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Abstract
Safety systems like ESP and ABS are lim-
ited by the saturation of the forces in the
contact patch. The Active Camber Con-
trol can actively change the saturation
and thus provide higher safety and per-
formance rankings. This thesis provides a
comprehensive study of the requirements
of such a camber actuator. Furthermore,
a framework that uses commercially avail-
able measurement devices is established
and used to develop suspension and ve-
hicle dynamics controllers that operate
without driver intervention. The result
is a vehicle with higher maximal lateral
acceleration, cornering stability and ef-
ficiency, and disturbance rejection that
holds across the whole range of the dif-
ferent load variations, CG locations, and
other boundary conditions defined in this
thesis.

Keywords: Active Camber Control,
active safety, robustness, boundary
conditions, over-actuation, LQR, camber
actuator, model matching, single track,
twin track, suspension, McPherson,
double wishbone

Supervisor: Ing. Petr Liškař
TP2 s.r.o.,
Pelzova 1514,
Praha 5, 156 00

Abstrakt
Bezpečnostní systémy jako ESP a ABS
jsou omezeny saturací sil v kontaktní ploše
pneumatik. Active Camber Control může
aktivně měnit saturaci a tím poskytovat
vyšší hodnocení v bezpečnosti a výkonu
auta. Tato práce poskytuje komplexní stu-
dii požadavků na takový camber aktuátor.
Kromě toho je vytvořen rámec, který vy-
užívá komerčně dostupná měřicí zařízení
a je využit k odvození regulátorů nápravy
a dynamiky vozidla, které fungují bez zá-
sahu řidiče. Výsledkem je vozidlo s vyšším
maximálním příčným zrychlením, stabili-
tou a účinností v zatáčkách a potlačením
rušení, které platí v celém rozsahu různých
variací zatížení, umístění těžiště a dalších
okrajových podmínek definovaných v této
práci.

Klíčová slova: Aktivní řízení odklonu
kola, aktivní bezpečnost, robustnost,
okrajové podmínky, přebuzení auta,
LQR, aktuátor odklonu kola,
přizpůsobení modelu, jednostopý model,
dvoustopý model, náprava, MacPherson,
lichoběžníková náprava

Překlad názvu: Řídící systém pro
aktivní podvozek auta
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Chapter 1
Introduction

1.1 Motivation

The car industry has seen a boom in the last 100 years. Everybody now
owns a car and uses it every day. It is part of our life, making its safety
and performance aspect vital. The vehicles have multiple safety systems to
safeguard drivers and pedestrians, and one of the most important is the ABS
and ESP. Nowadays, they are mandatory equipment in every car, which speaks
about their importance. The vehicle skid is a life-threatening phenomenon
caused by a wide range of different reasons like changing weather conditions,
the state of the tires, etc. Thus, it is imperative to avoid it, and that is where
the ABS and ESP come in. The ABS keeps the wheels from sliding while the
ESP controls the vehicle’s turning moment to follow the route specified by the
steering wheel input. Specifically, they are capable of using the friction circle
efficiently so that the force output is maximized while keeping the vehicle
from skid and on track. The friction circle governs the maximal longitudinal
and lateral forces the vehicle can create. For example, whenever the wheel
goes over the pocket of water or ice, the tires’ adhesion is lowered, and thus
the friction circle is smaller. The ABS and ESP act and react to this change
by distributing the braking moment.

However, there are still almost 6.75 million yearly car crashes in the US
alone, see [13]. The work of ABS and ESP is nothing short of amazing and
saved countless lives, but there are still ways how to increase the active safety
of cars. The over-actuated vehicle offers such options, and one of them is the
active camber actuation. The active camber can change the friction circle
mid-corner to optimize it for the generation of the higher lateral forces. This
would not be possible if the camber were held constant. So, instead of using
only wheel steering, the vehicles can use camber in conjunction with steering
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to maneuver the car. The camber can provide faster force generation, less
tire wear, larger contact patch size, and it is more energy-efficient than tire
slip angle. It is highly desirable to investigate camber and build safer and
more efficient vehicles.

1.2 Suspension types

The vehicle mass is split into sprung and unsprung mass. The unsprung mass
sits directly on the ground, and it is composed of the mass of the wheels,
axle tracks, and components directly connected to them. The sprung mass
includes body, frame, passengers, cargo, and internal components. The larger
the sprung to unsprung mass ratio is, the less the passengers are affected
by bumps and other road imperfections. The connection between the two
masses ensures suspension. There are two main suspension types that are
commercially used: McPherson and Double wishbone.

1.2.1 Double wishbone

The double wishbone suspension consists of two control arms and a spring-
damper. The upper and lower control arm connects the sprung mass to the
unsprung mass through the king-pin that holds the wheel. The sprung mass
is supported via a spring-damper mounted to the lower control arm. The
wheel alignment is consistent for different steering angles, and the suspension
also generates negative camber when cornering, which increases stability and
better grip for the tires. The longer the wishbone arms are, the more linearly
the wheel will move up and down.

1.2.2 McPherson

The McPherson suspension uses only one lower control arm and spring damper
McPherson strut. The lower control arm connects the sprung mass to the
kin-pin, and the spring damper, which supports the sprung mass, is mounted
directly to the top of the king-pin, see Figure [1.2]. The McPherson is widely
used in conventional vehicles because it decreases cost, takes less space, and
weighs less than the double wishbone. That is why it was chosen for the
CTU demonstrator vehicle. The only disadvantage is that it is generally less
stable and inconsistent for different wheel alignments. Also, the McPherson
has less negative camber gain when cornering, which facilitates the worst
cornering performance. The lower arm moves at an arc, but the upper strut
moves linearly, and thus at first, the camber is generated in the right way
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but then lost at higher wheel positions. However, these negative effects can
be overcome with the over-actuation of the vehicle.

lower control arm

upper

control arm

spring-damper

king-pin

(a) : Double-wishbone suspension with
described parts. Picture from: [14].

lower control arm

tierod

McPherson strut

King-pin

(b) : McPherson suspension with de-
scribed parts. Picture from: [15].

lower control arm wheel

king-pin+ball joint

McPherson strut

McPherson strut
moutning point

Figure 1.2: The back view of the McPherson suspension with highlighted parts.
The picture from: [1]

3



..................................... 1.3. Suspension terms

1.3 Suspension terms

The suspension have multiple terms that define its behavior and functionality.
They are going to be defined here.

1.3.1 Steering axis

The steering axis (SA) is the axis around which the wheel rotates when
steered by the driver. The double wishbone defines it as the two mounting
joints of the king-pin to the two control arms, see left Figure [1.3].

The McPherson king-pin is mounted rigidly to the spring-damper. Thus,
the steering axis extends from the lower joint of the king-pin to the mounting
joint of the McPherson strut, see right Figure [1.3].

Double wishbone McPherson

steering axis

spring damper

lower arm

king-pin

upper arm

Figure 1.3: Suspension diagrams with SA highlighted in dashed green line.

1.3.2 KPI and scrub radius

The KPI stands for King-Pin Inclination, and it defines an angle of the
inclination of the steering axis to the plane perpendicular to the ground, see
Figure [1.4]. It is sometimes also called SAI or Steering Axis Inclination. It
is used to minimize scrub radius in car manufacturing.

The scrub radius is defined as the distance between the intersection of the
steering axis with the ground and the contact patch center of the tire, see
Figure [1.4]. The scrub radius acts as a moment arm with the longitudinal
force centered at the contact patch on the wheel. The moment creates strain

4



..................................... 1.3. Suspension terms

on the steering knuckle, and the steering actuator must withstand these very
large moments, especially at high speeds. Thus, the scrub radius should be
minimized as much as possible. Note that most commercial cars use steering
systems that connect the right and left side steering mechanisms rigidly on
each axle, which cancels this effect.

Camber
Camber

KPI

Double wishbone McPherson

steering axis

KPI

scrub radius

Figure 1.4: Suspension diagrams with defined King-pin inclination (KPI), scrub
radius and camber angle.

1.3.3 Camber angle

The camber angle is defined as the angle between the wheel axis and the
plane perpendicular to the ground, see diagram [1.4]. For more information
about the camber see Problem definition.

1.3.4 Caster angle

The caster angle is the inclination angle between the joints of the steering axis
looking from the side of the vehicle, see Figure [1.5]. It creates force feedback
for the wheel because it points the steering wheel in the direction the car is
going in because the steering axis intersects the ground before the contact
patch center. It is very beneficial at high speeds because it is self-centering.
It is also used to passively lean the wheels into the corner, providing better
lateral stability. However, the more caster angle, the heavier the steering is,
and thus the steering actuator would have to be stronger.

Nevertheless, if the caster angle is too high, it could reduce the contact
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patch size and cause a tire shake or shimmy. Thus, the smaller caster angles
are employed to avoid using stronger steering actuators, but the car loses
the beneficial camber in the cornering. The negative caster angle is not used
in the car industry because it would constantly move wheels away from the
vehicle’s direction.

Double wishbone McPherson

steering axis

caster

king-pin

lower arm

upper arm

spring-damper
strutv

contact patch
center

Figure 1.5: Side-view of the suspension diagrams with defined caster angle for
the front wheels. The displayed caster is positive.

1.4 State-of-the-art

In this section is a brief overview of the articles and works that were already
published about this topic.

The camber angle and toe angle vary substantially when driving. They
are influenced by many factors like wheel travel or body roll and can have
negative consequences on the vehicle performance by the changing lateral grip.
The article [16] sets to mitigate these fluctuations. Two actuators were used
to change arm lengths in the double-wishbone suspension, and feedback PID
control was used to drive them. The camber angle variation was decreased
by 58 % and toe angle by 96 %. The high camber angle can be undesirable
if the longitudinal acceleration is the priority. The effect of camber on the
tire force is presented in the study [2]. It is demonstrated that the camber
increases lateral forces, and the friction circle is squished in the longitudinal
direction and prolonged in the lateral direction, see Figure [1.6]. Thus, the
camber actuation enables the car to maximize the cornering force if the turn
is too sharp or hold the camber angle at 0 if the acceleration is the priority.
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Camber γ = 2°Camber γ = 0°

Camber γ = 4°

Figure 1.6: Friction circle development for different camber angles. The friction
circle gets stretched to the left in Fy while squished in longitudinal force Fx.
From: [2]

The active camber MPC controller was developed to increase path following,
and yaw stability in [17]. The generation of forces was modeled by modified
Dugoff-tyre model where the effect of camber on the lateral force was formed
by a linear component. The MPC framework is used to subject the control law
to the limitations of the actuator and the road. It was tested on the Double
Lane Change (DLC) maneuver, and it facilitated higher passing velocity and
better performance across all of the road conditions tested. In the dissertation,
[6] is developed new mechatronic suspension in such a way that maximizes
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the effect of the camber angle on the lateral forces. The classical tires are not
well-suited to high camber angles and thus produce less camber thrust. That
is why a new semi-empirical brush model was developed that telegraphs tire
parameters that facilitate higher camber thrust gains and could be used to
develop new types of tires. PD position controllers control the camber angle
to satisfy design criteria. The vehicle had almost 30 % more cornering force
and higher maneuverability.

The [3] focused on the steering feel of drivers with passive or active camber
actuation that was based on the yaw rate and the lateral acceleration feedback.
The active actuation had a better feel of control, and drivers struggled less
to maintain the given maneuver. The paper also provides a comprehensive
overview of the already designed suspensions for the active camber actua-
tion, see Figure [1.7]. The table compares the points of actuation, space
requirements, and unsprung weight. The trade-off between these columns
can be effortlessly observed. The lower actuation point has smaller space
requirements but adds more unsprung weight. The upper has more space
requirements but adds almost no unsprung weight because the actuator is
mounted on the chassis. The middle point of the actuation requires the rede-
velopment of the whole wheel hub and king-pin and can be very expensive
while still requiring more space and increasing unsprung mass, as can be seen
from Siemens and Skew cylinders in the table [1.7]. The different points of
the actuation are also compared in power and camber angle range, see Figure
[1.8]. The upper point has lower power requirements than the middle and
the lower.

On the other hand, the camber can be used as a means of reducing energy
consumption. In the [18] is shown that tire slip angle is the primary energy loss
component while cornering. The [19] uses energy cost functions to evaluate
the best camber angles, so the energy loss is minimized. It was found that
the camber control can save up to 15 % of the energy in the sharp turns.
However, high camber angles can induce high rolling resistance forces in mild
maneuvers and reduce the savings.

Mercedes-Benz made many improvements throughout the years and pushed
many boundaries in the development of high-performance cars. One of the
most interesting and intriguing was the Formula 1 Mercedes with active toe-in
and toe-out. They developed a mechanism that moved wheels towards or
away from each other and could be controlled dynamically by the driver. The
toe-out increases maneuverability but has large tire wear in the straights.
On the other hand, the toe-in provides more stability on the straights but
decreases the maneuverability. That is why the driver had a huge advantage
as he could control it as he saw fit by moving the steering wheel towards
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or away from him. The active toe-in and toe-out were used commercially
during the Formula 1 race championship, making the active camber actuation
approach appealing because it has very similar benefits while having fewer
disadvantages than the toe. Another invention was the Mercedes Carving.
It has an active camber suspension system and uses specialized tires that
facilitate higher camber thrust gains. It had an impressive maximal lateral
acceleration of 1.28 g, and the ESP was augmented to use the camber angles
in conjunction with the braking distribution. It was able to decrease braking
distance by 5 m from 100 km/h test. These achievements confirm what the
active camber control is capable of and it’s capacity to improve safety and
performance.

Figure 1.7: Overview of published suspensions. From: [3]
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Figure 1.8: Comparison of different camber actuation architectures. From: [3]
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1.5 Toolboxes

The models and toolboxes used in this thesis are put forward in this section.
Some of the models were augmented to fit this thesis task.

1.5.1 Simscape model of suspension

The suspension dynamics are very delicate and difficult to model with ordinary
differential equations in the single or twin track models. That is why the
suspension is modeled separately with Simscape developed by Mathworks
[4] that uses physical modeling to create differential equations from the
interaction between the given masses. The benefit of this approach is that the
actuation system can be designed more precisely while the high-level control
is separated as it does not require such accurate models of the suspension to
design. The framework used is called the Simscape Multibody library.

The Mathworks [4] provides an example for the double wishbone and
McPherson suspension models. The McPherson model closely resembles the
McPherson used in the real environment, compare Figure [1.2] and [1.9].
Each part type like king-pin, control arms etc. is modeled individually as
a component from the Multibody library. The suspension is mounted on a
test platform with pistons that can be used to create disturbances like road
bumps etc., see Figure [1.9]. The components are connected through joints
that allow the movement between the suspension parts but their friction and
displacements are neglected.

For the purpose of this thesis, the model was altered. The model parameters
are changed so that they match the testing vehicle. The axices are changed
to the Z-up configuration. The steering capability is not needed, and the
model behavior is studied only in the YZ plane, see Figure [1.9]. Thus, the
lower arm and the king-pin are modeled as cylindrical bodies to ease the
parametrization requirements. The McPherson strut mounting point for the
sprung mass is made loose, but the rail line constrains its movement. The
actuator can move the mounting point around the rail and thus change the
camber angle. The rail is tilted by σshf angle, which is the same as the angle
of the McPherson strut from the king-pin so that the McPherson strut is
perpendicular to the rail at 0 camber angle. The McPherson strut mounting
point has a revolute joint with 1 DOF so that the suspension can rotate only
around X-axis that is defined from the right triad as going into the paper.
The actuator itself is modeled as a prismatic joint that has for the input the
distance d which marks the shift of the mounting point on the rail.
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hL hR

LsLsL R

φ

Y

Z

rail
McPherson strut

lower arm

center of gravity

dRdL

Figure 1.9: The used Simscape model of the McPherson suspension based
on the Mathworks example [4]. The rail was added and the suspension parts
approximated with cylindrical bodies. The dL and dR is the actuator stroke
length on the rail line. The φ is the body roll. The LsL

and LsR
are the left

and right McPherson strut lengths respectively and the hL and hR the piston
heights.

1.5.2 Twin track

Hi-fi non-linear mathematical model representing complex vehicle dynamics
including dynamical load transfer is adopted from [20]. The original model
consists of 4 Pacejka wheels together with Newton-Euler equations of motion,
aerodynamic forces and power-train. The vehicle coordinate system is shown
in Figure [1.10].

x

y

z

Figure 1.10: The Z-down coordinate system of the twin track vehicle with color
fitting for each axis.
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However, the Pacejka wheels defined in ([20]-2.27) and ([20]-2.28) in the
original model do not simulate the wheel cambe effect. To adress this, the
complex Pacejka Magic Formula [21] is employed replacing the previous model.
It is implemented in the Mathworks library [4] as "Combined-Slip Wheel
2DOF".

The coordinate transformation in ([20]-2.24) accounts only for the steering
angle but not for the rotation by the camber angle. Moreover, the Combined-
Slip Wheel 2DOF have Z-up coordinate system where the vehicle is Z-down,
see Figure [1.10]. Thus, a DCM is used instead of ([20]-2.24) where the
velocities are transformed as

vw = Rz(δ)Ry(0)Rx(π + γ) vb, (1.1)

from the body CG point to the individual wheels and the forces

F b = Rz(δ)Ry(0)Rx(π + γ)Fw, (1.2)

from the wheels to the body coordinate system where Ri() is the rotational
matrix around the particular axis. The π rotation around X axis rotates
between Z-up and Z-down coordinate system. The δ and γ are not subtracted
as the δ is after the rotation around X which changes the direction of rotation
and the γ is from the definition of the wheel axes for the complex Pacejka
Magic Formula. The complex Pacejka Magic Formula also requires brake
pressure Pb instead of torque τBRK and thus a conversion formula is used:

Pbxx = 4 τBRKxx

µπ B2
a RmNpads

, (1.3)

where Rm is the brake pad mean radius, Npads is the number of brake pads,
Ba is the disk brake actuator bore and µ is the kinetic friction coefficient.
Their values are the same as the default values from the Mathworks block.

Next, the vehicle interaction equations in (2.4-2.16) from [20] were also
augmented. The skew matrix of lengths is used to map the forces F b and
rotational speed ωb to the moment M b and the velocity vb:

M b =
∑

xx = FL,FR,RL,RR


 0 hxx wxx
hxx 0 −Lxx

−wxx Lxx 0

 F b
xx

 , (1.4)

vb
xx =

∑
xx = FL,FR,RL,RR


 0 hxx −wxx

−hxx 0 Lxx
wxx −Lxx 0

 ωb

 , (1.5)

13



........................................ 1.5. Toolboxes

where Lxx is the longitudinal length, wxx the lateral length and hxx the
vertical length from the CG point to the each wheel.

The model has to be influenceable by external disturbances like the side
wind or the wind gust that rotates the vehicle by hitting a trailer, for example.
In other words, the model has to include inputs for external forces and
moments. So, the equations (1.4) and (1.5) were updated to:

M b =
∑

xx = FL,FR,RL,RR


 0 hxx wxx
hxx 0 −Lxx

−wxx Lxx 0

 F b
xx

+

 0
Fyext

0

 , (1.6)

vb
xx =

∑
xx = FL,FR,RL,RR


 0 hxx −wxx

−hxx 0 Lxx
wxx −Lxx 0

 ωb

+

 0
0

Mzext

 , (1.7)

where Fyext can be used to model the side wind gust and Mzext can be used
to exert the external rotation which have direct consequences on the vehicle
yaw rate and side slip angle. The new inputs and outputs of the twin track
model are depicted in Figure [1.11].

δ
γ

ay

r
x

y

z
Mz-ext

τBRK
τENG

Fy-ext

FL,FR,RL,RR

β

vx

Figure 1.11: New inputs/outputs of the twin track model. The τENG and τBRK

define the motor and braking torque that is employed at each wheel.

1.5.3 Single track mathematical model

The single track model represents simplification adopted from [22]. The
vehicle coordinate system is shown in Figure [1.12].
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x y

z

ψ
.

Figure 1.12: The Z-up coordinate system of the single track vehicle with color
fitting for each axis.

The single track model is mainly used for the controller design and thus it
will be linearized. However, the equations has to be extended by the camber
angle actuation. The linearization procedure will be presented in three steps:..1. Equations of motion..2. Forces and torques..3. Final differential equations

Equations of motion

δr
-αr

δf

-αf

v

β

Fyr

Fxr

Fyf

Fxf

Fy

Fx

vf

vr

→ →

→

Lr Lf

CG ψ
.

Figure 1.13: The single track diagram. The left and right wheels are moved to
the center of each axle.
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The nonlinear equation of motion for the diagram in Figure [1.13] are:

Fx = mv̇x, (1.8)
Fy = mv̇y, (1.9)
Mz = J ψ̈, (1.10)

where v̇x is a longitudinal acceleration, v̇y a lateral acceleration, m a vehicle
mass, ψ̇ a yaw rate, ψ a yaw angle and J a moment of inertia around Z-axis.
The longitudinal and lateral force is marked as Fx and Fy respectively and the
torque around Z-axis as Mz. The yaw rate notation of r = ψ̇ will be adopted
for this thesis. The velocity vector can be distributed to the longitudinal and
lateral direction as follows:

v2 = v2
x + v2

y , (1.11)
vx = v⃗ cos(ψ + β), (1.12)
vy = v⃗ sin(ψ + β) = vx tan(β + ψ). (1.13)

(1.14)

where v⃗ is the velocity vector and β a sideslip angle. The equation (1.9) can
be rewritten with (1.13) as:

Fy = m

(
v̇x tan(β) + vx

β̇ + r

cos(β + ψ)2

)
. (1.15)

The lateral dynamics are primarily considered for the single track model.
That is why the following assumptions are made:.The longitudinal velocity is assumed constant v̇x = 0 and will be marked

as Vx..The yaw angle is assumed to be ψ = 0 for the simplification..The β is assumed to be small and the following approximation of gonio-
metric functions is employed:

sin(β) ≈ β, cos(β) ≈ 1, tan(β) ≈ β. (1.16)

The final equations of motion with the assumptions above are:

Fy = mVx (β̇ + r), (1.17)
Mz = J ṙ, (1.18)

where the Fx = 0. The linearized model considers only the lateral dynamics.
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........................................ 1.5. Toolboxes

Forces and torques

The lateral force Fy and yaw torque Mz based on tire slip angles are going to
be defined in this section. Based on Figure [1.13]:

Fy = Fyf + Fyr, (1.19)
Mz = Lf Fyf − Lr Fyr, (1.20)

where Fyf and Fyr are front and rear lateral wheel traction forces. They are
defined by the Pacejka Magic Formula and their linearization for the small
tire sideslip angles yields:

Fyi = Cαi αi + Cγi γi, (1.21)

where i = f, r for front and rear respectively. The Cαi is the cornering
stiffness and the Cγi the cambering stiffness, see section Linearization of
Pacejka Magic Formula for more information. The term Cγi γi accounts
for the camber thrust force produced by a wheel cambering.

The wheel longitudinal vxi and lateral velocity vyi at the wheel coordinate
system at the each axle center for the single track model can be defined as:

vxi = Vx, (1.22)
vyi = vy ± Li r, (1.23)

(1.24)

where i = f, r stands for front and rear respectively and the Li is the distance
of the CG to the front and rear axle respectively for particular i. The tire slip
angle can be defined as arc-tangent of wheel longitudinal and lateral velocity,
see Figure [1.13]:

αi = tan
(
vy ± Li r

Vx

)
+ δi. (1.25)

The αi are assumed small and thus the approximation of goniometric functions
in (1.16) applies as well. The (1.25) reduces to:

αf = δf − β − Lf

Vx
r, (1.26)

αr = δr − β + Lr

Vx
r. (1.27)

Final differential equations

Substituting (1.26), (1.27) and (1.21) into (1.17) and (1.18) yields the system
differential equations describing lateral dynamics of the single track model:
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β̇ = −
Cαf

+ Cαr

mVx
β +

(
Lr Cαr − Lf Cαf

mV 2
x

− 1
)
r +

Cαf

mVx
δf + Cαr

mVx
δr +

Cγf

mVx
γf + Cγr

mVx
γr,

(1.28)

ṙ =
Lr Cαr − Lf Cαf

J
β −

L2
f Cαf

+ L2
r Cαr

J Vx
r +

Lf Cαf

J
δf − Lr Cαr

J
δr +

Lf Cγf

J
γf − Lr Cγr

J
γr.

(1.29)

Its state-space form is:

[
β̇
ṙ

]
=


−
Cαf

+ Cαr

mVx

Lr Cαr − Lf Cαf

mV 2
x

− 1

Lr Cαr − Lf Cαf

J
−
L2

f Cαf
+ L2

r Cαr

J Vx

 ·
[
β
r

]

+


Cαf

mVx

Cαr

mVx

Lf Cαf

J
−Lr Cαr

J

 ·
[
δf

δr

]
+


Cγf

mVx

Cγr

mVx

Lf Cγf

J
−Lr Cγr

J

 ·
[
γf

γr

]
. (1.30)
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Chapter 2
Problem definition

First, the camber angle is defined in the Camber definition and its depen-
dency on the suspension variables is established in Camber development.
The models, that determine the behavior of the cambered wheel, are outlined
in the Brush Model - Contact patch development and Camber in
Pacejka. These models are then linearized in the section Linearization
of Pacejka Magic Formula so that they can be utilized in the single
track control theory. The Camber benefits presents the advantages of
the Active Camber Control (ACC) with the framework established by the
models. Finally, the Active Camber Control system design defines the
problem itself and confines it to the vehicle parameters and requirements that
construct the boundary conditions of the control problem. These requirements
are transformed in the Actuator requirements to the model specifications.
The section Approach to the problem solution describes the approach
taken for finding the solution of the problem.

2.1 Camber definition

The camber angle is defined as an angle deviation around the wheel X-axis
from its upright position perpendicular to the ground. It can also be specified
as an intersection of the wheel axis and perpendicular plane to the ground.
See Figure [2.1]. The camber is defined as positive whenever the wheel is
inclined from the vehicle and negative when inclined to the vehicle body. The
camber angle in Figure [2.1] is positive.
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................................... 2.2. Camber development

γ

Ft
Figure 2.1: The wheel with positive camber angle γ and the lateral blue camber
thrust force Ft.

2.2 Camber development

The camber angle is not static. It is constantly changing when the vehicle is
in motion. The Figure [2.2] shows the camber gain with the wheel travel. The
behavior is very complex. The McPherson suspension has at first negative
camber gain on the outer wheel because it cambers the wheel into the corner.
The outer wheel is the wheel that is on the outer edge of the corner. However,
after reaching a particular value, it continues to positive camber, which is
highly undesirable as it cambers the wheel in the wrong direction. The double
wishbone has only negative camber with wheel travel because the upper
wishbone arm gives another degree of freedom to the suspension, which helps
to navigate the wheel in the expected manner. Nevertheless, the extra arm
brings disadvantages because it requires more space than McPherson, who
does not have any upper arms.

For the purpose of this thesis, the complex behavior shown in Figure [2.2]
will be defined with three primary sources, see Figure [2.3] below. However, the
behavior will not be entirely captured because it neglects the joint clearance
and other factors. On the other hand, it will be precise enough so that the
suspension camber angle can be reasonably modeled.
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.
Figure 2.2: The camber gain development based on the wheel travel between
the McPherson and double wishbone suspension. The blue line depicts the
McPherson and the red line the double wishbone. From: [5]

2.2.1 Camber due to body roll

When the vehicle undergoes a turning maneuver, the sprung mass moves in
the opposite direction (Newton 1st law of motion). The suspension has to
withstand this motion which leads to change in the linkage formation, which
directly induces camber, see Figure [2.3].

2.2.2 Camber due to KPI

When the wheels are steered, the wheels move around the steering axis,
creating the camber. The KPI effect on camber is shown in the Figure [2.3].
Moreover, the nominal loads acting on the wheels are also changed, and the
outer wheel of the maneuver is overloaded while the inner is unloaded. The
spring-dampers thus change in length, which changes the KPI angle and
contributes to creating more or less camber respectively. The article [11]
provides rule of thumb that δ = 10◦ and KPI = 10◦ creates approximately
|∆γ| = 0.15◦.

2.2.3 Camber due to Caster

When the wheels are steered, the wheel moves around the steering axis,
changing its camber. The more caster angle ϕ, the more camber is being
created, see Figure [2.3]. The article [11] provides rule of thumb that δ = 10◦
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and ϕ = 10◦ creates approximately |∆γ| = 2◦. The camber created is almost
ten times higher than for the KPI angle. That is why the caster angle is
much more important to tend to than the KPI.

γ

Fy Fy

Camber actuation

Fy Fy

φ roll angle influence

Fy Fy

Caster angle influenceγ γ

Fy Fy

KPI angle influence
γ

γ

γ

-γ γ

Figure 2.3: The overview of the induced camber from different sources. The top
figure shows the desired wheel inclination and the Fy denotes the lateral force of
the vehicle in the maneuver, not the camber thrust. The other figures depict the
induced camber in the maneuver. Note that the wheels are steered but it is not
shown in the diagrams for the simplicity.
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.......................... 2.3. Brush Model - Contact patch development

2.3 Brush Model - Contact patch development

The understanding of the formulation of forces in the tire is necessary so that
the equations of motions for the Toolboxes can be calculated. The Brush
Model is the physical model of the tire. It is widely used to depict force
generation because it uses physics equations and relations that are easier to
understand and visualize. The area, which is in contact with the ground, is
called a contact patch. It is responsible for generating forces that drive the
vehicle. The maximum force that the contact patch can produce is limited by
the amount of normal load Fz available times the friction coefficient µ. This
creates a boundary called a friction circle that the longitudinal and lateral
forces are restricted to stay within, see Figure [2.4].

Fx

Fy

μFz

Fx,max

Fy,max

Traction

Braking

Figure 2.4: The friction circle that defined the maximal longitudinal and lateral
forces. The vector sum of Fx and Fy is limited by the µFz value.

Both Fz and µ are changing throughout the ride, and thus the friction
circle is constantly developing. The Fz is generally affected by chassis roll
and pitch and change in mass while µ depends mainly on the Fz itself, the
temperature, tire material, road, and weather conditions. When the car is
not moving, the elements of dFz are distributed across the contact patch
symmetrically around the wheel center, which gives the resultant Fz after
integration (the middle picture in [2.5]). When the wheel starts rolling, the
distribution is skewed, and the resultant force is off-center. This creates a
moment that goes against the wheel motion, and it is called rolling resistance
(the left picture in [2.5]). For the sake of simplicity, let’s assume that the
wheel keeps the symmetric parabolic distribution and define two regions:
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.......................... 2.3. Brush Model - Contact patch development

adhesion limit and sliding region limit (see the right picture in [2.5]). The
adhesion limit corresponds to the maximal force that the wheel can create,
and the sliding region limit to the maximal force after the adhesion limit has
been reached (see more in Camber in Pacejka). Both limits have the same
Fz, but they differ in friction coefficient.

Fz Fz

v

sliding region limit

adhesion limit

ground

Figure 2.5: On the far left is the real-world normal load distribution throughout
the contact patch with blue rolling resistance opposing the motion. In the middle
is the parabolic distribution used for the Brush model analysis. On the right side
are the adhesion and sliding limits in the accordance to the parabolic distribution.
From: [6]

α

Fy

time

Figure 2.6: The typical behavior of the tire going forward and at a slip angle.
The slip angle is create as a reaction to the change in direction and diminishes
when the new direction is established.

The classical approach for turning the vehicle is to steer the wheels and thus
change the direction of motion. However, this will create a centrifugal force
that will oppose the change in the direction. The contact patch is composed
of thread elements connected to the ground through the Van-der-Waals bonds
and hysteresis effect. In the maneuver, the thread elements are pulled and
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.......................... 2.3. Brush Model - Contact patch development

stretched, resulting in lateral force Fy that opposes the centrifugal force and
turns the vehicle (centripetal force). The slip angle is defined as the angle
between the direction of motion and the steered wheel, see Figure [2.6]. It is
proportional to the generated lateral force, see left Figure [2.5].

The more sharp maneuver is, the more slip angle is needed to turn the
vehicle. This is visualized in the top Figure [2.7], where the increasing of slip
angle raises the resultant lateral force, which gradually devours the whole
contact patch. The moment the adhesion limit is reached, the threads will
slide. Whenever the threads slide, the friction decreases, and the available
force drops to the sliding limit.

adhesion
adhesion limit reached

slip angle
FRONT

sliding

REAR

α

Fy

X
α

Fy

X

Figure 2.7: The top figure is the Brush Model of the tire for the slip angle with
depicted side force Fy. On the bottom is the lateral force development cycle for
increasing slip angle. The adhesion peak travels from the back to the front as it
fills the sliding region. From: [6]

Another approach is to camber the wheel and turn without the need to
steer. The force developed from the camber angle is called camber thrust.
The camber thrust is created from the deformation of rubber where the thread
elements are forced to move to where the wheel is inclined to, which creates
lateral force. See top Figure [2.8].

The higher the camber angle is, the more lateral force is created till a
physical limit is reached. The camber angle uses the shape of the contact
patch more efficiently and reaches the adhesion limit on the whole area
simultaneously. It does not lose any available force to the unnecessary sliding.
In bottom figure of [2.8], the process is visualized. However, some remarks
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have to be made. The parabolic distribution does not accurately estimate the
contact patch in the real vehicle, as discussed in Figure [2.5]. Also, the process
in [2.7] is described for zero effective slip angle, which would be impossible.
Nevertheless, the benefits of the camber are undeniable, see section Camber
benefits.

camber

adhesion adhesion limit reached

sliding

FRONTREAR

Fy

X

Fy

X

Figure 2.8: The top figure is the Brush Model of the tire for the camber angle
with depicted side force Fy. On the bottom is the lateral force development cycle
for increasing camber angle. The adhesion peak is reached at the same time
through-out the contact patch. From: [6]

2.4 Camber in Pacejka

The Brush Model presents a respectable illustration for understanding the
physics of the force generation. However, it assumes and neglects many
features that make it inaccurate, see, for example, Figure [2.5]. Hans B.
Pacejka created a semi-empirical Magic Formula that predicts longitudinal
and lateral forces as well as the aligning moment in the contact patch. It is
very accurate as the force is estimated by a formula created from the best fit
to the experimental data. That is why it was used in the twin track vehicle
model in the Toolboxes. The formulation for lateral force is as follows:

Fy = Fz D sin(C arctan(B α− E (B α− arctan(B α)))). (2.1)

It depends directly on the slip angle α and uses C,E,B as shape factors and
D and Fz to scale the curve. The typical curve can be seen in Figure [2.9].
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Figure 2.9: The lateral force of the Magic Formula in (2.1) across different tire
slip angles.

The C,E,B,D factors in the equation (2.1) are themselves dependent on
other variables like normal load, camber or road friction and they are clearly
defined in the Pacejka book [21] in equations (4.E9)-(4.E78).

The characteristic shape of the curve can be divided into linear and nonlinear
regions. In the linear region, the traction force increases with the slip angle.
However, when the maximum value is reached, the force decreases in value.
This region is regarded as nonlinear and represents complete sliding or loss of
control.

The part of the tire, which is in contact with the ground, is made out
of rubber. This material is viscoelastic. See Figure [2.10]. As the tire is
in contact with the ground, bonds are created between the surface and the
rubber. The strength of these bonds is depicted here as the loss factor. In
other words, the loss factor is proportional to the amount of energy the
material can create. The energy is used to oppose the centrifugal forces of
the vehicle while cornering. That is why the loss factor is regarded as the
friction coefficient and normalized to number 1 (see left Y-axis of figure [2.10]).
Nevertheless, the normalized value of 1 also depends on the state of the road.
The dry road has a value of 1, while the wet and ice/snow road have 0.8 and
0.3, respectively.

The tire moves mainly between the viscoelastic and highly elastic rubber
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states because the wheels are stressed and warmed up while in motion. The
glassy state is visited only when the vehicle is at the complete stop. The
viscoelastic and highly elastic rubber states can be approximated by two
different friction coefficients. The viscoelastic friction coefficient is called
"adhesion limit", and the highly elastic rubber is the "slide region limit". See
more in Brush Model - Contact patch development.

Figure 2.10: The dependency of loss factor of different states of rubber on the
temperature. The amount of stress (energy), it can withstand, is directly related
to the friction coefficient in tires. From: [7]

The peak in the viscoelastic state corresponds directly to the maximum
value of the Pacejka Magic Formula curve. As the resultant force gradually
consumes the contact patch, the temperature increases, and thus the friction
coefficient decreases and the maximum force too.

The effect of camber on the lateral force Pacejka Magic Formula can be
seen in Figure [2.11]. It is mirrored for the negative camber and negative slip
angle. The camber thrust is less than the forces generated by slip angle but
not insignificant. The camber increases generated force in the linear region
but disappears around the curve peak when the contact patch is completely
devoured by the resultant force, see Figure [2.11]. Also, the higher the tire
slip angle is, the less camber thrust is generated. This supports findings from
Brush Model - Contact patch development where the camber thrust is
highest when there is a zero effective slip angle.

Moreover, the tires have an optimal camber angle that is dependent on the
normal load where the lateral force is maximized. When the vehicle turns, its
body rolls and changes the normal load on the tires. Thus, the normal load
is distributed unevenly between the right and left sides of the contact patch,
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where one side is more loaded than the other. That is why there exists an
optimal camber angle which would incline the wheel in such a way that the
normal load is evenly distributed and thus the force is maximized. This is
not captured in the Mathworks model and thus cannot be visualized.
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Pacejka Magic Formula for different camber angles
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Figure 2.11: The lateral force of the Magic Formula across different camber
angles. The peak force value does not change. On the other hand, the force can
be generated with no slip angle. The camber thrust diminishes at the force peak.
The bottom figure shows only the force gained from the camber thrust.

The friction circle is also affected by the camber angle. It is prolonged
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and shifted in the lateral force direction, and squished in the longitudinal
direction. Thus, the more of the camber angle is used, the less longitudinal
force can be generated, see Friction circle development with camber.
Nevertheless, the reduction in the maximal longitudinal force does not need
to be the same as the gain in the lateral force.

2.5 Friction circle development with camber

The friction circle shape cannot be actively changed in conventional cars,
which limits the ESP and ABS effectiveness. However, the camber angle
can do just that. The friction circle in Figure [2.12] is created from the
conjunction of the multiple simulated maneuvers. The largest euclidean norm
then represents the maximal force achieved, which is then used for the friction
circle estimation as an ellipse, see Figure [2.12]. Whenever the camber angle
is induced, the friction circle is squished in the longitudinal force direction
and prolonged and shifted in the lateral force direction, see Figure [2.13]. The
Figure [2.14] shows the zoomed part of the friction circle edges. The lateral
force gain is almost 4x higher than the longitudinal force loss.
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Figure 2.12: Friction circle estimation as an ellipse from the complex Pacejka
Magic Formula model from Matlab. The points with the highest euclidean norm
are used for the estimation.
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Figure 2.13: The comparison of the friction circles with different camber angles.
The shifting of the friction circle is marked by an arrow.
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Figure 2.14: The lateral and longitudinal force peak movement zoomed from
Figure [2.13]. The gain in the lateral force is almost 4x higher than the loss in
the longitudinal force.
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2.6 Linearization of Pacejka Magic Formula

The Pacejka Magic Formula model is nonlinear and thus cannot be used
for the linear models like Single track mathematical model, but it can
be approximated for small slip angles where the force gain from slip and
camber can be decoupled. Figure [2.11] shows that the camber thrust slowly
disappears as the slip angle increases. Thus, the camber thrust can be
approximated as linear till a particular slip angle value is reached. This
method was used by many researchers, including in [17] but the saturation
by particular slip angle value makes it still nonlinear. Nevertheless, if the
operating point of the linear model is chosen to be at 0 slip angle, the
saturation can be ignored, and the force formula can be decoupled with:

Fy = Cα α+ Cγ γ. (2.2)

2.6.1 Linearization of slip angle

The characteristic shape of the Pacejka curve in Figure [2.4] can be approxi-
mated linearly around zero for small slip angles as

F = Cαα (2.3)

where Cα is defined as a slope of the curve around 0 slip angle, see Figure
[2.15]. The top Figure shows the linear approximation of the Pacejka curve.
The gradient of the top Figure [2.15] is shown at the bottom. The value
of the cornering stiffness is at the zero slip angle. Note that the cornering
stiffness model is applicable only around the zero slip angle.
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Figure 2.15: The linearization of the Pacejka Magic Formula from the gradient
of the curve around zero. The value of the slope at zero slip angle is the cornering
stiffness.

2.6.2 Linearization of camber angle

The camber thrust can be approximated similarly to the slip angle as:

F = Cγγ. (2.4)
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However, the cambering stiffness Cγ is calculated as the average across all
camber thrusts at zero slip angle. Figure [2.16] shows the camber thrusts
where the estimations are shown as the dashed lines. The cambering stiffness
model is also applicable only around the zero slip angle.
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Figure 2.16: The linearization of the Pacejka Magic Formula for the camber
thrust. The average of all the camber thrust values at 0 slip angle is the cambering
stiffness. The estimation of the camber trust by cambering stiffness is depicted
as the dashed lines for the particular camber angles.

2.7 Camber benefits

2.7.1 Cornering losses

The conventional cars use the wheel sideslip angle to compensate the cornering
forces. However, the slip angles create cornering resistance force Fc that
consumes energy [18]. The power consumed can be calculated as:

P = W

t
= Fc s

t
= Fc vx = (Fcf + Fcr)vx, (2.5)

where Fcf and Fcr are components of the cornering resistance in the front
and rear respectively. The cornering resistance depends on the lateral forces
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and slip angles, see Figure [2.17]:

Fcf = sin(αf )Fyf ≈ αfFyf , (2.6)
Fcr = sin(αr)Fyr ≈ αrFyr. (2.7)

The lateral forces can be further approximated by cornering stiffness yielding:

P = Fc vx = (Cαf
α2

f + Cαrα
2
r)vx, (2.8)

where one can see that the energy lost is proportional to the square of
the tire slip angle α. To save more energy and increase performance, the
camber actuation is very attractive. The active camber actuation reduces the
magnitude of the slip angles because the resultant lateral force is achieved at
smaller slip values and does not produce any losses in the process.

δr
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δf
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Fyr

Fxr

Fyf

Fxf

Fy

Fx→
vr

→
vf

 

Fcf
Fcr

CG

LfLr

Figure 2.17: The single track model with depicted cornering resistance forces
Fcf and Fcr.

2.7.2 Camber for faster lateral force generation

The camber can also generate lateral force faster from steering input. In
the top of Figure [2.18] is the lateral force response to the steering input
for the general conventional car without the camber control. The lateral
force increases till the vehicle skids. The maximum force is reached around 2
seconds. The curve can be considered linear up to 1 second where the camber
thrust will have an additive effect as discussed in section Linearization
of Pacejka Magic Formula, see Figure [2.11]. If the camber reaches
∆γ = 30 ◦/s actuation speed, the generated lateral force will be increased
in the linear region as shown in the bottom Figure [2.18]. For example, the
vehicle needs Fy = 2500 N to pass around a corner. In the Figure [2.18], the
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car with the conventional steering system requires 0.8 s to acquire enough
force but the cambered wheel is able to realize the same value in 0.5 s which
is almost 2 times faster.
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Figure 2.18: In the top figure is the lateral force response for the steering
input. The peak is reached around 2 seconds so upto 1 second can be the curve
considered linear. In the bottom is comparison of the force response between
the conventional and the cambered wheel that uses ∆γ = 30 ◦/s. The camber is
saturated at γmax = 15◦.

2.7.3 Line Of Peaks problem

The Line Of Peaks defines a phenomenon where the lateral force peak moves
with respect to the tire sideslip angles when subjected to different wheel
normal forces when the car body rolls around its X-axis. The shift is shown
in Figure [2.19]. The peak does not move vertically as it would be assumed
but rather diagonally, which changes the position of the peak force. This
effect is highly undesirable because when the normal load increases, the peak
is moved to the higher slip angles, which increases the tire wear and the
magnitude of tire sideslip angles needed to reach the higher lateral forces.

On the other hand, the camber moves the peak almost horizontally. Thus,
it can be used to mitigate the Line Of Peaks phenomenon and keep the peak
stable on the referenced slip angle. The amount of camber angle needed to
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accomplish this is around −5◦ to 5◦ for conventional car tires based on the
Figure [2.19].
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Figure 2.19: The lateral force peak moves differently for given normal loads
and camber angles. The camber angle moves peak almost horizontally while the
normal load moves it diagonally. The arrows show the change for increasing γ
and Fz values. The camber is changed from −15◦ to 15◦ and normal load from
80 % to 120 %. The green points show the peak movement for other than the
nominal Fz and their curves are not shown for the simplicity.

2.7.4 Usage diversity of camber angle

The configuration of the front and rear camber angles can create either the
side force Fy or the yaw rate torque Mz, see Figure [2.20]. The side force can
be used for Double Lane Change (DLC) maneuvers. On the other hand, the
yaw rate torque can be used for extreme maneuverability at low speeds or very
sharp corners. However, creating a yaw rate torque with rear wheels cambered
out of the corner could be potentially dangerous and unsafe because it can
decrease the contact patch area at high speeds. There was not found much
research regarding this fact, and further testing will be needed. This thesis
will not make any restrictions for camber angles regarding this phenomenon.
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............................ 2.8. Active Camber Control system design

Fy
Mz

Figure 2.20: Two different camber configurations. The left figure generates side
force Fy while the right figure creates the yaw rate torque Mz.

2.8 Active Camber Control system design

The CTU is developing a new demonstrator vehicle. In these sections, the
Active Camber Control will be defined from the control system design per-
spective with regard to the measured variables and goals. The IO diagram of
the CTU demonstrator for this particular problem is shown in Figure [2.21].
The control law should be designed in such a way that it depends on the
steering input from the driver. That is why the steering angles are outputs
and not inputs to the system. The diagram very closely mimics the twin
track model shown in [1.11]. However, the suspension outputs Ls, η and d
are also added. The suspension is modeled separately as its dynamics are
very delicate and hard to describe with the differential equations. Thus, the
suspension is created in Simscape that constructs them automatically, see
Simscape model of suspension.

38



............................ 2.8. Active Camber Control system design
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Figure 2.21: The input and output diagram of the CTU demonstrator vehicle.
The side slip angle β is estimated. The [δref ] marks the vector of 4 referenced
steering angles from the driver or other control system. The vehicle picture
from: [8].

2.8.1 Controlled variables

The control variables are the system inputs that actuators can change to alter
the system behavior. Due to the topic of this thesis, the camber angle is the
actuated variable. Each wheel has its own actuator that can be independently
controlled, see Figure [2.21]. For example, the FL stands for front-left and
the RR for rear-right. Note that the actuators have to be administered as
well so that the particular camber angles will be realized.

2.8.2 Measured variables

The measured variables are the system outputs that the control algorithm
can observe to get information about the system state. The number and type
of the measured variables are chosen on purpose so that all can be obtained
with the obtainable equipment and have low SNR (Signal-to-noise-ratio). The
control algorithm is thus realizable in real-world applications.

The first four variables are measured for each wheel. The Ls is the length
of the spring-damper strut. The d is the stroke length of the amber actuator,
and it is directly taken as an output from its actuator interface. The η defines
the angle of the lower control arm to the wheelbase of the vehicle, see Figure
[2.22]. The sensor is already used in many cars. It is the Xenon Level Sensor
used to level the front lights with the road. The δref are the steering angles
obtained from the driver steering input and the δ. are the steering angles
of the vehicle. The φ̇, ay, and r are the roll rate, lateral acceleration, and
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yaw rate, which are obtainable from the MEMS accelerometer and gyroscope,
respectively. The sideslip angle β cannot be measured directly and thus has
to be estimated. It can be calculated as:

β =
∫ (

ay

vx
− r

)
dt, (2.9)

where vx is the longitudinal velocity of the vehicle. Nevertheless, it can be
estimated through any other means, and many publications are focusing
solely on this topic, see [23] or [24].

McPherson

wheelbaselower arm

η

king-pin

tire

Figure 2.22: The diagram defining the η angle for the McPherson suspension.
It is the angle between the wheelbase and the lower control arm.

2.8.3 Parameters and control requirements

The car parameters are assembled from the CTU demonstrator vehicle and
its list is shown in the table [2.1] below.

Table 2.1: CTU demonstrator vehicle parameter list
Symbol Value Units Definition

L1 38 cm length of the lower control arm

L2SA 26.5 cm length of king-pin + ball joint in the SA
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Symbol Value Units Definition

LsSA 45 cm length of the McPherson strut measured in the
SA

Lw 11.5 cm length between the wheel axle in the king-pin
and the ball joint center

Lshf 9 cm distance of the McPherson strut closest point
to the king-pin projected onto the lower arm

σshf 2 deg angle of the McPherson strut from the king-pin

ϕf 2 deg caster angle at the front suspension

ϕr 0 deg caster angle at the rear suspension

kf 55 N/mm front spring constant

kr 50 N/mm rear spring constant

Lsn 44 cm spring natural length

c 3 N/mm/s damping coefficient

g 9.81 m/s2 gravitational acceleration

m 1500 kg vehicle mass

Tire R18 205/45 tire type

Ro 32.15 cm unloaded tire radius

Ri 23.05 cm rim radius

Tw 20.5 cm tire width

Lf 1.231 m longitudinal distance of the CG from the front
axle

Lr 1.231 m longitudinal distance of the CG from the rear
axle

wf 0.71 m lateral distance of the CG from the vehicle side
at the front axle

wr 0.705 m lateral distance of the CG from the vehicle side
at the rear axle

hCG 0.44 m height of the center of gravity

PM 95 kW motor power on each wheel
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Symbol Value Units Definition

Tmax 220 N m maximal torque of the motor

Gr 11.2 − gear ratio

τ 0.01 s motor time constant

Ixx 400 kg m2 moment of inertia around the CG X axis

Iyy 1700 kg m2 moment of inertia around the CG Y axis

Izz 1900 kg m2 moment of inertia around the CG X axis

Cf 52.01 kN/◦ front cornering stiffness for one wheel

Cr 52.01 kN/◦ rear cornering stiffness for one wheel

Cγf
3.234 kN/◦ front camber cornering stiffness for one wheel

Cγr 3.234 kN/◦ rear camber cornering stiffness for one wheel

The cornering stiffness Cαf
and Cαr is calculated based on the Lineariza-

tion of slip angle and the camber cornering stiffness Cγf
and Cγr is based

on the Linearization of camber angle from the Mathworks tire model of
complex Pacejka Magic Formula with tire parameters from table [2.1]. The
caster angles are intentionally chosen small so that the independent steering
for each wheel does not require strong actuators as discussed in Suspension
terms. The car is thought to be neutral-steer, thus the Lf = Lr. The mass
distribution on the front and rear is very similar due to the battery, motors,
and gearbox positions on the vehicle chassis. However, the CG position
changes whenever the vehicle is loaded or unloaded by passengers or cargo.
Moreover, there exist other condition changes like road profile, weight distri-
bution, or velocity. All of these variations establish the boundary conditions
which make up the vehicle requirements. The boundary conditions are:..1. Load variation up to 20 %...2. CG position change up to 15 cm to the front or rear from the center

(around 5 % on each side)...3. Road profiles: dry, wet, ice/snow...4. Velocity up to 150 km/h...5. Spring and damper coefficient variation up to 10 %
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The road profiles are represented by friction coefficient changes, see Camber
in Pacejka. In conjunction, the vehicle must withstand a defined wind
gust that can exert side force or angular moment on the car. Moreover, the
vehicle is expected to be outdoor tested with the lateral acceleration up to
aymax = 1 g. The control system has to be also robust to abrupt changes in
the system parameters like length of lower arm L1. The controller stability
margins have to be at least PM ≥ 45◦ for phase margin and gain margin
GM ≥ 6 dB which are default conditions in almost any applications that use
controllers.

2.9 Active camber actuation point

There are multiple ways how to actuate camber in the suspension but generally
they can be separated into three types:..1. Lower arm extension..2. Upper mounting point displacement..3. Adjustment of the king-pin

The article [3] provides a well-thought-out overview and comparison of the
already published systems, see Figure [1.7]. Any adjustments for the camber
actuation inside the wheel hub and king-pin will require sizable structural
modifications because of the small space. That will be costly and require high
power actuation due to the larger unsprung weight. The lower arm extension
also needs a high-power actuation system because the actuator will have to
drag the wheel across the surface. The upper mounting point displacement
demands the least power but requires more displacement to achieve the same
camber angle as the other two proposals. However, it does not increase the
unsprung mass, and no modifications of the McPherson suspension parts are
needed. That is why it was chosen as this thesis approach for the camber
actuation.

The McPherson strut mounting point is augmented so that it can move
along a rail where the actuator controls its movement, see Simscape model
of suspension. This calls for a controller that will regulate the stroke length
of the actuator to achieve the particular camber angles. The actuator also
has to produce enough forces to actuate the camber angle fast enough and
withstand the ones it is subjected to.
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2.10 Actuator requirements

The actuator has to be fast enough to react to the changes in the vehicle
states. This calls for the actuator’s rate of change estimation, which can be
used in the single and twin track model to develop control algorithms. The
most prevalent modes are:..1. Body roll due to road bumps..2. Body pitch due to road bumps..3. Longitudinal and Lateral force development

The actuator rate of change is governed by the µrate and its identification is
shown in section Slew rate identification below.

2.10.1 Body roll due to road bumps

Whenever one side of the car drives over a bump, the body will roll in
response. The actuator has to be fast enough to regulate such disturbance.
To determine the frequency of the model response, the model of the car
suspension in Simscape is used, see Simscape model of suspension. The
model represents the McPherson suspension as is shown in Figure [1.9]. The
model is linearized from the piston position hR to the roll angle φ of the body
mass center (red square). The subsequent step response is in Figure [2.23].

The step response closely resembles a 2nd degree system which has transfer
function:

H(s) = ω2
n

s2 + 2 ζωn + ω2
n

(2.10)

The damping ratio ζ and natural angular frequency ωn are determined by
equations:

ζ = − ln(OS/100)√
π2 + ln(OS/100)2

(2.11)

ωn ≈ 4
Ts ζ

(2.12)

where OS = 12.5 % is the overshoot percentage and Ts = 0.1 s the settling
time which can be read from the step response [2.23]. Thus, the damped
frequency of the mode equates to:

fd = 1
2πωn

√
1 − ζ2 = 9.62 Hz. (2.13)
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with damping coefficient c = 3000 N/m/s and spring constant k = 55 000 N m.
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Figure 2.23: Step response of the linearized system from the piston position to
the body roll in [1.9].

2.10.2 Body pitch due to road bumps

The actuator also has to be able to compensate for on-axle weight changes that
can be excited, for example, by driving over the speed-breakers, acceleration,
or deceleration. The system response is typically in the range between 1-2
Hz, taken from [25].

2.10.3 Longitudinal and Lateral force development

The wheel relaxation phenomenon gives the number of wheel rotations needed
for the forces to fully develop at the contact patch. The number of rotations
is typically between 1-2 dependending on the wheel speed.

If the car top speed is vmax = 150 km/h ≈ 40 m/s and the wheel formulates
forces in one and a half rotations, the frequency of the response is:
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ω = 1
1.5

vmax

R0
, (2.14)

f = ω

2π ≈ 15 Hz (2.15)

where R0 = 0.3215 m is the radius of the undeformed wheel from table [2.1].
Note that the precise frequency for the lateral force would be smaller because
it also depends on the steering speed. However, the CTU demonstrator
steering speed is not known. The typical frequency for the development of
lateral force in the conventional car with driver could be up to f = 2 Hz for
ay = 0.4 g taken from [26]. The main purpose of the active camber is to act
and react to the lateral acceleration, not to the longitudinal. That is why the
frequency for the lateral force development is taken to be

f = 2 Hz. (2.16)

2.10.4 Slew rate identification

The actuator should be fast enough to react to all frequencies. The required
velocity of the actuation can be calculated as the slew rate limitation. The
slew rate µrate is defined as the maximal change in value per second. The
amplitude of the final value is set to one because the 1◦ of camber angle is
deemed sufficient to compensate for most of the parasitic effects, see [16] for
the typical ranges. Thus, the unit-step value input would be achieved in
1/µrate seconds.

However, the actuators are hardly ever approximated with slew rate, and
more often than not, they are approximated with low-pass filters. The higher
frequencies are damped as the device is unable to react fast enough to the
input. Moreover, the dynamics of the low-pass filter are linear and thus
suitable to use in the Linear System Control design. The transfer function
for low-pass filter is:

H(s) = 1
τ s+ 1 , (2.17)

where the τ is the system time constant and relates to the speed of the system
response. In other words, the τ is the duration that the signal needs to reach
its final value with the slew rate µrate, see Figure [2.24].
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Figure 2.24: The slew rate to low-pass filter relation.

In time T = τ , the response of the low-pass filter reaches 63 % of its final
value. For T = 3 τ the response reaches 95 % which is deemed sufficient. The
time (period) is related to frequency by:

f = 1
T

= 1
3 τ = µrate

3 , (2.18)

and to the slew rate parameter as µrate = 1/τ because the actuator would
reach the final value in time τ if it had actuation speed µrate. The maximal
frequency found is:

fmax = max(9.62, 2, 2) Hz, (2.19)
(2.20)

where the frequency of the Longitudinal and Lateral force development
is only for the lateral acceleration attribute. Thus, the required actuation
speed is:

vreq = µrate = 3 fmax = 29 ◦/s. (2.21)
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2.11 Approach to the problem solution

This thesis tackles the assembling of the active suspension control system in
two main parts that are represented in chapter 3 and chapter 4.

The actuator has to be fast enough so it can be effective at alternating
vehicle states as discussed in Actuator requirements and withstand forces
that originate from the chosen actuation point in Active camber actuation
point. The process of meeting these actuator requirements is addressed in
the first part of chapter 3. The Mathworks Simscape Multibody model
is used to model individual parts of the McPherson suspension where the
estimation of required force, speed, and the stroke length is taken.

The actuator has to be able to establish the given camber angle and
compensate all the parasitic effects discussed in Camber development. The
generated camber angle should maximize the performance of the vehicle based
on the Camber benefits section and be robust to the variations determined
in the Parameters and control requirements. Due to complexity, the
control law is divided into two parts Low-Level and High-Level. The Low-
Level directly controls the actuator and ensures that the set camber angle
will be realized. The Mathworks Simscape model will be used to design and
test it. It is presented in the second part of chapter 3. The chapter 4 is
dedicated to the High-Level controller. The High-Level control law sets the
camber angle for the Low-Level. It takes into account the driver inputs and
chooses the appropriate camber angles.

The chapter 5 is devoted to the testing of the Low-level and High-level
controllers. The controllers are first tested in robustness and disturbance
rejection and then in the reference tracking in the various experiments that
simulate real-world situations like a wind gust.
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Chapter 3
Mechatronic system control implementation

In this chapter, the actuator and Low-level controller are derived for the
McPherson suspension that is used in the CTU demonstrator. See At-
tachments for Double wishbone suspension. The first section Camber
actuation defines the actuator parameters based on the boundary conditions.
The Actuator range, Acting forces and Actuator response time re-
quirements are presented in the framework of the Simscape model. However,
the type of the actuator chosen with the given parameters is not commercially
available and thus the final specifications are resolved in the Resultant ac-
tuator specifications. The Low-level controller is tackled in the Low-level
controller. The solution requires the estimation of other parameters like roll
angle that are addressed in Roll estimation section. The nonlinear mapping
approach is also enhanced with the controller in Control law: Feedback
PI controller for the robustness stability. The last section Compensation
of the KPI and caster influence on camber focuses on the minimization
of the steering angle effects on the camber angle. The final controller can
fully compensate all the effects on the camber angle that were discussed in
the Camber development.

3.1 Camber actuation

The actuation point of the camber was chosen in the Active camber actua-
tion point together with the actuation speed in the Actuator requirements.
The suspension dynamics are very delicate and complex, making them hard
to describe by the differential equations. The Simscape model presented in
the Simscape model of suspension is used to ease this process and define
the dynamics. The actuator is modeled as a prismatic joint whose input is
the distance d on the rail. The required forces to achieve the displacement
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are calculated automatically by Simscape. However, there are no saturation
limits and dynamics of the response time for the actuator. The actuator span
is addressed in the Actuator range and the response time in the Actuator
response time. The actuator also has to be able to withstand all forces
that it encounters and, on top of that, actuate the camber angle, see section
Acting forces.

3.1.1 Actuator range

The amount of the camber angle needed for the active camber actuation has
to be established to determine the actuator stroke length range. The regular
tires R18 205/45 used in the CTU demonstrator vehicle are not designed
for the large camber angles. The caster-camber plates can adjust the static
camber angle by ±3◦ in the conventional vehicle. The camber range used by
the KTH demonstrator vehicle [27] is ±15◦, but they used non-commercial
tires that are specialized in the generation of the camber thrust. Thus, the
camber angle range was chosen to be ±5◦ so that the camber thrust can still
be effective and the tires do not experience excessive tire wear. The exact
camber range for the tire is hard to determine because it depends on many
factors like racetrack design, suspension geometry, and stiffness, weight, tire
material compound, temperature etc.

However, the camber angle is also influenced by roll angle φ, KPI, and
ϕ caster angle as discussed in the Camber development. The actuation
range of the camber angle has to account for these effects. The roll angle for
the lateral acceleration of ay = 1 g is shown in Figure [3.1] with the camber
gained. The maneuver can be mirrored, so the maximum value of the camber
angle from the left and right sides has to be considered. The model was
subjected to side force Fy = maxle g where the maxle is the vehicle mass
supported by the axle. The vehicle is assumed Lf = Lr as defined in table
[2.1] and thus maxle = m

2 . The graph also shows different mass variations
that represent the load shifting in the vehicle. The maximal approximate
value is found to be γφ = ±5◦, see Figure [3.1]. Note that the camber angle
gains in the real vehicle will be smaller because the friction and displacements
of the joints are neglected.
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Figure 3.1: The camber gain from the roll angle in the Simscape suspension
model with maxle mass. The model was subjected to ramp of the side force
Fy = maxle g for different mass variations.

The steering angle with caster angle ϕ and KPI also produces camber.
The formula describing the relation is defined in (E.12). The caster angle is
constant, see table [2.1], but the KPI angle is changing with the length of the
spring-damper in the McPherson strut. The KPI angle variation in the turn
with ay = 1 g is depicted in Figure [3.1]. The Simscape model has KPI = 9.5◦

when it is at rest. The inner wheel in the maneuver has KPI = 13◦ and the
outer wheel KPI = 5◦ in the worst case when the axle is overloaded. The
caster angle is assumed constant ϕ = 2◦ for both wheels. If the steering
angle is assumed to be δ = 10◦ (right turn), the equations (3.52) and (3.53)
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presented in 3.3 define the camber gain for both wheels:

∆γR = 0.5◦, (3.1)
∆γL = −0.3◦. (3.2)

The table [3.1] describes the required camber angle range. The table is read
as follows. For example, the left wheel has to be able to actuate between
⟨ − 5◦, 5◦⟩. To achieve the −5◦ camber angle, the wheel has to compensate
the 4.7◦ that comes from the body roll and CASTER+KPI. Thus, the total
amount of the camber angle required for the −5◦ is −9.7◦.

Camber gain type Left wheel camber Right wheel camber
Wheel camber actuation ⟨ − 5◦, 5◦⟩ ⟨ − 5◦, 5◦⟩
Body roll 5◦ −5◦

Caster+KPI −0.3◦ 0.5◦

Total required ⟨ − 9.7◦, 0.3◦⟩ ⟨ − 0.5◦, 9.5◦⟩

Table 3.1: The table describing the total amount of the camber angle needed
to compensate for the different camber gains and parasitic effects for the right
turn.

However, the problem is mirrored because the vehicle can turn also in
the opposite direction to the left. Thus, the worst case of the total amount
presented in table [3.1] must be provided on both wheels. The required
camber actuator range is ⟨ − 9.7◦, 9.7◦⟩ = 19.4◦.

The amount of the actuator stroke length needed can be estimated from
the camber to rail coefficient γratio = 0.82 ◦/cm which is derived from the
Figure [3.2]. Thus, the maximal amount of stroke length dmax required to
fully compensate and actuate the dynamics of the vehicle is:

dmax = 19.4◦ / γratio ≈ 24 cm. (3.3)

Thus, the saturation limit and the actuator range is set in the interval:⟨0,24⟩ cm.
Note that the purpose of the γratio is to ease the notation for the estimation
of the actuator parameters and it is in no way used in the development of
the control algorithms.
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Figure 3.2: The calculation of the camber to rail ratio. The data are measured
from the actuator stroke length defined as the extension of the prismatic joint to
the camber angle of the wheel in the Simscape model of suspension.

3.1.2 Actuator response time

The prismatic joint, that models the actuator in the Simscape, doesn’t have
any internal dynamics that constrain its response time. Thus, the actuator
moves almost as fast as the ∆d in its input. That is why, the actuator model
is created as shown in diagram [3.3]. The model consists of the low-pass filter
for the linear dynamics and the nonlinear rate-limiter and saturation. The
low-pass filter is defined as discussed in the Actuator requirements and
the saturation from the Actuator range. The theoretical rate-limiter value
can be found with the camber to the rail coefficient ratio γratio from Figure
[3.2] as 29 ◦/s/γratio ≈ 35.4 cm s−1. However, the actual value depends on
the type of actuator that is commercially available, see Resultant actuator
specifications.
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Actuator model

1
τ s+1

dact
rate limiter

+
saturation

d

Prismatic joint

Figure 3.3: The model of the actuator with input dact and output distance
d to the prismatic joint in the Simscape. The τ = 1/29 s ≈ 0.035 s while the
saturation is from 0 − 24 cm and the rate limiter ±35.4 cm/s. The picture of the
prismatic joint from: [9]

3.1.3 Acting forces

The actuator is subjected mainly to the lateral Fy and normal Fz forces. The
diagram showing their propagation through the McPherson suspension is
depicted in Figure [3.4].

Fz

Fy

Fz

Fy

Fs

Fs

Fa

ΩF

Figure 3.4: The normal and lateral force development through the McPherson
suspension for the right wheel.

The Fy and Fz transform to the Fs that propagates through the spring-
damper in the McPherson strut and the Fa is the force that the actuator is
subjected to and has to withstand. The rail in the Figure [3.4] is perpendicular
to the McPherson strut as defined in Simscape model of suspension and
thus the Fa = 0 because no force is transferred onto the actuator. That
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is why car manufacturers do not need a strong base to account for these
forces. The wheel travel from bumps etc. can change this angle, but it is
neglected. On the other hand, the camber actuation can change this angle
quite dramatically, and thus an evaluation of the Fy and Fz influence on the
Fa has to be made. The diagrams of McPherson strut for the negative and
positive camber angle are depicted in Figures [3.5] and [3.6] respectively.

If the maximal lateral acceleration is assumed to be aymax = 1 g. The
amount of the lateral load transfer to one wheel can be calculated from [28]
as:

∆Fzside
= −

(
Kf

wf
+ Kr

wr

)
−m

ay

Lf + Lr

(
Lr hf

wf
+ Lf hr

wr

)
= ±4422 N,

(3.4)

∆Fzwheel
= ∆Fzside

2 = ±2211 N, (3.5)

where the heights are assumed to be hr = hf = hCG and the roll stiffness Kf

and Kr are calculated from [25] as:

Kf = 2 kf IR2w2
f = 21 315 N m/rad, (3.6)

Kr = 2 kr IR2w2
r = 19 106 N m/rad. (3.7)

The vehicle CG is at its center because Lf = Lr and thus (3.5) is half of
(3.4). The installation ratio IR is calculated in the attachments Calculation
of the installation ratio IR. The tire stiffness is neglected and the anti-roll
bar is not present in the model. Thus, the lateral force and normal force,
that the wheels are subjected to, are:

Fy = 1
4mwhl aymax = 3679 N, (3.8)

Fzwheel
+ |∆Fz| =

(1
4 + 1

8

)
mwhl g = 5890 N, (3.9)

Fzwheel
− |∆Fz| =

(1
4 − 1

8

)
mwhl g = 1468 N, (3.10)

where mwhl is the normal load on one wheel. Now, the Fa forces can be
established. The maximum amount of camber angle that the CTU demon-
strator vehicle can be subjected to in this example is γmax = 5◦ based on
the discussion in the Actuator range because the other 4.7◦ will be used
for the compensation of effects such as the body roll because the vehicle is
subjected to ay = 1 g in this example. The camber actuation is expected to
be at γ = −5◦ for the left turn maneuver (right wheel +|∆Fz| and Fy > 0)
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and at γ = 5◦ for the right turn maneuver (right wheel −|∆Fz| and Fy < 0).
The angle ΩF and the ΓF is expected to change with the γ as:

ΩF = σshf − γ, (3.11)
ΓF = 90◦ + (d− 12 cm) γratio, (3.12)

where d is the actuator stroke length.

ΩF

ΓF

Fz

Fy

Fz

Fy

Fs

Fs

Fa

Figure 3.5: The normal and the lateral force development through the suspension
with negative camber for the left turn.

The right wheel configuration is examined which is sufficient because the
left wheel is mirrored. The force propagation for the left turn based on the
diagram in Figure [3.5] is:

γ = −5◦, (3.13)
Fa,zL = (Fz,wheel + |∆Fz|) cos(ΩF ) cos(ΓF )

= 5890 cos(7◦) cos(80.3◦) N = 985 N, (3.14)
Fa,yL = Fy sin(ΩF ) cos(ΓF ) = 3679 sin(7◦) cos(80.3◦) N = 76 N, (3.15)

Fa,staticL = Fa,zL + Fa,yL = 1061 N, (3.16)

where Fa,zL and Fa,yL are the normal and lateral forces respectively that
are propagated through the suspension onto the actuator rail for the left turn
and the Fa,staticL is the total amount of the static force that the actuator has
to withstand for this configuration.
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Fa
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ΓF

Figure 3.6: The normal and the lateral force development through the suspension
with positive camber for the right turn.

The force propagation for the right turn based on the diagram in Figure
[3.6] is:

γ = 5◦, (3.17)
Fa,zR = − (Fz,wheel − |∆Fz|) cos(ΩF ) cos(180◦ − ΓF )

= −1468 cos(−3◦) cos(99.7◦) N = −247 N, (3.18)
Fa,yR = Fy sin(ΩF ) cos(180◦ − ΓF )

= −3679 sin(−3◦) cos(99.7◦) N = −32 N, (3.19)
Fa,staticR = Fa,zR + Fa,yR = −279 N, (3.20)

where Fa,zR and Fa,yR are the normal and lateral forces respectively that
are propagated through the suspension onto the actuator rail for the right
turn and the Fa,staticR is the total amount of the static force that the actuator
has to withstand for this configuration.

Thus, the maximal amount of the static force (3.20) and (3.20) that the
actuator has to withstand is max(|Fa,staticR |, |Fa,staticL |) = 1061 N. The γ =
5◦ for the left maneuver and γ = −5◦ for the right maneuver configurations
on the right wheel are not examined as the camber angle will not be actuated
this way. Thus it is pointless to include them. The actuator must also be
able to change and actuate the camber angle dynamically. The dynamic force

57



..................................... 3.1. Camber actuation

needed to move the actuator at 29 ◦/s speed is:

Fa,dyn ≈ 700 N. (3.21)

The force is estimated from the Simscape model, see Figure [3.7]. Thus,
the actuator has to be able to form Fa,max = max(|Fa,staticR |, |Fa,staticL |) +
Fa,dyn = 1761 N.
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Figure 3.7: The force estimation needed for the actuator to achieve the required
speed defined in Actuator requirements.

3.1.4 Minimization of static force

The Fa,static is produced from the change in the angle between the McPherson
strut and the rail, and it is materialized by the actuator when the camber
angle is altered. The rail-line can be curved in such a way that minimizes this
angle change resulting in minimization of the Fa,static force. The derivation is
captured in the Figure [3.8]. The example uses σshf = 10◦ for the simplicity.
The point D represents the mounting point of the McPherson strut that is
moved by the actuator on the rail, and it stands at the middle of the rail
at a 0 camber angle. Thus, the length of the rail from D to one side is
L = 12 cm from (3.3). The radius Rc defines the circular rail that would be
perpendicular to the McPherson strut at all positions. When the point D
would be moved to point D2, the orange triangle is created where Rc can be
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calculated as:
Rc = L tan (80.3◦) = 70.2 cm. (3.22)

Thus, the rail curved with radius Rc = 70.2 cm minimizes the static forces
induced on the actuator because the angle between the rail and the McPherson
strut is almost 90◦ at all times. The change in spring-damper length does
also influence the radius Rc but it is not considered as the angle variation is
negligible.

70.3°

19.7°

10°

0.3°

90°

80.3°

Rc

Rc

Rc
90°L

rail

D

D2

Figure 3.8: The derivation of the radius Rc of the rail that minimizes the angle
change between the McPherson strut and the rail for the σshf = 10◦.

3.1.5 Resultant actuator specifications

The actuator parameters were defined in the dedicated sections above. How-
ever, it must be commercially available. The final actuator chosen is the
electrical linear actuator due to its cost to power ratio and availability. The
disadvantage is that not all of the parameters defined above will be satisfied.
The table [3.2] shows the comparison between the actuator parameters. The
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force and speed can be interchanged with the gear ratio. The closest match
to the expected values is with the gear ratio of 5, and it is shown in the 4th
column of ht table [3.2].

Actuator specification Expected value Actuator parameter Chosen match
Push/Pull force 700 N 3500 N 700 N
Maxed push/pull force 1761 N 4960 N 992 N
speed with load 35.4 cm/s 3.7 cm/s 18.5 cm/s
stroke length 24 cm 10 cm 50 cm

Table 3.2: The actuator parameters used in the CTU demonstrator vehicle.
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Figure 3.9: The force estimation needed for the actuator to achieve the speed
defined in table [3.2].

The speed requirement is the most restrictive. The 18.5 γratio
◦/s ≈ 15 ◦/s

which is way below the 29 ◦/s requirement but fast enough so that the proof
of concept can be made. The Fa,dyn = 700 N will not be needed because it
depends on the speed, see Figure [3.9]. The actual value for speed 18.5 cm/s
is actually Fa,dyn = 350 N, see Figure [3.9]. Thus, the maximum force that
could be required is Fmax = 1411 N which is higher than the estimate of the
actuator. However the electric actuator is also self-locking and thus it can
withstand much higher force when holding the stroke length. The worst case
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would be that the actuator would get stuck or that it would slow down which
is deemed suitable for the proof of concept.

3.2 Low-level controller

The McPherson suspension can be modeled with a kinematic geometry model
that is discussed in McPherson geometry model. The Low-level controller
is then derived as the solution of the geometry model in Control law:
nonlinear mapping. However, it requires an estimation of other parameters
like roll angle, which are discussed in Roll estimation. The nonlinear
mapping controller does not have high enough disturbance rejection and
robustness. That is why it is extended by the Control law: Feedback PI
controller.

3.2.1 McPherson geometry model

The McPherson suspension can be modeled geometrically as 5 points (A,B,C,D,E)
in 2D, see Figure [3.10]. The point A is at the revolute joint of the lower
control arm mounting point. It is assumed that its position is constant and
does not change. Next is the point B is at the ball joint between the lower
arm and the king-pin. The angle θ is defined as the angle of the lower control
arm to the ground. The lower arm length is L1, and the king-pin with the ball
joint is L2 where both are constants. The king-pin is assumed to be vertically
aligned with the wheel as any misalignment is constant and can be subtracted
out and compensated. Thus, the camber angle of the wheel is the same as
the angle of the king-pin from the perpendicular plane to the ground, see
right Figure [3.10]. The point C is the highest point of the king-pin, and it is
angled from B by camber γ as shown. The Lx is the McPherson strut length
projected to the point C. The ΩC is the inner angle between the king-pin and
Lx arm. Both, the Lx and ΩC can be calculated from the original McPherson
strut length Ls, see attachments Derivation of McPherson suspension
parameters. The point D is at the revolute joint of the McPherson strut
mounting point on the rail, and the point E is the rail base point. The point
E is assumed constant, but it rotates around the point A by roll angle φ.
The d defines the minimum distance between D and E, and the actuator
directly controls it.
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Figure 3.10: McPherson suspension modeled as 5 points. (for background
picture see McPherson)

3.2.2 Forward kinematics

The geometric model in Figure [3.10] defines the camber angle γ purely from
the suspension structure. The forward kinematics must be solved to calculate
camber for particular suspension configuration and parameters. The forward
kinematics diagram is depicted in Figure [3.11]. The points A and E are
known where A is assumed as the center of the coordinate system. Thus, the
point E has to be rotated by roll angle φ around the point A:

A =
[
Ay

Az

]
=
[
0
0

]
, (3.23)

E =
[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
·
[
Ey

Ez

]
, (3.24)

and the point B can be found with angle θ as:

B =
[
L1 cos(θ)
L1 sin(θ)

]
. (3.25)

The forward kinematics for the camber angle γ from Figure [3.11] can be
calculated as:

γ = −ΛBE + ΓB + ΩB + π

2 , (3.26)
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where

ΛBE = arctan 2(Ez −Bz, Ey −By), (3.27)

ΓB = arccos
(

|BE|2 + |BD|2 − d2

2 |BE| |BD|

)
, (3.28)

ΩB = arccos
(
L2

2 + |BD|2 − L2
x

2L2 |BD|

)
, (3.29)

|BD| =
√
L2

2 + L2
x − 2L2 Lx cos(ΩC), (3.30)

|EB| =
√

(Ey −By)2 + (Ez −Bz)2. (3.31)

For the left side derivation, see attachments Derivation of the McPherson
geometry model for the left side.
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ΛBE
Y

Z

Figure 3.11: Forward kinematics for camber angle γ of model in Figure [3.10]

3.2.3 Control law: nonlinear mapping

The control law defines the input to the actuator so that the reference is
met. The Simscape model of suspension is used to simulate the system
response. The actuator is defined as a prismatic joint from point E to the
point D, see Figure [3.12]. Thus, the input to the actuator is d (the distance
on the rail between the point D and E). The reference is the camber angle
γw we want to have.
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Figure 3.12: The Simscape model with green-highlighted points as in the
suspension model in Figure [3.10]. The disk around the points remarks the
rotational degree of freedom of the joint.

The equation (3.26) can be used to derive such a law. The γ can be denoted
as γw and the d is the unknown:

γw = −ΛBE + ΓB(d) + ΩB + π

2 , (3.32)

and by solving for d the following expression is found:

ΓB(d) = ΛBE + γw − ΩB − π

2 , (3.33)

|BE|2 + |BD|2 − d2

2 |BE| |BD| = cos
(

ΛBE + γw − ΩB − π

2

)
, (3.34)

|BE|2 + |BD|2 − d2 = 2 |BE| |BD| cos
(

ΛBE + γw − ΩB − π

2

)
, (3.35)

d =
√

|BE|2 + 2 |BE| |BD| sin (−γw + ΩB − ΛBE) + |BD|2,
(3.36)

where due to the nature of the model, the d can be only positive. The
solution is actually algebraic and gives precise d distance for reaching the
given camber angle γw. However, it is assumed that the φ, θ, ΩC , and Lx

are known. The equation (3.36) is derived only for the right side suspension,
for the left side see appendix Derivation of the McPherson geometry
model for the left side. Note that the (3.36) is defined purely from the
suspension kinematics. The suspension dynamics play no role in the stroke
length determination.
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The θ is defined as the angle of the lower control arm to the ground. "to
the ground" is crucial here as it is very hard to measure. However, from
the Measured variables specification, the η can be measured. Obviously,
generally the η ̸= θ because the η is relative to the chassis and not to the
ground. However, the chassis is parallel to the ground whenever the car is
not turning, and, more importantly, the angle of the chassis to the ground is
the roll angle φ. In conclusion, the θ can be measured as

θ = η + φ. (3.37)

If the η is unavailable, the control law will still apply. However, the solution
would be implicit and require an iteration algorithm to solve or a feedback
controller, see more in section Unknown θ angle.

The Lx and ΩC can be obtained from the length of the McPherson strut
Ls, see attachments Derivation of McPherson suspension parameters
on how to derive it. The φ is the hardest component to measure, and it is
subject to many studies. The section Roll estimation is dedicated to its
estimation.

The nonlinear mapping diagram of the controller is shown in Figure [3.13].
See Low-level reference testing for the controller performance analysis.

φest
~

Ls

η
γw �ind_distance

1
τ s+1

dact
rate limiter

+
saturation

d

Actuator model

Figure 3.13: The nonlinear mapping controller diagram. The time constant of
the low-pass filter is the same as in the actuator requirements in equation (2.21).
The saturation is upto 24 cm and the rate limiter to 18.5 cm/s

3.2.4 Roll estimation

The body roll φ is directly proportional to the difference between the McPher-
son strut lengths Ls on the left and right side and can be estimated as:

φ̃est = Kφ (LsR − LsL), (3.38)

where LsL and LsR is the McPherson strut length for the left and right
side respectively. The Kφ depends on many factors like weight distribution,
suspension structure etc.. Thus it is found empirically as a constant by
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comparing the estimation to the real roll angle from the Simscape model
of suspension. To increase the measurement accuracy, the complementary
filter is added. It predicts the measured variables based on their rate. The
diagram for φ is shown in Figure 3.14.

+
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Ls

Ls

+

+

φ

1
τ s+1

τ

R

L

Kφ

φest
~

Figure 3.14: Roll estimation diagram with the complementary filter.

The time constant τ sets how much of the rate should be considered for
the prediction. It was chosen to be τ = 0.005 s. The Simscape model of
suspension is used to simulate the suspension dynamics. Figure [3.15] shows
the roll angle estimation for the different turns. The bumps and holes have
fast dynamics, so the roll angle is hard to estimate, especially when the wheel
is in the air, see Figure [3.16]. For example, when the road bump ceases, the
wheel is temporary in the air before it hits the ground again, and the formula
(3.38) fails to predict the roll angle properly. However, the complementary
filter minimizes the error by almost 10 %.
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Cornering roll angle estimation
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Figure 3.15: The roll angle estimation when cornering with and without the
complementary filter.
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Bump roll angle estimation
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Figure 3.16: The roll angle estimation from the bumps and holds in the road
with and without the complementary filter. Whenever, the wheel is in the air,
the equation (3.38) fails to predict the roll angle properly.
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Influence of the alteration of the suspension geometry on the roll
angle

The roll angle estimation with formula (3.38) and complementary filter is
sufficient for regular driving conditions as shown in Figure [3.15]. However,
the actuation of camber also influences body roll. There are two main sources.
First, the roll from the structure-change of the suspension. Whenever the
∆γ ̸= 0, the arrangement of the suspension links is changed, and their
difference on the left and right side induces roll. The second reason is the
change of the angle between the rail and the McPherson strut at point
D, see Figure [3.10]. Conventionally, this angle is constructed such that it
is perpendicular to the surface where the McPherson strut is mounted to.
However, the rail serves to move point D, which changes the angle. The
normal force that compresses the spring is dependent on this angle. Whenever
the normal force changes, the spring length is altered as well, which plagues
the Ls measurement, see top Figure [3.18]. Both effects are fighting as one
rolls the car onto one side and the second to the other, making the estimation
very imprecise. The change in the normal force is transferred onto the rail and
has to compensate by the camber actuator, see section Camber actuation.

The influence of the camber angle on the body roll can be compensated.
The top Figure [3.18] marks the amount of the roll gained from the difference
of the actuator stroke lengths (distance between the E and D points). A linear
function can approximate it. Thus, the final estimation can be augmented by
an addition of a linear term that predicts the amount of the roll angle gained
from the camber actuation:

φ̃est = CF [Kφ (LsR − LsL)] +Kγ(dR − dL), (3.39)

where CF[] marks complementary filter and dR and dL are the right and left
actuator stroke lengths (length between the E and D points). The Kγ is
approximated with the least-squares method from the difference between the
real and predicted roll from the complementary filter, see the error in the
middle Figure [3.18]. The bottom Figure shows the absolute error between
the new camber-compensated predictor and the complementary filter. The
error is significantly reduced. The roll angle is predicted to 0.5◦ accuracy at
the worst case. Note that the worst cases are for the camber configurations
that will not be used in the system’s normal operation. Figure [3.18] confirms
this and depicts the vehicle in a cornering maneuver where the wheels are
cambered from 0 to the direction of the turn so that the wheels are leaning
into the corner.

69



.................................... 3.2. Low-level controller

Figure 3.17: The derivation of the camber influence compensation on the roll
angle.
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Figure 3.18: The estimation of the roll angle with the camber actuation. The
new camber-compensated estimator is compared to the one defined by (3.38).
The cornering is simulated as the lateral force Fy = maxle ay for maxle = m

2 and
ay = 1 g.

The roll angle error is not diminished completely with (3.39). The change
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of the angle between the McPherson strut and the rail is the reason for the
non-linearity in the middle Figure [3.17]. The rail can be curved so that the
angle stays at 90 degrees which completely diminishes its effect on the roll
angle. Thus, only the structure configuration effect would be left which can be
compensated by the (3.39), see section Camber actuation for the curvature
calculation. The curve-fitting for the curved rail is depicted in the top Figure
[3.19]. The non-linearity is greatly reduced. The bottom Figure shows the
absolute error of the roll angle between the different approaches where the
curved rail has the lowest error. However, the CTU demonstrator will not
use the curved rail because its advantage is not high enough to facilitate its
construction.

Figure 3.19: The estimation of the roll angle with the camber actuation. The
rail is curved in a such a way that minimizes the change in angle between the
McPherson strut and the rail. Thus, the non-linearity of Figure [3.17] is removed
and the data can be approximated with less error.

3.2.5 Unknown θ angle

Even-though it was establish in section Active Camber Control system
design that the η can be measured, it is not necessarily needed for the control
law definition. Moreover, the measurement device can be damaged or be too
noisy. Thus, a new control law is created that does not require η.
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If the θ is not known, it has to be calculated to define the new control
law. Figure [3.20] shows the diagram of the McPherson suspension model
where the θ is derived. The |BD| and |AE| are found by (3.30) and (3.42)
respectively and the κ = σshf because the angle between the McPherson
strut and the rail-line is 90 degrees at the nominal camber. The κ is constant
because the rail is assumed not curved. However, if the rail was curved, the κ
would be a function of the stroke length d. Thus, the point D can be found
with:

D =
[
d cos(κ+ φ)
d sin(κ+ φ)

]
+
[
Ey

Ez

]
, (3.40)

where the φ has to be included to account for the body roll rotation. The
distances to point A from D and E are defined with euclidean norm:

|AD| =
√

(Ay −Dy)2 + (Az −Dz)2, (3.41)

|AE| =
√

(Ey −Ay)2 + (Ez −Az)2. (3.42)

Then, the ΓD1 and ΓD2 can be found with cosine rule formulas as:

ΓD1 = arccos
(
d2 + |AD|2 − |AE|2

2 d |AD|

)
, (3.43)

ΓD2 = arccos
(

|BD|2 + |AD|2 − L2
1

2 |BD| |AD|

)
, (3.44)

and used to derive distance |EB|:

|EB| =
√

|BD|2 + d2 − 2 d |BD| cos(ΓD1 + ΓD2). (3.45)

Finally, the ΓA is also defined by the cosine formula in triangle △AEB which
denotes the final equation for the θ angle:

ΓA = arccos
(
L2

1 + |AE|2 − |EB|2

2L1 |AE|

)
, (3.46)

ΛAE = arctan 2(Ez −Az, Ey −Ay), (3.47)
θ = −ΓA + ΛAE . (3.48)
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Y
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Figure 3.20: The diagram for the derivation of the θ angle from the model in
Figure [3.10].

Control law: Feedback PI controller

The nonlinear mapping controller finds the stroke length for the referenced
camber angle given the state of the system parameters. However, this approach
is prone to disturbance, and the controller can experience problems when
reaching the reference value because it uses only kinetic nonlinear mapping.
Nevertheless, the reference camber angle can also be tracked with the PI
controller, which uses the equation (3.48) and (3.26) to estimate the real
camber angle of the suspension. The PI controller uses a feedback loop
between the reference and the estimation, increasing system robustness and
not requiring the η measurement. Both controllers can be used together
where the PI helps solve the weaknesses of the nonlinear mapping.

The model is first linearized from the γest = γ in (3.26) to the input of the
prismatic joint (distance dact) of the Control law: nonlinear mapping.
The operating point (OP) is chosen as:

OPd = 0.12 m, (3.49)
OPγ = 0◦. (3.50)

The model verification between the Simscape and the linearized system
is shown below. The graph shows the step responses of the nonlinear and
linearized system. As expected, the model is valid mainly around the operating
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point at 0 camber angle. Nevertheless, the dynamics of the system are
captured well.
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Figure 3.21: Model verification of the step response between the Simcape model
and its linearization from the estimated camber to the dact distance.

The controller is modeled with RL-tool, see Figure [3.22]. The controller
should ensure minimal overshoot and fast response time. The overshoot is
undesirable because it could potentially incentify camber angles that would
be too high for the given maneuver and threaten the vehicle’s stability. Small
overshoots are allowed because many systems are not modeled precisely and
have damping effects on the response. The response time should be close to
1/29s ≈ 0.035 s as discussed in Actuator requirements. The step response
of the close loop system with the PI controller is shown in Figure [3.22]. The
yellow area defines boundaries for the step response as stated above. The
step response satisfies both of the requirements and has zero steady-state
error that is the defining feature of the PI controller.
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Figure 3.22: The step response of the close loop of the controller and linearized
system. The boundary conditions define the area where the controller require-
ments would be violated. The rise time requirement is taken equal to the steady
state. The steady state is achieved when the response value reaches the specified
range of 5 % of its final value.

The PI controller transfer function of the close loop step response in the
Figure [3.22] is:

C(s) = 0.2 s+ 4
s

. (3.51)

The stability limits of the controller are PM = 93.5◦ and GM = ∞ dB which
completely satisfies the Parameters and control requirements. The
diagram of the PI controller structure is shown in Figure [3.23]. The actuator
is modeled with the rate-limiter saturation and low-pass filter, which can
cause the wind-up phenomenon because of the integrator that is present in
the PI. Thus, the back-calculation method with gain Kb is used. It subtracts
the additional overshoot of the dact value before the actuator model that is
accumulated by the integrator. See Low-level reference testing for the
controller performance analysis.
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Figure 3.23: The diagram for the PI controller with back-calculation anti-
windup with Kb and the reference γw with feedback from the γ estimator. The
PI controller outputs dact that is added to the nonlinear mapping controller
output.

3.3 Compensation of the KPI and caster influence
on camber

The wheel camber is also influenced by the KPI and the caster angle when
the wheel is steered by δ steering angle. The influence is shown in Camber
development. The caster leans wheels into the corner and creates beneficial
camber. However, it plagues and offsets the estimated camber measurement,
and it has to be managed. The article [11] uses a homogeneous transformation
to establish the camber angle as a function of ϕ caster, KPI, and δ steering
angle. The same derivation will be repeated in the attachments Derivation of
the KPI and caster influence on camber angle but with the framework
established in this thesis. However, to fully understand the derivation, please
refer to [11].

The final formulas updated for the notation in this thesis for the left and
right wheel are:

γl = −π

2 +

 cos(KPI) sin(ϕ)√
1 − sin(ϕ)2 sin(KPI)2

sin(δ) − cos(KPI) cos(ϕ)2 sin(KPI)
sin(KPI)2 sin(KPI)2 − 1

(cos(δ) − 1)

 ,
(3.52)

γr = π

2 −

 cos(KPI) sin(ϕ)√
1 − sin(ϕ)2 sin(KPI)2

sin(δ) + cos(KPI) cos(ϕ)2 sin(KPI)
sin(KPI)2 sin(KPI)2 − 1

(cos(δ) − 1)

 .
(3.53)
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The steering angle δ is known, and the caster angle ϕ is assumed to be
held constant. However, the KPI angle is dependent on the spring-damper
Ls length. Luckily, it can be calculated from the model in Figure [3.11]. The
new model diagram for the KPI angle is depicted in Figure [3.24], see KPI
and scrub radius for definition.
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D

L1

L2

Lx

d

KPI

θ

ΓB

ΛBE
Y

Z

Figure 3.24: Forward kinematics for KPI angle of model in Figure [3.10]

The KPI angle from the diagram [3.24] is found as:

KPI = ΛBE − ΓB − π

2 , (3.54)

where ΓB and ΛBE are defined in (3.28) and (3.27) respectively. Now, the
camber angle from the all 3 sources defined in Camber development can
be estimated.
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Chapter 4
Active Camber Control

The High-level controller is responsible for selecting the camber angle for the
Low-level controller will be derived here. The Single track mathematical
model is used to derive the double LQR controller and the Twin track
to test its performance. First, the design approach is tackled in the section
Design. Then, the reference signals are derived in Reference signals
section and the controller structure is shown Controller structure. Finally,
the Twin track model with the ACC demonstrate the capabilities and
benefits of the used LQR control.

4.1 Design

The purpose of the controller is to camber the wheels in such a way that the
vehicle performance is increased. This means that the controller has to follow
the driver’s intention. The driver turns the steering wheel and the wheels to
perform the maneuver. The wheel steering angles δ can be used to estimate
the intended maneuver and transform it into the yaw rate r and sideslip
angle β reference that can be followed with the controller, see Reference
signals. The driver modeling is out of the scope of this thesis because the
thesis focuses on the development of the controller for the active camber
actuation and not steering. That is why the steering angles are assumed to
be given. They can be passed directly by the driver or by another controller.

The sideslip angle β is a very dubious variable, and the estimations generally
have quite large errors. For example, the estimation of the β presented in
(2.9) would be experiencing random walk due to the integration of the noise
and bias. That is very dangerous and creates risk for the integrity and
stability of the control law. That is why the sideslip angle is replaced by
lateral acceleration ay measured by accelerometer and the ϵv̇ref

reference.
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..................................... 4.2. Reference signals

The camber angles are assumed to be the same for the left and right
wheels on each axle separately, γf = γF L = γF R and γr = γRL = γRR (front
camber angle is the same for the left and right wheel etc.). The Low-level
controller already compensates for the negative effects of cornering on the
wheel’s camber angle. Moreover, the tire model used for the evaluation
does not reflect any advantages of using different camber angles on the left
and right sides. The same simplification was used in [17] and many other
articles. That is why the notation of the camber angles is also changed for the
High-level controller. The Low-level controller has defined positive camber
angles when the wheels are leaned to the left and negative when to the right.
The High-level controller has the positive camber angles γf , γr > 0 when the
wheels are leaned to the right and negative γf , γr < 0 when to the left.

4.2 Reference signals

The lateral acceleration of the vehicle measured by accelerometer is composed
from the side v̇y and centripetal accelerations ac, see Figure [4.1]:

ay = v̇y + ac. (4.1)
(4.2)

The v̇y is used in the single track model and defines purely the lateral side
force acting on the vehicle, see right Figure [4.1] where ac = 0. The ac defines
purely centripetal acceleration that the vehicle experiences in the steady state
cornering, see left Figure [4.1] where v̇y = 0. Together they constitute the
ay as shown in equation (4.1). The ac in the steady state cornering can be
calculated as:

ac = V 2
x

R
= Vx r, (4.3)

r = Vx

R
, (4.4)

where the R is the radius of a turn, Vx longitudinal velocity and r the yaw
rate.
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vx

vy

ac

vx

Figure 4.1: The example for the centripetal acceleration ac and the side acceler-
ation v̇y.

The yaw rate r from (4.4) is the expected rotational velocity that the
vehicle should have to pass around the corner with the radius R and can be
used as the desired yaw rate reference rref . The Single track mathematical
model model dynamics are completely defined by the yaw rate r and the
sideslip angle β. The calculation of the yaw rate rref and the sideslip angle
βref reference is well known because it is already used in the ESP, see [29].
The [29] presents a way of calculating R which can be used with equation
(4.4) to define rref :

rref = Vx

Lf + Lr + m V 2
x (Lr Cr−Lf Cf )

2 (Lf +Lr) Cr Cf

δf , (4.5)

where δf is the steering angle of the front wheel. The CTU demonstrator
vehicle has 4WS. The derivation in [29] can be repeated for the 4WS vehicle
to get:

rref = Vx

Lf + Lr + m V 2
x (Lr Cr−Lf Cf )

2 (Lf +Lr) Cr Cf

(δf − δr), (4.6)

where δr is the steering angle for the rear wheel. However, the βref cannot
be derived in terms of both δf and δr with the approach used in [29]. On the
toher hand, the single track equation (1.28) defined the differential equation
of the β. When the vehicle is in the steady state cornering the β̇ = 0 and the
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equation becomes:

0 = −Cf + Cαr

mVx
βref +

(
Lr Cαr − Lf Cαf

mV 2
x

− 1
)
rref +

Cαf

mVx
δf + Cαr

mVx
δr,

(4.7)
where the γf = γr = 0 as the reference from the driver depends only on the
steering angles. The camber angles are controlled by the driver and thus
cannot constituted the reference. The rref in (4.7) is substituted for (4.6)
and the the eqaution is solved for βref to get:

βref = δf Cαf

2Cαr L
2
r − Lf V

2
x m+ 2Cαr Lf Lr

2Cαf
Cαr L

2
f + 4Cαf

Cαr Lf Lr − Cαf
mLf V 2

x + 2Cαf
Cαr L

2
r + Cαr mLr V 2

x

+ δr Cαr

2Cαf
L2

f + Lr V
2

x m+ 2Cαf
Lf Lr

2Cαf
Cαr L

2
f + 4Cαf

Cαr Lf Lr − Cαf
mLf V 2

x + 2Cαf
Cαr L

2
r + Cαr mLr V 2

x

.

(4.8)

The sideslip angle is defined for constant longitudinal velocity Vx with
lateral velocity and acceleration for small angles as:

β = vy

Vx
, (4.9)

β̇ = v̇y

Vx
. (4.10)

By substituting for the β and β̇ in (1.28) by (4.9) and (4.10), the v̇y side
acceleration differential equation is found:

v̇y = −
Cαf

+Cαr

m Vx
vy +

(
Lr Cαr −Lf Cαf

m Vx
− Vx

)
r +

Cαf

m δf + Cαr
m δr +

Cγf

m γf + Cγr
m γr,

(4.11)
where the reference side acceleration v̇yref

can be derived by substituting the
rref and Vx βref for r and vy respectively:

v̇yref
= −

Cαf
+Cαr

m βref +
(

Lr Cαr −Lf Cαf

m Vx
− Vx

)
rref +

Cαf

m δf + Cαr
m δr +

Cγf

m γf + Cγr
m γr.

(4.12)
To exclude the δf , δr, γf and γr influence of the input variables on the
reference, new variable ϵv̇ is created:

ϵv̇ref
= v̇yref

−
Cαf

m
δf − Cαr

m
δr −

Cγf

m
γf − Cγr

m
γr. (4.13)

Thus, the final reference equation for the ϵv̇ acceleration is defined as:

ϵ̇v̇ref
= −

Cαf
+ Cαr

m
βref +

(
Lr Cαr − Lf Cαf

mVx
− Vx

)
rref . (4.14)
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4.2.1 Handling limits for the vehicle

The references derived above apply to the vehicle in the normal driving
conditions. However, there are not bounded by friction limitations of the
tires and the road. That is why, the references are bounded by equations
derived in [29] as follows:

rmax = 0.85µ g
Vx
, (4.15)

βmax = arctan(0.02µ g), (4.16)
ay,max = µ g, (4.17)

where µ is the friction coefficient of the road.

4.2.2 Handling characteristic of the vehicle

The vehicle steering dynamics are generally divided into oversteer, understeer,
and neutral steer. The oversteering vehicle turns more than the driver
commands it, while the understeering vehicle turns less. The neutral steering
vehicle turns the same amount. The handling characteristic of the vehicle
is a graph that relates the lateral acceleration to the front steering angle δf

(δr = 0) or to the difference of the front and rear tire slip angle ∆α = αf −αr,
see Figure [4.2]. It serves to distinguish between the oversteer, understeer,
and neutral steer tendencies of the vehicle.

Figure 4.2: The handling characteristic graph of the vehicle describing the
oversteer, neutralsteer and understeer tendency from: [10]. The α1 = αf and
α2 = αr and δ = δf .

The LQR uses the references defined in the equations (4.6) and (4.8) that
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are calculated from the steering angles δf and δr. However, the single track
model theory can be used to calculate the δf and δr for given maneuver. The
single track model in the maneuver with constant radius R is shown in the
Figure [4.3]. The article [30] defines for the Figure [4.3] the relationship for
steering angles:

tan(δf − αf ) = Lf +R sin(β)
R cos(β) , (4.18)

tan(δr − αr) = −Lr −R sin(β)
R cos(β) . (4.19)

To mitigate the dependency on side slip angle β, the equations (4.18) and
(4.19) are redefined as:

R cos(β) = R2 =
√
R2 − (Lf − Lr)2, (4.20)

R sin(β) = |Lf − Lr|, (4.21)

tan(δf − αf ) = Lf + |Lf − Lr|√
R2 − (Lf − Lr)2

, (4.22)

tan(δr − αr) = − Lr − |Lf − Lr|√
R2 − (Lf − Lr)2

. (4.23)

Solving for the δf and δr gives:

δf = arctan

 Lf + |Lf − Lr|√
R2 − (Lf − Lr)2

+ αf , (4.24)

δr = − arctan

 Lr − |Lf − Lr|√
R2 − (Lf − Lr)2

+ αr. (4.25)

Nevertheless, the equations are dependent on the tire slip angles. The vehicle
in the steady state cornering with radius R has ay = ac from equation (4.1)
because v̇y = 0, see Figure [4.1]. Thus, the following holds true for the tire
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slip angles:

ac = V 2
x

R
, (4.26)

mf = m
Lr

Lf + Lr
, (4.27)

mr = m
Lf

Lf + Lr
, (4.28)

Fyf = mf ay = m
Lr

Lf + Lr

V 2
x

R
, (4.29)

Fyr = mr ay = m
Lf

Lf + Lr

V 2
x

R
, (4.30)

Fyf = Cαf
αf , (4.31)

Fyr = Cαrαr. (4.32)

where the (4.31) and (4.32) are linearized lateral forces from the Pacejka
Magic Formula as discussed in Linearization of slip angle. Solving the set
of equations (4.29), (4.30), (4.31) and (4.32) for αf and αr yields

αf = m

Cαf

Lr

Lf + Lr

V 2
x

R
, (4.33)

αr = m

Cαr

Lf

Lf + Lr

V 2
x

R
. (4.34)

Finally, the front and rear steering angles for the maneuver with radius R
and velocity Vx are:

δf = arctan

 Lf + |Lf − Lr|√
R2 − (Lf − Lr)2

+ m

Cαf

Lr

Lf + Lr

V 2
x

R
, (4.35)

δr = − arctan

 Lr − |Lf − Lr|√
R2 − (Lf − Lr)2

+ m

Cαr

Lf

Lf + Lr

V 2
x

R
. (4.36)

The equations (4.35) and (4.36) can be used to define the handling charac-
teristic as in Figures [4.2]. The vehicle is tested for a given constant radius R
while the car velocity increases, which builds up the centripetal acceleration
ac till the vehicle skids. The handling characteristic is created by plotting
the achieved lateral acceleration against the ∆α = αf − αr of the vehicle.

Note of thought, the equations (4.35) and (4.36) define both the steering
angles in terms of one variable, the radius of the turn R. This could be used
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to redefine the steering wheel angle command so that the driver
chooses the radius of the turn instead of the steering angle for the
wheels. That benefits the High-level controllers because their reference uses
the steering angles as the input, and they can be defined by (4.35) and (4.36).

δr
αr

δf

αfv

β

vf

vr

→

→

→

R2 R

αr-δr

δf-αf

Lr Lf

Figure 4.3: The single track model in the steady state cornering maneuver with
the constant radius R.

4.3 Controller structure

The chosen controller is the double i-LQR (Linear–Quadratic-Integral Reg-
ulator). The LQR design creates state-feedback from the cost function
parameters and theoretically guarantees infinity gain margin and phase mar-
gin PM ≥ 60◦. The integral ensure zero steady-state error. The controller
structure consists of two separate i-LQR’s, one for rref and one for βref or
ϵv̇ref

, see diagram [4.4]. To prevent the win-up of the integrator when the
output value of the controller is saturated, the back-calculation method is
employed, see Figure [4.6]. It would be possible to design only one i-LQR
for both references. However, it was found that the state-feedback had worse
performance. Additionally, the anti wind-up would be more complicated to
implement, resulting in further reduction in the performance.
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i-LQR

i-LQR -

+

+

+

Saturation

anti wind-up

anti wind-up

Figure 4.4: The diagram of the double i-LQR with rref and βref or ϵv̇ref

reference and state feedback.

+- ++

-K

i-LQR
anti wind-up

action

Figure 4.5: The generic i-LQR structure with inputs xref , y, x, action output
and state feedback gain K. The anti wind-up from the Saturation diagram [4.6]
is fed to the integrator to prevent wind-up.
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Saturation
+-

+-

-+

++

anti wind-up for

anti wind-up for

Figure 4.6: The saturation limitation as discussed in Actuator range with the
low-pass filter to mode the actuator dynamics. The back-calculation method
creates the anti wind-up signals that are fed to the LQR. The rate-limiter is
omitted so that the step responses are simpler to read through. Note that the
impact of the rate-limiter is captured mainly in the rate of change of the signal
and not in the dynamics due to the anti wind-up. The −ϵv̇ref

is negated at the
output due to the different notation from (4.54).

4.3.1 LQR with sideslip angle

The i-LQR state-feedback gains are build with the K = lqr(A,B,Q,R) Matlab
function. The matrix A and B are taken from the single track state-space form
in the (1.30) and augmented for the extra state from the LQR integrator. The
input matrix B has only γf and γr because the δf and δr are not controlled:

B =


Cγf

mVx

Cγr

mVx

Lf Cγf

J
−Lr Cγr

J

 ·
[
γf

γr

]
. (4.37)
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The Anew, Bnew, Q,R matrices for the yaw rate r are:

Anew =

 0 0 −1
0

A0

 , (4.38)

Bnew =

 0

B

[
1

−1

]  , (4.39)

Q =

2 105 0 0
0 1 0
0 0 103

 , (4.40)

R = 1, (4.41)

where the state-feedback gain is Kr =
[
−316.2 −1.4 10−3 16.5

]
calculated

from Matlab function.
The Anew, Bnew, Q,R matrices for the side slip angle β are:

Anew =

 0 −1 0
0

A0

 , (4.42)

Bnew =

 0

B

[
1
1

]  , (4.43)

Q =

4 106 0 0
0 103 0
0 0 1

 , (4.44)

R = 1, (4.45)

where the state-feedback gain is Kβ =
[
1732.1 −9.0 −2.1

]
. The step

response of the single track system can be seen in Figure [4.7]. There is no
overshoot for the yaw rate response so that the vehicle won’t overreach the
reference and turn too sharply. The settling time of Ts = 0.5 s is deemed
suitable. The β overshoot can be neglected.
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Figure 4.7: The step response of the single track with r and β i-LQR without
saturation or low-pass limitations.

4.3.2 LQR with accelerometer

The i-LQR state-feedback gains are build with the K = lqr(A,B,Q,R) Matlab
function. However, if the β cannot be measured or precisely estimated, the
controller cannot be created the same way as above. The vehicle with only yaw
rate r controller would be unable to follow side-ways maneuvers like Double
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Lane Change. That is why the accelerometer is used instead. It measures
the lateral acceleration ay of the vehicle where the ac can be subtracted off
to obtain v̇y by using equation (4.1):

ac = V 2
x

R
= Vx r, (4.46)

v̇y = ay − Vx r. (4.47)

The v̇y can be used either to estimate β or it can be directly used to create
the controller for the vehicle. The β estimation would lead to the controller
stated above, and there are already many published studies about the β
estimation. The LQR controller with side acceleration v̇y state requires a
differential equation of v̈y. So, it has to be derived. The equation (4.11) is
stripped of the steering angles as they are not used in the control law:

v̇y = −
Cαf

+ Cαr

mVx
vy +

(
Lr Cαr − Lf Cαf

mVx
− Vx

)
r+

Cγf

m
γf +Cγr

m
γr. (4.48)

The differentiation with time of (4.48) is:

v̈y = −
Cαf

+ Cαr

mVx
v̇y +

(
Lr Cαr − Lf Cαf

mVx
− Vx

)
ṙ +

Cγf

m
γ̇f + Cγr

m
γ̇r.

(4.49)

Also, the ṙ and vy are defined from the (1.29) and (4.11) respectively:

ṙ =
Lr Cαr − Lf Cαf

J Vx
vy −

L2
f Cαf

+ L2
r Cαr

J v
r +

Lf Cγf

J
γf − Lr Cγr

J
γr,

(4.50)

vy = mVx

Cαf
+ Cαr

(
−v̇y +

(
Lr Cαr − Lf Cαf

mVx
− Vx

)
r +

Cγf

m
γf + Cγr

m
γr

)
.

(4.51)

The vy in equation (4.50) is defined with (4.51) to create the differential
equation for ṙ. To avoid time differentiation of the input variables in equation
(4.49), the new variable ϵv̇ is created:

v̇y = ϵv̇ +
Cγf

m
γf + Cγr

m
γr, (4.52)

v̈y = ϵ̇v̇ +
Cγf

m
γ̇f + Cγr

m
γ̇r. (4.53)
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Note that the ϵv̇ is the same as ϵv̇ref
from equation (4.12) but δf and δr is

put to zero for this derivation as stated above. After substitution of v̇y in
(4.49) for ϵv̇, the final differential equations are:

ϵ̇v̇ = −

Cαf
+ Cαr

Vxm
+
m(Cαf

Lf − Cαr Lr)2
(
Vx +

Cαf
Lf −Cαr Lr

Vx m

)
J(Cαf

+ Cαr )

 ϵv̇

+

(
Vx +

(Cαf
Lf −Cαr Lr)
Vx m

)Cαf
L2

f +Cαr L2
r

J Vx
−

m(Cαf
Lf −Cαr Lr)2

(
Vx+

Cαf
Lf −Cαr Lr

Vx m

)
J(Cαf

+Cαr )


Vxm

r

+

−
Cγf

(Cαf
+ Cαr )

Vxm2 −
Cγf

Lf

(
Vx +

(Cαf
Lf −Cαr Lr)
Vx m

)
J

 γf

+

Cγr (Cαf
+ Cαr )

Vxm2 −
Cγr Lr

(
Vx +

(Cαf
Lf −Cαr Lr)
Vx m

)
J

 γr, (4.54)

ṙ =
(−Lr Cαr + Lf Cαf

)m
J (Cαf

+ Cαr ) ϵv̇ +
Lf Cγf

J
γf − Lr Cγr

J
γr

−

L2
f Cαf

+ L2
r Cαr

J v
+
m(Cαf

Lf − Cαr Lr)
(
Vx +

Cαf
Lf −Cαr Lr

Vx m

)
J (Cαf

+ Cαr )

 r, (4.55)

ϵv̇ = v̇y −
Cγf

m
γf − Cγr

m
γr = ay − Vx r −

Cγf

m
γf − Cγr

m
γr. (4.56)

Finally, the equation (4.55) and (4.54) define new state-space Aϵv̇ , Bϵv̇ :[
ϵ̇v̇
ṙ

]
= Aϵv̇

[
ϵv̇
r

]
+Bϵv̇

[
γf

γr

]
. (4.57)

The matrices for the i-LQR are build similarly to LQR with sideslip angle.
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The Anew, Bnew, Q,R matrices for the yaw rate r are:

Anew =

 0 0 −1
0

Aϵv̇0

 , (4.58)

Bnew =

 0

Bϵv̇

[
1

−1

]  , (4.59)

Q =

105 0 0
0 1 0
0 0 102

 , (4.60)

R = 1, (4.61)

where the state-feedback gain is Kr =
[
−316.2 −1.4 10−1 16.5

]
found by

Matlab function.
The Anew, Bnew, Q,R matrices for acceleration ϵv̇ are:

Anew =

 0 −1 0
0

Aϵv̇0

 , (4.62)

Bnew =

 0

Bϵv̇

[
1
1

]  , (4.63)

Q =

3 106 0 0
0 40 0
0 0 103

 , (4.64)

R = 1. (4.65)

The state-feedback gain equates to Kϵv̇ =
[
1732.1 −9.0 −2.1

]
. The step

response of the single track system can be seen in Figure [4.8]. There is no
overshoot for the yaw rate response so that the vehicle won’t overreach the
reference and turn too sharply. The settling time of Ts = 0.5 s is deemed
suitable. The ϵv̇ overshoot can be neglected.
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Figure 4.8: The step response of the single track with r and ϵv̇ i-LQR without
saturation or slew rate limitations.
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4.4 Twin track model with the ACC

The Active Camber Control (ACC) is capable of enhancing the cornering
ability of the car, see Maximal lateral acceleration. The energy-saving
potential is explored in Cornering resistance and energy-saving, and the
ACC can also be used to model match the twin track model to the single track,
see Model matching. The twin track model in this section is parametrized
with the table [2.1] but the CG is moved forward by 5 cm which changes
the Lf = 1.181 m and Lr = 1.281 m variables. Thus, the vehicle is slightly
understeering, which most of the vehicles are built to be in the car industry.
Note that the purpose of this section is to show the benefits and capability of
the ACC. The process can be generalized to any car. The demonstration will
be performed with only the LQR with sideslip angle for simplicity.

4.4.1 Model matching

The reference created in Reference signals does not necessarily need to be
with the same parameters that the vehicle has. The vehicles can be neutral,
understeering, or oversteering, but these factors are inherently defined in
the car. They can be changed only by direct alternations of the load etc.
The ACC presents a different option. The reference can be generated for
the vehicle with oversteering parameters even though the actual vehicle has
understeering behavior. For example, the references can be calculated for the
Lf and Lr that were chosen so that the CG is moved by 10 cm to the back
even though the vehicle has CG at its center.

The handling characteristic that defines oversteer and understeer is shown
in Figure [4.9]. It was created for the constant radius turn R = 60 m with
equations (4.35) and (4.36). The region above 0 is defined as understeering
and below 0 as oversteering. The black dashed lines define references with
the increasing velocity created for different CG positions. Note that the
references are created with the single track model, and thus the twin track
vehicle follows them precisely only with ACC. The vehicle’s actual twin track
model is understeer and is highlighted with a solid blue line. The Figure
[4.9] shows that even though the vehicle is understeering, it can be made
oversteering. However, the vehicle performance is lowered, and the maximal
lateral acceleration that the vehicle can withstand is smaller.
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Figure 4.9: The model matching technique that can change vehicle behavior
from understeer to oversteer in the steady state cornering with radius R = 60 m.
The nominal twin track model is highlighted in blue. The other black dashed
lines are references are created for different ∆CG. All responses are to the
nominal twin track model.

Figure [4.10] shows handling characteristic for the understeering and over-
steering twin track model vehicle with and without the ACC. The vehicle
has only front steering (δr = 0) and ∂δf

∂t = 0. The reference dashed lines in
the top Figure [4.10] are not followed with zero error for the vehicle without
ACC because the references are created from single track model, not the twin
track. Whenever the vehicle moves away from the nominal radius of a turn
by 4 m, it is regarded as the lost of control and marked. The vehicle with
ACC performs better for both oversteering and understeering vehicles and
has higher maximal lateral acceleration. The results for the 4WS vehicle are
almost the same.
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Figure 4.10: The handling characteristic for the constant radius of the turn
R = 60 m for vehicle with only front wheel steering (δr = 0) and ∂δf

∂t = 0. The
velocity increases in time. The oversteering and understeering twin track model
response are compared with and without ACC.

4.4.2 Maximal lateral acceleration

The maximal lateral acceleration of the vehicle is a well-known parameter
that specifies the vehicle’s cornering ability. The Figure [4.11] shows the
maximal lateral acceleration between front steering vehicle (δr = 0) with and
without Active Camber Control (ACC). The vehicle with ACC reaches up to
ay = 1.2 g that is 25 % higher than the vehicle without ACC.
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Figure 4.11: The constant radius of a turn maneuver R = 60 m with increasing
velocity for only front steering vehicle (δr = 0). The vehicle is the same as
defined in the parameters but it is slightly understeering with CG shifted by
5 cm to the front from the center.
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4.4.3 Cornering resistance and energy-saving

The vehicle with ACC has the potential to be more energy efficient during
cornering because it uses less slip angle as discussed in Cornering losses.
Figure [4.12] shows an example of a right turn of the vehicle with and without
ACC. The bottom graph compares the cornering losses where the vehicle
with ACC is considerably more efficient. Note that the vehicle without ACC
does not follow the calculated reference precisely, and thus the value of the
consumption might be inflated. However, the difference is negligible (≈ 1◦)
so the Figure [4.12] can still serve as a proof of concept.
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Figure 4.12: The example of the right turn with and without the ACC. The
vehicle turns only with the front wheels δf = 5◦, δr = 0◦ and the velocity is
Vx = 54 km/s. The last graph compares the cornering losses. The vehicle with
ACC is 45 % more efficient and consumes less energy through slip.
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Chapter 5
Validation

The next chapter will focus on the validation procedures of the controllers
derived above. The Low-level and High-level controllers are going to be
tested separately. First the robustness of each controller will be validated in
the Robustness testing section. Then, the Low-level reference following
is tested in section Low-level reference testing and the results for the
High-level controllers are shown in High-level reference testing.

5.1 Robustness testing

The robustness is tested using the H∞-norm and robust control synthesis
framework. First, the model is simulated across the set of parameters defined
by the boundary conditions in the Parameters and control requirements
and linearized. Secondly, the bode plot of the linearized systems is created,
which defines an envelope of uncertainties. The envelope is used to define a
multiplicative uncertainty of the nominal system Gnom(s) as:

G(s) = (1 +Wm(s)∆(s))Gnom(s), (5.1)

where Gnom(s) is the nominal system for which the controller is defined,
∆(s) defines the uncertainty as any transfer function such that ∥∆∥∞ ≤ 1
(always stable), the Wm(s) is the weighting transfer function that scales the
uncertainty across frequencies. The chosen structure for the Wm(s) is from
[31], page 302:

Wm(s) = τs+ r0
τ/r∞ s+ 1 , (5.2)

where 1/τ is frequency where the relative uncertainty reaches 100 %, r0 is the
steady state uncertainty and r∞ the uncertainty level at higher frequencies
after 1/τ .
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Next, the plant model P (s) of the uncertain system G(s) is build with the
controller C(s), see Figure [5.1]. The G(s) defines the uncertainty system as
discussed in equation (5.1). The u∆ and y∆ are the outputs and inputs of
the ∆(s) to and from the Gnom(s). The y are the measured system variables
used by the controller C(s) to calculate appropriate actions u. The w are
the reference inputs, disturbances or noise, and the z are the weighted or
normalized controlled outputs, and generally the z is selected so that z → 0.
The z is used to objectify the performance obligations of the plant model.

C(s)

C(s)

Figure 5.1: The general definition of the plant model P (s).

To ensure that the plant behavior retains the set performance, a perfor-
mance weight transfer function We is created as in [31], page 58:

We(s) = s/M + ωBW

s+ ωBW A
, (5.3)

where ωBW is the bandwidth frequency, A the steady state error and M the
peak magnitude. The We(s) weights and scales the controlled outputs z of
the plant model P (s).

Lastly, the H∞-norm of the plant model P (s) is calculated from w to the
z. The ∥P (s)∥∞ calculates the highest gain of the system as the supreme of
the highest singular values σ̄ from the whole frequency range ω ∈ R. It is
formulated as:

∥P (s)∥∞ = sup
ω∈R

σ̄(P (jω)). (5.4)

Whenever the ∥P (s)∥∞ ≤ 1, the model is stable by the small gain theorem
and retains the performance requirements set by We(s). Note that the small
gain theorem is a very strict requirement, and the system could be stable
even if it would not be satisfied. The purpose is to show the system’s core
stability and robust performance.
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5.1.1 Low-level controller

The nominal system Gnom(s) is linearized from input d to output γ in the
operation point:

OPγ = 0, (5.5)
OPd = dmax/2. (5.6)

The model parameters are defined in the boundary conditions as discussed
in section Parameters and control requirements and table [2.1]. The
parameter bounds for the Simscape model are:..1. Load: m (80 − 120)%...2. Spring constant: k (90 − 110)%...3. Damper coefficient: c (90 − 110)%...4. Lower arm length: L1 (80 − 100)%.

The set of linearized Gnom(s) from the parameter bounds is shown in the
bode plot in Figure [5.2].
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Figure 5.2: The bode plot envelope of the linearized set of the Gnom(s) for the
boundary conditions.
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The bode plot envelope in Figure [5.2] can be used to define the weight
transfer function of uncertainty Wm(s) with parameters: r0 = 0.1, r∞ = 0.6
and 1/τ = 200 Hz. The estimated uncertainty envelope for the G(s) is shown
in Figure [5.3].
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Figure 5.3: The bode plot envelope of uncertainties estimated from [5.2] that
constitutes the G(s) model.

The Low-level controller consists of non-linear mapping F (u) and feedback
PI controller. One way to think about F (u) is that the F (u) chooses an
operating point for the system. It sets stroke length d such that the γref is
reached. Thus, F (u) can be left out from the plant model because it holds no
dynamics. The G(s) model is linearized in the operating point! The plant can
be seen in Figure [5.4]. The performance transfer function We(s) is defined
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with: Ts = 1/29 s, OS = 1 %,M = 2, A = 0.05◦ and the bandwidth by:

ζ = − ln(OS/100)√
π2 + ln2(OS/100)

, (5.7)

ωBW = 4
Ts ζ

√
(1 − 2 ζ2) +

√
4 ζ4 − 4 ζ2 + 2 = 117.5 Hz. (5.8)

Note that the overshoot (OS) parameter does not check the actual overshoot
of the response, but rather it chooses the bandwidth frequency. The overshoot
limitation is captured by M , which defines peak gain in the bode plot. The
settling time Ts is chosen to be the same as the time constant of the actuator.

G(s)PI(s)+- +

F(u)

+

+-

Figure 5.4: The Low-level controller plant model. The non-linear mapping F (u)
is left out.

The H∞-norm of the Low-level controller with uncertainties defined by
Figure [5.3] is

∥P (s)∥∞ ≤ 0.9627, (5.9)
and the critical frequency is fc = 265.5 Hz. The norm (5.9) is below 1 and
thus the system is stable for all uncertainties and retains the performance
defined by We(s).

5.1.2 High-level controller

The twin track model is linearized from γf and γr to β, r and ϵv̇ (calculated
from (4.56)). The velocity tracking PI controller is created for τENG input
that tracks the parameter Vx so that the twin track model can be linearized
at the given velocity. The PI controller is defined as:

PIVx(s) = 100 s+ 20
s

(5.10)
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The operation point (OP) is defined as:

OPγf
= 0 rad, (5.11)

OPγr = 0 rad, (5.12)
OPVx = 15 m/s = 54 km/h, (5.13)
OPδf

= 0 rad, (5.14)
OPδr = 0 rad (5.15)

OPτBRK = 0 N m. (5.16)

The model parameters are defined in the boundary conditions as discussed
in section Parameters and control requirements and table [2.1]. The
parameter bounds for the twin track model are:..1. Load: m (80 − 120) %...2. Road friction: µ = [0.3 0.8 1] = [snow wet dry]...3. CG variation: ∆CG = ± 15 cm...4. Velocity: ⟨10, 150⟩ km/h.

Nevertheless, the linearized nominal model Gnom(s) contains also very slow
dynamics modes (> 100 s). The purpose of High-level controller is to improve
the response of the vehicle. The slow poles, that are dominant after 100 s,
can be handled easily by the driver and are no concern for the robustness
testing. Thus, the modes of the Gnom(s) system are selected at frequencies
f = ⟨10−2,∞) Hz.

The set of linearized Gnom(s) from the parameter bounds is shown in the
bode plot in Figure [5.5]. However, the magnitude of the uncertainty from the
variation of the velocity is too high for the system to be robust, see Figure
[5.5]. Nevertheless, the LQR gains can be scaled with the velocity which
eliminates the velocity robustness requirement, see Velocity dependent
LQR. Note that the velocity can still vary because the measurements may be
imperfect, but these variations are already included in the bode plot envelope
in Figure [5.6].

The uncertainty is estimated from Figure [5.2] with weight transfer function
Wm(s) with parameters: r0 = 0.4, r∞ = 0.3 and 1/τ = 10 Hz. The estimated
uncertainty envelope of the G(s) is shown in Figure [5.7].
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Figure 5.5: The bode plot envelope for the boundary conditions.

Figure 5.6: The bode plot envelope for the boundary conditions excluding
velocity.
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Figure 5.7: The bode plot envelope of uncertainties estimated from [5.2] that
constitutes the G(s) model.

LQR with β

The plant can be seen in Figure [5.8]. The performance transfer functions are
defined with: Ts = 1 s, OS = 10−6 %, A = 0.1◦,the bandwidth ωBW = 2.7 Hz
calculated by equations (5.7) and (5.8) and the peak magnitude M = 3 for
Wer (s) and M = 5 for Weβ

(s):

Wer (s) = s/M + ωBW

s+ ωBW A
= s/3 + 2.7
s+ 2.7

(
0.1 π

180
) , (5.17)

Weβ
(s) = s/M + ωBW

s+ ωBW A
= s/5 + 2.7
s+ 2.7

(
0.1 π

180
) . (5.18)
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Note that the overshoot (OS) parameter does not check the actual overshoot
of the response, but rather it chooses the bandwidth frequency. The overshoot
limitation is captured by M , which defines peak gain in the bode plot. The
settling time Ts is chosen to be at 1 s so that the plant guarantees it across
the whole uncertainty range.

G(s)

+-
+-

++
+-

Figure 5.8: The High-level controller plant model with LQR using β.

The H∞-norm of the High-level controller with β and uncertainties defined
by Figure [5.7] is

∥P (s)∥∞ ≤ 0.9939, (5.19)

and the critical frequency is fc = 0.3 Hz. The norm (5.19) is below 1 and
thus the system is stable for all uncertainties and retains the performance
defined by the performance functions Wer (s) and Weβ

(s).

LQR with ay

The plant can be seen in Figure [5.9]. The performance transfer functions
are defined in (5.17) and (5.18) (Weϵv̇

(s) = Weβ
(s)) but the magnitude peak

is M = 5.4 in Weβ
(s).
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G(s)

+-
+-

++
+-

Figure 5.9: The High-level controller plant model with LQR using ϵv̇.

The H∞-norm of the High-level controller with ϵv̇ and uncertainties defined
by Figure [5.7] is

∥P (s)∥∞ ≤ 0.9948, (5.20)

and the critical frequency is fc = 105.3 Hz. The norm (5.20) is below 1 and
thus the system is stable for all uncertainties and retains the performance
defined by the performance functions Wer (s) and Weϵv̇

(s). To retain the same
uncertainty resistance as LQR with β, the performance function of the ϵv̇
has to permit higher magnitude peaks.

Disturbance in the camber angle γ

The Low-level controller is responsible for maintaining the given γref . How-
ever, whenever the configuration of the suspension is changed, for example,
by ∆L1, the estimated camber angle γest will not be the same as the real γ
and thus, the steady-state error will not be a zero. This can be captured as
disturbance dF and dR in the camber angle inputs to the twin track model.
The plant can be seen in Figure [5.10]. The controller follows reference
rref = 0 and βref = 0. The disturbances in the γf and γr are defined as dF

and dR respectively. The performance transfer functions are defined in (5.17)
and (5.18).
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G(s)

+-

++

Text

-1

-1

+

+

Figure 5.10: The High-level controller plant model with LQR using β for
disturbance in γf and γr.

The H∞-norm of the High-level controller with β and uncertainties defined
by Figure [5.7] is

∥P (s)∥∞ ≤ 0.0395, (5.21)

and the critical frequency is fc = 10.2 Hz. The norm (5.21) is below 1 and
thus the system is stable for all uncertainties and retains the performance
defined by the performance functions Wer (s) and Weβ

(s). The norm value is
very close to zero which gives almost complete immunity to the disturbances.
The same resistance has the LQR with ay, see Camber angle disturbance.

5.2 Low-level reference testing

The Simscape model is tested separately for the nonlinear mapping with and
without the PI controller. They are both tested with the ramp of lateral force
up to Fyaxle = 6000 N on the vehicle axle, and the camber is simultaneously
excited with the step reference of γ = ± 4◦ (left wheel and right wheel are
tilted to the right). The Fy simulates the vehicle going through the corner,
and the step reference the camber angles defined by the High-Level controller.
The actuator dynamics are modeled with the rate limiter, transfer function,
and saturation as shown in the respected controller diagrams in [3.13] and
[3.23].
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Figure 5.11: The step response of the nonlinear mapping controller using the
real body roll angle and the estimated variant. The rate limiter has µrate =
18.5 cm s−1 and the low-pass filter τ = 1/29 second.
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Figure 5.12: The step response of the close loop with the nonlinear mapping
and PI controller using the real body roll angle and the estimated variant. The
rate limiter has µrate = 18.5 cm s−1 and the low-pass filter τ = 1/29 second.
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Both responses have steady-state error for the estimated roll angle that is
caused by the inaccuracy of the linear regression of the camber-compensated
estimator for the roll angle, see Figure [3.17]. The PI controller action goes
down to zero when approaching steady-state in Figure [5.12]. This is expected
behavior, given that the nonlinear mapping controller can find the exact value
of the stroke length needed for the referenced camber angle. The feedback
controller can lower the settling time because it increases the magnitude of
the controller action. It is also robust to uncertainties in the η measurements
because it does not use them. Note that the feedback controller can also be
used without the nonlinear mapping controller if the η is unavailable.

5.2.1 Load variation effects

The Robustness testing proved the robustness of the control law to the
load variation. This section will provide visualization of this effect, see Figure
[5.13]. Most of the conventional vehicles use passive camber that helps to
increase the cornering ability of the car. However, it decreases the contact
patch area for the longitudinal maneuver like braking. The advantage of
the ACC to passive approach is clearly seen in Figure [5.13]. The Low-level
controller of the ACC is able to hold the 0 camber angle as instructed, which
increases the contact patch area and available force to the maximum and
decreases the braking distance, see Friction circle development with
camber.

(a) : 80 % (b) : 120 %

Figure 5.13: Load variation of the Simscape model with passive camber angle 2◦.
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Figure 5.14: The comparison of passive camber angle with γ = 2◦ and Active
Camber Control against the load variation of the axle.

5.3 High-level reference testing

The vehicle system is tested in multiple categories for both High-level con-
trollers. The LQR with β is labeled with b and the LQR with ay as a in the
legend. The no subscript corresponds to the twin track response without the
ACC. The dynamics of the actuator are only captured by transfer function
with time constant τ = 1/29 s and the saturation ⟨ − 9.7◦, 9.7◦⟩. The rate
limiter is left out so that the response plots are simpler to read. Note that the
rate limiter would have minimal influence on the response dynamics because
both controllers use the back-calculation method for the anti wind-up.

The vehicle parameters are defined in the table [2.1]. However, the vehicle
CG position is moved to the front by 10 cm so that the car is understeering,
which changes Lf and Lr parameters. Most of the vehicles are understeering
by construction, and the CG off-center creates a linkage between the sideslip
angle and the yaw rate dynamics, which would not be in the neutral car.
Note that the understeering and oversteering vehicles have passive side slip
angle β value, which cannot be regulated with the LQR with ay and the
camber sign notation is defined differently, see Design.
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5.3.1 External disturbance

The vehicle is tested with the duplet disturbance in the Mz-ext and Fy-ext,
see Figure [5.15]. The Mz-ext is used to create yaw rate disturbance rd with
equation

Mz-ext = 10 rd Izz, (5.22)

and the Fy-ext creates the side slip angle disturbance βd as:

Fy-ext = 10 tan(βd)V m, (5.23)

where Izz = J , m are defined in table [2.1] and the V = 15 m/s.
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Figure 5.15: The duplet disturbance signal for the yaw rate and side slip angle.

The vehicle speed is kept constant at constant Vx with the simple PI
controller in (5.10) and the reference is set by δf = δr = 0 as βref = ϵv̇ref

=
rref = 0.
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Figure 5.16: The side slip angle disturbance with duplet with amplitude βd = 2◦.

The yaw rate disturbance response is very similar for both controllers
except the camber angles, which seem different, but remember that the LQR
with β also compensates the passive β angle, and the camber angles are
shifted. On the other hand, the sideslip angle disturbance is very different.
The LQR with ay slows down the rise time of the disturbance significantly,
while the LQR with β focuses on the steady-state value and minimizes the
error.
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Figure 5.17: The yaw rate disturbance with duplet with amplitude rd = 5◦.

5.3.2 Step response

The vehicle step response to the input command of δf = 2◦ and δr = ± 2◦ for
the side slip angle and yaw rate respectively is captured in Figures [5.18] and
[5.19]. The speed is kept constant at Vx with simple PI controller in (5.10).
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Figure 5.18: The step response to the input command δf = δr = 2◦.

The step response is very similar for both controllers’ yaw rates, but the
LQR with β has a shorter settling time. The same goes for the sideslip
angle response, but the LQR with ay has a faster rise time because it uses
acceleration. Nevertheless, when the acceleration diminishes, the camber
angles drop down and even go in the opposite direction. Also, the LQR with
ay cannot follow the βref with zero steady-state error, but, on the other hand,
the LQR with β does.
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Figure 5.19: The step response to the input command δf = 2◦ and δr = −2◦.

5.3.3 Steering disturbance

The steering disturbances simulates the jamming of the steering or the damage
to the steering knuckle for the front and rear separately, see Figure [5.20] and
[5.21]. The speed is kept constant at constant Vx with simple PI controller in
(5.10) and the input command is δf = δr = 0◦.
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Figure 5.20: The front steering disturbance response with δferr
= 1◦.

Both controllers prioritize yaw rate reduction. However, the LQR with β
can restore the vehicle behavior and minimize the side slip angle disturbance
value. The LQR with ay cannot because it uses only the accelerometer, and
the steady-state error is non-zero.
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Figure 5.21: The rear steering disturbance response with δrerr = 1◦.

5.3.4 Camber angle disturbance

The Low-level controller might have steady state error due to the configuration
changes in the suspension like ∆L1. The response of the High-level controllers
to the front camber angle disturbance is captured in Figure [5.22]. The vehicle
speed is kept constant at constant Vx with simple PI controller in (5.10) and
the reference is set by δf = δr = 0 as βref = ϵv̇ref

= rref = 0.
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Figure 5.22: The response of the system to the front camber angle disturbance
γfd

= 5◦.

Based on the Figure [5.22], both High-level controllers are able to withstand
the disturbance which corresponds to the findings in the Disturbance in
the camber angle γ.
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Chapter 6
Conclusion

The thesis presents an Active Camber Control that can be implemented
in conventional cars without specialized sensors or equipment. It operates
without the driver’s intervention and awareness and enhances the cornering
stability, maneuverability, active safety, and overall performance of the vehicle.
The ACC is divided into Low-level and High-level controllers. The Low-level
controller is responsible for realizing the referenced camber angles. It can
fully estimate and control the camber angle throughout different suspension
configurations and disturbances. The High-level controller manages the
camber angles so that the reference calculated from the driver input is met.
There are presented two types of the double i-LQR High-level controllers.
The first one uses the sideslip angle and the yaw rate states. The second
uses the yaw rate and the lateral acceleration instead, aiming to circumvent
the sideslip angle because it is difficult to measure directly. The High-level
controller is able to increase the maximal lateral acceleration of the vehicle
by 25 %. The cornering losses are also decreased as expected because the
ACC uses smaller tire slip angles to achieve the same lateral forces. The
natural benefit of the camber control is that the vehicles with the ACC can
reach higher longitudinal forces because the wheels use more efficiently the
contact patch by keeping the camber angle at 0 degrees thorough-out the
different load variations on the axles. Also, the vehicle with ACC does not
need the negative passive camber, which lowers the effective contact patch
area because it can change it actively. Additionally, the LQR with the lateral
acceleration can considerably dampen the disturbances like a wind gust.

The chapter 2 defines the problem of the camber actuation and analysis
of camber kinematics and its influence on vehicle dynamics. It first
defines the camber angle and its dependency on other suspension parameters.
Then, it establishes the models used to predict the force development from
the camber angle and compares them to the models of the tire slip angles
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that are used in the conventional chassis. The camber angle models are
then linearized to be used in the single and twin track model theory. Next,
the camber actuation requirements are postulated. They define the set of
boundary conditions the vehicle will be operating in. Finally, the requirements
are transformed into the model specifications, and the camber actuation
arrangement is laid out.

The chapter 3 sets up the analyze of mechatronic system of camber
actuation and the Low-level controller. The camber actuation is analyzed in
terms of the range, response time, and force requirements. They constitute
the resultant actuator specifications that are compared to the commercially
available variant. The Low-level controller is specified in the framework of
the kinematic geometry model of the McPherson suspension. The body roll
is estimated in this framework as the difference between the left and right
length of the spring-dampers and camber angles. Then, the geometry model
with the estimated body roll is used to estimate the camber angle of the
wheel. The kinematic problem of the presented geometry model can be solved
algebraically, and it is constituted in the nonlinear mapping. To increase
the robustness and performance of the nonlinear mapping controller, a PI
controller is introduced into the close loop of the system. The estimation of
the camber angle is further evaluated for the influence of the steering angles,
and the particular equations describing the effects are presented.

The chapter 4 concludes the development of the chassis control
algorithm for camber active system where the High-level controllers are
defined. The reference signals for both controllers are derived first. Then,
the double i-LQR structure is presented separately for the LQR with the
sideslip angle and the LQR with the lateral acceleration. The sideslip angle
cannot be directly measured, and its estimation is imprecise. Thus, it is
not a suitable state variable. That is why a second LQR that uses lateral
acceleration measurement instead of sideslip angle is developed. The twin
track model is used to confirm the authenticity of the active camber control
where the maximal lateral acceleration of the vehicle is increased by 25 %
with ACC. The ACC can also be used to model match the twin track vehicle
to other models with different oversteering and understeering dynamics.

The chapter 5 is dedicated to the validation of the developed algo-
rithms. The Simscape model for the Low-level and twin track model for the
High-level controller are linearized across the set of the boundary conditions,
which constitutes the envelope of uncertainties that the controllers can be
subjected to. The small gain theorem is used to confirm the performance and
stability retention of the close loop systems. The second part focuses on the
reference tracking of the controllers. The Low-level controller is subjected
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simultaneously to the side force and step reference, and the disturbance
rejection to load variation is also tested. The High-level controller is tested
in multiple fields. The disturbances tests are created with the duplet signal,
chosen intentionally to test the dynamical responses. The LQR controller
with the sideslip angle can withstand the disturbances. However, the LQR
with the lateral acceleration only dampens the disturbance and has non-zero
steady-state error, which can be beneficial because it prioritizes the stabi-
lization of the vehicle to the steady-state value, which the driver can correct.
The tests also involve the step responses to the driver input step reference.
The controllers fair almost the same for the yaw rate. However, the LQR
with acceleration has a non-zero steady-state sideslip angle error, and its
camber actuation magnitude might be too excessive. The last tests involve
the steering angle disturbances where both controllers lower the disturbance
effects. However, the LQR with the acceleration has non-zero steady-state
sideslip angle errors. The disturbance of the front camber angle is completely
reduced.

All of the Master thesis assignment topics are satisfied and addressed in
the chapters above.

6.1 Future work

Future work will focus on developing a more concise High-level controller like
MPC and validating the simulation results of the proposed algorithms in the
real world, which was not possible due to the COVID-19 pandemic yet.
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Appendix A
Nomenclature

Table A.1: CTU demonstrator vehicle nomenclature list. The nominal units are
used in all equations and derivations.

Symbol
Abbreviation Nominal unit Definition

SA - steering axis

CG - center of gravity

ACC - Active Camber Control

4WS - 4-wheel steering

DLC - Double Lane Change maneuver

KPI - king-pin inclination

IR - installation ratio

OS - overshoot

OP - operating point

CL - complementary filter

L1 m length of the lower control arm

L2 m length of king-pin + ball joint

Lw m wheel mount in the king-pin measured from the
ball joint

Ls m length of the McPherson strut

d m stroke length of the actuator
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Symbol
Abbreviation Nominal unit Definition

σshf rad angle of the McPherson strut from the king-pin
plane

σSA rad angle of the SA from the king-pin plane

η rad angle of lower control arm to the vehicle wheelbase

θ rad angle of lower control arm to the horizontal ground

ϕf rad caster angle at the front suspension

ϕr rad caster angle at the rear suspension

kf N/m front spring constant

kr N/m rear spring constant

Lsn m spring natural length

c N/m/s damping coefficient

m kg vehicle mass

Ro m unloaded tire radius

Ri m rim radius

Tw m tire width

Lf m longitudinal distance of CG from the front axle

Lr m longitudinal distance of CG from the rear axle

wf m lateral distance of CG from the vehicle side at the
front axle

wr m lateral distance of CG from the vehicle side at the
rear axle

hCG m height of vehicle CG

PM W motor power on each wheel

Tmax N m maximal torque of the motor

Gr - gear ratio

τ s motor time constant

Ixx kg m2 moment of inertia around CG X axis

127



....................................... A. Nomenclature

Symbol
Abbreviation Nominal unit Definition

Iyy kg m2 moment of inertia around CG Y axis

Izz kg m2 moment of inertia around CG Z axis

J kg m2 moment of inertia around CG Z axis

Cαf
N/rad front cornering stiffness for one wheel

Cαr N/rad rear cornering stiffness for one wheel

Cγf
N/rad front camber cornering stiffness for one wheel

Cγr N/rad rear camber cornering stiffness for one wheel

δf rad front steering angle

δr rad rear steering angle

γf rad front camber angle

γr rad rear camber angle

αf rad front slip angle

αr rad rear slip angle

β rad side slip angle

Vx m/s constant longitudinal velocity

v m/s velocity

vx m/s longitudinal velocity in X direction

vy m/s lateral velocity in Y direction

ax m/s2 longitudinal acceleration in X direction

ay m/s2 lateral acceleration in Y direction

ac m/s2 centripetal acceleration

g m/s2 gravitational acceleration

Fx N longitudinal force in X direction

Fy N lateral force in Y direction

Fz N vertical force in Z direction

Ft N m camber thrust force
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Symbol
Abbreviation Nominal unit Definition

Mx N m torque around X axis

My N m torque around Y axis

Mz N m torque around Z axis

φ rad roll angle

ψ rad yaw angle

φ̇ rad/s roll rate

r rad/s yaw rate

R m radius of a turn

Kφ - Roll estimation gain

Kr - LQR state-feedback gain for yaw rate

Kβ - LQR state-feedback gain for side slip angle

Kϵv̇ - LQR state-feedback gain for yaw rate ϵv̇
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Appendix B
Calculation of the installation ratio IR

The installation ratio is the ratio between the distance a and b, see Figure
[B.1]. The McPherson suspension defines the distance a between the lower
arm mounting point and the constant patch center of the wheel. The distance
b is between the lower arm mounting point and the intersection of the spring-
damper axis and the distance a line. The installation ratio is:

IR = b

a
= 0.62. (B.1)

b

a
Figure B.1: The calculation of the IR for the McPherson suspension.

The installation ratio for the double wishbone suspension is calculated in
the same way but generally the spring-damper is mounted directly to the
lower arm and thus the a distances are to the wheel center and not to the
center of the contact patch.
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Appendix C
Derivation of McPherson suspension
parameters

This section tackles the derivation of the Lx, L2 and ΩC McPherson param-
eters from the given parameter set of the suspension dimensions. Most of
the suspension dimension parameters are always measured in the SA. The
practical set of the parameters is shown in table [C.1]. The parameters are
also depicted in the Figure [C.1].

Table C.1: The practical set of McPherson suspension parameters
Symbol Value Units Definition

L1 38 cm length of the lower control arm

Lw 11.5 cm wheel mount for the king-pin - measured from king-pin
mounting point to the lower arm

σshf 2 deg angle of the McPherson strut to the king-pin base

Lshf 9 cm distance of the McPherson strut closest point to the
king-pin projected onto the lower arm

d0 = LsSA 45 cm McPherson strut length in the SA axis

d1 = L2SA 26.5 cm king-pin length in the SA axis
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A B

C

E
D

L1

L2

Lx

d

θ

ΩC

L1
Lw

d1

Lshf

d0Ls
Lxσshf

Figure C.1: The diagram of the McPherson parameters from table [C.1].

First, the angle of the SA has to be established so that the L2 can be
defined. The left Figure [C.2] shows the triangle used for the derivation of
the equation (C.3). The ∠B1C1A1 is obtained with the sine rule and the
∠A1B1C1 has to sum up to 180◦:

∠C1A1B1 = arcsin
(

Lshf

d0 + d1
sin
(
π

2 + σshf

))
, (C.1)

σSA = π

2 −
[
π −

(
π

2 + σshf

)
− ∠C1A1B1

]
, (C.2)

σSA = σshf + ∠C1A1B1. (C.3)

With equation (C.3), the L2 is calculated as follows

L2 = d1 cos(σSA). (C.4)
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d0+d1

Lshf

σSA

L1

σshf

A1 B1

C1

d1

Lshf

σSA

σshf

A2
B2

C2

L2

σshf

d0

Lks

Ls
Lx

ΩC

σshf

σSA

D2

Figure C.2: The triangles from Figure [C.1] used for the derivation of parameters.

Next, the Lx and ΩC is derived. The length of the shift Lks of the mounting
point of the McPherson strut from the king-pin can be calculated from the
right triangle in Figure [C.2] with:

Lks = L2 tan(σshf ) + Lshf . (C.5)

Also, the current length of the McPherson strut Ls is obtained from △A2B2C2
with cosine rule in right Figure [C.2] as:

Ls =
√
d2

0 + (Lks − d1 sin(σSA))2 − 2 d0 (Lks − d1 sin(σSA)) cos
(
π

2 − σSA

)
.

(C.6)
The Lx is derived in the same way as the Ls by cosine formula from △A2D2C2:

Lx =
√
L2

s + L2
ks − 2Lks Ls cos

(
π

2 + σshf

)
. (C.7)

Finally, the ΩC is defined with the sine rule from △A2D2C2:

ΩC = π

2 + arcsin
(
Ls

Lx
sin
(
π

2 + σshf

))
. (C.8)

Note that both the ΩC and the Lx depends on the length of the McPherson
strut Ls which is the only parameter that is constantly varying.

133



Appendix D
Derivation of the McPherson geometry
model for the left side

The left side McPherson geometry model is derived in the same manner as
the right side. Thus, many of the equations from the right side will be utilized
here without explanation so it is recommended for the reader to go through
the right side derivations first. The left side affects equations in the three
sections shown below that are purposely named the same as for the right side.

D.1 Forward kinematics

The forward kinematics diagram depicted in Figure [3.11] is vertically mirrored
for the left side. The points A and E are known by default where A is assumed
as the center of the coordinate system. Thus, the point E has to be rotated
by roll angle φ around point A as shown in equations (3.23) and (3.24). Also,
the point B is defined as in (3.25). However, note that the θ is defined from
the right to the left, see Figure [D.1]. Thus, it should be:

θ = π − θm, (D.1)

where θm is the theta measured for the left side. Based on the Figure [D.1],
the forward kinematics for the camber angle γ can be calculated as:

γ = ΛBE + ΓB + ΩB − π

2 , (D.2)

where ΛBE , ΓB, ΩB, |BD| and |EB| are calculated with the formulas in (3.27),
(3.28), (3.29), (3.30) and (3.31) respectively.
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A

B

C

E
D

L1

L2

Lx

d

γ ΩC

θ

ΩB

ΓB

ΛBE
Y

Z
θm

Figure D.1: Forward kinematics for camber angle γ for the left side geometry
model of the McPherson suspension.

D.2 Control law: Nonlinear mapping

The equation (D.2) is used to derive the control law for the left side. The γ
can be denoted as γw and d is the unknown:

γw = ΛBE + ΓB(d) + ΩB − π

2 , (D.3)

and by solving for d:

ΓB(d) = γw − ΛBE − ΩB + π

2 , (D.4)

|BE|2 + |BD|2 − d2

2 |BE| |BD| = cos
(
γw − ΛBE − ΩB + π

2

)
, (D.5)

|BE|2 + |BD|2 − d2 = 2 |BE| |BD| cos
(
γw − ΛBE − ΩB + π

2

)
, (D.6)

d =
√

|BE|2 + 2 |BE| |BD| sin (γw − ΛBE − ΩB) + |BD|2,
(D.7)

where due to the nature of the model, the d can be only positive. The θm, φ
and Ls are formulated in the same manner as in the ride side.
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D.3 Unknown θ angle

The Figure [D.2] shows the diagram of the McPherson suspension model
where the θ is derived for the left side. The |BD| and |AE| is found by (3.30)
and (3.42) respectively and the κ = π − σshf because the McPherson strut is
constructed to have 90 degrees angle to the mounted surface at the nominal
camber. The κ is constant because the rail is assumed not curved. However,
if the rail would be curved, the κ would be function of the stroke length d.
Thus, the point D can be found with:

D =
[
d cos(κ+ φ)
d sin(κ+ φ)

]
+
[
Ey

Ez

]
, (D.8)

where the φ has to be included to account for the body roll. The θ is thus
defined with:

ΛAE = arctan 2(Ez −Az, Ey −Ay), (D.9)
θ = ΓA + ΛAE , (D.10)

where ΓA is defined in (3.46).

A

B

E

D

L1

Lx

d

ΩC

θ

ΓD2

ΛAE

Y

Z

ΓD1 κ

ΓA

C

L2

Figure D.2: The derivation of the θ angle for the left side geometry model of
the McPherson suspension.
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Appendix E
Derivation of the KPI and caster influence
on camber angle

The [11] presents a homogeneous transformation that can be used to predict
the camber angle from the KPI and caster angle when the wheel is steered.
This chapter will produce the same derivation with the framework developed
in this thesis.

Three Z-up coordinate systems are defined: C wheel-body coordinate frame,
the W wheel coordinate frame and the T tire coordinate frame. The C frame
is attached to the vehicle body and rests on the vertical plane to the ground.
It is unaffected by the wheel motion. The W is defined as the center wheel as
shown in Figure [E.1] and is subjected to all of the rotation and translations of
the wheel. When the wheel is not steered, the C and W are equivalent. The
T is defined as the center of the contact patch. It only follows the steering
rotation of the wheel. All frame are independent of the wheel spin rotation.
The rotational matrix expressing the axis-angle rotation from W to C frame
is called Rodriguez matrix:

CRW =

 u2
1 (1 − cos(δ)) + cos(δ) u1 u2 (1 − cos(δ)) − u3 sin(δ) u1 u3 (1 − cos(δ)) + u2 sin(δ)

u1 u2 (1 − cos(δ)) + u3 sin(δ) u2
2 (1 − cos(δ)) + cos(δ) u2 u3 (1 − cos(δ)) − u1 sin(δ)

u1 u3 (1 − cos(δ)) − u2 sin(δ) u2 u3 (1 − cos(δ)) + u1 sin(δ) u2
3 (1 − cos(δ)) + cos(δ)

,
(E.1)

where

u =

u1
u2
u3

 , (E.2)

is the direction unit vector and it relates to the steering axis SA.
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Figure E.1: The definition of the coordinate systems of the wheel: C wheel-body
coordinate frame, the W wheel coordinate frame and the T tire coordinate frame.
Picture from: [11]

The steering axis can be thought as an intersection of two planes: the
caster angle and KPI plane. The caster plane is rotated by KPI angle from
the wheel-body YZ-plane (C frame) and the KPI plane by caster angle ϕ
from the wheel-body XZ-plane. The normal unit vectors of these planes in
the C frame can be defined as:

nI =

 cos(ϕ) 0 sin(ϕ)
0 1 0

− sin(ϕ) 0 cos(ϕ)

 ·

−1
0
0

 =

− cos(ϕ)
0

sin(ϕ)

 , (E.3)

nc =

1 0 0
0 cos(KPI) − sin(KPI)
0 sin(KPI) cos(KPI)

 ·

0
1
0

 =

 0
cos(KPI)
sin(KPI)

 , (E.4)

which specify the unit vector of the steering axis as:

Cu = nc × nI

|nc × nI |
= 1√

1 − sin(ϕ)2 sin(KPI)2

 sin(ϕ) cos(KPI)
− sin(KPI) cos(ϕ)
cos(ϕ) cos(KPI)

 . (E.5)

The axis has to be defined by a point. The dP is the point on the steering
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axis

dP =

 sa

sb

−Ro

 , (E.6)

chosen as the intersection of the steering axis and the ground where Ro is
the wheel radius and sa and sb the longitudinal and lateral displacement
of the center of the contact patch to the intersection point. To also define
the translation, the homogeneous transformation matrix CTW is used which
combines both the rotation and the translation. However, the rotation is not
around the frame center but around the point dP . Thus, the transformation
between the C and W frames is:

Cr = CTW
W r =

[
CRW dP − CRW dP

0 1

]
W r, (E.7)

where the Cr and W r are homogeneous position vectors in the particular
frame.

If the angle between the Z axis of the C frame and the Y axis of the W
frame is called ρ, the camber angle is defined as:

γ = π

2 − ρ. (E.8)

Denote the unit vector for Z axis of the C as K̂ and the unit vector for the
Y axis of the W as ĵ. Then, the angle ρ is characterized by the dot-product
formula for two vectors as:

ρ = arccos
(

C ĵ · CK̂

|C ĵ| |CK̂|

)
, (E.9)

where

CK̂ =


0
0
1
0

 , (E.10)

C ĵ = CTW
W ĵ =

[
CRW dP − CRW dP

0 1

]
0
1
0
0

 . (E.11)
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By substituting for ρ in (E.8), the following is derived:

γ = π
2 − arccos

[
cos(KPI) sin(ϕ)√

1−sin(ϕ)2 sin(KPI)2 sin(δ) − cos(KPI) cos(ϕ)2 sin(KPI)
sin(KPI)2 sin(KPI)2−1 (cos(δ) − 1)

]
,

(E.12)
which is the same solution as derived in [11]. Note that the solution is
independent of the displacements from the point P and the γ = π

2 when
δ = 0. Moreover, the influence of the ϕ and KPI is additive to the value of
γ. Thus, it can be easily incorporated to the existing estimation in (3.26).
The notation used for the derivation of this formula is different than the one
used in this thesis. This thesis defines the caster angle as positive when the
[11] as negative. Additionally, the [11] defines KPI < 0 for the left wheel and
KPI > 0 for the right wheel and the δ < 0 for the right turns and δ > 0 for
the left turns. This thesis defines the KPI > 0 always positive and the right
turns as δ > 0 and the left δ < 0, see the Z-down coordinate frame defined in
the Twin track.
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Appendix F
Velocity dependent LQR

The vehicle dynamics are too dependent on the car speed as discussed in
Robustness testing. The state-feedback gains Kr, Kβ and Kϵv̇ can be
scaled with the vehicle velocity by the nonlinear function that can be stored
in the memory, see Figures [F.1] and [F.2]. The gains can be found with
interpolation methods between the points.

State-feedback gains for the LQR with 
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Figure F.1: The state-feedback gains dependence on the velocity for the LQR
with β.
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State-feedback gains for the LQR with a
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Figure F.2: The state-feedback gains dependence on the velocity for the LQR
with ay.

Note that storing process can be optimized depending on the application.
For example, the nonlinear functions can be approximated with piece-wise
polynomials that will reduce the amount of parameters stored etc.
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Appendix G
Double wishbone suspension

G.1 Simscape model

The same approach for the McPherson can be used for the double wishbone
suspension as well. This chapter will provide basis for the double wishbone
suspension that can be used to develop similar control law as for McPherson.
First, the geometry model is defined first in Double wishbone geometry
model and then solved for the camber angle of the actuator in Forward
kinematics. Lastly, the control law is presented in Control law: nonlinear
mapping.

G.1.1 Double wishbone geometry model

The double wishbone suspension as defined in Double wishbone is composed
from two links, the spring-damper and the king-pin, as shown in Figure [G.1].
The suspension can be modeled with 5 points (A,B,C,D,D2).

The point A is at the revolute joint of the lower control arm mounting
point. It is assumed that its position is constant and does not change. Next
is the point B which is at the ball joint between the lower arm and the
king-pin. The angle θ is defined as the angle of the lower control arm to the
ground. The lower arm length is L1 and the king-pin with the ball joint is L2
where both are constants. The point P is the revolute joint that connects the
spring-damper and the lower arm. The |AP| length is known. The king-pin
is assumed to be vertically aligned with the wheel as any misalignment is
constant and can be subtracted out and compensated. Thus, the camber angle
of the wheel is the same as the angle of the king-pin from the perpendicular
plane to the ground, see right Figure [G.1]. The point C is the highest point
of the king-pin and it is angled from B by camber γ as shown. The Ls is
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..................................... G.1. Simscape model

the spring-damper length and the point D2 is the revolute joint that mounts
the spring-damper to the sprung mass. The point D is at the revolute joint
of the double wishbone mounting point of the upper link. The point D and
D2 is assumed constant but it rotates around the point A by roll angle φ.
The d defines the length of the upper link and it is directly controlled by the
actuator.

A P B

D
D2

C

Ls

L1

d

L2

Figure G.1: Double wishbone suspension modeled as 5 points (background
picture from: [12])

G.1.2 Forward kinematics

The geometric model in Figure [3.10] defines the camber angle γ purely from
the suspension structure. To ease the calculation effert, notice that the
triangle △ADD2 is constant because the lengths of the sides do not change
and thus the Γ2 angle is also constant. That is why, the point D and D2 can
be merged and the new spring-damper Lx and ΓA angle is defined, see right
Figure [G.2]:

ΓA = arccos
(

|AP|2 + |AD2|2 − L2
s

2 |AP| |AD2|

)
+ Γ2. (G.1)

To calculate camber for particular suspension parameters, the forward kine-
matics must be solved. The forward kinematics diagram is depicted in right
Figure [G.2]. The points A and D are known where A is assumed as the
center of the coordinate system. Thus, the point D has to be rotated by roll

144



..................................... G.1. Simscape model

angle φ around the point A:

A =
[
Ay

Az

]
=
[
0
0

]
, (G.2)

D =
[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
·
[
Dy

Dz

]
, (G.3)

and the angle θ and the point B can be found from triangle △APD:

θ = ΛAD − ΓA, (G.4)

B =
[
L1 cos(θ)
L1 sin(θ)

]
. (G.5)

Finally, the forward kinematics for the camber angle γ from Figure [G.3] can
be calculated as:

γ = −ΛBD + ΓB + π

2 , (G.6)

where

ΛBD = arctan 2(Dz −Bz, Dy −By), (G.7)

ΓB = arccos
(
L2

2 + |BD|2 − d2

2L2 |BD|

)
, (G.8)

|BD| =
√

(Dy −By)2 + (Dz −Bz)2. (G.9)

Note that the double wishbone geometry model can define θ independent
of the upper link arm length d.
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Figure G.2: Forward kinematics for θ angle of model in Figure [G.1].
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Figure G.3: Forward kinematics for camber angle γ angle of model in Figure
[G.1].

G.1.3 Control law: nonlinear mapping

The control law defines input to the actuator so that the reference is met.
The actuator is defined as a prismatic joint that controls the length of the
upper arm of the double wishbone suspension. The input to the actuator is d
and the reference is the camber angle γw we want to have.
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The equation (G.6) can be used to derive such a law. The γ can be denoted
as γw and the d is the unknown:

γw = −ΛBD + ΓB(d) + π

2 , (G.10)

and by solving for d the following expression is found:

ΓB(d) = ΛBD + γw − π

2 , (G.11)

L2
2 + |BD|2 − d2

2L2 |BD| = cos
(

ΛBD + γw − π

2

)
, (G.12)

L2
2 + |BD|2 − d2 = 2L2 |BD| cos

(
ΛBD + γw − π

2

)
, (G.13)

d =
√

|BE|2 + 2 |BE| |BD| sin (−ΛBD − γw) + |BD|2, (G.14)

where due to the nature of the model, the d can be only positive. The solution
is actually algebraic and gives precise d distance for reaching the given camber
angle γw. The equation does not need the θ measurement can define camber
angle purely from spring-damper length Ls and body roll φ.
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