
master’s thesis

Passive NAT detection using HTTP logs

Tomáš Komárek

May 2015

Supervisor: Ing. Martin Grill

Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Control Engineering

Acknowledgment
First and foremost, I would like to acknowledge my supervisor Ing. Martin Grill

for his interest, help and guidance throughout my diploma thesis. In addition,

I would like to thank Ing. Tomáš Pevný, Ph.D. for his helpful suggestions and

comments during this work. Special thanks go to all the people at CISCO,

for providing a nice and friendly working environment. Last but not least, I

would like to thank my girlfriend Teraza and my brother Lukáš who inspire

me all the time.

Declaration
I declare that I worked out the presented thesis independently and I quoted

all used sources of information in accord with Methodical instructions about

ethical principles for writing academic thesis.

Abstract
Network devices performing NAT prove to be a double edge sword. They

can easily overcome the problem with the deficit of IPv4 addresses as well

as introduce a vulnerability to the network. Therefore detecting NAT devices

is an important task in the network security domain. In this thesis, a novel

passive NAT detection algorithm is proposed. It infers NAT devices in the

networks using statistical behavior analysis of HTTP logs. These network

traffic data are often already collected and available at proxy servers, which

enables the wide applicability of the solution. On the basis of our experimen-

tal evaluations, proposed algorithm detection capabilities are better than the

state-of-the art NAT detection approaches.

Abstrakt
Síťová zaříení umožňující nativní překlad adres (NAT zařízení) se ukazují býti

dvojsečná. Mohou obejít problém s nedostatkem veřejných IP adres stejně

snadno jako způsobit zranitelnost sítě. Z toho důvodu je detekce NAT za-

řízení důležitou úlohou síťové bezpečnosti. V této diplomové práci je navržen

detekční algoritmus odhalující NAT zařízení v počítačových sítích na základě

statistické analýzy chování uživatelů sítě z HTTP proxy záznamů. Skutečnost,

že tyto síťové záznamy jsou již sbírané a běžně dostupné na proxy serverech,

umožňuje širokou aplikovatelnost tohoto řešení. Na základě provedených

experimentů, detekční schopnosti navrženého algoritmu překonávají všechna

současná řešení.

Contents

1 Introduction 1

2 Problem statement 3
2.1 Network Address Translation 3

2.2 Proxy logs . 6

2.3 Design requirements . 7

3 State of the Art 9
3.1 TCP/IP packet headers . 10

3.2 TCP/IP packet payloads 12

3.3 NetFlows records . 13

4 NAT detector 16
4.1 Supervised learning . 17

4.2 Problem formulation . 19

4.3 Artificial NATs . 22

4.4 Pre-processing . 26

4.5 Data analysis . 30

4.6 Classification . 36

4.6.1 Support Vector Machine 39

4.6.2 Logistic Regression 41

4.6.3 Evaluation metrics 42

4.6.4 Validation . 44

4.6.5 Training . 45

4.6.6 Dimensionality reduction 47

4.6.7 Detection trade-off 51

4.7 Structure of the detector 53

5 Experimental evaluation 55
5.1 Concept drift . 55

5.2 Error rate . 58

5.3 Degenerate networks . 60

5.4 NAT devices in networks 63

6 Conclusion 64

Chapter 1

Introduction

The number of Internet connected devices is continuously growing. It is

estimated that over one hundred new devices is connected to the Internet

every second. Each such device needs to be associated with an IP address to

be able to communicate with others on the Internet. Looking to the future

especially with respect to the upcoming phenomena Internet of Things, it

is evident that even more and more devices like watches, fridges and cars

will need IP addresses. However, transition to the modern Internet Protocol

version 6 (IPv6) with sufficiently large address space seems to be struggling

due to lack of backward compatibility with existing Internet Protocol, known

as IPv4. As result, IPv4 still carries the vast majority of Internet traffic and

the problem with almost depleted IPv4 address pool is curred with Network

Address Translation (NAT) devices.

By using NAT, it is possible to hide a complete local network behind a single

IP address. The local network then gives the impression of being just one

network device from the public network perspective. This is used not only to

solve the problem with running out of public IP addresses, but also to hide

inner network topology, provide anonymity, filter content, monitor network

performance, etc. Nevertheless this technique does not just provide benefits.

For example, employees of companies might setup their own unauthorized

1

INTRODUCTION

NAT devices to share Internet connection among workstations and mobile

devices. Setting up such devices in that environments is considered as a

major security threat, because these devices are out of the scope of any

security policies and might provide an easy exploitable point for conducting

malicious activity. It is therefore necessary for network administrators to

have an overview of devices performing NAT in the networks to be able to

successfully prevent from potential industrial espionage or any other cyber-

attacks against the corporate networks. Taking this into account, there is a

need for a solution that is capable of detecting NAT devices.

This thesis addresses the problem of NAT detection using information con-

tained within HTTP logs. The structure is as follows. Chapter 2 describes

the problem together with the herein used HTTP logs. Chapter 3 provides

a brief survey of existing solutions and highlights their main drawbacks. In

Chapter 4, a NAT detector based on statistical behavior analysis is proposed.

Chapter 5 reports the performance of the proposed solution using real network

data. Final Chapter 6 concludes the thesis after summarizing the results.

2

Chapter 2

Problem statement

In this chapter we describe the problem of NAT detection in more detail.

Afterward, we present available data resources and specify requirements of

the detection algorithm.

2.1 Network Address Translation

Network Address Translation (NAT) is a technique that allows a single net-

work device (e.g., a router) to act as an agent between public network (e.g.,

the Internet) and private (local) network [rfc, 1994]. It assigns a public In-

ternet Protocol (IP) address to a host or a group of hosts inside a private

network. Consequently, only a single public IP address is needed to represent

an entire group of hosts. This allows private networks that use unregistered

IP address to connect to the Internet. In doing so, a device running NAT

translates source addresses in IPv4 packet headers [rfc, 1981] of hosts inside

the private network to a globally unique IP address before the packets are

forwarded to public network. The returning IP packets go through similar

address translation process to reach the corresponding recipient.

To be able to match responses from public network with individuals in the

private network, outgoing packet headers from the private network have also

3

2.1. NETWORK ADDRESS TRANSLATION PROBLEM STATEMENT

replaced source ports in addition to source IP addresses. In the NAT device

memory, there is a stored address translation table, which maps host’s private

IP address and source port to the assigned public address and port. This table

is used for translation process during packet forwarding. If no match is found

in the table, the corresponding packet is dropped.

The main reason to use NAT is to overcome a deficit of public IP addresses.

However, there are other justifiable reasons such as hiding inner network topol-

ogy, providing anonymity, content filtering, monitoring network performance,

etc. to install a NAT device1 (or more generally a NAT software) at exit

points between the private and public network. On the other hand, unautho-

rized NAT devices in the network present a significant network security threat

because they may provide unrestricted access to the network. Wireless NATs

(e.g., Wi-Fi routers) pose a particular security risk because they may allow

unauthorized access to the network from considerable distances without wired

connections. As such, network administrators should be informed about de-

vices which potentially perform NAT in the network. Moreover, it is also

important for purposes of advanced network behavior analysis to be able to

identify NAT devices. In order to detect modern network security threats,

such systems build statistical models of hosts behavior in the network based

on network traffic and report deviations from the models. In these systems

the behavior of NAT devices has to be, however, modeled separately. As the

traffic generated by a NAT is actually mixture of a behaviors of inner individual

hosts connected to the NAT.
1As used herein, the term "NAT device" means any entity or instance that performs NAT.

4

2.1. NETWORK ADDRESS TRANSLATION PROBLEM STATEMENT

Host A
10.10.47.1

Host B
10.10.23.2

Host C
10.10.13.7

Internet
Intruders

10.10.13.7

Proxy
server

Switch

Firewall
Router
NAT

NATed hosts
10.10.13.7

Local Area Network

Figure 2.1: An example of network environment with a NAT device.

Figure 2.1 shows a simplified network topology. The network environment

consists of a local area network (LAN) communicating with the Internet

through a firewall. The LAN includes a proxy server, a network switch, a

router performing NAT and several hosts in addition to the firewall. The

proxy server acts as an intermediary or focal point for network traffic to/from

the LAN. Thus, the proxy server has a comprehensive view of network traffic,

which is utilized to monitor and capture logs of that network traffic. The cap-

tured logs are called proxy logs and their structure is described in the following

Section 2.2. On the basis of proxy logs, the detection algorithm proposed

in this thesis classifies each host identified in the logs as either a NAT de-

vice or an end host (i.e., non-NAT device). Other used names for the NAT

device in this thesis are: gateway or positive sample/instance. Conversely,

regular host/user or negative sample/instance are alternative terms for the

end host. Returning again to Figure 2.1, Hosts A and B are examples of end

hosts as each of them represents one device (e.g., user’s computer, network

printer, etc.) with its own IP address, unique within the LAN. In contrast

to Host A and B, Host C can not be considered as an end host, because it

actually includes more (wirelessly) connected devices (e.g., laptops of several

employees). These NATed hosts are indistinguishable in proxy logs as they

5

2.2. PROXY LOGS PROBLEM STATEMENT

are represented by a single IP address of Host C. Consequently, Host C is

considered to be a NAT device. The illustrated intruders attempt to gain

an unauthorized access into the LAN through the NAT device. In case of

success, their malicious activity will blend in with the traffic of Host C (i.e.,

with all NATed hosts). Such type of malicious activity is hard to discover due

to the presence of background traffic.

2.2 Proxy logs

As mentioned before, proxy servers such as [Squ, 2015] or [HAP, 2015] are

capable of capturing network traffic logs. More specifically, Hypertext Trans-

fer Protocol (HTTP) [rfc, 1999] proxy logs (also referred as HTTP logs) are

collected by these servers. In Table 2.1, there is an example of HTTP proxy

logs. For illustrative convenience, the table is split into two table portions.

Each line represents a HTTP request made by a host to a web server. It con-

tains the host IP address, the IP address and domain of the server, Uniform

Resource Locator (URL) of the request (only for non-HTTPS requests), the

User-Agent information (it identifies host’s software originating the request),

the sum of uploaded/downloaded bytes, the starting time of communication

and its duration. Then, there is also Referrer field which contains the informa-

tion about who referred the host to make the request to that particular server

with that particular URL. Furthermore, there can be additional fields, like the

host/server source port, HTTP status or HTTP method, depending on the

configuration of the proxy server. All these fields are extracted from HTTP

headers. Therefore, proxy logs only provide information about communication

and not other types of network protocols. To avoid any misunderstanding,

the records only store meta-data about the transferred packets. They do not

include any payload data sent by the host or returned by the server apart

from the transferred volumes. Besides that these records are often already

collected and available at proxy servers.

For development purposes of this thesis, we are provided with annonymized

6

2.3. DESIGN REQUIREMENTS PROBLEM STATEMENT

Timestamp Duration Method Server IP Server port Host IP Host port URL

1424851268 20 GET 198.35.26.112 80 10.148.144.137 40003 http://en.wikipedia.org/wiki/
1424851253 120 GET 204.79.197.200 80 10.148.144.169 40475 ts4.mm.bing.net//th?q=proxy+server
1424851223 200 GET 173.194.40.121 80 10.148.144.211 40005 http://www.nytimes.com/
1424851423 50 GET 23.14.92.64 80 10.148.144.236 40477 https://www.facebook.com/
1424851899 10 GET 46.228.47.114 80 10.148.144.143 56497 https://www.yahoo.com/

User-Agent Referrer Uploaded bytes Downloaded bytes

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0) - 10 130
Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.0 http://bing.com/img/

src?q=proxy+server
15 826

Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.0 - 17 180
Opera/9.80 (Windows NT 6.0) Presto/2.12.388 Version/12.14 - 24 290
Mozilla/5.0 (X11; Linux i686; rv:10.0.7) Gecko/20100101 Iceweasel/10.0.7 - 32 410

Table 2.1: An example of five HTTP proxy logs.

HTTP proxy logs from three working days of four different networks. These

networks are corporate networks (also referred to simply as companies) of

various sizes operating on distinct fields of industry. Approximate numbers of

hosts inside the networks are: 6 000, 12 000, 25 000 and 61 000.

2.3 Design requirements

In summary, each host in the network may be either a NAT device, or an end

host device. As this is not inherently clear and simultaneously crucial from the

reasons mentioned above, NAT detection is important and challenging task

in the network security domain. The goal of this thesis is to develop a NAT

detector that is able to detect NAT devices using the information contained

in the above described proxy logs. Herein is a list of the main requirements,

which the NAT detector should fulfill:

1. classify each host identified in proxy logs as end host, or NAT device,

2. real time processing of input proxy logs,

3. results available within 24 hours of the starting time,

4. focus on high classification precision.

Additionally, the NAT detector should cope with high speed networks with

more than three thousand hosts. Hence the computational demands should

be as low as possible. It should be noted that from the nature of data, we

are not able to detect NAT devices in the network, that do not produce any

7

2.3. DESIGN REQUIREMENTS PROBLEM STATEMENT

HTTP requests. However, with reference to the fact that HTTP is one of the

most used network protocols among users, existence of such NAT devices is

improbable. Note also that there is no attempt to identify individual NATed

hosts connected to the NAT device. We are interested solely in detecting

whether a particular IP address occurring in proxy logs is actually end host or

not.

8

Chapter 3

State of the Art

An overview of existing solutions is presented in this section. Since network

security still continues to be a hot topic in the market place, many scientific

studies in the area of NAT detection have been done in recent years. Although

we do not go into the details of all works, we would like to show main ideas

as well as drawbacks of majority of them.

In general, there are two main approaches in order to infer concealing NAT

devices in the network: active and passive. We will focus primarily on passive

detection techniques which unlike the active ones do not generate any network

traffic by sending data packets. They try to identify NAT devices just by

observing normal data flow in the network. Moreover these techniques are

undetectable, non-intrusive and capable to analyze stored historical records of

traffic retrospectively. On the other hand, they require convenient monitoring

point in the network to be able to capture communication of every host.

Meanwhile active tools such as Nmap [Lyon, 2006] 1 can be run anywhere in

the network. The passive techniques can be divided into the three following

categories according to the used source of data for detection: TCP/IP packet

headers (Section 3.1), TCP/IP packet payloads (Section 3.2) and NetFlow

records (Section 3.3).

1Probably the most used open-source software for this purpose.

9

3.1. TCP/IP PACKET HEADERS STATE OF THE ART

3.1 TCP/IP packet headers

Methods of this class are based solely on analyzing fields from Transmission

Control Protocol and Internet Protocol (TCP/IP) packet headers. They do

not use any information contained in a packet payload. This property can

be important from privacy point of view. The below listed paragraphs briefly

describe some TCP/IP header fields and their combinations which can serve

for the NAT detection purpose.

IP TTL is an eight bit length field in IPv4 packet headers which limits packet’s

lifetime to prevent it from persisting (e.g., going in circles) on Internet. It

works as a hop count. Each time the packet arrives at a router, its TTL

value is decremented by one. When the value reaches zero, the packet is dis-

carded. One method for detecting NAT devices, well described for example

by [Phaal, 2009], is based on observation that operating systems have char-

acteristic initial TTL values. The set of the unique initial values is relatively

small. According to [Miller, 2008], almost all operating systems from Win-

dows family have initial TLL value set to 128 by default. Once it is known that

NAT devices (e.g., routers or gateways) decrement the value during packet

forwarding, we can infer a host behind a NAT device upon seeing its packet

with TTL value 127. There are two major disadvantages of this method.

The initial values can be easily changed in computer settings and routers re-

configured to not decrement TTL. Hence it does not make any problem for

intruders to hide a malicious NAT device in the network when this method is

deployed.

IP ID is an identification field of IP packet headers allowing packet frag-

mentation and reassembling. Fragmentation is used when one network wants

to transmit packets to another with a smaller maximum transmission unit.

Each packet is splitted into smaller chunks called fragments. The IP ID

uniquely identifies a group of these fragments to make reassembling possi-

ble on the receiver side. As the field ensures uniqueness of each packet, its

value is changed every time a packet is sent from source to destination. An

10

3.1. TCP/IP PACKET HEADERS STATE OF THE ART

algorithm for counting NATed hosts proposed by [Bellovin, 2002] is based on

observing patterns in produced IP ID sequences. It turns out that some Oper-

ating Systems (OSs) such as Windows and FreeBSD implement it as a linear

congruential counter (mod 216), which generates sequences of consecutive

numbers. Thus, the total count of observed sequences from one IP address

should correspond to the number of users behind the address. However, the

algorithm does not work for OS where the IP ID is generated in a random

manner (MacOS, OpenBSD) or as a per flow counter (current Linux distri-

butions). In addition, if Don’t Fragment bit (DF) is set to one, reassembly is

not necessary and some devices reset IP ID to zero. Both issues render the

technique as inappropriate for network security purposes.

IP TTL + DF + TCP window size + SYN packet size. Values of these fields
are characteristic among different operating systems or even its versions and

thus can be used to create an OS signature as suggested by [Miller, 2008].

OS fingerprinting is the name of a passive technique inferring host’s OS

from its collected TCP/IP communication. Unlike the popular freeware p0f

tool [Zalewski, 2012] using rule-based matching, [Beverly, 2004] trained a

Bayesian classifier to determine host’s OS based on these packet header fields.

The main advantage of the statistical model over the rule-based matching is

ability to select an OS with the highest posterior probability, although there

is no an exact signature match. Generally speaking, the best guess is always

determined with respect to available training data. In application of NAT

detection, a host with more detected OSs might indicate a NAT device.

Nonetheless, this technique fails to detect NATed hosts with the same OS.

Unfortunately, network hosts with one identical OS are commonly observed

in corporate environments. Therefore, the method can be not recommended

as a stand-alone solution for network administrators.

TCP timestamps in IPv4 headers help to determine the order of received

packets. [Kohno et al., 2005] proposed a powerful way how to remotely fin-

gerprint user’s device with the timestamps. It exploits the fact that modern

computer chips have small yet remotely detectable clock skews. To estimate

11

3.2. TCP/IP PACKET PAYLOADS STATE OF THE ART

device’s clock skew, the TCP timestamp option from outgoing packets is

utilized. This technique is capable of identifying user’s device not only mas-

querading behind a NAT device, but also changing IP addresses over time.

Unfortunately, it suffers from the fact that TCP timestamp option can be

disabled. Moreover, the option is disabled in Windows 2000 and Windows

XP by default. As such, the technique is impractical in real-world applications

dealing with NAT detection.

IP ID + TCP sequence number + TCP source port. The 32-bit TCP

sequence number is generated at the beginning of each TCP connection es-

tablishment. The 16-bit TCP source port is assigned by a client computer

when it tries to establish a TCP connection. Together with the already pre-

sented IP ID, the behavior of these three IP header fields is characteristic

among popular OSs such as Windows, Linux, FreeBSD and MacOS. In the

work of [Mongkolluksamee et al., 2012], behaviors of these fields were studied

through popular OSs and the previously mentioned [Bellovin, 2002]’s method

was extended by the newly discovered patters. The introduced algorithm can

serve for identifying individuals as well as their OS. Nevertheless, it still fails to

detect OpenBSD hosts because they implement all fields in a random manner.

3.2 TCP/IP packet payloads

In contrast to methods from previous category, the next two methods take

advantage of packet payloads. Both methods inspect HTTP communication

in order to uncover a NAT device in the network.

HTTP cookie is a small piece of data delivered by a web page and stored in

user’s browser. HTTP cookies typically contain an unique identifier allowing

the web page to determine an user visiting the same page again. In some

sense, it helps to overcome the stateless of HTTP protocol. [Bai Xue, 2009]

developed an algorithm which tries to detect a host accessing the same web

page with different cookie identifiers, because in reality it might be more

users hidden behind a NAT device. Disadvantage of this technique is poor

12

3.3. NETFLOWS RECORDS STATE OF THE ART

performance and the fact that cookies can be disabled.

HTTP User-Agent is a string carrying information about user’s client (e.g.,

browser, mail client, media player, etc.) connecting to the server via HTTP

protocol. User-Agent string of a regular browser usually contains its name,

version, OS family including version and potentially plugged extensions. This

knowledge about a host in addition to its initial IP TTL value were invoked

in a NAT analysis tool created by [Maier et al., 2011]. They assumed that it

is rather unlikely to see different versions of the same browser or OS family

on the same host, whereas having more different browsers running on one

OS is quite common. They also showed that User-Agent feature is more

valuable than IP TTL. However, the tool cannot distinguish hosts with the

same browser and OS. This situation is usual in networks with homogeneous

OS/software installations (e.g., banking and financial industry, public admin-

istration and some corporate environments).

3.3 NetFlows records

The last category includes techniques based on analyzing NetFlow records. A

NetFlow is an aggregate of packets which have source/destination IP address,

source/destination port and type of protocol in common. The aggregate

contains information about the source/destination IP address and port, the

number of transferred packets, the sum of bytes transferred by all packets,

duration of the communication and other information. As many routers and

switches are capable of generating NetFlows, it is convenient to use the data

for purposes of the network analysis. Moreover, these techniques do not

require any deep packet inspection. As such, privacy of monitored users

is respected. In [Krmicek et al., 2009], a NetFlow based system for NAT

detection is introduced. However, the system is analogous to methods from

Section 3.1. It takes advantages of the similar observations about TCP/IP

header fields and combines them together in order to get a more robust

detector.

13

3.3. NETFLOWS RECORDS STATE OF THE ART

In contrast, the following two techniques collect statistics (derivable from

NetFlow records) about host’s behavior in the network. The statistics are

gathered within a time window of a predefined length. Afterwards, an optimal

decision is made according to a learned knowledge on previously analyzed data.

Strictly speaking, it is a behavior oriented pursuit and not signature oriented.

We consider these works to be the most relevant to our one as we also utilize

machine learning approach. However, the NAT detector proposed in this

thesis collects statistics from HTTP proxy logs. Note that the inceptions

of the below paragraphs correspond to names of the used machine learning

algorithms.

SVM denotes Support Vector Machine learning algorithm. [Rui et al., 2009]

proposed to use SVM and Directed Acyclic Graph SVM to detect and esti-

mate the number of hosts connected behind a NAT device. Eight features

consisting of statistics of transferred IP packets as well as of a subset of flags

of the TCP headers are collected for each host in the network every two

minutes. Activity of a particular host is then represented by a series of these

feature vectors. To train and evaluate algorithms, 1 637 550 packets of five

hosts were collected in a lab. One of the hosts under observation was not

placed behind a NAT device (436 320 packets), while the remaining four hosts

generated NAT traffic (1 201 230 packets). Thus, approximately 75% of the

traffic used for SVM training and testing was NAT traffic. By filtering low-

volume entries and applying SVM with a Radial Basis Function (RBF) kernel,

[Rui et al., 2009] achieved a maximum detection accuracy around 85% in the

binary NAT/no-NAT detection task.

However, it can be objected that the used dataset is relatively small compared

to sizes of real networks. Additionally, it is not entirely clear from the article

what kind of network activity hosts produced. Regardless the fact that a

lab is a very artificial environment not fully capable to simulate behavior of

thousands of real network hosts.

C4.5 is an learning algorithm used to generate a decision tree models. It

14

3.3. NETFLOWS RECORDS STATE OF THE ART

yielded the best results in terms of NAT detection accuracy in the research

made by [Abt et al., 2013]. Their approach relies on nine distinct features

extracted from NetFlow records. Namely, the number of TCP, UDP, DNS,

SMTP records, the number of records belonging to email protocols, the num-

ber of records with SYN and RST set flag, total number of packets and trans-

mitted bytes are collected for each host separately within 120 seconds period

window. These selected features are expected to be highly dependent on user

specific behavior and thus able to distinguish end hosts from NAT devices.

For training, validation and testing purposes, they used 6 631 383 anonymized

NetFlow records from real-world environment (with majority of business cus-

tomers) provided by German Internet Service Provider (ISP). NetFlow records

were labeled according to expert knowledge of the sponsoring ISP. As the ISP

had been providing managed services, it was able to label the NetFlow records

based on the IP addresses of their customers. The achieved lower-bound ac-

curacy on a balanced data set (the same amount of both classes) is 89.39%

which outperforms the previous approach of [Rui et al., 2009].

To conclude, the last work represents our most relevant competitor. The only

reproach is that the sizes of inner networks were not specified at all. Detection

of huge gateways with many hosts behind is easier task than revelation of small

NAT devices. From security point of view, these small devices performing

NAT might, however, be more important. As they can allow unauthorized

access to the network which is hard to discover.

15

Chapter 4

NAT detector

The aim of this chapter is to design an algorithm which would meet the re-

quirements specified in Chapter 2.3. In the previous Chapter 3, where the re-

lated work was discussed, we have seen that the only method using data avail-

able in HTTP headers is based on the single static rule: more OS/browsers1

indicate a NAT device. This technique suffers from the incapability to detect

a NAT device with NATed hosts having the same OS and/or web browser,

which is characteristic for the majority of networks in the banking and financial

industry, public administration and corporate environments where the default

setup of computers is enforced. In contrast, we employ a machine learning

approach based on statistical behavior analysis. Briefly speaking, we let the

machine reveal a hidden pattern in data instead of trying to find the rule by

ourselves. Hence the first section Supervised learning 4.1 gives a short intro-

duction to the learning problem. The section Problem formulation 4.2 uses

the introduced framework to formulate the NAT detection task. However,

even without an explanation, it is intuitive that the output performance de-

pends heavily on quality of provided data. This exposes a classical problem of

insufficient amount of labeled data in the network security domain as manual

labeling is expensive and in some cases even impossible. Unfortunately our
1as parsed from User-Agent strings

16

4.1. SUPERVISED LEARNING NAT DETECTOR

situation is no exception, because even network administrators are not sure

whether a host is end host or NAT device in every time. Moreover, the data

are imbalanced as the amount of positive instances (NAT devices) is small

compared to the total number of negative ones (end hosts). Nevertheless, in

the section Artificial NATs 4.3 we overcome both mentioned issues in an ele-

gant way. Pre-processing section 4.4 dedicates to preparing convenient data

sets ready for training. The following Data analysis section 4.5 visualizes

inner properties of the data. The section Classification 4.6 aims at training

and selecting the most appropriate model. Finally, the section Structure of

the detector 4.7 presents the proposed solution.

4.1 Supervised learning

Lets suppose that we have collected examples from which we would like

to learn a general rule. More formally, we are given training data D =

{di : di = (xi , yi)}Ni=1 which consists of N training examples di . We assume

that the feature vectors xi are drawn independently from an unknown input

probability distribution P(x) on X ⊂ Rn and their labels yi are computed from

yi = f(xi). Here f : X → Y is called the target function, and it is also assumed

to be unknown. With the given training data D, we want to gain a function

h∗ : X → Y as our inference of the target function f. The function h∗ is

usually chosen from a collection H of candidate functions, called hypothesis

or learning models. Briefly speaking, the task of the learning from labeled

examples, also known as supervised learning, is to use the information in the

training data D to find some h∗ ∈ H that approximates f well.

If we admit noise in labeling (i.e. two identical feature vectors can have

distinct labels), the target distribution P(y |x) is used instead of y = f(x). This

modification is done without loss of generality, because the target function

can be seen as a special case of the target distribution, where P(y |x) is zero

except for y = f(x). Now, the training examples di = (xi , yi) are generated

by the joint probability distribution P(y , x) = P(y |x)P(x).

17

4.1. SUPERVISED LEARNING NAT DETECTOR

Unknown target
distribution

Unknown input
distribution

Training examples

Final
hypothesis

Hypothesis set

Learning
algorithm

Error
measure

Figure 4.1: Learning diagram.

The above Figure 4.1 illustrates the supervised learning process. A learning

algorithm A searches for the right hypothesis h∗ from the hypothesis set H
minimizing the expected out-of-sample error2 Eout = EY,X [`(y , h∗(x))], where

E is the expected value and ` is a loss function. Selection of the loss function

depends on the particular application domain. It expresses how much we are

paying for predicting h(x) in place of y . In a regression problem Y ⊂ R (i.e.,

labels constitute a subset of real numbers), a common choice is the square

loss `square ≡ (y − h(x))2. For a classification problem Y ⊂ Z (i.e., labels are

typically small integers representing classes) a natural loss function is the zero-

one loss `0−1 ≡ 1[y 6= h(x)],3 which penalizes all types of misclassification

equally.

It is worth mentioning that although the zero-loss is convenient for evaluation

purposes, it makes the optimization problem of minimizing the out-of-sample

error intractable from a computational perspective. Later in Section 4.6, we

will introduce learning algorithms using convex functions instead, such as the
2Eout is also known as the Bayes risk.
31[·] denotes the indicator function.

18

4.2. PROBLEM FORMULATION NAT DETECTOR

logistic loss `log ≡ log (1 + e−z) and the hinge loss `hinge ≡ max (0, 1− z).

The convexity property is computationally appealing and guarantees that, if

we find a minimum, it is global. Here the z variable indicates a measure of

accordance between a hypothesis and a true label.

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

z

P
en
al
ty

Loss functions

Logistic loss
Hinge loss
Zero-one loss

Figure 4.2: A graphical visualization of various loss functions. The farther
values from the zero the more confident predictions are. Positive numbers
correspond to correct predictions and negative numbers to mismatch predic-
tions.

As Figure 4.2 shows, penalty goes to zero for correct predictions, otherwise

it increases as discrepancies between predictions and right outputs diverge.

4.2 Problem formulation

In this section, we formulate the problem of NAT detection using the defined

notation. NAT detection is a case of binary classification problem, since the

resulting labels are from the set Y = {−1, 1}. Minus one (negative sample)

represents an end host and positive one (positive sample) corresponds to a

NAT device. A target function having form X → {−1, 1} is called a classifier.

In general, the feature vector x is a higher representation of an object. In our

case, the object is a host which is uniquely identified by its IP address. The

19

4.2. PROBLEM FORMULATION NAT DETECTOR

feature vector should contain information about the host so that the classifier

is able to determine its right label based on this information. Remind that our

unique source of information are HTTP logs4. We assume that a NAT device

is more active and exhibits mixture of user’s behaviors in comparison with a

single user. To capture this trait, for each host in the network we extract the

following collection of eight features from HTTP logs:

1. the number of unique contacted IP addresses,

2. the number of unique User-Agent strings occurred in HTTP headers,

3. the number of unique Operating systems including their versions,

4. the number of unique Internet browsers including their versions,

5. the number of persistent connections5,

6. the number of uploaded bytes,

7. the number of downloaded bytes,

8. the number of sent HTTP requests.

Furthermore, we suppose that the activity of both types of hosts differs in

time. The NAT device can be active for longer time due to joining traffic of

more users with different working habits. In order to capture the behavior in

time, the features are collected in consecutive non-overlapping time windows

of predefined length. We experimented with the length set to five minutes, 30

minutes, one hour and 24 hours. Thus, a specific host i can be represented

by its feature vector xi with numeric components xwi,f where the index f =

1, 2, . . . , 8 corresponds to a particular feature from the above list of features

and w denotes a window. In the case of five minutes length windows, the

index w goes from 1 to 288 as there is W = 288 windows of this length in

24 hours. Later in Section 4.4, we will see that the time windows also enable
4A detailed description of HTTP proxy logs can be found in Section 2.2.
5A connection to an IP address is considered to be persistent if it is active in at least five

time windows from ten last consecutive time windows. The windows are set to have the size
of one, two and four hours.

20

4.2. PROBLEM FORMULATION NAT DETECTOR

to filter out undesirable abnormal host’s activity yet preserve the stable one

in a convenient way.

0 50 100 150 200 250 300
0

10

20

30

Time window

H
T
T
P
re
qu
es
ts

Barchart of average HTTP requests

Figure 4.3: Average number of sent HTTP requests (the eight feature) during
a day. The window period was set to five minutes in the data collection phase.
One can clearly distinguish working hours from night time.

For instance, in a dataset gathered with the windows period set to 24 hours,

a randomly selected host i = 24 has the following feature vector6:

x24 = (74, 7, 1, 4, 1, 2 MB, 11 MB, 527)T. (4.1)

As can be seen, the host contacted 74 distinct IPs, produced 7 different

User-Agents strings, used one OS with one browser, etc. Whereas the next

deliberately picked up host i = 305 is represented with the vector:

x305 = (992, 9, 2, 18, 2, 18 MB, 437 MB, 8535)T. (4.2)

Apparently, this host was more active than the previous one and used two

different operating systems and Internet browsers. Is this evidence strong
6For illustrative convenience, uploaded/downloaded bytes are converted to megabytes

and rounded.

21

4.3. ARTIFICIAL NATS NAT DETECTOR

enough to allow us to claim that the second host acts as a NAT device? We

should take into account that some users can utilize a virtual machine to run

an application incompatible with their native OS. Other users can have more

Internet browsers installed for different reasons, etc. Is there any boundary

defining what can be still considered as a behavior of one user and what yet

not? This is exactly what we would like to learn from the data, a decision

boundary enabling us to make these decisions and simultaneously minimizing

the average overall error.

In the above example, we did not capture host’s behavior in time, because the

window duration was set to the whole 24 hours. In the case of five minutes

windows, the feature vector of the first host can be expressed in the following

manner:

x24 = (x124,1, x
1
24,2, . . . , x

1
24,8, x

2
24,1, x

2
24,2, . . . , x

2
24,8, x

3
24,1, . . . , x

288
24,8)

T. (4.3)

Features from the first window are placed firstly and followed by features from

the second window, and the like. In total, there are 8× 288 = 2304 numeric

components. Vectors of other hosts can be unrolled in the analogous way.

4.3 Artificial NATs

The key requirement for the supervised learning is to have labeled data at

disposal. Nonetheless, we are given the data without labels. As discussed

at the beginning of this chapter, manual labeling is hard, especially in the

security domain because of ambiguity and heavily imbalanced ratio of positive

versus negative samples. Deficit of labeled data would force us to deploy

other machine learning paradigms such as semi-supervised or unsupervised

learning which can deal with the (partially)missing labels. These approaches

are, however, considered to be less effective in comparison with the supervised

learning when labels are available.

To generate labels for the data, we can leverage the fact that NAT devices

22

4.3. ARTIFICIAL NATS NAT DETECTOR

join traffic of multiple users into one, and create artificial NATs by manual

merging logs of multiple hosts together. In other words, we mark all hosts with

the negative label and then join HTTP logs of several negative instances to

create one positive instance. In this way, we are able to generate an arbitrary

number of positive instances. Notice that the mislabeling error, introduced

by marking all hosts as end hosts (possibly true NAT devices are wrongly

labeled as end hosts), is negligible due to the heavily imbalanced property of

the original data.

0 100 200 300 400 500 600 700 800 900 1,000
100

101

102

103

104

HTTP requests

#
of

ho
st
s

Histogram of sent HTTP requests

Figure 4.4: Histogram of sent HTTP requests per day. About 30 000 out
of 61 000 hosts made less than ten requests. This is the case of the net-
work of size large. Looking for candidates for NATed hosts, such hosts are
inappropriate.

Figure 4.4 shows that the majority of hosts in the network does not use the

HTTP protocol actively. They produce only a few HTTP requests. This is

simply because we are dealing with corporate networks, where a significant

amount of network devices is constituted by VoIP phones, network printers,

storages, employee’s personal mobile phones, tablets, etc. Another factor

contributes to this observation when a network utilizes DHCP protocol for

distributing IPs. In that case some users may renew their IPs with potentially

endless ones by restarting their devices. Regardless the reason, in the merging

procedure described above, we would like to create artificial NATs by merging

23

4.3. ARTIFICIAL NATS NAT DETECTOR

active hosts only. An IP is considered to be an active host if it produces at

least six HTTP logs in the fifth most active window. The windows are set

to have the length of 30 minutes and the window activity is also measured in

terms of sent HTTP requests. To put it differently, a host is active when it

sends at least six HTTP requests in five arbitrary selected 30 minutes lasting

windows from the whole day.

At this point, it is natural to wonder how the distribution of artificially gen-

erated NATs should look like. How many differently large NATs would have

to be prepared, in terms of included hosts? The best case scenario avails

when there is a match between distribution in the training set and real world

scenario case7. However, without any prior knowledge, we decided to make

an assumption of uniformity. The decision is in compliance with the principle

of maximum entropy [Jaynes and Rosenkrantz, 1983]: “If nothing is known

about a distribution, then the distribution with the largest entropy should be

chosen as the default”. The motivation is that maximizing entropy minimizes

the amount of prior information built into the distribution. Under the unique

constrain that the sum of the probabilities is one, the maximum entropy dis-

crete probability distribution is the uniform distribution. Consequently, each

size is equally likely to be observed. The discrete uniform distribution U [a, b]

has only two parameters: the starting point and the ending point. We as-

sume that the smallest detectable NAT device consists of three users and in

networks there is no single user producing more HTTP requests than twelve

randomly selected active users together. Therefore, the final distribution is

U [3, 12]. To ensure an equally balanced training set, the total number of

generated NATs is equal to the number of active hosts in the network. In

doing so, a random sampling with replacement is used in the merging process,

but no NAT device can contain more identical hosts.

Notice that generating artificial NATs breaks the assumption of mutually in-

dependent instances. As a host can appear in multiple NATs simultaneously
7Re-sampling techniques are used to match the target distribution when its shape is

known. It helps to avoid bias outcome [Abu-Mostafa et al., 2012].

24

4.3. ARTIFICIAL NATS NAT DETECTOR

and positive instances are made from the negative ones. In general, this

violation can potentially cause high variance (over-fitting phenomena) of a

learning model. As the model tends to adapt to some specific properties of

training set which are not typical for an independent testing set. This may

lead to poor generalization ability. However, both parts of the i.i.d. assump-

tion are commonly violated in many real-life problems a priori8. According to

[Dundar et al., 2007]: “Even thought the machine learning community fre-

quently ignores the non-i.i.d. nature of data, it seems that algorithms work

well in practice”. The aforementioned article also covers situations in which

this does not hold, and proposes methods relaxing the i.i.d. assumption which

enhanced accuracy of the learning model in the particular case. Nevertheless

in the first trial, we believe that ignoring the independence will not have sig-

nificant impact on the later classification.

A reader might ask, referring to Section 4.2, why source ports were not in-

volved in the list of features. NAT’s distribution of assigned source ports

is more manifold as the ports are used for distinguishing among its actual

end hosts. Although, a couple of related works take advantage of this fact

successfully [Bellovin, 2002], [Mongkolluksamee et al., 2012], we can not do

it, simply because NAT devices change the original source ports according to

for us an unknown rule and the described merging process does not mimic it.

Hence simulated NAT devices do not have the correct source ports. Nonethe-

less, it is an interesting area for future research. Upon detecting real NATs,

their source ports can be studied and the gained knowledge can be incorpo-

rated into the existing NAT detector.
8Partially because many natural phenomena can be described by dynamic systems which

consist of a set of fixed rules where the future state depends explicitly on the preceding one.

25

4.4. PRE-PROCESSING NAT DETECTOR

4.4 Pre-processing

At this stage, we are equipped with the labeled data from one day and four

different networks of various sizes:

|Dtiny|
.

= 9 000 |Dsmall|
.

= 17 000

|Dmedium|
.

= 38 000 |Dlarge|
.

= 77 000.

On average, 40% of all instances form inactive hosts, 30% active ones and

the left 30% are artificially generated NATs. Every dataset exists in four

versions (five minutes, 30 minutes, one hour and 24 hours) according to the

used time window during the data collection phase. The objective of this

section is to prepare the dataset D ready for training.

From Figure 4.3, showing average HTTP activity during a day, we could easily

distinguish labour hours w = (154, . . . , 250) from night time for a particular

company. It is important to note that companies might differ in these active

windows as they can operate in various time-zones. On top of that, a net-

work spread over more time-zones might exist9. Thus, a preprocessing step

discarding time dependency is needed. Two widely known techniques are: a

fast Fourier transform (FFT) algorithm computing discrete Fourier transfor-

mation F , which converts time space to frequency domain, and an arbitrary

effective sorting algorithm S (e.g., Quicksort, Merge sort, Heapsort, etc.).

The magnitude of a Fourier transform of the discrete signal sw = xwi,f of a

host and its feature (indexes i , f are fixed) is identical to the magnitude of a

Fourier transform of the shifted signal by δ windows in the time domain10

|F{sw}| = |F{sw−δ}|, δ ∈ Z. (4.4)

It means that magnitude of FFT is time-shift invariant [Smith, 2002]. In

9For instance, a local branch connecting via VPN to the head office network on the
opposite side of the world.

10It yields from: |F{sw−δ}| =
∣∣exp (−ik 2πW δ)

∣∣ · |F{sw}| = |F{sw}|, where the time shift
property of a Fourier transform is utilized and then the fact that |e iϕ| = 1 for ϕ ∈ R.

26

4.4. PRE-PROCESSING NAT DETECTOR

contrast, sorting is permutation invariant:

S{(s1, s2, . . . , sW)} = S{(s2, s1, . . . , sW)} = . . . = S{(sW , . . . , s2, s1)}.
(4.5)

In other words, sorting removes relations between time windows. This prop-

erty is convenient as the classifier should not depend on the order of host’s

activity during a day. In addition to that, sorting also provides an easy way to

filter out host’s abnormal activity. For example, an user can download a movie

of size 1GB in 30 minutes period which roughly equals to an amount of data

downloaded by three working users during a day. This short-time abnormal

behavior can be suppressed by discarding several windows with the largest

values. From another point of view, we can select a range of interesting

quantiles for each particular feature respectively as depicted in Figure 4.5.

Consequently, we prefer sorting to FFT and all features of each host are

sorted separately along window dimension in the preprocessing step. Note

that asymptotic complexity is O(n log n)11 in both cases. If we were inter-

ested in only one particular quantile (a representative window), a selection

algorithm (e.g., Quickselect or Median of medians) [Knuth, 1998], seeking

for the kth largest value in an array, with the linear complexity O(n) could be

used. This would bring appreciable time savings in a real deployment, where

for instance 500 000 arrays (hosts× f eatures) of length 288 need to be an-

alyzed repetitively. We will describe the selection of representative quantiles

in more detail in Section 4.6.6. At this point, the sorting is used just as the

first preliminary step to get rid of time dependency.

In the previous paragraph, we met another issue. There are substantial differ-

ences in downloaded/uploaded bytes among hosts in the network. The range

of transfered bytes is wide, from kilobytes up to gigabytes, and the gaps are in

orders of magnitude. The scale of differences does not match the scale of the

added information. To keep it in similar orders, both features are normalized

with a logarithm function ln(xwi,f + 1), f ∈ {6, 7}. The added one serves as a

11Here n denotes a number of input elements.

27

4.4. PRE-PROCESSING NAT DETECTOR

0 20 40
0

100

200

Time window

Sorted data

0 20 40
0

100

200

Time window

C
on
ta
ct
ed

IP
s

Collected data

Figure 4.5: Sorting S{xw58,1} for a specific host i = 58 and its first feature
f = 1 (the number of unique contacted IPs) followed by quantile selection
(vertical bars marked by red color). The rest of the windows corresponds to
uninteresting night time and abnormal host’s activity. The demonstration is
done using dataset with 30 minutes period windows.

protection when there are no transferred bytes.

For further application purposes, it is often desirable to standardize data

xi → zi over all observations such that features are centered to have zero

mean and scaled to have standard deviation equal to one. As all feature

vector components should have the same scale for a fair comparison between

them. This can be done by computing zi = (xi− x̄)/s, where x̄ is the sampled

mean, s is the sampled standard deviation and the symbol / denotes element-

vise division. An alternative to mean and standard deviation are median and

interquartile range IQR (difference between the 75th and the 25th percentiles

of the sample data). Like mean and standard deviation, median and IQR

measure the central tendency and spread, but are robust against outliers.

The final training set D = (X,Y) consists of a matrix of observations X =

[x1, x2, . . . , xN]T and an associated matrix of labels Y = [y1, y2, . . . , yN]T.

A vector yi tracks to which network host xi belongs and the number of in-

volved users in addition to positive and negative labels. As all networks are

equally important, it is desirable that each network contributes with the same

28

4.4. PRE-PROCESSING NAT DETECTOR

amount of active end hosts and NAT devices to the final set. The amount

is determined by the smallest network. Herein is the complete list of pre-

processing steps:

Pre-processing

1. 12 Every feature f of each host i is sorted along the window dimension

w in the ascending order: S{(x1i ,f , x2i ,f , . . . , xWi,f)}.

2. 12 Sorted features are reshaped (refer to Example 4.3) into features

vectors xi .

3. 12 The first half of components in the feature vectors is discarded as it

captures 12 hours of uninteresting night time.

4. Features representing downloaded and uploaded bytes are transformed

with the logarithm function ln(x + 1).

5. Equal amount of active regular hosts and artificial NATs is randomly

drown from each network to create the matrix of observations X and

the matrix of associated labels Y.

6. The matrix X is standardized using vectors x̄ and s.

7. The procedure terminates with the set D = (X,Y) ready for training.

After applying these steps, the final training set D counts approximately

20 000 instances. It exists in four versions according to used time window

(five minutes, 30 minutes, one hour and 24 hours). Thus, dimensions of

feature vectors (i.e., columns of the matrix X) are 1152, 192, 96 and 8,

respectively.
12Applied only on data sets with more time windows than one.

29

4.5. DATA ANALYSIS NAT DETECTOR

4.5 Data analysis

This section focuses on data inspection in order to unfold inner properties.

One of the most common phrases in data science is: “Always look at the data

and try to understand them” [Moore, 2010]. The visualization is essential as

human brain process information faster when points are displayed rather than

given in numerical matrices. Potential patterns, discrepancies or outliers can

be spotted easily even when data volumes are large.

There are several ways how to visualize data. We have already used some

of them such as histograms and bar charts. Histogram shows frequencies

of occurrences of individual values of one particular feature over all observa-

tions. On the basis of the estimated distribution of downloaded and uploaded

bytes, we were able to discover a discrepancy in scales and reduce it by log-

arithmic transformation. On the other hand, bar chart 4.3 helped us realize

the time dependency, which we removed by sorting the time windows. To

see relation between two variables without information loss, a scatter plot

is often used. This approach is, however, unsuitable when there are many

dimensions. In these situations, dimensionality reduction techniques like e.g.,

Principal Component Analysis (PCA), take place. PCA projects high dimen-

sional data onto lower dimensional subspace (e.g., 2D plane) while preserving

as much information as possible. The information loss is measured in terms

of sum of square projection errors. Orthonormal coordinates of the new sub-

space are called principal components and can be calculated as eigenvectors

of the covariance matrix. Corresponding eigenvalues then provide estimation

of retained variance. Commonly, a few principal components (e.g., two in

the case of planar visualization) with the largest eigenvalues are used and the

rest is dropped. Finally, all high dimensional observations are projected onto

these principal components using the inner product.

Figure 4.6 shows PCA projection of feature vectors from one particular net-

work onto a plane. The points visualize captured behavior of hosts in the net-

work. Blue ones represent regular users (up to potentially mislabeled NATs),

30

4.5. DATA ANALYSIS NAT DETECTOR

whereas colors from yellow to red belong to artificially created NATs. More-

over, color scale indicates the number of involved regular users in a NAT

device.

−10 −8 −6 −4 −2 0 2 4
−2

0

2

4

6

1st principal coordiate

2n
d
pr
in
ci
pa
lc
oo
rd
ia
te

Principal Component Analysis

a

b

c

d

Figure 4.6: Visualization of one particular network of size small using PCA.
The color intensity (a) denotes end hosts. A special case of end hosts are in-
active ones, which are highlighted with the intensity (b). The color range from
(c) to (d) is reserved for NATs following the uniform distribution U [3, 12].

As can be seen, the classes are well linearly separable from each other. This

can serve as an evidence that the selected features provide a good represen-

tation. According to [Bengio et al., 2012], a right representation is usually

more important than a complexity of learning models or bulk data13. Fur-

thermore, the inactive hosts are displayed with the light blue color. As one

could expected, they lie far away from the decision boundary and thus do not

represent "hard examples" from the classification perspective.
13As it plays such an important role, unsupervised feature learning has become a field itself

in the machine learning community recently. It aims at finding good representation of data
that can support effective machine learning without any prior specific domain knowledge.
Unlike the herein used approach where we manually selected features (List 4.2) according
to our knowledge, this one is automated. The mentioned paper reviews recent work in this
area.

31

4.5. DATA ANALYSIS NAT DETECTOR

The next collection of Figures 4.7 depicts PCA projections of equal amounts

of active hosts from all available company networks. In other words, the whole

matrix of observations is projected onto 2D plane. Colors separate companies

and brightness classes. The lighter dots are regular hosts, whereas the dark

ones correspond to devices performing NAT.

−5 0 5
−2

0

2

4

−5 0 5
−2

0

2

4

−5 0 5
−2

0

2

4

−5 0 5
−2

0

2

4

Figure 4.7: The overlaps among color layers on the similar positions support
applicability of one pre-trained classifier on all companies without significant
loss of accuracy. The lighter points in the dark areas typically represent
mislabeled NATs that were already presented in the networks.

It seems that decision boundaries are almost identical in these companies.

This pictorial hypothesis states that the conditional probability P(y |x) is the

same over all networks. It does not have to be generally true14, but it makes

the situation easier. If the hypothesis holds, we can use one pre-trained clas-

sifier for an arbitrary network, otherwise we have to include a learning phase

into the NAT detector and classifiers would be made to measure according to
14Probably, a company providing accounting services will use HTTP communication less

frequently than a company dedicating to Internet help desk support.

32

4.5. DATA ANALYSIS NAT DETECTOR

hosts in a specific network15. Although we are not quite sure, we will assume

its truth, based on our limited observations. This issue is also related to the

second part of the i.i.d. assumption, which states that instances should fol-

low the identical distribution P(x). If there were significant differences among

companies, a low prediction error on yet unseen data could not be guaranteed.

By plotting the entire network of large size, considerable outliers emerge im-

mediately. In general, outliers are anomaly observations lying suspiciously far

from the rest of observations. Regarding our data, the outliers correspond

to huge gateways in real networks, which were incorrectly labeled with nega-

tive label as end hosts during the process of generating artificial NATs. We

justified the procedure by the assertion that the introduced mislabeling error

will be small, which indeed is in terms of the number of occurrences. In the

case of the huge gateways it may, however, be substantial. From a clas-

sifier perspective these hosts act like regular users with behavior of NATs.

Referring to Figure 4.2, the convex loss functions (with missing a natural

bound) will penalize actually correct hypotheses by enormous costs. Conse-

quently, a final learning model might be biased due to the present outliers. To

avoid it, these extraordinary observations are usually removed from training

sets. There are several methods designed for this purpose. A survey made by

[Hodge and Austin, 2004] describes the majority of them.

We decided to apply a distance-based approach which works as follows. The

centroid µ of active regular users (i.e., negative samples) in the feature space

is calculated including distances MDi from all hosts to the centroid. Then,

distances of negative hosts only are compared against a certain threshold.

If a particular distance is greater than the threshold, the associated host is

considered to be outlier. The threshold is determined by 99% quantile of

distances which belong to NAT devices. In other words, if a distance of a

regular user to the centroid of regular users is larger than the distance of the

waste majority of NAT devices, it is a wrongly labeled NAT device with high
15In fact, it wont be as simple, because networks with one or more huge gateways might

exist.

33

4.5. DATA ANALYSIS NAT DETECTOR

0 10,000 20,000
0

2

4

6

Index

ln
(M
D
i

+
1

)
Outliers detection

End hosts
NAT devices
Outliers
Threshold

Figure 4.8: Outliers detection method based on Mahalanobis distance. The
end hosts occurring above the calculated threshold are considered as poten-
tially wrongly labeled gateways. These hosts are preliminary removed from
the training set.

confidence. As the metric, we use the Mahalanobis distance:

MDi =

√
(xi − µ)TΣ−1(xi − µ). (4.6)

It takes into consideration the inter-feature dependencies so that features are

compared on the same scale16. Since we know that the data are contami-

nated with outliers, we should utilize robust methods for estimating statistics.

Robust estimates of the centroid µ and the sampled covariance matrix Σ

can be obtained by the Minimum Covariance Determinant (MCD) estimator

[Verboven and Hubert, 2004]. The MCD method looks for the h out of H

observations whose classical sample covariance matrix has the lowest possible

determinant17. The raw MCD estimate of the centroid is then the average of

these h points, whereas the raw MCD estimate of covariance matrix is their
16This is completely true only when observations follow a normal distribution.
17The fast algorithm (FAST-MDC) using re-sampling method to avoid an exhaustive inves-

tigation of all h-subsets is implemented in a MATLAB Library for Robust Analysis (LIBRA).

34

4.5. DATA ANALYSIS NAT DETECTOR

sample covariance matrix, multiplied with a consistency factor depending on

size of h. This technique can resist h − H outliers, hence the proportion
h
H

determines the robustness of the estimator. Notice that the covariance

matrix for PCA purposes should be also estimated in the analogous manner.

Figure 4.8 shows the outliers detection procedure. The detected host with

the lowest distance has the following feature vector18:

x2346 = (4261, 453, 3, 667, 5, 217 MB, 1.6 GB)T. (4.7)

The higher values when compared to the regular user (Example 4.1) indicate

that we are indeed dealing with the real but incorrectly labeled gateway. Re-

mind that the aim of this procedure is to detect extraordinary hosts with the

negative label which behave like NAT devices from a classifier point of view.

In fact, there is a chance that the behavior is caused by a malware infection.

As situations when a malware attempts to contact hundreds of various IPs are

well known. This short abnormal activity should be filtered out by the choice

of features from non-maximum windows. Therefore, the whole analysis in this

section is done using the dataset with the 30 minutes lasting windows and

features corresponding to 90% quantile. Nevertheless due to the ambiguity,

we decided to remove the detected hosts from the training set only. The final

performance of a classifier will be evaluated on the original set.

For the sake of completeness, note that besides herein used PCA there are

other dimensionality reduction methods using transformations such as Multi-

dimensional Scaling (MSD), Linear Discriminant Analysis (LDA), non-linear

kernel PCA and so on, with different information loss criteria. An exhausted

survey of these techniques together with their comparison can be found in

[C.O.S. Sorzano, 2014].

18The feature vector is drawn from the dataset with the 24 hours windows according to
its index. The dataset has not been pre-processed.

35

4.6. CLASSIFICATION NAT DETECTOR

4.6 Classification

To be able to start with learning, we have to choose between generative and

discriminative type of learning algorithm A. Generative algorithms try to

model the joint probability distribution P(y , x). Assuming the NAT detec-

tion assignment, the generative approach firstly estimates P(x|y = 0) and

P(x|y = 1) separately using available data set D to learn how both classes

look like. Then, one way19 to classify (i.e., determine a label ŷ) is to cal-

culate the probability whether a new host x looks more like a regular user

or a NAT device20: ŷ = arg maxy P(y |x). The formula can be rewritten

to more practical one where all terms are known: ŷ = arg maxy P(x|y)P(y)

by taking advantage of the Bayes rule and the fact that P(x) is identical

for both classes. Here, P(y) denotes a priori probability of the given class.

Conversely, discriminative algorithms try to model P(y |x) directly or learn a

direct mapping h∗ : X → Y by seeking for a decision boundary between the

classes in the feature space X . Then, the classification is done by checking

on which side of the decision boundary the new host falls. The common be-

lief is that discriminative algorithms outperform generative ones as far as the

classification is concerned. This is supported by [Vapnik, 1998] statement:

“One should solve the [classification] problem directly and never solve a more

general problem as an intermediate step [such as modeling P(x|y)]”. Addi-

tionally, [Ng and Jordan, 2002] show that while discriminative learning has

lower asymptotic error, a generative classifier may also approach its higher

asymptotic error much faster. The inferior performance can be explained

by differences between the model and true distribution of the data. On the

other hand, the generative approach can exploit unlabeled data in addition

to labeled ones and is capable to generate synthetic examples of the feature

vector. In an attempt to gain the benefit of both approaches an interpolating
19Supposing the zero-one loss function `0−1 ≡ 1[y 6= h(x)] and a priori probability P(y)

to be known.
20The maximum a posteriori strategy is the special case of the Bayesian strategy (a strategy

minimizing the Bayesian risk) with zero-one loss function.

36

4.6. CLASSIFICATION NAT DETECTOR

procedure has been also proposed by [Lasserre and Bishop, 2007].

Regarding the NAT detection problem, we decided to apply the discriminative

learning as the classification is of interest only. Partially to avoid estimating

P (x|y)21 and partially because a priori probabilities P(y) are unknown and

even can not be known in principle, as there might be networks with one

huge gateway and also with none at all. The second mentioned limitation

would force us to solve a non-Bayesian task such as the Neyman-Pearson

task [Schlesinger and Hlavac, 2002], which is generally considered to be non-

trivial. As such, discriminative approach seems to be more straightforward in

this case.

VC analysis. It is important to realize that without the joint probability

distribution P(x, y), we are not able to calculate the expected out-of-sample

error Eout directly yet. The metric which we care about as we are primarily

interested in the performance on yet unseen samples. [Vapnik, 1998] proposed

a method22, called VC analysis, decomposing Eout into the in-sample error Ein
and the generalization error Ω23. The in-sample error represents the error on

the training set and the generalization error is the difference Eout − Ein. In

words, a learning model generalizes well when there is a small difference in

the performance on the testing and the training set. The VC analysis states

that:

P (Eout ≤ EIN + Ω(H, δ, N)) ≤ 1− δ, (4.8)

where Ω goes up with higher complexity of hypothesis set H or the confidence

term δ and is pulled down by larger training set N. The complexity is measured

with VC dimension24 expressing a learning capacity of the functions class H.
Intuitively, the more complex hypothesis set, the higher variability to fit the

target function f. The precise derivation and explanation can be found in
21We do not observe that the data obey any standard probability distribution. Therefore,

non-parametric or semi-parametric models should be used, which are not easy to handle.
22Another commonly used method is the Bias-variance decomposition.
23Ein,Ω are also known as the empirical and the structural risk
24VC dimension measures the maximum number of training examples where the function

class H can still be used to learn perfectly.

37

4.6. CLASSIFICATION NAT DETECTOR

[Abu-Mostafa et al., 2012]. However, the key message is that one has to

balance the trade-off between Ein and Ω to achieve a small Eout. It is not

sufficient to reach zero error on the training set Ein = 0 with a complex

learning model and little data as it would result in high Ω, and hence high final

Eout. From another point of view, one should match the model complexity to

the available data resources, not the complexity of the target function.

There are lots of learning algorithms as well as attempts to compare them.

However, it appears that selection of the most appropriate algorithm depends

heavily on structure of provided data. “Even the best models sometimes

perform poorly, and models with poor average performance occasionally per-

form exceptionally well.” [Caruana and Niculescu-Mizil, 2005]. The situation

with no single model that would work best for every problem is often re-

ferred to the "No Free Lunch" theorem [Wolpert, 1996]. Moreover, it shows

that better data often beats better algorithms. It means that performance

of different types of learning algorithms can be similar on large training sets

[Banko and Brill, 2001]. Another famous quote is from Google’s Research

Director Peter Norvig: “We don’t have better algorithms. We just have

more data.” [Halevy et al., 2009]. Hence the choice of an algorithm might

not really matter so much in terms of performance25, but rather algorithm’s

properties such as speed of training and classification, number of model’s pa-

rameters, ability to interpret results, etc. As one of our priorities is the speed

of classification, we decided to try linear models, namely: linear Support Vec-

tor Machine (linear SVM) and Logistic Regression (LR). Since the data seem

to be well linearly separable (Figure 4.6), there is no need for a more complex

decision boundary. According to [Bruzzone and Persello, 2009], linear SVM

is a good candidate as it showed to be quite resistant towards mislabeled in-

stances in training sets when compared to others. Remind that, in our case,

the wrongly labeled instances are actually the real NAT devices26. For com-

parison purposes, we will also try more complex models represented by SVM
25Assuming enough data and a good representation
26It is a case of a specific class mislabeling, whose impact on accuracy is unfortunately

more unpleasant, because it deflects a model in one preferred direction.

38

4.6. CLASSIFICATION NAT DETECTOR

with RBF kernel. Just to see if there is any significant improvement which

would be worth reconsidering the classification speed requirement.

4.6.1 Support Vector Machine

SVM belongs among the most frequently implemented binary discriminative

learning algorithms in machine learning community. Especially because it

requires only a small set of parameters 27 to be set up and simultaneously

provides a high accuracy of predictions. Its special property is ensuring low Ω

in addition to minimizing Ein. In doing so, it seeks for a separating hyperplane

in the feature space with the maximum margin. The maximality constrain

implies low complexity of H, because there is only one separating hyperplane

with the maximal (hard) margin for linearly separable data. In the case of non-

linearly separable data (noisy data), so called (soft) margin is parametrized by

an additional parameter C, expressing a cost of misclassification, which need

to be tuned. The geometric motivation is that the further from the decision

boundary the more confident decision is made. The task of searching such

a decision boundary can be formulated as a quadratic optimization problem

(QP) [Abu-Mostafa et al., 2012]:

min
α

1

2
αTQα− eTα

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . , N.

(4.9)

Herein, the labels are yi ∈ {−1, 1}, e =
[

1, . . . , 1
]T

denotes a column of

ones and the symmetric matrix Q is constructed in the following manner:

Qi j = yiyjK(xi , xj), where the indexes i , j go from 1 to N. As before, N

stands for the number of observations in the training set D. K(xi , xj) is a

kernel function, which should satisfy Mercer’s conditions. Two common28

27Typically two (C, γ) corresponding to the cost of misclassification and the kernel’s pa-
rameter.

28Nevertheless, the variability in the Kernel functions substantially extends the applicability
of SVM in itself, [Schölkopf and Smola, 2002].

39

4.6. CLASSIFICATION NAT DETECTOR

choices are: the inner product K(xi , xj) = xTi xj and the Radial Basis Function

(RBF) K(xi , xj) = exp(−γ‖xi − xj‖2) for γ > 0. The first choice yields to

linear SVM while the second option is known as the kernel method. The

"kernel trick" generalizes the dot product and implicitly maps the feature

vectors into a higher dimensional space (in the case of RBF kernel, even

up to infinite dimensional) believing that in the new space the classes will

be better separable. By solving the constrained optimization Problem 4.9

with any QP solver, we obtain the vector α. Interestingly, only a few αi will

be greater than zero. The corresponding feature vectors αi > 0 ⇒ xi are
called Support Vectors (SV) as they lie on the margin (support the decision

boundary). The resulting model h(x) classifies a new sample x by evaluating

into which half-space the sample falls:

h(x) = sgn

(∑
αi>0

yiαiK(xi , x) + b

)
, b = ym −

∑
αi>0

yiαiK(xi , xm). (4.10)

The bias coefficient b can be determined using an arbitrary support vector

and its label (xm, ym). As only SVs define the decision boundary, the rest of

vectors (i.e., xi where αi = 0) can be removed without affecting the solution.

Conversely, all SVs xi including αi , yi and b need to be stored for purposes of

further classification. In the case of linear SVM, it is, however, favorable to

pre-calculate ω =
[∑

αi>0
yiαixi ; b

]
, extend feature vectors by additional one

[x; 1], and thus simplified the final hypothesis:

h(x) = sgn
(
ωTx

)
. (4.11)

Now, ω needs to be stored only. Besides that, the classification of a new

sample is as fast as the calculation of the inner product. Just as a matter

of interest, it can be shown [Abu-Mostafa et al., 2012] that solution of the

optimization problem:

min
ω

1

2
ωTω + C

N∑
i=1

max
(

0, 1− yiωTxi
)
, (4.12)

40

4.6. CLASSIFICATION NAT DETECTOR

leads to the identical ω. Note that the second term corresponds to the hinge

loss function `hinge(z) (Figure 4.2), where z = yωTx. As an aside, several

libraries with the open source LIBSVM in head, implement SVM learning

algorithm as well as its other modifications.

4.6.2 Logistic Regression

LR is another discriminative learning algorithm which tries to model a target

distribution P(y |x) directly. Hence it turns the binary predictions Y = {−1, 1}
into posterior probabilities (0, 1) that samples belong to the positive class. An

assumption is that the target distribution has a form of the sigmoid function:

P(y = 1|x) = (1 + exp(ωTx))−1. To find the model parameters ω, a method

Maximum-Likelihood Estimation (MLE) is used, or more specifically, its log-

arithm. The method seeks for values maximizing logarithm of the likelihood

function over all samples. It corresponds to the second term of the following

optimization problem:

min
ω

1

2
ωTω + C

N∑
i=1

log
(

1 + exp
(
−yiωTxi

))
. (4.13)

As can be seen, it yields to the logistic loss `log(z) (Figure 4.2), where

z = yωTx. For simplicity, x is again extended by the additional one [x; 1]

to avoid a separate bias term. As before, C has the meaning of cost misclas-

sification and needs to be adjust manually. The first term in Formula 4.13 is

called L2-regularization29 and its purpose is to penalize too complex hypoth-

esis. As such, the whole optimization problem can be related to VC analysis

(Inequality 4.8), where the regularization term stands for Ω and the logistic

loss over all samples for Ein. The weight between these two terms is deter-

mined by the parameter C. Solving Problem 4.13 leads to minimizing the

out-of-sample error Eout. Unfortunately, the optimization problem does not

have the close-form solution and the iterative one, using e.g. (Stochastic)

Gradient Descent or Newton’s optimization method, has to be used. To ob-
29Therefore, this version of LR is also called L2-Regularized Logistic Regression.

41

4.6. CLASSIFICATION NAT DETECTOR

tain binary labels, the probability distribution is usually thresholded by a value

from the interval (0, 1):

h(x) = 1[P(y = 1|x) ≥ 0.5]. (4.14)

The threshold allows to balance a trade-off between precision and recall met-

ric, which are presented in the next paragraph. Further details about LR can

be found in [Abu-Mostafa et al., 2012]. Note that the open source library

LIBLINEAR was deployed to train LR and linear SVM in this work.

4.6.3 Evaluation metrics

So far, we have been using the term "error" qualitatively. To be able to

assess performance of an classifier and compare it with another one, a quan-

titative definition is needed. In binary classification problem, there are four

possible outcomes. If the instance is positive and it is classified as positive, it

is counted as a True Positive (TP); if it is classified as negative, it is counted

as a False Negative (FN). If the instance is negative and it is classified as

negative, it is counted as a True Negative (TN); if it is classified as positive,

it is counted as a False Positive (FP)30. A natural way how to evaluate clas-

sifier’s performance is to count its true hits against all. This metric is named

accuracy. Unfortunately, it is not applicable with a skewed class distribution.

Consider an example with 90% positive and 10% negative instances. Then,

a dummy classifier predicting only positive class and nothing else gains 90%

accuracy for free. Furthermore, in some cases FPs might be more important

than FNs and vise-versa. For instance, a false fire alarm (FP) can be an-

noying as one has to leave a building, however, a missed alarm (FN) can put

someone in danger of her/his life. From these reasons, precision and recall

metrics are used. Assuming NAT detection, a perfect precision score of 1.0

means that every host classified as NAT device is indeed a NAT device (but

says nothing about whether all NAT devices are detected) whereas a perfect

30FPs and FNs are often called Type I and Type II errors.

42

4.6. CLASSIFICATION NAT DETECTOR

recall score of 1.0 means that all NAT devices are detected (but says nothing

about how many regular hosts are misclassified). Additionally, recall is also

called True Positive Rate (TPR) as it counts TP hits against all positive in-

stances. In contrast, False Positive Rate (FPR) counts FP hits against all

negative instances.

accuracy =
TPs + TNs

of instances
, precision =

TPs

TPs + FPs
, recall =

TPs

TPs + FNs
,

FPR =
FPs

TNs + FPs
, Fβ =

(
1 + β2

) precision · recall

(β2 · precision) + recall
.

(4.15)

Nonetheless, to be able to decide which classifier is better, it is desirable to

represent each of them by one value. For this purpose, Fβ measure is often

applied. The traditional F1 measure is the harmonic mean of precision and

recall. Two other usually used F measures are the F2 measure, which weights

recall higher than precision, and the F0.5 measure, which puts more emphasis

on precision than recall. Figure 4.9 illustrates the metrics from two-variable

function point of view.

0
0.5

1

0

0.5

1
0

0.5

1

PrecisionRecall
0

0.5

1

0

0.5

1
0

0.5

1

PrecisionRecall
0

0.5

1

0

0.5

1
0

0.5

1

PrecisionRecall

Figure 4.9: Arithmetic mean, harmonic mean (F1) and F0.5 measure, respec-
tively from the left to the right.

An interesting property can be seen from the above illustration. Unlike arith-

metic mean, the harmonic mean is very conservative as the return value is

close to the minimum value of the input arguments. Referring to Section 2.3,

we decided to utilize F0.5 measure, because precision is the high priority in our

43

4.6. CLASSIFICATION NAT DETECTOR

NAT detection assignment. It worth mentioning that although F measure is

quite popular, it suffers from several drawbacks. As an example, the metric

does not take into account TNs at all. This is not crucial in herein usage as

long as we know that TPs are of interest. Further details as well as other

alternative metrics, can be found in [Powers, 2007].

4.6.4 Validation

Once a proper metric is established, we are ready to measure classifier’s per-

formance. In general, the assessment can serve for two main purposes: to

decide which learning model or which combinations of model parameters such

as (C, γ) is the best one (model selection) and to test the overall perfor-

mance of the final hypothesis h∗ (final evaluation). However, care should

be taken when we do this. According to Inequality 4.8, measuring score on

the training set Ein does not give a good estimate of the true out-of-sample

error Eout as there is an extra Ω term. It would result in an optimistic esti-

mate, which probably would not correspond with the reality on unseen data.

[Abu-Mostafa et al., 2012]: “Learning the parameters of h and testing it on

the same data is a methodological mistake”. To avoid it, a common practice

is to split the dataset D into three mutually exclusive sets31: a training set

Dtrain, a validation set Dval and a testing set Dtest. As the names suggest,

the first set is used for training, the second one for the model selection and

the last one for the final evaluation. Note that the test set Dtest must stay

untouched till the last moment to be able to provide an unbiased estimate. In

our case, we will not split the dataset, but rather we use three entire datasets

from three distinct days. Also, rather than optimizing on the average score

over all instances in the validation dataset, we will optimize on the worst score

over all networks in the set. It means that each network in the validation set is
31This approach is known as the hold out technique. Nevertheless, splitting data into

three independent sets can be an expensive act, as we lose a significant amount of training
data, which can lead to poorer performance. So called cross-validation techniques are able
to overcome it and use the same data for the training and the validation phase of learning,
see [Abu-Mostafa et al., 2012] for more details.

44

4.6. CLASSIFICATION NAT DETECTOR

evaluated separately and a decision is made with respect to the network with

a minimum score. In this manner, we want to ensure reasonable behavior in

all networks instead of excelling in one particular network and doing poorly in

the rest of them. This step can be related with the previous hypothesis claim-

ing that the conditional probability P(y |x) is identical through all networks.

It can be viewed as a precaution against the situation when the hypothesis,

assuming to be true, eventually breaks.

4.6.5 Training

After all, we are ready to train the classifiers. To recap, our final training

set D contains approximately 20 000 instances representing one day and four

distinct networks. It is balanced in terms of positive vs. negative classes

and the portions of individual networks. The negative instances involve only

active end hosts as just theses hosts pose hard examples from classification

perspective (Figure 4.6). Additionally, the extreme outliers with negative la-

bels are removed, because they most probably correspond to mislabeled real

gateways and could negatively influence the learning process. The sizes of

artificially generated NATs follow uniform distribution U [3, 12]. As far as the

training is concerned, we deploy three learning algorithms: linear SVM, LR

and SVM with RBF kernel. The hyperparameters (i.e., C, γ) are selected

using grid search and the validation. Grid search is a straight forward param-

eter optimization method, which exhaustively tries and validates all candidate

values for parameters. The set of values is generated by cross-product of

C values ranging in {2−10, 2−8, . . . , 28} and γ values in {2−15, 2−13, . . . , 23}.
Once all values are tried, the pair (C, γ) with the best validation score is

picked. In fact, there are more advanced methods [Bergstra et al., 2011]

than this naive approach, which can save computational time and even find

better combination of parameters using adaptive range scaling. However, grid

search is widely used for its simplicity. Note that the validation is done ac-

cording to the scenario described in the previous paragraph. The validation

set contains all hosts including inactive ones. Moreover, it is not modified in

45

4.6. CLASSIFICATION NAT DETECTOR

linear SVM LR RBF SVM

min F05 max F05 min F05 max F05 min F05 max F05

5 min 0.9575 0.9785 0.9564 0.9795 – –
30 min 0.9665 0.9864 0.9652 0.9859 0.9696 0.9885
1 hour 0.9635 0.9835 0.9649 0.9860 0.9692 0.9890
24 hour 0.9559 0.9798 0.9529 0.9807 0.9625 0.9831

Table 4.1: Comparison of learning algorithms and window periods.

sense of removed outliers.

As can be seen from Table 4.1, the results are very narrow. It seems that

the best window period is 30 minutes. On the other hand, the winner among

classifiers is the SVM with RBF kernel. This is perhaps not surprising as the

model has the highest complexity compared to others. Nevertheless, it takes

almost thousand times more computational resources to classify a new host.

As there are around 1 000 support vectors out of 20 000 feature vectors which

need to be stored and used during the classification (Equation 4.10). The

training time is even worse and thus we did not train the classifier on training

set with five minute windows as they would not be used anyway. The purpose

of the SVM with RBF kernel was just to show that the efficacy will not

significantly drop when choosing model with lower complexity. Considering

linear models, the highest score (i.e., the highest worst case F05 measure over

all networks) is achieved by the linear SVM on the training set with 30 minutes

window periods. The cost of misclassification (i.e., the model parameter) is

C = 2−8
.

= 0.004. Table 4.2 shows particular results of the linear SVM on

each network separately including various metrics. Remind that the portions

of active hosts, NATs and inactive hosts are approximately: 30%, 30% and

40% of all hosts, respectively.

On the basis of the data analysis in Section 4.5, we know that the largest

network contains several gateways. Therefore, it is not surprising that the

classification performance is the poorest on this network. As these gateways

are evaluated as FPs due to the mislabeling introduced in the NAT generating

46

4.6. CLASSIFICATION NAT DETECTOR

network size accuracy F1 F05 precision recall FPs

tiny 0.9819 0.9677 0.9676 0.9675 0.9679 80
small 0.9836 0.9725 0.9813 0.9873 0.9582 66
medium 0.9927 0.9827 0.9864 0.9888 0.9767 180
large 0.9780 0.9702 0.9665 0.9640 0.9765 518

Table 4.2: Achieved results with the linear SVM and 30 minutes windows.

process. This phenomena explains the lowest precision. Consequently, all

results should be considered as lower-bound results and FPs as detected NAT

devices.

4.6.6 Dimensionality reduction

Referring back to Table 4.1, an interesting phenomena can be observed. The

data with the highest dimensionality (i.e., training set with five minutes win-

dows) have not yielded to the best results on the validation set even thought

they provide the highest variability. As already discussed, learning algorithm

with a higher possible variability to fit the data is also more prone to adapt

noise in the data. To put it into another perspective, if a learning algorithm is

less likely to fit the data, it is more significant when it happens. This can be

referred to Occam’s razor principle: “The simplest model that fits the data is

also the most plausible.”, [Abu-Mostafa et al., 2012]. An interesting question

that arises at this time is whether we could reduce dimensionality of our data

without serious performance degradation, and thus increase classifier’s gen-

eralization ability. The data set, which exhibited the best results (30 minutes

period windows), is 192 dimensional one and consists of 20 000 samples. For

training linear SVM, a rule of thumb is that the number of training samples

should be at least ten times greater than the number of features. According

to the rule, we are on the safe side. However, the data can be considered

as redundant in the sense that there are only eight distinct features, but col-

lected in several consecutive time windows. Figure 4.10 shows importance

of individual time windows from the linear SVM classifier point of view. To

do this, we plot absolute values of corresponding weights ω. Assuming that

47

4.6. CLASSIFICATION NAT DETECTOR

features are on the same scale, the higher the values are, the more important

role they play in the final hypothesis 4.10. Weights which pertain to one

feature (they form vertical bars in the figure) are divided by the value of the

largest one. The importance of individual windows of one particular feature

is expressed on the scale from zero to one (the color intensity). Quantiles

indicate window’s position index (Figure 4.5).

Co
nt
ac
te
d
IP
s

Us
er-
Ag
en
ts

OS
na
me
s

Pe
rsi
ste
nt
co
n.

Br
ow
se
rs
ve
r.

Up
plo
ad
. b
yt
es

Do
wn
. b
yt
es

HT
TP

req
ue
sts

51

62

74

87

100

Q
ua
nt
ile
s

0.2

0.4

0.6

0.8

1

Figure 4.10: Importance of individual time windows according to the linear
SVM classifier. The darker color the more important the window is. The most
important quantiles (i.e., window positions after sorting) are 51%, 95%, 98%,
98%, 100%, 53%, 60%, 100%, respectively for each particular feature.

Looking at Figure 4.10, we can see that the classifier naturally prefers windows

associated with non-maximum quantiles, especially in the case of contacted

IP addresses and downloaded/uploaded bytes. We interpret the preference

as follows. Values of these windows better characterize host’s stable behav-

ior in the network, whereas windows associated with the maximum values

(i.e., 100% quantile) can be caused by host’s short-time abnormal activity

48

4.6. CLASSIFICATION NAT DETECTOR

network size accuracy F1 F05 precision recall FPs

tiny 0.9762 0.9574 0.9592 0.9603 0.9545 97
small 0.9749 0.9575 0.9717 0.9813 0.9348 95
medium 0.9840 0.9613 0.9758 0.9857 0.9382 223
large 0.9658 0.9533 0.9538 0.9541 0.9525 650

Table 4.3: Results when only eight features were used to train linear SVM.

(e.g., by downloading or uploading few large files in a short-time period). As

mentioned before, the abnormal behavior can also be a signature of a malware

infection. Nevertheless in the NAT detection task, we are interested in host’s

stable behavior only. Therefore, it suggests itself to select just a few most

representative time windows for each particular feature and discard the rest.

In the extreme case, only one specific quantile might be chosen to represent

one feature. Table 4.3 shows classification results following the same scenario

as before, but when only eight features, each represented with one the most

important window, are used to train the linear SVM classifier.

Considering the fact that we reduced the dimensionality from 192 to eight

dimensions, the results are not as bad as might seem to be at the first sight,

when compared to the previous Table 4.2. Clearly, the overall performance is

a bit worse, especially aiming at recall, but the generalization property should

be substantially better. Moreover, we also reduce the computing complexity

as a selection algorithm (e.g., Median of medians, [Knuth, 1998]) with the

linear complexity O(n) can be utilized to select the specific quantile instead of

a sorting one (e.g., Merge sort) with the logarithmic complexity O(n log n).

Figure 4.11 illustrates the importance of individual features using the same

approach with absolute values of weights as before. It appears that the most

important are downloaded bytes followed by the number of unique User-Agent

strings. The rest of features is more or less equally important apart from the

number of persistent connections. The good news is that the classifier is

not solely dependent on the number of host’s operating systems and Internet

browsers. This means that HTTP proxy logs contain richer information, than

49

4.6. CLASSIFICATION NAT DETECTOR

just these two particular features, which can be leveraged in order to infer

NAT devices. This source of information has not been considered in works

of [Maier et al., 2011] nor [Bai Xue, 2009], even thought they used HTTP

meta-data as well.

0

0.1

0.2

0.3

0.4

Co
nt
ac
te
d
IP
s

Us
er-
Ag
en
ts

OS
na
me
s

Pe
rsi
ste
nt
co
n.

Br
ow
se
rs
ve
r.

Up
loa
de
d
by
te
s

Do
wn
loa
de
d
by
te
s

HT
TP

req
ue
sts

W
ei
gn
t
in

ab
so
lu
te

va
lu
e

Figure 4.11: Importance of individual features.

The process of selecting a small subset of the most informative32 features, in

order to reduce the risk of over-fitting, is known as feature selection (FS). By

using a proper FS method such as the Sequential Feature Selection (SFS),

we could achieve better results than obtained by following the weights of the

classifier. This may be reconsidered in the potential future work. For the sake

of completeness, we also applied the same scenario on LR. The results were

similar to the ones in Table 4.3, but not significantly better according to our

primary F05 worst case metric.
32Meaning, the most informative with respect to the given task.

50

4.6. CLASSIFICATION NAT DETECTOR

4.6.7 Detection trade-off

One of the requirements for the detector from Chapter 2 is to have high preci-

sion. This means that we should be assured of classifier’s positive predictions

with a certain level of confidence. Once a host is identified as NAT device, it

should be indeed a real NAT device. We have already included our preference

of precision into the model selection phase, since we used F05 measure as the

selection criteria. In this subsection, we present another way to increase the

precision. However, the purpose of this part is only illustrative as it will not

be applied in the rest of the thesis.

Intuitively, a degree of prediction belief is related to distance from the decision

boundary in the feature space. The further the host is, the more confident

about the prediction we are. Figure 4.12 depicts a histogram of distances

from all hosts to the decision boundary of the linear SVM classifier. To do

this, we projected feature vectors of individual hosts onto SVM’s hyperplane

using the inner product. For this purpose, we prepared a validation set which is

balanced in terms of portions of individual networks and positive vs. negative

instances. Likewise the training set, the new validation set contains about

20 000 instances of active hosts. Moreover, only the representative quantiles,

one specific window for each of eight features, are selected from the both sets.

As can be seen, there is a typical trade-off between the number of FPs (type

I error) and FNs (type II error). The default zero threshold (the dashed

line) given by the signum function (Equation 4.10) is not always optimal in

all applications. For instance here, in the NAT detection task, we could be

willing to increase FNs in order to decrease FPs.

A new threshold33, optimal for a particular application, can be found by solving

Neyman-Pearson task [Schlesinger and Hlavac, 2002]. A solution (decision

strategy) minimizes probability of false negative predictions, for a given certain

level of false positive predictions. The task can be formulated and solved using
33In general, the solution can be a set of thresholds (strategy) defining prediction intervals

with positive/negative class.

51

4.6. CLASSIFICATION NAT DETECTOR

−2 −1 0 1 2 3 4
0

500

1,000

1,500

Z distance

#
of

ho
st
s

Histogram of distances from SVM dec. boundary

End hosts
NAT devices

Figure 4.12: Histogram of projections onto SVM’s decision boundary.

linear programming (LP). An alternative approach is to turn binary predictions

into probabilities:

P(y = 1|x) = (1 + exp(Az + B))−1, z = ωTx, (4.16)

similarly as LR does it (Equation 4.14). The predictions then have proba-

bilistic interpretation of belonging to the positive class and the classification

threshold can be easily adjust according to Receiver Operating Characteristic

(ROC) curve or Precision-Recall curve, for example. ROC curve shows True

Positive Rate (TPR) vs. False Positive Rate (FPR) depending on the thresh-

old value. To this end, we utilized [Platt, 1999]’s algorithm implemented in

LIBSVM library. This technique is based on the observation that distribution

of distances is usually exponential when hosts are on the wrong side of the de-

cision boundary. The algorithm estimates A and B by minimizing the negative

log likelihood of training instances. Figure 4.13 compares LR and linear SVM

augmented by the probability estimates using ROC curve and Precision-Recall

curve.

52

4.7. STRUCTURE OF THE DETECTOR NAT DETECTOR

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

Recall
P
re
ci
si
on

Precision-Recall curves

LR
SVM+Platt

10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

FPR

T
P
R

ROC curves

LR
SVM+Platt

Figure 4.13: Comparison of LR and linear SVM with probability estimates.

The results can be characterized by calculating areas under the ROC curves.

This typical metric is known as Area Under Curve (AUC) and counts 0.9862

and 0.9915 for LR and linear SVM, respectively. Again, liner SVM offers

slightly better overall performance. A new (probabilistic) threshold can be

easily picked using one of these two characteristic curves.

There is also a room for improvement. A higher confidence in predicting the

positives, and therefore a lower chance of FPs, could be obtained with Asym-

metric Support Vector Machine (ASVM) learning algorithm, [Wu et al., 2008].

It allows to train the classifier at a specific false positive rate. Furthermore,

we could shift the distribution of generated NATs in the training set, e.g.,

from the original configuration U [3, 12] to U [5, 12], which should result in a

movement with the decision boundary in the desired direction as well. On

top of that, other metric weighting more precision than F05 measure is doing,

could be used during the model selection phase.

4.7 Structure of the detector

The overall detection system can be viewed as two stage procedure. Fig-

ure 4.14 depicts the individual steps. At the input, the NAT detector is fed

53

4.7. STRUCTURE OF THE DETECTOR NAT DETECTOR

by HTTP proxy logs. In the first stage called Host behavior analysis, the

collection of eight features is extracted for each host identified in the logs.

To capture behavior in time, statistics of these features are collected in non-

overlapping time windows with a predefined length. The sequence of windows

for one particular feature forms first-in fist-out (FIFO) queue covering last 24

hours. From this sequence, one representative window is selected according

to the given quantile using a selection algorithm (e.g., Quickselect or Median

of medians). Hence at the end of this stage, every host is represented by the

feature vector consisting of eight components. On the basis of this feature

vector, the next stage of the procedure classifies the corresponding host as

either NAT devices or end host. The classification process involves: logarithm

transformation ln(x+1) of features associated with downloaded and uploaded

bytes, standardization by vectors x̄ and s (List of pre-processing steps 4.4),

and evaluation of linear SVM (Equation 4.11). The output of the procedure

can be viewed as a table of hosts with assigned labels.

Feature
extraction

Collecting
statistics

Window
selection

Learned
classifier

HTTP logs
x

 o o
 o

1. Host behavior analysis 2. Classification

IP address Label

10.10.47.1
10.10.23.2
10.10.13.7

end host
end host

NAT

Figure 4.14: Two stage detection procedure.

On the whole, the proposed system is specified by the sequence of described

steps and the following set of numbers x̄, s,ω including quantiles (i.e., indices

of representative windows, Figure 4.10). These parameters are derived from

the provided data for the training phase.

54

Chapter 5

Experimental evaluation

So far, the training and the validation set have been used to train and select

the final classifier. In this chapter, we evaluate the proposed NAT detector

according to various scenarios on the yet unseen testing set in order to obtain

unbiased estimate of its real performance.

5.1 Concept drift

The phenomena known as concept drift is related to i.i.d. assumption made

on data. In many real world applications, the data are drawn from non-

stationary distributions instead of fixed, yet unknown, distributions. This

might not be obvious at the first sight and it may result in poor classifier’s

generalization ability, [Hoens et al., 2012]. The first two experiments can

be viewed as a test for the presence of concept drift in time-changing data.

Generally speaking, we are wondering whether the detector trained on samples

from one day is able to reliably operate on future days.

We evaluate the classifier on the training and the testing set. The sets are

created using available data from the first and the third day of all four net-

works. Both sets are pre-processed in the standard way as described in Sec-

tion 4.4. The only difference is that outliers have not been removed from the

55

5.1. CONCEPT DRIFT EXPERIMENTAL EVALUATION

data set accuracy F1 F05 precision recall

training 0.9581 0.9574 0.9672 0.9739 0.9414
testing 0.9552 0.9546 0.9622 0.9674 0.9421

Table 5.1: Discrepancy in performance between the training set and the test-
ing test. The scenario with balanced sets and different days is applied. As it is
seen, the classifier generalizes well and concept-drift in time has not emerged.

testing set. As discussed in Section 4.5, the outliers might represent poten-

tially wrongly labeled NAT devices. The mislabeling error is introduced during

the process of generating artificial NATs (Section 4.3). As result, the real

NAT devices (i.e., not artificially simulated ones) already present in the net-

works will actually appear among classifier’s false positive predictions (FPs).

With a perfect classifier, all classifier’s false positives would be constituted by

these real NAT devices. Unfortunately, because we are not sure about their

true origin in general, we assess the performance including them. Therefore,

the presented metrics can be considered as lower-bound estimates. We only

try to remove mislabeled huge gateways (i.e., with many connected NATed

hosts) from the training set to avoid learning biased models. As convex loss

functions (Figure 4.2) dictate enormous penalizations for wrong predictions,

which are actually correct, especially when training samples lie far from the

decision boundary (the case of huge gateways). To cover all networks equally,

hosts are randomly sampled from the prevalent networks. Moreover, we are

interested in active hosts only, because they represent hard examples from

the classification point of view as they are located in the vicinity of classifier’s

decision boundary (Figure 4.6). Active hosts were defined as those who make

at least six HTTP requests in five arbitrary selected 30 minutes period win-

dows from last 24 hours. Finally, the portion of selected end-hosts and NAT

devices is equal. Table 5.1 shows detector’s performance on the testing and

the training set for the described scenario.

The test is considered to be negative, as we have not noticed any substantial

deterioration when we trained the detector on one day and evaluated it on an-

other one. This implies that our detector should work as time evolves, which

56

5.1. CONCEPT DRIFT EXPERIMENTAL EVALUATION

network all hosts real hosts accuracy F1 F05 precision recall FPs

tiny 8 632 6 182 0.9751 0.9563 0.9534 0.9515 0.9612 120 (1.94%)
small 17 241 11 901 0.9733 0.9557 0.9718 0.9828 0.9301 87 (0.73%)
medium 37 860 24 190 0.9786 0.9510 0.9722 0.9869 0.9176 213 (0.88%)
large 77 548 60 018 0.9652 0.9519 0.9503 0.9493 0.9546 697 (1.16%)

Table 5.2: Detailed results on particular networks applying the scenario with
different days. The average percentage of discovered NAT devices is about
1.18% of all real hosts.

is of course desirable. Moreover, the results indicate that the NAT detector

generalizes well as there is no significant change between performance on the

training and the testing set. There are only small deteriorations in metrics

apart from the precision. The above described sampling process might cause

randomnesses in values. In the extreme case of the largest network, about

5 000 instances out of 23 000 are randomly selected. Thus to provide rep-

resentative results, the values correspond to mean values from ten separate

runs with ten different sampled data. The results seem to be stable as the

maximum standard deviation among all metrics is 0.002. In comparison with

works of others from Section 3, the results are remarkable as none of metrics

falls below 94%.

The next Table 5.2 presents an output from the experiment, where the iden-

tical training set is used, but instead of evaluating on the subsample testing

set, the detector is tested on each network individually. The metrics might be

skewed as roughly 40% of all hosts are inactive, 30% are active and the rest

is artificially generated NAT devices. Nevertheless, they reveal the numbers

of discovered NAT devices in these networks. According to FPs the average

percentage of NAT devices is about 1.18% of all real hosts (i.e., exclud-

ing artificial NATs). This finding is in accordance with the related work of

[Mongkolluksamee et al., 2012]. They analyzed longitudinal traffic traces at

a trans-Pacific link in 2001-2010 and found that the percentage of the NAT

devices is stably less than 2% over years.

In Section 4.5 we were suspecting whether the conditional distribution is

shared among all networks. In other words, we would like to be sure if the de-

57

5.2. ERROR RATE EXPERIMENTAL EVALUATION

aggregation accuracy F1 F05 precision recall

average 0.9536 0.9529 0.9624 0.9691 0.9379
min 0.9475 0.9451 0.9470 0.9444 0.9036

Table 5.3: Cross-validation (leave one network out) supporting detector’s
applicability on first seen networks. Each network is represented by randomly
drawn active hosts in total number of 5 000 samples.

tector trained on these four networks, can be used in other networks. To test

our detector for this type of concept drift, we propose the following exper-

iment based on cross-validation. The classifier is trained on three networks

and then evaluated on the remaining one. This cross-validation process is

repeated four times, so that each network is used exactly once as the test-

ing set. The partial results from each iteration are aggregated by selecting

the minimum or the average value. The aggregated results are shown in

Table 5.3.

The minimum value represents the worst case combination of three training

networks and one testing network. Again, the results indicate that the test

against this type of concept drift is negative. Consequently, the detector

trained on samples from a few networks can be deployed on unseen networks

without significant loss of performance. The minimum achieved classification

accuracy 94.75% still outperforms the accuracy 89.39% reported by our most

relevant competitor [Abt et al., 2013].

5.2 Error rate

Considering classifier’s FPs (discovered real NAT devices), we are able to

verify their nature only by manual inspection of their behavior. Just a few of

them disclose their origin via hostnames including sub-strings like "gateway"

or "gw". Hence, mostly labels of large gateways were successfully checked.

Unfortunately, we could not verify small NAT devices because of their am-

biguous behavior.

58

5.2. ERROR RATE EXPERIMENTAL EVALUATION

On the contrary, classifier’s false negative predictions (FNs) can be analyzed

in more detail. Unlike works of others, reviewed in Chapter 3, we have the

distribution of NATs under our control. This means that we are able to

simulate and evaluate various scenarios. In Section 4.3 we decided to use

the uniform distribution U [3, 12] for generation, referring to the principle of

maximum entropy. Figure 5.1 depicts the distribution of the testing set from

the first experiment. Note that NAT devices of size one represent end-hosts.

Apart from 10 000 end-hosts, there are 10 000 NAT devices covering ten

distinct sizes, each with 1 000 instances. On the right side of the figure,

there are classifier’s FNs corresponding to overlooked NAT devices from the

testing set.

1 2 3 4 5 6 7 8 9 101112
0

100

200

300

400

NAT device size

Overlooked NATs (FNs)

1 2 3 4 5 6 7 8 9 101112
0

0.2

0.4

0.6

0.8

1
·104

NAT device size

#
of

ho
st
s

Test set distribution

Figure 5.1: Distribution of the testing set and overlooked NATs with an
exponential error rate decay.

As one can see, the detector missed 38% of all NAT devices of size three.

Since the error rate follows nice exponential decay, NAT devices with five

connected hosts are detected in more than 95% cases. From this illustra-

tion is clear that huge gateways with dozens of hosts are easily detectable

when compared to small NAT devices with only a few (i.e., three or four)

NATed hosts. This lead us to raise objections against a prior art, especially

[Abt et al., 2013] using a similar behavior oriented approach on NetFlow data,

that the NAT sizes are not specified at all. As we believe that in the real world

scenario, the prevalence of bigger NATs is more common. This hypothesis

59

5.3. DEGENERATE NETWORKS EXPERIMENTAL EVALUATION

is also supported by [Mongkolluksamee et al., 2012], who reported that the

average number of hosts connected to NATs was six in 2010. Taking into

account their historical data, the tendency was gradually increasing. This

observation can be correlated with the decreasing number of available public

IPv4 addresses. Moreover, their estimate represents lower-bound as their so-

lution was not capable to detect OpenBSD hosts. Hence our scenario with

the uniform distribution and the consequent results can be considered as a

more critical assessment in contrast to [Abt et al., 2013].

5.3 Degenerate networks

In the industry, popular technique for the NAT detection using HTTP meta-

data is OS/browser fingerprinting. In the given time period (e.g., 24 hours),

the fingerprinting method counts the number of different OS and/or browsers

used by a host. For example, a host running Windows 7 and Ubuntu, and

using Firefox, Chrome and Internet Explorer will have fingerprint (3,2). That

is, the counts of different Internet browsers and OSs. A host can be labeled

as a NAT if both counts are above a certain threshold.

We implemented the fingerprinting method to compare its performance against

our solution. On our data, the method achieved the best F05 measure when

predicting as a NAT host if more than two OSs and two Internet browsers

are identified. As can be seen in Figure 5.2, the fingerprinting method with

this choice of threshold return a large number of FNs, as many NATs use

two OSs and two Internet browsers. Comparing the fingerprinting method

against our NAT detector (Figure 5.3) on the testing data, we can see that

the fingerprinting method performs slightly worse.

The advantage of our solution, however, is getting on importance especially in

degenerate networks with NAT devices consisting of NATed hosts having the

identical OS and/or Internet browser. This scenario is common in the majority

of networks in the banking and financial industry, public administration and

corporate environments where the default setup of computers is enforced.

60

5.3. DEGENERATE NETWORKS EXPERIMENTAL EVALUATION

1 2 3 4 5 6

1

2

3

4

5

6

Browsers ver.

123456
1 2 3 4 5 6

0

1,000

OS namesBrowsers ver.

#
of

N
A
T
s

Histogram of NATs

Figure 5.2: 2D histogram of Internet browsers and OS counts for NATs from
the testing set (a regular network). Not negligible amount of NATs use less
than three OS and three Internet browsers. These NAT devices can not
be discovered by the fingerprinting method on principle. Relaxing thresholds
would lead to higher FPs as there are lots of hosts having two OSs and two
Internet browsers as parsed from User-Agent strings.

Accuracy F05 Precision Recall
0

20

40

60

80

100

P
er
ce
nt
ag
e
%

Comparison of detectors

OS/browser fingerprinting
Herein proposed NAT detector

Figure 5.3: Comparison of the fingerprinting method and the proposed NAT
detector on the testing set (a regular network). The fingerprinting method
performs slightly worse.

In these degenerate networks, the fingerprinting method unavoidably fails.

Nevertheless, our proposed solution is still capable of detecting NATs with

high accuracy, as can be seen from Table 5.4.

61

5.3. DEGENERATE NETWORKS EXPERIMENTAL EVALUATION

detector accuracy F1 F05 precision recall

A regular network

fingerprinting 0.8954 0.8937 0.9024 0.9083 0.8795
NAT detector 0.9551 0.9545 0.9624 0.9680 0.9413

Hosts with the same OS

fingerprinting 0.5000 N/A N/A N/A 0
NAT detector 0.9391 0.9362 0.9638 0.9831 0.8935

Hosts with the same OS and Internet browser

fingerprinting 0.5000 N/A N/A N/A 0
NAT detector 0.9431 0.8671 0.8819 0.8921 0.8435

Table 5.4: Comparison of the fingerprinting method and the proposed NAT
detector on three networks. The first network represents a regular network
with hosts running naturally manifold OSs and Internet browsers. The next
two networks stand for degenerate networks constituted by hosts with the
same OS and/or Internet browser.

62

5.4. NAT DEVICES IN NETWORKS EXPERIMENTAL EVALUATION

5.4 NAT devices in networks

In our last experiment, we run an implementation of the proposed NAT de-

tector on 60 corporate networks. The networks are of various sizes from 50

to 150 000 hosts. Figure 5.4 shows a histogram of percentages of detected

NAT devices in these networks.

0 1 2 3 4 5 6 7 8
0

10

20

30

Percentage of NAT devices in the network

#
of

ne
tw
or
ks

Histogram of NAT devices in 60 networks

Figure 5.4: Percentages of detected NAT devices in 60 various networks.

The majority of networks does not exceed 2% level of NAT devices. Again,

this observation is in accordance with the already mentioned analysis made by

[Mongkolluksamee et al., 2012]. The networks with higher percentages are

typically of size small in terms of visible hosts, but contain huge authorized

gateways operating as central focal points for inner (i.e., invisible) hosts.

63

Chapter 6

Conclusion

This thesis addresses the problem of detecting NAT devices in the computer

networks. In Chapter 2, we motivate our effort by realization that each NAT

device is a potential vulnerability. As these rogue network devices open the

possibility for conducting malicious activity. Moreover, it also turns out that

an effective and accurate solution for inferring NAT devices is needed for

purposes of further network behavior analysis.

Although the NAT detection is long lasting field of research as it arises from

Chapter 3, we found only two methods based on behavior analysis. Unlike

traditional approaches that search for signatures in packet headers, behavior

oriented methods do not rely on any specific field in packets. This makes the

behavioral approach more useful in the area of network security as it is not

easy to trick such a system in order to avoid discovery. In contrast to the two

existing methods, the herein proposed detector uses information contained

within HTTP proxy logs instead of NetFlow data, and as far as we know this

has not been examined before.

In Chapter 4, we developed a passive NAT detector using supervised learning

algorithm. We model behavior of network hosts using eight features extracted

from HTTP proxy logs. These features are collected within consecutive non-

overlapping time windows. According to our empirical analysis, 30 minutes

64

CONCLUSION

period windows yielded to the best results. To be able to train classifiers with

a sufficient amount of labeled data, we proposed a way to generate artificial

NAT traffic by merging HTTP logs of multiple hosts. This is the essential

idea, since labeled data is really hard to obtain because of their natural im-

balanced ratio. Typically in the network, there is only a few NAT devices

compared to the total number of hosts. Having the data, we experimented

with three learning algorithms. Linear SVM showed to be the right choice due

to its high accuracy and speed of classification. In order to increase classifier’s

generalization ability, for each feature only one representative time window

from last 24 hours is selected. This feature selection is done according to

classifier’s preference. Results indicate that it makes do without significant

loss of performance. The analysis of the preference showed that the classi-

fier generally prefers windows associated with lower quantiles. We provided

a possible explanation accompanied with the illustration that lower quantiles

better characterize host’s stable behavior, whereas higher quantiles might be

caused by host’s abnormal short-time activity. Finally, we prestented a way

to balance the trade-off between the confident in predicting and overlooking

NAT devices using probabilistic estimates.

In Chapter 5, we experimentally evaluated the proposed solution on real net-

work data applying various scenarios. Tests for the presence of concept drift

showed that the detector trained on samples from one day is able to reliable

work on futures days. Likewise, we also demonstrated using cross-validation

that the NAT detector is capable of operating on yet unseen networks. We

achieved detection accuracy of 94.75%, which outperforms the state of the

art represented by [Abt et al., 2013]. The detector was run on a balanced

data set with the equal portion of negative and positive samples. The testing

set was based on four different networks. It is important to note that only

active hosts representing hard examples from classifier’s perspective were in-

cluded. On top of that, we achieved the result on the worst cross-validation

combination with three training networks and one testing network. Unlike

[Abt et al., 2013], we specified the detection rate with respect to the number

65

CONCLUSION

of connected hosts. For example, NAT devices with three connected hosts

are correctly detected in 68% of the cases and NATs with five hosts in 96% of

the cases. The error rate seems to have an exponential decay. Additionally,

we simulated degenerate networks with hosts having the same OS and/or

Internet browser. Even thought the common fingerprinting method failed un-

der this scenario, our detector operated with still acceptable accuracy. This

implies that HTTP meta-data contain richer information, than just host’s OS

name and Internet browser, which had not been leveraged by any of the prior

works. Using the NAT detector, we explored 60 different networks. In aver-

age, the detected NAT devices constituted by no more than 2% percentages

of all network hosts.

Through out this thesis we mentioned several open points for future work.

Classifier’s performance could be improved by using a proper feature selection

method and/or direct training at a low false positive rate. To this end, it

could be also useful to study discovered NAT devices in order to reveal other

characteristic properties such as the distribution of assigned source ports.

NAT size estimation as well as identifying individual NATed hosts are another

challenging areas of future research.

66

Bibliography

[rfc, 1981] (1981). RFC 791 internet protocol. Internet resource, http:

//tools.ietf.org/html/rfc791.

[rfc, 1994] (1994). RFC 1631 the ip network address translator. Internet

resource, http://tools.ietf.org/html/rfc1631.

[rfc, 1999] (1999). RFC 791 hypertext transfer protocol http/1.1. Internet

resource, https://tools.ietf.org/html/rfc2616.

[HAP, 2015] (2015). HAProxy. Internet resource, http://www.haproxy.

org/.

[Squ, 2015] (2015). Squid proxy server. Internet resource, http://www.

squid-cache.org/.

[Abt et al., 2013] Abt, S., Dietz, C., Baier, H., and Petrović, S. (2013).

Passive remote source NAT detection using behavior statistics derived from

NetFlow. 7943:148–159.

[Abu-Mostafa et al., 2012] Abu-Mostafa, Y. S., Magdon-Ismail, M., and Lin,

H.-T. (2012). Learning From Data. AMLBook.

[Bai Xue, 2009] Bai Xue, Qian Bu-ren, L. H.-q. (2009). A scheme for count-

ing NATted hosts. page 46.

[Banko and Brill, 2001] Banko, M. and Brill, E. (2001). Scaling to very very

large corpora for natural language disambiguation.

67

http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc1631
https://tools.ietf.org/html/rfc2616
http://www.haproxy.org/
http://www.haproxy.org/
http://www.squid-cache.org/
http://www.squid-cache.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[Bellovin, 2002] Bellovin, S. M. (2002). A technique for counting NATted

hosts. pages 267–272.

[Bengio et al., 2012] Bengio, Y., Courville, A. C., and Vincent, P. (2012).

Representation learning: A review and new perspectives. CoRR,

abs/1206.5538.

[Bergstra et al., 2011] Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl,

B. (2011). Algorithms for hyper-parameter optimization. In Shawe-Taylor,

J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Ad-

vances in Neural Information Processing Systems 24, pages 2546–2554.

Curran Associates, Inc.

[Beverly, 2004] Beverly, R. (2004). A robust classifier for passive TCP/IP

fingerprinting. 3015:158–167.

[Blum et al., 1973] Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and

Tarjan, R. E. (1973). Time bounds for selection. Journal of Computer and

System Sciences, 7(4):448 – 461.

[Bruzzone and Persello, 2009] Bruzzone, L. and Persello, C. (2009). A novel

context-sensitive semisupervised SVM classifier robust to mislabeled train-

ing samples. IEEE T. Geoscience and Remote Sensing, 47(7-2):2142–

2154.

[Caruana and Niculescu-Mizil, 2005] Caruana, R. and Niculescu-Mizil, A.

(2005). An empirical comparison of supervised learning algorithms us-

ing different performance metrics. In In Proc. 23 rd Intl. Conf. Machine

learning ICML’06, pages 161–168.

[C.O.S. Sorzano, 2014] C.O.S. Sorzano, J. Vargas, A. P. M. (2014). A sur-

vey of dimension reduction techniques.

[Dundar et al., 2007] Dundar, M., Krishnapuram, B., Bi, J., and Rao, R. B.

(2007). Learning classifiers when the training data is not IID. In IJCAI,

pages 756–761.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[Halevy et al., 2009] Halevy, A., Norvig, P., and Pereira, F. (2009). The

unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2):8–12.

[Hodge and Austin, 2004] Hodge, V. J. and Austin, J. (2004). A survey of

outlier detection methodologies. Artificial Intelligence Review, 22.

[Hoens et al., 2012] Hoens, T., Polikar, R., and Chawla, N. (2012). Learn-

ing from streaming data with concept drift and imbalance: an overview.

Progress in Artificial Intelligence, 1(1):89–101.

[Jaynes and Rosenkrantz, 1983] Jaynes, E. T. E. T. and Rosenkrantz, R. D.,

editors (1983). E.T. Jaynes : papers on probability, statistics, and statisti-

cal physics. Synthese library. D. Reidel Hingham, MA, Dordrecht, Holland,

Boston. Includes index.

[Knuth, 1998] Knuth, D. (1998). The Art of Computer Programming: Sort-

ing and searching. The Art of Computer Programming. Addison-Wesley.

[Kohno et al., 2005] Kohno, T., Broido, A., and Claffy, K. (2005). Remote

physical device fingerprinting. pages 211–225.

[Krmicek et al., 2009] Krmicek, V., Vykopal, J., and Krejci, R. (2009). Net-

flow based system for nat detection.

[Lasserre and Bishop, 2007] Lasserre, J. and Bishop, C. M. (2007). Gen-

erative or discriminative? getting the best of both worlds. BAYESIAN

STATISTICS, 8:3–24.

[Lyon, 2006] Lyon, G. (2006). Remote OS detection via TCP/IP fingerprint-

ing (2nd generation). Internet resource, http://nmap.org/.

[Maier et al., 2011] Maier, G., Schneider, F., and Feldmann, A. (2011). NAT

usage in residential broadband networks. 6579:32–41.

[Miller, 2008] Miller, T. (2008). Passive OS fingerprinting: Details and tech-

niques. Internet resource, http://www.ouah.org/incosfingerp.htm.

69

http://nmap.org/
http://www.ouah.org/incosfingerp.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[Mongkolluksamee et al., 2012] Mongkolluksamee, S., Fukuda, K., and

Pongpaibool, P. (2012). Counting NATted hosts by observing tcp/ip field

behaviors. pages 1265–1270.

[Moore, 2010] Moore, D. (2010). The Basic Practice of Statistics. Freeman.

[Ng and Jordan, 2002] Ng, A. Y. and Jordan, M. I. (2002). On discriminative

vs. generative classifiers: A comparison of logistic regression and naive

Bayes. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances

in Neural Information Processing Systems 14, pages 841–848. MIT Press.

[Phaal, 2009] Phaal, P. (2009). Detecting NAT devices using sFlow. Internet

resource, http://www.sflow.org/detectNAT/.

[Platt, 1999] Platt, J. C. (1999). Probabilistic outputs for support vector ma-

chines and comparisons to regularized likelihood methods. In ADVANCES

IN LARGE MARGIN CLASSIFIERS, pages 61–74. MIT Press.

[Powers, 2007] Powers, D. M. W. (2007). Evaluation: From Precision, Re-

call and F-Factor to ROC, Informedness, Markedness & Correlation. Tech-

nical Report SIE-07-001, School of Informatics and Engineering, Flinders

University, Adelaide, Australia.

[Rui et al., 2009] Rui, L., Hongliang, Z., Yang, X., Yang, X., and Cong, W.

(2009). Remote NAT detect algorithm based on Support Vector Machine.

pages 1–4.

[Schlesinger and Hlavac, 2002] Schlesinger, M. and Hlavac, V. (2002). Ten

Lectures on Statistical and Structural Pattern Recognition. Computational

imaging and vision. Kluwer Academic.

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. (2002). Learning

with Kernels: Support Vector Machines, Regularization, Optimization, and

Beyond. Adaptive computation and machine learning. MIT Press.

[Smith, 2002] Smith, S. W. (2002). Digital Signal Processing: A Practical

Guide for Engineers and Scientists.

70

http://www.sflow.org/detectNAT/

BIBLIOGRAPHY BIBLIOGRAPHY

[Vapnik, 1998] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-

Interscience.

[Verboven and Hubert, 2004] Verboven, S. and Hubert, M. (2004). LIBRA:

a MATLAB Library for Robust Analysis.

[Wolpert, 1996] Wolpert, D. H. (1996). The lack of a priori distinctions

between learning algorithms.

[Wu et al., 2008] Wu, S.-H., Lin, K.-P., Chen, C.-M., and Chen, M.-S.

(2008). Asymmetric support vector machines: Low false-positive learn-

ing under the user tolerance. In Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD

’08, pages 749–757, New York, NY, USA. ACM.

[Zalewski, 2012] Zalewski, M. (2012). Passive OS fingerprinting tool. Inter-

net resource, http://lcamtuf.coredump.cx/p0f3/.

71

http://lcamtuf.coredump.cx/p0f3/

	Introduction
	Problem statement
	Network Address Translation
	Proxy logs
	Design requirements

	State of the Art
	TCP/IP packet headers
	TCP/IP packet payloads
	NetFlows records

	NAT detector
	Supervised learning
	Problem formulation
	Artificial NATs
	Pre-processing
	Data analysis
	Classification
	Support Vector Machine
	Logistic Regression
	Evaluation metrics
	Validation
	Training
	Dimensionality reduction
	Detection trade-off

	Structure of the detector

	Experimental evaluation
	Concept drift
	Error rate
	Degenerate networks
	NAT devices in networks

	Conclusion

