliaSim dataset

Since there is a complex data structure, we must decide which type of
information we will use. The actions are based on the object movement,
which will lead us to use the position information of the object since there are
actions called push and bump, which can be similar. We create one dataset
containing only the object’s orientation and position separately. We call them
ObjOri and ObjPos. Those datasets should work better if we join them since
they give the total movement information about the object. We name this
new dataset ObjOriPos.

If we imagine we have to work without the moving object’s proximity sensor,
we may want to use other available information. From this point, we also
decide to create separate datasets from the joints torque sensor signals of the
forces. We named it Forces. Then there is also tip position which should
provide us with better position information, we call it TipPos.

The last one we made was based on the dataset’s author’s recommendation.
It was done by computation between the tip’s position and the object. We
produce the difference between those coordinations and create new infor-
mation. We will call it TipMinObjPos. All those datasets: Forces, ObjOri,
ObjPos, ObjOriPos, TipPos, TipMinObjPos are detailed and described in
the previous section 3.1.3 in equations 3.4.
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Chapter 4

Results

This chapter will display the results of the classification and visualisation of
the dataset sets. There will also be a discussion about them. We did not
perform all algorithms for all sets because some had lousy visualisation or
wrong grid search results. In table 4.1 we observe the best accuracy of the
selected dataset sets primarily from the confusion matrices. We chose those
sets to represent the datasets since they could be performed by most of the
algorithms with valuable results.

Dataset Set KNN (DTW) LSTM GRU
Hand 80:20 95% 87% 90%
Bottle Max - 83% 84%
Bottle Fft - 63% 76%

Coppelia Forces 93% 62% 64%
Coppelia ObjOriPos 89% 51% 56%
Coppelia TipMinObjPos 100% 41% 66%
Skeleton Skeleton 100% 77% 83%

Table 4.1: Summary of the datasets sets accuracy for the chosen algorithms. If
we create the confusion matrix, its accuracy is written. If there is none, we take
the number from the grid search or non-displayed confusion matrix for KNN
(DTW).

4.1 DTW

We performed for all sets of the dataset DTW distance matrix, which can
visualise the distance interference between each sample. The most contrast
between all samples can be seen for the Hand gesture dataset in figure 4.1
and for the Human skeleton dataset in figure 4.8. If the distance matrix can
display the difference between the classes then we also did a confusion matrix
for KNN algorithm with the DTW metric.
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4. Results .......................................
4.1.1 Hand gesture dataset

We created one DTW distance matrix in figure 4.1 for all samples of this
dataset. The contrast between the classes can be observed, so we also
performed KNN (DTW) confusion matrix. The result may be seen in figure
4.2 for set 80:20. The accuracy raised to 95%. We also performed the KKN
(DTW) for the rest of the dataset sets to see how the accuracy changed with
the splitting. The result is in table 4.2.

Figure 4.1: DTW distance matrix where each cell represents the distance between
two samples of the Hand gesture dataset.

Figure 4.2: Confusion matrix of the Hand gesture dataset, processed by KNN
(DTW). Dataset set 80:20 is shown, K = 1.
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Dataset Set Accuracy
Hand 50:50 93%
Hand 60:40 93%
Hand 70:30 94%
Hand 80:20 95%
Hand 90:10 95%

Table 4.2: Table of the KNN (DTW) accuracy for different splitting in the Hand
gesture dataset, K = 1.

4.1.2 Bottle moving dataset

We did two confusion matrices for this dataset. The first one is for set max
(figure 4.3b) and the other for the fft (figure 4.3a) feature. We did not evaluate
KNN with DTW metric as for this size of dataset (500-700 timestamps per
sequence) the computational time is so high (several hours) that it cannot be
used in any real application.

(a) : Fft set (b) : Max set

Figure 4.3: DTW distance matrices of the Bottle moving max dataset sets. Fft
set is on the left and Max set is on the right. Each cell represents the distance
between two samples.

4.1.3 CoppeliaSim dataset

For these dataset sets, we created only visualisation. Since the dataset size is
big, it is inefficient to use KNN (DTW). We plotted matrices 4.4a-4.4f for the
Forces, ObjOri, ObjPos, ObjOriPos, TipPos and TipMinObjPos. The best
contrast for all classes can be seen in 4.4f. The worst one was is in fig. 4.4d
because, we have to set a maximum limit of the distance not to observe one
big black square. The rest of the results are similar except for 4.4a, where two
squares (labels) can be seen. We also performed DTW (KNN) algorithm and
plotted its confusion matrix for sets Forces, ObjOriPos and TipMinObjPos,
which can be seen from figure 4.5 to figure 4.7.
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(d) : ObjOriPos set
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(e) : TipPos set
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(f) : TipMinObjPos set

Figure 4.4: The GRU grid search graphs of the CoppeliaSim dataset sets. A
higher score means better accuracy of the testing data in the current configuration.
Colour represents the hidden size. Meanwhile, the line pattern stands for the
num. of layers.
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Figure 4.5: Confusion matrix of the CoppeliaSim dataset set Forces, processed
by KNN (DTW). There are 15 testing samples per class, K = 1.
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Figure 4.6: Confusion matrix of the CoppeliaSim dataset set ObjOriPos, pro-
cessed by KNN (DTW). There are 15 testing samples per class, K = 1.

Figure 4.7: Confusion matrix of the CoppeliaSim dataset set TipMinObjPos,
processed by KNN (DTW). There are 15 testing samples per class, K = 1.
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4. Results .......................................
4.1.4 Human skeleton dataset

This dataset is small, therefore both DTW visualisation of distances (see fig.
4.8) as well as results of KNN (see fig. 4.9) are visualised.. Accuracy raised
to 100%, and the contrast in the distance matrix is impressive.

Figure 4.8: DTW distance matrix of the Human skeleton dataset. Each cell
represents the distance between two samples.

Figure 4.9: Confusion matrix of the Human skeleton dataset, processed by KNN
(DTW). There are 10 testing samples per class, K = 1.

4.1.5 Discussion

DTW visualisation

We visualised all datasets with the distance matrix, where each cell corre-
spondent to the DTW distance between two samples in the selected dataset.
Therefore we can observe how the DTW metric can be helpful if we decide to
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use it in some chosen algorithm. This performance has no accuracy since this
matrix only shows clustered classes by DTW.

In figure 4.1 we observe seven dark squares that represent non-identical
gestures in the Hand gesture dataset. The square size differs because we
performed the visualisation through the whole data. Since the Hand gesture
dataset is not evenly distributed, the squares hold the divergent number of
samples. We can note that some of the gestures can be connected by DTW,
whereas others are cleared. That can be observed as the darker places in the
rest of the matrix. Gesture pin is closer by the distance to the gesture touch
therefore, we assume misclassification by those two classes if we use the DTW
metric. We inspect the exact similarity of the distances between pairs of the
labels rotate, swipe right/left, swipe down.

Meanwhile, we could see the working visualisation on the Hand gesture
dataset. We observe something different in figures 4.3a and 4.3b. Those
figures stand for the Bottle moving dataset. We recognise only one clear
square, the letter I. Complex data points can cause this performance, and
since the letter I stands out even in figure 3.3 then DTW marks it. The
distances measured on the Fft set are much higher compared to the values in
the maximum amplitude.

We also see that in figure 4.3b letters P,D,I and Z are close; meanwhile, in
figure 4.3a only the first three of them are. We can use this information in
future when we build some classification algorithms. For example, by mixing
the feature max. amplitude (set Max) and Fft set together.

We also performed the DTW visualisation for the CoppeliaSim dataset. We
have six sets, and we did the matrices for all of them. They are represented in
figure 4.3. As we see in those figures, there are no single squares for the first
view, which we can follow. In figure 4.4a we see that the DTW algorithm can
create only two labels. The first one is mixed with push and bump. This can
signify that the DTW would classify lift separately for this set. Meanwhile,
push and bump would be joined together. There are not any significant
squares from figures 4.4b to 4.4e. Excpet for set ObjOriPos, where lift seems
to have its square.

For set ObjOri, one distance came so high that the colour bar was not enough
to observe anything. Therefore we had to set a maximum distance to 50.
This anomaly shows us that this set can contain an inaccurate measurement
or a rare sample. In the last figure 4.4f for DTW matrices, we can observe
evidence of some squares. The action lift has its square, which means the
classification algorithm, built on the DTW metric, would recognise lift with
a high probability.

DTW visualisation came up clear for the Human Skeleton dataset. We detect
three squares and no interference between the samples in figure 4.8. This
result could lead to functional classification using DTW.
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4. Results .......................................
KNN (DTW)

To keep our algorithm simple, we use K = 1. Because this algorithm can be
used only for the smaller datasets, we performed it only on the Hand gesture
dataset, CoppeliaSim dataset and its variations and on the Human Skeleton
dataset. Figure 4.2 shows us the confusion matrix for set 80:20. The accuracy
is 95% and for 4 gestures: rotate,swipe left,swipe up,swipe down, the precision
came to 100%. Those gestures were always classified correctly, and none of
the other gestures was misclassified as one of them. Gestures touch and pin
were mixed, as it can also be seen in the DTW matrix in figure 4.1. The
same came up with the labels touch and swipe down.

We also did the KNN (DTW) for the other sets. Their accuracy can be seen
in table 4.2. There is no big difference between the accuracy across the sets.
It can be caused by KNN, which does not learn but only counts the distances
across the whole dataset. Since the samples are close distanced, as we see
in fig 4.1 there is no requirement for a larger amount of training samples.
The quality of the training sample is important. Ideally, use one computed
average sample per class.

We created the KNN (DTW) confusion matrix also for In figures 4.5 to
4.7 we observe that even DTW visualisation (see fig. 4.4) seems to have
bad performance, the KNN (DTW) could classify set TipMinObjPos with
accuracy 100%. Then we assume that this set could be handy while using
KNN (DTW) for future work.

We also generate the confusion matrix using KNN (DTW) for the Human
skeleton dataset. The result is shown in figure 4.9, where accuracy came to
100%, which means that all moves were classified correctly. This performance
could be predicted from the DTW distance matrix in figure 4.8, where all
samples are split into the clear dark squares.

4.2 LSTM

We have performed for all modifications of datasets grid-search with the
largest possible batch size. The seed was always set to random, leading
to some disturbance in comparing the hyperparameters. An example of
this disturbance can be seen in figure 4.17. The learning rate decreased
logarithmically from 0.01 to 0.00007. All those and other parameters can be
seen in table 4.3. We selected the best grid search results and trained the
LSTM networks. We plotted the confusion matrices for these networks. The
results can be seen below.
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Hyperparameter Values
Learning rate 0.01, ..., 0.00007
Hidden size 32, 64, 128, 256, 512

Layers 2,4
Batch size max. possible

Table 4.3: Grid search parameters.

4.2.1 Hand gesture dataset

We performed grid searches for all dataset sets. The best accuracy of all sets
from the grid search is in table 4.4. For comparison with the other data, we
trained again and plotted the confusion matrix only for the set 80:20. The
greatest parameters were: batch size = 300, hidden size = 64, num. of layers
= 2, learning rate = 0.005. The confusion matrix is in figure 4.11. With
those parameters, we got the accuracy equal to 81%.

Grid search

To compare with the other dataset’s grid searches, we plot the grid search for
set 80:20. Generating took several hours. It is shown in figure 4.10. We also
add the table 4.4, which shows the best accuracy for all sets from its grid
search.
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Figure 4.10: Graph of the LSTM grid search of the Hand gesture dataset, ratio
80:20 is shown. A higher score means better accuracy of the testing data in the
current configuration. Colour represents the hidden size. Meanwhile, the line
pattern stands for the num. of layers.
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4. Results .......................................
Dataset Set Accuracy
Hand 50:50 82%
Hand 60:40 85%
Hand 70:30 85%
Hand 80:20 83%
Hand 90:10 96%

Table 4.4: The best accuracy from the LSTM grid search per each set in Hand
Gesture dataset.

Confusion matrices

We took the configuration from the previous grig search (see fig. 4.10), the
trained new model of the network and created the confusion matrix, which is
shown in figure 4.11.

Figure 4.11: Confusion matrix of the LSTM classification of the hand gesture
dataset, ratio 80:20. Hyperparameters: batch size = 300, hidden size = 64, num.
of layers = 2, learning rate = 0.005. There is 20% of the testing samples per
class from the whole dataset.

4.2.2 Bottle moving dataset

We did grid searches for all 6 sets of datasets. Then we trained the networks
for the best results in each set. The best accuracy in the confusion matrix
went out with the set max in figure 4.13b, which leads to 83%. Meanwhile,
the set fft (fig. 4.13a) was only 63%. The concrete parameters are detailed
and written in the description of the figures.
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Grid search

We performed the grid searches for all two sets of the dataset. Those two
were the most time consuming (several hours per one set) compared to the
other datasets. The results are shown in figure 4.12.

(a) : Fft set (b) : Max set

Figure 4.12: Graph of the LSTM grid searches of the Bottle moving dataset sets.
Fft set is on the left and Max set is on the right. A higher score means better
accuracy of the testing data in the current configuration. Colour represents the
hidden size. Meanwhile, the line pattern stands for the num. of layers.

Confusion matrices

We took the best configuration from the grid searches (see fig. 4.12) and
plotted the confusion matrix for the Bottle moving audio dataset sets, which
is shown in figure 4.13.

(a) : Fft set (b) : Max set

Figure 4.13: Confusion matrices of the GRU classification of the Bottle moving
dataset. Set Fft is shown on the left, Max on the right. Hyperparameters for
network trained on Fft set: batch size = 100, hidden size = 32, num. of layers
= 4, learning rate = 0.001. Hyperparameters for network trained on Max set:
batch size = 100, hidden size = 128, num. of layers = 4, learning rate = 0.001.
There are 15 testing samples per class.
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4. Results .......................................
4.2.3 CoppeliaSim dataset

For all dataset sets, we did a grid search. This case shows us how hard it
can be for the network to learn something from the data. For most of them,
the network cannot learn. The best result came up with the forces 4.15a
with parameters: batch size = 300, hidden size = 32, num. of layers = 2,
learning rate = 0.0007. We achieved accuracy 62%. We also made a confusion
matrix for ObjOriPos 4.15b where we can see that accuracy 51% is lower,
but precision is higher in the case of labels "push" and "pump".

36



....................................... 4.2. LSTM

Grid search

We performed grid searches for all six sets. The computational time took
several days. The results can be seen in figure 4.14.
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(a) : Forces set
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(b) : ObjOri set
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(c) : ObjPos set
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(d) : ObjOriPos set
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(e) : TipPos set
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(f) : TipMinObjPos set

Figure 4.14: The LSTM grid search graphs of the CoppeliaSim dataset sets. A
higher score means better accuracy of the testing data in the current configuration.
Colour represents the hidden size. Meanwhile, the line pattern stands for the
num. of layers.
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Confusion matrices

For the CopelliaSim dataset, we decided to show two confusion matrices (see
fig. 4.14) for sets Forces and ObjOriPos, which can be compared with the
others. Decisions were based on the accuracy and performance of the sets
grid searches 4.15.

(a) : Forces set (b) : ObjOriPos set

Figure 4.15: Confusion matrices of the LSTM classification of the Bottle moving
dataset. Set Forces is shown on the left, ObjOriPos on the right. Hyperparameters
for network trained on Forces set: batch batch size = 300, hidden size = 32, num.
of layers = 2, learning rate = 0.0007. Hyperparameters for network trained on
ObjOriPos set: batch size = 300, hidden size = 64, num. of layers = 2, learning
rate = 0.0001. There are 15 testing samples per class.

4.2.4 Human skeleton dataset

In this dataset, we performed the grid search 4.16, where the network increased
the highest accuracy (96.6%) in one configuration of hyperparameters. We
did another grid search with more seeds and calculated the average and the
deviation. The results can be seen in the figure 4.17. As we can see, the
average accuracy is too much below the highest one. Therefore, we could
not create the same performance again, so we trained a new network with
an accuracy of 77%. Confusion matrix is in figure 4.18. The parameters are:
batch size = 300, hidden size = 512, num. of layers = 2, learning rate =
0.009.
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Grid search

We plot two grid searches for the Human Skeleton dataset. The first one
(see fig. 4.16) is the same as for the other datasets. The other one (see
fig. 4.17)represents the more advanced grid search, which consists of more
iterations in the selected configuration. Therefore average accuracy can be
computed, and better comparison can be observed.
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Figure 4.16: Graph of the LSTM grid search of the Human skeleton dataset. A
higher score means better accuracy of the testing data in the current configuration.
Colour represents the hidden size. Meanwhile, the line pattern stands for the
num. of layers.

Figure 4.17: Graph of the average LSTM grid search of the Human skeleton
dataset. A higher score means better accuracy of the testing data in the
current configuration. Colour represents the hidden size. Meanwhile, the line
pattern stands for the or num. of layers. Transparent lines represent the
maximum/minimum accuracy for five different seeds. Meanwhile, the full line
represents the average.
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Confusion matrices

We took the best configuration from the grid search (see fig. 4.16) and plotted
the confusion matrix for the Human skeleton dataset, which is shown in figure
4.18.

Figure 4.18: Confusion matrix of the LSTM classification of the Human skeleton
dataset. Hyperparameters: batch size = 300, hidden size = 512, num. of layers
= 2, learning rate = 0.009. There are ten testing samples per class.

4.2.5 Discussion

Hand gesture dataset

We produced for all sets of datasets grid search. The parameters can be seen
in table 4.3. For the Hand gesture dataset, we displayed only one grid search
for set 80:20 in figure 4.19. We observe the network’s accuracy linear grow
from the lowest learning rate for almost all configurations to the point, where
the learning rate is equal to 10−3. After that point, we could say that the best
behaviour of the configurations was for parameters, where hidden size = 32,
layers = 2 (the full red line). The rest of the configurations behave chaotically.
We took the best result from the grid search and trained the network again.
We run it on the test data from set 80:20 and plot the confusion matrix,
which can be observed in figure 4.11.

The accuracy of the newly trained network came to 87%, which is higher than
the grid search best accuracy (81%) for this set. This disagreement is caused
by random selection of the seed when initialising the network. The gesture
swipe rigth has the smallest precision and the other gestures like touch, rotate
and pin are mistaken for this gesture. However the accuracy of swipe rigth
is 100% which signifies that the network has more problems with the touch,
rotate and pin gestures.
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....................................... 4.2. LSTM

The most problematic gesture is touch, which has an accuracy of only 37.5%.
The same gesture has the lowest accuracy in the KNN (DTW) confusion
matrix (see fig. 4.2 ). However, in the GRU confusion matrix, it came up
with 75% accuracy. In table 4.4 can be seen, the best accuracy for all sets of
the Hand gesture dataset from the grid search. The percentages are similar
except for dataset 90:10, which leads to 96%. This peak can be the possible
improvement of more training samples or coincidence by selecting the right
seed for training in a grid search.

Bottle moving dataset

We have done a grid search for set Max and Fft. They can be seen in figures
4.12a and 4.12b. Configurations in set Fft behave similarly, and they were
close except for the configuration, where the hidden size was 512 and the
one where hidden size was equal to 256, with 4 layers. The grid search for
set Max was chaotic, and the configurations were spread. We plotted the
confusion matrices 4.13a and 4.13b for the new trained networks.

The Fft set came to 63% accuracy. The lowest accuracy (26.7%) is for the
letter P, which was mistaken with the letter D by 66.7%. Letters D,I,Z has
similar accuracy around 80%. Letter O was also problematic since it was
misclassified as letters P,D,I. Its accuracy goes to 40%. Much better progress
came up with the Max set, leading to 83% accuracy. The accuracy of all
letters is above or equal to 80%. The outstanding result is for the letter I,
which has an accuracy of 100%. This outstanding can also be seen in the
original dataset visualisation in figure 3.3.

CoppeliaSim dataset

We created the grid searches (see fig. from 4.14a to 4.14f) for the CoppeliaSim
dataset sets. For sets TipPos and TipMinObjPos, the network does not
learn at all. For the rest of the sets: Forces, ObjOri, ObjPos and ObjOriPos
network was not able to across 66% accuracy.

We decided to show the confusion matrix of Forces in figure 4.15a and
ObjOriPos in figure 4.15b. We observe the accuracy of 61% for Forces and
51% for ObjOriPos. The network trained on the set ObjOriPos cannot
recognize the action lift, however, it can see the difference between the labels
bump and push. This feature is missing in the trained network on the Forces
set, as we can see in figure 4.15a.

However, network trained on Forces set can classify clearly with an accuracy
of 86.7% the lift action. Those two networks can be modified together to
complement each other in the future.
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4. Results .......................................
Human Skeleton dataset

In the grid search of the Human skeleton dataset, we can see how random
seeds can change the results for each configuration. We first created the grid
search with the random seeds (see fig. 4.16) where one configuration went
with an accuracy above 95%. To show that, in some cases depends only on
the network seed initialisation, we plot the averages of the five different seeds
for the full grid search. The result is in figure 4.17.

We observe that average accuracy is much lower than its maximum. We
trained the network with the best configuration from the first grid search and
reached 77% accuracy. The confusion matrix for the test data of the trained
network can be seen in the figure 4.18. The problematic label is dance which
has an accuracy of 60% and was misclassified with wave move. The rest of
the moves have accuracy above or equal to 80%.

4.3 GRU

We created for all modifications of datasets grid-search with the largest possi-
ble batch size. The seed was always random, leading to some disturbance in
comparing the hyperparameters. The learning rate decreased logarithmically
from 0.01 to 0.00007. All those and other parameters can be seen in table 4.5.
We selected the best grid search results and trained the GRU networks. We
plotted the confusion matrices for these networks. The results can be seen
below.

Hyperparameter values
Learning rate 0.01, ..., 0.00007
Hidden size 32, 64, 128, 256, 512

Layers 2,4
Batch size max, based on data

Table 4.5: Grid search parameters

4.3.1 Hand gesture dataset

The best accuracy of all sets from the grid search is in table 4.6. We performed
the confusion matrix via GRU for set 80:20. The greatest parameters were:
batch size = 300, hidden size = 64, num. of layers = 2, learning rate = 0.009.
The confusion matrix is in figure 4.20. Accuracy came to 90%.
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Grid search

To compare with the other dataset’s grid searches, we created the grid search
for set 80:00. Generating took several hours. It is shown in figure 4.20. We
also add the table 4.6, which shows the best accuracy for all sets from its
grid search.
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Figure 4.19: Graph of the GRU grid search of the Hand gesture dataset, ratio
80:20 is shown. A higher score means better accuracy of the testing data in the
current configuration. Colour represents the hidden size. Meanwhile, the line
pattern stands for the num. of layers.

Dataset Set Accuracy
Hand 50:50 90%
Hand 60:40 90%
Hand 70:30 92%
Hand 80:20 95%
Hand 90:10 96%

Table 4.6: The best accuracy from the GRU grid search per each set in Hand
Gesture dataset.
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Confusion matrix

We took the configuration from the previous grid search (see fig. 4.19), the
trained new model of the network and created the confusion matrix, which is
shown in figure 4.20.

Figure 4.20: Confusion matrix of the GRU classification of the hand gesture
dataset, ratio 80:20. Hyperparameters: batch size = 300, hidden size = 64, num.
of layers = 2, learning rate = 0.009. There is 20% of the testing samples per
class from the whole dataset.

4.3.2 Bottle moving dataset

We have done grid searches for fft and max set. Then we trained the networks
for the best results in each set. The best accuracy in the confusion matrix
went out with the set max in figure 4.13b, which leads to 84%. Meanwhile,
the set fft (fig. 4.13a) was only 76%. The concrete parameters are detailed
and written in the description of the figures.
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Grid search

We did the grid searches for all two sets of the dataset. The results are shown
in figure 4.21.

(a) : Fft set (b) : Max set

Figure 4.21: Graph of the GRU grid searches of the Bottle moving dataset sets.
Fft set is on the right and Max set is on the left. A higher score means better
accuracy of the testing data in the current configuration. Colour represents the
hidden size. Meanwhile, the line pattern stands for the num. of layers.

4.3.3 Confusion matrices

We took the best configuration from the grid searches (see fig. 4.21) and
plotted the confusion matrix for the Bottle moving audio dataset sets, which
is shown in figure 4.22.

(a) : Fft set (b) : Max set

Figure 4.22: Confusion matrices of the GRU classification of the Bottle moving
dataset. Set Fft is shown on the left, Max on the right. Hyperparameters for
network trained on Fft set: batch size = 100, hidden size = 64, num. of layers
= 2, learning rate = 0.007. Hyperparameters for network trained on Max set:
batch size = 100, hidden size = 256, num. of layers = 4, learning rate = 0.0009.
There are 15 testing samples per class.
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4.3.4 CoppeliaSim dataset

For all dataset sets, we computed a grid search. The results are similar to the
LSTM grid search since this network has the same core as GRU. For most of
the cases, the network cannot learn. The best result came up with the forces
4.24a with parameters: batch size = 300, hidden size = 512, num. of layers
= 2, learning rate = 0.01. We also made a confusion matrix for ObjOriPos
to show that the final accuracy can be increased by selecting the right set.
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Grid search

We performed grid searches for all six sets. The computational time took
several days. The results can be seen in figure 4.23.
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(a) : Forces set
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(b) : ObjOri set
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(c) : ObjPos set
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(d) : ObjOriPos set
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(e) : TipPos set
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(f) : TipMinObjPos set

Figure 4.23: The GRU grid search graphs of the CoppeliaSim dataset sets. A
higher score means better accuracy of the testing data in the current configuration.
Colour represents the hidden size. Meanwhile, the line pattern stands for the
num. of layers.
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4. Results .......................................
Confusion matrices

For the CopelliaSim dataset, we decided to show two confusion matrices (see
fig. 4.24) for sets Forces and ObjOriPos, which can be compared with the
others. Decisions were based on the accuracy and performance of the sets
grid searches 4.23.

(a) : Forces set (b) : ObjOriPos set

Figure 4.24: Confusion matrices of the GRU classification of the Bottle moving
dataset. Set Forces is shown on the left, ObjOriPos on the right. Hyperparameters
for network trained on Forces set: batch size = 300, hidden size = 512, num.
of layers = 2, learning rate = 0.01. Hyperparameters for network trained on
ObjOriPos set: batch size = 300, hidden size = 32, num. of layers = 2, learning
rate = 0.0001. There are 15 testing samples per class.

4.3.5 Human skeleton dataset

In this dataset, we performed the grid search 4.25. We trained the network
with an accuracy of 83%. The confusion matrix is in figure 4.26. The
parameters are: batch size = 300, hidden size = 64, num. of layers = 2,
learning rate = 0.0001.
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Grid search

For the GRU, we created only one grid search, which can be seen in figure
4.25.
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Figure 4.25: Graph of the GRU grid search of the Human skeleton dataset. A
higher score means better accuracy of the testing data in the current configuration.
Colour represents the hidden size. Meanwhile, the line pattern stands for the
num. of layers.

Confusion matrices

We created the confusion matrix (displayed here 4.26)of the network trained
on the Human Skeleton dataset with the hyperparameters based on the result
from the grid search (see fig. 4.25).

Figure 4.26: Confusion matrix of the GRU classification of the Human skeleton
dataset. Hyperparameters: batch size = 300, hidden size = 64, num. of layers =
2, learning rate = 0.0001. There are 10 testing samples per class.
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4. Results .......................................
4.3.6 Discussion

Hand gesture dataset

We show only one grid search for set 80:20 in figure 4.19. The grid search is
similar to the LSTM one (see fig. 4.10 to compare). The network’s accuracy is
growing from the lowest learning rate for almost all configurations to the point
where the learning rate is equal to 10−3. At this point, the configurations
start to behave unpredictably except for one configuration, which continues
to grow linearly. It is the one where hidden size = 128 with two layers (full
turquoise line).

We trained the GRU network with the grid search configuration with the
highest accuracy. We turn it on the test data from set 80:20 and plot the
confusion matrix, as shown in figure 4.20. The accuracy of the newly trained
network came to 90%, which is lower than the grid search best accuracy (95%)
for this set. It is caused by random selection of the seed when initialising
the network. The gestures precisions are consistently above or equal to 75%,
which is better than in the LSTM confusion matrix (see fig. 4.11) for this set.

The weakest gesture is pin, which has an accuracy of 66.7% and is misclassified
with the gesture swipe up. We observe the best accuracy for all sets of the
Hand gesture dataset from the GRU grid search in table 4.6. The percentages
are increasing as the number of training samples is increasing. This signifies
that the networks learn better with more training samples and fewer testing
samples.

Bottle moving dataset

We performed a grid search for set Max and Fft. They can be observed in
figures 4.21a and 4.21b. Configurations in set Fft behave similarly, and they
were close except for the configuration, where the hidden size = 512, layers
= 4. The same behaviour came with the Max grid search, which is different
compared to the LSTM Max grid search in figure 4.12b, where it was more
chaotic.

The point where all configurations were the highest together is around the
learning rate equals 10−3. We took the best configuration based on accuracy
and trained the networks. The confusion matrices are shown in figures 4.22a
and 4.22b. The accuracy is better for set Max, leading to 84%. Meanwhile,
it is 76% for the set Fft. The Max set confusion matrix has precisions and
recalls higher than the Fft set confusion matrix. Except for the letter D
which has higher accuracy in the Fft set confusion matrix.
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CoppeliaSim dataset

We did the grid searches, displayed in figures from 4.23a to 4.23f, of the
CoppeliaSim dataset sets. The learning was better compared to the learning
of the LSTM networks. It depended on the init seed of the network. We
performed to show the confusion matrix of Forces in figure 4.24a and ObjOri-
Pos in figure 4.24b. So we can compare them to the LSTM algorithm. We
observe the accuracy of 64% for Forces and 56% for ObjOriPos. Those are
higher than in the LSTM network (see figures 4.15a and 4.15b).

The problems with recognising the labels are the same as in the LSTM. The
network trained on the set ObjOriPos cannot classify the action lift, but it can
classify the actions bump and push separately. Bump has a precision of 100%,
which is higher than in LSTM based network. It is caused by classifying lift
as push action. Meanwhile, in the LSTM confusion matrix for this set, lift is
divide between bump and push. The network trained on the set Forces can
classify clearly with an accuracy of 93.3% the lift action. Those two networks
can be modified together to complement each other in the future.

Human Skeleton dataset

In the grid search (see fig. 4.25) of the Human skeleton dataset, we see the
peaks of the accuracy. This network learning is mainly based on good seed
initialisation. The problem, in general, is shown in figure 4.17, where some of
the peaks seem to have potential, but the average accuracy, calculated from
more seeds, is below them. We selected the highest peak from the grid search
and trained the network based on the configurations. The result is in figure
4.26. We reached 83% accuracy.

The problematic label is wave which has an accuracy of 50% and was mis-
classified with fly movement. The rest of the moves have accuracy equal to
100%. In the trained LSTM network wave has an accuracy of 80%, which is
higher than in the GRU result. In future work, we can theoretically those
two networks modified to be together to complement each other in the future.
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Chapter 5

Conclusion and future work

In this work, we started by getting closer to the problematics of the time series
classification. Then we talked about the methods used for the classification,
chose 3 of them named LSTM, GRU and KNN (DTW) and described them.
We described four datasets: Hand gesture dataset, Bottle moving audio
dataset, CoppeliaSim dataset, and Human skeleton dataset. We created
subdatasets for them while preparing the data for our classification algorithms.

We visualised all sets with the DTW distance matrix and discussed them. We
performed the KNN (DTW) classification for the Hand gesture, CoppeliaSim
and Human skeleton dataset. The results were shown as confusion matrices.
We did the GRU and LSTM networks grid search for selected sets and trained
the networks based on the best configuration from the search. The testing
samples were computed via the networks, and the results were displayed as
the distance matrix. We also discussed them.

The best option for the Hand gesture seems to be the KNN (DTW) algorithm
with a final accuracy of 95%. The CoppeliaSim dataset is also the KNN
(DTW), where accuracy was up to 100% for the set TipMinObjPos. The
best accuracy came with GRU with the number 83% for set Max in the
Bottle moving audio dataset. The algorithm KNN (DTW) performed well
again for the Human skeleton dataset, where it led to 100%. Comparing the
classification algorithms, KNN (DTW) stood out because it was the classifier
with the highest accuracy for three out of four datasets.

For future work, we suggest to perform the same experiment but with different
classifiers. The KNN (DTW) could be improved to see if the high accuracy
of the dataset is caused mainly by the metric DTW or by classifier behaviour
on the dataset. More preprocessing procedures like MFCC for audio dataset
can be done to increase accuracy. The improvement of the neural networks
can also be made by mixing the GRU and LSTM since we could see that the
networks work better for different labels.

As we can see, the problem with the time series classifications is various. There
is still a need to do much work if we want to see a world where computers
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fully understand our gestures, actions and activities.
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