
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

MASTER THESIS

A Framework for Nonlinear Model Predictive Control

Prague, January 2016 Ond°ej Mikulá²

Abstract

Main objective of this thesis is development and implementation of a modular computer

framework for nonlinear model predictive control (NMPC). Modularity of the framework is

achieved by dividing NMPC algorithm into several logical blocks that can be implemented

independently.

The NMPC algorithm is described from the theoretical point of view. Commonly

used approaches and individual computation steps are discussed. The control problem

formulation is studied and practical guidelines are given to demonstrate how the control

objectives can be transformed into the optimization problem cost function and constraints.

The NMPC framework is implemented in Matlab and can be used as a tool for NMPC

control development and prototyping. As the framework is modular, di�erent optimization

solvers, numerical integration routines and NMPC approaches can be evaluated for any

particular application. Functionality of the developed NMPC framework is demonstrated

on illustrative control problem examples. The �rst example is a simpli�ed vehicle steering

control and the second one is a diesel engine air-path control.

Abstrakt

Hlavním cílem této práce je návrh a implementace modulárního prost°edí pro nelineární

prediktivní °ízení (NMPC). Modularity je dosaºeno rozd¥lením algoritmu NMPC do samo-

statných blok· které jsou implementovány nezávisle na sob¥.

Algoritmus NMPC je nejprve rozebrán v teoretické rovin¥. Poté jsou popsány b¥ºn¥

pouºívané postupy a jejich jednotlivé kroky. Dále je vyv¥tleno jak formulovat poºadavky

na °ízení ve form¥ kriteriální funkce a omezujících podmínek optimaliza£ní úlohy.

Prost°edí pro NMPC je implementováno v jazyce Matlab a m·ºe být pouºito pro návrh

a testování nelineárního MPC. Díky tomu ºe je prost°edí modulární, je moºné nekteré bloky

nahradit jinými metodami a otestovat tak jejich vliv na celkový výsledek. To platí pro

numerickou integraci, optimaliza£ní metody i dal²í £ásti výpo£etního procesu. Funk£nost

prost°edí je p°edvedena na dvou ukázkových p°íkladech. Prvním z nich je °ízení zatá£ení

automobilu a druhým °ízení vzduchové cesty vzn¥tového spalovacího motoru.

Acknowledgement

Let me thank to Ond°ej �antin for his kind and helpful supervision of my thesis. Many

thanks also come to Honeywell Automotive Software team for providing me with a stim-

ulating environment. Last but not the least, let me thank to my family for their endless

support during the course of my studies.

Pod¥kování

D¥kuji Ond°eji �antinovi za jeho vst°ícný a nápomocný p°ístup p°i vedení mé diplomové

práce. D¥kuji také týmu Honeywell Automotive Software, který mi poskytl podn¥tné

prost°edí. Nakonec mi dovolte pod¥kovat mé rodin¥ za jejich bezmeznou podporu po celou

dobu mého studia.

Contents

1 Introduction 1

1.1 Literature Summary . 2
1.2 Existing NMPC Software . 3
1.3 Thesis Outline . 4

2 Nonlinear MPC 5

2.1 Linear vs. Nonlinear Predictive Control . 5
2.2 NMPC Formulation . 6

2.2.1 Prediction Model . 6
2.2.2 Optimal Control Problem . 8

2.3 OCP as a Numerical Optimization Problem 8
2.3.1 Single Shooting . 9
2.3.2 Multiple Shooting . 9
2.3.3 Finite Dimensional Problem . 10

2.4 Solution of Transformed Optimization Problem 11
2.4.1 Sequential Quadratic Programming 11
2.4.2 Local QP Subproblem . 12
2.4.3 Steplength Selection . 13

2.5 Sensitivity Computation . 13
2.5.1 On-line Model Linearization . 14
2.5.2 Linearization Along Simulated Trajectory 15
2.5.3 Analytical Calculation of Sensitivity 16

2.6 Construction of Local QP . 17

3 Practical Considerations 21

3.1 Cost Function Terms . 21
3.1.1 Reference Trajectory Tracking . 22
3.1.2 Actuator Position Penalization . 22
3.1.3 Actuator Movement Penalization . 22
3.1.4 Actuator Reference Tracking . 23

3.2 Constraints . 23
3.2.1 Hard Constraints . 24
3.2.2 Soft Constraints . 24

3.3 Move Blocking . 26
3.4 State Estimation . 27

xi

xii CONTENTS

3.4.1 Extended Kalman Filter . 27

3.4.2 Unscented Kalman Filter . 27

4 NMPC Framework 29

4.1 Control Design Process . 29

4.2 Implemented Algorithm and Features . 29

4.2.1 Work�ow Diagram . 30

4.3 Programming Environment . 31

4.4 Code Organization . 31

4.5 Guiding Example . 32

4.6 Model De�nition . 33

4.6.1 Manipulated Variables and External Inputs 33

4.6.2 State Equation . 34

4.6.3 Output Equation . 34

4.6.4 Jacobian Approximation . 35

4.6.5 Sampling Period . 35

4.6.6 Model Formal Veri�cation . 35

4.7 NMPC Problem De�nition . 36

4.7.1 Receding Horizon Settings . 36

4.7.2 Cost Function Terms . 36

4.7.3 Control Limits . 38

4.7.4 Output Soft Limits . 38

4.7.5 NMPC Algorithm Setup . 39

4.7.6 Formal Veri�cation of MPC Settings 41

4.8 Controller Simulation . 41

4.8.1 Control Function . 41

4.9 Framework Installation . 43

4.10 Built-in Help and Documentation in Matlab 43

5 Application Examples 45

5.1 Vehicle Steering Control . 45

5.1.1 System Description and Model Derivation 45

5.1.2 Control Objectives . 45

5.1.3 Framework Con�guration . 46

5.1.4 Simulation Results . 46

5.2 Combustion Engine Air Path Control . 47

5.2.1 System Description and Model Derivation 49

5.2.2 Control Oriented Model . 50

5.2.3 Experiment . 52

5.2.4 Framework Con�guration . 52

5.2.5 Simulation Results . 54

6 Conclusion 59

6.1 Future Work . 59

CONTENTS xiii

Bibliography 63

Appendices 65

A NMPC Framework Classes 65

A.1 Model Class . 65
A.2 MPC Setup Class . 65
A.3 NMPC Class . 67

B Matlab Documentation Screenshots 69

xiv CONTENTS

Chapter 1

Introduction

Model predictive control (MPC) is a practical approach that is used to control dynamical

constrained systems [1]. MPC uses mathematical model of the system to predict its future

behavior on a �nite time interval, the prediction horizon. This is illustrated in Figure 1.1.

The predicted future behavior is optimized using control inputs u with respect to given cri-

teria. The criteria usually describes desired control performance such as setpoint tracking,

economical criteria or production quality.

MPC handles systems with multiple inputs and multiple outputs (MIMO) in a system-

atic way. Furthermore, both under actuated and over actuated systems can be controlled

by MPC as well. System constraints are handled in a natural way by including them

to the optimization problem. That is a unique feature when compared to other control

techniques. The control objectives in MPC are formulated using a cost function. The cost

function together with the system constraints creates an optimization problem that needs

to be solved at each sampling period.

MPC controller computes optimal control sequence on the prediction horizon, but only

the �rst element of the optimal control sequence is applied to the system. In the next

Figure 1.1: Predictive control illustration. The part to the right from time tk up to time
tk+np (the prediction horizon) is predicted using the system model.

1

2 1.1. LITERATURE SUMMARY

sampling period, the entire process is repeated with the most recent state estimate or

measurement [1]. The concept is known as receding horizon control (RHC) and it incorpo-

rates feedback into the MPC control because the control action depends on current state

estimate.

Nonlinear model predictive control (NMPC) di�ers from the general MPC scheme in

the fact, that nonlinear process model is used for prediction [2]. Very often, the use of

linear models in predictive control is inadequate due to plant-model mismatch. These

linear models cannot provide su�cient accuracy of predictions, resulting in poor closed

loop performance. As a possible remedy, NMPC can be used to improve the quality of

predictions and consequently the closed loop performance.

The objective of this work is to develop a con�gurable framework for NMPC. The idea is

to have a set of tools for fast design, prototyping and validation of NMPC approach applied

to user speci�ed control problem. From the user's point of view, the basic usage of the

framework should be simple and intuitive so that working prototype of the controller can be

obtained rapidly. It will be shown that the NMPC control design is a multistage process

that can be divided into several steps, where each step can be implemented separately.

This allows for simpler modi�cation and testing the NMPC controllers as well as di�erent

NMPC approaches. It also brings an opportunity to compare NMPC performance with

other control methods in a rapid way. This is of particular interest because NMPC comes

with an additional implementation complexity and computational burden, which must be

considered with respect to the possible bene�ts of application of NMPC.

1.1 Literature Summary

Nonlinear model predictive control has been studied since 1980s. One of pioneering articles

on the topic was [3]. General surveys on nonlinear MPC are for example [4] or [5].

As nonlinear model predictive control is quite novel approach, it is not as widely ac-

cepted as linear MPC. The authors of a survey paper [6] argue that relatively slow adoption

of nonlinear MPC can be due to sevaral factors. The �rst of them is the di�culty of ob-

taining reasonable and computationally e�cient nonlinear process model. The second is

the fact that industrial plants work without serious quality problems under existing control

systems (PID, linear MPC) so it is di�cult to justify possible bene�t of nonlinear MPC.

However, a change can be expected when existing control systems are replaced by new

ones at their end-of-life.

Nonlinear MPC became �rst accepted in petrochemical and chemical industries. Here,

nonlinear models were available straight from process design which together with slower

system dynamics allowed the use of NMPC. A review of approaches used to control chemical

processes is provided in [7]. The author mentions not only NMPC approaches used at the

time but also other nonlinear control methods together with a number of useful references.

Chemical plants are often used as benchmark problems for testing of new control methods.

Continuously stirred tank reactor is widely used in the literature [8] because of its relative

simplicity combined with signi�cant nonlinear e�ects.

Nowadays, when the computational power available is no longer prohibitive, many new

CHAPTER 1. INTRODUCTION 3

applications of NMPC are being reported in the literature. Both academic and practical

problems are being approached by NMPC. The range of areas to which NMPC is applied

is quite wide.

To name a few we can start with biodiesel production plant control [9]. A �rst-principle

model of the plant is used in NMPC and economical criteria is taken into account when

assessing the bene�ts.

Another interesting area of application is automotive industry. Many researchers dealt

with vehicle dynamics and control during limit situations. Stability enhancement, collision

avoidance or driver aid under di�cult conditions are explored. Due to multivariable and

nonlinear nature of such phenomena and constraints present in the system, nonlinear MPC

is a method of choice for many authors. See for example [10] or [11], where approximate

numerical schemes are used to solve the optimal control problem.

1.2 Existing NMPC Software

There are several NMPC software packages already available. One of them is called YANE

and is written by the authors of book [12]. It is implemented in C++ and it can be down-

loaded from www.nonlinearmpc.com. The authors also provide Matlab implementation of

nonlinear MPC which was used in their book.

MUSCOD II [13] is another software tool that supports solution of nonlinear optimal

control problems. Ordinary di�erential equation and di�erential algebraic equation models

are supported. The algorithm uses multiple shooting discretization of control problem and

tailored sequential quadratic programming method to solve it.

Another package that can be used for nonlinear MPC is called ACADO [14]. It allows

the solution of optimal control and parameter estimation problems. It is implemented in

C++ and it can be used in connection with Matlab as well via an interface.

There is also a tool available under GNU GPL license called MPC Tools [15]. It is

implemented in GNU Octave and contains functions for both linear and nonlinear plant

models. The development of the tool seems discontinued.

Another one was developed as a masters project in [16]. It is implemented in Matlab

and it also has a simulation graphical user interface. Open-loop predictions can be visually

checked during the simulation.

Although there are many tools, a number of which work reasonably well, they are still

lacking a user simplicity. Many of the packages require deep understanding of speci�c

optimization methods, ability to formulate the optimal control problem or they are no

longer supported. Our aim is to make a tool that would enable the user to have a working

implementation of NMPC at hand, while only having to describe the model and to specify

the control objectives in an intuitive way. The user should be shielded from most of the

technical details regarding the optimization and the computation. The tool should allow

the user to run simulations of the designed controller in a rapid way with only a necessary

amount of settings. However, more detailed settings should be accessible and changes in

default implementation should be possible.

www.nonlinearmpc.com

4 1.3. THESIS OUTLINE

1.3 Thesis Outline

The thesis is divided into six chapters. The second chapter describes NMPC control

approach in more detail. It deals with approaches used when formulating the NPMC

control problem. Correspondence of the NMPC control problem with a mathematical

optimization problem and its solution methods are discussed. The third chapter explains

how to formulate a control problem speci�cation as a NMPC problem. Main tools for the

formulation are the cost function and the optimization problem constraints. Move blocking

is presented as a method of reducing computational complexity of NMPC.

In chapter four, the implemented NMPC framework is introduced. Individual parts of

the NMPC design process are described from the implementation point of view and the

architecture of implemented framework is described. The last part of the chapter explains

how to use the framework and it also serves as a user guide. Illustrative control examples

are given in the �fth chapter to demonstrate the functionality of the framework. The last

chapter concludes the thesis and summarizes the results.

Mathematical Notation

• R - set of real numbers

• Lower and upper case italic letters - scalars

• Bold lowercase letters a to z - real column vectors

• Bold uppercase letters A to Z - real matrices

• 0 (1) - vector or matrix of zeros (ones) of corresponding size

• I - identity matrix of corresponding size

• aT (AT) - vector (matrix) transpose

• ai (Ai) - vector (matrix) corresponding to timestep i

• ?(i) - matrix, vector or scalar in the i-th iteration

Chapter 2

Nonlinear MPC

This chapter discusses possible approaches to nonlinear systems using predictive control

methodology. In the �rst part, NMPC is compared to the linear MPC. Architecture of

digital control system implementing NMPC is described. Then, an optimal control prob-

lem (OCP) is outlined using state-space model. A way to transform the OCP to the

form suitable for numerical solution is shown. Sequential quadratic programming (SQP)

is described as a method to solve the optimization problem. Finally, three methods of

approximating sensitivity of predicted system behavior to the control inputs are shown.

2.1 Linear vs. Nonlinear Predictive Control

In case of linear MPC, predicted state and output trajectory can be directly expressed

as a linear function of current state (often viewed as a parameter) and input trajectory

(see e.g. [1]). If the cost function is de�ned as linear or quadratic in states, outputs and

inputs the resulting optimization problem is a linear programming (LP) or a quadratic

programming (QP) respectively. Both LP and QP can be e�ciently solved using high

performance solvers. This renders real time application of linear MPC feasible with today's

computers and microcontrollers even for very short sampling times [17,18].

On the other hand, nonlinear system dynamics in NMPC makes it impossible to express

exact prediction as a linear function of current state and input trajectory. Therefore, even

if the cost function was linear or quadratic (which is frequently the case), the resulting

optimization problem would be nonlinear. Nonlinear optimization problems are also known

as nonlinear programming (NLP) problems and they are considered very computationally

demanding. Hence, completely di�erent approach to the optimization than in case of linear

MPC has to be taken.

The cost function should be formulated so that its minimization leads to satisfaction

of control objectives such as tracking of reference variables etc. It is control engineer's job

to formulate the cost function in this way and this process will be described in more detail

in Chapter 3.

5

6 2.2. NMPC FORMULATION

NMPC
Plant

SamplerEstimator

References,
setpoints

Known dis-
turbances

Disturbances

u

Plant output y

x̂

Figure 2.1: Digital control system using nonlinear MPC.

2.2 NMPC Formulation

This section provides formal de�nition of nonlinear MPC and nomenclature used within

the next sections that go into more detail.

In the following, we will assume that the system is to be controlled using digital control

system. The situation is depicted in Figure 2.1. The controller marked by the NMPC block

takes references, setpoints, known disturbances and current state estimate as its inputs.

The state estimates are available only at discrete time instants. At each sampling period,

denoted as Ts, the controller solves a �nite horizon optimal control problem. The solution

of the optimal control problem is an input trajectory over the �nite time horizon. The �rst

element of the aforementioned optimal trajectory is applied to the plant using zero-order

hold, i.e. the input is held constant between the sampling instants.

This scheme is also described by Algorithm 2.1 from the controller's perspective. Ini-

tializing input trajectory u0 is used to start the algorithm. Current state (or estimate) xk
an the previous input trajectory u(k−1) are passed to procedure NMPCstep. The optimal

control problem is solved in the procedure NMPCstep once in sampling period. The �rst

element of the optimal input trajectory is applied to the system. Note that references,

setpoints and known disturbances also need to be communicated but they are not shown

in the Algorithm for the sake of simplicity.

Continuous time model will be used within the controller and so we introduce the

following notation to be able to keep both continuous and discrete time notation at the

same time. The sampling time instants are denoted ti and they satisfy ti+1 = ti + Ts.

System states, inputs and outputs at sampling instants are denoted by

ui = u(ti), xi = x(ti) and yi = y(ti). (2.1)

2.2.1 Prediction Model

As was said in the previous parts of this chapter, it is necessary that the controller has

some variant of system model. The quality of the model largely determines the success

of predictive control application. If the model was not exact, its parameters or structure

CHAPTER 2. NONLINEAR MPC 7

Algorithm 2.1 Nonlinear MPC control loop

k ← 0
u(k−1) ← u(0)

while TRUE do

get current state xk
u(k) ← NMPCstep(xk,u(k−1))
apply u(k),0 to the system until the next sampling period
k ← k + 1

end while

procedure NMPCstep(x0,uprev) . Input trajectory for current prediction window
minimize predicted cost function J(x0,uprev) subj. to constraints
u∗ ← arg minJ(x0,uprev)
return u∗

end procedure

were wrong, the model would not describe the actual system behavior correctly. This

would cause the predictions to be misleading, and the closed-loop control performance to

be deteriorated. Regardless of the optimization methods or prediction algorithms, with

inadequate modelling all e�ort is of very limited use.

System model can be given in many forms. Continuous or discrete time state-space

models often originate from physical system description and they can be obtained during

the plant design. On the other hand, neural network models, NARMAX models or Wiener-

Hammerstein models are usually obtained using model identi�cation techniques based on

plant experiment [2].

In this work we restrict ourselves to nonlinear continuous time state-space models. This

model class is given by a set of ordinary di�erential equations (ODEs)

ẋ(t) = f(x(t),u(t)) (2.2)

and an algebraic output equation

y(t) = g(x(t),u(t)), (2.3)

where x(t) is system state at time t, u(t) is control input at time t and y(t) is system

output. The number of state variables is denoted by n, the number of input variables by

m and the number of output variables by p respectively. Functions f : Rn+m 7→ Rn and

g : Rn+m 7→ Rp are vector valued continuous at least once di�erentiable functions. Both

equations are given in the most general form which allows many real world systems to be

described.

Some authors rather use a system of di�erential algebraic equations (DAE). For the

sake of brevity, we stick with ODE and we note that possible algebraic equation (0 =

h(x(t),u(t))) can be handled as well.

8 2.3. OCP AS A NUMERICAL OPTIMIZATION PROBLEM

Jacobian Matrix

Jacobian matrix of continuous time state-space model given by equations (2.2) and (2.3)

is useful in the formulation of optimization problem that has to be solved online. For the

Jacobians of the right hand side function f of state equation (2.2) we de�ne

∇xf =
∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn

 and ∇uf =
∂f

∂u
=


∂f1
∂u1

· · · ∂f1
∂um

...
...

∂fn
∂u1

· · · ∂fn
∂um

 (2.4)

Analogous de�nition holds for the right hand side of output equation (2.3) Jacobians ∇xg

and ∇ug. Partial derivatives of function g are taken instead.

2.2.2 Optimal Control Problem

Finite horizon optimal control problem that has to be solved at each sampling period

starting at time tk in NMPC is given as follows [19]. The prediction horizon length is

given as np · Ts where np is the number of sampling periods. Initial condition for the state

trajectory is given by current state xk.

min
u(t)

∫ tk+np

tk

J(u(t),x(t))dt+ Jf (u(tk+np),x(tk+np)) (2.5a)

subject to ẋ(t) = f(x(t),u(t)) (2.5b)

x(tk) = xk (2.5c)

y(t) = g(x(t),u(t)) (2.5d)

u(t) ≤ u(t) ≤ u(t) (2.5e)

other constraints (2.5f)

The cost function (2.5a) in the problem has to be selected in a way that control ob-

jectives are satis�ed when the cost function is minimized. Various forms of J and Jf will

be described in Section 3.1. The optimal control problem (2.5) is in�nite dimensional due

to continuous trajectory, or function, u(t) and it is therefore not suitable for real-time

solution.

2.3 Optimal Control Problem as a Numerical Optimization

Problem

An important step in practical solution of optimal control problem (2.5) de�ning the non-

linear MPC is a transformation into a form that is suitable for numerical solution. The goal

is to obtain a �nite dimensional optimization problem using an appropriate parametriza-

tion of the original problem (2.5). Very clear presentation of the topic can be found in [20]

(in German).

The prediction horizon is divided into np sampling periods giving rise to a shooting grid

tk < tk+1 < · · · < tk+np . The shooting grid can be de�ned arbitrarily, however, equidistant

CHAPTER 2. NONLINEAR MPC 9

grid corresponding to the sampling is the most frequently used. Then, the input trajectory

is parametrized on each subinterval.

Suitable basis functions, a polynomial, or a constant function can be used at each

subinterval. In the end, the input trajectory at each subinterval is described by a vector

qi of parameters. The simplest approach is to use piecewise constant function where

u(t) = qi for t ∈ 〈ti, ti+1). (2.6)

This parametrization is equivalent to the assumption of digital control system (see

Figure 2.1) that implements the control action to the system using zero-order hold. It

is also the most widely used approach. In the following subsections, two direct solution

methods of the optimal control problem will be presented. They are called single and

multiple shooting respectively.

2.3.1 Single Shooting

In the single shooting method, model simulation and optimization are done sequentially.

This process is illustrated in Figure 2.2a. First, the nonlinear model is numerically inte-

grated. This way, dynamic constraints (2.5b) and (2.5d) are e�ectively eliminated from

the problem formulation. Simulated trajectories automatically meet the dynamic con-

straints. Sensitivity of the cost function to the problem parameters qi is obtained. Then,

the optimization is carried out. The advantage of single shooting is that of implementation

simplicity and also the fact that the iterates during the optimization are always feasible [4].

2.3.2 Multiple Shooting

In case of direct multiple shooting approach state trajectory is split into subintervals as

well. Optimization problem parameters are not only control trajectory parameters qi, but

also the states at the beginning of each subinterval, denoted by si [19]. This concept is

illustrated in Figure 2.2b. The model equations are integrated on the subintervals and the

resulting trajectories are optimized separately. The optimization problem has an additional

set of equality constraints enforcing continuity of state trajectory between the subintervals.

x(ti+1) = si+1

Apart from the input trajectory parameters, the initial state of each subinterval is opti-

mized so that the end of resulting state trajectory matches the beginning of the following

one.

Multiple shooting approach has an important advantage. It provides better handling

of unstable and highly nonlinear systems than single shooting approach. At the same time

optimization problem has favorable numerical properties. The optimization problem is

structured in a way that is bene�cial for the optimization solver. On the other hand, the

number of variables is increased by the intermediate state variables si.

10 2.3. OCP AS A NUMERICAL OPTIMIZATION PROBLEM

sk=xk

qk

qk+1

sk+1
sk+2

qk+2

qk+3

sk+3

a) b)
tktk

InputInput

State

xk

State

Figure 2.2: a) Single shooting and b) Multiple shooting schematic. In case of multiple
shooting, note the discontinuity of state. This captures the intermediate stage of optimiza-
tion, where the equality constraints are not yet satis�ed.

2.3.3 Finite Dimensional Problem

The optimization problem that is obtained can be written as follows.

min
qk,...,qk+np−1

k+np−1∑
i=k

Ji,d(qi,xi) + Jf,d(qk+np ,xk+np) (2.7a)

subject to ẋ(t) = f(x(t),u(t)) (2.7b)

x(tk) = xk (2.7c)

y(t) = g(x(t),u(t)) (2.7d)

u(t) ≤ u(t) ≤ u(t) (2.7e)

u(t) = qi for t ∈ 〈ti, ti+1), i ∈ k, . . . , k + np − 1 (2.7f)

other constraints (2.7g)

The cost function is now expressed as a sum of functions Ji,d and a terminal function Jf,d.

The form of these functions depend on the original cost function in (2.5) and the transfor-

mation method used. In case of single or multiple shooting, the functions are integrals over

individual shooting subintervals. The integrals are evaluated numerically. This way, the

state and input trajectories are considered only at times used by the numerical integrator.

It is either a �xed grid or arbitrary time instants given by a solver variable step selection.

There are also other methods to transform the problem (2.5) into a �nite dimensional

problem. The cost function need not be integrated over time, but only a sum over discrete

sampling time instants can be taken. This is often the case because much less computation

needs to be done. Basically, the functions Ji,d and Jf,d are based on discrete samples of state

and input trajectories only. It is achieved by simulating the model (2.2) and subsequent

linearization and discretization of its dynamics. Similarly, the input constraints (2.7e) are

only considered at the sampling time instants ui ≤ qi ≤ ui. The other constraints (2.7g)

CHAPTER 2. NONLINEAR MPC 11

can include e.g. soft constraints on outputs which will be further described in Section 3.2.

In order to solve the optimization problem (2.7), it is important to know the prop-

erties of the objective function. In the following, quadratic formulation and the use of

transformation methods shown above will be used to describe the cost function.

2.4 Solution of Transformed Optimization Problem

In the previous section, the optimal control problem in NMPC (2.5) was transformed into

a �nite dimensional nonlinear program (2.7). There are several algorithms that can be

used to solve (2.7). Interior point (IP) methods and sequential quadratic programming

(SQP) methods.

Interior point methods use additive barrier functions to handle the constraints. The

barrier function is added to the original cost function. It grows without bound towards the

boundary of the feasible region, which makes such points unattractive [21]. The iterates

are always in the interior part of the feasible region given by the constraints. There were

only scarce attempts of applying IP methods to NMPC, see e.g. [22].

In the area of NMPC however, SQP is the most frequently used method and so we

describe it in more detail.

2.4.1 Sequential Quadratic Programming

SQP is an iterative method for nonlinearly constrained optimization problems. It is guar-

anteed to �nd global optimum for convex problems only. If the optimization problem is

not convex, it converges to a locally optimal point only. In the following, we will closely

follow the presentation in [23]. Suppose we have a nonlinear optimization problem in a

form
min
z

F (z)

subject to cE(z) = 0

cI(z) ≥ 0

(2.8)

with z being a vector of optimization variables, F the objective function, cE equality

constraint function and cI inequality constraint function respectively.

SQP iteratively searches for the locally optimal point. The work�ow is summarized in

Algorithm 2.2. It uses local quadratic approximation of the nonlinear cost function (2.8)

to drive the search. Note that the constraints are linearized. In each iteration, it solves

local quadratic programming (QP) subproblem and uses the optimizer p∗
(i) of this QP as a

search direction. The steplength α(i) is selected according to some strategy and then the

step is taken that way to the next iterate. The variable z(0) denotes the initial (feasible)

guess of the solution.

There are two steps in the algorithm that a�ect the convergence of iteration to the

solution. The QP approximation of nonlinear cost function and the strategy of steplength

selection. These steps will be discussed in the following subsections. Note that we drop

the SQP iteration index i in order to keep the mathematical notation simple.

12 2.4. SOLUTION OF TRANSFORMED OPTIMIZATION PROBLEM

Algorithm 2.2 Sequential quadratic programming [23]

Require: F , cE , cI , feasible z(0)

i← 0
repeat

�nd quadratic approximation FQP of F in z(i)

linearize constraint functions cE and cE in z(i)

p∗
(i) ← arg minFQP

select step length α(i)

z(i+1) ← z(i) + α(i)p
∗
(i)

i← i+ 1
until termination condition met
return z(i)

2.4.2 Local QP Subproblem

As was outlined in the section above, SQP uses quadratic programming approximations

to (2.8) recalculated at each iterate. Let us denote current iterate by z and the new QP

variable by p. The local QP approximation of the nonlinear problem can be written as

follows:
min
p

FQP (p) =
1

2
pT∇2F (z)p +∇FT(z)p + F (z)

subject to ∇cE(z)Tp + cE(z) = 0

∇cI(z)Tp + cI(z) ≥ 0

(2.9)

The cost function FQP is given in a standard form of quadratic function using Hessian

matrix ∇2F (z) and gradient ∇F (z) of (2.8) obtained at current iterate z. Note that

the constant term F (z) has no in�uence on the optimizer, but it a�ects the optimal cost

function value. We keep it in the formulation to have consistent information about the

cost value between consecutive SQP iterations. The original constraint functions cE and

cI are replaced by their linearizations at current iterate. In the following, we will assume

that the solution set de�ned by the constraints is non-empty. This can be ensured by a

proper selection of the constraints in the original NLP.

The local QP (2.9) has a unique minimizer when the Hessian matrix is positive de�nite

[21]. This is crucial for the SQP to work and it can be ensured by appropriate selection of

the cost function in (2.7). The local QP is solved using a QP solver which results in the

minimizer p∗. The minimizer is used to update the iterate z.

In case of nonlinear model predictive control, the optimization problem (2.8) is quite

complex due to the nonlinearity of underlying dynamic model (2.2)-(2.3). To express the

Hessian and the gradient of the cost function, it is bene�cial to formulate the cost function

in a particular way. More speci�cally, if the cost functions in transformed optimization

problem (2.7) is given as a sum of quadratic terms, the local approximation can be con-

structed using linearized sensitivity matrices and input perturbation vector. We will derive

sensitivity matrices of the output and state to the manipulated variables in Section 2.5.

This way, the state and output trajectories are given as a�ne functions of input perturba-

tion. Construction of local QP (2.9) in the NMPC will be demonstrated to the end of this

CHAPTER 2. NONLINEAR MPC 13

chapter in Section 2.6.

2.4.3 Steplength Selection

The selection of steplength in SQP in�uences the convergence of the search. There are

several strategies of selecting the steplength. One of them is called linesearch. The goal

is to �nd steplength α < 0 such that the cost function F restricted to the ray coming

from the current iterate z in a direction of the minimizer p∗ of local QP (2.9) is decreased.

Idealy, the cost function should be minimized. This is a nonlinear optimization problem

with one decision variable α. However, it is quite complex and therefore it is seldom used

in the area of optimal control.

Instead, approximate schemes are used that provide su�cient decrease in the cost

function along the ray. One of such schemes is called backtracking line search. There are

well established conditions that guarantee the decrease. Wolfe or Goldstein conditions [23]

both require evaluation of cost function F and its gradient ∇F . During the steplength

selection process, the conditions above are checked.

In the case where short computation time is necessary, the steplength is selected accord-

ing to some heuristic or given sequence [24]. As an example consider so called harmonic

steplength sequence

α(i) =
θ

i
(2.10)

with given positive constant θ. Sometimes even a constant steplength may be used. This

way the decrease in the cost function is not guaranteed but the computational burden

is lower because the evaluation of the cost function F is avoided. It helps keeping the

computation time short.

2.5 Sensitivity Computation

Sensitivity is of key importance in the construction of local quadratic subproblems (2.9).

It allows one to express the dependence of system states and outputs on the perturbation

of input. This section presents two approximation methods and one exact method. The

advantage of approximation methods is that in general, they are less computationally

demanding. On the other hand, they may be less accurate and it is important to choose

the right one for the particular system. It is strongly recommended to test whether the

method works reasonably well in a simulation.

We always express sensitivity around given input trajectory usim. Simulated state

and output trajectories xsim and ysim are necessary to express the linearized perturbation

model. They are obtained using numerical simulation of model (2.2) and (2.3) given the ini-

tial condition xk
1 and input trajectory speci�ed by usim. Predicted trajectories are then ap-

proximated using input perturbation trajectory vector δu = [δuT
k , δu

T
k+1, . . . , δu

T
k+np−1]T

1Note that the initial condition, the current state, has to be known to the controller. Therefore, either

a measurement or an estimate of the state has to be available. A brief discussion of state estimation is

provided in Section 3.4.

14 2.5. SENSITIVITY COMPUTATION

by the following expressions:

u = usim + δu , (2.11a)

x = xsim + Hxδu , (2.11b)

y = ysim + Hyδu . (2.11c)

In the expressions, Hx is sensitivity matrix of state x to input trajectory perturbation δu,

Hy is sensitivity matrix of output y to input trajectory perturbation δu. This formulation

presumes that the e�ect of control usim is already included in xsim and ysim and the

approximated e�ect of perturbation δu can be added.

It is important to note that the equalities in (2.11) represent only internal predicted

variables of the controller. Actual system may behave di�erently under the same control

input due to model-plant mismatch. However, our aim is to have the internal variables

su�ciently close to the actual ones. Also note that the approximations are valid only

for in�nitesimal input perturbations as superposition principle does not hold for general

nonlinear systems. Therefore, it is necessary to test the actual behavior in simulation.

2.5.1 On-line Model Linearization

One way of treating nonlinear systems using predictive control is to use at each time step the

model (2.2) and (2.3) linearized and discretized at the beginning of the prediction horizon,

i.e. at single operating point. It is illustrated in part a) of Figure 2.3. The prediction using

this method is quite similar to the one used in linear MPC. For this reason, it is called

either linear time invariant (LTI) approximation or modi�ed extended linearized predictive

control (MELPC). One can �nd applications of this method e.g. in [25].

First, we express linearized system matrices at current operating point xk with control

uk as Jacobian matrices derived in (2.4).

Ac = ∇xf(xk,uk) , Bc = ∇uf(xk,uk) ,

Cc = ∇xg(xk,uk) , Dc = ∇ug(xk,uk) .
(2.12)

After that, linearized continuous time perturbation model is given by the following equa-

tions:

δẋ = Acδx + Bcδu , (2.13a)

δy = Ccδx + Dcδu . (2.13b)

This continuous time model is then discretized with sampling time Ts. This can be

achieved either using matrix exponential or using Euler's approximation method [26]. As

a result, discrete time perturbation model δxi+1 = Aδxi + Bδui, δyi = Cδxi + Dδui is

CHAPTER 2. NONLINEAR MPC 15

obtained with

A = eAcTs ≈ I + TsAc , (2.14)

B = A−1
c (A− I)Bc ≈ TsBc , (2.15)

C = Cc , (2.16)

D = Dc . (2.17)

The prediction is to be done throughout the prediction horizon with this model. The

next and the last step necessary is to actually build sensitivity matrices Hx and Hy. We

use the de�nition of discretized perturbation model to obtain
δxk+1

δxk+2

δxk+3

...


︸ ︷︷ ︸

δx

=


B 0 0 · · ·
AB B 0 · · ·
A2B AB B · · ·
...

...
...

. . .


︸ ︷︷ ︸

Hx

δu ,


δyk

δyk+1

δyk+2

...


︸ ︷︷ ︸

δy

=


D 0 0 · · ·
CB D 0 · · ·
CAB CB D · · ·

...
...

...
. . .


︸ ︷︷ ︸

Hy

δu . (2.18)

This approach may work well for slightly nonlinear systems and for short prediction

horizons. For longer prediction horizon, the simulated trajectory can span a large part

of state space where linearization from xk and uk is not valid anymore. However, the

computational burden is very low compared to more advanced methods discussed later.

This is mainly because the Jacobians (2.12) are only evaluted once per sampling period.

2.5.2 Linearization Along Simulated Trajectory

This method is quite similar to the LTI approximation described above. The di�erence

lies it the fact that instead of single linearized model from the initial state, successive

linearization along simulated trajectory is used. This is illustrated in part b) of Figure 2.3.

This formulation basically approximates nonlinear system by a linear time varying (LTV)

system that is obtained by online linearization along simulated trajectory. There are many

successful applications of this method reported in literature, see e.g. [11].

At each timestep of the simulated trajectory xsim and usim, for the nonlinear model (2.2)

and (2.3) linearization and discretization is carried out. Linearized (continuous time) per-

turbation model time dependent matrices are given by the Jacobians evaluated in corre-

sponding timesteps i ∈ {k, . . . , k + np − 1} of the simulated trajectory:

Ac,i = ∇xf(xi,ui) , Bc,i = ∇uf(xi,ui) ,

Cc,i = ∇xg(xi,ui) , Dc,i = ∇ug(xi,ui) .
(2.19)

The subscript i indicates Jacobian obtained at timestep i. Discrete time perturbation

model is then given using discretization formulas in (2.14)-(2.17) (for each timestep i) by

δxi+1 = Aiδxi + Biδui (2.20a)

δyi = Ciδxi + Diδui. (2.20b)

16 2.5. SENSITIVITY COMPUTATION

The prediction is to be done throughout the prediction horizon with this model. The

next and the last step necessary is to actually build sensitivity matrices Hx and Hy. We

use the de�nition of linear time dependent discretized perturbation model (2.20a) to obtain


δxk+1

δxk+2

δxk+3

...


︸ ︷︷ ︸

δx

=


Bk 0 0 · · ·

Ak+1Bk Bk+1 0 · · ·
Ak+2Ak+1Bk Ak+2Bk+1 Bk+2 · · ·

...
...

...
. . .


︸ ︷︷ ︸

Hx

δu , (2.21a)


δyk

δyk+1

δyk+2

...


︸ ︷︷ ︸

δy

=


Dk 0 0 · · ·

Ck+1Bk Dk+1 0 · · ·
Ck+2Ak+1Bk Ck+2Bk+1 Dk+2 · · ·

...
...

...
. . .


︸ ︷︷ ︸

Hy

δu . (2.21b)

These sensitivity matrices are then used to formulate the optimization problem. The

method is more precise than the LTI approximation described in Section 2.5.1 because

model dynamics is considered along the sampled simulated trajectory and so the model

nonlinearity is captured in a wider operating range. However, this comes at a price of in-

creased computational burden. The model Jacobians has to be evaluated many more times

compared to the LTI approximation. More speci�cally, the LTI approximation evaluates

the Jacobians only once, at the beginning of the prediction horizon, while for the LTV

approximation the Jacobians have to be evaluated np times.

2.5.3 Analytical Calculation of Sensitivity

The last method we mention here is based on the fact that sensitivity of di�erential equation

solution to input and to initial state can be obtained as a solution of another di�erential

equation [27].

The sensitivity of system state x(t) to the unit step change in input vector at time

t0 ≤ t is de�ned by Γ(t, t0) = ∂x(t)
∂u(t0) . The dynamics of this matrix is given by the following

di�erential equation:

Γ̇(t, t0) = ∇xf(x(t),u(t)) · Γ(t, t0) +∇uf(x(t),u(t)) · 1(t− t0) (2.22)

together with the initial condition

Γ(t0, t0) = 0 . (2.23)

The sensitivity of system output y(t) to the step change in input vector u at time

t0 ≤ t is given by Π(t, t0) = ∂y(t)
∂u(t0) . It is described by the following expression in terms of

CHAPTER 2. NONLINEAR MPC 17

the state sensitivity matrix Γ and the output function Jacobians:

Π(t, t0) = ∇xg(x(t),u(t)) · Γ(t, t0) +∇ug(x(t),u(t)) · 1(t− t0) . (2.24)

The state sensitivity ODEs are simulated together with the model equations over the

prediction horizon for the input step changes at tk, . . . tk+np−1. Output sensitivity matrices

are calculated using the state sensitivity matrices and output equation Jacobians. Once

the matrices are evaluated at timesteps tk, . . . , tk+np , they are organized into the matrices

Hx and Hy respectively.


δxk+1

δxk+2

δxk+3

...


︸ ︷︷ ︸

δx

=


Γ(tk+1, tk) Γ(tk+1, tk+1) = 0 Γ(tk+1, tk+2) = 0 · · ·
Γ(tk+2, tk) Γ(tk+2, tk+1) Γ(tk+2, tk+2) = 0 · · ·
Γ(tk+3, tk) Γ(tk+3, tk+1) Γ(tk+3, tk+2) · · ·

...
...

...
. . .


︸ ︷︷ ︸

Hx

δu , (2.25a)


δyk

δyk+1

δyk+2

...


︸ ︷︷ ︸

δy

=


Π(tk, tk) Π(tk, tk+1) = 0 Π(tk, tk+2) = 0 · · ·

Π(tk+1, tk) Π(tk+1, tk+1) Π(tk+1, tk+2) = 0 · · ·
Π(tk+2, tk) Π(tk+2, tk+1) Π(tk+2, tk+2) · · ·

...
...

...
. . .


︸ ︷︷ ︸

Hy

δu . (2.25b)

This method increases the number of di�erential equations to be integrated at each

time step. Due to the state sensitivity ODEs, there are n ·m ·np new di�erential equations

to solve. On the other hand, this method is more precise because the model dynamics is

considered all along the prediction horizon as depicted in part c) of Figure 2.3. This is in

contrast with the two methods above (compare in Figure 2.3) where the model dynamics

is accounted for only at selected sampled time steps. This property is bene�cial in certain

cases. Mostly when the model nonlinearity is signi�cant and should not be approximated.

However, this precision is paid for by the increased computational burden caused by the

need to numerically solve the new di�erential equations. Therefore, one must carefully

consider if the precision is worth the additional computational burden.

There are numerical software packages that come with ODE sensitivity analysis capa-

bilities. One of them is e.g. SUNDIALS with CVODES solver [28] that supports both

analytical sensitivity solution as well as numerical approximation schemes.

Optimal control sequence is obtained from this approximated (through the use of sensi-

tivity) problem. Then the simulation step is repeated with the new control sequence until

a termination condition is met.

2.6 Construction of Local QP

It is usual in the area of optimal control to use quadratic cost function. This, together with

the sensitivity matrices, allows relatively straightforward construction of local quadratic

18 2.6. CONSTRUCTION OF LOCAL QP

tk

tk

tk

b)

c)

a)

Figure 2.3: Sensitivity calculation methods. a) Linearized model obtained at current time
step. b) Linearization along simulated trajectory. c) Sensitivity ODE based approach -
sensitivity calculated along trajectory solving augmented ODE system.

optimization problem (2.9). As an example, we use the following quadratic cost function

penalizing state:

Jx =
1

2

k+np−1∑
i=k

xT
i Qixi =

1

2
xTQx , (2.26)

with x being stacked state vectors xi and Q = QT � 0 being symmetric positive semidef-

inite block diagonal penalty matrix with blocks Qi. The cost function can be further

modi�ed to penalize output tracking error, or control increments. This is usually done us-

ing additive terms with a speci�c purpose in mind. More cost function terms are discussed

in Section 3.1.. The point is however, to always express the cost as a function of optimized

variables, the input perturbation trajectory vector δu.

To achieve this, sensitivity matrices derived in Section 2.5 are crucial. Hence, predicted

state trajectory x can be expressed in terms of input perturbation variables using (2.11b).

Substituting this expression into the cost function gives us

Jx =
1

2
(xsim + Hxδu)TQ(xsim + Hxδu) . (2.27)

Factoring out the input perturbation trajectory δu yields after a simple manipulation and

reordering a standard form of quadratic function.

Jx =
1

2
δuT (HT

xQHx)︸ ︷︷ ︸
Gx

δu + (xT
simQHx)︸ ︷︷ ︸

fTx

δu +
1

2
xT
simQxsim︸ ︷︷ ︸

cx

(2.28)

CHAPTER 2. NONLINEAR MPC 19

Hessian Gx ∈ Rm·np×m·np , gradient fx ∈ Rm·np×1 and constant cx ∈ R can be directly

passed to a QP solver. This way, we formulated a local QP approximation (2.9) using

single shooting and the perturbation model (2.11) and sensitivity matrices from Section

2.5. The local QP is solved as a single step of SQP Algorithm 2.2. By this, we are ready

to iteratively solve the �nite dimensional problem (2.7), obtained in Section 2.3.3, which

is an essential ingredient of the NMPC Algorithm 2.1.

20 2.6. CONSTRUCTION OF LOCAL QP

Chapter 3

Practical Considerations

As the name of the chapter suggests, topics covered here are more of a practical impor-

tance. This chapter describes additional topics and technical details that are useful during

the implementation of NMPC algorithm. First, several quadratic cost function terms are

described to broaden the scope provided in the previous chapter. Then constraint handling

strategies are outlined. Hard constraints are described and two approaches to soft con-

straints implementation are shown. Move blocking technique that is used to reduce overall

computational complexity is shown. Finally, techniques for state estimation of nonlinear

systems are brie�y introduced.

3.1 Cost Function Terms

The following subsections list several commonly used cost function terms. Their pur-

pose in NMPC and their form will be explained. We will use quadratic terms only,

because they allow straightforward formulation of QP. The overall cost function of the

local QP approximation (2.9) can be written as a sum of additive terms denoted by

J? ∈ {Jx, Ju, Jy,r, Ju,r, J∆u, . . . } presented in the following subsections:

J =
∑

J? =
∑ 1

2
δuTG?δu + fT

? δu + c? . (3.1)

Note that in the end, all the terms have to be transformed to the standard form shown on

the right hand side of (3.1) with δu factored out. This transformation can be done in a

similar way to the one outlined in Section 2.6. Linearized prediction of state and output

trajectories from (2.11) have to be used. However, detailed derivation of this transformation

will not be provided for all the terms.

Whenever the cost function consists of multiple terms, the resulting control is always a

compromise between several di�erent goals. The individual terms often dictate opposing

actions to be taken. Even in very simple cases with as many as two cost function terms.

The controller then has to make a decision based on the relative penalty imposed by the

cost function terms. Therefore, one has to be careful when formulating the cost function.

21

22 3.1. COST FUNCTION TERMS

3.1.1 Reference Trajectory Tracking

Output reference trajectory is described by the vector yr on the prediction horizon. To

achieve output trajectory tracking, a cost function term that penalizes tracking error ei =

yr,i−yi at timestep ti is used. The controller then attempts to minimize the tracking error

over the prediction horizon. Corresponding cost function term can be expressed as follows:

Jy,r =
1

2

k+np−1∑
i=k

(yr,i − yi)
TQr,i(yr,i − yi) =

1

2
(yr − y)TQr(yr − y) . (3.2)

Block diagonal square matrix Qr = QT
r � 0 is positive semide�nite and consists of blocks

Qr,i. This requirement is necessary for the resulting quadratic optimization problem to

be convex. The diagonal blocks Qr,i correspond to individual time steps of the prediction

horizon.

3.1.2 Actuator Position Penalization

Actuator position is penalized to balance the use of actuators. By increasing the weighting

for selected actuators, our preferences can be expressed. This is achieved by the following

quadratic function:

Ju =
1

2

k+np−1∑
i=k

uT
i Riui =

1

2
uTRu . (3.3)

Block diagonal penalty matrix R = RT consisting of blocks Ri has to be positive de�nite.

Hypothetically, if there was no penalization mechanism for the actuator use, nothing except

control limits would stop the controller from applying as much control as possible. This

could possibly result in bang bang like control actions, which is generally not considered

good practice.

3.1.3 Actuator Movement Penalization

Often, it is a good idea to penalize actuator increments rather than actuator position.

This is important because of o�set in reference tracking [1]. Any time the reference value

requires nonzero control in steady state, there would be a penalty for actuator position.

As a result, there would be a compromise between reference tracking performance and

actuator position used. Consequently, neither of the con�icting goals could be met exactly.

A simple remedy for this is to penalize control increment ∆ui = ui − ui−1. If the

tracked output reaches steady state, control should be steady as well. Therefore, forcing

∆u and tracking error yr − y to zero produces desired behavior.

One has to express control increments in terms of control trajectory u and previous

CHAPTER 3. PRACTICAL CONSIDERATIONS 23

control uk−1.

∆u =


I 0 0 · · ·
−I I 0 · · ·

0
.

0 0 · · · −I I


︸ ︷︷ ︸

K

u +


−I
0
...

0


︸ ︷︷ ︸

L

uk−1 (3.4)

Having control increments vector expressed, it is quite simple to use it in the cost

function. Penalization is then done using quadratic term shown below:

J∆u =
1

2

k+np−1∑
i=k

∆uT
i R∆u,i∆ui = ∆uTR∆u∆u

= (Ku + Luk−1)TR∆u(Ku + Luk−1) .

(3.5)

The penalty matrix R∆u = RT
∆u has to be positive de�nite and it consists of the blocks

R∆u,i. The e�ect of actuator movement penalization is that the resulting optimal trajec-

tory is more likely to be smooth, without large bumps or glitches.

3.1.4 Actuator Reference Tracking

Actuator reference tracking is advantageous in several cases. For example, precomputed

optimal (in some sense) actuator positions can be known beforehand. Or when the system

is over-actuated. There are more degrees of freedom in the optimization than there is

setpoints. In this case, the optimization problem would be ill-posed. Actuator tracking

then helps by keeping the inputs near the desired positions and �xing the extra degrees of

freedom.

For the actuator reference trajectory given by vector ur on the prediction horizon the

cost function term is given as follows:

Ju,r =
1

2

k+np−1∑
i=k

(ur,i − ui)
TRr,i(ur,i − ui) =

1

2
(ur − u)TRr(ur − u) , (3.6)

where the penalty matrix Rr is positive semide�nite and consists of diagonal blocks Rr,i.

Minimizing this term leads to the actuators following the prescribed reference trajectory

ur if possible.

3.2 Constraints

Constraints or limits are a natural part of model based predictive control algorithm. They

enable systematic handling of real system limitations. Constraints are propagated through

optimization problem to the control law calculation. The controller does its best to achieve

prescribed objectives while obeying the limitations. This is in contrast with other control

methods that do not have such feature and constraints has to be implemented ad hoc.

24 3.2. CONSTRAINTS

3.2.1 Hard Constraints

Hard constraints are constraints that are applied to the optimization problem. The solver

then tries to �nd minimizer satisfying all the constraints.

Input Constraints

Probably the most obvious and most often used type of hard constraints are constraints on

control variables. These constraints are useful for limiting the control action. It is of much

practical importance because constraints are often present in actuators. As an example,

take e.g. valve opening from 0 to 100 percent. Another example might be heating system

that is only capable of delivering positive heat to the system. Input outside of the range

does not make any sense and cannot be even implemented.

Input constraints prevent the controller unintended or impossible use of actuators.

They are added to the optimization problem in a form of inequalities. Note that in this

formulation, they have form of lower bound u and upper bound u respectively.

u ≤ u ≤ u , (3.7)

where u = usim + δu. The input trajectory usim is constant in the optimization problem.

Hence, the constraint can be expressed in terms of input perturbation vector as follows:

u− usim ≤ δu ≤ u− usim . (3.8)

Other Constraints

The use of hard constraints for system states or outputs is not recommended. This is due

to possible optimization problem infeasibility. In case of disturbance entering the system

or in case of too strict control requirements, it might happen that no trajectory satis�es the

hard constraints. The optimization procedure would return an error due to infeasibility.

Then, some kind of ad hoc control policy would have to be applied to recover from the

error.

3.2.2 Soft Constraints

As opposed to hard constraints, soft constraints can be violated. Possible violation of these

constraints is penalized using a term in the cost function. Comparison of soft and hard

constraint is illustrated in Figure 3.1.

Sometimes it is not required to track references exactly but rather keep the outputs

inside some prede�ned ranges or alternatively above or under a limit. Inside the admissible

range no penalty is imposed. The penalty is then applied only outside the prescribed range

or beyond the limits.

To achieve this kind of behavior, new variable or variables has to be introduced to the

optimization problem. We will demonstrate it on soft output maximum limit. Assume

that we want to penalize outputs yi exceeding ȳi at times ti over the prediction horizon.

Basically, there are two implementation options.

CHAPTER 3. PRACTICAL CONSIDERATIONS 25

Figure 3.1: Comparison of hard versus soft maximum limits.

Option 1

In this way, there is a new vector of variables ε ∈ Rp·np which quanti�es soft limit violation

at each timestep of prediction horizon.

minimize J(x0,u0,k) +
1

2
εTGε

subject to y ≤ ȳ + ε
(3.9)

with G ∈ Rp·np×p·np symmetric positive semide�nite. If the soft limit is not violated, i.e.

y ≤ ȳ, all variables in ε are forced to zero by the minimization of εTGε term. On the other

hand, if it is more advantageous (in terms of cost function value) to violate the limit at

some point ti, εi becomes greater than zero allowing yi > ȳi.

The new constraints in (3.9) contain predicted output trajectory y. After substituting

it from (2.11c) into the inequality, the inequality can be rearranged into a standard form

with decision variables δu and ε

[
Hy −I

] [δu
ε

]
≤ (ȳ − ysim) . (3.10)

Option 2

The other way di�ers from the previous one in the place where the new vector ε appears

in the optimization problem.

minimize J(x0,u0,k) +
1

2
(y − ε)TG(y − ε)

subject to ε ≤ ȳ
(3.11)

As can be seen in (3.11), the predicted output trajectory y appears only in the cost

function and not in the constraints. This way, the new constraints have form of simple

bounds on variables which is not the case in (3.10). Some QP solvers require exclusive use

of box constraints in the problem [29] so only the later variant (3.11) can be used for them.

26 3.3. MOVE BLOCKING

Figure 3.2: Example of move blocking strategy. The block sizes are shown above the
timeline.

Complexity Reduction

Soft constrains add more degrees of freedom to the optimization problem by the introduc-

tion of the slack variables ε in (3.9) and (3.11). In case of real time implementation of

NMPC, it is therefore advisable to take measures to avoid unnecessary growth of complex-

ity. This can be done by using only a scalar variable instead of a vector over the prediction

horizon. This results in penalizing the maximum of soft constraint violation.

Conceptually, we only replace vector ε by 1ε̂, with vector of ones with p · np entries.

This way, only one variable ε̂ appears in the optimization problem for each constrained

output. It corresponds to the maximum of soft limit violation taken over the prediction

horizon.

When such violation occurs, it naturally relaxes the constraint even for the remainder

of prediction horizon timesteps. This does not happen when there is a degree of freedom

for each timestep and output. On the other hand, it does not increase the complexity of

the optimization problem by adding that many new variables.

The other way is the reduction of number of time steps in the prediction horizon where

the constraint violation is checked.

3.3 Move Blocking

Move blocking is a way to decrease computational burden during the solution of optimiza-

tion problem. The point is to e�ectively reduce the number of decision variables in the

problem. It is achieved by �xing the input signal for a period longer than one sampling

period. This way, so called blocks of di�erent sizes are created. For each block, the input

is assumed constant and so only m decision variables are required, equal to the number of

inputs.

An example of move blocking strategy is shown in Figure 3.2. The prediction horizon

is set to np = 4 sampling periods. There are only nc = 3 input blocks present of sizes

1, 1 and 2 sampling periods respectively. Therefore, the number of decision variables is

decreased from 4 ·m to 3 ·m. Often, only nc−1 blocks of unit size are used at the beginning

of the prediction horizon and the remainder is replaced by a single block.

The e�ect of input blocking strategies has been studied in [30]. In general, shorter

blocks are useful at the beginning of the prediction horizon. Closer to the end of the

prediction horizon, the blocks can be longer, thus saving the number of variables. This is

due to the nature of prediction horizon moving forward in time. The predicted behavior

CHAPTER 3. PRACTICAL CONSIDERATIONS 27

does not match actual closed loop behavior because of unknown disturbances and imperfect

modelling. The input trajectory far in the future thus rarely gets applied as predicted and

so less e�ort at the end of prediction horizon is often su�cient.

Move blocking can be implemented by �xing corresponding input perturbation vector

δu entries to the same values. Assuming the trajectory usim respects the block sizes, only

the perturbation vector has to be modi�ed. For the example above, the input perturbation

vector δu can be represented using a shorter vector δuMB and a move blocking matrix M:
δuk

δuk+1

δuk+2

δuk+3


︸ ︷︷ ︸

δu

=


I 0 0

0 I 0

0 0 I

0 0 I


︸ ︷︷ ︸

M

 δuk

δuk+1

δuk+2


︸ ︷︷ ︸
δuMB

. (3.12)

The dimension of move blocking matrix M is np ·m × nc ·m where nc is the number of

input blocks. Instead of full input perturbation vector, only the shorter version δuMB

comes out in the equations. The move blocking matrix M is attached to the other vectors

and matrices.

3.4 State Estimation

As was described earlier in Chapter 2, it is necessary to have current state at hand because

it is key to e�cient prediction of future system behavior. For linear MPC, situation is

simpler in the sense that only Kalman �lter or even linear estimator is su�cient for state

estimation. Linear Kalman �lter with additive disturbance estimation can be used for

nonlinear systems as well. In general, more complicated methods must be used to cope

with nonlinearity. As the nonlinear estimation methods are out of the scope of this work,

only two of them are brie�y mentioned.

3.4.1 Extended Kalman Filter

De facto standard method for nonlinear estimation is extended Kalman �lter (EKF) [31].

Linearized model is used to predict state from previous time step. Linearized model is

also used during the data update step. Therefore, Jacobian matrices of the system must

be known or approximated during the estimation process. This is major weakness if the

system is strongly nonlinear.

3.4.2 Unscented Kalman Filter

Other way is unscented Kalman �lter (UKF). It uses Unscented transform to approximate

prior and posterior probability density functions. Actual probability density function is

replaced by a deterministic set of points that is then projected through nonlinear model

equations. The resulting posterior mean and covariance are then calculated from these

projected points. While it performs well for nonlinear models, it is not increasing compu-

tational burden signi�cantly. More detailed explanation can be found in [32].

28 3.4. STATE ESTIMATION

Chapter 4

NMPC Framework

This chapter describes the framework for nonlinear predictive control. Model based control

design process is shortly described. The computational algorithm implemented in the

framework is presented together with a work�ow diagram. The framework is implemented

in Matlab programming environment and code organization into functions and modules is

described. In the end, framework usage is explained in detail using a simple example.

4.1 Control Design Process

As with any other model based control strategy, the design of NMPC controller is an

iterative process that consists of several steps. It is shown in the diagram in Figure 4.1.

Firstly, a suitable plant model has to be de�ned. An appropriate model form and structure

has to be set, model parameters identi�ed and the whole model validated. Secondly, control

problem speci�cation has to be found. This includes selection of manipulated variables

and controlled variables. Decision on control objectives, e.g. setpoints, constraints or soft

limits. These requirements are then translated into the cost function terms and other

tuning parameters. The next step is tuning of the controller parameters. Finally, the

control performance should be evaluated. It can be done either via numerical simulation

or using model in the loop (MIL), hardware in the loop (HIL) or a rapid prototyping system.

If the performance provided by designed controller meets expectations, the controller can

be implemented and deployed to the actual plant.

4.2 Implemented Algorithm and Features

The framework implements single shooting algorithm with SQP. State space models de-

�ned by di�erential equations and output mappings in the general form of equations (2.2)

and (2.3) are supported. Jacobians of model right hand side functions have to be speci�ed.

It can be done either by explicitly specifying the formulas or by using numerical approx-

imation. For the second case, there is a helper function to approximate the Jacobian

using �nite di�erence scheme. Methods of approximating sensitivity matrices described in

Section 2.5 are implemented.

29

30 4.2. IMPLEMENTED ALGORITHM AND FEATURES

De�ne plant model

Specify control problem

Tune the controller

Evaluate con-
trol performance

Performance
meets expectation

Deploy controller

yes

no

Figure 4.1: Flowchart of model based control design process.

Model inputs are divided into two groups with di�erent meaning. Manipulated variables

are those inputs used as free variables in the optimization. Disturbance variables are known

and �xed along the prediction horizon. They can be used in place of known disturbances or

external input variables supplied by another control system. Future preview information

can be used for disturbance variables if available.

The cost function of the optimization problem consists of individual quadratic terms

serving speci�c purpose. The terms selected by the user are then added to make the

�nal form of the cost function. Hard constraints on model inputs can be added. Soft

constraints handling is implemented as well to be able to limit selected model outputs.

Reduced complexity approach described in Section 3.2.2 is used.

Simulink models are currently not supported for the control design (they cannot be

used for prediction). However, there is an interface allowing the use of designed controller

in Simulink models to validate the controller. This is achieved by an Simulink S-function1

block calling framework routines.

4.2.1 Work�ow Diagram

Work�ow diagram of the computation process implemented in the framework is shown in

Figure 4.2. The whole process is implemented as a method of nmpc class. Subsequently,

it calls methods corresponding to the steps in Figure 4.2 that are implemented separately.

The loop in the diagram corresponds to the iteration of SQP optimization method. The

individual steps inside the loop prepare the local quadratic approximation of the nonlinear

1Simulink S-function is a block type that allows calling user speci�ed Matlab functions from Simulink

environment. More speci�cally, Level-2 Matlab S-function is used in the framework.

CHAPTER 4. NMPC FRAMEWORK 31

Input

Simulate the model

Calculate the
sensitivity

Construct local QP

Solve QP

u ← u + δu

Terminating
condition met

Return u∗

u, xk

xsim, ysim

Hx, Hy

G, f, c

δu

u

yes

no

Figure 4.2: Flowchart of NMPC algorithm as it is used in the framework.

optimization problem.

4.3 Programming Environment

The framework is implemented in Mathworks Matlab programming environment. Matlab

allows for rapid prototyping and testing. Framework can be used for testing of nonlin-

ear model based predictive control strategy on various systems. Modi�cation to NMPC

algorithm can be done in a simple way using Matlab programming language.

As a part of framework, we supply a Simulink S-function block that calls the main

framework routines. This way, one can test the NMPC controller designed with the frame-

work even within Simulink models.

4.4 Code Organization

NMPC framework is self contained Matlab package called nmpc. Content of the package is

listed in Figure 4.3. There are three classes in the package, model, mpc_setup and nmpc.

Complete list of class properties and methods is included for reference in Appendix A.

Each class has a speci�c purpose and it corresponds to a step in the control design

process shown in Figure 4.1. The model class is used to de�ne the system model. It is the

32 4.5. GUIDING EXAMPLE

+nmpc

@nmpc

build_prediction.m

move_blocking.m

nmpc.m

optimizer.m

qp_add_constraints.m

qp_build.m

qp_soft_limits.m

sensitivity.m

sensitivity_analytic.m

sensitivity_approx.m

sensitivity_discrete.m

simulator.m

simulator_discrete.m

@model.m

fd_jacobian.m

model.m

@mpc_setup

mpc_setup.m

Figure 4.3: Contents of the Matlab package.

�rst part of NMPC control design process. Model dimensions, equations, their Jacobians

and discretization sampling period is speci�ed.

The mpc_setup class holds information about the control problem de�nition and con-

troller tuning. Cost function terms, constraints, inputs and outputs that are intended for

reference tracking are selected using this class. NMPC algorithm settings such as SQP

stopping condition or sensitivity approximation method are also speci�ed here.

The nmpc class takes care of all the computational parts in the framework. It has

several methods making the computation process modular. This way, parts of the process

can be modi�ed to �t the needs. Di�erent handling of soft constraints can be achieved by

modifying the qp_soft_limits function. More QP solvers can be used by adding them to

the de�nition in optimizer function.

A step by step description of control design process using the implemented framework

follows. It is explained using a simple example.

4.5 Guiding Example

The example used in this user guide is control of lateral dynamics of planar vehicle using

steering and velocity as manipulated variables. It can be found in the Demos section of

framework help within Matlab. The source codes can be copied elsewhere and modi�ed as

a starting point for your control problem design.

The dynamic model of the vehicle is given by the following set of di�erential equa-

CHAPTER 4. NMPC FRAMEWORK 33

Table 4.1: Model variables and Matlab vector order.

Name Matlab code
States x x(1)

y x(2)

ϕ x(3)

Inputs ω u(1)

v u(2)

Outputs x y(1)

y y(2)

tions [33]:

ẋ = v cosϕ , (4.1a)

ẏ = v sinϕ , (4.1b)

ϕ̇ = ω . (4.1c)

Variables x and y are the coordinates of the vehicle in plane, v is forward velocity and ω

is angular velocity of the vehicle given by steering command. Variable ϕ is heading angle

of the vehicle. Both v and ω are manipulated variables.

The control objective is to follow prescribed x-y trajectory with limited velocity and

steering. Possible application of this problem is e.g. a lane change maneuver or obstacle

avoidance. For the vehicle to stay on the road, we set up a soft constraints for y.

In the Matlab code, the notation is slightly di�erent. States and inputs are ordered in

the vector and the model variable names are no longer used. The order of variables in the

model is summarized in Table 4.1 because it is important in specifying control goals and

cost function terms.

4.6 Model De�nition

Current implementation of the framework only supports models in state space represen-

tation (see Section 2.2.1). Model de�nition is done using model class. It has obligatory

properties with prede�ned default values that will guide user through the process. They

are listed for reference in Section A.1. To de�ne a model, create an instance of model class

using class constructor with the following syntax:

new_model = nmpc.model(n,m,p);

where n, m and p de�ne the number of states, inputs and outputs respectively.

4.6.1 Manipulated Variables and External Inputs

The framework distinguishes two types of inputs. Manipulated variables, i.e. those inputs

that it can directly control, and external inputs (or measured disturbances) that it cannot

a�ect. This has to be de�ned using mv and dv property of model class. These are vectors

containing a list of indices. Note that the sets must cover all m inputs and the sets must

34 4.6. MODEL DEFINITION

have an empty intersection. For example, if the model had 2 inputs, both of them being

manipulated variables, the de�nition would look like

new_model.mv = [1;2];

new_model.dv = [];

4.6.2 State Equation

State and output equations are de�ned using a function handle. Basically, there are two

ways of getting a function handle. One of them is the use of anonymous function and the

second one is using a general function de�ned elsewhere.

Multivariable functions have to be de�ned in a matrix form with correct number of

rows and columns. In the example above, there are three states and two inputs. Function

f must therefore have input arguments x of dimension 3 by 1, and u of dimension 2 by 1.

The return value is a 3 by 1 (i.e. column) vector of individual state derivatives. Function

handle is created using an anonymous function as follows:

new_model.f = @(x,u)[u(2)*cos(x(3));

u(2)*sin(x(3));

u(1)];

User also has to supply Jacobians of the functions. This is due to �exibility and to

ensure that the derivatives are correct. In our example model, Jacobian with respect to

state vector returned by dfdx is a 3 by 3 matrix. Jacobian with respect to input vector

is returned by dfdu is 3 by 2 matrix. The number of rows correspond to the number of

states.

new_model.dfdx = @(x,u)[0, 0, -u(2)*sin(x(3));

0, 0, u(2)*cos(x(3));

0, 0, 0];

new_model.dfdu = @(x,u)[0, cos(x(3));

0, sin(x(3));

1, 0];

4.6.3 Output Equation

Output equation is to be de�ned in an analogous way. The property for output function

handle is g and Jacobians are de�ned using dgdx and dgdu. In our example, the output

equation syntax would be as follows:

new_model.g = @(x,u)[x(1);

x(2)];

The Jacobians of output equations are de�ned using

new_model.dgdx = @(x,u)[1, 0;

0, 1];

new_model.dgdu = @(x,u)[0, 0;

0, 0];

CHAPTER 4. NMPC FRAMEWORK 35

4.6.4 Jacobian Approximation

Jacobian matrices should be expressed analytically using the system equations if possible.

The di�erentiation should be done by the user. Under certain circumstances, this can be

complicated or undesirable.

The user can approximate a Jacobian matrix using �nite di�erences scheme and use

it in place of dfdx, dfdu, dgdx or dgdu functions. This can be done using fd_jacobian

method of model class. It implements the forward (one sided) �nite di�erence scheme to

approximate the derivatives. Schematically, for a scalar function f of scalar arguments x

and u the one sided approximation of derivative is:

∂f

∂x
(x, u) =

f(x+ h, u)− f(x, u)

h
, where h = px+ a .

The step length h is selected as a p multiple of the evaluation point plus an additive

constant a. Both constants are de�ned in the function �le and can be changed if necessary.

Usage of the function is as follows. If we want to approximate Jacobian of state function

f with respect to input vector u, we use

new_model.dfdu = @(x,u) model.fd_jacobian('f','u',x,u);

The two string arguments specify the function and the variable of the Jacobian approxima-

tion. The �rst string argument speci�es the function for which the Jacobian approximation

is computed. For the state function 'f' is used and for the output function 'g' is used.

The second argument de�nes with respect to which variable is the approximation com-

puted. The options are 'x' for state and 'u' for input. The last two arguments (x and u)

are the state and input values at which the approximated Jacobian is evaluated.

4.6.5 Sampling Period

The last part of the model de�nition is sampling period. This is the period used in control

discretization for the optimization. It is de�ned in Ts property in seconds.

new_model.Ts = 0.02;

Note that it should be veri�ed by the user that sampling with this period is appropriate

beforehand. If the sampling period is unnecessarily short, the computations can take much

longer. If on the other hand the sampling period is too long, sampled system behavior may

not capture actual behavior correctly as some fast dynamics may be hidden.

4.6.6 Model Formal Veri�cation

Formal correctness of model can be veri�ed using its verify method. It checks the dimen-

sions of functions' return parameters, manipulated variables and disturbance. The function

returns 1 if the instance is formally valid and 0 otherwise. If there were any problems,

a report and warnings are printed to the Command Window. The method is called by

issuing a command model.verify().

36 4.7. NMPC PROBLEM DEFINITION

4.7 NMPC Problem De�nition

NMPC setup is done using mpc_setup class. It summarizes control objectives using cost

function terms and constraints. Prediction and control horizon lengths are speci�ed here

as well. Properties and methods are also provided in Section A.2 for reference.

4.7.1 Receding Horizon Settings

An important part of MPC strategy is the length of prediction and control horizons. They

are set using np property for prediction horizon and nc for control horizon. Please note

that both of them are given as a number of sampling periods model.Ts. In the example

bellow prediction horizon is set to 30 steps and control horizon to 15 steps.

mpc_setup.np = 30;

mpc_setup.nc = 15;

If no other parameter is speci�ed, the control will remain constant after the nc steps. This

is so called move blocking. For more details see Section 3.3.

However, if a di�erent move blocking strategy is required, the distribution of control

steps among the prediction horizon can be customized. This can be achieved using blocks

property. It is a column vector containing number of steps between individual control

changes.

mpc_setup.blocks = [1;1;2;2;3;4;5];

mpc_setup.nc = numel(mpc_setup.blocks);

The sum of block lengths should be less than or equal to np. If the sum is less than np,

the last block is automatically prolonged to span the rest of the prediction horizon. The

number of elements in blocks must equal the control horizon nc. It can be ensured by

setting nc equal to this number as is demonstrated in the example above.

Note that with the move blocking strategies, one should be very careful, because they

may lead to numerical instability or divergence of SQP optimization routine.

4.7.2 Cost Function Terms

This subsection describes the de�nition of cost function terms for the control problem.

There are several cost function terms available. For more detailed description of the cost

function please see Section 3.1. The terms are de�ned using symmetric, positive de�nite

and positive semide�nite matrices. For the optimization problem to have unique solution,

at least one of the matrices R and R_du has to be positive de�nite. The other nonempty

matrices have to be positive semide�nte.

If a term is not present in the cost function, empty matrix has to be used instead.

Note that all the cost function weighting matrix properties have empty matrix as a default

value. However, we encourage the user to explicitly set empty matrix [] for unused terms

for clarity.

All of the terms must be speci�ed for the whole prediction horizon. Usually, block

diagonal matrices are the most suitable but not mandatory. There should be a block of

CHAPTER 4. NMPC FRAMEWORK 37

correct dimension for each time step in the prediction horizon. For this purpose, Kronecker

product of matrices can be quite advantageous.

Control Magnitude

Control magnitude penalization weighting is de�ned using positive de�nite R matrix. The

term corresponds to quadratic cost function in Equation (3.3). It has to be of correct

dimension for the whole prediction horizon, that is np*m_mv by np*m_mv, where m_mv is the

number of manipulated variables de�ned in mv property (see Section 4.6.1).

Control Increments

Control increment weighting can be set using positive de�nite R_du matrix. The term

is de�ned in Equation (3.5). Control increments are de�ned using di�erence between

consecutive input steps. The same dimensions hold as for control magnitude weighting

matrix R. In the example, the weighting is set equally for both inputs and for all the steps

in the prediction horizon:

mpc_setup.R_du = kron(eye(mpc_setup.np),diag([1,1]));

With Kronecker product, block diagonal matrix is created. Each block corresponds to a

time step in the prediction horizon. The blocks have a dimension 2 by 2, �tting the number

of manipulated variables.

Output Reference Tracking

Output reference tracking is achieved by minimization of weighted tracking error. Tracking

error is given by the di�erence between predicted output y and output reference signal yref .

First of all, the outputs that are to be tracked have to be selected by column index vector

in y_tr.

Weighting for the quadratic cost function term (see (3.2)) is speci�ed using positive

semide�nite matrix Q_r. Correct dimension is np*p_tr by np*p_tr where p_tr is the

number of tracked outputs. In our example, the outputs number 1 and 2 are intended for

tracking.

mpc_setup.y_tr = [1;2];

mpc_setup.Q_r = kron(eye(mpc_setup.np),diag([10,100]));

Equal tracking error weighting is set through the prediction horizon. Kronecker product

with identity matrix makes block diagonal matrix with diag([10,100]) blocks. The �rst

tracked output (output number 1) has weight 10 assigned while the second one (output

number 2) has 100 assigned.

The output reference trajectories are passed as an argument to nmpc.control function.

It will be further described in Section 4.8.

38 4.7. NMPC PROBLEM DEFINITION

Input Reference Tracking

Input reference tracking setup is similar to the output reference tracking. Input reference

tracking is used to de�ne preferred actuator position. First, the inputs for which the

reference is set are selected using column index vector u_tr. Note that indices refer to the

system input indexing and not to the manipulated variables (as speci�ed in model.mv, see

Section 4.6.1).

However, only manipulated variables can be used in input reference tracking. Distur-

bances, or external inputs, cannot be in�uenced by the controller and hence it makes no

sense to have references for them.

Input reference tracking error u−uref is penalized by the quadratic cost function (3.6)

with a positive semide�nite weighting matrix R_r. Correct dimension for this matrix is

np*m_tr by np*m_tr where m_tr is the number of tracked inputs.

In the following example we set reference tracking for input number 2, the vehicle

velocity (which has been de�ned to be a manipulated variable in Section 4.6.1). The

weight is set to 10 over the prediction horizon.

mpc_setup.u_tr = [2];

mpc_setup.R_r = kron(eye(mpc_setup.np),[10]);

The input reference trajectories are passed as an argument to nmpc.control function

and it will be described in Section 4.8.

4.7.3 Control Limits

Input constraints are de�ned using u_lb property for lower bound and u_ub property for

upper bound. They are to be de�ned only for manipulated variables, not for disturbance

variables. Lower and upper bounds remain constant over the prediction horizon. They

must be speci�ed using column vector with correct number of rows. For our example, we

can set them up as follows:

mpc_setup.u_lb = [-pi/2; 10];

mpc_setup.u_ub = [pi/2; 25];

For the �rst manipulated variable, the limits are given by −π
2 ≤ ui ≤ π

2 . For the second

manipulated variable, the limits are 10 ≤ ui ≤ 25.

In case we decided to have no limit on a manipulated variable, we enter ∞ or −∞ for

the corresponding upper or lower bound respectively. In Matlab syntax, inf and -inf can

be used.

If there were disturbance variables, limits are always de�ned only for the manipulated

variables. The number of entries in u_lb and u_ub should be the same as the number of

manipulated variables.

4.7.4 Output Soft Limits

Output soft limits can be entered to the problem using indexing to select which outputs

to constrain. The indices are to be given in y_min and y_max column vectors. The limit

CHAPTER 4. NMPC FRAMEWORK 39

values itself are supplied in column vectors y_min_lim and y_max_lim for selected outputs

only. The weighting of soft limits in the cost function is given in G_min and G_max matrices.

The size of these vectors (y_min_lim, y_max_lim), and matrices (G_min, G_max) must be

compatible with the number of outputs selected for output reference tracking.

In the following example, we set soft minimum and maximum limit on output 2.

mpc_setup.y_min = [2];

mpc_setup.y_min_lim = [-1];

mpc_setup.G_min = 1000;

mpc_setup.y_max = [2];

mpc_setup.y_max_lim = [6];

mpc_setup.G_max = 1000;

The weighting is set to one thousand for both limits. Output 1 is desired to be kept within

-1 and 6. Note that soft limits might be violated if there are other con�icting goals such

as output or input reference tracking. Soft constraints are discussed in greater detail in

Section 3.2.2.

4.7.5 NMPC Algorithm Setup

Current implementation of the framework provides several options regarding the NMPC

algorithm itself. The optimization problem is solved using sequential quadratic program-

ming. The SQP method uses local quadratic programming approximation of the nonlinear

cost function. User can specify which approximation method to use.

Sensitivity Calculation Method One can select the way how the local approximations

of the cost function are calculated. This is done using sens_type property. Possible options

are given as a string value:

• 'lti_mpc' linearization at the beginning of prediction horizon (see Section 2.5.1).

Perturbation model is obtained at current operating point xk and uk. Very fast but

suitable only for systems with insigni�cant nonlinearity or short prediction horizons.

When speed is a priority and precision can be sacri�ced.

• 'ltv_mpc' linearization along simulated trajectory (see Section 2.5.2). Perturbation

model is obtained at each timestep of the simulated trajectory. Fast and suitable for

general type of nonlinear systems.

• 'analytic' analytical sensitivity calculation using augmented ODE system (see Sec-

tion 2.5.3). Extra di�erential equations have to integrated. The slowest one, suitable

when precision is a top priority or the nonlinearity is strong.

For discrete time models, there are two options. They di�er from their continuous time

counterparts only in leaving out the discretization of model dynamics.

40 4.7. NMPC PROBLEM DEFINITION

• 'lti_discrete' linearization at the beginning of prediction horizon. Perturbation

model is obtained at current operating point xk and uk. Very fast but suitable for

systems with negligible nonlinearity or when speed is more important than precision.

• 'ltv_discrete' linearization along simulated trajectory. Perturbation model is ob-

tained at each timestep of the simulated trajectory. Fast and suitable for a wide

range of nonlinear systems.

Any other value is invalid an results in error. In our example with continuous time model,

we choose linear time varying approximation. The nonlinearity in the model not negligible

so lti_mpc method is not very suitable. On the other hand, analytical method gives

almost identical results with signi�cantly longer computation times. Hence, the ltv_mpc

method is reasonable compromise between precision and speed:

mpc_setup.sens_type = 'ltv_mpc';

SQP Stopping Condition There are two settings regarding SQP optimization method.

Maximum number of SQP iterations may be speci�ed using sqp_max_iter property. The

default value is 5 iterations which proved to be su�cient most of the time. Valid options

are integer values greater than zero. Lets try to decrease the maximum allowed number of

iterations to 3.

mpc_setup.sqp_max_iter = 3;

Another option for SQP algorithm is stopping condition for update of control trajectory.

If the di�erence of control trajectories in consecutive SQP iterations u(k) and u(k−1) falls

bellow prescribed value, the SQP is stopped and the last iterate u(k) is returned. The

update is measured by 2-norm of the di�erence divided by the 2-norm of the control in

previous iteration:

uupdate =
||u(k) − u(k−1)||2
||u(k−1)||2

, ∞ if ||u(k−1)||2 = 0 (4.2)

Valid options for the update stopping condition are positive scalars and zero. Default value

is 0, so that the SQP will run all sqp_max_iter iterations. The SQP is terminated as soon

as the update de�ned in (4.2) is less than or equal the prede�ned threshold value.

The stopping value is de�ned using sqp_u_update property. As an example, we de�ne

the threshold value to be 0.5 percent update between consecutive iterations.

mpc_setup.sqp_u_update = 0.005;

QP Solver Currently, there are two QP solver interfaces supported in the framework.

The �rst of them is quadprog from Matlab's Optimization toolbox and the other is qpOASES

[34].

Neither of the solvers is included in the package due to licensing policy. Therefore, the

solver must be installed on the system and present at Matlab path.

The solver is selected using qp_solver property. Valid options are 'quadprog' and

'qpoases'. In our example, we use quadprog:

CHAPTER 4. NMPC FRAMEWORK 41

mpc_setup.qp_solver = 'quadprog';

4.7.6 Formal Veri�cation of MPC Settings

There is a function verify that checks the formal correctness of MPC settings. It works

by comparing the dimensions of the matrices, consistency of bounds etc. For the method

to work, a model instance has to be passed as an input argument. This is due the fact

that e.g. matrix dimensions depend on the model settings.

Call the function by mpc_setup.verify(model). It returns 1 if the settings are correct

and 0 otherwise. If there were any �aws, a short report with warnings is printed to the

Command Window so that one can �x them.

4.8 Controller Simulation

Actual computation of control law takes place in the nmpc class. Complete list of properties

and methods is present in Section A.3 for reference. To start using the NMPC computation,

one has to create an instance of nmpc class. The class constructor takes valid and compatible

instances of model and mpc_setup classes that were created above:

nmpc_ctrl = nmpc.nmpc(model,mpc);

Controller simulation is not part of the framework as the requirements for the simulation

are usually very problem-speci�c. For this reason, we only include two fully con�gured

simulation examples so that one can use them as a starting point for his/her own code.

To run the simulation, one has to program a loop that calls controller code and passes

references, current state and previous input vector. System simulation over the sampling

period is carried out externally as well as disturbance trajectory generation. In the course

of simulation, the data should be stored and a suitable presentation e.g. in the form of

graphs should be tailored to �t the problem.

One of possible simulation schemes is illustrated in Figure 4.4. The portion imple-

mented by NMPC Framework is highlighted using dark background color. Detailed de-

scription of control function follows in the next section.

4.8.1 Control Function

Control function is the one used for the calculation of control trajectory for given initial

state. It takes current state, control trajectory from the previous step and input and

output references over the prediction horizon as input arguments. It returns optimal control

trajectory and predicted state and output trajectories over the prediction horizon. It is a

method of nmpc class and has the following syntax:

[u_opt,x_pred,y_pred,fval] = obj.control(x0,u_last,y_ref,u_ref);

The obj is a valid instance of nmpc class for which the control action is to be computed.

Input arguments of the control function are:

42 4.8. CONTROLLER SIMULATION

Initial u and xk

Get references

Get disturbances

Call nmpc.control

Apply u∗ to the
system and simulate
from t to t + Ts

Figure 4.4: Possible simulation scheme. Part implemented by the framework is highlighted.

• x0 Current state value. Column vector with n entries. It is used as an initial condition

for the model simulation inside the controller.

• u_last Previous input trajectory matrix m by np. It contains previous input trajec-

tory given by column vectors for each sampling period organized side by side in the

matrix. It is used as an initial guess during the �rst iteration of SQP. When calling

the control method for the �rst time, use a meaningful and feasible value. During

the simulation, you may use the previous result (u_opt) or start over.

• y_ref Output reference trajectory over the prediction horizon. It is a p_tr by np

matrix consisting of output references at each sampling period of the prediction

horizon. If reference preview is turned o�, single column vector can be used instead

(p_tr by 1). The trajectory is then assumed constant over the prediction horizon.

• u_ref Input reference trajectory over the prediction horizon. A m_tr by np ma-

trix with manipulated variables trajectory at each sampling period of the prediction

horizon. If reference preview is turned o�, single column vector can be used instead

(m_tr by 1). The trajectory is then assumed constant over the prediction horizon.

The function return values are:

• u_opt Optimal input trajectory, disturbance variables included.

• x_pred Predicted state trajectory with control given by u_opt.

• y_pred Predicted output trajectory with control given by u_opt.

• fval Optimal predicted cost function value given the predicted trajectories.

All the trajectory signals are organized in matrices. The value of signal at each time

step relative to the current time is a column in the matrix. This is shown on the example

of u_opt below:

uopt =
[
uopt,k uopt,k+1, · · · uopt,k+np−1

]
︸ ︷︷ ︸

np

}
m

CHAPTER 4. NMPC FRAMEWORK 43

Note that np is the number of steps of prediction horizon and m is the number of model

inputs. For other trajectories, corresponding dimensions apply.

4.9 Framework Installation

The framework package is distributed as a compressed archive. To obtain the latest version

available, please contact the author 2 for details.

The framework package can be installed by copying all the �les and folders from a

compressed archive to a folder that is accessible by Matlab. Then, the folder containing

the framework package has to be added to Matlab path. This way, the toolbox is au-

tomatically recognized at the next Matlab start-up and the above mentioned commands

become available. The help �les are also prepared and so either a Documentation Viewer

window or standard command line tools can be used to browse the help as described in

the following section.

4.10 Built-in Help and Documentation in Matlab

Toolboxes provided with Matlab contain extensive help and examples as part of the pack-

age. Matlab users are familiar with tools to get help during the work with Matlab. There-

fore, it is natural to include code documentation and demo examples as well. The help for

Matlab help command is automatically extracted from speci�cally formatted comments

in the source code. Function declarations have a uni�ed format to allow simple use and

modi�cation of the code.

Standard Matlab help and documentation commands can be used to get more infor-

mation about individual functions or classes. To list the properties or methods of a class

(e.g. model), run one of the following commands:

properties nmpc.model

methods nmpc.model

The command output contains only property and method names respectively. To see

the entire class description, use doc command instead:

doc nmpc.model

The command opens Matlab Documentation Viewer and you can browse the class hierar-

chy. To get help on individual class methods, either browse to them using Documentation

Viewer or use the doc or help commands.

The help contains short method summary, syntax description and list and meaning of

input and output arguments. As an example, help for control method of nmpc class is

obtained using any of the following commands:

doc nmpc.nmpc.control

help nmpc.nmpc.control

2Ond°ej Mikulá², e-mail address mikulon2@fel.cvut.cz

mikulon2@fel.cvut.cz

44 4.10. BUILT-IN HELP AND DOCUMENTATION IN MATLAB

Matlab toolbox help is prepared using several de�nition �les that describe the structure

and linking of individual documentation parts [35]. Illustrative extract from the toolbox

documentation can be found in Appendix B. Apart from the toolbox description, two fully

con�gured demo examples are present in the Matlab documentation. These examples can

serve as a starting point and guidance for new users.

Chapter 5

Application Examples

5.1 Vehicle Steering Control

The �rst application example is a planar vehicle steering control. The purpose is to demon-

strate the capabilities of the NMPC Framework with a very simple model before proceeding

to a more complex one. Even though the model used is extremely simple, it cannot be

handled with linear MPC due to nonlinearity given by geometry of the problem.

5.1.1 System Description and Model Derivation

Suppose a planar vehicle idealized by a point mass vehicle model [33]. The state variables

of the model and their geometric relations are shown in Figure 5.1. State variable x is a

longitudinal coordinate, y is a lateral coordinate and φ is heading angle with respect to

positive x semiaxis. Input variables are vehicle forward velocity v in the heading direction

and ω is the angular velocity. The model dynamics is given by the following di�erential

equations:

ẋ = v cosϕ, (5.1a)

ẏ = v sinϕ, (5.1b)

ϕ̇ = ω. (5.1c)

Model state variables can be compactly written in state vector x(t) = [x(t), y(t), φ(t)]T

and model inputs can be written in the input vector u(t) = [v(t), ω(t)]T. Model outputs

are identical to state variables, thus y(t) = x(t).

5.1.2 Control Objectives

The control objective is tracking of prede�ned x-y reference trajectory. In practice, the

trajectory is provided by higher level planning algorithm that can use a world map or a

local measurements (e.g. a radar or a camera vision system) to plan feasible trajectory.

NMPC controller then ensures that this trajectory is tracked using available system inputs.

Double lane change maneuver [36] will be used to demonstrate the capabilities of the

NMPC Framework. The maneuver is used to test the stability of vehicles during emergency

45

46 5.1. VEHICLE STEERING CONTROL

Figure 5.1: Point mass vehicle model.

Figure 5.2: Marked track used during double lane change maneuver testing (Adapted
from [37]).

obstacle avoidance situations. The car has to go to the left lane and return back to the

original lane shortly after that. The track is usually marked using tra�c cones and the

goal is to go through the track without hitting any cone and without the vehicle rolling

over. Exact dimensions of the test track are shown in Figure 5.2. The lane widths A, B

and C depend on the vehicle width. A margin of half the vehicle width around the cones

was set. The example planned trajectory of vehicle center is shown in green color. Note

that the prede�ned x-y trajectory also determines velocity at each time step.

5.1.3 Framework Con�guration

The framework is con�gured in the same way as described in sections starting from Sec-

tion 4.5. The same problem has been used as a demonstration example. For further

details about controller tuning and corresponding framework settings please refer to the

above mentioned sections.

5.1.4 Simulation Results

Planar x-y trajectory resulting form the controller simulation is shown in Figure 5.3. End

of maneuver is at 61 metres and 3.08 s, it is highlighted by black dashed vertical line. It can

CHAPTER 5. APPLICATION EXAMPLES 47

x (m)
0 10 20 30 40 50 60 70 80

y
(m

)

0

1

2

3

4

5

6
x-y trajectory

Reference
Value

Figure 5.3: x-y trajectory for double lane change maneuver.

be seen that the vehicle is able to track the prede�ned reference trajectory. Discrepancies

can be seen in the sharp corners of the trajectory at 12 m, 25.5 m, 36.5 m and 59 m of

longitudinal distance. This is due to limited angular velocity ω. With given speed, this

also restricts vehicle turning radius.

The individual components of the trajectory, i.e. x and y coordinates are plotted

separately in Figure 5.4. It can be seen that the y trajectory violates soft limits. This

caused by the con�icting goals of tracking the reference signal and not violating soft limits.

Due to the weighting used, the controller rather slightly violates the soft limit at 1.8 s and

tracks the reference signal more tightly between 1 and 2 s. Otherwise, it would have to

start turning earlier, departing from the reference even further at the time. This behavior

can be in�uenced by controller tuning. More emphasis could be put on the soft limits if

desired using penalty matrices G_min and G_max respectively.

Heading angle and input signals are plotted in Figure 5.5. Input constraints are shown

in red coloring. Note that these constraints are implemented as hard constraints and hence

they cannot be violated at all (compare with soft limits on y coordinate).

5.2 Combustion Engine Air Path Control

The second example shows control of diesel engine air path. Realistic con�guration of

control problem similar to [38] is used to show the capabilities of the framework. The

referenced paper mainly deals with control of intake manifold pressure surge during heavy

transient operation. This is simulated by a tip-in maneuver. In this example, similar

problem will be handled. However, di�erent type of engine is used and so the issue solved

by the original paper is not very distinct.

Internal combustion engine control became a challenging control problem. Since the

48 5.2. COMBUSTION ENGINE AIR PATH CONTROL

0 0.5 1 1.5 2 2.5 3 3.5 4

x
(m

)

0

20

40

60

80
x coordinate

Value
Reference

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

y
(m

)

0

2

4

6
y coordinate

Value
Reference

Figure 5.4: x and y trajectories for double lane change maneuver.

0 0.5 1 1.5 2 2.5 3 3.5 4

φ
 (

ra
d)

-0.5

0

0.5
Heading angle

Value

0 0.5 1 1.5 2 2.5 3 3.5 4

ω
 (

ra
d.

s-1
)

-2

0

2
Angular velocity - Steering

Value
Limits (hard)

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

v
(m

.s
-1

)

15

20

25

Velocity

Value
Limits (hard)

Figure 5.5: Heading angle φ and acuators during double lane change maneuver.

CHAPTER 5. APPLICATION EXAMPLES 49

Figure 5.6: Schematic drawing of engine layout.

requirements on fuel economy and emissions are tighter these days, engines become more

and more complex. There are various actuators that can be used and there is also a

number of controlled quantities. Complicated multivariable interactions are present. The

phenomena taking place in the engine are nonlinear and so the use of a nonlinear MPC

based control strategy is very attractive.

It this section, we describe control of compression-ignition (diesel) engine air-path with

realistic control objectives. Detailed discussion of internal combustion engine technology

can be found e.g. in [39]. First, air-path system of a heavy duty diesel engine is described,

then a simpli�ed model based on �rst principle modelling is shown. Finally, control problem

is speci�ed and a simulation is carried out.

5.2.1 System Description and Model Derivation

Consider an internal combustion engine depicted in Figure 5.6. The layout given there is

quite typical these day for gasoline and diesel engines.

There is a turbocharger and exhaust gas recirculation system (EGR). Downstream the

turbo compressor, there is a charge air cooler. Its purpose is to cool down the air that got

warm when compressed.

After the charge air cooler, there is a throttle valve. It is used to lower the intake

manifold pressure when necessary, for example when the throttle pedal is suddenly released.

However, the throttle valve remains wide open most of the time since its closing leads to

unwanted pumping losses.

On the EGR path, there is another cooler. The EGR cooler is meant to cool the exhaust

gas that �ows back to the intake manifold. The purpose of EGR is to increase the heat

50 5.2. COMBUSTION ENGINE AIR PATH CONTROL

capacity of intake air by mixing it with cooled exhaust gas. The heat capacity is important

because it helps reduce overall temperature in the cylinders after the fuel mixture is burnt.

The temperature decrease helps reduce the amount of nitrogen oxides (NOx) emissions.

On the exhaust piping, there is so called wastegate. Wastegate bypasses the turbine

and there is a valve on it which can be used to regulate the �ow through the turbine and

hence the turbo speed. When open, it can therefore prevent turbo overspeed and help

heat-up exhaust gas aftertreatment system.

5.2.2 Control Oriented Model

The physics based models are reasonably precise, they allow parameter identi�cation from

measurement data but they are often di�cult to simulate. This is due to the fact that

the models may be sti�. In some parts of the state space, the model exhibits very fast

dynamics compared to the rest of the state space. During the numerical simulation, this

forces the ODE solver to reduce the step signi�cantly which slows the simulation down.

In the example, a simpli�ed approximate model will be used. The idea is to replace

the fast dynamic parts of the physics based model (pressure and temperature equations)

by algebraic equations. These equations can be solved on a grid and then a multivariable

polynomial function can be �t to the solution. The same type of model was used for

Kalman �lter design in [40]. As a result of simpli�cation, the turbo speed nT is the only

di�erential state of the model and the remaining output variables y are expressed as a

function of nT and inputs u only:

ṅT = P (nT ,u) ,

y = Q(nT ,u) .
(5.2)

The advantage is that the right hand side of the state equation is a polynomial function

P . The output function Q is polynomial as well. They can be evaluated in a very fast

manner which is important for online simulation. Furthermore, the Jacobian of these

functions is a lower degree polynomial as well and it can be computed analytically. Both

of these properties are very favorable to nonlinear predictive control.

Actuators

Actuators that are used to control the system are as follows.

• Wastegate valve - Wastegate valve is located at the bypass of turbine. Its purpose

is to control the turbo speed. It can release the pressure from the exhaust manifold

and hence make the turbo slow down. (% open)

• EGR valve - EGR valve opens and closes the recirculation channel. This can be used

to regulate the amount of exhaust gas entering the intake and to control the pressure

di�erence between the intake and exhaust manifolds. (% open)

• Throttle valve - Throttle valve can restrict the intake of fresh air from the compressor

to the engine. If it is closed down, the amount of fresh air entering the intake drops

CHAPTER 5. APPLICATION EXAMPLES 51

and so does the intake manifold pressure. If the engine load abruptly drops, the

back-pressure drops as well. The compressor pushes more air into the engine while

the exhaust gas �ow through EGR may stop due to the lack of back-pressure. As a

result, EGR ratio would drop. (% open)

External Inputs

The inputs a�ecting the system are also engine speed given and injection quantity. These

are regarded as external inputs because they are not a�ected by the actuators.

• Engine speed � Number of engine revolutions per minute. (RPM)

• Injection quantity � The amount of diesel fuel injected into the cylinders. It is the

variable that has the most signi�cant e�ect on engine torque and it is used for load

control. (mg/stroke)

Controlled Variables

There are basically three distinct requirements in the control of air-path.

• Intake manifold pressure - Su�cient back-pressure enables the EGR to work. If there

was no back-pressure, there would be no �ow of exhaust gas through EGR system

to the intake manifold. On the other hand, high back-pressure increases pumping

losses, reducing mechanical e�ciency of the engine. (kPa)

• EGR ratio - It is important to keep EGR ratio at certain level, because it helps keep

the NOx emission at low levels. If the ratio of exhaust gas to the fresh air was out of

prescribed range, the NOx formation during high temperature is much higher. (%)

• Air-fuel equivalence ratio λ - λ is of great importance to the quality of combustion.

It describes the richness of fuel-air mixture and it is expressed using stoichiometric

value of fuel. If lambda falls below 1, the mixture is too rich and the fuel combustion

is imperfect. As a result, a part of fuel would leave the engine unburnt, negatively

in�uencing fuel e�ciency.

In diesel engines, the mixture is generally lean. Unlike gasoline engines, the lambda

need not be held close to stoichiometric value of the fuel. Instead, diesel engine work

in a wide range of lambda values. Anyway, a minimum limit on lambda is usually

imposed to prevent smoke formation for fuel mixture too rich. (unitless)

• Turbo speed - Turbocharger is highly stressed component of modern engine and it

has to be protected against overspeed. Mechanical damage and even destruction of

turbocharger can occur if the turbine spins too fast. It is therefore common practice

to restrict the angular velocity of turbine rotation by means of engine control strategy.

Either a wastegate valve or variable geometry turbine is used to control the speed of

rotation. (kRPM)

52 5.2. COMBUSTION ENGINE AIR PATH CONTROL

5.2.3 Experiment

The control strategy is evaluated using two maneuvers simulating sudden change of engine

load from almost idle to full power and back from full power to idle.

• Tip-in maneuver - With engaged gear, the vehicle accelerates from engine speed of

600 to 2 000RPM during 10 seconds. Injection quantity is very high due to high

torque demand during acceleration.

• Deceleration maneuver - Engine running under full load with 2 000RPM slows down

to 1 000RPM during 15 seconds after the engine load suddenly drops and the injection

quantity is decreased.

In both cases, fuel injection quantity and engine speed are treated as external inputs.

They are not known to the controller over the whole prediction horizon. Instead, they are

approximated by constant trajectory during the prediction horizon.

Output reference trajectories for intake manifold pressure and EGR ratio are assumed

constant over the prediction horizon as well. They are obtained using interpolation in

steady state data tables for the speci�c engine speed and injection quantity trajectory.

The goal is to track these reference trajectories.

There are also the above mentioned limits. They can be treated as soft output con-

straints in NMPC Framework. Soft minimum limit on λ is imposed to the value of 1.2.

This is to prevent excessive smoke with too much fuel. Turbo speed maximum limit is

imposed to prevent turbo overspeeding. The limit value is set to 102 000RPM.

As there are three actuators in the control problem and only two output reference

tracking variables, we add input reference tracking for the actuators. The references are set

to preferred actuator positions. The throttle should be kept wide open and the wastegate

valve be closed. This makes the problem well posed by removing extra actuator degrees of

freedom. Note that weighting of the wastegate reference tracking is very small as it may

compromise o�set-free tracking of output references.

5.2.4 Framework Con�guration

Model variables are de�ned in the order given in Table 5.1. Manipulated variables and

known disturbances (external inputs) are distinguished using index vectors with their re-

spective order. Tracked or constrained variables are selected using the order of variables as

well. Due to numerical properties of the model, some variables are represented in a modi-

�ed way. For example, instead of λ, scaled reciprocal 100/λ is used in the model. Similarly,

EGR ratio is scaled to its value given as a percentage, 100·EGR ratio. Turbo speed is rep-

resented in a thousands of RPM order. On the other hand, the three manipulated variables

are scaled to 0�1 range.

The NMPC controller is designed in the following way. Prediction and control horizon

are set to 2 seconds. This is reasonably long considering the dynamics of the engine. Con-

troller discretization period is set to 0.1 s. This corresponds to 20 samples. The Jacobians

of model equations are given analytically using partial derivatives of the multivariable

CHAPTER 5. APPLICATION EXAMPLES 53

Table 5.1: Model variables and Matlab vector order.

Name Matlab code
States 0.001·Turbo speed x(1)

Inputs EGR valve u(1)

Wastegate u(2)

Throttle u(3)

Start of injection u(4)

RPM u(5)

Injection quantity u(6)

Outputs 0.001·Turbo speed y(1)

100/λ y(2)

Intake manifold pressure y(3)

100·EGR ratio y(4)

polynomial functions P and Q. Manipulated variables and known disturbances are de�ned

using the order of the variables in the model by mv = [1;2;3] and dv = [4;5;6].

Cost function is selected so that the control objectives speci�ed above are met. Control

increment penalization (3.5) is used for the manipulated variables. Note that this penalty

matrix should be positive de�nite so that the optimization problem has unique minimizer.

R_du = kron(eye(np),diag([1,1,10]));

Output reference tracking is active for intake manifold pressure and EGR ratio. There-

fore, model outputs number 3 and 4 are selected. Corresponding cost function term is

(3.2) with equal weighting for both outputs. Actual reference signals are passed to the

framework just during the simulation.

y_tr = [3;4];

Q_r = kron(eye(np),diag([10,10]));

Input reference tracking (3.6) is turned on for wastegate and throttle inputs with index

2 and 3 respectively. There is higher penalization for throttle leaving wide open position.

The reference positions are set to 1% for wastegate and 99% for throttle and they are

passed to the framework during the simulation.

u_tr = [2;3];

R_r = kron(eye(np),diag([1,100]));

Upper and lower limits for all manipulated variables are set to u_lb = [0.01;0.01;0.01]

and u_ub = [0.99;0.99;0.99]. Note that the manipulated variables are scaled to 0�1

range in the model representation. Zero and 100% values are avoided to prevent possible

numerical issues.

Soft output constraints are de�ned for λ and turbo speed. Maximum limit is de�ned

for turbo speed to 102 kRPM. Minimum limit for λ at 1.2 translates to maximum limit

for 100/λ at a value of 100/1.2. Penalty weighting matrix for the soft limits are set with

more emphasis on 100/λ.

54 5.2. COMBUSTION ENGINE AIR PATH CONTROL

y_max = [1;2];

y_max_lim = [102;100/1.2];

G_max = diag([10,1000]);

The sensitivity matrix computation method is set to LTV approximation (see Section

2.5.2), i.e. the model is linearized and discretized at each time step of the prediction

horizon. The SQP is set up to run �ve iterations everytime and no premature stopping

based on update of the input trajectory is done. By inspection of the SQP iterates and

the �nal quality of control, it was concluded that these setting are su�cient.

5.2.5 Simulation Results

The results of closed loop simulation with NMPC controller designed above are shown in

Figures 5.7�5.10. There are several interesting moments present in the simulation. The

observations are described below.

Tip-in Maneuver

Simulation results for tip-in maneuver are plotted in Figures 5.7 and 5.8. The former one

shows controlled variables. Green line designates reference trajectories. Red line shows

maximum and minimum limits.

EGR actuator works well in adjusting the EGR ratio to the desired value. The only

major �aw in tracking is between 5 and 10 second. This is due to the tuning of the

controller. The intake manifold pressure has higher priority and so the EGR valve is

closed in order to spin the turbo faster. If on the other hand the EGR valve was open

more, there would be less exhaust gas �owing to the turbine, the intake manifold pressure

would take longer to reach the desired value.

Wastegate is fully closed between 5 and 11 seconds. This is to maximize the amount

of energy spinning the turbo. It is then slightly open from 11 to 14 seconds. This stops

the intake manifold pressure from rising above the reference value.

The use of throttle to control intake manifold pressure is almost avoided. This is

mainly due to the high penalty for leaving fully open position. If the penalty was lower,

the controller would use both wastegate opening and throttle closing to relieve the intake

manifold pressure after 11 seconds.

λ violates the soft minimum limit between 6 and 8 seconds. This cannot be avoided with

current control con�guration. As fuel injection quantity is �xed, the only way to increase λ

is via increased intake air �ow. For given values, no more air�ow can be achieved as all the

actuators are already on the limits providing maximum air�ow possible. This may result

in excessive smoke or even mis�res and so actual engines have a device to limit injection

quantity during such transient conditions based on lambda value. The injection quantity

is eventually cut down so that λ is kept above the limit even though the drivability su�ers.

CHAPTER 5. APPLICATION EXAMPLES 55

0 2 4 6 8 10 12 14 16 18 20

n
T
 (

k
rp

m
)

0

100

200
Turbo speed

Value

Max. limit

0 2 4 6 8 10 12 14 16 18 20

M
A

P
 (

k
P

a
)

100

200

300
Intake manifold pressure

Value

Reference

0 2 4 6 8 10 12 14 16 18 20

E
G

R
 r

a
ti
o
 (

%
)

0

20

40
EGR ratio

Value

Reference

Time (s)

0 2 4 6 8 10 12 14 16 18 20

λ
 (

-)

0

5

10
λ

Value

Min. limit

Figure 5.7: Controlled variable trajectories during the tip-in experiment.

0 2 4 6 8 10 12 14 16 18 20

n
E

 (
rp

m
)

0

1000

2000
Engine speed

Value

0 2 4 6 8 10 12 14 16 18 20

IQ
 (

m
g

/s
tr

o
k
e

)

0

200

400
Injection quantity

Value

0 2 4 6 8 10 12 14 16 18 20

E
G

R
 (

%
 o

p
e

n
)

0

50

100
EGR valve

Value

0 2 4 6 8 10 12 14 16 18 20W
a

s
te

g
a

te
 (

%
 o

p
e

n
)

0

50

100
Wastegate

Value

Time (s)

0 2 4 6 8 10 12 14 16 18 20

T
h

ro
tt

le
 (

%
 o

p
e

n
)

0

50

100
Throttle

Value

Figure 5.8: Input variable trajectories during the tip-in experiment.

56 5.2. COMBUSTION ENGINE AIR PATH CONTROL

Deceleration Maneuver

During the deceleration maneuver, the injection quantity is cut down at 5 seconds. The

engine power consequently drops and the vehicle starts to coast-down during the next 15

seconds. Simulation results are plotted in Figures 5.9 and 5.10.

Intake manifold pressure tracks the decreasing reference signal almost perfectly. As the

transition is relatively slow, actuators are almost steady until 14 seconds.

EGR ratio is controlled mainly by EGR valve opening. Around 14 seconds, wastegate

is partially opened a throttle is slightly closed. This helps keep the pressure di�erence

between intake and exhaust manifold high enough to provide required EGR �ow.

The minimum limit for λ is not violated during the simulation. Up to 5 seconds it

is almost constant due to �xed injection quantity and steady intake manifold pressure.

After the 5 seconds it suddenly rises with the decrease in injection quantity. Afterwards it

steadily decreases with decreasing intake manifold pressure and constant injection quantity

of 50 mg/stroke.

CHAPTER 5. APPLICATION EXAMPLES 57

0 5 10 15 20 25

n
T
 (

k
rp

m
)

0

100

200
Turbo speed

Value

Max. limit

0 5 10 15 20 25

M
A

P
 (

k
P

a
)

100

200

300
Intake manifold pressure

Value

Reference

0 5 10 15 20 25

E
G

R
 r

a
ti
o
 (

%
)

0

20

40
EGR ratio

Value

Reference

Time (s)

0 5 10 15 20 25

λ
 (

-)

0

5

10
λ

Value

Min. limit

Figure 5.9: Controlled variable trajectories during the deceleration experiment.

0 5 10 15 20 25

n
E

 (
rp

m
)

1000

1500

2000
Engine speed

Value

0 5 10 15 20 25

IQ
 (

m
g

/s
tr

o
k
e

)

0

100

200
Injection quantity

Value

0 5 10 15 20 25

E
G

R
 (

%
 o

p
e

n
)

0

50

100
EGR valve

Value

0 5 10 15 20 25W
a

s
te

g
a

te
 (

%
 o

p
e

n
)

0

50

100
Wastegate

Value

Time (s)

0 5 10 15 20 25

T
h

ro
tt

le
 (

%
 o

p
e

n
)

0

50

100
Throttle

Value

Figure 5.10: Input variable trajectories during the deceleration experiment.

58 5.2. COMBUSTION ENGINE AIR PATH CONTROL

Chapter 6

Conclusion

We presented an implementation of modular computer framework for the design and testing

of nonlinear model based predictive controllers. In the �rst three chapters of the thesis

a theoretical overview of existing approaches to nonlinear MPC was provided. Then,

single shooting discretization method together with sequential quadratic programming was

implemented as a Matlab package. The code is separated into logical blocks and the

work�ow respects the process that is commonly used in controller design. The framework

alongside with extensive documentation �ts the intended purpose very well.

This was demonstrated in two application examples. The �rst example demonstrated

the use of nonlinear MPC for planar vehicle steering control. More speci�cally, tracking of

a prede�ned trajectory given by Cartesian coordinates was outlined.

The second example is an application of nonlinear MPC to the problem of diesel engine

air path control. Typical control problem setup was selected and the goals described. Then,

a NMPC controller was designed using the framework. It was shown, that if a nonlinear

model of the process is available, the design and implementation of nonlinear MPC using

the framework is a matter of sensible control problem speci�cation.

Apart from the presented examples, several projects in the area of automotive controls

were successfully solved. Simulation based evaluation of NMPC and comparison with dif-

ferent approaches was carried out. The projects include for example thermal management

of a combustion engine or an advanced cruise control. The framework was also used to

generate QP instances for a performance comparison of several QP solvers. This proved

the framework to be working and meaningful.

6.1 Future Work

During the use of the implemented framework, several improvements and extensions were

proposed. Di�erent handling of soft constraints, time varying limits or more �exible set-

tings of cost function are on schedule. Support of a proprietary QP solver or implementa-

tion of selected program parts in C language are also considered. Thanks to the modularity

of the framework, all the above mentioned changes can be implemented easily.

A major extension, the use of Simulink models was suggested as well. Simulink pro-

vides a mean of evaluating the continuous time model di�erential equation as well as the

59

60 6.1. FUTURE WORK

output function. Using this interface, Simulink models could be used in the implemented

framework directly in the controller design. This feature would signi�cantly broaden the

scope of problems that could be solved using the framework. Advanced nonlinear models

are often prepared in Simulink environment or other domain speci�c tools. Having them

supported would be a great bene�t.

Bibliography

[1] J. A. Rossiter, Model-based predicitve control: a practical approach. CRC Press LLC,

2003.

[2] F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control. Birkhäuser, �rst ed.,

2000.

[3] D. Mayne and H. Michalska, �Receding horizon control of nonlinear systems,� IEEE

Transactions on Automatic Control, vol. 35, no. 7, pp. 814 � 824, 1990.

[4] F. Allgöwer, R. Findeisen, and Z. K. Nagy, �Nonlinear model predictive control: From

theory to application,� Journal of the Chinese Institute of Chemical Engineers, vol. 35,

no. 3, pp. 299�315, 2004.

[5] S. J. Qin and T. Badgwell, �An overview of nonlinear model predictive control appli-

cations,� Nonlinear model predictive control, vol. 26, pp. 369�392, 2000.

[6] M. Kano and M. Ogawa, �The state of the art in advanced chemical process control in

Japan,� IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 7, no. PART 1, pp. 10�

25, 2009.

[7] W. B. Bequette, �Nonlinear control of chemical processes: A review,� Industrial &

Engineering Chemistry Research, vol. 30, pp. 1391�1413, July 1991.

[8] H. Chen, A. Kremling, and F. Allgöwer, �Nonlinear Predictive Control of a Benchmark

CSTR.,� in Proc. 3rd European Control Conference ECC'95, (Rome, Italy), pp. 3247�

3252, January 1995.

[9] A. S. Brásio, A. Romanenko, J. Leal, L. O. Santos, and N. C. Fernandes, �Nonlin-

ear model predictive control of biodiesel production via transesteri�cation of used

vegetable oils,� Journal of Process Control, vol. 23, pp. 1471�1479, nov 2013.

[10] S. M. Erlien, J. Funke, and J. C. Gerdes, �Incorporating non-linear tire dynamics into

a convex approach to shared steering control,� Proceedings of the American Control

Conference, pp. 3468�3473, 2014.

[11] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, �A Linear Time Vary-

ing Model Predictive Control Approach to the Integrated Vehicle Dynamics Control

Problem in Autonomous Systems,� in Proceedings of the 46th IEEE Conference on

Decision and Control, (New Orleans), pp. 2980�2985, 2007.

61

62 BIBLIOGRAPHY

[12] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms.

Communications and Control Engineering, Springer, 2011.

[13] C. Ho�mann, C. Kirches, A. Potschka, S. Sager, L. Wirsching, M. Diehl, D. B.

Leineweber, and A. A. S. Schäfer, �MUSCOD II User Manual,� 2011. Release 6.0.

[14] B. Houska, H. J. Ferreau, M. Vukov, and R. Quirynen.

[15] R. Amrit and J. B. Rawlings, �Nonlinear Model Predictive Control Tools (NMPC

Tools),� pp. 1�12, 2008.

[16] E. Harati, Nonlinear Model Predictive Controller Toolbox. Master thesis, Chalmers

University of Technology, 2011.

[17] H. J. Ferreau, P. Ortner, P. Langthaler, L. D. Re, and M. Diehl, �Predictive control

of a real-world Diesel engine using an extended online active set strategy,� Annual

Reviews in Control, vol. 31, pp. 293�301, Jan. 2007.

[18] Y. Wang and S. Boyd, �Fast Model Predictive Control Using Online Optimization,�

IEEE Transactions on Control Systems Technology, vol. 18, pp. 267�278, Mar. 2010.

[19] M. Diehl, Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis,

Ruprecht-Karls-Universität Heidelberg, 2001.

[20] H. G. Bock, M. Diehl, C. Kirches, K. Mombaur, and S. Sager, �Optimierung bei

gewöhnlichen Di�erentialgleichungen,� 2014.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

seventh ed., 2004.

[22] A. G. Wills and W. P. Heath, �Interior point algorithms for nonlinear model pre-

dictive control,� in Assessment and Future Directions of Nonlinear Model Predictive

Control (R. Findeisen, F. Allgöwer, and L. T. Biegler, eds.), (New York), pp. 207�216,

Springer, 2007.

[23] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer, second ed.,

2006.

[24] D. P. Bertsekas, Convex Optimization Algorithms. Nashua: Athena Scienti�c, �rst ed.,

2015.

[25] M. Y. El Ghoumari, H. J. Tantau, and J. Serrano, �Non-linear constrained MPC:

Real-time implementation of greenhouse air temperature control,� Computers and

Electronics in Agriculture, vol. 49, pp. 345�356, 2005.

[26] K. Ogata, Modern control engineering. New Jersey: Prentice-Hall, fourth ed., 2002.

[27] J. Peka°, Robust Model Predictive Control. PhD thesis, Czech Technical University,

2005.

BIBLIOGRAPHY 63

[28] R. Serban and A. C. Hindmarsh, �CVODES: the Sensitivity-Enabled ODE Solver in

SUNDIALS,� ACM Transactions on Mathematical Software, vol. 5, no. September,

pp. 1�18, 2003.

[29] J. J. Moré and G. Toraldo, �Algorithms for bound constrained quadratic programming

problems,� Numer. Math., vol. 55, pp. 377�400, July 1989.

[30] R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari, �Move blocking strategies

in receding horizon control,� 2004 43rd IEEE Conference on Decision and Control

(CDC) (IEEE Cat. No.04CH37601), vol. 0, no. x, pp. 2023�2028 Vol.2, 2004.

[31] V. Havlena and J. �techa, Moderní teorie °ízení. 1999.

[32] E. A. Wan and R. Van Der Merwe, �The Unscented Kalman Filter for Nonlinear

Estimation,� in Adaptive Systems for Signal Processing, Communications, and Control

Symposium 2000. AS-SPCC. The IEEE 2000, pp. 153�158, 2002.

[33] U. Ozguner, T. Acarman, and K. Redmill, Autonomous Ground Vehicles. Boston:

Artech House, 2011.

[34] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, �qpOASES: A para-

metric active-set algorithm for quadratic programming,� Mathematical Programming

Computation, vol. 6, no. 4, pp. 327�363, 2014.

[35] Mathworks, Display Custom Documentation. The Mathworks, Inc., Natick, Mas-

sachusetts USA, 12 2015. Retrieved on 2015-11-29.

[36] ISO, �Passenger cars�Test track for a severe lane-change manoeuvre�Part 1: Dou-

ble lane-change,� ISO 3888-1:1999, International Organization for Standardization,

Geneva, Switzerland, 1999.

[37] VEHICO, ISO Double Lane Change Test. VEHICO, GmbH., Braunschweig, Germany,

10 2015. Retrieved on 2015-10-26.

[38] D. Cieslar, P. Dickinson, K. Glover, and N. Collings, �Closed-loop control of WAVE

models for assessing boost assist options,� 2014.

[39] J. B. Heywood, Internal Combustion Engine Fundementals. McGraw-Hill series in

mechanical engineering, McGraw-Hill, 1988.

[40] D. Pachner and J. Beran, �Comparison of Sensor Sets for Real-Time EGR Flow Esti-

mation,� in Paper to be presented at SAE 2016 World Congress & Exhibition. Society

of Automotive Engineers., (Detroit, Michigan, USA), April 2016.

64 BIBLIOGRAPHY

Appendix A

NMPC Framework Classes

A.1 Model Class

Properties

Name Explanation Type

n Number of model states integer

m Number of model inputs integer

p Number of model outputs integer

Ts Sampling time used during model discretization (in seconds) �oat

mv Index vector of model inputs treated as manipulated variables column vector

dv Index vector of model inputs treated as external inputs or

known disturbance

column vector

f Model state ODE right hand side (2.2) function

dfdx Jacobian of f w.r.t. state vector function

dfdu Jacobian of f w.r.t. input vector function

g Model output equation right hand side (2.3) function

dgdx Jacobian of output function g w.r.t. state vector function

dgdu Jacobian of output function g w.r.t input vector function

Methods

Name Explanation

model Constructor

verify Formal veri�cation of model consistency

fd_jacobian Helper function to calculate Jacobian matrix of f and/or g using forward

�nite di�erence scheme

A.2 MPC Setup Class

Properties

65

66 A.2. MPC SETUP CLASS

Name Explanation Type

np Prediction horizon as a number of sampling times integer

nc Control horizon as a number of blocks integer

blocks Speci�cation of control moves distribution. Each entry

speci�es the length of a control block. The number of

entries must equal nc. Default: [1,1,1,...,np-nc+1]

column vector

u_lb Manipulated variables lower bounds column vector

u_ub Manipulated variables upper bounds column vector

R Control magnitude penalization matrix (3.3) matrix

R_du Control increment penalization matrix (3.5) matrix

y_tr Index vector of outputs intended for reference track-

ing. Output reference trajectory is passed as an input

argument of nmpc.control function.

column vector

Q_r Output reference tracking penalization matrix (3.2) matrix

u_tr Index vector of inputs intended for reference track-

ing. Only inputs de�ned as manipulated variables

(model.mv) can be used. Input reference trajectory

is passed as an input argument of nmpc.control func-

tion.

column vector

R_r Input reference tracking penalization matrix (3.6) matrix

preview Use of reference preview information. 1 (default): ON,

0: OFF

boolean

y_min Index vector of output soft minimum limits column vector

y_min_lim Output soft minimium limit values column vector

G_min Output soft minimum limit penalization matrix matrix

y_max Index vector of output soft maximum limits column vector

y_max_lim Output soft maximum limit values column vector

G_max Output soft maximum limit penalization matrix matrix

sens_type Sensitivity calculation method.

Continuous time models: lti_mpc (Section 2.5.1),

ltv_mpc (Section 2.5.2), analytic (Section 2.5.3);

Discrete time models: lti_discrete, ltv_discrete

string

sqp_max_iter Maximum number of SQP iterations. (default: 5)

(Section 4.7.5)

integer

sqp_u_update Threshold on u update to stop SQP. (default: 0) (see

(4.2) in Section 4.7.5)

�oat

qp_solver QP solver selection: quadprog, qpoases string

verbose Amount of information printed to command window

during SQP iterations. 2 (default): Detailed iteration

info, 1: Short summary, 0: Quiet

integer

APPENDIX A. NMPC FRAMEWORK CLASSES 67

Methods

Name Explanation

mpc_setup Class constructor

verify Formal veri�cation of mpc_setup consistency

A.3 NMPC Class

Properties

Name Explanation Type

model Model data - model class instance model

mpc MPC algorithm settings - mpc_setup class instance mpc_setup

M Move blocking matrix matrix

Methods

Name Explanation

build_prediction Creates prediction matrices for the case of LTI or LTV sen-

sitivity approximation (Sections 2.4, 2.5)

control Main computation method

move_blocking Move blocking matrix construction

nmpc Class constructor

optimizer Wrapper function for QP solver interfacing

qp_add_constraints Adds hard constraints to the problem (Section 3.2.1)

qp_build Builds quadratic cost function based on mpc_setup (Section

3.1)

qp_soft_limits Adds soft constraints to the problem (Section 3.2.2)

sensitivity Wrapper function for sensitivity matrix calculation methods

(Section 2.5)

sensitivity_analytic Analytical sensitivity computation function

sensitivity_approx Approximate sensitivity computation function (LTI and

LTV)

sensitivity_discrete Sensitivity computation function for discrete time models

(LTI and LTV)

simulator Wrapper function for continuous time model simulator rou-

tines

simulator_discrete Wrapper function for discrete time model simulator

68 A.3. NMPC CLASS

Appendix B

Matlab Documentation Screenshots

x

Figure B.1: Main screen of Matlab help browser showing integration of NMPC Framework
documentation (highlighted red).

69

70

Figure B.2: NMPC Framework documentation - Start screen.

Figure B.3: NMPC Framework documentation - Demos section.

APPENDIX B. MATLAB DOCUMENTATION SCREENSHOTS 71

Figure B.4: Planar vehicle steering control demo example - Start screen.

72

Figure B.5: Planar vehicle steering control demo example - Model settings.

APPENDIX B. MATLAB DOCUMENTATION SCREENSHOTS 73

Figure B.6: Planar vehicle steering control demo example - MPC settings.

74

Figure B.7: Planar vehicle steering control demo example - Simulation script.

	Introduction
	Literature Summary
	Existing NMPC Software
	Thesis Outline

	Nonlinear MPC
	Linear vs. Nonlinear Predictive Control
	NMPC Formulation
	Prediction Model
	Optimal Control Problem

	OCP as a Numerical Optimization Problem
	Single Shooting
	Multiple Shooting
	Finite Dimensional Problem

	Solution of Transformed Optimization Problem
	Sequential Quadratic Programming
	Local QP Subproblem
	Steplength Selection

	Sensitivity Computation
	On-line Model Linearization
	Linearization Along Simulated Trajectory
	Analytical Calculation of Sensitivity

	Construction of Local QP

	Practical Considerations
	Cost Function Terms
	Reference Trajectory Tracking
	Actuator Position Penalization
	Actuator Movement Penalization
	Actuator Reference Tracking

	Constraints
	Hard Constraints
	Soft Constraints

	Move Blocking
	State Estimation
	Extended Kalman Filter
	Unscented Kalman Filter

	NMPC Framework
	Control Design Process
	Implemented Algorithm and Features
	Workflow Diagram

	Programming Environment
	Code Organization
	Guiding Example
	Model Definition
	Manipulated Variables and External Inputs
	State Equation
	Output Equation
	Jacobian Approximation
	Sampling Period
	Model Formal Verification

	NMPC Problem Definition
	Receding Horizon Settings
	Cost Function Terms
	Control Limits
	Output Soft Limits
	NMPC Algorithm Setup
	Formal Verification of MPC Settings

	Controller Simulation
	Control Function

	Framework Installation
	Built-in Help and Documentation in Matlab

	Application Examples
	Vehicle Steering Control
	System Description and Model Derivation
	Control Objectives
	Framework Configuration
	Simulation Results

	Combustion Engine Air Path Control
	System Description and Model Derivation
	Control Oriented Model
	Experiment
	Framework Configuration
	Simulation Results

	Conclusion
	Future Work

	Bibliography
	Appendices
	NMPC Framework Classes
	Model Class
	MPC Setup Class
	NMPC Class

	Matlab Documentation Screenshots

