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Abstract
This master thesis deals with building
identification. At first, two different build-
ing thermal continuous-time LTI models
are created using a technique of RC ther-
mal circuits. These models are then used
for simulations and data generation for
identification process.

The main objective of this thesis is to
propose and implement an algorithm for
distributed building identification. The
identification problem of the overall build-
ing is decomposed using so called decom-
positions methods, which results in solv-
ing small local identification problems
with additional constraints on parameters
of mutual walls. The local identification
processes measured data (temperatures
and heat flows of heat exchangers) and
utilizes grey-box modelling and the Least
Squares or Maximum Likelihood Estima-
tion.

Finally, the proposed algorithm is
tested on a 4-zone building benchmark
model for various configurations.

Keywords: Building identification,
Decomposition methods,
Continuous-time Grey-box modelling,
Linear systems.

Supervisor: Ing. Jiří Dostál

Abstrakt
Tato diplomová práce se zabývá identifi-
kací budov. Nejprve jsou vytvořeny po-
mocí RC obvodů dva teplotní modely bu-
dovy jako lineární časově neproměnné sys-
témy spojitého času. Tyto modely budou
poté použity během simulací a také jako
generátory dat pro identifikační proces.

Hlavním cílem této práce je navrhnout
a implementovat algoritmus pro distribuo-
vanou identifikaci budov. Identifikace bu-
dovy jako celku je rozložena pomocí tak-
zvaných dekompozičních metod na menší
lokální identifikační problémy v jednotli-
vých místnostech, kde si musí být rovny
parametry, které popisují společné zdi
mezi místnostmi. Lokální identifikace pou-
žívá jako data naměřené teploty vzduchu
v místnostech a tepelný tok výměníku.
Identifikace je založena na grey-box mo-
delování a odhaduje parametry pomocí
nejmenších čtverců nebo maximálně věro-
hodného odhadu.

Nakonec je navržený algoritmus otesto-
ván na čtyřzónovém modelu budovy s ně-
kolika různými nastaveními.

Klíčová slova: Identifikace budov,
Dekompoziční metody, Grey-box
modelování ve spojitém čase, Lineární
systémy.

Překlad názvu: Distribuovaná
identifikace budov
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Chapter 1
Introduction

Heating or more generally HVAC (+ Ventilation and Air Conditioning) systems form an
integral part of modern buildings. Their function is to ensure a good environment for
occupants inside the buildings. As for the heating, this good environment is represented
by a certain air temperature range in the building. Therefore, the temperature is
permanently controlled to remain within the desired range.

However, an energy consumption when not intelligent HVAC systems are used can
form up to 30 % of the overall building consumption [1]. The costs of heating may then
amount to relatively high sums. Fortunately, modern HVAC systems can decrease the
consumption and costs by 20-30 % [2], therefore they are being applied increasingly.

On the other hand, a correct (optimal) function of these systems is dependent on
accurate dynamic building models which are often difficult to obtain [3]. The identification
of the building is thus a crucial part for all the intelligent systems which utilize model-
based methods. Nevertheless, this is associated with several challenging issues.

The first problem is the experimental data are often insufficient for the building
identification. The second problem is that the buildings are modelled as large-scale
MIMO1 systems with a lot of parameters to be identified. Therefore, it is very demanding
to estimate all the parameters correctly.

This thesis just deals with the building identification and brings an approach how to
overcome the complexity of the identification problem. The approach utilizes decomposi-
tion methods to distribute the large identification problem to smaller identifications of
individual rooms (zones). The local identification problem is based on grey-box mod-
elling where the model structure is attained from physical principles and parameters are
estimated.

1.1 Motivation of the thesis

This thesis was motivated by a need to obtain a proper thermal building model which
will serve for advanced heating control methods, e.g. Model Predictive Control. The
use of decomposition for the overall building identification problem arises from two
aspects. For one thing, the decomposition brings a complexity reduction of the large-
scale problem. For another, a nature of the problem is basically distributed. The
data acquisition is performed by sensors measuring a heat flow of heat exchangers and

1Multiple Input Multiple Output
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1. Introduction ...........................................
by wireless temperature sensors that are placed in every zone.

Therefore the idea is to carry out an identification of each zone separately using its own
measured data. Furthermore, the parameters describing a mutual wall of two adjacent
zones must be adjusted to attain a consensus. This will be ensured by a distributed
identification algorithm which forms a main implementation part of this thesis.

1.2 Contribution of the thesis

At first, we give a brief introduction to a so called RC (building) modelling. Using these
technique we create two thermal models of a building for simulation and identification
purposes. One model (R2C1) achieves higher fidelity and is primarily intended for
simulations and “experimental” data generation. The other model (R1C0) which is
simpler serves mainly as a grey-box model template for the identification.

The main part of this thesis is devoted to implementation of the algorithm for a dis-
tributed building identification. The identification problem leads to an optimization
problem which is thanks to duality transformed to the dual problem and then decomposed
using a dual decomposition method. The identification problem is thus distributed into
single zones whose agents communicates only with their adjacent agents.

1.3 Previous work

As for the building modelling, the technique of RC circuits is widely used. Zone air is
always being associated with a certain capacity, a difference is only in the wall modelling.
In the simpler case the walls are modelled with one resistance (conductance), this approach
is utilized in [2, 4–6]. A wall can be also modelled having its own inner capacity and
two resistances describing the heat flow transfers between air and the wall. This more
complex case is considered in [3].

The identification of the building model is performed several ways (algorithms). The
traditional ones uses a grey-box modelling:. input-output - pbARMAX [2, 5], PEM [3, 4],. state space description - subspace methods [1].

Another important part which will be exploited is convex optimization [7] and decom-
position methods [8] which were for instance applied in [9] for distributed predictive
control.

1.4 Outline of the thesis

Chapter 1 is an introductory part where motivation for thesis and its contribution are
mentioned. Previous work along with used methods on a field of building identification is
also mentioned. Chapter 2 is devoted to creation of a thermal building model. Chapter 3
is just a short introduction to mathematical optimization and duality. Chapter 4 presents
decompositions methods and algorithms for optimization problems, both in a simple and
general hypergraph form.

2



....................................... 1.4. Outline of the thesis

Chapter 5 derives and presents all the aspects needed to create the main identification
algorithm. Chapter 6 presents results of the distributed identification applied on a
benchmark 4-zone building. Identification was performed for various settings and the
results are compared each other. The last chapter 7 summarizes achieved results and
propose possible future development.
Remark 1.1. All computations and simulations were performed using Matlab R©
& Simulink R© R2015b.
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Chapter 2
Thermal model of a building

The main objective of this thesis is to identify a thermal model of a building from a given
data set. Thus the first thing we need is a good simulator of the building to provide the
desired data for identification purposes.

As a building we consider only one floor which is created by several rooms neighbouring
one another. Therefore only horizontal heat transfers among rooms and with outside
environment are considered.

An elementary thermodynamics of the room is modelled by using a technique of
thermal circuits. They consist of thermal sources, conductances and capacitances which
model the reality in an acceptable way.

There are several physical laws which are important to derive a system of differential
equations.

2.1 Physical foundations

The technique of thermal (RC) circuits is based on linear fundamental laws of thermody-
namics.

2.1.1 Conductance

Firstly, it is Fourier’s law also known as the law of heat conduction. It is expressed by

q = −k∇T (2.1)

where q is a local heat flux density [W ·m−2], k is a thermal conductivity (also known as
K-value) [W ·m−1 ·K−1] and ∇T is a temperature gradient [K ·m−1]. The law (2.1) can
be rewritten for a homogeneous material of one-dimensional geometry as

∆Q
∆t = −kA∆T

∆x (2.2)

where ∆Q
∆t is a scalar heat flow [W], A is a cross-sectional surface area, ∆T is a temperature

difference between the ends and ∆x is a distance between the ends. If we denote

U = k

∆x = 1
R

(2.3)

5



2. Thermal model of a building ....................................
where U is the conductance (or U-value) [W · m−2 · K−1], R is the resistance and is
reciprocal to conductance, however it is more common to work with conductances in
thermodynamics modelling.

Now we can write Fourier’s law as

∆Q
∆t = UA (−∆T ) (2.4)

and in infinitesimal limit we obtain

Q̇ = UA (−∆T ) (2.5)

which is useful for describing dynamical properties in thermal circuits. If the material
consists of n layers with the same A and Q̇ but different conductances Ui the total
conductance U is the sum of their reciprocal values similarly to resistors in electrical
domain

1
U

= 1
U1

+ · · ·+ 1
Un

. (2.6)

2.1.2 Heat capacity

The second important element in thermal circuits is a capacitance which is characterized
by heat capacity (thermal capacity). The heat capacity is defined as a ratio of the amount
of heat transferred to an object and the resulting temperature increase of the object

C = Q

∆T . (2.7)

Heat capacity is assumed either at constant pressure (Cp) or constant volume (CV ).
Usually we work with specific heat capacity which is related to unit mass of a material

cp = Cp
m
. (2.8)

Finally, by differentiating (2.7) with respect to time we obtain a well-known equation of
object’s temperature evolvement

Ṫ = 1
C
Q̇. (2.9)

Remark 2.1. The heat flow Q̇ is usually denoted by other symbols, e.g. q is used in [2]
and Φ is used in [4]. We will use a notation with an omitted dot above, therefore just Q.

2.2 Zone model (R2C1)

Now having relevant equations (2.5) and (2.9) for the conductance U or capacity C, we
set a simple model of the zone-wall heat transfer and then a model of the whole zone.

6



........................................2.2. Zone model (R2C1)

2.2.1 Zone-wall model

The heat transfer trough a wall from one zone to another can be represented as a simple
RC circuit. Since the wall is modelled by two conductances (resistances) and one capacity,
the model is denoted with an abbreviation R2C1.

In the Fig. 2.1 we can see that the zone air is heated primarily by a heat flow Qhx from
a heat exchanger (radiator), which represents a controllable input, and secondarily the
zone is heated (or cooled) by heat transfers through walls. The zone air has a capacity

WALLZONE

TwTz

CwCz

UAzw Tn

Qhx

dwxz

air

UAwz

NEIGHBOURING
ZONE

air

zz

Figure 2.1: Zone-wall circuit

Cz and its temperature is Tz.
The heat flow propagates from the zone through a series of conductances UAzw, partly

is storied in the wall on account of a capacity Cw, hence influences the wall temperature
Tw. Finally, a part of the heat flow propagates again through the series of conductances
UAwz and influences a temperature Tn in the neighbouring zone.

The direction of the heat flow is completely determined by a temperature difference
between two particular nodes. To derive a system of ordinary differential equations
describing a given thermal circuit, we use a rule similar to Kirchhoff’s (junction) law

n∑
i=1

Qi = 0. (2.10)

The rule (2.10) says that at any node (junction) in a thermal circuit, the algebraic
sum of n heat flows flowing to the node is equal to zero. Therefore we can immediately
write equations for the circuit 2.1

Qhx = CzṪz + UAzw (Tz − Tw) ,
UAzw (Tz − Tw) = CwṪw + UAwz (Tw − Tn) .

(2.11)

Rewriting equations (2.11) we obtain a state space model

Ṫz = − 1
Cz
UAzwTz + 1

Cz
UAzwTw + 1

Cz
Qhx,

Ṫw = − 1
Cw

(UAzw + UAwz)Tw + 1
Cw

UAzwTz + 1
Cw

UAwzTn,

y = Tz.

(2.12)
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2. Thermal model of a building ....................................
2.2.2 Complete zone model

Now we approach to formation of the whole zone model. We assume having for instance
a building that consists of four zones (rooms). The zone is bounded by four walls and its
thermal circuit is depicted in the Fig. 2.2.

WALL

ZONE

Qhx

UAwz4 UAwz2

UAwz1

UAwz3

UAzw4 UAzw2

UAzw3

UAzw1

Cz

Tz

Cw4

Cw1

Cw2

Cw3

Tw4

Tw1

Tw2

Tw3

Tn2

Tn3

Tn4

Tn1

Figure 2.2: Thermal circuit of a zone

Based on this circuit we can write state space equations for the whole zone model

Ṫz = − 1
Cz

(UAzw1 + UAzw2 + UAzw3 + UAzw4)Tz

+ 1
Cz

(UAzw1Tw1 + UAzw2Tw2 + UAzw3Tw3 + UAzw4Tw4) + 1
Cz
Qhx,

Ṫwi = − 1
Cwi

(UAzwi + UAwzi)Twi + 1
Cwi

UAzwiTz + 1
Cwi

UAwziTni , i = 1, . . . , 4,

y = Tz.

(2.13)

The state space model (2.12) is a continuous-time LTI system, hence it can be expressed

8



................................... 2.3. Simplified zone model (R1C0)

in matrix form

˙
Tz
Tw1
...
Tw4


︸ ︷︷ ︸

Ṫ

= Ac


Tz
Tw1
...
Tw4


︸ ︷︷ ︸

T

+Bc


Qhx
Tn1
...
Tn4


︸ ︷︷ ︸

u

,

y = CcT + Dcu,
(2.14)

where

Ac =


−UAzw

Cz

UAzw1
Cz

. . .
UAzw4
Cz

UAzw1
Cw1

−UAzw1+UAwz1
Cw1

0T 0
... 0 . . . ...

UAzw4
Cw4

0 . . . −UAzw4+UAwz4
Cw4

 , Bc =


1
Cz

0 . . . 0
0 UAwz1

Cw1
0T 0

... 0 . . . ...
0 0 . . .

UAwz4
Cw4

 ,

Cc =
[
1 0 . . . 0

]
, Dc = 0

(2.15)

and

UAzw =
4∑
i=1

UAzwi . (2.16)

2.3 Simplified zone model (R1C0)

Due to slow dynamics of the heat transfer through a wall we can represent the wall by
just one conductance (see Fig. 2.3). The wall is then modelled by one conductance
(resistance) and no capacity, therefore we denote the model with an abbreviation R1C0.
A circuit of the whole zone is depicted in the Fig. 2.4.

WALLZONE

Tz

Cz

UAw Tn

Qhx

dwxz

air

NEIGHBOURING
ZONE

air

zz

Figure 2.3: Zone-wall circuit (R1C0)
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2. Thermal model of a building ....................................

WALL

ZONE

Qhx

UAw4

UAw1

UAw2

UAw3

Cz

Tz

Tn2

Tn3

Tn4

Tn1

Figure 2.4: Simplified thermal circuit of a zone

A corresponding state space model is given by

Ṫ(t) = AcT(t) + Bcu(t),
y(t) = CcT(t) + Dcu(t),

(2.17)

where Ac ∈ R, Bc ∈ R1×5, Cc ∈ R and Dc ∈ R1×5 are given by

Ac = − 1
Cz

4∑
i=1

UAwi , Bc =
[

1
Cz

UAw1
Cz

. . .
UAw4
Cz

]
,

Cc = 1, Dc = 0.
(2.18)

The state vector T(t) ∈ R is given by

T(t) = Tz(t) (2.19)

and u(t) ∈ R5×1

u(t) =


Qhx
Tn1
...
Tn4

 (t) (2.20)

is an input vector where Tn1 , . . . , Tn4 are temperatures behind the walls (i.e. temperatures
in the neighbouring zone or outside the building).

10



.......................................... 2.4. Building model

2.4 Building model

Our example building consists of four zones (rooms) placed horizontally each other at
one floor. A sketch of the building is in the Fig. 2.5. Each zone is modelled by either the

WALL

ZONE 1yz

xz

dwo dwi

OUTSIDE

NEIGHBORING

ZONE 1 ZONE 3

ZONE 2 ZONE 4

ENVIRONMENT

ZONE 2

Figure 2.5: Simple 2x2 building

R2C1-model (2.14, 2.15) or the R1C0-model (2.17, 2.18). The whole building model is
composed of single zone models which share wall models if they neighbour each other.

For simulation purposes there were chosen concrete constants for the building model
(see Tab. 2.1). The Simulink scheme of the overall building model is in the Fig. 2.6.

temp. N

temp. E

temp. S

temp. W

setpoint

T_z

Zone 1

Weather

T_out
T_out

T_z1

Zone
Temperatures

T_sp1

temp. N

temp. E

temp. S

temp. W

setpoint

T_z

Zone 2

T_sp2

SP

Room 
Set-points

temp. N

temp. E

temp. S

temp. W

setpoint

T_z

Zone 3

temp. N

temp. E

temp. S

temp. W

setpoint

T_z

Zone 4

T_z3

T_z2

T_z4

T_out

T_out

T_sp3

T_z4

T_z1

T_z3

T_sp4

T_out

T_z2

Radiator 
Heat Power

PI(z)

PI settings

TR

Heating
Triggers

DtW

Data to 
Workspace

Figure 2.6: Simulink scheme of the 2x2 building model
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2. Thermal model of a building ....................................
description symbol value

zone x-dimension xz 4.8 m
zone y-dimension yz 4.8 m
zone z-dimension zz 2.6 m
zone air density ρz 1.29 kg ·m−3

zone air specific heat capacity cz 1005 J · kg−1 ·K−1

zone air thermal conductivity kz 0.024 W ·m−1 ·K−1

outside wall width dwo 0.3 m
inside wall width dwi 0.15 m
brick density ρw 1922 kg ·m−3

brick specific heat capacity cw 840 J · kg−1 ·K−1

brick thermal conductivity kw 0.8 W ·m−1 ·K−1

Table 2.1: Building constants

2.4.1 Discretization

The continuous-time systems (2.14) and (2.17) were discretized, since it is typical to
observe and control them in discrete-time intervals. A sampling period Ts was chosen as

Ts = 60 s, (2.21)

which is sufficient for thermal systems like these due to their slow dynamics.
We consider a sampled output yk = y(kTs) for k ∈ N and simultaneously sampled

input which is zero-order hold, i.e.

u(t) = uk, t ∈ 〈kTs, (k + 1)Ts) . (2.22)

A discretized state space system is then given by

Tk+1 = A(Ts)Tk + B(Ts)uk,
yk = CTk + Duk.

(2.23)

The quadruplet of discrete-time system matrices {A,B,C,D} is determined by

A(Ts) = exp (AcTs) , (2.24a)

B(Ts) =
∫ Ts

0
exp (Acs) ds ·Bc, (2.24b)

C = Cc, (2.24c)
D = Dc. (2.24d)

A computation of the matrix integral in (2.24b) can be demanding but according to [10]
the matrices A and B could be computed simultaneously using an augmented matrix
exponential as [

A B
0 I

]
= exp

([
Ac Bc

0 0

]
Ts

)
. (2.25)
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..........................................2.5. Heating control

2.5 Heating control

Each zone in the building is to be heated to a desired temperature Tz. Hence there was
designed a simple feedback control for each zone to achieve that.

We assume following technical (saturation) limits for the manipulated input u(1) = Qhx
in each zone

Qhx ∈ 〈0, 2000〉 W. (2.26)

Based on the single zone model neglecting interactions among zones there was designed
a discrete-time PI controller with a transfer function

P (z) = kp + ki
Ts
z − 1 , (2.27)

where
kp = 300, ki = 0.3. (2.28)

The PI controller (2.27) was applied with a proper anti-windup to recover from saturation.
The general scheme of the system is in the Fig. 2.7 where disturbances d(k) and
measurement noise v(k) are also depicted (their description will be given later at (6.10)
and (6.12)). The azure block G denotes the discretized system (2.23). Signals r(k) and
e(k) represent a reference (setpoint) temperature and error, respectively. The Simulink
scheme of the zone model with the closed-loop heating is in the Fig. 2.8.

r(k) e(k) y(k) = Tz(k)
GP

Qhx(k)
+
− Tn1

(k)

Tn2
(k)

Tn3
(k)

Tn4
(k)

+
+

d(k)

+
+ v(k)

Figure 2.7: One zone closed-loop system with disturbances and measurement noise

Now we are able to perform a closed-loop simulation of for instance the R1C0 building.
We simulate a one-day heating of the building. The reference tracking of zone temperatures
is in the Fig. 2.9, where Tzi is a zone air temperature, Tspi is a zone setpoint and Tout is
a temperature of outside environment. Manipulated heat powers of heat exchangers are
in the Fig. 2.10. A unit of a time axis is the sampling period Ts, therefore the time axis
is in minutes.
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PI(z)

PID Controller

Scope

x(n+1)=Ax(n)+Bu(n)
y(n)=Cx(n)+Du(n)
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temp. W
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Figure 2.8: Simulink scheme of the zone model with closed-loop heating
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Figure 2.9: Reference tracking - air temperatures in building zones (R1C0)

14



..........................................2.5. Heating control

0 200 400 600 800 1000 1200 1400

time [T
s
]

0

500

1000

1500

2000

Q
 [
W

]

zone 1

Q
hx

1

0 200 400 600 800 1000 1200 1400

time [T
s
]

0

100

200

300

400

500

Q
 [
W

]

zone 3

Q
hx

3

0 200 400 600 800 1000 1200 1400

time [T
s
]

0

200

400

600

800

1000

1200

Q
 [
W

]

zone 2

Q
hx

2

0 200 400 600 800 1000 1200 1400

time [T
s
]

0

500

1000

1500

2000

Q
 [
W

]

zone 4

Q
hx

4

Figure 2.10: Manipulated heat powers in building zones (R1C0)
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Chapter 3
Mathematical optimization

3.1 Introduction to optimization

Optimization is a mathematical discipline dealing with solving optimization problems.
The solution of such problems has to be optimal among all feasible solutions. The
standard form for an optimization problem can be formulated as in [7]

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p.

(3.1)

The vector x =
[
x1, . . . , xn

]T
is the optimization variable of the problem and the function

f0 : Rn → R is called the objective (or loss, cost) function whose value is to be minimized.
The functions fi : Rn → R, i = 1, . . . ,m, are the inequality constraint functions and
hi : Rn → R, i = 1, . . . , p, are the equality constraint functions. The set of feasible
points

D = {x | fi(x) ≤ 0, i = 1, . . . ,m; hi(x) = 0, i = 1, . . . , p} (3.2)

is called the domain of the optimization problem.
A vector x∗ is called optimal, a solution or minimizer of the problem (3.1), if it has

the smallest objective value among all vectors satisfying the constraints. Thus for any x
that satisfy the constraints, we have

f0(x) ≥ f0(x∗). (3.3)

The optimal value f0(x∗) to the problem (3.1) is thus the maximum lower bound for the
objective function f0 in the domain D

p∗ = f0(x∗) = inf {f0(x) |x ∈ D} . (3.4)
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3. Mathematical optimization.....................................
3.2 Duality in optimization

Let’s assume the domain D of the problem (3.1) to be nonempty. Then we can form a so
called Lagrangian by adding weighted sums of constraints to the objective function

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x), (3.5)

where λi is a Lagrange multiplier associated with the i-th fi(x) ≤ 0 inequality constraint
and similarly νi is a Lagrange multiplier associated with the i-th hi(x) = 0 equality
constraint. The vectors λ ∈ Rm×1 and ν ∈ Rp×1 are called dual variables associated
with the problem (3.1).

The Lagrange dual function is defined as the minimal value of the Lagrangian (3.5)
over all x ∈ D

g(λ,ν) = inf
x∈D

L(x,λ,ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑
i=1

νihi(x)
)
. (3.6)

An important property of the dual function g is its concavity, even when the problem
(3.1) is not convex.

The dual function yields lower bounds on the optimal value p∗ of the problem (3.1)

g(λ,ν) ≤ p∗ (3.7)

for any λ � 0 and any ν (see [7]).
Now a natural question arises: What is the best lower bound on p∗ obtained from the

dual function g?
We can find this bound by solving another optimization problem

maximize g(λ,ν)
subject to λ � 0.

(3.8)

This problem is called the Lagrange dual problem associated with the original problem
(3.1) which is called in this context as the primal problem.

The Lagrange dual problem (3.8) is always a convex optimization problem, since the
objective dual function is concave and the constraints are convex [7].

The optimal value of the dual problem

d∗ = q(λ∗,ν∗) (3.9)

is, by definition, the best lower bound on p∗. Hence, it brings an important inequality

d∗ ≤ p∗ (3.10)

which is called weak duality. The difference of the optimal values p∗ − d∗ is called the
optimal duality gap. If it reduces to zero, then

d∗ = p∗ (3.11)

and so called strong duality holds. See [7] for details and conditions for the strong duality.
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Chapter 4
Decomposition methods

In this chapter, we present an overview of decomposition methods used for solving
optimization problems. The idea of these methods is that some mathematical problems
can be at first decomposed to smaller (easier to solve) subproblems and then solved
independently each other. Finally, the solution to the original problem is assembled from
subproblems solutions.

There are several advantages of solving smaller subproblems than one big problem.
Firstly, the subproblems can be solved in parallel which comprises time savings. Secondly,
if a complexity of the original problem grows faster than linearly, then solving subproblems
also mean significant computational savings. Another benefit of parallelization is the
application in multi-agent systems, where the decomposition methods yields a distributed
optimization algorithm [11].

4.1 Separable problems

A problem is called separable (or trivially parallelizable), if the subproblems are completely
independent, thus they can be solved in parallel. The separable problem has a form of

minimize
x

f0(x) = f1(x1) + · · ·+ fn(xn)
subject to xi ∈ Ci, i = 1, . . . , n,

(4.1)

where Ci is a constraint set for the i-th subproblem, presumably described by linear
equalities and convex inequalities.

The problem (4.1) is separable since the subproblems

minimize
xi

fi(xi)

subject to xi ∈ Ci
(4.2)

can be solved independently of each other. This is the simplest kind of problems that
can be decomposed. A situation is more complicated when some variables are common
to more subproblems or some constraints involve variables from more subproblems.
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4. Decomposition methods ......................................
4.2 Complicating variable

The subproblems are often called subsystems. If there are interconnections among these
subsystems, then the interconnections represent a variable which is common to those
subsystems.

Consider a simple unconstrained problem

minimize
x∈Rn

f0(x) = f1(x1...r,y) + f2(xr+1...n−s,y), (4.3)

where the vector of optimization variables is given by

x =
[
xT

1...r,xT
r+1...n−s,yT

]T
. (4.4)

The variable y ∈ Rs×1 is called a complicating or coupling variable. From the view of
single subsystems, the variables x1...n−s are called private or local variables and y is
called a public variable. A graphical representation of the system (4.3) is in the Fig. 4.1.

f1 f2
x1...r xr+1...n−s

y

Figure 4.1: System with a complicating variable

4.3 Primal decomposition

The simplest way how to deal with a complicating variable y in (4.3) is by fixing its
value and then solve subproblems which have become separable.

This method is called primal decomposition due to a manipulation with the primal
variables. The solutions to separable subproblems are expressed as a function of public
variables

Φ1(y) = min
x1...r

f1(x1...r,y),

Φ2(y) = min
xr+1...n−s

f1(xr+1...n−s,y).

(4.5)

Defining
Φ(y) = Φ1(y) + Φ2(y), (4.6)

we can express the solution to the original problem (4.3) with the complicating variable
as

min
x

f0(x) = min
y

(
min

x1...n−s
Φ1(y) + Φ2(y)

)
= min

y
Φ(y). (4.7)

This optimization problem is called a master or coordinator problem in primal decompo-
sition. If the original problem is convex, then so is the master problem [9, 11]. Therefore,
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....................................... 4.3. Primal decomposition

the master problem can be solved by a gradient method (in case of differentiable functions)
or subgradient method.

Let’s denote the gradients (sensitivities to the complicating variable y) of (4.5) as

g1(y) = ∂Φ1(y)
∂y ,

g2(y) = ∂Φ2(y)
∂y ,

g(y) = ∂Φ(y)
∂y

= g1(y) + g2(y).

(4.8)

The gradient (descent) method solves the master problem (4.7) by an iteration

yk+1 = yk − αk (g1(yk) + g2(yk))︸ ︷︷ ︸
g(yk)

, (4.9)

where αk > 0 is an appropriate step size in descent.
Now, we are able to write an algorithm (see Alg. 1) for the primal decomposition

method solving the problem (4.7). An illustration of the algorithm is in the Fig. 4.2.

Algorithm 1 Primal decomposition
Input: Initial estimate y0
Output: Estimate yK at K-th iteration

1: for k = 0 to K do
% Solve subproblems and return their subgradients

2: Solve Φ1(yk) and return g1(yk)
3: Solve Φ2(yk) and return g2(yk)

% Update the complicating variable
4: yk+1 = yk − αk (g1(yk) + g2(yk))
5: end for

Master problem

subproblem 1 subproblem 2

∂Φ1(y)
∂y

y
∂Φ2(y)

∂y

y

Figure 4.2: Primal decomposition algorithm
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4.4 Dual decomposition

The second method how to decompose the problem (4.3) is based on duplicating the
complicating variable y. This approach utilizes the strong duality and converts the
primal problem to the dual one using Lagrange multipliers.

By introducing local copies y1 and y2 of the complicating variable y, we obtain a
problem with an additional so called consistency condition

minimize
x1...n−s,y1,y2

f0(x1...n−s,y1,y2) = f1(x1...r,y1) + f2(xr+1...n−s,y2)

subject to y1 = y2.

(4.10)

Now, let’s form a Lagrangian of the problem (4.10)

L(x1...n−s,y1,y2,λ) = f1(x1...r,y1) + f2(xr+1...n−s,y2) + λT(y1 − y2). (4.11)

The dual problem is now separable and subproblems can be solved independently on
each other

min
x1...r,y1

f1(x1...r,y1) + λTy1,

min
xr+1...n−s,y2

f2(xr+1...n−s,y2)− λTy2.

(4.12)

The optimal values of these subproblems are q1(λ) and q2(λ). The associated dual
(master) problem is

max
λ

q(λ) = q1(λ) + q2(λ). (4.13)

This master problem can be solved with a gradient or subgradient method. The gradients
of the subproblems are

∂q1(λ)
∂λ

= y∗1,

∂q2(λ)
∂λ

= −y∗2,

∂q(λ)
∂λ

= y∗1 − y∗2.

(4.14)

Now, having corresponding gradients, we can write an iteration for the master problem
(4.13) solution

λk+1 = λk + αk(y∗1 − y∗2). (4.15)

Similarly to a primal decomposition case, we present an algorithm for the dual
decomposition method (see Alg. 2). An illustration of the algorithm is in the Fig. 4.3.
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Algorithm 2 Dual decomposition
Input: Initial estimate λ0
Output: Estimate λK at K-th iteration

1: for k = 0 to K do
% Solve subproblems and return their subgradients

2: Solve q1(λk) and return y∗1
3: Solve q2(λk) and return −y∗2

% Update the dual variable
4: λk+1 = λk + αk (y∗1 − y∗2)
5: end for

Master problem

subproblem 1 subproblem 2

λλ
∂q1(λ)
∂λ = y∗

1
∂q2(λ)
∂λ = −y∗

2

Figure 4.3: Dual decomposition algorithm

4.5 Hypergraph representation

The decomposition algorithms in previous sections assume there are only two subsystems
(subproblems), though in general a situation can be far more complicated with a lot of
subsystems and complicating variables.

At first, we introduce a notation which is based on the graph theory. A graph G(V,E)
consists of a set of nodes (vertices) V and a set of edges E ⊆ V × V . A hypergraph
H(X,Eh) differs from a graph in the fact that a hyperedge from the set Eh can connect
any number of vertices.

The structure of a problem to be decomposed can be represented generally by a hyper-
graph H. The nodes of this hypergraph represent the subsystems which have their own
objectives, local variables and constraints. The hyperedges (or nets) of H are associated
with complicating (public) variables.

Let’s suppose, our problem is represented by an undirected graph G(V,E). A number
of subsystems is N = |V | and a number of edges nz = |E| corresponds to the number
of consistency constraints. We introduce a vector z ∈ Rnz×1 which gives the common
values of the public variables in each consistency constraint [8].

Now, we can express all consistency constraints in the matrix form as

y = Ez, (4.16)

where y ∈ R2nz×1 is a vector of public variables from all subsystems and the matrix
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E ∈ R2nz×nz is defined as

Eij =
{

1 yi is in a constraint j
0 otherwise. (4.17)

The matrix E specifies the set of consistency constraints for the given subsystem in-
teraction [8]. Using the hypergraph representation, the original optimization problem
consisting of N subsystems can be expressed as

minimize
N∑
i=1

fi(xi,yi)

subject to yi = Eiz, i = 1, . . . , N,
(4.18)

where Ei is a matrix built from rows of the matrix E which are associated with an i-th
subsystem. Similarly, xi are private and yi are public variables associated to the i-th
subsystem.

4.5.1 Primal decomposition

The primal decomposition method distributes an element of variable z to subsystems
connected by the corresponding hyperedge. The distribution to an i-th subsystem is
ensured by equalities yi = Eiz. Each subsystem then optimizes its local objective function

Φi(yi) = min
xi

fi(xi,yi) (4.19)

and sends a computed gradient ∂Φi(yi)
∂yi

to the master. The global problem

min
z

Φ(z) =
N∑
i=1

Φi(yi) (4.20)

is solved by the master which sums up received gradients and update public variables.
The whole process is described by an Algorithm 3.

4.5.2 Dual decomposition

Firstly, we have to find a dual problem to the original primal problem hypergraphly
represented (4.18). The Lagrangian is given by

L(x1,...,N ,y, z,λ) =
N∑
i=1

fi(xi,yi) + λT(y−Ez)

=
N∑
i=1

(
fi(xi,yi) + λT

i yi
)
− λTEz.

(4.21)
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Algorithm 3 Primal decomposition - hypergraph form
Input: Initial estimate of net variables z0

Output: Estimate zK at K-th iteration
1: for k = 0 to K do
2: for i = 1 to N do

% Distribute net variables to subproblems
3: yki = Eizk

% Solve a subproblem and return its subgradient
4: Solve Φi(yki ) and return gi(yki )
5: end for

% Calculate the subgradient of the master problem
6: g(yk) =

∑N
i=1 ET

i gi(yki )
% Update the vector of net variables

7: zk+1 = zk − αkg(yk)
8: end for

A Lagrange dual function to the primal problem is obtained by minimizing the Lagrangian
(4.21)

q(λ) = min
x1,...,N ,y,z

N∑
i=1

(
fi(xi,yi) + λT

i yi
)
− λTEz. (4.22)

The dual function becomes separable if it is first minimized over z. This results in the
condition ETλ = 0, which states that the sum of Lagrange multipliers over each net is
zero. The subproblems can be now solved separately

qi(λi) = min
xi,yi

fi(xi,yi) + λT
i yi, i = 1, . . . , N, (4.23)

and the dual master problem has a form

maximize
λ

q(λ) =
N∑
i=1

qi(λi)

subject to ETλ = 0.
(4.24)

Since there is the constraint in this master problem (4.24), the solution can be reached
via a so called projected subgradient method. The projection operator P onto feasible
set ETλ = 0 is affine and gives an iteration

λk+1 = λk + αk
(

I−E
(
ETE

)−1
ET
)

︸ ︷︷ ︸
P

yk∗. (4.25)

This iteration update can be interpreted as follows - at first, the average values of local
copies of public variables are computed

ẑk =
(
ETE

)−1
ETyk∗ (4.26)
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4. Decomposition methods ......................................
and then are subtracted from corresponding public variables

gk = yk∗ −Eẑ (4.27)

to form a projected subgradient gk [9, 11]. The idea of the dual decomposition is such
that each subproblem has its own copy of the public variables and corresponding Lagrange
multipliers (prices). After the subsystems find their optima, the public variables are
compared and dual variables (prices) are updated.

The master problem makes an effort to reach the consistency between local copies of
the public variables. The procedure is described by an Algorithm 4.

Algorithm 4 Dual decomposition - hypergraph form
Input: Initial dual variable vector λ0 satisfying ETλ = 0 (e.g. λ = 0)
Output: Estimate λK at K-th iteration (and primal variables y∗)

1: for k = 0 to K do
2: for i = 1 to N do

% Distribute multipliers (prices) to subproblems
3: λk → λki

% Solve a subproblem and return its subgradient
4: Solve qi(λki ) and return yk∗i
5: end for

% Compute average of public variables over each net

6: ẑk =
(
ETE

)−1
ETyk∗

% Update the dual variables (prices)
7: λk+1 = λk + αk

(
yk∗ −Eẑk

)
% Compute the norm of consistency constraint residual

8: rk =
∥∥∥yk∗ −Eẑk

∥∥∥
2

9: if rk < rthres then
10: break
11: end if
12: end for

The norm of the projected subgradient computed during iterations in the Alg. 4

rk =
∥∥∥gk∥∥∥

2
=
∥∥∥yk∗ −Eẑk

∥∥∥
2

(4.28)

measures a consistency between corresponding local copies of public variables. It is called
the consistency constraint residual and is used as a stopping criterion (rthres) for the
outer loop in the Alg. 4.
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Chapter 5
Distributed identification

This chapter constitutes a main implementation part of this thesis. The theory presented
in previous chapters will be now applied to identify a benchmark 4-zone building in the
distributed manner.

5.1 Introductory problem description

The goal is to identify a building model in order to be used subsequently e.g. for an
advanced heating control. A such advanced control method is for example MPC1 or
its distributed counterpart dMPC. However, these methods are dependent on a precise
model to function properly.

The input (experimental) data for identification are these quantities. heat flows of heat exchangers in each zone - Qihx, i = 1, . . . , N ,. air temperatures of each zone - T iz , i = 1, . . . , N ,. outside (ambient) temperature - Tout.

The data for the i-th zone are arranged as follows

uik =
[
Qihx(k) T in1(k) . . . T in4(k)

]T
, yik = T iz(k),

DiK =
{

ui1, . . . ,uiK , yi1, . . . , yiK
}
,

(5.1)

where T inj
, j = 1, . . . , 4 are temperatures behind the i-th zone’s walls, therefore either a

temperature in the neighbouring zone or outside temperature.
The identification of a building model as a whole is a straightforward approach and can

be powerful for small buildings. Although, the complexity of the identification problem
grows faster than linearly for an increasing number of zones (rooms).

Thus, we approach to this problem by decomposing it into single zone identifications
whilst attempting to reach a consensus between overlapping parts of single zones (i.e.
mutual walls).

There are three main identification approaches according to usage of physical insight
1Model Predictive Control
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5. Distributed identification........................................1. White-box modelling. The model of a system is based completely on physical principles which deter-
mine both the model structure and parameter values...2. Grey-box modelling. A semi-physical/statistical approach where the model structure is given by
physical principles but some parameters may not be known...3. Black-box modelling. A purely statistical approach where neither the model structure nor the param-
eters are known.

Since, we have knowledge of the model structure at our disposal (see (2.14) or (2.17))
and numeric values of parameters are to be determined from statistical processing of the
measured (simulated) data, we utilize the grey-box modelling.

5.2 Grey-box modelling

A structure of our grey-box model (abbreviated GBM) is given by single zone models
R2C1 (2.14) or R1C0 (2.17). Hence, we will not state a general form of GBM (can be
found in [12]) but a slightly modified form which is completely convenient for our case.

Let’s write a parametrised continuous-time LTI2 state space model

ẋ(t) = Ac(θ)x(t) + Bc(θ)u(t),
y(t) = Ccx(t),

(5.2)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rnu is an input vector and y(t) ∈ R is an
output vector. The matrices Ac(θ) ∈ Rn×n and Bc(θ) ∈ Rn×nu are parametrised whereas
Cc ∈ R1×n is given a priori.

Finally, θ ∈ Rnp denotes a vector of parameters which arise from physical principles.
The parameter vector θ is formed as. R2C1 (according to the Fig. 2.2)

θ =
[
Cz UAzw1 . . . UAzw4 Cw1 . . . Cw4 UAwz1 . . . UAwz4

]T
, (5.3). R1C0 (according to the Fig. 2.4)

θ =
[
Cz UAw1 . . . UAw4

]T
. (5.4)

There is also a reasonable physical constraint for all parameters

θ � 0, (5.5)

i.e. all parameters must be positive.
2Linear Time Invariant
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....................................... 5.3. Parameter estimation

5.2.1 Discrete-time GBM

Since the data used for identification are discrete-time measured sequences, there is
a need to transform a continuous-time GBM to its discrete-time counterpart. Considering
the assumption (2.22) and Ts being a sampling period, we obtain

xk+1 = A(θ, Ts)xk + B(θ, Ts)uk,
yk = Cxk.

(5.6)

Matrices A and B can be computed as (2.25) and C = Cc.

5.2.2 Output error GBM

Both the continuous (5.2) and discrete-time GBM (5.6) are deterministic models. However,
identification data are always affected by additive noise.

Let’s extend our discrete-time GBM (5.6) with a simplified stochastic part representing
a measurement noise at the output

xk+1 = A(θ, Ts)xk + B(θ, Ts)uk,
yk = Cxk + ek.

(5.7)

The measurement noise ek ∈ R is a Gaussian white noise described by

ek ∼ N (0, R), cov{ek, ek+i} = 0, i 6= 0, (5.8)

where R > 0 denotes a variance of ek.

5.3 Parameter estimation

Now, having the parametrised GBM, we want to estimate optimal values of parameters
using the data (5.1). There exist several estimation methods and the most common are
Least Square Estimation (LSE) and Maximum Likelihood Estimation (MLE).

5.3.1 Least square estimation

The LSE method is based on a natural endeavour to minimize the sum of squared errors
e2
k in (5.7). The optimization problem can be expressed as

θ∗ = argmin
θ

V (θ) = 1
2E(θ)TE(θ), (5.9)

where E(θ) ∈ RK×1 is an error vector

E(θ) = Y− Ŷ(θ) (5.10)

formed from measured outputs

Y =
[
y1 . . . yK

]T
(5.11)
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5. Distributed identification......................................
and their predictions

Ŷ(θ) =
[
ŷ1(θ) . . . ŷK(θ)

]T
. (5.12)

The predicted outputs are calculated using the discrete-time GBM (5.6) for the given θ

x̂k+1(θ) = A(θ)x̂k(θ) + B(θ)uk,
ŷk(θ) = Cx̂k(θ).

(5.13)

5.3.2 Maximum likelihood estimation

The MLE method searches for a maximizer θ∗ of the likelihood function

L(θ|DK) = p(Y|θ,U) =
K∏
k=1

p(yk|Dk−1,uk,θ). (5.14)

For our case, where yk ∈ R, the Gaussian probability density function reduces to

p(yk|Dk−1,uk,θ) = 1√
2πR

exp
(
− ε2k

2R

)
. (5.15)

Hence according to [12], the maximization of (5.14) is equivalent to minimizing the
logarithm of an estimated variance R̂

θ∗ = argmin
θ

V (θ) = 1
2 log

( 1
N

E(θ)TE(θ)
)

︸ ︷︷ ︸
R̂

. (5.16)

Both the LSE (5.9) and MLE (5.16) problems can be solved by an iterative descent
gradient method.

5.4 Formulation of the identification problem

We formulate the building identification as an optimization problem and use earlier
presented dual decomposition method (see 4.5.2) to distribute the problem into local
identifications of each zone with a supervising master (global) problem that ensures
consistency between the parameters of shared model parts (i.e. wall parameters).

At first, we derive some statements for a simpler 2-zone R1C0 building (see Fig. 5.1),
since the problem is more transparent. The identification problem of this building can
be formulated as

minimize
θ1,θ2

V1(θ1) + V2(θ2)

subject to θi � 0, i = 1, 2,
(5.17)
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Figure 5.1: A two-zone R1C0 model with a red circled complicating variable

where V (·) is an objective function of either LSE (5.9) or MLE (5.16). The parameter
vector θi is defined as at (5.4). It is obvious the problem (5.17) cannot be trivially
separated, since there is a complicating variable (red written) in θ1 and θ2

θ1 =
[
C1
z UA1

w1 UA1
w2 UA1

w3 UA1
w4

]T
,

θ2 =
[
C2
z UA2

w1 UA2
w2 UA2

w3 UA2
w4

]T
.

(5.18)

The complicating variable (a conductance of the mutual wall) is marked with a red
dashed circle in the Fig. 5.1. Hence, the optimized parameter values θ∗1(3) and θ∗2(5)
must not be different, but need to satisfy

θ∗1(3) = θ∗2(5) or UA1∗
w2 = UA2∗

w4 . (5.19)

In a general case, when a building consists of more than two zones (e.g. our 4-zone
model), the situation gets more complicated and we need to distinguish public variables
from private ones in the parameter vector θ.

Therefore, we introduce a vector of public variables θp ∈ Rp×1, p < np and define a
matrix S ∈ Rp×np which selects public variables from the parameter vector

θp = Sθ. (5.20)

5.4.1 Graph representation utilization

Before we formulate the global identification problem, we investigate its crucial part,
namely the equality y = Ez stated at (4.16).
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5. Distributed identification......................................
Let’s focus for a while on determination and a meaning of the matrix E and vector z.

They have already been formally defined at (4.16) and (4.17) but we want them to be
computed algorithmically. This can be truly reached, since we anticipate their structure
is somehow associated with a hypergraph representation of our building identification
problem.

Again, consider the benchmark 4-zone building. The zones are represented by nodes
and public variables by edges (see Fig. 5.2). The vector z is formed as

z =
[
z1 . . . znz

]T
, (5.21)

where nz = |E| is the number of edges in the graph G(V,E), i.e. number of public
variables.

1

2

3

4

z1

z2

z4

z3

Figure 5.2: Graph representation of the 4-zone building: nodes represent zones (rooms) and
edges their public variables.

The graph G can be also expressed with a so called adjacency matrix AG ∈ RN×N
which is defined as

AGij =
{

1 there is an edge between the i-th and j-th node
0 otherwise. (5.22)

Hence, the graph G of the 4-zone building in the Fig. 5.2 has a following adjacency
matrix

AG =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 . (5.23)

Another form of the graph representation is an incidence matrix IG ∈ RN×nz which gives
relations between nodes and edges as follows

IGij =
{
±1 the node i and edge zj are incident

0 otherwise. (5.24)

The sign of ones in IG is given by the edges’ direction. Even though our graph G is
undirected, we declare the direction of edges in a sense the edge is directed from a lower
numbered node to a higher numbered one. This will be later utilized in matrix E forming.
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.................................... 5.5. Global identification problem

The incidence matrix related to our concrete graph G is given by

IG =


−1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 1

 . (5.25)

Now, we assemble the matrix E using the incidence matrix IG:..1. We go sequentially through the rows of IG and search for nonzero elements...2. Found nonzeros are placed stepwise at preserved column positions but independent
rows of E...3. We “blow up” the matrix E by substituting ones for identity matrices Inpw and
minus ones for left to right flipped identity matrices Înpw .

Using this procedure we obtain the matrix E for the 4-zone R1C0 model

ER1C0 =



1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1


. (5.26)

5.5 Global identification problem

At this time, we are able to use a dual decomposition method in the hypergraph form
(4.5.2) and make the building identification distributed. Firstly, let’s write a Lagrangian
for the 4-zone building (N = 4)

L(θ1,...,N , z,λ) =
N∑
i=1

Vi(θi) + λT(y−Ez)

=
N∑
i=1

(
Vi(θi) + λT

i θpi

)
− λTEz,

(5.27)

where the vector y is built from all public variables θpi , i = 1, . . . , N in a sense that
follows a structure of the graph G (Fig. 5.2) and the matrix E (5.26).

The dual problem can be now split into local identification problems

qi(λi) = min
θi

Fi(θi) = Vi(θi) + λT
i θpi , i = 1, . . . , N, (5.28)
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5. Distributed identification......................................
and the global identification problem has a form (as mentioned at (4.24))

maximize
λ

q(λ) =
N∑
i=1

qi(λi)

subject to ETλ = 0.
(5.29)

This master problem can be solved via standard iterative gradient methods

λk+1 = λk + αk
(
yk∗ −Eẑk

)
, (5.30)

the last thing we need to determine is a step size αk.

5.5.1 Step size rules

We give just a brief description of several significant rules that are being used for the
global problem solution. All these step size rules including their convergence analysis etc.
are thoroughly described in [9, 11]...1. Constant step size

The simplest way how to choose a step size is to fix it for a concrete value, that is
αk = α, α > 0...2. Variable - nonsummable diminishing step size

The sequence of steps is described by

αk ≥ 0, lim
k→∞

αk = 0,
∞∑
k=1

αk =∞. (5.31)

Specifically, we used this step size

αk = a√
k
, a > 0. (5.32)..3. Advanced rules - Nesterov’s algorithm

This algorithm presented by Nesterov in 1983 is based on heavy balls gradient
methods but the gradient is evaluated at an extrapolated point. Unlike the standard
gradients methods with a rate of convergence of order 1/k after k steps, Nesterov’s
algorithm converges with rate of order 1/k2 (for detailed description see [9, 13]).

5.6 Local identification problem

In this section, we focus on detailed formulation and solution search of the local problem
which covers identification of one zone.
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.................................... 5.6. Local identification problem

This optimization problem arises from (5.28) with an extra constraint on parameters
(5.5)

minimize
θ

F (θ) = V (θ) + λTθp

subject to θ � 0.
(5.33)

Firstly, assume V (θ) being the LSE cost function (see (5.9))

V (θ) = 1
2E(θ)TE(θ) = 1

2
(
Y− Ŷ(θ)

)T (
Y− Ŷ(θ)

)
, (5.34)

the vector of predictions Ŷ(θ) ∈ RK×1 is given by

Ŷ(θ) =
(
CX̂(θ)

)T
= X̂(θ)TCT, (5.35)

where the matrix of state predictions X̂(θ) ∈ Rn×K is formed as

X̂(θ) =
[
x̂1(θ) . . . x̂K(θ)

]
(5.36)

and finally the state predictions x̂k(θ), k = 1, . . . ,K are evaluated using the dicrete-time
GBM 5.13.

Hence, the cost function in (5.33) can be expressed using (5.20) as

F (θ) = 1
2E(θ)TE(θ) + λTSθ. (5.37)

To minimize this cost function F (θ) we can use again one of gradient descent methods.
The crucial part of these methods is evaluation of the cost function’s gradient. This
can be carried out either by its numerical approximation or by a computation using an
exact analytical derivation. We proceed with the second option and express the gradient
analytically, though its derivation is neither easy nor straightforward.
Remark 5.1. The local optimization problem (5.33) was solved by an interior-point
algorithm of fmincon function from the Optimization ToolboxTM.

5.6.1 Gradient computation

A gradient (or generally a Jacobian matrix) of the cost function actually represents its
sensitivity to parameter changes. Let’s denote it as J(θ) ∈ R1×np and differentiate F (θ)
with respect to θT

J(θ) = ∂F (θ)
∂θT = −E(θ)T∂Ŷ(θ)

∂θT + λTS. (5.38)

We can see the red written term in (5.38) is essential for the gradient computation
and needs to be further derived (the steps of derivation follow [12]). This matrix
∂Ŷ(θ)
∂θT ∈ RK×np represents output parameter sensitivity and using (5.35) we obtain

∂Ŷ(θ)
∂θT = ∂

∂θT

(
CX̂(θ)

)T
' ∂X̂(θ)T

∂θT CT, (5.39)
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5. Distributed identification......................................
where the term ∂X̂(θ)T

∂θT ∈ RK×n×np would be a “cubic matrix” generally. Hence, we must
differentiate the output sensitivity vector Ŷ(θ) with respect to individual parameters
separately

∂Ŷ(θ)
∂θi

= ∂X̂(θ)T

∂θi
CT = X i(θ)TCT, i = 1, . . . , np (5.40)

and then assemble it as

∂Ŷ(θ)
∂θT =

[
X 1(θ)TCT . . . X np(θ)TCT

]
. (5.41)

The matrix X i(θ) ∈ Rn×K is formed from state sensitivities to a parameter θi

X i(θ) =
[
ξi1(θ) . . . ξiK(θ)

]
, ξik(θ) = ∂

∂θi
x̂k(θ). (5.42)

We need express state sensitivities ξik(θ). To achieve that we utilize the discrete-time
GBM predictor

ξik+1(θ) = ∂

∂θi
x̂k+1(θ) = ∂

∂θi
(A(θ) · x̂k(θ)) + ∂B(θ)

∂θi
uk

= ∂A(θ)
∂θi

x̂k(θ) + A(θ) ∂x̂k(θ)
∂θi︸ ︷︷ ︸
ξi

k(θ)

+∂B(θ)
∂θi

uk

= Ai(θ)x̂k(θ) + A(θ)ξik(θ) + Bi(θ)uk. (5.43)

The equation (5.44) can be understood as an extended discrete-time LTI system for the
state prediction x̂(θ) and state sensitivity ξi(θ). Let’s write this extended system in a
matrix form[

x̂k+1
ξik+1

]
=

[
A(θ) 0
Ai(θ) A(θ)

] [
x̂k
ξik

]
+
[

B(θ)
Bi(θ)

]
uk, i = 1, . . . , np,

ŷk =
[
C 0T

] [x̂k
ξik

]
,[

x̂0
ξi0

]
=

[
x0
0

]
.

(5.44)

Using this extended system (5.44) we are able to compute both state predictions and state
sensitivities. The last thing remaining to be determined are derivatives of discrete-time
matrices Ai(θ) and Bi(θ).

We can apply the approach (2.25) again, this time for the extended system (5.44) A(θ) 0 B(θ)
Ai(θ) A(θ) Bi(θ)

0 0 I

 = exp


 Ac(θ) 0 Bc(θ)

Aci(θ) Ac(θ) Bci(θ)
0 0 0

Ts
 ,

i = 1, . . . , np, (5.45)
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.................................... 5.6. Local identification problem

where
Aci(θ) = ∂Ac(θ)

∂θi
and Bci(θ) = ∂Bc(θ)

∂θi
(5.46)

are derivatives of continuous-time matrices with respect to individual parameters.
We remark that a ubiquitous parameter vector θ in parentheses within this whole

section emphasizes the fact that all the quantities are functions of θ. In particular,
this means for them to be evaluated every time again for new parameter values during
iterations of the local optimization problem (5.33).

5.6.2 Maximum likelihood estimation case

In the previous section, we assumed V (θ) being a LSE cost function (5.34). Now, we
will also present a local cost function F (θ) and its gradient J(θ) for the MLE case.

The estimation cost function is given by (5.16)

V (θ) = 1
2 log

( 1
N

E(θ)TE(θ)
)

(5.47)

and the overall local cost function of (5.33) is

F (θ) = 1
2 log

( 1
N

E(θ)TE(θ)
)

+ λTSθ. (5.48)

A gradient of this cost function is then given by

J(θ) = ∂F (θ)
∂θT = −

(
E(θ)TE(θ)

)−1
E(θ)T∂Ŷ(θ)

∂θT + λTS (5.49)

and we can see a crucial role plays the red written term again (thus can be computed as
stated at5.6.1).

5.6.3 Parameter normalization

The real values of the parameter θ to be estimated are numerically in a very different
scale. For example, the capacities C calculated using the values in the Tab. 2.1 are
in a range ∼ 104 − 107 J · K−1, on the other hand conductances UA are in a range
∼ 100 − 102 W ·K−1.

These different scales of optimal parameter values significantly worsen numerical
properties and stability of optimization procedures. To eliminate this adverse issue
we normalize the parameters by their true values (or by their expected scales in real
situations). Thus, we define normalized parameters as

θn = N−1θ (5.50)

and vice versa a return to the denormalized parameters

θ = Nθn, (5.51)

where N ∈ Rnp×np is a diagonal normalizing matrix with scale values on the main
diagonal. Hence, our optimization variable is no longer θ directly but its normalized
companion θn.
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5. Distributed identification......................................
Since, we now optimize over θn, our objective function F (θn) is so evaluated. Further-

more, we need to express the gradient as a function of θn as well

J(θn) = ∂F (θn)
∂θT

n

= ∂F (θ)
∂θT

∂θ

∂θT
n

= ∂F (θ)
∂θT N = J(θ)N, (5.52)

where the gradient J(θ) is computed as proposed at 5.6.1. Finally, we remark that an
optimal normalized parameter vector which we will search for during identification ought
to be

θ∗n = 1, (5.53)

if the matrix N contains true initial values of the system which is to be identified.

5.7 Modification for embedded usage

When embedded usage is concerned (e.g. with the ARM Cortex M3 core), there is a need
to modify (optimize) the whole identification algorithm the way it would take as less both
global and local iterations as possible and thus respect a limited speed of communication
and limited memory size.

At first, let’s focus on global iterations. It is obvious a decrease of global iterations
reduces communication load among zones’ agents. A number of global iterations mainly
depends on the used step size rule (for the given precision threshold rthres). We will
carry out several identification processes for various step sizes in the chapter 6 and it will
be seen that a proper step size (rule) can reduce the number of global iterations manyfold.
Another matter is a choice of the precision threshold which is sufficient probably even
when being less strict than rthres = 10−5 as presented at (6.9).

At second, we concentrate on local problem iterations. The local optimization problem
(5.33) is solved by an iterative gradient descent algorithm which needs an initial guess of
the optimization variable θ0

n. We set this initial guess as tenfold scale values, i.e.

θ0
n = N

[
10 . . . 10

]T
. (5.54)

The i-th local optimization subproblem is being solved again with every next k-th global
iteration which supplies a corresponding price vector λki to the i-th local agent. Hence,
when the next local optimization is to be performed, it starts again with the initial guess
(5.54) - this approach is called a cold start.

However, we can notice a local objective function in (5.33) is being modified just
slightly (by λki ) with every new k-th global iteration. Therefore, we utilize this fact
and use a found minimizer θ∗k−1

n as a so called hot start initial guess for the k-th local
optimization. An example of comparison between a number of iterations performed
within a local optimization for the cold and hot start is in the Fig. 5.3.
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Figure 5.3: Comparison of the number of local iterations taken for the cold and hot start.

The total number of local iterations for the presented case is

cold start : #Lc = 516, hot start : #Lh
= 200. (5.55)

Therefore, we can see the total number of local iterations #L reduces more than twice
when the hot start is being used.

In previous sections, we presented the LSE (5.9) and MLE (5.16) method. The
identification results which will be presented in the chapter 6 were obtained both for the
LSE and MLE. However, the LSE generally outperformed the MLE in most cases and
thus we can say is most suitable for embedded usage.

Another thing, which could be utilized in embedded usage, is the analytically com-
puted gradient. Nevertheless, the time of the identification process for analytically and
numerically approximated gradient were almost the same, even though the analytically
one usually took a few iterations less then numerically computed gradient.
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Chapter 6
Identification results

This chapter presents main results of the building identification. We carry out several
identification processes with different settings, that is:. Data generator: either R1C0 (2.17) or R2C1 (2.14) building model,. Additive input heat flow disturbances: we (do or do not) burden the data generator

with positive biased heat flow disturbances at the input, i.e. we simulate there are
other heat flow sources in a building that are unknown to the grey-box model,.Global problem: various step size rules as proposed at 5.5.1,. Local problem: various estimation methods - LSE (5.9) or MLE (5.16).

Afterwards, we compare identification results of all these settings according to following
criteria:.#G - number of iterations of the global problem - suppose the global algorithm took

g iterations till it reaches a desired precision threshold (6.9)

#G = g. (6.1)

.#L - total number of local iterations in all subproblems, i.e. the number is added
up across all the global iterations and local subproblems

#L =
g∑
i=1

4∑
j=1

lij , (6.2)

where lij is the number of iterations in a j-th subproblem under the i-th iteration of
the global problem.. t [s] - time of the whole identification process - starts running with the first iteration
and stops after the g-th iteration of the global problem..Goodness of fit and parameters - will be introduced at a section 6.2.

Remark 6.1. All computations were performed using a dual core cpu Intel R© CoreTM

i5-5200U.
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6. Identification results........................................
6.1 Rich data importance

Measured data represent an input of the identification process. Although, the data
cannot be arbitrary, because even a state-of-the-art identification algorithm fails without
appropriate data.

The data supplied to the algorithm must be rich in contents, that is to contain as
much information as possible. It would be ideal to excite all the modes a system has.
Nevertheless, this is unreachable in practice for building identification, since we can
hardly heat zones up to arbitrary temperature, especially not in presence of inhabitants.

Another restriction is a constraint on heat flow of heat exchanger (for our case stated
as (2.26)). In addition, we have to realize the thermal dynamics of a building is very slow,
therefore we need a long data sequence (approximately hundreds to thousands samples)
to be sufficiently informative.

As proposed in [3] good excitation signals could be square waves corresponding to
changing set point temperatures, step or multi-sinusoidal inputs and random Gaussian
signals. An amount of information in data is closely related to the term data-dependent
identifiability which can be expressed with a Fisher information matrix (for details see
[3]).

In all cases that will be presented afterwards, we will use a one-day data acquisition
while applying the closed-loop heating control. There is always a night and day set point
temperature where the night one is naturally lower.

6.2 Validation of identified models

After a model is identified, it is convenient to measure its “quality” with respect to
provided data, e.g. goodness of fit etc. This can be performed by several ways focusing
on different aspects.

6.2.1 Goodness of fit

This can be provided by several so called metrics and among the most used belong these:. Normalized Root Mean Square Error which is a relative metric and is defined as

fitNRMSE =
(

1− ‖Y− Ŷ‖2
‖Y− 1

K

∑K
k=1 yk‖2

)
100 [%], (6.3)

.Mean Absolute Error which gives an average of the absolute errors

fitMAE = 1
K

K∑
k=1
|yk − ŷk| [−], (6.4)

.Mean Squared Error which gives an average of the squared errors

fitMSE = 1
K
‖Y− Ŷ‖22 [−]. (6.5)
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....................................... 6.3. R1C0 data generator

6.2.2 Goodness of parameters

At first, we focus on public parameters. The local copies of public parameters must satisfy
the constraint (4.16) and an overall goodness of this constraint satisfaction is expressed by
the consistency constraint residual (4.28). However, to show this goodness per parameter
we must introduce another metric to verify a consensus between corresponding pairs of
public variable. Hence, we present a residual public variable error defined as

rzi = |y∗k − y∗l |, i = 1, . . . , nz, (6.6)

where indices k and l satisfy
Eki = 1 ∧Eli = 1. (6.7)

In other words, the residual (6.6) measures an absolute error between identified wall
parameters of two adjacent zones.

At second, we focus on all parameters, i.e. both private and public ones. We express
their optimality to initial parameter values of the data generator as

eθi
= |θ

∗
i − θi|
θi

, i = 1, . . . , np, (6.8)

naturally this assumes we have knowledge of the initial values.

6.2.3 Precision threshold

The building identification problem is solved using the dual decomposition method. An
implementation of this method is based on the Alg. 4 and as a stopping criterion serves
the consistency constraint residual (4.28) which was chosen as

rthres = 10−5. (6.9)

This precision threshold on public variables equality is a reasonable trade-off between
precision and a number of iterations of the global problem.

6.3 R1C0 data generator

The building models presented in the chapter 2 - both R1C0 (2.17) and R2C1 (2.14) -
were utilized as data generators for an identification process. In order to simulate real
conditions, we burden measured zone temperatures with additive white Gaussian noise
that has properties

ek ∼ N (0, 0.01Ts), cov{ek, ek+i} = 0, i 6= 0, (6.10)

where the variance corresponds to a standard deviation of 0.1 K for continuous-time
measure.

At first, we use the R1C0 model as a data generator and so as the grey-box model to
be identified. Therefore, optimal values of normalized vector parameter which we will
search for

θ∗ni
=
[
Cz UAw1 UAw2 UAw3 UAw4

]T
, i = 1, . . . , 4. (6.11)

should be as close as possible to ones (as mentioned at (5.53)).
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6. Identification results........................................
6.3.1 Disturbance-free case

There were carried out several identification processes. At the global algorithm we
applied either a fixed step size or variable step size (for details see 5.5.1) while in the
local problem we were using the LSE or MLE method.

The results are presented in a Tab. 6.1 and Tab. 6.2, respectively. A table 6.5 shows
the goodness of fit for both the disturbance-free and disturbance case which will be
described afterwards. We can see the fitNRMSE is very good which is not surprising as
our grey-box model R1C0 corresponds exactly to the data generator.

A group of figures 6.4 - 6.3 documents the results of identification using fixed step size
and LSE. A Fig. 6.4 shows nicely the behaviour of the global algorithm which forces
public variables of adjacent zones to be equal. Thus, the consistency constraint residual
decreases which is shown in the Fig. 6.5b (in logarithmic scales). The next Fig. 6.1
depicts a correspondence between the measured data from the generator and identified
model. Another part of data, which are measured heat flows of heat exchangers are in
the Fig. 6.2. The last figure of this group (6.3) presents errors defined at (6.8) between
original parameters of the generator and estimated ones obtained via identification.

LSE step # iterations time [s]size Global Local

fixed
0.001 37 1456 41.1
0.002 19 885 25.8
0.003 12 639 18.27

variable
0.002 105 1992 62.7
0.005 17 698 20.1
0.010 14 777 21.6

Table 6.1: Dependence of the number of iterations on various step sizes (R1C0 data, LSE,
disturbance-free case).

MLE step # iterations time [s]size Global Local

fixed
0.2 17 851 64.4
0.3 11 608 44.1
0.4 21 998 76.3

variable
0.5 15 2245 72.1
0.7 9 1414 46.3
0.8 11 1622 52.3

Table 6.2: Dependence of the number of iterations on various step sizes (R1C0 data, MLE,
disturbance-free case).
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Figure 6.1: Comparison of measured output data and identified model simulation (air
temperatures in zones) - R1C0 without disturbances.
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Figure 6.2: Measured input data - heat flows of heat exchangers (R1C0 without disturbances).
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Figure 6.3: Error of individual θi parameters with respect to initial values - R1C0 without
disturbances.
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Figure 6.4: Convergence of public variables for a FIXED step size (R1C0 without disturbances,
LSE).
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Figure 6.5: Decrease of consistency constraint residual for a FIXED step size (R1C0 without
disturbances).
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Figure 6.6: Convergence of public variables for a VARIABLE step size (R1C0 without
disturbances, LSE).

6.3.2 Disturbance case

In the previous section, we were identifying the building model where only measurement
data was burdened with a Gaussian white noise (6.10). Now, we will try to more
approximate real conditions and let other heat sources affect a temperature in the zones.
Since these additional heat flow sources are unknown to our grey-box model, we call
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Figure 6.7: Decrease of consistency constraint residual for a VARIABLE step size (R1C0
without disturbances).

them disturbances. These disturbances simulate for instance occupancy of zones as one
person approximately has a heat power ∼ 80 W, furthermore a lot of electric appliances
and devices produce heat as well. Hence, we simulate these disturbances as a biased
white Gaussian noise

dk ∼ N (50, 302Ts), cov{dk, dk+i} = 0, i 6= 0, (6.12)

where the mean value of heat flow is 50 W and the variance corresponds to a standard
deviation of 30 W for a continuous-time case. The general scheme of the system with
disturbances and measurement noise is in the Fig. 2.7. Now, we perform several
identifications with different settings - again, results are summarized in tables 6.3, 6.4
and the goodness of fit is presented in a Tab. 6.5.

LSE step # iterations time [s]size Global Local

fixed
0.001 34 1309 40.2
0.002 26 1351 38.2
0.003 17 939 26.6

variable
0.002 200 5200 162.4
0.005 29 1279 37.4
0.010 ∞ ∞ ∞

Table 6.3: Dependence of the number of iterations on various step sizes (R1C0 data, LSE,
disturbance case). Note the algorithm diverges for the variable step size αk = 0.01/

√
k unlike

the disturbance-free case.
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MLE step # iterations time [s]size Global Local

fixed
0.05 52 2149 149.7
0.08 31 1363 91.2
0.1 24 1090 70.35

variable
0.1 193 7559 588.9
0.2 45 1947 132.0
0.3 19 961 57.28

Table 6.4: Dependence of the number of iterations on various step sizes (R1C0 data, MLE,
disturbance case).

DIS- zone Goodness of fit
rz wallTURB. NRMSE [%] MAE [-] MSE [-]

×
1 96.29 0.0789 0.0099 3 · 10−6 1
2 95.92 0.0789 0.0099 2 · 10−6 2
3 96.59 0.0789 0.0099 6 · 10−6 3
4 95.36 0.0789 0.0099 7 · 10−6 4

X
1 89.01 0.2316 0.0851 4 · 10−6 1
2 88.26 0.2297 0.0790 1 · 10−6 2
3 89.25 0.2499 0.0953 6 · 10−6 3
4 86.12 0.2418 0.0887 6 · 10−6 4

Table 6.5: Goodness of fit with(out) disturbance presence (for R1C0 data). Both LSE and
MLE give the same fit for all step sizes, the difference is only in the number of iterations. The
part right to a double line contains absolute errors of corresponding pairs public variables.
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Figure 6.8: Comparison of measured output data and identified model simulation (air
temperatures in zones) - R1C0 with disturbances.
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Figure 6.9: Measured input data - heat flows of heat exchangers (R1C0 with disturbances).
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Figure 6.11: Convergence of public variables for a VARIABLE step size (R1C0 with distur-
bances, LSE).
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Figure 6.12: Decrease of consistency constraint residual for a VARIABLE step size (R1C0
with disturbances).

6.4 R2C1 data generator

At second, we will simulate a situation when we try identifying a system with our assumed
grey-box model but this grey-box is a simplification of the real system, i.e. neglects
low significant states (with poor dynamics) etc. We will use the R2C1 model as a data
generator but identify the R1C0 grey-box model. Therefore, optimal values of normalized
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6. Identification results........................................
parameter vector which we will search for will no longer be exactly ones. However, we
can still verify a correctness of the identified model as we calculate a goodness of fit.

6.4.1 Disturbance-free case

At first again, we begin with the simpler case where no disturbances are taken into
account. The results computed using LSE method and various step sizes for the global
problem are presented in a Tab. 6.6. For this time, we do not present all the figures as in
previous cases since they do not differ so much from the disturbance case figures which
will be shown in the next subsection. A goodness of fit for this case is presented along
with the disturbance case in a Tab. 6.8.

LSE step # iterations time [s]size Global Local

fixed
0.0005 55 1970 54.8
0.001 27 1096 34.9
0.0012 24 1085 29.9

variable
0.001 209 3279 106.7
0.002 47 1350 38.9
0.003 47 1672 48.6

Table 6.6: Dependence of the number of iterations on various step sizes (R2C1 data, LSE,
disturbance-free case).

6.4.2 Disturbance case

Now, we will try to identify the system burdened with disturbances introduced at (6.12).
We remark this is the worst case for the identification process, since the real system
(building) distinguishes from the grey-box model applied within the identification, in
addition there are unmeasured disturbances which affect the air temperature in zones.
Therefore this case approximates most of all a real situation for the building identification.

LSE step # iterations time [s]size Global Local

fixed
0.0005 47 1893 53.3
0.0008 38 1542 43.0
0.001 22 1049 28.9

variable
0.001 164 3183 97.0
0.002 25 947 28.0
0.0025 45 1650 48.1

Table 6.7: Dependence of the number of iterations on various step sizes (R2C1 data, LSE,
disturbance case).
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DIS- zone Goodness of fit
rz wallTURB. NRMSE [%] MAE [-] MSE [-]

×
1 83.80 0.3223 0.1873 4 · 10−6 1
2 82.29 0.3334 0.2100 3 · 10−6 2
3 82.89 0.4134 0.2738 3 · 10−7 3
4 75.04 0.3981 0.3981 8 · 10−6 4

X
1 80.62 0.3828 0.2592 4 · 10−6 1
2 80.00 0.3680 0.2559 5 · 10−6 2
3 80.52 0.4596 0.3445 6 · 10−6 3
4 71.53 0.4479 0.3742 11 · 10−6 4

Table 6.8: Goodness of fit both with and without disturbance presence (for R2C1 data, LSE).
The right part of the table contains absolute errors of corresponding pairs public variables.

Results showing a convergence rate for various step sizes are expressed in a Tab. 6.7.
The goodness of fit which is presented in a Tab. 6.8 is mostly about 80 % (fitNRMSE)
and can be seen in the Fig. 6.13. The corresponding measured input data, i.e. heat flows
of heat exchangers, are depicted in the Fig. 6.14. A figure 6.15 shows a convergence
of public variables for a variable step size αk = 0.002√

k
and the last figure 6.16 depicts

a decrease of the consistency constraint residual.
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Figure 6.13: Comparison of measured output data and identified model simulation (air
temperatures in zones) - R2C1 with disturbances.
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Figure 6.14: Measured input data - heat flows of heat exchangers (R2C1 with disturbances).
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Figure 6.15: Convergence of public variables for a VARIABLE step size (R2C1 with distur-
bances, LSE).
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Figure 6.16: Decrease of consistency constraint residual for a VARIABLE step size (R2C1
with disturbances).

6.5 Summary of the results

There were carried out several identification processes with different settings in this
chapter. Now, we give a brief summary to the attained results.

The best results were obtained when our assumed grey-box model perfectly matched up
with the data generator (R1C0 case) and no disturbances affected the zones. Although,
the results are impressive, this is rather an ideal case mostly far away from real conditions.
Much more important is the R2C1 case when the grey-box is just approximation of a real
more complex system. An identification of the building is then a true challenge and
verifies a robustness of the whole algorithm.

As for the step sizes, the fixed step size rule is generally a bit faster and behaves more
“aggressive” but its step must be smaller than the initial one in the variable step size
rule and also is unable to recover even from a little increase of the consistency constraint
residual at the beginning of the global algorithm.

The results for the LSE and MLE method are quite similar, though the LSE needs
mostly less time to reach desired precision threshold of the global problem. On the other
hand, the MLE method performs often less global iterations compared to the LSE.
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Chapter 7
Conclusion

7.1 Thermal model of a building

The main goal of this thesis was to design an algorithm for the distributed building
identification. That is an algorithm which would identify a building in the distributed
manner. Before designing and implementing the algorithm itself, we achieved a smaller
goal which was to create a proper simulation model of a building. There were created
two of them: one with higher fidelity (R2C1) suitable for simulation purposes and the
second simpler (R1C0) rather being a grey-box template, though used as a simulator
and data generator as well.

There was also designed a simple discretized PI closed-loop heating control, since
identification data acquisition is usually executed while closed-loop control is being
applied due to safe issues.

7.2 Distributed identification

After we presented important theoretical parts concerning duality in optimization and
decomposition methods, the next goal (the greatest of this thesis actually) was to think
up and implement an algorithm for distributed identification. This algorithm is based
on the dual decomposition method that has several advantages compared to the primal
decomposition. At first, local sensitivities to global optimization variables (= prices)
can be expressed easily straight away, since they are directly equal to optimized public
variables. At second, for larger buildings almost all zone parameters are public (except
for zone capacity). In case of the primal decomposition, this would mean a significant
increase of global iterations (i.e. increase of communication among agents) because the
public variables are fixed at local problems.

Therefore, we decided to use the dual decomposition method. It splits the overall
building identification problem into local ones in each zone. The next step was thus
to formulate a local identification problem. We utilized our prepared grey-box model
R1C0 and expressed the problem as a (Nonlinear) Least Squares or Maximum Likelihood
Estimation. The local problem was solved using a gradient method. In order not
to rely only on a numerically approximated gradient provided by the fmincon solver,
we implemented our own computation of the analytical gradient. The identification
process took roughly the same time for both gradients, even though sometimes the
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analytical gradient outperformed the numerical one by several less iterations. Thinking
the numerical gradient computation is highly optimized, we can consider this as a good
result.

After implementing the whole algorithm, we tested its function on a benchmark 4-
zone building model. Firstly, the test was carried out on the R1C0 building model to
demonstrate and verify a proper function of the algorithm. In this ideal case the goodness
of fit reached about 96 %. Secondly, we used the R2C1 model as a data generator and
again successfully identified the building even when it was burdened with disturbances
simulating an occupancy. The goodness of fit achieved mostly about 80 % in this case.

7.3 Future development

Now, we propose a possible future development. If our proposed algorithm is to be
used in an embedded device, the performance could be further increased by following
enhancements. Firstly, a faster gradient computation would shorten a time needed for
local optimization. Another suggested enhancement relates to the global algorithm.
Application of some advanced step size rule as Nesterov’s would most likely also decrease
an overall computational time.

The last possible enhancement we propose is probably the most challenging. The
identification in our algorithm is now being performed as batch processing of the entire
measured data which is quite demanding. The major breakthrough might be reached
if the data were processed iteratively with every new measurement and estimation of
parameters would just have been updated.

58



Bibliography

[1] E Toffoli G Baldan and G Albertin L Schenato. Thermodynamic Identification of
Buildings using Wireless Sensor Networks. 2004.

[2] Francesco Scotton. Physics-based modeling and identification for HVAC systems.
(August):1404–1409, 2013.

[3] Clarence Agbi, Zhen Song, and Bruce Krogh. Parameter identifiability for multi-zone
building models. Proceedings of the IEEE Conference on Decision and Control,
pages 6951–6956, 2012.

[4] Klaus Kaae (Dtu) Andersen, Henrik (Dtu) Madsen, and Lars H. (Risø) Hansen.
Modelling the heat dynamics of a building using stochastic differential equations.
Energy and Buildings, 31(1):13–24, 2000.

[5] Siyu Wu and Jian Qiao Sun. A physics-based linear parametric model of room
temperature in office buildings. Building and Environment, 50:1–9, 2012.

[6] Clarence Agbi and Bruce Krogh. Decentralized identification of building models.
Proceedings of the American Control Conference, pages 1070–1075, 2014.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization, volume 25. Cam-
bridge University Press, 2004.

[8] Sikandar Samar, Stephen Boyd, and Dimitry Gorinevsky. Distributed estimation
via dual decomposition. Proc. European Control Conference, pages 1511–1516, 2007.

[9] Petr Endel. Distributed Predictive Control. Control Systems, . . . , 2012.

[10] Lennart Ljung. System Identification (2Nd Ed.): Theory for the User. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1999.

[11] K A N Terelius Master and Degree Project Stockholm. Distributed Multi-Agent
Optimization via Dual Decomposition. 2010.

[12] Jiří Řehoř and Vladimír Havlena. Maximum likelihood estimation of LTI continuous-
time grey-box models. IFAC Proceedings Volumes (IFAC-PapersOnline), 19:3739–
3744, 2014.

[13] Y Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Kluwer Academic Publishers, 2004.

59



60



Appendix A
Contents of CD attached

The CD attached to this thesis contains following directories:. thesis_text - contains a pdf file of this thesis,. ml_codes - contains Matlab m-files and Simulink *.mdl models.
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