CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF ELECTRICAL ENGINEERING

BACHELOR THESIS

Jir1 Neliba

Forming of modular robot organisms from a
swarm of robotic modules

Department of Control Engineering

Supervisor: Ing. Vojtéch Vonasek

Prague, 2014

Podékovani

Na tomto misté bych rad podékoval predevsim vedoucimu bakalarské
prace Ing. Vojtéchu Vonaskovi, za jeho podnétné pripominky a naméty,
které mi velmi pomohly pti zpracovani jednotlivych ¢ésti prace a diky nimz
jsem vytvoril ucelenéjsi dokument a vyvaroval se mnoha chyb pfi jeho tvorbeé.

Déle dékuji vSem kamardadum a rodiné, ktefi mé pii praci podporovali.

Prohlaseni autora prace

Prohlasuji, ze jsem ptedlozenou praci vypracoval samostané a ze jsem
uvedl veskeré pouzité informacni zdroje v souladu s Metodickym pokynem
o dodrzovani etickych principu pii pripravé vysokoskolskych zavéreénych
praci.

V Praze dne
Podpis autora prace

Abstract

Tato praci se zabyva tématem formovani modularniho organ-
ismu z hejna samostatnych robotu. V této tloze je cilem pospojo-
vat modulérni roboty do predem znamého robotického organismu.
Cil prace je implementovat state-of-the-art algoritmus, zalozeny
na nahodnosti, a A star algoritmus, ktery je zalozeny na in-
formovaném prohledavani prostoru, pro formovani organismu v
nasem naprogramovanem simulatoru v jazyku Java. Déle je cielm
prace tyto algoritmy porovnat.

In this work we’re focusing on forming of modular robot or-
ganisms from a swarm of robotic modules. In this task is the goal
to connect modular robots into pre-define robotics organism. The
goal of this work is implement state-of-the-art algorithm, based
on randomness, called Distributed Autonomous Morphogenesis,
and A star algorithm, which is based on informed search of the
space, for forming of organism in our programmed simulator with
help of language Java. Then the goal of this work is to compare
these both algorithms.

Contents

1 Introduction

1.1 Motivationo

1.2 Basics

1.3 Platforms
2 Theory

2.1 Deterministic search algorithms

2.2 Stochastic algorithm for organism building

3 Experiments

3.1 Distributed Autonomous Morphogenesis
3.1.1 Implementation
3.1.2 Pseudocode
3.2 AR
3.2.1 Implementation
3.22 Pseudocode
33 Results.
3.3.1 Distributed Autonomous Morphogenesis
332 A*
34 Conclusion

4 Conclusion

5 Appendix

5.1 Description of programs
51.1 DAM
5.1.2 A*

5.2 Heap

5.3 CD . . . e

1

Chapter 1

Introduction

1.1 Motivation

Forming of a robotic organism from a swarm of autonomous robots is
field of robotics and cybernetics, which can inspire from behaviour of e.g.
insect, fish, birds. For instance, when ants search for food, there is an anal-
ogy in robotics when robots want to find sources of energy [18]. Sources of
energy are randomly placed in the environment. It’s used pheromone-like
mechanism, due the other robots know, how much amount of energy is in
the map. Another example is cooperative stick pulling by insects (Martinoli,
1999). However, not all collective behaviours have parallels in nature, such
as coherent wireless networking(Nembrini et al., 2002). The advantage of
this behaviour is clear, to make faster some process and saves the energy of
an individual or to access thing, that one robot can’t achieve. By organism,
we mean a certain group of robot, which are connected to a common body
and can communicate with each other.

It’s the difference from swarm of robots, where they also can communi-
cate with each other but they aren’t physically connected, so they can move
autonomously in the environment. It exists a transition from a swarm to
an organism by which we will deal with in this work. Our algorithms for
that use are A star (A*), with heuristic modifications, and Distributed Au-
tonomous Morphogenesis (DAM) in a self-assembling robotic system [17],
which is based on certain finite states. And more specifically, we want to
compare the two algorithms by how effective they can achieve an given or-
ganism. We will describe more these two algorithms in the next section. We
use the term as Forming algorithms which contains all forming algorithms,
in our case A* and DAM. We can see example in Fig. 1.1. We use the term
Cluster in the case of informed algorithms, which means robots with we’re

Y

A

» _
¢ ¥ |] omno
ol : ¥ \ H

Swarm

Robotic organism

Figure 1.1: Process of forming an organism.

assembling the organism.

There are many different kinds of robots. We could divide them as aero,
aquatic or ground robots. As aero robots we can use for example quadro-
copters. As aquatic robots are using Tactically Expandable Maritime Plat-
form (TEMP). As ground robots there are for example SYMBRION robots,
rectangle robots. Here can be a combination of these robots in certain tasks
as for example quadrocopter and ground robots as SYMBRION, which com-
municate with each other to fulfil certain task, as changing shape of the
ground organism along the terrain. And there is the same analogy for com-
bination aquatic and aero robots.

There are other very interesting possibilities of robots, as for example
M-Blocks, which was developed in MIT and are work of student John Ro-
manishin [8]. We can see M-Blocks in Fig. 1.2. They have special abilities as
they can move in horizontal direction around organism above ground, thanks
to a magnet, which is placed in each module. The modules can even jump,
due to flywheel that spins at a maximum of 20,000 revolutions each minute.
Then they suddenly released this energy at one time a transfer this specific
kinetic energy to move or jump. The electro magnet can be on or off. This
all are robots that can be in some swarm and form an organism or just make
formation (in the air).

Swarm of robots can be used in various applications. For example, in
rescue operations, the task is to find victims after an earthquake or in other
similar situations. Although mobile robots are already used in these tasks,
they cannot visit all places due to their size. A swarm of robots can be more
flexible, as it can change its shape. For example, a modular robotic organism
in form of a lizard is useful for walking on a terrain, and it can reconfigure
to a snake to get into a tube or hole.

In military services for gathering information. They basically spread out,

Figure 1.3: CoSMO robots forming an organism.

go through the environment and map it out, so when the humans entering
the environment, they are already informed about the situation there [12].
They have to form organism for avoid or overcome obstacles as a wall, stairs

3

in building. In agriculture, the swarm of robots can take care of plants in a
greenhouse. They can supply the plant with water and also crop from the
plants [6]. They are communicating between themselves and helping each
other. In civil engineering such robots can be use to help with harder tasks.
For instance, for aqua robot, one robot finds the default position, connects
to it and starts to emit a signal to form an organism, which can be used as
a bridge for ground vehicles [14].

As you can see, there are many possibilities of use the swarm of robot
and form an organism from them. In our work, we consider modular robotic
platform CoSMO developed within EU project Symbrion/Replicator [9]. We
can see them in Fig. 1.3. The CoSMO robots provide 3D locomotion using a
powerful hinge and they can even move in 2D space using two screwdrivers.
The 2D locomotion drive allows them to form the robotic organisms in 2D
spaces. Forming on an robotic organism is necessary to allow the robots to
achieve places, that would not be accessible by single modules. For example,
to connect to a power plug mounted on a wall, a robotic organism is necessary.

Generally, the robots in swarm are not physically connected and they are
executing their own tasks, but they can communicate with each other. If
it’s needed, one robot in the swarm can emit a signal to start forming of
an organism. For the forming algorithms as DAM or A* are used and this
process take a time. The duration of this operation is dependent on the
complexity of the organism. After successful formulation to the organism,
the robots in the organism can transfer energy, communicate with each other
faster and can move only as a part of the organism. As the organism they
can overcome large obstacles and reached a desired task.

Our task is to form different organisms in 2D, because every organism,
event if they seems same, they can have different locomotion, in our case, in
3D and to form such an organism we have to connect all the robots. It’s used
2D space, because it’s much more difficult to form an organism in 3D space.
Our work utilizes a simulation of the robotic swarms. The simulations allow
to investigate a given problem much faster than conducting the experiments
with real robots. We can test the algorithm in virtual world if it’s actually
possible to run the given algorithm in real world. Virtual simulation is also
faster, enable to work with more robots, no maintenance needed and we can
experiment in otherwise with hardware dangerous situation.

The goal of our work is to implement the informed search algorithm A*
and stochastic DAM algorithm for formulation of an organism. Test them
and try to compare the result of both algorithms. The purpose is to gain
information and confirm an ideas about these two algorithms. By that we
will better know which of the use in the given situation.

4

1.2 Basics

At the beginning, we should describe what is initial and goal state of
the studied problem. The initial state are the positions of all robots, their
angles of turning and identity numbers. The goal state is when all robot
needed for desire organism are on their places in the organism. The robots
themselves can move, rotate and communicate all the time. Also they can
connect physically with each other and they can lift themselves up in the
organism. The goal of our algorithms is to form a predefined organism from
a given initial position.

Forming of robotic organisms from swarms can be achieved by two ap-
proaches. Omne approach works with static robots and before it makes a
movement, the algorithm plans all the movements leading to the formulation
of the desire organism. It’s called deterministic algorithm and this type of
algorithm is representing A* in our work. The second method works with
robots which are moving and they can already working on a task. In the
moment when a robot decides to form an organism, it has a plan, where it
wants to connect a robot. The plan isn’t distributed between other robots.
And the algorithm within the robot has to wait until the second robot ful-
fil a conditions, so the robot can connect it. The algorithm ends when the
plan of connection is done. This approach is stochastic algorithm and it is
represented by DAM in this work.

A* is a deterministic algorithm, based on a informed search of state-space.
That means that in A* all robots know how will the completed organism looks
like and have information about how far they are to complete this task. In
A* we call these robot Cluster. Every robot has its plan of moves, which they
have planned as the best possible path to the goal position. But this ”best”
path is strongly dependent on function that they are using to compute it.

In contrary, DAM is a stochastic algorithm. As you can see, it has ad-
vantage of that it isn’t dependent on any function and or it doesn’t compute
any data so we certainly save requirements on the hardware. But the DAM
algorithm can be slower then A* which depends on the initial conditions,
the number of robots and the desired shape.

1.3 Platforms

Robots usually consist of several building blocks with uniform docking
devices that allow transfer of forces, torques, electrical power and commu-
nication throughout the robot system [11]. Depending on the geometrical
arrangement of their modules, modular self-reconfigurable robot (MSR) sys-

5

tems are divided into two groups. Modules in a chain-type system are ar-
ranged in a string or tree topology. Examples are the CONRO [1], the Poly-
bot [10] and the Molecubes [16]. Lattice-type systems, such as the Atron [13]
or the Catom [3] robot consist of modules which are arranged in a regular
pattern, such as a cube or hexagonal grid. Then there are hybrid of these two
types [9]. Example of Hybrid architecture is Superbot [2] and M-Tran [4].
The advantage of hybrid architecture it’s able to complete different needs
and it is able of multitasking.

Modules can be mobile, meaning that each module is able to locomote
by its own without being connected to other modules. Such mobile MSRs
are for example the CEBOT [15], the Swarm-Bot [5], the Sam-Bot [7] and
Symbrion. Every of them is good for different tasks, as distance they can
travel or they can former really an long organism and so on. Our work is
based on CoSMO platforms. The platforms allows to move to all four sides
and it can turn, which is due to the two wheels, which are driven by a motor.
CoSMO robots can also communicate with each other and have possess much
more computational power than other MSR systems. In fact, this is their big
advantage above the other platforms we mentioned. The CoSMO module is
a part of the heterogeneous Symbricator platform [3], which consists of more
kinds of robots. CoSMO was designed to fulfil the role of building blocks for
the organism and to act as its Backbone. It consists of a powerful hinge and
has the ability to dock with every of its four sides to every side of every other
Symbricator robot [9]. Each robot is endowed with 8 proximity sensors, 8
docking alignment sensors and 4 channel local communications.

Problems with real world robots are often the hardware ones, which we
can hardly count with as error in hardware of robot or something can lock
wheels of robots, it very depends on terrain in which they move. In labo-
ratory environment with regular service we can decrease probability of this
unwanted failure. Environmental problems can be different. For example,
from strong electromagnetic fields, that can destroy communication. Com-
munication can be also influenced by big enough obstacles, or here can be
only dangerous zones for robots, or there may not be border for the arena
and robots have to keep a distance to communication. Outside condition,
mean weather, can be a big problem. At last hardware problem can be
constriction for instance in precision of docking or the distance they can
communicate with each other. With this problems of real world there would
be more states and of course whole process of an forming organism would
be longer. But the principle would be same as in virtual environment and
here is the point of this work. Because the better given algorithm will be
in virtual environment, the better performance can give in real world with
right treatment of problems we have written above.

Chapter 2

Theory

2.1 Deterministic search algorithms

We have mentioned already that forming of an organism can be achieved
using A*, so let take a closer look. The goal of A* is to create a plan to move
all robots from their initial positions to a desired organism. It’s always using
at least two lists, one is called Open and the second is called Closed. In open
list we have nodes, which we didn’t visit yet, but we can visit from node we
have already been. By nodes we mean states describing the organism. In
our case, the states contains positions of the robots in the environment and
their rotations.

Every edge has its value, which a robot has to pay for its usage. This
cost is called tentative cost and it can be constant or function, which depends
on our task and how we set the values/prices. If we have terrain which is
homogeneous, we can set this tentative function to a constant value. This
is common in laboratory conditions. If the terrain is diverse, the tentative
cost can be a function, which is variable with distance from the start, for
example linear function or it’s variable, which can be hardly described as a
function. Then we must find out price every edge/road. In practice is the
most common the last case. The tentative cost is in the most cases marked
as ¢g. For instance in practice one way to choose g dynamically is:

gd(n) = 1+a(g(n)—1). (2.1)

Where g=1. If « is 0, then we have constant function (terrain costs are
ignored), else if a is 1, we have tentative function of A*, which fully react on
the travelled distance. We can set o somewhere between 1 and 0.

The second part, from which is the main function of A* composed is a
heuristic function. Heuristic function is a function, that ranks our nodes in

7

START

L}
h=1.2 |

r h=05 || -

Figure 2.1: Example of problem forming an organism using informed algo-
rithm A*. In the graph are marked tentative values as ¢ and h are heuristic
values. It’s catch only part of the state space.

dependence on the distance from a goal. The distance can be computed by
an different approach. One approach is called Euclidean distance. Here is
the distance to the goal compute by Pythagoras formula, so the distance is
direct, meaning aerial distance. Another is Manhattan distance, which needs
a grid map. The grid map is a map where the robot can move in four basic
directions as up, down, right and left. It can be used in other maps, which
are not types of a grid map, but it can have negative impact on A* function
and it isn’t guaranteed the best possible path to the goal. In grid maps it
really gives the best paths and the heuristic distance is then a real distance
to the goal along given path. It’s marked in most by the letter h. We can
see such forming of an organism using A* in Fig. 2.1

Then we can get a greedy heuristic, for example if we make square of
Euclidean distance. It’s so called over-estimate heuristic. This is good for
experiment or for certain special task, but generally we try to avoid it. If
the heuristic is over-estimated, so in our algorithm plays the main role the
heuristic function, which leads in path by which we don’t know if it’s the
best possible path. For example if there will be U obstacle in the way, it it’s
very probable that our robot won’t avoid the obstacle in time. U obstacle
is meant an obstacle of shape U, where robot is above it and goal under the
letter.

In contrast there is under-estimate heuristic, where the heuristic function
is too small in compare with tentative function and so the main role plays

tentative function. This approach assure us the best possible way, but we
pay for it with time. Sometimes can also be used this approach if we know,
that the goal is only few node distant or if we don’t mind it takes a lot of time
to solve the problem. We should have on mind, that in certain more complex
task we don’t have to get solution. For instance, Dijkstra is under-estimate
algorithm, which takes into account just travelling price. Then there are
another heuristic approach, it depends on the problem we try to solve with
A*. Normally we try to achieve the h is always equal to g, then A* will
find the shortest path and expands only path nodes, makes it really fast.
Combine advantages of both, under-estimated and over-estimated h. This is
in practice very difficult to reach and are needed more pre-computation.

Sometime there can be more paths with the same length/price, which
can lead to the goal. Then we have to decide, which path is optimal for us.
This can be done by modifications of the functions g or h. We can scale h
upwards slightly. Downwards it would expands the nodes near the starting
point and it wouldn’t be wished. We want expand to the goal a little faster.
We can use the following formula:

h = h(1+p), (2.2)
where the p factor goes from this formula:
p = min/mazxlength, (2.3)

where min means the minimum cost of taking one step and by maxlength
we mean the expected maximum path length. The second is the upper limit,
which we're expecting our A* will not cross. Steven van Dijk suggests let
the h passes to the comparison function, if f functions are equal, and here
compare h and so break the tie. Another way is to prefer the paths, that are
along the straight line from the start to the goal. Next way is for example
construct A* priority queue, where new insertions are always ranked better.
If this doesn’t help, there are methods specially for grid maps as Rectangular
Symmetry Reduction.

We have to take attention of scale too. If one function is in different scale
than the second, it would slows down our algorithm or we wouldn’t have to
find the best path. For instance if we would have unit in meters and in hours.
A* can be used on multiple goals too, only is needed to iterates it always in
the state like it was before and then connects the shortest way. A* itself is
controlled by functions g and h and we have to choose from the speed of an
algorithm and the accuracy of a founded path.

2.2 Stochastic algorithm for organism build-
ing

In contrast to the above described deterministic approach, Distributed
Autonomous Morphogenesis (DAM) [17] is a stochastic algorithm. DAM
works as a finite state machine running autonomously on each robot. The
basic two modes are Organism and Swarm. Each of these modes has states,
which set the behaviour of the robot. These algorithms have to know the
goal, have to have certain plan in which they will proceed along. This plan
can be tree-like and the nodes are described in it by a certain rule. The rules
can be more, it very depends on number of robots which will connect to an
organism in one time and the number of robot with we are working.

The plan can be for example make graphically as a tree, where the root,
or Seed, is the first node. The Root node contains information about a
robot, which started the formation process, in practice of our formation of
an organism is the first robot, which starts to build the organism. The Root’s
children are robots which are connecting to it. If we take a robot, which has
three sides to which other robots can connect and one side by which is the
robot connected to another robot, Fig. 2.2. This imagination is valid for all
robots, with exception of the root robot. Left, right and middle child can
point out the side to which the robot should connect. It can be as left child
is the west side, middle child is the back side, right child is the east side of
the robot, if we take in consideration that robot’s front side is connected to
its parent.

Different approach is to look on plan as a list, where are inserted both
information, about side and robot to which we need to connect. When we
have more robots, we can make a list, which is composed of objects, which
have both informations coded as pair of numbers. For instance we can mark
the sides of robot 0,1,2,3 which will mean the front, right, back, left side,
in chronological sequence. After a robot is connected to the organism, the
robot that started the connection changes its actual connection plan. If there
is no other robots to be connected, the plan is sent to its child, which then
continues with the connection process. Edited plan is a plan which doesn’t
contain information about structure of whole organism. This approach is
discussed in [17].

In the case, that we will connect more robots at one time, in the literature
is also described another approach [17]. We can set a list as a sequence of
char, which will notify which side should be connected. And the zeros, or if we
chose another integer, notify us about if it still should be used the same robot
or another one. Sequence of char is set of letters from an alphabet, which we

10

Front side MM Back side

Figure 2.2: In the left side we can see an organisms composed from robots
R,A, B, C, D, where R is a mark for root. The black rectangle is marking
front side of a robot. In the right part we can see trees, where nodes are
the robots and the edges are sides of a robot. Edges are marked M, L, R as
middle, right and left side.

chose for the sides of a robot. For this recognition are used branches, where
every robot can have maximal four branches. Every branch must have two
nodes, one is the char and the second is the pairing zero. Every robot has to
then searched in its list, which the robot gets, and finding out if every char
in the order has its zero. If the number of zeros is same as the number of
chars, we have a branch. We have to find how many branches we have, then
we will connect along these branches. We will remove the branch after the
connection and that pairs/branches under the branch sends to the connected
robot, if there are pairs after (graphically under) this branch.

Every robot in this algorithm has its unique identification number (1 D)
and gets another identification number in an organism (/Dg,4). These num-
bers are needed for communication and statistical purposes. IDo,4 has to be

11

end of a task recruit request Swanm mode

Disassembly i(—l INOrganism I Recruittment

Docking finish all recruit
requests complted

Disassembly finished Alignment fail

= P Organism mode
ockin
= Recover finish
ocateBeacon
fail
Crush »

| Recover I I Docking
signal Crush A crush Alignment finish
LocateBeacon
found
LocateBeacon | _. Alignment
LocateBeacon
finish

Figure 2.3: Finite state machine of Distributed Autonomous algorithm.

different, because it is a reference to the certain plan, if we are using method
for connecting only one robot. Because we have to know if the robot wants
to connect next robot or we can give Token to a different robot. Token is
for us a privilege of a robot, which can be in Recruitment state, so it can
connect with another robot. Now we take closer look to all states, we can
see them as the finite state machine in the Fig. 2.3

e Recruitment state is in the Organism mode. In this state a robot starts
to emit a signal, which attracts a robot, which is in Flocking state,
on robot’s certain side. The recruiting robot is the one who catch the
signal and was in the Flocking state before. The whole DAM algorithm
starts with the Recruitment state. In the beginning of the organism
forming, only the seed robot is in the Recruit state. All other robots
are in the Flocking state in Swarm mode.

e From Recruitment state robot can move only to the InOrganism state.
This state is passive, it’s just plays role if we decide about who will get
Token. Otherwise, this robot are for us finished ones and play role as
obstacles in the map. They are static and can be in this moment in a
save mode, which will saves their energy. To this state the robot can
also get from Docking state, we will discuses it later. From this state
the robot also can go to Disassembly state, which is the second way,
one is Recruitment state, where the robot can go.

e Disassembly state is the state, from which a given robot leaves Or-
ganism mode. This state takes care about disassembling an organism
when it finished its task. The robot in this state unlocks its connection

12

with neighbourhood robots then it changes its state to Swarm mode
to Flocking state. We can disassembly only few robots from organism
or all. It depends on the algorithm and similarity of the organisms.
Sometime a disassembly is enough to get a whole new organism.

In Flocking state robots randomly move in a environment, in the di-
rections their hardware is allowing them, and they randomly turning.
They're also avoiding to each other, so no collision should happened
and they also have to take in account borders of the environment. Also
they have to avoid other obstacles in map, if there are some, or organ-
isms.

For these collisions there is special Recovery state. To this state the
robot can get almost from every state in Swarm mode, every time
a collisions happens. In this state can be implemented an algorithm
for collision avoidance. For instance, a reaction algorithm, which in
recruiting, or from LocateBeacon state to Docking, can drive around
the given object and continue in the process again.

LocateBeacon state means that the robot receives a signal from a robot
in Recruitment state. In this state, the robot starts to behave deter-
ministically as he tries to locate the source of the signal, which brings
it to this state. In this state are generally used special communication
channels as Infra Red (IR) [17].

If a robot in the LocateBeacon state approaches close enough, the robot
will get to the Alignment state. In this state, the robot tries to minimise
the misalignment of two docking units. Docking units are devices,
which are connecting the two robots. In this state the robot has to
move very accurately. From this, if the robot doesn’t collision, it moves
to Docking state, these two states are in real world the most difficult
tasks, because the process depends a lot on accuracy of hardware units
too.

Docking state is a mechanical docking procedure to physically connect
a robot to an organism. After the completion of this, the robot moves
to InOrganism state. This state is the only one from where the robot
can’t get to Recover state. In the Docking state are connected not only
physical connection, but also communication connection in an organ-
ism. By the faster communication connections the robots hand over
informations about it’s successfully docked, gets its organism identity
number and requests for permission to recruit or disassembly. Due the

13

physical and communication connection a robot can share events with
whole organism and moves with an organism.

From the organism mode robots can return to Swarm mode just through
Disassembly state. Another way is opposite and the way is from Docking
state to InOrganism state. Sometime the literature evokes that there are
two ways how to get from Swarm mode to Organism mode. The second way
is from Flocking state to InOrganism state [17], but this way depends on our
viewpoint and if we starting our task with all robots moving or the Seed is
static from the beginning. Note that more Seed robots can exist at the same
time in the whole system. Every organism has only one Seed robot. The
Seed robots can be chosen by a certain conditions. For example a condition
can be a high enough wall, or different obstacle or finding a electrical plug.

The next topic in this algorithm, aside of the internal states, are the mes-
sages by which the robots communicate with each other. Different messages
are hand down by robots in an organism and different in swarm mode and
different between this group of robots. In our task we don’t need to use
messages between robots in Swarm mode. The most frequently used com-
munication is between robot in Recruitment state, recruiting robot and the
robots in Flocking state. Here is the list of messages, which are normally
used:

o MSG-Recruitment is message which indicates that the recruit process
has started. This message is emitted to all robots by the robot in
Recruit state and doesn’t finish until a robot fulfil the given conditions
as distance from the robot, which emits the recruit signal. And needs
to be under certain angle from the emitting robot. The distance and
angle are on consideration and can resume in different behaviour.

e MSG-InRange is transmitted by the robot in LocateBeacon state. This
message is used just once and is given to all robots in Flocking state to
inform, that MSG-Recruitment was stopped and so recruiting process
has started. Now the robots in Flocking state can’t go to LocateBeacon
state.

o MSG-Expelling is a special signal broadcasted by the robot in Align-
ment state, to expel all other robots, which would be otherwise in its
way and can cause a collision. This message reduces the interference
between the robot in Alignment state and other robots to speed up the
process of forming an organism.

e VMSG-DockingReady is sent by the robot in the Docking state, when the
docking units are fully in position to the recruiting robot. The robot

14

in Recruitment state stops to emit the beacon signal and starts to lock
the docking units.

e MSG-UnDocked sends the robot in Disassembly state, when the un-
docking procedure is fully completed. The robot which was previously
docked with the undocked robot receives this message.

Within organism, the communication can be implemented through a bus.
It can be used to an undocking event or to the decision which robot should
continue to emit recruit signal, which robot will get Token. It also takes care
about handover the plan between the robots in the organism, the number
of robots in the organism and other helpful information. For example, a
notification when new robot has joined the organism can be sent to other
members of the organism. This message is sent by a robot in Recruitment
state and it is propagated by every neighbourhood robot in the organism. It
can be also used to trigger the transition between InOrganism, Disassembly
and Recruitment states as Token.

We have to take attention to competition between the robots, if they
catch the emitting signal at the same time from the same source, they both
fail in recruiting and can end up blocking each other. We can avoid this
situation by sequential sending MSG-Recruitment to the robots and also
controlling the execution of the conditions sequentially, so the first robot,
which meets the condition is taken. If we're connecting more robots at same
time, the situation might be saved by hardware solution, which is emitting
signals via different channels at different interval, so our messages wouldn’t
be misspelled. Yet we have take care of collisions between the recruiting
robots, we can either implement a react algorithm or gives priorities or plan
the docking side of robots, which aren’t in the danger of interference.

There are different algorithms for docking or algorithm building as for
example mathematical modelling, exactly probabilistic model, where depend
on the approach, it can be microscopic or macroscopic [19]. Another algo-
rithm is Adaptation mechanism [18]. And more, very interesting algorithm,
but we will take look on this in individual chapter.

15

16

Chapter 3

Experiments

In both experiments we used Java. The test was set on desktop computer,
which has operating system Window 7 Home Premium, with Processor In-
tel(R) Core(TM) i5-3550 CPU with frequency 3.30GHz, number of cores is
4 and has 64-bit computing. The program can be seen in Fig. 3.1.

Every robot is in one of these group and every robot has six statistical
data. It’s robot’s information, here are coordination, angle, identification
number, identification number in organism of the robot. Then next distance
the robot travelled overall, distance the robot travelled in Flocking state and
distance the robot travelled in recruiting state.

Step simulation

Continue to simulate -]

Speed up

Quit simulation |

Figure 3.1: Screen shot of our Simularot with pop up menu.

Then next three data are times. Time which robot was in Flocking state
and time which robot was in recruiting. The program doesn’t count time in

17

organism, when they are static. The time is in seconds. Only one text file is
different, which contains statistic about organism as a whole. In this file is five
data, first line is the name of the made cluster, second is number of recruit’s
process, that is summation of successful and unsuccessful recruit’s tries, third
and fourth are summations of times, which robots spend in Flocking and
Recruit states, respectively. And the last data is the overall time, which
took the execute the task.

The program is also saving screenshots from important moments. Few of
these screenshots you can see in Fig. 3.6 — 3.9. The screenshots are taken
in an important moments as at the beginning of recruit process, at its end,
when the recruiting robot was successfully docked or when robot crushed in
recruiting process. All these moments are saved as .jpg files in this folder.
As you can see on the pictures, there is always a black cross in the arena,
which means where exactly is the given goal of the recruiting robot, from
where the robot will be docked.

3.1 Distributed Autonomous Morphogenesis

3.1.1 Implementation

In this section we take a look at our implementation of the DAM method.
In the beginning, we should say, that we will not use all states as were
discussed in Theory chapter in section Stochastic algorithm for organism
building. The reason is that the docking and alignment are rather hardware
problems (concern of docking unit and sensors). From organism forming
point of view, these technical problems are not important. In addition the
problems in these states are hardly simulated with.

Our algorithm leads the recruiting robot to the goal position, which is
in distance of our one-robot size in front of its docking size. In real word
our robot would have 10 cm (~3.9 inch). From this distance in our virtual
environment we turn the robot with its docking side to side of the robot in
Recruitment state to which the robot should be connected and then connect
the recruiting robot. We're recruiting one robot at a time. The robot in
Recruit state prefers to recruit robot with smaller I D number, if it has more
robots on choice.

We also made simple Recovery state, which has two possibilities. If the
robot gets there from Flocking state, he changes direction in time as the
protection from collision. Collisions are dangerous because they can damaged
robot or lock it. The second possibility is that the robot gets into the Recover
state when it’s in recruiting process(now only LocateBeacon state). In this

18

recruit request Swarm mode

InOrganism B‘ Recruitment

all recruit
requests complted

Organism mode

Flocki | — .
e —— Recover finish

Crush ¥

| Recover
signal Crush
LocateBeacon
found
LocateBeacon |

Figure 3.2: "Edited state” of DAM algorithm.

LocateBeacon
finish

case we restart the robot, and change its state to the Flocking state. We can
see the "edited state” of DAM algorithm in Fig. 3.2.

@f\ Goal

Figure 3.3: Lock of an robot with identity number 1 due the organism. It
can reach the Goal position, so the robot will be restarted.

Algorithm then waits ~3 seconds and then starts to emit new signal /message
to recruit a new robot again. This delay helps the algorithm to repeat same
situation and so lock itself in the situation as is shown in Fig. 3.3. The
distance on which will robots react on each other is important here. In our

19

algorithm, we set it on 2.5 size of the robot. The distance may look too far,
but if the robots are in the angle, in which their edge are the closest to each
other, this distance is smaller, because we compute the coordination from
the center of the robot. Example is in Fig. 3.4

220

[
‘

Figure 3.4: Presentation of how the turning of two robots can change distance
between them. Red dots are to closest points to each other. The unit are in
pixels.

To control motion of the robot, following differential-drive model is used:

e %(vl + vy) oS ¢, (3.1)
g = %(vl + vy) sin &, (3.2)
é = %(Ul — ’UQ), (33)

where 7 is the radius of the wheels and [is distance of the wheels. In our
program both constants are 1. The position of the robot is (z,y) and it’s
rotation is ¢. The three variables make the state vector s = (z,y, ¢). Input
signals v; and v, are velocities of the wheels of a robot.

To obtain a new configuration s(k + 1) after a control inputs are applied
to the robot at state s(k), the following numerical integration is used:

s(tk+1) = s(k)+ s(Ak) - At, (3.4)

where k is the number of step, s(k) is a actual state, s(Ak) is the derivation
in point k, At is the time between these two steps. We can see the scheme of

20

Y1

Figure 3.5: Scheme of the robot with all variables and constants.

the robot in Fig. 3.5 We implemented different colors of robots for Flocking
state (blue), recruiting (black), Recruit state (red) and in organism (green).
We can see starting and last step of our simulator in Fig. 3.6 — 3.9. with
notification.

Due that we’re using one thread for our program, if we don’t count the
treads that take care about graphic of the program, our messages are sending
sequentially. It would seems as disadvantage due the speed, but in fact this
saving us from the problem, that more robots get the recruit message at the
same time.

We use two conditions for transfer from Flocking state to LocateBeacon
state:

e The first is clear, our robot needs to be in a certain distance from
a robot in Recruit state. This is caused by limited range of sensors.
This distance we set adequately about 7 times size of our robot. This
distance doesn’t have to be good for other types of robots.

e The second condition is angle, by which the robot in Flocking state
can get to the LocateBeacon state. The flocking robot has to be in the

21

| |
[]
N |
a x ® @
& i -
¥ s .
L 2

1 &

Figure 3.6: The start of a recruit-
ing. Here the red is also Seed.

!H$
| 3 o »
o n
» "
L 3 S .
&
* * 0 -

Figure 3.8: Successfully docking
of the second robot, practically al-
ready in organism.

22

» L i s @
4
L] |
. s =
’ »
Figure 3.7: First successfully

docked robot, Token stays by the
Seed robot, it will continue to emit
recruit signal.

s \J

Figure 3.9: The end, robots suc-
cessfully build a H-shape organ-
ism.

Figure 3.10: Area in which a robot can obtain recruiting message.

sector, which is made of set < angle — ¢, angle + 0 >, where angle is
angle of robot’s side, where we want connect the robot, in Recruitment
state and 0 is the choice made of us. We chose the ¢ as 4+ 90 degrees.

The robot in the recruitment state asks for connecting of a robot, which is
in front of the given side and under a certain distance limit. By this we made
something as half-circle. We can see the example in Fig. 3.10. This condition
is here to forbid the collision of the recruiting robot and the recruiter. This
is our set, in some cases with a lot of robots, can be used a smaller sector, an
smaller angle for recruiting. Then it can help with more complex organisms,
for instance with more legs, which are close one to another.

The recruiting robot has few phases in our program, although it is only
in LocateBeacon state. Firstly the robot is turning around until its front
side is turned approximately to the robot in Recruitment state. Then the
robot starts its way to the goal, which is in the front of docking side of the
robot in Recruitment state in certain distance. The distance we chose big
enough so the robot has a manipulative space, but small enough for the finish
moving Alignment state. The move to the goal is controlled by the state-
space equations again and the velocities aren’t random any more. They are
controlled by a proportional regulator:

= (P, —x)cos¢+ (P, — y)sing,

fo . (3.5)
P,=—(P, —z)sin¢ + (P, — y) cos ¢,

where P, and P, are goal’s coordination, ¢ is angle of the robot, x and y is
actual robot position. Description of these equation we can see in Fig. 3.11.
The derivation of P, and P, are used to computation of the two velocities

23

Goal position

Py

Figure 3.11: Description of the state-space equations navigate a robot to the
goal in the space.

specify here:

v = 05PB,, :
w = 09P,. (3.7)

Where v is the translation velocity of the robot and w is angular velocity.
The control velocities vy, v, are computed as:

U+ w

v = 9 5 (38)
vV —w

Vg = 9 s (39)

This velocities are used in the Eq. 3.1- 3.3. as usually. Now we have so called
navigation equitation, which gets the robot to the goal (P,,P,).

This navigation equations get us to the certain distance from the goal’s
coordination. Then the robot would circle about the position in a spiral and
starts to radically slow down until it would achieve zero velocity. With the
knowledge of this problem, we should stop the movement driven by the navi-
gation equations (we will call it Navigation mode) when the robot cross over

24

certain distance from its goal and start a different process. This distance
should be large enough to keep the whole process of recruiting from redun-
dant deceleration, which would make the process non-effective. Also this
small distance can evoke a collision, when the robot starts make the spiral
movements around the goal. On the other side, if we make the distance too
large, we would also make the whole process slower, because in Navigation
mode is the robot the fastest as in speed so in time. We tried make the
distance optimal, which we found out experimentally. Our optimal distance
is 2.5 size of robot.

Now comes the last phase after the Navigation mode. This mode makes
a turning until our robot reached 180 or 0/360 degrees, depending where
the goal is. Afterwards, the robot makes analogically the same process,
only the degrees are 90 or 270. Now when the recruiting robot in on the
goal’s position, our robot with the help of knowledge about the robot in
Recruitment state and its side and with help of trigonometric functions, it
will turn the recruiting robot’s front side toward the docking side of the robot
in Recruitment state. After the turning is finished, the robot connects to the
organism. If the recruit robot has another side to dock, it stays in the Recruit
state, otherwise the edited plan gets the new robot, if it has a require for
a docking. The plan works here as we describe in Theory, just it contains
object, which has in itself coded information about the side and the robot in
Recruitment state. When there is no other requirement for docking a robot,
we reached our task for an certain organism. Here our task ends.

3.1.2 Pseudocode

In this small section we will show a few of the important and interesting
functions of our program. One of them is the recruiting process, following
code is repeated along the whole existence of the running program and basi-
cally works like this:

if(is in field && isn’t in Organism && isn’t end){
if(is recruiting){
if(is collision){
make_deafult_values();
Yelse{
if(is first run){
make_goal();
}
if (robot doesn’t turned round to the goal){
turning() ;

25

Yelseq{
watch_distance_to_goal_
if_is_crossed_turn_and_even_up_with_X_coordination();
}
if (robot turned round to the goal){
if(isn’t close enough to goal){
navigation_mode;
} else if (robot is already on X coordination of goal){
turn_and_even_up_with_Y_coordination();
if(is on the goal){
turn_round_to_the_docking_side_with_front_side();
if (the turning to docking side was done){
connect_to_organism() ;

Yelseq{
move_normally();
}

}

That is the core code of our program. The next interesting piece of code is
method for receiving a message and inserting it to the box of messages to
process. Again, we will show it simplified:

void receiving(Robot robot){

if (robot has recruit message which isn’t in the box){
if (robot in Recruitment state doesn’t find another robot to
recruit and doesn’t have to wait on delay after collision){
add_the_message_to_the_box();
}
}
if (robot has message about restart of recruit and not in box){
if (the message isn’t send){
add_the_message_to_the_box();
}
}

26

if (robot has message about Token and it isn’t in the box){
add_the_message_to_the_box();

}

}

And the last thing we will show is process of that message by the robots:

void process(Robot robot){

if(is a global message)q{

if(it’s not robot in organism

and we can process the global message){
robot.process_message (message) ;

}

if (we start recruiting process with a robot){
restrict_global_messages;

}

}

if (message is about Token and not end of task){
if (robot is the one which is marked in message){
robot_setHasToken(true);
robot_setPlan(message.getPlan) ;
robot_setID_in_organism(message.getID_in_Organism) ;
}
}

if(is the message set for robot

and is about restarting of recruit){
inform_recruit_robot_about_collision();
prepare_the_recruit_rob_for_next_emit;

}

3.2 A*

The goal of this algorithm is forming an organism from a swarm of robots.
In contrast of DAM algorithm A* is deterministic algorithm. It acts as a
central planner, which will plan every move for every robot until desired

27

organism is formed. Before the planning process starts, the robots have to
be static.

3.2.1 Implementation

In our work we implemented A*. We did statistics in simplified space
and used the best heuristic for compare it with the Distributed Autonomous
Morphogenesis. In A*, every Cluster has attributes as f function and g
function, robots from Cluster is composed of, and Cluster called as Ancestor
(the one from which our cluster was expanded/evolve). Cluster are all the
robots, which participate on building an organism. FEach robot knows its
past, and the possible future position. The robot knows also its position.
The robot can move and turn and connects to other robots. The robot can
expand (or gain) positions around it and checks if the position is occupied
by another robot or an obstacle. Then we have a map, which represents our
work space with robots and obstacles.

Here we implemented heuristic function as Euclidean distance, Euclidean
distance squared, Manhattan distance, Dijkstra algorithm, Manhattan up-
grade, which invoke the Equation 3.12 in chapter Theory. Then we imple-
mented special heuristic functions for Cluster as euklid sum, euklid max,
euklid_avg and euklid_w, which are all based on Euclidean distance. As we
wrote in chapter Theory, these are specialized to cope with more robots.
With approach of summation, maximal value, average value and weighting
as in the given section in the chapter Theory. The formula for euklid_sum
heuristic is following:

3

h = Z(\/IXgi = Xokl? + [Ygi — Yiul?), (3.10)

m
k=1 i=1

where X,; and Y, are different goal positions of goal Cluster, X, and Y, is
position on computing robot and n is number of robots in the Cluster. For
euklid_avg we divide this result with number of robots in Cluster:

m o Xgi — Xop2 4 [Yyi — Yor]2
- 21 i (VX il + Yy k|) (3.11)

n

For euklid max we are storing the values in the list and the we are using
following formula:

d(a,b) = euclideandist(M,, M) (3.12)
h = Z maxq,erd(My, a), (3.13)
k=1

28

prmeme———
h H
h i

Staftg

Figure 3.12: Comparison of heuristic functions in planning process. The
orange is the chosen robot, grey fields are the goal positions, green fields are
visited positions, blue are other robots. Manhattan distance is drawn with
blue line and Euclidean distance drawn by red line. The robot is trying to
moving along the line to the goal position.

where max is function for choosing maximal value from the list of distances,
M is module and a and b are positions. How we discussed in Theory, it’s
pessimistic approach. The last formula is euklid_w is as classic Euclidean
heuristic:

ho= X = X2 Y - Vi, (3.14)

where we only add to specific robots a constant, which will deceased them
the probability of moving. Otherwise the central planner will not use the
planning often.

3.2.2 Pseudocode

Here we describe closer a few of ours interesting or important functions
used in A* algorithm. In the start we should just very generally take a look
on A* as our basic process of the work:

1. Pick the best choice from Open list a give it to Close list, check if it’s
our goal, if yes stop.

29

2. Expand all nodes from our node, which we chose.

3. Check our expanded nodes. What is already in Close delete from ex-
pand list. What is in Open list either delete from expand list, if it’s
pricier, or, if node from Open list is pricier, delete this node from Open
list.

4. What left in expand list we give in open list and we repeat this algo-
rithm from step one.

First important function isSameCluster, which is a very busy function
(has about 160 000 iterations). That’s the reason that the function is so
important for the global time of our algorithm. It compare two Clusters of
robot and deciding if they are equal:

boolean isSameCluster (Cluster close/open, Cluster expands) {
for (go through open/close list){
for (go through expand list){
if (coordination are same){
counter++;

}
}

if (coordination aren’t there){
break;

b

if (number of the same coordination is same as the size of the
cluster)

{

return true;

} elsed{

return false;

by

The break in that code is very important for the optimization and so for
the time behaviour. Another important function is the basic expand for
one robot, but for better imagination we will show it in Fig. 3.13 too. The
pseudocode is brief:

ArraylList<Integer> expand (Map map)
{

30

i Expand one

Actual
position
......... . EX and MO
. > . p

Expand three

Figure 3.13: The red robot is the one which expanding positions. In the case
of grid map the robot has three possibilities.

if (margin conditions are fulfil){
give_to_the_expand_list_given_coordination;

b

if(is given position occupied by obstacle or another robot)
{

remove_the_expand_from_expand_list;
b

return expands;

b

Note that we're expanding the four sides, so the robot moves to the four
directions, that can be consider as an approximation. Then there is very
important function for finding a path, when we found the goal cluster, which
gets us the format we can use as output:

LinkedList<Cluster> findAWay (LinkedList<Cluster> close,
ArrayList<Robot> start_Cluster,

31

ArrayList<Robot> actual_cluster)
{
if(is not actual_cluster same as start_Cluster){
for(go through Close list){
if(we find a cluster same as our actual cluster){
give_it_to_our_resulting way_list;
// recursive calling
findAWay(Close, startCluster, actual.getParent);
return way;
}
}
}
shift_the_nodes_in_right_sequence();
return way,

}

Last function I would like to show is the general heuristic function:

Cluster heuristic
(ArrayList<Integer> expands,
ArrayList<Robot> goal,
ArrayList<Robot> original){
if (heuristic is calling first time)
{
g=0;
Yelseq{
g=value_of_original;
}
make_New_Clusters_from_expands;
g=gt+price_of_step;
for (expanded clusters){
for(robots in each cluster){
for(robots in goal cluster){
h=some_heuristic_for_each_robot;
f=h;
add_f_to_list;
}
//here can be whatever
//function min,
//max, avg or so on..
add_minimum_of_f_to_other_list;

32

//now we have min distance given
// robot to nearest goal
Tot=sum_of_min_dist_whole_cluster;
Tot=Total+g;
this_cluster_to_list;
}

}

}

3.3 Results

3.3.1 Distributed Autonomous Morphogenesis

We have tested the algorithm with different organisms for statistics as
distance, duration, collisions in different ways. We tested them on different
number of robots, placing of an organisms and non-random placing of initial
positions of the robots. We created organism as Cross, which representing us
non-symmetrical organism, where east and south arms are longer by a one
robot. Then we created Snake organism (as a line shape), Tshape, which
looks exactly as T letter, Hshape which represent H letter, so same for Ishape
(Hshape turned 90 degrees to right). Note that every of these shapes have
either different number of arms or the orientation. They also vary in the
number of robots, from which is the organism composed. Hshape, Ishape,
Cross has composed from 7 robots, Snake and Tshape from 6. Hshape is built
from left to right as Snake, Ishape from top to bottom as Tshape, Cross from
the middle to the all size equally. All the shapes we can see in Fig 3.14— 3.18.
Our maximum number of robots in the map was 30. Bigger number would
slow down the start of our program. The minimum number was 10. When
we tested the organism on a position, we meant testing the robot near the
map’s border. We placed them so the robots have enough of space for their
movement, when they’re trying to connect to an organism. The distance was
about 3 times of the robot’s size. When we placed the robots non-randomly,
we placed them always at the same position, 10 robots to the vertical two
lines. We will use statistics as maximum, minimum and average because in
our case, when average is based on large amount of data, we can evaluate it
as trustworthy.

Now we will make approach to the first statistic we have made. That
is average distance of a robot with dependence on number of robots in the
map. The units are meters. Based on the size of our robot. In the Fig 3.19
we can see the statistics, we can notice of the minimum value in all cases

33

N =
]
B peam
» LAY
. & .
e_ ®
"Q » »
" a a .

Figure 3.14: Snake shape.

L4
Py &
i
n L 4
* e
* o
N ‘Q

* » ®
[
e L 4
(i]
- *
A OQ’E
LR P

Figure 3.18: Hshape shape.

34

Figure 3.17: Ishape shape.

L] P\ 4
. o
&
. . " | * »
N .
Py L 4
L 4
L .
.o ¢
Figure 3.15: Cross shape.
4 L 4
|
»
L 4
o .
o
L . .
¢« ="

distance [m] Average travelled distance of a robot

=4#=Cross

/ // -B-Tshape
22

W Hehape
20 — —<Ishape

\V
=+=snake

number of robots

Figure 3.19: Average travelled distance of a robot controlled by the DAM
algorithm in dependence on number of robots. Note that minimum is between
15 - 20 robots.

with 15 or 20 robots. And the high values in the end. We can also notice
distinct behaviour with minimum number of robots depends on the type of
organism.

Maximal values of distances were reached always by the biggest number
of the robots in the map, apart of two exceptions, which were Cross and
Snake shapes. In the situation of Cross the biggest distance was when Seed
robot was in the left top corner with twenty robots in the map. In the case
of Snake organism the maximum was reached when we placed the Seed robot
to the top middle placing with twenty robots too. We can see it in Fig. 3.20
The minimum values have very distinct conditions. We marked them in
the Table 3.1 by shortcuts as rb, 1, t, b as right-bottom, left, top, bottom,
retrospectively. The result of minimum distances are so given by the presence
of the border near the organism, because the robot has distance restriction
for the recruit process. Maximal values of distances are mostly given by the
collisions, when in Recover state the robot for a while accelerate its speed
and slows down the whole process when the other robots still were moving.
Snake and Cross only show us the influence in which way we’re building the
organisms, but otherwise the causality is the same.

35

[T (L] [T]

Top-Left Top Top-Right

[1] [[T]

Left Middle Right

[1] [T (1]

Bottom-Left Bottom Bottom-Right

Figure 3.20: Description of positions of an organism in DAM algorithm.

Type of shape | Max. distance [m] | Min distance [m]
Hshape 104,11 0,175 (t)
Cross 120,14 0,202 (rb)
Tshape 96,93 0,204 (1)
Snake 103, 62 0,206 (t)
Ishape 113,76 0,212 (b)

Table 3.1: Maximal and minimal distances of a robot with the shape, sorted
by minimum. Used DAM algorithm.

In corresponding to this we also have made statistic for average time,
needed to form an organism with certain number of robots, Fig 3.21. We
can confirm that average time isn’t dependent on average distance. If is
important for us the speed of forming an organism, we should at least take 3
times number of the robots needed to form an organism, so we could approach
to the minimum time needed to form the organism.

In our testing the program stopped after it reached of 400 seconds. It was
used as protection from freezing in certain situation and furthermore we’re
looking for the best performances of the tasks, so we want show only the
minimal times of fulfil the tasks in the Table 3.2. We can see a dependence
on the best time performance in number of the robots and in complexity of
the organism, so the Tshape and Snake had the best results. The best values
of minims were given always around or exactly a number of robots given by
rule Five. Rule Five says that ideal number of robots in the map is 5n, where

36

time [seconds| Average time of the duration of the fasks

260

40

220 \
==Cross

200 & \

\ \ -#=Tshape
180 . Hshape
\\ \\ —=|shape
160 \\\ \K% —snake
140 .
120 \.\E’—ﬁ_ﬁ

100

10 15 20 25 30

number of robots

Figure 3.21: Average time that takes the task with the number of the robots
in the map, units are in seconds. Used DAM algorithm.

n is the number of robots. In contrast Ishape was very time-good when the
Seed robot started at the bottom too.

‘ Type of shape ‘ Tshape ‘ Snake ‘ Ishape ‘ Cross ‘ Hshape ‘
| Time inseconds | 70 | 82 | 92 | 94 [98 |

Table 3.2: The best time’s performances for DAM algorithm in seconds,
sorted from the left to the right from the lowest value

Another result is the number of trials to recruit a robot to an organism.
We have made the statistics for every building of an organism and then make
an average. Then we subtract the minimum needed number of recruit trials
from these averages and gain the result, which is shown in Fig. 3.22. It
shows how far from the ideal process of formulation of an organism are these
situation. Ideal case would reached the zero value, so it would has done only
the necessary recruits. This approach is independent on the number of the
robots in an organism. It shows us the average number of collisions in recruit
process, which are redundant. And independently on if the robot gets to the
organism or not. The graph shows us how often we have to use the transition
between Recover state and LocateBeacon state.

37

average of redundant recruit tries Average of redundant recruit tries

B

: _x =4=Cross
-B-Tshape
-*‘.-‘-_ -
4 = & Hshape

// —#Ishape
3

/’%/’/-’/ -.-Snake
2

<

. ‘
10 15 0 b 30
number of robots

Figure 3.22: Average redundant number of recruits process in the DAM
algorithm in dependence on number of the robots in the map.

The maximal values of the redundant recruits trials differ, the value de-
pends on complexity of the organism. For example Snake and Cross have
maximal values in distinct situation from 10 to 40 tries. More complex organ-
isms as Hshape or Ishape have the values from 30 to 50. Tshape is between
these two groups, it has values from 20 to 40. Dependence of the number
of trials on the complexity of the shapes. We figure out the dependence on
initial placing of the robots. We made tests for our shapes with ten robots,
which were randomly placed and which were always at the same position. Ev-
ery of the shapes with random and non-random placing we tested 40 times,
we can see the placing in Fig. 3.23. We took that data and made an average
from them.

Tasks with non-random placed robots of this amount were always faster
to find a solution than the ones with randomly placed robot, in our cases, be-
cause we placed the robot adequately to the task. You can see it in Table 3.3.
And the robots also have better result for distances, where the average dis-
tance of a robot was smaller than with a randomly placed robots, except
Tshape where the random placed robots was a little better. This proofs the
dependence of time and distance on the initial positions of robots.

Last thing we would like to mention is dependence on initial position of

38

¥
7
Yy ¥VH

Figure 3.23: Random and non-random placing in DAM algorithm, the red
robot is Seed.

Initial posi- | Tshape | Hshape | Ishape | Snake | Cross
tions

non-random 146 176 194 134 172

random 156 212 234 182 200

Table 3.3: Time performance of the shapes with initial random or non-
random placing, unit are in seconds. Used DAM algorithm.

Seed robot. Until now all the Seed robots were in the middle of the map. We
already noticed in minimal values of distances of a robot that dependence.
The results indicate, that the initial positions of the robots influence speed
of the organism formation. In the Table 3.5 we are showing an organism,
where is the effect very significant. Cross perfectly fits as an example, due
the asymmetry. We can find the effect is in all the organism.

‘ Type of statistic ‘ Right ‘ Left ‘ Right-bottom ‘ Left-top ‘

distance average [m] 23,68 | 24,57 28,8 31,18
time average [s] 138 145 169 179
time minimum |s] 101 97 110 101

Table 3.4: Cross performance in DAM algorithm on different positions or-
dered by best position from left to right. Note that the minimal time’s value
are close to each other, but averages are distinct. Tested with 10 robots.

39

3.3.2 A*

At the beginning we will show comparison between different heuristic
functions we have made for forming of an organism and the reason of usage
Fuclidean distance in our experiments. In Table 3.5 we can see comparison
the heuristic function in dependence on time. In one column we can see
reconfiguration of an organism and in the second column also transposition
and forming the desired organism on different position then was initial posi-
tion. We can see stable results for Manhattan and Euclidean distance. The
DNF means that the process Did Not Finish, so it means the process cross
the limit of five minutes. Notice this is only two cases of situation, but for
our case the main comparisons.

Type of | reconfiguration [s] | transposition + formation [s]
heuristic

Fuclidean dis- 0,27 0,15
tance

Euclidean dis- 0,10 0.16
tance squared

Manhattan dis- 0,09 0,15
tance

Manhattan dis- 0,09 0,14
tance upgrade

Euclid_ sum 1,26 DNF
Euclid_ avg 0,75 DNF
Euclid_ max 9,07 DNF
Fuclid_ w 3,7 DNF
Dijkstra DNF DNF

Table 3.5: Table comparing different A* heuristic function with dependence
on time. DNF means Did Not Finished. Heuristic function of A* algorithm.

We made experiments with five different shapes, same as we did with
stochastic algorithm DAM. The organism differ here in the size, they com-
posed from different number of robots. These are tested on two initial po-
sitions, which are as vertical and horizontal line. The statistics differ here,
but even so we can still compare the results with different shapes and then
compare A* results with DAM.

The first statistics we have made is the time dependence on the number of
robots from which is an organism composed. In this program the statistics
are constant, so they are not average values. In the case of A*, when we

40

time [ps] Time consumption

800

700

600 /

500 // x ——Cross
/ / =#=snake

o / // Hshape

300 =<=Ishape

200 / / —#=Tshape

100

0

5 6 7 8] 10

number of robots in organism

Figure 3.24: Time consumption in dependence on number of robots, unit are
in micro seconds. Used A* algorithm.

move one robot at a time, the time would be the same. In this statistics,
we cut off two values, the two greatest ones, because it would damage our
graph. These values are for Tshape, where is the time value in us 26326.
And the second is for Snake, where this the time value is 3186 us. These
values are incomparable with others. Both are when is the organism biggest.
We can confirm, that the weakness of A* is for organism with larger number
of robots. We can see it in Fig. 3.24. The time depends on the initial
positions of the robot, that is reason of the good performance of Hshape,
because from the initial position only minimal number of steps is needed to
achieve the desired organism. From this we can also indicate, that A* is more
effective in the reconfiguration, but in contrast of DAM, its effectiveness is
decreasing in cases, where the robots have to move more. A* is sensitive
on movement to number of robots in an organism as its time consumption
increases exponentially.

Now we can compare the time dependence on initial positions of Cluster
in our algorithm as we did in DAM. We did the test with ten robots. Vertical
placement means the robot are ordered as line from top to bottom of the map.

Horizontal is analogical. We can see both in Fig. ??7. We will present it as
Table 3.6.

41

There is advantage of DAM, which needs to have robots close to Seed
robot. In A* if the initial positions are close, but the initial Cluster isn’t
similar to ending Cluster, it takes a lot of time. What is interesting about
the Snake organism is that, if we move from horizontal position to vertical
the planing takes different time that if we are moving from vertical position
to horizontal. The reason would be that the one of Cluster wasn’t placed
exactly in the middle o the map as the second Cluster.

O

O

O

O

o o s o o 0
a

O

Horizontal position Vertical position O

Figure 3.25: Horizontal and vertical initial positions in A* algorithm.

‘ Initial positions ‘ Tshape ‘ Hshape ‘ Ishape ‘ Snake ‘ Cross ‘
vertical 701 424 166 2634 325
horizontal 26326 204 517 3186 429

Table 3.6: Time performance of the shapes with initial horizontal or vertical
placing, unit are in us. Used A* algorithm.

Except of time dependence we have also compared the price for using
the given path, which would present the real effort to get from initial state
of organism to the goal organism as is the distance in DAM algorithm. A*
considers price for one step, which is price robot has to pay from on position
to another, and it’s 0.2. From this information we can get the number of
the steps needed to achieve the goal. We made a graph of the dependence
number of robots in Cluster on the price, Fig. 3.26. We can see, that A*
is not only sensitive on initial position, but also on the goal (changing goal,
same initial positions), for example in Tshape, when we remove one robot
from the longest leg, it significantly changes the distance which the robot
needed to travel. In contrast with DAM algorithm, the distance (price) is
increasing with number of robots.

42

price Price of the task

8 /
/ ; ——Cross

=B=snake

Hshape

4 —=Ishape

/‘ ” —+—Tshape
2 /_‘——-__—_*-___'

5 6 7 8 9 10

number of robots in Cluster

Figure 3.26: Price for the given task with dependence on number of robots
in Cluster (in organism) in A* algorithm, the price doesn’t have units.

The last we want to show is number of expansions. The number of ex-
pands is number of possibilities and so it can slow down the process. The
number of the expands in space we show with dependence on number of
robots in Fig. 3.27. We cut off last value in Tshape with ten robots, which
was 20 533 expands, because it was incomparable with the other values.
Ishape was the only one which decreased in one moment, exactly with nine
robots. That is because we extremely changed the shape, in this case the
Ishape looks as letter Z and that proofs again the sensitivity on the shape even
in number of expands. Also we can see a similarity between DAM algorithm
in redundant recruit and A* expands in space, both are exponentially-like
increasing.

3.4 Conclusion

The results shows that in case of DAM algorithm the most influence on
the forming of an organism in time and distance matter has number of robots
in the map. Due that we we can radically change the sped of executing of
forming an organism. The distance of a robot is dependent on the number
of robot mainly in maximal values. In average value is distance of a robot
more dependent on the shape of an organism. A* is also the most dependent
on number of robots, even more, in time consumption. The difference is A*

43

number of expands Number of expands in space

7000
6000
5000 /
/ =#=Cross
4000
/ ~B-snake
Hshape
3000 /< i
===|shape
/ —+Tshape
2000
. M

number of robots in Cluster

Figure 3.27: Number of expands in space with A* algorithm. Depend on
number of the robots in Cluster.

is worse with growing number of robots. A* can meet big problems when it
has to form an organism, where robots have to overcome bigger distance. So
it’s very sensitive on type of organism to form, more then DAM algorithm.

We can put up approach when is good to use the given algorithm. Per-
formance of the A* algorithm is better for forming of small organisms. The
performance is further increased if only few changes are needed to form a
desired shape, i.e., where the modules are close the their goal positions. In
contrast DAM algorithm exceed A* algorithm, when is needed to build big-
ger organism with more than six robots. DAM algorithm can exceed the
A* event with less robots, if doesn’t contains initial position. And then it
depends on distance the goal organism from initial positions of the robots.
The DAM algorithm is suitable for cases, where the initial position of the
modules is far from the goal position.

44

Chapter 4

Conclusion

In our work we have reached to the following statements about effective-
ness of both algorithms. One of them is that A* algorithm has very good
results in case of time and expands with Cluster, which has less than six
robots, but after crossing this number of robots, the trend started to be
unfavourable to the A* with exponentially-like function. In A* algorithm
is also harder to set the condition so that the process would be the fastest
possible, because it’s very sensitive on initial conditions and goal’s too. This
constrictions are fulfil when the initial organism and goal organism cross a
distinct limit of distance from themselves. A* is not good for forming an or-
ganism, in which the robots have to travel bigger distance from their initial
positions.

The DAM algorithm has its weakness when it comes too little number of
robots in the map. On the other hand, it gets better result with more robots
in the map. More depends on the size of the goal’s organism, because of the
constrains of the map, but here we get good time performance with rule Five.
The number is dependent on the size of our robot and the size of our map.
This rule gives us the best rate between number of robots in the map and
number of locks or collisions in the process of forming an organism. Due that
we have enough of robots in the recruiting area, but not too many robots to
cause slow down of the process, because of the bigger number of collisions.
Good time performance doesn’t mean good distance performance, that is
better with lesser number of robots in the map then tell us rule Five, as for
example 3 time of number of robots in the organism. Even here we have to
take attention where we are building the organism, because in nearness of
obstacles would slows down the whole process as did the boards in our case,
if we look again on the statics with organism Snake placed in left-top part of
the map in DAM algorithm. There would be interesting approach to test A*
and DAM algorithms in the map with increasing number of obstacles and

45

comparing the results. Another advantage is that DAM algorithm isn’t so
sensitive on different organisms, that proof the results in time and distance
performance, in contrast A* has very different results in time and distance
performance depending on the shapes, they have all same trends but very
different values.

We would also put up possible methods for upgrade DAM algorithm as
for locking the process, which is evoked by sending messages from the robot
in Recruiting state to robots in Flocking state sequentiality by their ID. The
robot is then often more times transmitted from Flocking state to LocateBea-
con though Recover state, but still is crushing. In that case we would make
priorities for every robot and after every collision in LocateBeacon state we
would decrease this priority. In A* algorithm we would also use Manhattan
distance, but in other tests, we did in another work, we find out, that the
result with Euclidean distance are very similar.

The comparison itself between A* and DAM algorithm was made suc-
cessfully, but wouldn’t be precise enough in some cases. We compared them
on similar situations, but for A* we tested only planing process, but it isn’t
the problem, because the process itself in the time case is constant, which
we can estimate from the simulator, where we tested DAM algorithm, if we
take the same velocities of the robots as in that case. The problem would
be the comparison on distances, because in A* we have them as constant
without values. We have the trends of A* in distance mean, but it would
depend on the transfer function from the cost to distance. In our map we
could imagine, that the cost from one point to the second in A* is as 1/5
of the simulator map. Then we would get really comparable values and our
result isn’t affected.

46

Chapter 5

Appendix

5.1 Description of programs

We have used Java, which is objected-oriented, class-based program lan-
guage, designed to have as few implementation dependencies as possible.
This is what we need, because we want to run this application on whatever
computer and whatever operating system it is needed. For this we used
integrated development environment Netbeans version 7.3.1. with java de-
velopment kit 1.7. Both application can be executed as java archive from
command line with the given parameters. In both programs is implemented
the help page, which user can open by parameter -h. The programs are
treated on wrong number of parameters and give user a warning notification.

5.1.1 DAM

The program of the DAM algorithm has parameters as type of shape,
which are defined in the program, number of robots and time out, or time
until the process should end. If we insert zero as number of robots, it will
behave along the rule, call it rule Five. This rule guarantee the appropriate
number of robots for our organism, but not always the optimal number. In
our program is also implemented a code for an input, which would presented
the directory, where the user wants to save a statistic folder. We didn’t
add this possibility after all and we are creating the statistic folder in actual
directory.

Every time our program is started up, it’s created a new folder, which
name is unique. It has similar name as temporary folder of operating system,
but at the beginning is the name of the shape, which statistic are saved in
it. Such a typical name is for instance "SNAKE15359956”. In this folder
there are text files, every containing a statistic information. They might be

47

separate to these four groups: statistic about created organism as a whole,
statistic about robots, which don’t affected the building of an organism,
statistic about robots, which affected the building of an organism, but didn’t
get to the organism and finally robots, which end in the organism. The files
containing these group of statistics are called ”stattistic_Organism”, identi-
fication number of the robot,” robotsCrushedRecruit” and "robotsInOrgan-
ism”, respectively.

5.1.2 A*

In the command line user puts as parameters input a text file, a mode
and a heuristic user wants to use. The mode means option by which we can
chose from two possibilities presented by two numbers, either the output of
the program will be path, which will be process graphically in command line
as the zeros and numbers two or its output is coordination of whole cluster,
juts clear numbers. The third choice is heuristic, which we implemented to
our program and which will be used.

Output is always order as following, the first it’s showed the start and the
ending lay-out of robots. Then there are sequentially sorted steps of Cluster,
steps of algorithm. And at the end of the outputs are showed statistics as
total price we paid for the whole path of Cluster, number of expansion in
whole space our algorithm has to make to achieve goal, total price we paid for
travelling along the way, maximal travelled distance of one robot of Cluster,
number of robots of Cluster, which don’t move, number of needed steps for
the Cluster to achieve the goal and what was the cost for one step, if it was
constant.

5.2 Heap

We have implemented here so cold Max Heap and Min Heap. They are
special dynamical lists, which are exactly called Binary Heap. They fit well to
our case of A*. They are lists, to which we can insert objects, here important
point is that they must be comparable, and after the insertion, the objects
are always compared with the certain objects in the list,we will write later,
how the objects, called parents, are determined. Here it’s already important
to divide the two approaches, sometime we want have the maximal value on
the top of the tree or, else on the start of the list. And sometime we want
have minimum value on the first position. That why is the first called Max
Heap and the second Min Heap in our cases. Here are general steps for this
algorithms:

48

Figure 5.1: Example of Minimum binary heap.

1. Add the element to the bottom level of the heap.

2. Compare the added element with its parent; if they are in the correct
order, stop.

3. If not, swap the element with its parent and return to the previous
step.

Even the deletion of an element in the list must be special treated, we can’t
easily delete the given element, because when we delete an element, we would
destroyed our tree structure. After a deletion we must check, if the elements
are in the correct order. This method is known as bubble-down. Here is the
algorithm of it:

1. Replace the root node of the heap with the last element on the last
level.

2. Compare the new root (the one we took from last level) with its chil-
dren; if they are in the correct order, stop.

3. If not, swap the element with one of its children and return to the
previous step. (Swap with its smaller child in a min-heap and its larger
child in a max-heap.)

This is theoretical description, which counting on that we are deleting the
maximal or minimal value. Which we normally do, so in our program, be-
cause that’s the advantage of the approach, but else for other values in the
list it would be analogical. Another thing is how it’s implemented as list in
our source code. Here it’s using a precise formula for the parents and its
children. The formula for left children is following:

L = 2k+1, (5.1)

49

S L

0 1 2 3 4 5

o\ eile)ie)ielie]

Figure 5.2: Example of Minimum binary heap in an array. Arrows show
children.

and for right children it’s following:
R = 2k+2. (5.2)

Where £ is the index of a parent in the list. There is also formula for finding
out the parent of a given children. We used it too, it’s following:

P = =, (5.3)

5.3 CD

The contain of the CD, which is appended to this work, is following:
e Electronic version of this work in pdf format as dip.pdf.
e Two source codes of A* and DAM. Sources code are in the file src.

e Acquired data from both programs are in the file Statistic.

20

Bibliography

1]

2]

[10]

A. Behar A. Castano and P.M. Will. The conro modules for reconfig-
urable robots. IEEE/ASME Transactions on Mechatronics, 2002.

M. Moll B. Salemi and W.-M. Shen. Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2006.

Serge Kernbach et al. Heterogeneity for increasing performance and re-
liability of self-reconfigurable multi-robot organisms. workshop on Re-
configurable Modular Robotics, San Francisco, 2011.

H. et al. Kurokawa. Self-reconfigurable modular robot m-tran: Dis-
tributed control and communication. international conference on Robot
communication and coordination, RoboComm, 2007.

G.C. Pettinaro F. Mondada, A. Guignard, L W. Kwee, D. Floreano, J.L.
Deneubourg, S. Nolfi, L.M. Gambardella, and M. Dorigo. Swarm-bot:
A new distributed robotic concept. Autonomous Robots, 2004.

Adwoa Gyimah-Brempong. Precision agriculture: Sustainable farming
in the age of robotics, 2009.

H. Li H. Wei, Y. Cai, D. Li, and T. Wangl. Sambot: A self-assembly
modular robot for swarm robot. In IEEE International Conference on
Robotics and Automation (ICRA), 2010.

Larry Hardesty. Surprisingly simple scheme for self-assembling robots,
2013.

Lutz Winkler Jens Liedke, Rene Matthias and Heinz Worn. The collec-
tive self-reconfigurable modular organism (cosmo). IEEE/ASME Inter-
national Conference on Advanced Intelligent Mechatronics (AIM), 2013.

D.G. Duff M. Yim and K.D. Roufas. Polybot: a modular reconfigurable
robot. Conference on Robotics and Automation, 2000.

51

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

W.-M. Shen M. Yim, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G.S. Chirikjian. Modular self-reconfigurable robot systems [grand
challenges of robotics]. Robotics Automation Magazine, 2007.

Jonathan Marcus. Robot warriors: Lethal machines coming of age, 2013.

E.H. Ostergaard M.W. Jorgensen and H.H. Lund. Modular atron: mod-
ules for a self-reconfigurable robot. IEEE/ RSJ International Conference
on Intelligent Robots and Systems, 2004.

University of Pennsylvania. Robot boats rescue mission, 2013.

H. Hosokai T. Fukuda, M. Buss and Y. Kawauchi. Cell structured
robotic system cebot: control, planning and communication methods.
Robotics and Autonomous Systems, 1991.

A. Chan V. Zykov and H. Lipson. Molecubes: An open-source modular
robotics kit. Self-Reconfigurable Robotics Workshop, 2007.

Alan F.T. Winfield Wenguo Liu. Distributed autonomous morphogene-
sis in a self-assembling robotic system. Bristol Robotics Laboratory.

Alan F.T. Winfield Wenguo Liu, Jin Sa, Jie Chen, and Lihua Dou.
Towards energy optimization: Emergent task allocation in a swarm of
foraging robots. Bristol Robotics Laboratory, 2007.

Sin Sa Wenguo Liu, Alan F.T. Winfield. Modeling swarm robotic sys-
tem: A case of study in collective foraging. Bristol Robotics Laboratory.

02

