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Supervisor: Sergej Čelikovský
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Abstract

Underactuated mechanical systems have less actuators than degrees of freedom
and have been of particular interest during last decades. There are many dif-
ferent and well know underactuated mechanical systems that have been used to
apply new concepts in non-linear control. One of the most well known is the
Acrobot. The Acrobot is one of the simplest underactuated mechanical systems
and consists of two links with only one actuator between them; it is seen as
the simplest model for walking robots. In this thesis the model of the Acrobot
is extended to the 4-link in order to make a more realistic model for a legged
robot and the control will be done using the concept of virtual constraints. It
will be shown how the 4-link can be controlled to achieve a stable tracking of
the stable target walking trajectory. A model will be developed based on a real
4-link testbed to further practical implementation of the achieved control.



Chapter 1

Introduction

Efficient biped walking robots are still a huge challenge for engineering today.
Despite the improvements and development of several walking robots there are
still many challenges to make this robots efficient in terms of energy consump-
tion. Many fully actuated walking robots calculate every position in order to
maintain balance which is an unnatural way of walking. Underactuated systems
represent a more natural approach to emulate walking. Nevertheless, control
of non-linear systems still require the development of new concepts since much
of the work done does not apply to a big branch of underactuated mechanical
systems [13].

Although there are many different ways to move a robot, like wheels or
4 legged robots, biped robots present some advantages, for example they are
highly adaptable to different types of grounds. Humanoid robotics are of interest
since one of the main reasons of robots is to replace humans on activities that
are dangerous because of the hazardous environment. Even NASA has a robot
called robonaut and showed intentions of sending a humanoid walking robot to
the moon with the Project M. Nevertheless, the challenge of designing a walking
robot is difficult despite it has received lot of attention during the last decades.
Biped robots are also of particular interest in the category of legged robots
because understanding their dynamics can help develop orthopedic devices to
help humans with disabilities [14].

1.1 Objectives of the thesis

The main objective of the thesis is to explore the concept of virtual constraints
applied to underactuated mechanical systems, in particular to the 4-link to make
it perform a single step and develop a realistic model of this system based on a
real one at Czech Technical University in Prague (CTU). Two types of virtual
constraints methods will be compared to see how they can be used to restrict
the number of degrees of freedom (DOF) in the system. Detailed mathematical
explanations of how the virtual constraints are obtained and how the control is
achieved will be shown. Complete explanation how to obtain a realistic model
will be done as well. In summary, the present work can be divided into 3 main
objectives. The first, is to develop a realistic mathematical model based on an
already built laboratory 4-link system. The second is to apply a control law
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based on the concept of virtual constraints, more precisely, using three virtual
constraints. Finally, this method will be compared with other existing method
based on two virtual constraints only.

1.2 Organization of the thesis

The thesis is organized as follows. In chapter 2 general information is presented
about underactuated mechanical systems in order to give a background and to
help to understand the present work. The first objective, the development of
a realistic model of a 4-link will be explained in detail in Chapter 3 where
the modeling of the Acrobot starts and it will be explained how this concept is
extended to the model of the 4-link. Then it will be used to show the modeling
of a real 4-link and all considerations that should be taken. Chapter 4 contains
information about how constraints are achieved and different polynomial equa-
tions to constrain the 4-link will be compared. These equations will be tested to
see the performance of the 4-link in a simulation. Finally, the best result regard-
ing complexity of equations vs. performance will be used to compare it with
other control methods. The final chapter presents the conclusions and discusses
the possibility of continuing work with more applied and technical focus.
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Chapter 2

Mechanical systems

Mechanical systems can be classified depending on the number of actuators that
they have in relation to their degrees of freedom. Typical mechanical systems
are fully actuated, this means that they have as many actuators as degrees of
freedom. In this work the concept will be focused on underactuated mechanical
systems. This term refers to the fact that these systems have less actuators
that degrees of freedom. These kind of systems can be seen in walking robots,
flexible robots, and when a manipulator is attached to a mobile platform, space
platform or undersea vehicle among others [13].

One of the main studied cases of underactuated mechanical systems is the
biped walking robot without feet, meaning that the ankle actuator is not present,
making it underactuated. The requirement of feet for walking has been proved
to be not necessary [7]. The simplest of these walking robots is probably the
Acrobot. The Acrobot consists of two links with an actuator at the joint. It is
an unrealistic humanoid walker since it has no knees or ankle joint and has point
feet. Nevertheless, it is still a good model to start to analyze biped walking.
The level of under actuation of walking robot Acrobot is 1 since it has 2 degrees
of freedom (DOF) but only one actuator.

2.1 Simple underactuated mechanical systems

There are many different underactuated systems that have been explored, some
examples of these are the inverted pendulum, the Cart-Pole system, the Pen-
dubot, the Furuta pendulum and the Acrobot which will be explained in more
detail later. Some of the main studied underactuated mechanical systems are
listed here.

• The Inverted pendulum consists of a rod with an actuator at one of two
ends. The idea is to stabilize this system in the upper position and keep
it stable under the presence of perturbations.

• The CartPole system is similar to the Inverted pendulum but at one end
is a mass and in the other end, instead of the actuator, there is just a
pivot at the top of a cart. The upper equilibrium position is achieved by
applying a force in the cart.
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• The Pendubot is an extension of the Inverted pendulum but instead of
only one rod there are two rods connected with a joint. Actuator is in the
pivot point. As it can be deduced, the system is much more complex to
keep it in the upper position.

• The Furuta pendulum could be seen as a Pendubot where the rods are
in perpendicular planes bringing the second rod to the upper position by
rotating the first rod around the vertical axis.

• The Acrobot is just like the pendubot with the difference that the actuator
is between two rods. It is used not only to explore control systems for the
stability of the inverted position but also as a walking system.

It is possible to see how the Acrobot can represent a simple biped walking
system if we consider that the joint is in the hip and each rod is a leg with no
knees. In figure 2.1 the elements required to model the Acrobot are shown, l
is the lenght of the link, lc is the distance to the center of mass, m is the mass
of each link, q1 is the angle of the first link to the vertical axis, q2 is the angle
between the link two and an axis that extends from link one.

x

y

q1

q2

τ2

m m

lc

l

Figure 2.1: The Acrobot.

The advantage that the underactuated systems have for example in the case
of the Acrobot is that the walking is more natural and similar to real human
gait. That is why it is of interest not only for nonlinear control but this could
represent a benefit in the design of walking robots because they could reduce
energy consumption and increase efficiency [11].

2.2 Human gait and robotics

Human gait or human walk is the process of impelling the center of mass of the
body forward, in a normal walk this is achieved by the sequence of movements
of the legs. The important factor is that one of the legs is always touching the
ground and for some period of time both legs are on the ground. Opposite is
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the case of running in which at some moment both feet are off the ground or
could be seen also as if at any period of time only one foot is in contact to the
ground [12].

The first concepts developed for walking robots was static walkers meaning
that the speed of the robot is so low that the Moment Of Inertia (MOI) of the
legs is negligible [11]. A more advance approach is the so called dynamic walking
which accounts for these MOI and the velocity of the robot is not necessary to
be known. This concept gives a more human-like walking, nevertheless, it is not
very efficient in terms of energy consumption [11].

The concepts described previously, namely, dynamic and static walking ei-
ther account for the center of mass to be inside the support polygon (static
walking) or have a Zero Moment Point in the support polygon (dynamic fully
actuated walking) [11]. The phase when the robot has both feet on the ground
is called double support. This phase can be instantaneous or non-instantaneous
[12]. The cases described before are non-instantaneous. If we reduce the sup-
port polygon to be a point foot, it will not be theoretically stable, nevertheless,
it can still have a stable gait. This gait will have instantaneous double support
and will be dynamic since the transition of the center of mass from footprint to
footprint will not be performed at infinitesimally short time [12].

Real successful applications of humanoid walking of robots are done by con-
trolling every single articulation and computing every position of the robot.
This is the case for fully actuated robots. Even one of the most advanced hu-
manoid robots ASIMO from Honda uses the Zero Moment Point approach [11].
Although this approach has proved to be successful in achieving a stable walk it
is not very efficient in terms of energy consumption because velocity and walking
does not seem to be natural, as a matter of fact, it is stiff and slow.

In real human gait during each step one of legs is touching the ground. This
leg is named stance leg while the other is swinging forward called swing leg
because of the type of movement that it performs. There is a simplified biped
walking with no feet and the whole movement is simplified to stance leg and
swing leg and the actions of the feet in real human gait have been reduced to
an instant contact with the ground [7]. This is the case analyzed in this work.

Other important simplification is the number of dimensions. Obviously hu-
man gait is performed in three dimensions but this is quite complicated to an-
alyze. From this reason most of the walking robots experiments are simplified
to two dimensional analysis by restricting mechanically with a support system
not allowing the robot to fall to the side. In the 4-link case studied here this is
done by putting the 4-link in the frame with wheels, letting the robotic legs to
move forward only.

2.3 Euler Lagrange Method

The Euler-Lagrange equation also known as Lagrange equation is a differential
equation whose solutions, because of the Hamiltonian principle of stationary
action, describe the evolution of a physical system. It is equivalent to the New-
tonian law of motion except that regarding the generalized coordinate system it
takes the same form. The Lagrangian contains all physical information concern-
ing the system and the forces acting on it. For many mechanical systems the
scalar Lagrangian is found as the difference of the kinetic and potential energies.
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This is expressed as follows

L(q, q̇) = K − U =
1

2
q̇TD(q)q̇ − V (q), (2.1)

where K is the kinetic energy of the system and U is the potential energy of
the system, q is a n-dimensional configuration vector and D(q) is the inertia
matrix. If there are external forces u = (τ1, τ2, ...τn)T on the system the system
is fully actuated and the Euler-Lagrange equation takes the following form

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
= τ, (2.2)

from which it is possible to derive the equations of motion. This is done as
follows; once the Lagrangian L has been calculated it is necessary to obtain the
derivative of the Lagrangian (L) with respect to q̇ and then derivate again with
respect to time and subtract the derivative of the Lagrangian with respect to q,
this will be equal to the torque τ . With this method it is possible to obtain the
matrices that describe the system

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (2.3)

where D(q) is the inertia matrix, C(q, q̇) contains two types of terms depending
on configuration variables q̇iq̇j that are called Centrifugal terms (i = j) and
Coriolis terms (i 6= j) and G(q) contains the gravity terms. Matrix B maps the
inputs into the desired coordinates.
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Chapter 3

Modeling the 4-link

In this Chapter a description of how to model an ideal 4-link will be shown. This
model will account for the potential and kinetic energies of each one of the four
links to form the Lagrangian and then to obtain the equations of motion from
it. It will be show as well how to model a real 4-link and what considerations
are needed, it will be seen how simple assumptions in the ideal 4-link require
many calculations for a real model.

3.1 General model of Acrobot and 4-link

The basic model of the 4-link consist of 4 rods connected linearly with articulated
joins between them and having one of the ends of the first link set to the origin
of the reference system and considered as an non actuated joint, called simply
a pivot. Other joints are actuated. The 4 link is an extension of the Acrobot,
nevertheless, the objective is not to find the equilibrium states of the 4 link
balanced upside-down but rather to see the second joint as a hip and to use
each pair of 2 links as legs with knees of a walking robot. In this case the knees
would be the first and third joint. In figure 3.1 one can see the 4-link with four
angles to describe position and torques expressed by τ .

The 4-link here studied is based on a real robotic mechanical system at
CVUT. Figure 3.2 shows an image of the 4-link at CVUT.

The model uses the equations of motion obtained through the proper deriva-
tion and subtraction of the Lagrangian of the system. To calculate the La-
grangian it is necessary to obtain kinetic and potential energy of the system.
For this sake, rods are considered to have the same mass and there is no mass
at the joint itself, all the weight is considered to be at the center of links. This
is pretty simplistic but helps to simplify the considerations when developing a
model based on the real 4-link.

After obtaining the Lagrangian of the system it must be derived with respect
to velocity and time and subtract from it the derivative with respect to position,
with this the equation of motion will be obtained. For the case of the first joint
we know it is zero since it is non-actuated.

Now that equations of motion have been obtained we can see that there are
4 variables. Virtual constraints will be created to restrict the movement of three
of the angles to depend on the other one, in other words the control law in this
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q1
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−q3

q4

τ2

τ3

τ4

Figure 3.1: The 4-link.

case considers a predefined trajectory of the legs taking as reference the angle
of the stance leg with the vertical axis. All of this will be explained in detail
here and in following chapters.

To analyze the Acrobot and 4-link Lagrangian mechanics are used. The
Acrobot and 4-link are both seen as having one leg in pivot with the ground
and the positions of the center of mass of each leg is computed. This is done
by considering the potential and kinetic energy of each leg. The weight of the
actuator at the knee is considered as being part of the leg, having each leg half
of the weight of the actuator and joints.

To derive equations of motion of a mechanical system it is necessary to start
by calculating the Lagrangian (L) of the system, defined as kinetic energy (K)
minus potential energy (U) expressed as

L = K − U. (3.1)

Potential Energy is defined as

U = mgh, (3.2)

where m is the mass of the system, g is the gravity and h is the height with
respect to the origin of the system. Kinetic Energy is defined as

K =
1

2
mv2, (3.3)

where m is the mass and v is the velocity. Then it is necessary to use equa-
tion (2.2) to find equations of motion.

There are 2 links to consider in the model of an Acrobot, this means 2 poten-
tial energies (first and second links) and two kinetic energies (first and second
links). Within kinetic energy there are 4 elements to consider, translational and
rotational energies of the first and second links. Translational expressed as T1
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Figure 3.2: Real Acrobot at CVUT.

and T2 respectively for each link and rotational T3 and T4 respectively. Total
kinetic energy is then expressed as

T = T1 + T2 + T3 + T4, (3.4)

and substituting by definition of each element we obtain the following equation

T =
1

2
m1(v0

c1)2 +
1

2
m2(v0

c2)2 +
1

2
J1(w0

0,1)2 +
1

2
J2(w0

0,2)2, (3.5)

where the subindeces 1 and 2 represent the links 1 and 2 respectively, m1 and m2

are the masses, J1 and J2 are moments of inertia. v0
c1 and v0

c2 are the velocities
of the center of mass of the first and the second links with respect to the main
coordinate reference system and w0

0,1 and w0
0,2 are angular velocities of link 1

and 2 with respect to the main coordiante reference system.
The analysis of the Acrobot is simple but when extending the concept for the

4-link even when the computations are similar, the number of elements grows
due to the number of rotation matrices to establish every element with respect
to one common reference system. In figure 3.3 it’s possible to see the elements
that are necessary to consider when calculating potential and kinetic energies.
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Figure 3.3: Representation of the Acrobot for energy calculations.

3.1.1 The first link

First of all the rotation matrix of the first link with respect to the main coor-
dinate reference system is considered. This main coordinate reference system is
established to have origin at the point of contact to the ground of the first link.
X axis aligned horizontally and Y axis being positive in the upward direction.
The rotation matrix of the first link with respect to the reference coordinate
system is

R0
1 =

 cos q1 − sin q1 0
sin q1 cos q1 0

0 0 1

 , (3.6)

while the rotation matrix of the second link with respect to the first link is

R1
2 =

 cos q2 − sin q2 0
sin q2 cos q2 0

0 0 1

 , (3.7)

where q1 and q2 are the angles of link 1 and link 2, respectively, according to
its own reference system. The angular velocity of the first link (q̇1), respect to
the main coordiante reference system is defined as

w0
0,1 =

 0
0
q̇1

 . (3.8)
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The angular velocity of the second link with respect to the main coordinate
reference system is defined as

w0
0,2 = w0

0,1 +R0
1w

1
1,2 =

 0
0

q̇1 + q̇2

 , (3.9)

where q̇2 is the angular velocity in scalar form and w1
1,2 is the angular velocity

of the second link with respect to the first link’s reference system, it is rotated
with respect to the main coordiante reference system by R0

1. These notations
are acording to [15]. The term w1

1,2 denotes the angular velocity of frame 2
that corresponds to changing R1

2 expressed relative to the coordinate system of
link 1. The product R0

1w
1
1,2 expresses this angular velocity relative to the main

coordiante reference system [15]. Now, the translational velocity of the center
of mass of the first link is given by

v0
c1 = w0

0,1 × r0
c1, (3.10)

where r0
c1 is the position of the center of mass of the first link respect to the

main coordinate reference system. The position of the center of mass of the first
link with respect to its own reference sytem is given by

r1
c1 =

 l1
2
0
0

 . (3.11)

It is important to see that to simplify the analysis, the position of the center
of mass is considered to be at the middle of the rod

(
l1
2

)
. To obtain this

position with respect to the main coordinate reference system of the Acrobot it
is necessary to transform it using the rotation matrix. Thus we obtain

r0
c1 = R0

1r
1
c1 =

 l1
2 cos q1
l1
2 sin q1

0

 . (3.12)

Now the calculation of the velocity of the first center of mass as a vector is done
as follows

v0
c1 =

 0 −q̇1 0
q̇1 0 0
0 0 0

 l1
2 cos q1
l1
2 sin q1

0

 =

 −q̇1
l1
2 sin q1

q̇1
l1
2 cos q1

0

 (3.13)

and calculation of the squared velocity is given by

(v0
c1)2 =

(
−q̇1

l1
2

sin q1

)2

+

(
q̇1
l1
2

cos q1

)2

=

(
l1
2

)2

(q̇1)2. (3.14)

The velocity of the first link with respect to the main coordiante reference system
has been calculated. This will be used to model the Acrobot.

3.1.2 The second link

To calculate the translational velocity of the second link it is necessary to trans-
form its velocity with respect to the main coordinate reference system, this is

11



expressed as follows

v0
c2 = v0

2 + w0
0,2 × r0

c2 = w0
0,1 × r0

p + w0
0,2 × r0

c2, (3.15)

where w0
0,1 × r0

p is used to calculate the translational velocity at the origin of
the second link, this term expresses the angular velocity of the first link and the
position of the end of the first link as a vector.

It is necessary to rotate the position of the end of the first link expressed as

r1
p =

 l1
0
0

 , (3.16)

respect to the main coordiante reference system, which leads to

r0
p = R0

1r
1
p =

 l1 cos q1

l1 sin q1

0

 , (3.17)

now it is necessary to calculate the first part on the right hand side of the
equation (3.15) for the velocity of the second link, which is expressed by

w0
0,1 × r0

p =

 0 −q̇1 0
q̇1 0 0
0 0 0

 l1 cos q1

l1 sin q1

0

 , (3.18)

which leads to

w0
0,1 × r0

p =

 −q̇1l1 sin q1

q̇1l1 cos q1

0

 . (3.19)

For the second part of the equation we need to know the position of the
center of mass of the second link, again this will be considered to be ideally at
the middle of the link and is expressed as

r2
c2 =

 l2
2
0
0

 (3.20)

and to rotate it to express it with respect to the main coordinate reference
system, which is done as follows

r0
c2 = R0

1R
1
2r

2
c2 =

 cos q1 − sin q1 0
sin q1 cos q1 0

0 0 1

 cos q2 − sin q2 0
sin q2 cos q2 0

0 0 1

 l2
2
0
0

 .
(3.21)

After some straight forward computations:

r0
c2 =

 l2
2 (cos q1 cos q2 − sin q1 sin q2)
l2
2 (cos q2 sin q1 + cos q1 sin q2)

0

 . (3.22)
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Now it is necessary to calculate the angular velocity of the second link times
the distance to the center of mass of the second link from the own second link’s
reference coordinates, which is expressed as

w0
0,2 × r0

c2 =

 0 −(q̇1 + q̇2) 0
(q̇1 + q̇2) 0 0

0 0 0

 l2
2 (cos q1 cos q2 − sin q1 sin q2)
l2
2 (cos q2 sin q1 + cos q1 sin q2)

0

 .
(3.23)

Solving this results in

w0
0,2 × r0

c2 =

 −(q̇1 + q̇2) l2
2 (cos q2 sin q1 + cos q1 sin q2)

(q̇1 + q̇2) l2
2 (cos q1 cos q2 − sin q1 sin q2)

0

 . (3.24)

Now it is possible to calculate the velocity of the second link as a vector

v0
c2 = v0

p1 + c0c2,2 =

 −q̇1l1 sin q1 − (q̇1 + q̇2) l2
2 (cos q2 sin q1 + cos q1 sin q2)

q̇1l1 cos q1 + (q̇1 + q̇2) l2
2 (cos q1 cos q2 − sin q1 sin q2)

0

 ,
(3.25)

note, that the expression can be reduced due to the identities

cos q2 sin q1 + cos q1 sin q2 = sin(q1 + q2)

and
cos q1 cos q2 − sin q1 sin q2 = cos(q1 + q2),

which reduce the term to

v0
c2 =

 −q̇1l1 sin q1 − (q̇1 + q̇2) l2
2 sin(q1 + q2)

q̇1l1 cos q1 + (q̇1 + q̇2) l2
2 cos(q1 + q2)

0

 . (3.26)

Calculating the square of the velocity of the second link is expressed as
follows

(v0
c2)2 = (−q̇1l1 sin q1 − (q̇1 + q̇2) l2

2 sin(q1 + q2))2

+(q̇1l1 cos q1 + (q̇1 + q̇2) l2
2 cos(q1 + q2))2 (3.27)

and solved in the following form

(v0
c2)2 = (−q̇1)2(l1)2(sin q1)2

+2(q̇1l1 sin q1)(q̇1 + q̇2) l2
2 sin(q1 + q2)

+(q1 + q2)2 + ( l2
2 )2(sin(q1 + q2))2

+(q̇1)2(l1)2(cos q1)2

+2(q̇1l1 cos q1)(q̇1 + q̇2) l2
2 cos(q1 + q2)

+(q̇1 + q̇2)2( l2
2 )2(cos(q1 + q2))2.

(3.28)

Eliminating common terms results in

(v0
c2)2 = (q1)2(l1)2

+q̇1l1l2(q̇1 + q̇2)(sin q1 sin(q1 + q2) + cos q1 cos(q1 + q2))

+(q̇1 + q̇2)2( l2
2 )2.

(3.29)
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It is seen that the expression (sin q1 sin(q1 + q2) + cos q1 cos(q1 + q2)) can be
expanded to

sin q1(cos q1 sin q2 + cos q2 sin q1) + cos q1(cos q1 cos q2 − sin q1 sin q2)

and then simplified to cos q2 and thus the squared velocity of the second link
with respect to the main coordinate reference system. Finally it results in the
equation

(v0
c2)2 = (q̇1)2(l1)2 + q̇1l1l2(q̇1 + q̇2) cos q2 + (q̇1 + q̇2)2

(
l2
2

)2

. (3.30)

Now velocities of links have been expressed in terms of the main coordinate
reference system. These velocities are needed to calculate kinetic energy of the
Acrobot to model the system. These calculations will be done in detail in the
following subsection.

3.1.3 Kinetic Energy of the Acrobot

Now, velocities of links with respect to the main coordiante reference system
calculated previously are used to solve equation (3.5). It is known from equa-
tion (3.4) that there are four elements, first rotational energies of the first and
second links and traslational energies for the first and second links. Rotational
energy of the first link is expressed as follows

T3 =
1

2
J1(w0

0,1)2, (3.31)

squaring the angular velocity results in

T3 =
1

2
(w0

0,1)TJ1w
0
0,1 =

1

2
Izz1(q̇1)2, (3.32)

where the matrix of the moment of inertia is

J1 =

 Ixx1
0 0

0 Iyy1 0
0 0 Izz1

 . (3.33)

For the rotational energy of the second link the expression is

T4 =
1

2
J2(w0

0,2)2, (3.34)

and solving in the same way as T3 results in the following equation

T4 =
1

2
(w1

1,2)T (R0
1)TJ2R

0
1w

1
1,2 =

1

2
Izz2(q̇1 + q̇2)2, (3.35)

where Izz2 is the moment of inertia of the second link. Finally, since the equa-
tions of velocity (3.14) and (3.30) were calculated before, the elements to sub-
stitute in T1 and T2 are known. Substituting velocity in

T2 =
1

2
m1(v0

c2)2, (3.36)

14



results in

T2 =
1

2
m2

[
(q̇1)2(l1)2 + q̇1l1l2(q̇1 + q̇2) cos q2 + (q̇1 + q̇2)2

(
l2
2

)2
]

(3.37)

and for T1 the expression is

T1 =
1

2
m1(v0

c1)2 =
1

2
m1(q̇1)2

(
l2
2

)2

. (3.38)

The total kinetic energy for the first link including rotational and transla-
tional energies is expressed as

K1 = T1 + T3 =
1

2

(
Izz1 +m1

(
l1
2

)2
)

(q̇1)2. (3.39)

The total kinetic energy for the second link including rotational and trans-
lational energies is expressed as

K2 = T2 + T4, (3.40)

which with the proper substitution results in

K2 = 1
2Izz2(q̇1 + q̇2)2+
1
2m2

[
(q̇1)2(l1)2 + q̇1l1l2(q̇1 + q̇2) cos q2 + (q̇1 + q̇2)2

(
l2
2

)2] , (3.41)

and solving K2 results in

K2 = 1
2Izz2(q̇1)2 + Izz2 q̇1q̇2 + 1

2Izz2(q̇2)2

+ 1
2m2(q̇1)2(l1)2 + 1

2m2l1l2 cos q2(q̇1)2

+ 1
2m2l1l2 cos q2q̇1q̇2 + 1

2m2(q̇1)2
(
l2
2

)2
+ 1

2m2(q̇2)2
(
l2
2

)2
+m2q̇1q̇2

(
l2
2

)2
.

(3.42)

Now, all the terms for the kinetic knergy in the Acrobot are known. This
represents the first part of calculations, since the potential energy is yet to be
calculated as well as the Lagrangian. Nevertheless, the potential energy is more
simple and the Lagrangian can be done using computational tools.

3.1.4 Potential Energy

Potential energy of the entire Acrobot is easier to calculate since it has fewer
terms, it is expressed as

P = mgh, (3.43)

where m denotes the mass, g the gravity and h is the height. The equation to
model the Acrobot is formed of three parts, first potential energy of the first
link at its center of mass, then potential energy of the origin of the second link
and potential energy of the second link at its center of mass with respect to the
origin of the second link, this is as follows

P = m1glc1 sin q1 +m2gl1 sin q1 +m2lc2 sin(q1 + q2), (3.44)
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which is simplified as

P = g(m1lc1 sin q1 +m2(l1 sin q1 +m2lc2 sin(q1 + q2))), (3.45)

where terms m1 and m2 stand for the masses, q1 and q2 for the angles, l1 and
l2 for the length of links, lc1 and lc2 for the distance to the center of mass of
links, all of them of its corresponding link indicated by the subindices 1 and 2,
respectively, and g is the gravity constant. Now, all terms to calculate potential
energy for the model of the Acrobot have been obtained together with the
kinetic energy. They will be used to obtain the Lagrangian and then equations
of motion.

3.1.5 Lagrangian

Now, kinetic and potential energies have being expressed in equations (3.39), (3.42)
and (3.45), these terms are used to be substituted into the Lagrangian expressed
by

L = K − P, (3.46)

where K and P are total kinetic and potential energies of the Acrobot, respec-
tively, thus from the substitution the following expression is obtained

L = 1
2

(
Izz1 +m1

(
l1
2

)2)
(q̇1)2 + 1

2Izz2(q̇1)2 + Izz2 q̇1q̇2 + 1
2Izz2(q̇2)2

+ 1
2m2(q̇1)2(l1)2 + 1

2m2l1l2 cos q2(q̇1)2 + 1
2m2l1l2 cos q2q̇1q̇2

+ 1
2m2(q̇1)2

(
l2
2

)2
+ 1

2m2(q̇2)2
(
l2
2

)2
+m2q̇1q̇2

(
l2
2

)2
−m1glc1 sin q1 −m2gl1 sin q1 −m2lc2 sin(q1 + q2).

(3.47)
Now, that the Lagrangian has been expressed, it is necessary to use

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
= τ (3.48)

to calculate the equations of the motion, τ is torque applied at the joint. It is
possible to see that it is necessary to calculate the derivative of the Lagrangian
with respect to each angle and the time derivative with respect to each velocity,
this leads to four important equations, which are

∂L
∂q̇1

=
(
m1(lc1)

2
+m2 (l1)

2
+Izz1 +m2 (lc2)

2
+Izz2 +2

(
m2 (lc2)

2
+Izz2

)
cos q2

)
q̇1

+
((
m2 (lc2)

2
+Izz2+m2l1lc2

)
cos q2

)
q̇2,

(3.49)
∂L
∂q1

= −(m1lc1 +m2l1)g cos q1 −m2lc2 cos(q1 + q2), (3.50)

∂L
∂q̇2

=
(
m2 (lc2)

2
+ Izz2

)
q̇2 +

(
m2 (lc2)

2
+ Izz2 +m2l1lc2 cos q2

)
q̇1, (3.51)

∂L
∂q2

= −m2lc2 sin q2(q̇1)2 − sin q2q̇1q̇2 −m2lc2g cos(q1 + q2). (3.52)

Now, terms are substituted in equation (3.48) respectively for each τ , terms
will be rearranged into the Lagrangian formulation of the dynamics to obtain
the following equation

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (3.53)
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where D(q) is the inertia matrix and is straight forward to calculate it. The
term C(q, q̇) represents the Coriolis forces and is dependent of q and q̇ and at the
same time is multiplied by q. This may look like a difficulty when obtaining the
matrix C. Nevertheless this term always appears multiplied by 2, for this each
term will be split and put one on each column according to their dependence.

For example, if a term appears as 2q1q2, it will be split into two terms
q1q2, one will be put on the first column and one in second column. We must
remember that τ1 is equal to zero. After calculating the equations of motion for
the 4-link three matrices are obtained that will be the base to our computational
model. The matrix G(q) represents the gravity forces and it is a column vector
that is easy to obtain.

Now, all elements concerning the dynamics of the Acrobot have been calcu-
lated. First kinetic and potential energies to obtain the Lagrangian and then it
is used to obtain the Lagrangian formulation of the dynamics of the Acrobot,
expressed in equation (3.53). The concept of how to obtain the model of the
4-link is shown in the subsection (3.1.6).

3.1.6 Extending the Acrobot to the 4-link

In the previous section, a detailed explanation was done on how to model the
Acrobot, now it is intended to obtain the model for the 4-link. The procedure
is exactly the same. It is necessary to obtain potential and kinetic energy of the
third and the fourth link as well. For the case of the ideal or simple 4-link with
masses at the center, then the MOI are the same and the center of mass remains
at the middle just like in other links. Since the mass is the same for each link
and it is located at the middle of the link, then for the potential energy it is
only necessary to apply the same rotation matrices that were used to transform
from the links to the main coordinate reference system. Kinetic Energy of links
3 and 4 is computed as follows

T3 =

(
1

2

)
m3

(
v0
c,3

)2
+

(
1

2

)
J3

(
w0

0,3

)2
(3.54)

and

T4 =

(
1

2

)
m4

(
v0
c,4

)2
+

(
1

2

)
J4

(
w0

0,4

)2
, (3.55)

where m3 and m4 are the masses of link 3 and 4 respectively. v0
c,3 and v0

c,4

are linear velocities of links 3 and 4 with respect to the zero frame. J3 and J4

are moments of inertia and w0
0,3 and w0

0,4 are angular with velocities respect to
the main coordinate reference system. Angular velocities of links 3 and 4 are
calculated as follows

w0
0,3 = w0

0,1 +R1
0w

1
1,2 +R1

0R
2
1w

2
2,3 (3.56)

and
w0

0,4 = w0
0,1 +R1

0w
1
1,2 +R1

0R
2
1w

2
2,3 +R1

0R
2
1R

3
2w

3
3,4, (3.57)

where the term w2
2,3 represents the velocity of link 3 with respect to the reference

system of link 2, and w3
3,4 is the velocity of link 4 with respect to the reference

system of link 3. The new rotation matrices R2
1 and R3

2 represent the rotation
from the coordinate system of link 2 to 1 and from link 3 to 2 respectively.
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The linear velocity for the third link is expressed as

v0
c3 = v0

3 + w0
0,3 × r0

c3 = w0
0,1 × r0

p + w0
0,2 × r0

p2 + w0
0,3 × r0

c3, (3.58)

where v0
3 expresses the velocity at the origin of the third link, calculated by

w0
0,1×r0

p+w0
0,2×r0

p2 which accounts for velocities of previous links that should be
added. And w0

0,3 is the velocity of the third link respect to the main coordinate
reference system times the distance to the center of mass of the third link from
the origin of third link’s reference system.

In the same way the angular velocity of the fourth link is defined by

v0
c4 = v0

4 +w0
0,4 × r0

c4 = w0
0,1 × r0

p +w0
0,2 × r0

p2 +w0
0,3 × r0

p3 +w0
0,4 × r0

c4, (3.59)

where w0
0,4 is the angular velocity of the fourth link expressed to the main

reference system, r0
c4 is the distance to the center of mass of link 4 according

to the coordinate system of link 4 and r0
p3 is the length of the third link. J3

and J4 are the moments of inertia of the links 3 and 4 respectively. Now the
procedure to calculate potential and kinetic energies is the same as with the
Acrobot. These energies are used to calculate the Lagrangian and equations of
motion, but now four equations of motion (τ) will be obtained instead of two.

3.2 Real 4-link modeling

In previous subsections, an explanation of how to model the Acrobot was done,
the 4-link modeling was mentioned just as an extension of the Acrobot. Never-
theless, this model considers just links as elements and masses at the middle of
the rod. In reality it is necessary to consider many other elements that make the
real 4-link, all elements must be considered in order to have a better calculation
of the center of mass in each link.

3.2.1 Elements of the real Actrobot

The real model consists not only of rods for the links but also of actuators at
joints, and mechanical parts to create the joints themselves, also it is necessary
to put point-feet. A description of all the elements is presented here.

• The actuator in the hip is located at the second joint. There are two of
them in order to move each of the rods that represent the upper legs. The
weight of each one is of 0,151kg.

• The desk with electronic is an electronic board with sensors and other
electronic elements to measure angles. There are 4 of them, one on every
link and the weight of each one is 0,054kg. The dimensions of the desk
with electronics are 0,176m x 0,039m.

• The rod is a metallic bar which represents the links. Each one weights
0,056kg and its length is 0,25m.

• The actuator at the knee is applies torque at the knees. There are 2 of
them, one for each knee and each one weights 0,129kg.
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• The joint are the mechanical elements at the knee and the hip that help
hold together rods and the actuators in knees and hip. There are four of
them and each one weights is 0,15kg.

• The bar in the hip is used to have a physical real axis for two legs since in
the real model legs are parallel to each other but shifted in an axis that is
not considered in the mathematical model. Its total weight is 0,082kg.

• The triangular feet are necessary to give the legs the property of point-feet
that is considered in the mathematical model. Each foot is 0,012 m long
and weighs 0,015 kg.

It is worth mentioning that the actuator at the hip and knee used to be the same.
But the ones at the hip were replaced, this is mentioned because for purposes
of technical work they are also referred as old actuators (for the knees) and new
actuators (for the hip). All these values can be seen more clearly in the table
3.1.

Table 3.1: Parts of the real 4-link model.

Part of the 4-link Weight in kg. Dimentions
1 Hip actuator 0,151 NA
2 Electronic desk 0,054 0,176m x 0,039m
3 Rod or bar 0,056 0,25 m.
4 Knee actuator 0,129 NA
5 Joints 0,15 NA
6 Hip bar 0,082 NA
7 Foot 0,015 0,012 m.

3.2.2 Center of mass and moment of inertia

Calculations of matrices are now done based on the real model. This means
that it should be taken into account the distribution of the weight to calculate
the real center of mass of each link.

Due to the fact a real model is trying to be developed it is shown how
the MOI of the first link was done taking into account many considerations.
Calculation of the center of mass of link 1 has origin at the feet, masses of long
elements are considered at their centers. It can be decomposed as follows

TotalMassLink1=FeetMass+BarMass+DeskMass+ JointMass
2

+ OldActMass
2

,

now the position of the center of mass is required, this is calculated as follows

CenterMassLink1 = 1
TotalMassLink1

(
FeetP tnL1 · FeetMass+

(BarMass+DeskMass) ·BarPtnL1+

(JointMass
2 + OldActMass

2 )·KneePtnL1
)
,

where the expressions FeetP tnL1, BarPtnL1 and KneePtnL1 indicate the
position of feet, bar or knee of link 1 respectively and the term Act indicates

19



actuator. At the same time it is necessary to calculate the distance from the
center of mass to the end of the rod to account for the masses at that extreme,
this is calculated as follows

OppositeDirectionCenterMassLink1 = LengthL1− CenterMassLink1.

The same calculations are required for the second link, the total mass of the
second links is calculated as follows

TotalMassLink2 = BarMass+DeskMass+ JointMass
2

+ OldActMass
2

+

HipActMass+ HipBarMass
2

+ JointMass,

and the position of the center of mass of the second link is expressed with the
following equation

CenterMassLink2 = 1
TotalMassLink1

(
(BarMass+DeskMass) ·RodPtn2 +

(JointMass
2 + OldActMass

2 ) ·KneePtnL2+

HipActMass ·HipActP tnL2+

(JointMass+ HipBarMass
2 ) ·HipActP tnL2

)
.

At the same time the distance required to calculate the MOI of the second link
to account for masses at the hip is expressed in the following equation

OppositeDirectionCenterMassLink2 = LengthL2− CenterMassLink2.

The resulting centers of mass are:

CenterofMassofLink1 = 20.1497cm

and
CenterofMassofLink2 = 16.7794cm.

Now, the calculation of the Moment of Inertia (MOI) is done as follows, the
long elements (rod and desk) are assumed as momment of inertia of a bar and
expressed respectivelly as follows

MOIlinkbar1 =
BarMass ·BarLength2

12

and

MOIdesk =
DeskMass ·DeskLength2

12
.

Now, this considers that the rotation is around the center of the bar. It
must be corrected and recalculated to the real axis. For this the parallel axis
theorem is used which establishes that the new MOI (Inew) equals the original
MOI (Icom) plus the mass of the bar times the squared distance to the real axis.
This is expressed as follows

Inew = Icom +mr2.

Equations to calculate the distance to the new axis for bar 1, the new moment
of inertia of the bar 1 and the new moment of inertia of the desk 1, are expressed
respectively by the following equations

NewAxisDist1 = CenterMassLink1−RodPtn1,
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NewMOIlinkbar1 = MOIlinkbar1 +BarMass ·NewAxisDist12

and
NewMOIdesk = MOIdesk +DeskMass ·NewAxisDist12.

Similarly for the second link the distance to the new axis, the new moment of
inertia of the bar 2 and the new moment of inertia of the desk 2 are expressed
respectively by the following equations

NewAxisDist2 = CenterMassLink2−BarPtnL2,

NewMOIlinkbar2 = MOIbar2 +BarMass ·NewAxisDist22,

and
NewMOIdesk2 = MOIdesk +DeskMass ·NewAxisDist22.

For the calculation of the MOI of remaining elements masses are considered
as point masses at a distance of the center of mass of the system for their
respective link. For the feet element its center of mass was considered at a
distance of 1.2 cm from the origin due to the equation that gives the center
of mass of a triangle. Finally, the addition of all moments of inertia due to
the superposition principle which establishes the moment of inertia of a system
around a particular axis is equivalent to the sum of the moment of inertia of
every element around that axis.

Similarly to this procedure, all the other MOI of the second link were cal-
culated considering the origin of the system at the beginning of the second link
or viewed from other point, the end of the first link. Since the second link is
equivalent to the third one in measures and weights and the first to the fourth
one, there is no need to calculate third and fourth. It is deduced that the MOI
are equivalent, thus we have

MOIofLink1 = MOIofLink4 = 19.6306

and
MOIofLink2 = MOIofLink3 = 68.7128.

This equivalence of link 1 to link 4 and link 2 to link 3 also applies for the case
of the Center of Mass but mirrored. The Center on mass for links 3 and 4 would
be exactly the opposite distance of links 2 and 1 respectively. This is calculated
by subtracting from the total length of each link accordingly, thus results in

OppositeDirectiontotheCenterofMassofLink1 =
6.6503cm = CenterofMassofLink4

and
OppositeDirectiontotheCenterofMassofLink2 =
8.2206cm = CenterofMassofLink3.

Now all elements have been calculated to obtain equations of motion of a real
Acrobot. Real matrices D(q) which represents the Inertia matrix, C(q, q̇) for
the Coriolis forces and G(q) for gravity terms can be calculated.
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Chapter 4

Advanced Walking Control

The control of a biped robot is particularly hard to achieve due to the instability
of the robots, some approaches simplify the dynamics to steady state force
balance [7]. This approach is unrealistic for the real dynamics of human walking
capabilities.

Due to this concern of the lack of new control concepts the RABBIT was
created by several French laboratories as a testbed to make experiments with
the control of biped robots. One of the main achievements of this project is
the development of the concept of virtual constraints which reduces the number
of degrees of freedom of the system [7]. Virtual constraints set dependence
between links of the system through the feedback.

This is the concept chosen to control the 4-link in this work. The concept is
open to choose any dependence between angles of the system. In this work all
the angles will depend on the evolution of angle q1 which is the angle between
the stance leg and the vertical axis, hence achieving a controlled step that can
be performed periodically.

It is important to say that this concept of virtual constraints can be applied
not only to walking robots but many mechanical systems with a level of under-
actuation equal to one [7]. Thus it is worth studying the concept as a way to
control underactuated system not to achieve biped walking motion only.

Of course, in the field of control of biped robots exist another ways of control
of biped robots. One of them is based on the feedback control of biped robots, see
series of work [8, 4, 3]. Using this concept it is possible to obtain similar results
like using method of virtual constraints. In contrast to defining constraining
functions, it is necessary to define here a reference system to create reference
trajectory to be tracked. Using method of feedback control it is possible to
minimalize an additional error which can be caused by e.g. an impact. However,
the feedback control method is more complicated to implement in a low-level
hardware.

4.1 Control of 4-link walker based on the method
of virtual constraints

One of the main intentions of this work is to show the application of the concept
of virtual constraints. Here a complete explanation of this concept will be
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done. The concept of virtual constrains is simple to understand, just as a real
mechanical system can be physically constrained by adding a physical restriction
to limit the system and reducing its degree of freedom. This is achieved in the
4-link through the control feedback by creating a dependence of some angles
with respect to one of the angles of the system, so these angles will not be free
to move since its position now depends on the position of a reference angle. In
this section this concept will be shown in the case of imposing two and three
virtual constraints in the 4-link. Also the different constraining functions will
be analyzed for the case of the three constraints in the 4-link. The method of
virtual constraints strongly depends on equation of motion (3.53). Let me to
remind the form of this equation

D(q)q̈ + C(q, q̇)q̇ +G(q) = u. (4.1)

The inner structure of D(q), C(q, q̇) and G(q) is very important for the
computation of virtual constraints method later on:

D(q)=


d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

, C(q, q̇)=


C1

C2

C3

C4

, G(q)=


G1

G2

G3

G4

, (4.2)

where dxx are scalar entries of the matrix D, Cx are row vectors and Gx are
scalar entries of the column vector G.

4.1.1 Control of 4-link model based on three virtual con-
straints

Using the method of virtual constraints with three constraining functions, all
of them depending on q1, the original 4-link model with 4 DOF is restricted to
system with 1 DOF only. This system may be naturally regarded as a certain
kind of an unactuated 1 DOF generalized inverted pendulum.

The method of virtual constraints is based on definition of some functions
of angles q2, q3 and q4 with dependence on angle q1. In other words, angle q2

is given by function q2 = Φ2(q1), angle q3 is given by function q3 = Φ3(q1) and
angle q4 is given by function q4 = Φ4(q1). The exact mathematical definition
of functions Φ2(q1), Φ3(q1), Φ4(q1) will be discussed later on. For shortness, we
skip the dependence on angle q1 in functions Φ2,3,4(q1). The first and second
derivatives of angles q are expressed as follows

q̇2 = Φ′2q̇1, q̈2 = Φ′′2 q̇
2
1 + Φ′2q̈1,

q̇3 = Φ′3q̇1, q̈3 = Φ′′3 q̇
2
1 + Φ′3q̈1,

q̇4 = Φ′4q̇1, q̈4 = Φ′′4 q̇
2
1 + Φ′4q̈1.

The error q between desired angular positions given by functions Φ and the real
angular positions q and the error q̇ between desired angular velocities and the
real angular velocities are defined as follows

q2 = q2 − Φ2, q̇2 = q̇2 − Φ′2q̇1,
q3 = q3 − Φ3, q̇3 = q̇3 − Φ′3q̇1,
q4 = q4 − Φ4, q̇4 = q̇4 − Φ′4q̇1.
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Using the exact state feedback linearization and subsequent linear error dynam-
ics stabilizer the following controller is designed

q̈2 = τ2 = −k2
1q2 − k2

2 q̇2,
q̈2 = τ3 = −k3

1q3 − k3
2 q̇3,

q̈2 = τ4 = −k4
1q4 − k4

2 q̇4.
(4.3)

This feedback controller guarantees that errors tend exponentially to zero, q2,3,4 →
0, q̇2,3,4 → 0. In other words, desired angular positions and velocities correspond
to the real angular positions and velocities. Further, it means that desired an-
gular accelerations correspond to the real angular accelerations q̈2,3,4 = q̈2,3,4.
Using this assumption it is possible to express following equations

τ2 = q̈2 − Φ′′2 q̇
2
1 − Φ′2q̈1,

τ3 = q̈3 − Φ′′3 q̇
2
1 − Φ′3q̈1,

τ4 = q̈4 − Φ′′4 q̇
2
1 − Φ′4q̈1.

(4.4)

Substituting feedback controller (4.3) in (4.4) the expression for vector of angu-
lar acceleration [q̈2 q̈3 q̈4]T is obtanined in the followig form q̈2

q̈3

q̈4

 =

 −k2
1q2 − k2

2 q̇2

−k3
1q3 − k3

2 q̇3

−k4
1q4 − k4

2 q̇4

+

 Φ′′2
Φ′′3
Φ′′4

 q̇2
1 +

 Φ′2
Φ′3
Φ′4

 q̈1. (4.5)

The vector motion equation (4.1) actually consists of four scalar equations,
the first of them is expressed as

d11q̈1 + [d12 d13 d14]

 q̈2

q̈3

q̈4

+ C1(q, q̇)q̇ +G1(q) = 0, (4.6)

where d11,12,13,14 are given by (4.2).
The remaining scalar equations in (4.1) are expressed as follows τ2

τ3
τ4

=

 d21

d31

d41

 q̈1 +D22

 q̈2

q̈3

q̈4

+

 C2(q, q̇)
C3(q, q̇)
C4(q, q̇)

 q̇ +

 G2(q)
G3(q)
G4(q)

 , (4.7)

where D22 is submatrix of matrix D of the following form

D22 =

 d22 d23 d24

d32 d33 d34

d42 d43 d44

 ,
C2,3,4 are appropriate raw vectors of matrix C and G2,3,4 are appropriate scalar
entries of matrix G according to (4.2).

When substituting for the vector of angular acceleration [q̈2 q̈2 q̈2]
T

in (4.7)
from (4.5), the target equation for applied actuators torques is as follows τ2

τ3
τ4

 =

 d21

d31

d41

 q̈1 +D22

−k2
1q2 − k2

2 q̇2

−k3
1q3 − k3

2 q̇3

−k4
1q4 − k4

2 q̇4

+D22

Φ′′2
Φ′′3
Φ′′4

 q̇2
1+

D22

Φ′2
Φ′3
Φ′4

 q̈1+

C2(q, q̇)
C3(q, q̇)
C4(q, q̇)



q̇1

q̇2

q̇3

q̇4

+

G2(q)
G3(q)
G4(q)

 , (4.8)
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where angular acceleration q̈1 is substituted by expression for q̈1 (4.6) after

substitution of angular acceleration vector [q̈2 q̈2 q̈2]
T

by expression (4.5). For
the sake of completeness, the expression for q̈1 is

q̈1 = − 1

d11+


d12

d13

d14


T

Φ′2
Φ′3
Φ′4




 d12

d13

d14

T  Φ′′2
Φ′′3
Φ′′4

 q̇2
1+

 d12

d13

d14

T −k2
1q2 − k2

2 q̇2

−k3
1q3 − k3

2 q̇3

−k4
1q4 − k4

2 q̇4

+ C1


q̇1

q̇2

q̇3

q̇4

+G1(q)

 .
(4.9)

Using these quite detailed computations, the final expressions (4.8), (4.9)
were obtained to control the 4-link model using virtual constraints. The result-
ing control crucially depends on the functions Φ2, Φ3, Φ4 selection and on the
initial angular velocity q̇1. To control of 4-link model in a way that resembling
walking, the functions Φ3 and Φ4 should represent bending and stretching knees
while function Φ2 should be monotonous. The initial angular velocity q̇1 should
be high enough to ensure monotonous behaviour of the angle q1 with respect to
time. On the other hand, the maximal initial velocity q̇1 is limited by stability
conditions during more steps, see [16, 6, 10].

Three virtual constraints applied to simplified 4-link

At this point degree of freedom of the 4-link has been reduced since q̈1 is ex-
pressed in terms of the other variables. In other words a control for q̈1 has been
found.

Now this control is applied to the 4-link. To prove in a simplified way that
it is working the 4-link will be treated as an Acrobot. From this reason, angles
q3 and q4 will be set to zero, hence their derivatives, in this sense the 4-link will
behave as having no knees.

The trajectory of the angle q2 has been set to a simple straight line, the
initial position has been defined in a simple way. It was decided that the initial
angle between links 2 and 3 should be approximately 30 degrees and the initial
angle of q1 respect to the vertical should be 15 degrees.

The 4-link, treated as an Acrobot here, starts the step with a predefined
initial position. It was decided that for this initial position q2 should have a value
of 3.5 radians and q1 of −0.2 radians. The only dependence in this system would
be q2 on q1. Knowing that q1 will move from −0.2 to +0.2 radians and that
q2 starts at 3.5 radians and ends at 2.7 radians a simple Lagrange polynomial
was defined considering only initial and final positions. A complete explanation
about how to obtain the Lagrange polynomial will be done in subsection 4.2.2.
The obtained equation is

Phi2 = q2i
q1 − q1f

q1i − q1f
+ q2f

q1 − q1i

q1f − q1i
, (4.10)

where q2i and q2f stand for the initial and final values of q2 and q1i q1f stand
for the initial and final values of q1. The trajectory of the angle Phi2 is then
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defined by the equation

Phi2 = 3.5
q1− 0.2

−0.4
+ 2.7

q1 + 0.2

0.4
. (4.11)

A simulation in Matlab was used to see the performance. This simulation
requires initial data and after the computations shows plots of velocities and
angles, it also displays an animation of the 4-link, a more detailed explanation
about this simulation will be done in section 4.2. Initial velocities were selected
manually until the initial velocity q̇2 was high enough to complete the step and
do not make the 4-link fall down. The initial velocity q̇1 is 1 rad/sec and q̇2 is
−3 rad/sec. Other angles q3, q4 and the velocities q̇3 and q̇4 are zero.

By these results it is possible to conclude that the concept of the virtual
constraints works fine. It was tested in a simple system with simple trajectory.
Now, it is appropriate to try this concept in a more advanced system considering
knees of the 4-link. The first approach was not realistic but was good enough
to see the application of the concept in a simplified model.

In figure 4.1 it is possible to see how initial and final positions of the 4-link
match with the value of feedback gains (4.3) equal to 150.

Figure 4.1: 4-link as an Acrobot.

In figures 4.2 and 4.3 it is possible to see the trajectory of the angles and
velocities respectively.
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Figure 4.2: Angular positions of 4-link controlled as an Acrobot.

Figure 4.3: Angular velocities of 4-link controlled as an Acrobot.

In figure 4.4 a sequence of a single step for the 4-link restricted to walk like
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an Acrobot is shown, this image is obtained from the best result which has very
high gain.

Figure 4.4: Animation of the 4-link as an Acrobot.

4.1.2 Control of 4-link model based on two virtual con-
straints

In the end of chapter 4 a comparison of the developed way of control of the
4-link walking robot based on method of virtual constraint with the previously
developed feedback control in [9] will be made.

The main idea in [9] is based on embedding of the Acrobot into the 4-
link walker model. In other words, in approach from [9] only two constraining
functions are used, i.e. the original 4-link model with 4 DOF is restricted to a
system with 2 DOF only, referred in [9] as the so-called generalized Acrobot.

The detailed description of method of the Acrobot embedding into to 4-link
model will be given here, for details see [9]. The control of the Acrobot was
based on the partial exact feedback linearization of order 3. As a matter of
fact, this linearization is based only on the favorable mentioned property that
the Acrobot has kinetic symmetry with respect to the non-actuated angle q1. It
can be easily seen that so is the case of the generalized Acrobot. Therefore, the
generalized Acrobot is order 3 exact feedback linearizable using the following
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transformations

ξ1 = q1 +
∫ q2

0
d−1

11 (s)d22(s)ds,

ξ2 = d11(q2)q̇1 + d12(q2)q̇2,

ξ3 = −G1(q),

ξ4 = ∂G1

∂q1
(q)q̇1 + ∂G1

∂q2
(q)q̇2,

w2 = ˙̄q
> ∂G

2

∂q̄2 (q̄) ˙̄q +
[
∂G1

∂q̄1
(q̄), ∂G1

∂q̄2
(q̄)
]
q̈1

× D(q̄)−1

[[
0
τ̄

]
− C(q̄, ˙̄q)−G(q̄)

]
.

(4.12)

As a matter of fact, ξ̇1 = d̄−1
11 (q2)ξ2, further, using Euler-Lagrange formalism

it can be seen that ξ̇2 = −G1 = ξ3. Finally, it is straightforward, that ξ̇3 =
ξ4, ξ̇4 = w. Summarizing, we have the transformed generalized Acrobot

ξ̇1 = d̄−1
11 (q̄)ξ2, ξ̇2 = ξ3,

ξ̇3 = ξ4, ξ̇4 = w2.
(4.13)

For this generalized Acrobot in partially linear coordinates it can be designed
a reference walking trajectory along the ideas in [8] as follows. Fixing the
initial and final postures during a single step corresponds, in particular, in
fixing ξ3(0) and ξ3(T ) where T denotes the duration of the step. Taking the
reference virtual input wr = 0 means, that ξ4(t) is constant and can be computed
as ξ4(t) ≡ [ξ3(T ) − ξ3(0)]/T . Therefore, the only remaining reference step
parameter to be computed is ξ2(0). This can be done by tuning in simulations
in original q̄ coordinates, resulting in the so-called pseudo-passive reference
walking trajectory.

Next, computing the approximate linearization along the above trajectory
gives the following approximate tracking error dynamics

ė1 = µ1(t)e1 + µ2(t)e2 + µ3(t)e3

ė2 = e3, ė3 = e4, ė4 = w2.
(4.14)

This error dynamics can be stabilized by various ways, e.g based on LMI ap-
proach in [5], or time varying feedback in [9, 1].

The following transformations were used to control of angles in knees in the
stance or swing leg using the method of virtual constraints

ξ5 = q3 − Φ3(q2), ξ6 = q̇3 − Φ
′
3(q2)q̇2, (4.15)

ξ7 = q4 − Φ4(q2), ξ8 = q̇4 − Φ
′
4(q2)q̇2. (4.16)

Transformations (4.15) and (4.16) have similar structure like (4.13). The error
of constraints violation for the stance leg has the following dynamics

ξ̇5 = ξ6, ξ̇6 = w3, (4.17)

where w3 is a state feedback controller for angle q3 with following structure

w3 = −K1
3ξ5 −K2

3ξ6. (4.18)
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The same dynamics was obtained for the second constraints violation error
applied to the swing leg

ξ̇7 = ξ8, ξ̇8 = w4, (4.19)

where w4 is a state feedback controller for angle q4 with following structure

w4 = −K1
4ξ7 −K2

4ξ8. (4.20)

Definitions of functions Φ3(q2) and Φ4(q2) are given in [9] and will be dis-
cussed later. Obviously, the first of them should express the bending of the
swing leg while the second one the stretching of the stance leg.

Using of the structure of the dynamics equation of motion (4.1) the following
linearizing output was obtained

w =

 w2

w3

w4

 = β(q)

 q̈2

q̈3

q̈4

+ α(q, q̇), (4.21)

where

β(q)=


−∂G1

∂q1
d12

d11
+ ∂G1

∂q2
−∂G1

∂q1
d13

d11
+ ∂G1

∂q3
−∂G1

∂q1
d14

d11
+ ∂G1

∂q4

−Φ
′
3(q2) 1 0

−Φ
′
4(q2) 0 1


and

α(q, q̇) =

 −
∂G1

∂q1

(
C1(q,q̇)

d11
q̇ + G1(q)

d11

)
+ ∂2G1(q)

∂q2 q̇2

−Φ
′′
3(q2)q̇2

2

−Φ
′′
4(q2)q̇2

2 ,


terms d11,12,13,14 are appropriates scalar entries in inertia matrix D, C1 is the
first line of matrix C and G1 is the first scalar entry in vector G according to
(4.2).

Substituting (4.6) in (4.7) it is possible to obtain primary equation (4.7) in
following form

D(q)

 q̈2

q̈3

q̈4

 =

 τ2τ3
τ4

− C(q, q̇)


q̇1

q̇2

q̇3

q̇4

−G(q), (4.22)

where

D =

 d22 − d21d12

d11
d23 − d21d13

d11
d24 − d21d14

d11

d32 − d31d12

d11
d33 − d31d13

d11
d34 − d31d14

d11

d42 − d41d12

d11
d43 − d41d13

d11
d44 − d41d14

d11

 ,

C =

 C2 − C1 d21

d11

C3 − C1 d31

d11

C4 − C1 d41

d11

 , G =

 G2 −G1
d21

d11

G3 −G1
d31

d11

G4 −G1
d41

d11

 .
From equations (4.22) and (4.21) is possible to obtain final equation for torque
which can be directly applied to actuators τ2

τ3
τ4

 = D(q)β−1(q) (w − α(q, q̇)) + C(q, q̇)q̇ +G(q). (4.23)
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Vector w = [w2, w3, w4]T contains particulars feedback controllers for angles q2,
q3 and q4. The angle q2 is controlled through the structure of embedded Acrobot
and angles q3 and q4 are controlled using method of virtual constraint.

4.2 Defining the constrainting functions for the
4-link model

The definition of constraining functions is very important for the virtual con-
straint method. One of the aims of this thesis is to compare the developed
virtual constraint method with previously developed method of embedding Ac-
robot into 4-link system in the previous section. From this reason, trajectories
of dependance q2, q3 and q4 on q1 were taken as reference. In section 4.2.1 they
will be approximated by regresion method, in sections 4.2.2 and 4.2.3 they will
be approximated using the method of Lagrange polynomial in order to find the
simplest constraining functions to control 4-link model. The main idea is that
the 4-link will start and finish in the same position but with shifted legs; this is
because after a single step conditions can be switched and the 4-link can repeat
the step to make a continuous walk.

A simulation of the Acrobot in Matlab will be used to see the performance
of the constraining functions. The simulation requires predefined values for all
the angles, q1, q2, q3 and q4, also needs initial values for the velocities q̇2, q̇3

and q̇4. The initial velocity for q̇1 should also be defined, different values will be
tried to see how the 4-link behaves under diverse initial velocities for q1. The
simulation is designed to be stopped by position control, this happens when
the foot is close enough to the ground to say that the step is finished. The
time the simulation should run is an other parameter to define, this time is not
very important under these circumstances since the simulation is stopped by
position. Nevertheless, while runing some simulations the foot can be too close
to the ground before the swing leg has finished its movement due to different
factors, for example the leg is not liffted enough and reaches the limits of the
stop by position too soon. In these cases it will be necessary to remove the stop
by position control and set a limit to the time the simulation should run. In
figure 4.5 an image of the stop by position control in Matlab can be seen.

Figure 4.5: Stop by position control in Matlab.

If a simulation is stopped by position before reaching the final desired values
then it is an indication that the simulation was not succesful. Nevertheless,
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it is useful to see the full performance to see how it can be improved. After
removing the stop by position control there is the risk that the time set for the
simulation is too long. It is possible for the velocities to increase at a very high
rate during the computation of the simulation, like going to infinity. In this case
the computation takes too long and has to be stopped and the time of the step
has to be reduced.

4.2.1 Regresion approach

For this approach a regression of trajectories of q2 q3 and q4 in section 4.1.2
was done using Matlab tools to fit equations that best describe trajectories that
angles should follow. The originally created functions for purpose of embedding
Acrobot into 4-link model had dependance on angle q2. But, it is not possible
to fit the original dependance of functions on angle q1 because they have not
one-to-one correspondence, see figures 4.6 and 4.7.

In figure 4.6 it is possible to see in red color the trajectory that the angle q2

should follow and the actual trajectory obtained after the regression is shown in
blue. Figure 4.7 shows the same information but for the angle q3. For angle q4

the trajectory has the same shape that the one for q3 but with different values,
it is shifted upward in position.

Figure 4.6: Dependance of angle q2 on q1.
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Figure 4.7: Dependance of angle q3 on q1.

The values of q1 run from -0.15 to 0.35 and the equation obtained from the
regressions are

Phi2 = −2733.1q6
1 + 1837.2q5

1 − 228.04q4
1 − 72.828q3

1+
19.186q2

1 − 2.2207q1 + 2.9859,
(4.24)

Phi3 = 78.943q5
1 − 94.443q4

1 + 41.297q3
1 − 6.4298q2

1−
0.40561q1 − 0.039581,

(4.25)

and

Phi4 = 78.943q5
1 − 94.443q4

1 + 41.297q3
1 − 6.4298q2

1−
0.40561q1 + 0.36042.

(4.26)

The initial conditions are also taken from previous method, note that q2

needs to have high velocity in order to avoid falling back. The initial condition
are as follow

q10 = −0.1213,
q20 = 3.5612,
q30 = −0.1812,
q40 = 0.2188,
dq20 = −7.9128,
dq30 = 4.8934,
dq40 = 4.8934,

(4.27)

where the subindex 0 denotes that is an initial condition and each angle is
expressed in radians and velocities in radians per second. The only values
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allowed to be changed are the initial velocity q1 and the time of the simulation.
Different initial velocities were tried to see how the 4 link behaves.

For an initial velocity dq10 of 1.5 rad/sec the time of the simulation can
be limited to 0.115 seconds to get a satisfactory result, previously there were
small misalignments that were possible to correct without increasing the gain.
The gain was set to 100 for all values and the simulation is stopped by position
through control in simulink.The results can be seen in figures 4.8, 4.9 and 4.10.
It is possible to see that the step has the correct length and the axis in red are
within the limits of the width of the legs.

Figure 4.8: Step with regression approach, q̇1 of 1.5 rad/sec and 0.115 time
simulation.

The previous result is satisfactory, now the same conditions were used to
test the 4 link at different initial velocities. For an initial velocity of 2 rad/sec
the 4-link performs well, having only small misalignments seen on links 2 and
3, links 1 and 4 have misalignments that were very small. The simulation is
stopped by position around 0.110 seconds which means that the time of 0.115
seconds did not run completely. A new run was done removing the stop by
position control which leads to a very long step, approximately 30% longer.
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Figure 4.9: Velocities with regression approach, q̇1 of 1.5 rad/sec and 0.115 time
simulation.

Figure 4.10: Angle trajectory with regression approach, q̇1 of 1.5 rad/sec and
0.115 time simulation.
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For an initial velocity of 1 rad/sec and time limit of 0.115 seconds with stop
by position control the step is unfinished, it seems obvious that at lower velocities
it will be required longer time to finish the step, but since 0.115 seconds was
too much for initial velocity of 2 rad/sec this time was not modified at first.
New simulations were done increasing the time to improve the results, finding
a good step at 0.130 seconds, it is seen that it is possible achieve good results
for the 4-link without modifying the gain due to the time step factor.

Setting time back to 0.115 seconds to try slower initial velocity of 0.5 rad/sec,
to compare with initial assumptions, results in an unfinished step. This was
expected since the initial velocity is too low to achieve the desired final positions.
The time is then increased to 0.140 seconds for which the step was almost
finished but with big misalignments. With time of 0.150 seconds the step was
a little longer. It was difficult to achieve satisfactory result at the intermediate
points between 0.140 and 0.150 seconds, for example at 0.145 seconds link 2 was
outside the axis of the final position it should follow, it was not possible to get
good results with the change of time. From this reason, it was decided to increase
the gain. After trying gains of 200, 300 and 1000 it was not possible to achieve
good performance. It was then obvious the relevance of the initial velocity. It
was not possible to achieve desired results at very low initial velocities even with
very high gain.

In figure 4.11 it is possible to see a sequence of movements that the 4-link
performs with an initial velocity for q1 of 1.5 red/sec, the simulation stopped
by position control around 0.115 seconds.

Figure 4.11: 4-link animation sequence with regression aproach.
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4.2.2 Lagrange Polynomial

Even when an approximation for a given trajectory was being made, it is not
so necessary for it to be exactly the same. The main characteristic of the
trajectory is to have well established initial and final position so the 4-link can
“finish where it started” with shifted legs and start the cycle again, making a
cyclic walking. It was decided to use Lagrange polynomials to approach the
trajectory of the angles. The Lagrange polynomial uses two or more x and y
pairs to make a polynomial that passes through all the specified points. In this
case this points are expressed by q1 for x and q2, q3 or q4 for y respectively. For
Phi2 a polynomial with two points was calculated having degree 1. For Phi3,
three points were defined to make the polynomial of degree 2 and for Phi4, four
points were used to make a degree 3 Lagrange polynomial. All equations take
into account initial and final values and if more points are required they take
intermediate values in the desired trajectory. Resulting equations are as follow

Phi2 = q2i
(q1 − q1f )

(q1i − q1f )
+ q2f

(q1 − q1i)

(q1f − q1i)
, (4.28)

where initial velocity for angle q1 is q1i with a real value of -0.1213 radians, q1f

is the final value of q1 with a real value of 0.3390 radians. The initial value for
q2 is 3.6025 radians denoted by q2i, q2f is the final q2 with real value of 2.6787
radians.

For Phi3 the Lagrange polynomial equation calculated is

Phi3 = q3i
(q1−q1m3)(q1−q1f )

(q1i−q1m3)(q1i−q1f ) + q3m3
(q1−q1i)(q1−q1f )

(q1m3−q1i)(q1m3−q1f )

+q3f
(q1−q1i)(q1−q1m3)

(q1f−q1i)(q1f−q1m3) ,
(4.29)

where the first point is given by (q1i,q3i) with real value of (−0.1213,−0.2000).
The final point (q1f , q3f ) has real value of (0.3390,−0.2000). The medium point
is expressed by (q1m3, q3m3) with real value of (0,−.0475). All the values are in
radians. Finally Phi4 is expressed by

Phi4 = q4i
(q1−q1m4)(q1−q1n4)(q1−q1f )

(q1i−q1m4)(q1i−q1n4)(q1i−q1f ) + q4m
(q1−q1i)(q1−q1n4)(q1−q1f )

(q1m4−q1i)(q1m4−q1n4)(q1m4−q1f )

+q4n
(q1−q1i)(q1−q1m4)(q1−q1f )

(q1n4−q1i)(q1n4−q1m4)(q1n4−q1f ) + q4f
(q1−q1i)(q1−q1n4)(q1−q1m4)

(q1f−q1i)(q1f−q1n4)(q1f−q1m4) ,

(4.30)
values are as follow, initial q1 and q4 are denoted by q1i and q4i with real values
of −0.1213 and 0.2000 radians respectively. The final point is given by q1f with
value of 0.3390 radians and q4f with value of 0.2000 radians. Phi4 requires 4
points to be made, the other extra are represented by (q1m4, q4m), with value of
(0, 0.3525), and q1n4, q4n with value of (0.15, 0.25) radians.

Names of points in equations have many sub-indices to avoid confusion, for
example q1m4 represents angle q1 in a medium point denoted by m and belongs
to the Phi4 denoted by the number 4. Position of the foot of the swing leg
between the initial and final value is chosen within an approximation of a real
trajectory. In figures 4.12, 4.13 and 4.14 pictures it is possible to see the new
trajectories of Phi2, Phi3 and Phi4.
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Figure 4.12: New trajectory of q2 on q1.

Figure 4.13: New trajectory of q3 on q1.

38



Figure 4.14: New trajectory of q4 on q1.

Following similar conditions as tested on the regression method for better
comparison of results of these equations were tested at different velocities. First,
for an initial velocity q1 of 1.5 rad/sec and a time 0.250 seconds and gain 100,
simulation was run and stopped around 0.090 seconds at the middle of the step
when both feet are overlapped. Because of this, the stop by position control was
removed to see full performance. Velocities start to increase at very high rate
around 0.130 seconds and the computation takes too long. That is why a limit
was set to 0.120 seconds. As a result, the step was improved but still shorter
and there is misalignment in all links. Time was set to 0.125 seconds which
gave an already too long step. Trying shorter time again, 0.121 seconds, the
performance was improved the misalignment is small and small changes in time
lead to large errors that it was decided to try with the gain increased to 1000
directly to see best results. This leads to better results but yet not satisfactory.

Due to the difficulty to achieve good results with this first velocity, small
changes in the velocity were tried. First with 100 gain and limit of 0.125 seconds,
1.4 rad/sec was set as initial velocity. This leads to a final correct position of feet
but link 3 and 4 are not aligned in the axis as they should. Reduced velocity for
same conditions gives a slightly shorter step. It was difficult to find satisfactory
results.

For a high initial velocity 2 rad/sec the simulation time has to be reduced to
less than 0.110 seconds. Otherwise, velocities would increase at very fast rate,
but still 0.115 seconds as limit in time gives a long step, 0.105 seconds as limit
gives a shorter step than required even with these small changes in time the
difference in the step is big.

For initial velocity of 1 rad/sec the best step is given at 0.139 seconds but
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there are misalignments. Since changes in time will affect the length of the
step, the gain was set to 1000 to try to improve performance. Nevertheless,
unsatisfactory results were obtained, the step is longer than required.

For velocity of 0.5 rad/sec and gain of 100 the best step was achieved at
time 0.161 seconds. The length is good but there is misalignment in links 2,
3 and 4. In figures 4.15, 4.16 and 4.17 it is possible to see some examples of
unsatisfactory results for longer and shorter steps also for a step of required
length but with misalignment. In figure 4.18 it is possible to see the velocities
increasing rapidly if the simulation is let to run longer periods of time which
means that the simulation never stops computing.

Figure 4.15: Example of a longer step.

From this results it can be concluded that a simple Lagrange polynomial is
an easy way to find the trajectories that the angles for the 4-link should follow,
just by having initial and final positions and one or two other intermediate
points. Nevertheless, even when some almost satisfactory results were obtained,
the simulation has to be stopped by time or the velocities would go to infinity.
It was very difficult to find conditions for good performance and what is more
important, as can be seen in figure 4.19, the 4-link seems to have an intermediate
position where the foot of the swing leg goes under the ground which would be
impossible in reality. This leads to conclude that a polynomial of higher degree
is required.
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Figure 4.16: Example of a shorter step.

Figure 4.17: Example of a step of proper lenght but with misalignment.
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Figure 4.18: Example of velocities going to infinity.

Figure 4.19: 4-link animation sequence with Lagrange Polynomial aproach.
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4.2.3 Increased Lagrange Polynomial

The previous approach was too simple to achieve good performance at different
velocities. It is possible that this is due to the big differences in trajectories
of q2 and q3 of the simple Lagrange polynomial compared with trajectories in
section 4.1.2. Even more, there is risk that the 4-link actually goes under the
ground. Because of this it was decided to try a Lagrange polynomial with 4
points in all the angle’s trajectories. This means polynomials of degree 3. The
new polynomials are

Phi2 = q2i
(q1−q1m2)(q1−q1n2)(q1−q1f )

(q1i−q1m2)(q1i−q1n2)(q1i−q1f )+

q2m2
(q1−q1i)(q1−q1n2)(q1−q1f )

(q1m2−q1i)(q1m2−q1n2)(q1m2−q1f )+

q2n2
(q1−q1i)(q1−q1m2)(q1−q1f )

(q1n2−q1i)(q1n2−q1m2)(q1n2−q1f )+

q2f
(q1−q1i)(q1−q1n2)(q1−q1m2)

(q1f−q1i)(q1f−q1n2)(q1f−q1m2) ,

(4.31)

where q1i denotes initial q1 with value of −0.1213 and q1f is the final q1 with
value of 0.3390. The initial and final points for q2 are 3.6025 and 2.6787 re-
specively denoted by q2i and q2f . There are other two intermediate points
(0.0,3.0) and (0.2,2.8) denoted by q1m2, q2m2, q1n2 and q2n2 respectively. Phi3
is expressed by

Phi3 = q3i
(q1−q1m3)(q1−q1n3)(q1−q1f )

(q1i−q1m3)(q1i−q1n3)(q1i−q1f )+

q3m3
(q1−q1i)(q1−q1n3)(q1−q1f )

(q1m3−q1i)(q1m3−q1n3)(q1m3−q1f )+

q3n3
(q1−q1i)(q1−q1m3)(q1−q1f )

(q1n3−q1i)(q1n3−q1m3)(q1n3−q1f )+

q3f
(q1−q1i)(q1−q1n3)(q1−q1m3)

(q1f−q1i)(q1f−q1n3)(q1f−q1m3) ,

(4.32)

where the initial q1 is denoted by q1i with value -0.1213 radians and final by
q1f with value 0.3390 radians. Initial q3 is represented by q3i with value of
-0.2000 radians and final is represented by q3f also with value -0.2000 radians.
Intermediate points are (0.0000,−0.0475) and (0.1500,−0.1500) in radians and
represented by q1m3, q3m3, q1n3 and q3n3 respectively. Phi4 is exactly the same
as in subsection 4.2.2.

In figures 4.20, 4.21 and 4.22 it is possible to see the comparison between the
new polynomial (in dotted blue), the regression (continuous blue) and original
trajectory from which the regression was done (in red). It is possible to see how
new polynomials are similar to ones obtained by the regression even when they
are of lower order.
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Figure 4.20: 4 Points Lagrangian Polynomial q2 on q1.

Figure 4.21: 4 Points Lagrangian Polynomial q3 on q1.
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Figure 4.22: 4 Points Lagrangian Polynomial q4 on q1.

Initial values for angles and velocities are the same as in the regression,
except for q1 for which different initial velocities will be tried. For an initial
velocity of 1.5 rad/sec, gain of 100, and the stop by position control connected,
time was set to 0.250 seconds. For these conditions the step is good, but it is
possible to see that the simulation stops around 0.110 seconds which means that
the stop by position control makes the step slightly shorter. Due to the fact
that it is stopped by position increasing time would not modify the situation.
It was decided to modify the gain increasing it to 1000 to test this approach.
This leads to a slightly larger step. The gain does not play so much role as the
initial velocity, higher velocity makes a shorter step in size and time.

For a lower velocity of 1 rad/sec step is unfinished. Because of this, time was
increased to 0.250 seconds, which leads to a good step that stops by position
around 0.130 seconds. The best step is achieved at 1.100 seconds, the results
can be seen in figure 4.23, 4.24 and 4.25
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Figure 4.23: 4 Points Lagrangian Polynomial’s best step.

Figure 4.24: 4 Points Lagrangian Polynomial velocities for best step.
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Figure 4.25: 4 Points Lagrangian Polynomial angles for best step.

For lower initial velocity of 0.5 rad/sec the step is longer and stops around
0.155 seconds. Because of this, time limit was decreased to 0.145 seconds which
results in a good step with proper length but with misalignment of link 2 and
3. The 4-link is very sensitive to small changes in time. It leads to longer or
shorter steps. It was decided to try with increased gain. A gain of 1000 results
in a step of almost proper length, little longer and with small misalignment
of link 2 mainly. A small improvement was done at very large gain cost. In
figure 4.26 the sequence of steps for the Lagrange Polynomial of 4 points is
shown. It corresponds to an initial velocity of q1 of 1.5 rad/sec with stop by
position control.

What can be seen now from a comparison of different approaches like re-
gression and Lagrange polynomials of different degrees, is that even when good
results can be achieved by the 3 methods. The regression needs a previous set
of values. For the Lagrange Polynomials it is only necessary to have initial and
final values for angles and a few intermediate values. The first Lagrange polyno-
mial approach was too simple and the 4-link was difficult to tune. Especially, it
had to be stopped by time. The second approach with increased degree for the
polynomial was better to achieve good results, especially because the simula-
tion can run completely and be stopped by position. It has a good performance
around the values of main interest this is 1.1 and 1.5 rad/sec approximately.
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Figure 4.26: 4-link animation sequence with Lagrange Polynomial of 4 points
aproach.

4.3 Comparison of control algorithms for 4-link
model

Since the best approach was given with the Lagrange polynomial of degree 3,
this was compared with the approach of embedding Acrobot in subsection 4.1.2.
Comparison of angular position and velocities was done, the result for angular
positions can be seen in figures 4.27 and 4.28. It can be seen that for the
angular position for angles q1 and q2 there is not much difference since this was
calculated to be similar with the Lagrange polynomial and for angles q3 and q4

positions are not equal through time but it follows a similar path.
Nevertheless, for velocities it can be seen that they are completely different

through time, shown in figures 4.29 and 4.30. For accelerations of the three
virtual constraints method it is seen that they are higher at the very beginning
of the step as seen in the slopes of velocities dq1 and dq2 to then decrease the
velocity almost to zero and then accelerate again at the end of the step. While
the embedded approach accelerates more slowly to higher velocity than the three
virtual constraints method at the beginning of the step and then decelerates
smoothly till the end of the step.

48



Figure 4.27: Comparison of q1 and q2 for Acrobot embedding method.

Figure 4.28: Comparison of q3 and q4 for Acrobot embedding method.
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Figure 4.29: Comparison of dq1 and dq2 for embedded and three virtual con-
straints methods.

For the velocity dq4 even when the comparison of plots in figure 4.30 seem
to be different they are alike in the sense that both accelerate at the beginning
of the step, then go down to negative values and then decelerate again. Similar
to other velocities, the approach of embedding Acrobot first goes to very high
value to then have a smother curve, while the velocities of the three virtual
constraints seems to have the bigger effort at the end of the step. The difference
is due to the control approach. The velocity dq3 is overlapped with dq4 of its
corresponding method. In figure 4.31 it is possible to see a comparison of the
steps for both methods.

Two virtual constraints method is shown in red and three virtual constraints
in black. It is possible to see that the high acceleration of the three virtual
constraints method makes not so much difference at the begging of the step,
but then it decelerates while the two virtual constraints method keeps increasing
velocity, there is where the two virtual constraints method goes ahead in the
step, shown in red. But at the end the bigger effort is done by the three virtual
constraints method that, as seen from figure 4.30, has a second peak in velocity
(negative) much higher than the smooth transition of the two virtual constraints
method.

It is possible to conclude from the compassion of the methods that both work
fine. The transition of velocities is smoother in the embedded or two virtual
constraints method. Nevertheless, constraining functions of low degree are easy
to obtain for the three virtual constraints approach.
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Figure 4.30: Comparison of dq1 and dq2 for embeded and virtual constrain.

Figure 4.31: Comparison of step for embedded (red) and virtual constraints
methods (black).
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Chapter 5

Conclusions

In the present work a detailed explanation of the modeling of one of the most
studied underactuated mechanical systems was done. This system named 4-link
consists of 4 rods with articulated joints between them. The modeling was also
done for a real 4-link model placed in a laboratory at Czech Technical University.
Underactuated mechanical systems are of interest because new concepts for non-
linear control can be studied. In this work the concept of virtual constraints
was used and compared in different ways of applying it. The main reason
to study the 4-link as underactuated mechanical systems is not only because
of the underactuation but because it is one of the most simple systems that
can represent a walking robot. These types of robots are of interest because
of the multiple applications they have. Developing walking robots that are
underactuated represent an improvement over the fully actuated walking robots
since they are more efficient in terms of energy and more agile. Walking is more
natural and human like. Nevertheless, the concept of virtual constraints can be
applied to other underactuated mechanical systems not only to walking robots.
That is why is even more worth studying.

The ongoing research is focused on work with the real 4-link model. It would
be of interest to test the model and any other control approach developed on a
real robot.
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[8] S. Čelikovský, J. Zikmund, and C. Moog. Partial exact linearization design
for the acrobot walking. In Preprints of the American Control Conference,
2008, pages 874–879, Seattle, USA, 2008.

[9] S. Čelikovský, M. Anderle, and C. Moog. Embedding the acrobot into
a general underactuated n-link with application to novel walking design.
2012. Submitted to the 51st IEEE Conference on Decision and Control,
2012, Maui, Hawaii, USA.

53



[10] J.W. Grizzle, Ch. Chevallereau, A.D. Ames, R.W. Sinnet. 3D Bipedal
Robotic Walking: Models, Feedback Control, and Open Problems. in
Preprints of the 8th IFAC Symposium on Nonlinear Control Systems, NOL-
COS 2010, pages 505–532, Bologna, Italy, 2010.

[11] Tuomas Haarnoja. Dynamic Modeling and Velocity Control for Limit Cycle
Walking. Luleæ University of Technology. 2010.

[12] Marek Peca, Michal Sojka,Zdeněk Hanzàlek. SPEJBL-The biped walking
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