
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Estimating object properties through robot
manipulation - dataset and benchmark

Jiří Hartvich

Supervisor: Mgr. Matěj Hoffmann, Ph.D.
Field of study: Cybernetics and Robotics
May 2022

ii

Acknowledgements
I would like to thank the people who
helped me with this work, namely Lukáš
Rustler, Jan Kristof Behrens, Andrej
Kružliak and Krystian Mikolajczyk. I
would also like to extend my thanks to
my supervisor Matěj Hoffmann for being
a guiding force in this work.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských prací.

V Praze dne 19. května 2022

. .
Jiří Hartvich

iii

Abstract

Object property estimation deals with the
measuring of objects and subsequent es-
timation of their properties from these
measurements. These measurements are
performed using sensors such as RGB cam-
eras, depth cameras, robotic manipulators
and grippers accompanied by sensors for
quantities such as force, torque, pressure,
etc. These elements are combined to form
a setup, which is then used in tandem
with custom algorithms to measure and
estimate the properties of physical objects.
This work attempts to create a bridge be-
tween different physical setups through
an open database as well as a bench-
mark to compare distinct property esti-
mation methods. This work achieves that
through an experiment recording and up-
loading module that uploads recorded ex-
periments to an open Django database us-
ing the REST API. This differs from pre-
vious works in that it enables datasets cre-
ated with different tools to coexist in the
same overarching data structure. Other
works focus mainly on either generating
measurement data, property estimations
or higher order knowledge, all the while
working independently to each other. Us-
ing the resulting database from this work
it is possible to integrate already existing
results from other works into a shared,
accessible format. This work is part of
the wider IPALM (Interactive Perception-
Action-Learning for Modelling Objects)
project and contributes an expandable
database for robotic manipulation, includ-
ing grasping, physical objects and bench-
marking of property estimation methods.

Keywords: Object property estimation,
grasping, robot manipulation, interactive
perception

Supervisor: Mgr. Matěj Hoffmann,
Ph.D.

iv

Abstrakt

Odhadování fyzikálních vlastností objektů
spočívá v měření objektů a následném
odhadování jejich vlastností na základě
tohoto měření. Jednotlivá měření se pro-
vádějí pomocí senzorů, jako jsou RGB ka-
mery, hloubkové kamery, robotické mani-
pulátory a chapadla doplněná o čidla veli-
čin jako síla, moment síly, tlak apod. Tyto
prvky pak společně utvářejí sestavu, která
se v kombinaci s vlastními algoritmy pou-
žívá k měření a odhadování vlastností fy-
zických objektů. Cílem této práce je vytvo-
řit jednak most mezi různými fyzikálními
sestavami v podobě otevřené databáze a
jednak systém pro porovnávání různých
metod odhadování fyzikálních vlastností.
Toho se práce snaží dosáhnout pomocí mo-
dulu, který zaznamenává experimenty a
následně je za využití REST API nahrává
do otevřené databáze, vytvořené pomocí
knihovny Django. Na rozdíl od předcho-
zích prací tato databáze umožňuje různým
datasetům vytvořeným odlišnými způsoby
koexistovat ve stejné, nadřazené struktuře.
Jiné práce se zabývají především buď ge-
nerováním dat, odhadováním fyzikálních
vlastností, nebo odvozováním znalostí a
obvykle vznikají nezávisle na sobě. Díky
databázi vytvořené v rámci této práce je
možné začlenit výsledky z jiných prací
do sdíleného, otevřeného formátu. Práce
je součástí širšího projektu IPALM (In-
teractive Perception-Action-Learning for
Modelling Objects), do nějž přispívá roz-
šiřitelnou databází pro robotickou mani-
pulaci, zahrnující uchopování objektů, po-
pisování fyzických objektů a porovnávání
algoritmů na odhadování vlastností.

Klíčová slova: Odhadování vlastností
objektů, uchopování objektů, robotická
manipulace, interaktivní vnímání

Překlad názvu: Odhadování fyzikálních
vlastností objektů pomocí robotické
manipulace – dataset a srovnávací
měřítko

v

Contents
1 Introduction 1

2 Related Work 3

2.1 YCB (Yale-CMU-Berkeley Object
and Model set) 3

2.2 GRASPA (Robot Arm graSping
Performance benchmArk) 3

2.3 EGAD (Evolved Grasping Analysis
Dataset) . 4

2.4 RoCS (Robot-Centric dataSet) . . 4

2.5 ROS household objects 4

2.6 BURG (Benchmarks for
Understanding Robotic Grasping) . . 5

2.7 Individual property datasets 5

2.7.1 Single-grasp deformable object
discrimination 5

2.7.2 Elasticity estimation of soft
objects using robot grippers 5

2.7.3 YCB-impact sounds dataset . . 5

2.8 Summary . 5

2.9 Relation to current work 6

3 Materials and Methods 9

3.1 Experimental Setup 9

3.1.1 Physical Setup 9

3.1.2 Measurement Pipeline 10

3.1.3 Exploratory actions 10

3.2 Data Format 11

3.2.1 Top-down View 11

3.2.2 Bottom-up View 12

3.3 Django . 15

3.3.1 Django Rest Framework 16

3.3.2 Overall structure 16

3.4 Data Storage Pipeline 17

3.4.1 Butler . 17

3.4.2 Butler implementation 23

4 Experiments and Results 27

4.0.1 Database structure 28

4.0.2 Measurement 28

4.0.3 Physical measurement 30

4.0.4 Formatting 31

4.0.5 Uploading 32

4.0.6 Database 33

5 Conclusion, Discussion, and Future
Work 39

Bibliography 41

vi

Chapter 1

Introduction

In recent years, digital datasets have become commonplace, making it easy to compare the
performances of learning-based techniques anywhere in the world. Especially computer
vision has received a lot of attention and datasets such as ImageNet [1], CIFAR-100 [2].
Both are easily downloadable and enable us to benchmark computer vision algorithms.
The key to the success of many of these techniques is the widespread availability of data
and clear benchmarking protocols to compare the algorithms. This enables researchers
to iterate on the best ideas to further push performance past previous methods. Images,
videos—digital data in general—are easily transportable by internet and easy to produce in
great quantity, therefore ideal for benchmarking. In addition, image sensors, i.e. cameras,
are ubiquitous and highly standardized instruments, making it easy to produce consistent
and applicable data across the globe.

The downside is that cameras provide only a partial snapshot of reality. It is necessary
to measure other physical quantities to form a more comprehensive description. To fill
in that gap one has to measure the object of study using other modalities, such as touch,
sound, etc. Sensors for some these include pressure sensors, force sensors, microphones and
depth cameras.

When creating a dataset of a physical property of an object using a sensor other than a
camera, we measure objects with the sensor and upload the data to a server on the internet.
However, the type of sensor used to measure the property may not be as standardized
as cameras are. If we take a picture with two different brands of cameras, the results
are almost indistinguishable. Not only is the sensitivity to different wavelengths carefully
calibrated but the measurement is also direct, which means that both cameras measure
photons actually reflected off that object. On the other hand, stiffness, for instance, can
be measured directly by a force sensor or inferred from the electrical current in a gripper
actuator. Both methods are theoretically able to provide an accurate description of said
property. However, the conversion from sensor outputs to force is generally nonlinear.

Now the issue arises when dealing with physical quantities: they are bound to physical
objects. It is possible to obtain something akin to ground truth values by measuring
physical objects’ properties professionally [3] and then base algorithms on those values.
This is unsustainable owing to the fact that objects do not commonly have their properties
uniformly distributed—a bottle for example has a body and a neck, the neck being hard
and the body being softer. What does it then mean to know the stiffness of a water bottle?
And how can a simple water bottle be saved into a digital dataset? Is it possible to have

1

1. Introduction ..
an easily distributable dataset of physical objects?

A famous example that fulfills these requirements is Willy Wonka’s famous television. It
transmits chocolate over the air directly to your home television set, from where it can be
grabbed and thoroughly enjoyed [4].

The closest we come to this idea from science fiction is in the form of standardized
datasets. One such dataset is the YCB object and model dataset. It consists of common
and easily graspable standardized physical objects that, upon request, are sent to whoever
orders them. This enables different labs to benchmark their own grasping and other
algorithms on the same physical objects.

What if the YCB dataset cannot be ordered or if objects not present in the dataset are
to be explored by robotic techniques? In that case it is necessary to digitally approximate
the objects as closely as possible so that it is possible to share them with others.

That is where the current work comes in. The goal is to develop a system to catalogue
measurements and seed a database of common household objects, starting with YCB
objects, and to enable others to use the same system to add their own measurements of
objects regardless of their belonging to a dataset. Physical objects cannot be stored as
values in a database, so they will have to be indirectly represented by a unique ID, images
and other measurements. Not only is it desirable to have a system in place of how to store
information about these objects, it is also key to have the information easily accessible and,
in case of own measurements, easy to upload. Unlike image datasets that are often stored
as large zip files never to change again, it is desirable that this database of measurements
is expandable, all the while enabling labs without robotic setups of their own to use the
uploaded data to benchmark algorithms of their own.

2

Chapter 2

Related Work

This section introduces related works mainly in robotic manipulation. The main focus
of this work is saving measurement, property estimations, grasps and other information
about physical objects. Thus, so as not to repeat work other people have already done, we
shall concisely introduce works related to our goal and what they aim to achieve, how they
compare to each other and how their goals leave space for our work.

2.1 YCB (Yale-CMU-Berkeley Object and Model set)
The YCB object and model set consists of common household objects [5]. The 3D models
of these objects are publicly available for download at https://www.ycbbenchmarks.com/.
The models come with their respective textures gathered from images of the objects on
a rotating pedestal as measured by the authors of the dataset. The virtual versions also
contain labelled images for image processing algorithms. The physical version object set
can be ordered on the YCB dataset’s website.

The YCB dataset is designed for facilitating benchmarking in robotic manipulation. The
set consists of everyday objects with different shapes, sizes, textures, weight and rigidity.
The article proposes several grasping and object manipulation benchmark protocols for
robot manipulation research.

A large contribution of this article is the standardized household objects that are easily
obtained by simply ordering all objects as a set. The objects are rich in physical features
in contrast to homogenous 3D-printed objects, making it a more suited dataset for other
applications as well, such as physical property estimation.

2.2 GRASPA (Robot Arm graSping Performance
benchmArk)

GRASPA is a benchmark to evaluate how well a particular setup grasps given objects [6].
It calculates a grasping score assuming that the grasping position can be reached by the
gripper. The grasping score can be summarized by the following function:

f(p, g, o, s) −→ grasping score

where p is the set of reachable positions, g is the set of grasps corresponding to their
respective positions in p, o is the objects of interest and s is the setup being evaluated.

3

https://www.ycbbenchmarks.com/

2. Related Work..
The reachability on a given area is determined using inverse kinematics and auto-sensory

information and using visual processing from outside the setup. The objects are then placed
in reachable positions and testing begins.

Similarly to the previously mentioned YCB, GRASPA also focuses on grasp benchmarks
but unlike EGAD in the following section, it only focuses on evaluating grasping algorithms.
Some papers propose methods how to grasp given some data; this paper proposes a scoring
metric of already generated grasps.

2.3 EGAD (Evolved Grasping Analysis Dataset)
EGAD utilizes evolutionary algorithms to create a set of objects specially designed for
grasp generation and benchmarking [7]. To that end, two main metrics for evaluating the
complexity and difficulty of grasping were created. The objects are ranked in one dimension
by complexity ranging from simple to complex and by difficulty of grasping along the other
dimension, all the while maximizing geometric diversity. The dataset provides around 2000
3D models uniformly covering the whole feature space. This is a significant improvement
from previous grasping datasets such as YCB or Dex-Net 2.0 [8] in covering all possible
grasping configurations. In addition, the authors propose 49 objects representing each
combination of the two dimensions in seven levels of of complexity/difficulty. This is to
provide an even simpler and more standardized grasping benchmark.

The objects contained in this dataset were originally palm-sized, however due to their
digital nature, the size can be adjusted before printing to account for the gripper aperture.
EGAD still leaves space open for a deformable object dataset since it only rates the difficulty
of the objects under the assumption that everything is rigid.

2.4 RoCS (Robot-Centric dataSet)
This article proposes a method of creating conceptual understanding of objects from the
point of view of a robot [9]. The authors combine existing methods of property estimation
to acquire physical properties. It accounts for inputs from only the robot itself, hence robot-
centric. The authors propose an extensible property estimation framework which consists
of methods to obtain first quantitative measurements of physical properties (according to
their paper) such as rigidity, hollowness, heaviness, etc. and then functional properties
such as containment, support, etc.

2.5 ROS household objects
ROS household objects is a ROS package that is an implementation of a database that
catalogues some physical objects [10]. It is the one among the related works that most
resembles what this work aims to achieve. It contains some household objects, their 3D
models, who the manufacturer is, their commonly used name and some other properties.
The issue with this package was that it was not extensible by any user other than the
maintainer of the package. It was originally intended to be an online database of objects,

4

......................2.6. BURG (Benchmarks for Understanding Robotic Grasping)

their grasps and other descriptions. Although it is made for the ROS version Indigo from
the year 2014, it contains some structure that is of interest. It has since been taken offline
but still remains available today as a ROS package.

2.6 BURG (Benchmarks for Understanding Robotic
Grasping)

BURG builds on top of the previous dataset created by the Technical University in Vienna,
namely ARID and OCID [11]. OCID (Object Clutter Indoor Dataset) combines the datasets
ARID and YCB into an expanded RGBD-dataset containing point-wise labeled point-clouds
for each object [12]. ARID (Autonomous Robot Indoor Dataset) is a large-scale, multi-view
object dataset collected with an RGBD camera mounted on a mobile robot [13],

2.7 Individual property datasets
In the laboratory here at CTU there have also been created a few datasets. Two of them
consist of measurements and estimates of physical properties, while the other dataset uses
various types of grippers to generate measurement data and uses it to discern different
objects made of materials with varying stiffnesses. The grippers used in these works at the
lab are: Barrett hand, qb SoftHand, Robotiq 2F-85 and OnRobot RG6 [3].

2.7.1 Single-grasp deformable object discrimination
This is the dataset where grippers are used to discern objects among one another [14]. The
crux of this work is examining learning-based techniques that can be adapted to learn to
recognize physical objects. In this case most of the objects are visually similar deformable
objects but with different stiffnesses.

2.7.2 Elasticity estimation of soft objects using robot grippers
This work is a collection of the output data from the various grippers mentioned in Section
2.7 and objects’ elasticity estimations [15]. It also provides some methods to estimate
elasticities from the measured data.

2.7.3 YCB-impact sounds dataset
This dataset provides a set of sounds generated by hitting, scratching and dropping objects
of the YCB model dataset [16]. Sound is one of many modalities with which physical
objects can be measured, and in this work it shall indeed be used as one of several.

2.8 Summary
The data from these datasets can well be used to populate the physical object database
in the form of measurements for further processing as well as property estimations. For a

5

2. Related Work..
Table 2.1: Comparison of features from the related works.

Dataset Physical ob-
jects

Measurement Property es-
timation

Grasp pro-
posals

Benchmarks

YCB ✓ × × × ×
GRASPA × × × × ✓
EGAD ✓ × × × ✓
RoCS × × ✓ × ×
Household
objects

✓ × × ✓ ×

BURG ✓ ✓ ✓ ✓ ×
Object dis-
crimination

✓ ✓ ✓ × ×

Elasticity
estimation

✓ ✓ ✓ × ×

Sounds
dataset

✓ ✓ ✓ × ×

comprehensive comparison of functionalities of the mentioned works see Table 2.1.

2.9 Relation to current work
This work aims to fill in the gaps in robot manipulation left unresolved from the related works.
If the goal is to gain information from working with objects at hand, then existing methods
are already capable of fulfilling that task. However, obtaining a complete description
of an object is exceedingly difficult. The previous works did not attempt to provide a
complete description of a few objects, but to encapsulate a certain aspect of the object or
interaction with it. For example, GRASPA is a comprehensive benchmarking method for
object grasping. YCB provides the physical instances as well as the complete 3D models of
a few household objects. EGAD provides comprehensive benchmarking objects over the
whole space as defined by the authors.

RoCS ultimately provides a complete set of measurements of a few pre-defined properties
on a distinct set objects as well as a high-level framework of knowledge creation on within
the context of a single setup.

Regarding RoCS, it is closest in that it provides some set of physical properties. In their
work, the authors selected flatness, hollowness, size, roughness, rigidity and heaviness as
physical properties. Note that these properties are significant only from the conceptual
standpoint of understanding the objects, according to the authors.

This differs from the other mentioned works as the main focus here is the understanding
of objects from the robot’s perspective. In other words, gaining information about the
objects independent of which physical setup is used for measuring.

What the authors in each work set out to do is to propose a closed set of problems and

6

.................................... 2.9. Relation to current work

subsequently attempt to resolve each one of them. Yet, these tasks are related, and there
have been attempts at linking the problematics of household object manipulation, grasping,
property estimation, etc. The role of the mentioned articles in the context of an information
gathering pipeline can be seen in Figure 2.1.

YCBGRASPA EGAD RoCS

Visual data

Grasp Sensory data

Physical

Functional
property

Physical

Conceptual

This work Database

object property

understanding

Measurement
datasets

Figure 2.1: The semantic relationship between the GRASPA benchmark, the EGAD grasping
dataset, the YCB physical object dataset, and the RoCS framework.

The problem with the aforementioned databases/datasets is that they are not expandable
without the authors’ consent and at times setup/version specific.

The relationship between the related works, their contributions and our goal are depicted
in Figure 2.2. The lack of a link from each element to an open and online database is
represented by crossed out arrows.

Grasp Evaluate
(GRASPA)

3D model
dataset

(EGAD, YCB)

Single setup
(RoCS)

Some physical
properties

Physical object
dataset
(YCB)

Online & open
interface

Other properties

Physical
properties

Evaluate
(GRASPA)Grasp

3D model
dataset

(EGAD, YCB)

Figure 2.2: Current structure of object and setup relationships.

In conclusion, the database ought to have multiple sources of data, easy uploading, easy

7

2. Related Work..
downloading, low latency and easy hosting.

8

Chapter 3

Materials and Methods

3.1 Experimental Setup
This section deals with the physical setup and the pipeline for obtaining measurement data.
The physical setup is the same as in [17] and it will be used to perform experiments to
gather data for further processing. The software part of this section will be built on the
data gathering pipeline developed in parallel with this work.

3.1.1 Physical Setup
The physical setup consists of two Intel D435 depth cameras, a Kinova Gen3 arm with
built-in torque sensors and an attached Robotiq 2F-85 gripper and a RODE VideoMic Pro;
see Figure 3.1.

Figure 3.1: The physical setup.

9

3. Materials and Methods
Working with the physical setup is mostly handled by the data generation pipeline.

What is necessary to perform manually is object selection and placement. The dataset
primarily used to seed the database and test the pipeline is the YCB object dataset and
some handpicked in-house objects.

3.1.2 Measurement Pipeline
Three principal components of the measurement pipeline are the following:

. Physical Setup - hardware & objects. Action selection & property estimation algorithms.Outputs - measured data & estimated properties

Out of these, the physical setup and outputs are of interest to this work.

3.1.3 Exploratory actions
The measurement actions are controlled by the action selection framework [17] and consist
of a selected collection of actions. Each action measures some property, e.g. object category.
Actions include squeezing for elasticity, vision for category and material classification,
weighing for mass measurements and tapping for material classification from sound.

Squeezing
The first action we introduce is squeezing. For the gripper used in this work, the Robotiq
2F85, elasticity estimation consists of recording gripper position and current data and
extrapolating from that the elasticity coefficient as per [15].

Vision action for object category & material
The vision action was extended as part of this work. Originally the vision action only
determined the most likely category of the object on the image. Now it outputs a distribution
of object category estimates as well as material estimated. The process of adapting the
Detectron2 to suit our needs is as follows...1. Train a MobileNetV3 classifier on the dataset MINC-2500 [18]..2. Input the camera image into a Detectron2 instance trained on the dataset from [19]...3. Take the bounding boxes produced by Detectron2 and feed them into the MobileNetV3

instance...4. Plug the same bounding boxes back into Detectron2 with a lowered output threshold
to get a distribution of object categories and calculate a weighted average with the
category output from the first pass through Detectron2 from step 2.

10

... 3.2. Data Format..5. Output the categorical probability distributions of categories and materials that each
sum up to one respectively.

Weighing
The weighing action is performed indirectly using joint torque sensors already built into
the Kinova Gen3 robotic arm. First the script weighs the robot’s own arm, then grasps an
object and records the data. Given that the length of the arm is known, the mass is then
easily calculated using the Equation 3.1

m = T − T0
lg

, (3.1)

where T is the measured torque, T0 is the torque with an empty gripper, l is the length
of the arm segment from the measuring joint to the gripped object and g is gravitational
acceleration [20].

Tapping
Another method of material estimation is tapping. This method in particular, mentioned
in Section 2.7.3, uses a neural network to analyze a spectrogram of the recorded sequence
to estimate the material composition [16].

3.2 Data Format
The goal is to describe physical objects with as high fidelity as possible. Let us examine the
definition of an object. According to the Collins English Dictionary “An object is anything
that has a fixed shape or form, that you can touch or see, and that is not alive” [21].

Since it is impossible to store an object in a database, the closest digitally representable
approximation is its aspects—physical properties. Physical properties are usually denoted
in some combination of SI units, such as mass with the unit of kilogram [kg], dimensions
with the unit of meters [m] and other derived quantities.

3.2.1 Top-down View
Object properties are obtained by measuring physical object instances. Physical objects
cannot be quickly transported over great distances at ease, so there has to be a way to
transmit information about them—their properties.

At the lab we have the YCB physical object dataset. We identify these objects by the
fact that they belong to the YCB dataset and by their ID—or unique name—in the dataset.

Otherwise, when there were other sets of objects created from a mix of miscellaneous
objects and YCB objects, each object had a new unique name assigned to it. For example
there was a real banana and a plastic banana from the YCB dataset used. The representation

11

3. Materials and Methods
of the plastic banana from YCB in the new set is banana_ycb. If we combine the knowledge
about the dataset name, the ID the banana has in the dataset and the name that was used
in the object set from the lab, we get the following representation:

. Plastic banana from YCB:. Dataset: YCB. ID in dataset: 011_banana. Unique name: banana_ycb

The unique name may be unique in the context of the object set in the lab, but it is
not unique in general. Let us then call it the “common name” of the object. For the
banana we know that it is a banana and that it comes from the YCB object dataset, hence
banana_ycb. The banana did come to us from the YCB dataset but it may not originally
have been made for that dataset. The banana actually comes from the maker of these
plastic bananas. Therefore, the “maker” of an object is another identifier.

In conclusion, there are going to be four predetermined fields that the user may fill out
for an object instance:

.Object instance. Dataset. Identifier in dataset.Maker. Common name

We will call this ObjectInstance in the database. A detailed description will follow
after other parts of the database have been described.

3.2.2 Bottom-up View
Let us now examine the object instances from the ground up. We have established that
a combination of physical properties is a valid way to represent real instances of objects.
Among some common quantities that can be measured are elasticity, mass, object category,
material category, box size and others. Let us then start from these. We shall go through
each property and see how each one can be concisely and comprehensively represented in a
data structure.

Measurement representation
Before we examine specific properties, let us establish the representation of a measurement.
Due to intrinsic errors in measuring instruments, outside factors, low precision or accuracy in
the data processing algorithms and other unaccounted-for uncertainties, the measurements

12

... 3.2. Data Format

and property estimations are expected to come with an uncertainty attached. Furthermore,
the distribution of uncertainties is, for simplicity’s sake and as explained in [17], assumed
to follow a normal Gaussian distribution, see Equation 3.2.

X ∼ N (µ, σ2). (3.2)

Types of properties
There will be two types of properties used in this work:

. Continuous property: It has a name, a mean value, a standard deviation and units.. Categorical property: It contains name : value mappings, where value ∈ [0, 1] and∑n
i=1 valuei = 1.

Elasticity
It is simply a continuous property, which means it has a value, standard deviation, units
and name. Elasticity can then be represented like so:

. Continuous property: elasticity. Name: elasticity.Mean: µ. Standard deviation: σ. Units: [Pa]

For the property’s visualization see Figure 3.2.

Mass
Mass can be represented the same way as elasticity, leaving the results unchanged.

Figure 3.2: Single continuous property.

13

3. Materials and Methods
Object/material category

Object category and material category are different from the previous properties in that
they are categorical. Thus, the distribution of the property’s values is represented by
a discrete distribution of points, each with an associated probability pi, where i is the
category; it follows Equation 3.3. See Figure 3.3 for a visual representation of a categorical
property.

n∑
i=1

pi = 1 (3.3)

Figure 3.3: Categorical property distribution.

A categorical property can be represented by a vector of [property name, probability,
category]. An example of this structure is depicted in Figure 3.4. The numbers add up to
one. The property name field is usually the same for all elements, therefore it is sufficient
to have a property-wide name for an instance of a property measurement.

0.5
Plastic
Material

Property

0.05
Wood
Material

0.1
Ceramic
Material

Figure 3.4: Categorical property structure.

Size
The next property that is relevant to describing an object is its 3D box size—the x, y, z
dimensions. If a user wants to enter a bounding box measurement for the three dimensions
x, y, z, it might seem like a categorical property. This is a fallacy as each dimension
separately is actually a continuous property like elasticity or mass. Box size can thus be
represented as a vector of continuous distributions; see Figure 3.5.

Other properties might have even more dimensions, so the database shall have a general
structure to accommodate variable length vectors of property entries, represented in Figure
3.6.

14

.. 3.3. Django

Figure 3.5: Generalized continuous property data structure.

Entry

Type

Name, e.g. Size

Property Entry

Name, e.g. xyz
Value
Std

Units
Other

Other file
Properties

Figure 3.6: Entry structure compatible with the both categorical and continuous properties.

In addition, one might want to save a 3D mesh of the object or other types of properties.
To accommodate that, the fields other and other_file can be used. We can now have a
unified approach for storing object properties. The representation of a few properties with
this approach is depicted in Figure 3.7.

Property Entry

Name
Value
Std

Units
Other

Other file

Continuous

Name
Value
Std

Units

Categorical

Name
Value

Units

Bounding box
dimensions

Name: x
Value
Std

Units

Mesh

Name: mesh

Other: json
Other file: ply/obj

Figure 3.7: Generalized property entry structure and type examples.

3.3 Django
Since Python is easy to use, it shall also be used to implement the back-end for the database.
There are several back-end libraries to choose from, each with their pros and cons. Three
of the most well-known libraries for server back-end are Flask, Django and FastAPI.

. Flask

15

3. Materials and Methods
. Light-weight. Little structure. Django.More overhead.More structure & sustainable development. FastAPI. Light-weight. High-performance

Given some prior experience in Django development and the fact that the task at hand
is most closely related to data structuring, it is reasonable to choose Django for this
application. It has built-in SQLite3 and PostgreSQL support and the SQL handling is
done in the Django library [22]. Django uses its own Object Relational Mapping (ORM)
language to receive queries from users and relay them to the SQL database, making the
usage of SQL features seamless in Python [23].

3.3.1 Django Rest Framework
Interfacing with the server is usually done in a web browser by default. However, our
application requires a quick turnaround time and a way to communicate with the server
directly. This can be achieved through the REST API which is a protocol for communicating
with servers directly. A REST-enabled server is sometimes called RESTful [24].

To summarize the REST API, by default it enables the user to selectively access data
from the website without parsing any HTML code. The website can then be treated as if it
were a JSON dictionary, the only downside being higher latency and lower bandwidth.

We shall furthermore enable users to upload data after authentication. In addition,
REST is platform independent and has no prerequisites when it comes to using it. As
opposed to the works mentioned in Section 2.9, this is a great merit of REST.

3.3.2 Overall structure
We will be modelling the data representation in Django’s Object Relational Mapping
(ORM). In it, objects have predefined fields and relationships are represented by one-to-one,
many-to-one and many-to-many links.

Let us stitch together the objects we have proposed in previous sections. We have
established that a measurement object is necessary to bind the measurement data to an
object instance. The rules are the following:

. A physical ObjectInstance may have multiple Measurements.

16

..................................... 3.4. Data Storage Pipeline

.Multiple Measurements may be performed on a single Setup..Multiple Properties may be estimated from a single Measurement.. A Property may have more than one Elements.. A Measurement is assumed to have up to one Grasp associated with it.. A Measurement may contain multiple SensorOutputs.. A Setup is made up of multiple SetupElements.. A SetupElement has multiple associated SensorOutputs.

The above described structure is visualized in a graph in Figure 3.8.

ObjectInstance

Measurement

SensorOutput Grasp

Property Setup

SetupElementPropertyElement

Many to One
One to One

Figure 3.8: Overall structure of an entry of a real object instance.

3.4 Data Storage Pipeline
Since it is impossible to know every setup, the physical setup has to be treated like a black
box. That means that data extraction has to be as non-intrusive as possible.

There are several ways to obtain the measured data: either let the user handle the data
saving or create a library of functions into which data is entered in a predefined format,
then saved. Another method related to the latter option is function decorators, as will
be mentioned in Section 3.4.1. The tool developed to help with this task has been called
Butler as a shorthand.

After this, the data will have to be uploaded. For ease of use, REST API shall be used to
interface with the server. A general overview of the steps required to move the data from a
local setup to the server is described in Figure 3.9. There are three stops for the data in
the chart. The first one is the information after it is output by a particular measurement,
the second one is the data stored in memory or on disk which is to then be uploaded to a
server, making the data widely available.

3.4.1 Butler
The first step in data extraction is getting the information from local algorithms. The setup
and data generation algorithms have to be treated like a black box, but the output data
generally follows some rules. The data structure is usually along the lines of Figure 3.8.

17

3. Materials and Methods

Local Setup Storage

REST

Server

Decorator

Butler

REST

Django

Figure 3.9: Data storage pipeline overview.

Measurement Object
The first type of output we shall consider is a so called measurement object, as per the
thesis [17]. This will encapsulate both of the aforementioned continuous and categorical
property estimations. The object shall be represented by a python class which means that
it is possible to save almost any kind of data into it, thus making it possible to save the
data entries as demonstrated in Figure 3.7.

The following example is the output format of a continuous property. The values field is
the sensor outputs—raw data—that are used to estimate the mean and std—the property
estimation—in params.

The std, or standard deviation, generally stems from several sources such as the sensor,
algorithm or the environment. At the lab we obtained the std by performing many
measurements and extracting the standard deviation from that data. For that reason std
is assumed to accompany a measurement.

For a categorical property estimation the only difference is that the params attribute
would be a set of key-value pairs with the keys being the category names, the values being
the probabilities of that particular category, all the while the sum of the values being one.

class MeasurementObject:
meas_prop = "elasticity"
meas_type = "continuous"
params = {"mean": 100, "std": 10}
params = {"cat1": 0.2, "cat2": 0.3, "cat3": 0.5}
values = [100, 110, 90, ...]
meas_ID = 0

Now if one wishes to save the measurements, it is best to save them to disk lest they be
lost. For ease of debugging, visualization and general utility, the experiment sessions shall
be organized into a folder structure.

If we recall Figure 3.8, we have only covered the Measurement and Entry parts. There
is still missing a way to represent sensor outputs. One option is to add them to the

18

..................................... 3.4. Data Storage Pipeline

MeasurementObject, or to create a separate container for them. We shall account for both
cases, letting the user specify the data in both the object and in separate data variables.

Sensor outputs
A physical setup, as the one we have in Section 3.1.1 can have multiple sensors. Each sensor
can have several output types, each with different representations, such as a list or binary
data in the form of a file.

An unambiguous representation thus requires a sensor output instance to contain the
sensor where it comes from, the output quantities and the data corresponding to each
quantity.

. Sensor output. Sensor. Quantity 1: Values 1. Quantity 2: Values 2. . . .

Logically, a particular setup is then a collection of sensors—setup elements.

Grasp; Grasp proposal
Next, we shall, for the time being, assume that a grasp was made by a gripper that has a
set geometry and a single degree of freedom for its moving components. A grasp is then at
the very minimum represented by a position, orientation and a “grasped” boolean attribute.

A grasp is connected to a measurement, however a measurement does not generally
need a grasp to be successful: for instance when estimating an object’s material properties
through sound, a gripper can be used to merely tap an object to get a sound recording
from it. Yet, it still makes a difference where the object was tapped, since the sound can
be different depending on the place on the object. For example a water bottle has a hard
cap and a softer, hollow body.

If we want to add more complicated grippers, such as those with more than one degree of
freedom, we have to take into account any number of possible configurations. Furthermore,
it is unknown at that point what other properties a grasp contains.

A common, almost universal, property of a grasp is also the speed at which the gripper
closes. It shall also be added. The closing speed is assumed to be constant. Another
property of a grasp that is important for grasping is the maximum force used during the
grasp. It can also be viewed as the force necessary to perform the grasp.

If providing the force in Newtons is not possible, there will be added an accompanying
units field to specify the units that the grasp effort will be represented in. When left

19

3. Materials and Methods
empty, it shall be assumed that the units are proprietary to the sensor. For example, a
user enters the number 0.5 for the gripper Robotiq 2F85 from the setup in Section 3.1.1.
The units are not clear, but in the context of the 2F85 gripper it is clear that it means 50%
of the maximum because the interval of values that can be sent into it is [0, 1].

Hence, the following structure of a grasp:

.Grasp. Rotation [xyz]. Translation [xyz].Grasped [yes/no]. Closing speed.Maximum effort. Units

Object pose
Related to successful grasping is the ability of a robotic arm to get into the necessary
position to grasp an object. An algorithm may output a grasp with relation to an object,
but in case it does not take into account the reachability of a pose in real setup. To address
this, we shall also save the object’s pose with relation to the robot manipulator base. This
gives us information about the feasibility of a grasp in a real situation.

.Object pose. Rotation [xyz]. Translation [xyz]

Object instance
Let us now take a closer look at the measurement structure as depicted in Section 3.2.1.
There, we have already established that some measurements are provided by humans,
namely the dataset, dataset id, maker and common name and that they are members of
an object instance.

The object instance is intended to act as a proxy for a real object to which then belong
the measurements. In case one-time fields of unspecified format need to be added to the
object instance, an additional JSON field named other will be present as well.

.Object Instance. Dataset. Identifier in dataset

20

..................................... 3.4. Data Storage Pipeline

.Maker. Common name.Other—JSON. File

User
We want to keep track of who uploaded which measurement, so a user is going to be
associated with the object instance that they measured, the measurement of that instance
and the property estimation, called entry. The relational graph depicting the links between
these elements is found in Figure 4.2.

Experiment structure
By default it shall be assumed that a session consists of one experiment and multiple
measurements, each with its own property estimation. Meanwhile sensor outputs shall be
captured in variables visible in scope to the Butler class after the function that generates
the data variables finishes. The variables will have to be convertible to the JSON format in
Python. A function to help with the conversion of common data types will be provided.
For now the experiment structure is provided in Figure 3.10.

..................................... 3.4. Data Storage Pipeline

Below is the finalized directory structure.

i experiment_{datetime}
i property_{j}

i data
A measurement_object.json
A data_variable_{k}.json
...

i figs
...

i imgs
...

A log.txt
...
A log.txt
A setup.json
{ timestamp_{datetime}

Following the structure laid out above it is still necessary to save the setup. To that end,
a setup.json shall be required to be specified in Butler’s arguments when initializing.

This data is now in JSON format, so the remaining step is putting it all together into a
request to the server.

Uploading
After data is gathered from the local setup, it is then necessary to upload it to the server,
see the second role of Butler in the diagram 3.10. For that a pipeline is going to be used to
convert the experiment folders to a more presentable format.

This process again is split up into two main parts:

. Processing of the experiment directory into one coherent JSON file. Uploading, which itself is split into three parts:. File extraction. Final JSON formatting—removing all references of absolute file paths. Request creation—specifying JSON data and files

25

Figure 3.10: The directory structure as generated by Butler.

Let us take the top-level element first. experiment_{datetime}: This is the encompassing folder containing one experiment,
the datetime variable field is the timestamp in the form of YYYY_MM_DD_HH_mm_ss.

In it, there is an arbitrary number of properties and some files describing the experiment
instance.

21

3. Materials and Methods
. property_name_j: This is the directory where the measurement for one property is

located. j is indexed from 0.. log.txt: This is a top level log file which will contain all print outputs of the function
that has been marked to be logged.. setup.json: This should contain a dictionary mapping the type of the setup element
to its name. For example,

{"gripper": "robotiq_2f85", "arm": "kinova_gen3", ...}.

The location of the setup.json is required in Butler’s arguments when initializing it.. timestamp: This is a timestamp in the same format as the experiment directory
name—YYYY_MM_DD_HH_mm_ss.

Inside the property there are three directories and another log file.

. log.txt: This one contains only the printed lines that contain selected keywords.
The reason for this split is that these prints, containing for example the sequence
[STIFFNESS], can be related to the measurement being performed enabling prints
irrelevant to the measurement to be ignored.. data: This should contain measurement data and sensor outputs.. figs: This should contain generated figures.. imgs: This should contain any images that might have been taking during the mea-
surement.

Finally, we have the data directory.

. measurement.json: This is the JSON file containing the property estimation and can
also contain some sensor outputs.. data_variable_{k}.json: Each sensor output may have one JSON file dedicated to it.
For example: {"robotiq_2f85": "position": [...], "current": [...], "time":
[...]} .

This data is now in JSON format, thus the remaining step is putting it all together into
a request to the server.

Uploading
After data is gathered from the local setup, it is then necessary to upload it to the server,
see the second role of Butler in Figure 3.9. For that a pipeline is going to be used to
convert the experiment folders to a more presentable format.

This process again is split up into two main parts:

22

..................................... 3.4. Data Storage Pipeline

. Processing of the experiment directory into one coherent JSON file. Uploading, which itself is split into three parts:. File extraction from the paths provided in the formatted JSON file. Final JSON formatting—removing all references of absolute file paths. Request creation—specifying the request’s JSON data and files

3.4.2 Butler implementation
In Python, the easiest way to mark a function to be logged is in the form of a decorator.
Therefore, the Butler function decorator was created. The source code is accessible at
https://github.com/Hartvi/butler. A decorator is generally a function wrapper that
can be added above a function in the source code like so:

def decorator(f):
def wrapper(*args, **kwargs):

print("Running a decorated function")
return f(*args, **kwargs)

return wrapper

@decorator
def func(arg1, arg2):

...

The decorator then takes the decorated function as an argument and returns a function
that takes the same arguments as the original function. This way, the functionality of
any function can be extended using a decorator. One can prepend or append custom
functionality and read the inputs or outputs of the function. However, the function itself
remains a black box.

Combining the built up structures from the previous sections, the inputs to Butler are
going to be the following:

class Butler(keywords=(),
keep_keywords=True,
setup_file="setup.json",
read_return=True,
session_parent_dir=config.experiment_directory,
output_variable_name="",
data_variables=(),
img_files=(),
fig_files=(),
data_files=(),
ignore_colours=True,
create_new_exp_on_run=False)

23

https://github.com/Hartvi/butler

3. Materials and Methods
Note, this structure arose while taking into account the requirements of the action selection

Bayesian inference framework which is being developed in parallel to the continuation
of [17].

Let us now examine the arguments one by one:

. keywords: List of keywords whose lines will be extracted when printed.. keep_keywords: Whether to also save the keywords with the rest of the printed line.. setup_file: Path to the JSON containing the setup mappings. E.g. {"gripper":
"robotiq_2f85", ...}. read_return: Whether to take the return value (or first element in the returned tuple)
as the measurement output.. session_parent_dir: Directory where to save the experiments; the default is specified
in the config file.. output_variable_name: The string name of the variable that contains the data that
is otherwise by default assumed to be returned by the decorated function. Has to be
visible in the scope where the decorated function is called. E.g. self.data_var or
just_data_var.. data_variables: The sensor output variables. Format:
{"source_sensor_name": {"quantity (e.g. position)":
[list, of, values], ...}, ...}. img_files: A list of file paths that will be copied to
experiment_i/property_j/imgs every time the function is run.. fig_files: A list of file paths that will be copied to
experiment_i/property_j/figs every time the function is run.. data_files: A list of file paths that will be copied to
experiment_i/property_j/data every time the function is run.. ignore_colours: Whether to omit writing special colour characters in the log files.. create_new_exp_on_run: Whether to create a new
experiment_i folder on every run of the function.

A need that arose after creating the initial draft of Butler as seen above was the option
to add temporary data/files that exist only for tone run of the decorated function. This is
also partly due to the fact that the function is a black box and it is uncertain whether its
outputs have a constant structure.

To that end, functions modifying Butler’s behaviour that can be called from inside the
decorated function and that have a temporary effect for only one run of the decorated

24

..................................... 3.4. Data Storage Pipeline

function are necessary. These need to be able to be called without affecting its execution
while at the same time providing additional context for that run.

The first function is called add_object_context. If the user is measuring an object
whose identity they themselves know and they want to add it as extra information to
the measurement, then they call this function, specifying the name, maker, dataset and
the dataset_id—the ID of the object in the dataset. These fields are those described in
Section 3.2.1.

def add_object_context(context, override_recommendation=False)

The arguments have the following meanings.

. context: This is the object context entered by the user. The format is the following:
{"maker": "ikea", "common_name": "wineglass",
"dataset": "ycb"}. If "dataset_id" is present, "dataset" must also be present.. override_recommendation Whether to remove the constraint that the context keys
have to be one of ["maker", "common_name", "dataset", "dataset_id"].

The second function serves as a temporary alternative to the arguments img_files,
fig_files, data_files. Whereas the arguments set the file paths for every run of the
function, calling add_tmp_files inside the decorated function enables the target file paths
to be different every run.

def add_tmp_files(file_paths, tmp_file_folder, target_names=None)

The arguments have the following meanings:

. file_paths: A list of file paths that is to be copied to the generated experiment folder.. tmp_file_folder: This is one of the three names: "data", "figs", "imgs", desig-
nating which of these three folders the source paths file_paths are to be copied
into.. target_names: This may be filled with a list with the same length as the file_paths
argument. Each source file path’s file name is then copied into the new name in the
tmp_file_folder directory.

The third auxiliary function that is used for recording experiments is
add_measurement_img. The reason for adding extra images in a measurement is for other
users to be able to visually confirm what object was measured or how the measurement
was performed depending on what the uploader recorded.

25

3. Materials and Methods
def add_measurement_img(img_path)

The only argument for this function is the image path.

. img_path: The path to the photo of the object being measured. It will be saved as
img.{suffix} in the data folder.

26

Chapter 4

Experiments and Results

This chapter consists of the logging the measurements of a subset of objects from the YCB
dataset and objects chosen for their visual similarity to those YCB objects. Subsequently
these measurements and property estimations gained from the measured data will be
uploaded to the database.

The process on the side of the user is as follows:..1. Data gathering..2. Formatting..3. Uploading

The server does the following tasks:..1. Data validation..2. Saving to database

Figure 4.1: Selected YCB objects and objects visually similar to them.

The server and data gathering scripts will be tuned according to the needs of the real
setup. The measurements will initially be performed by manually setting the pose of the

27

4. Experiments and Results.....................................
object and of the gripper to reliably obtain grasps and measurements. Afterwards to gather
more grasp proposals, the GPD grasping net [25] shall be employed to gather more diverse
grasps. These two above methods will ensure that the objects’ properties are going to get
measured as well as grasps being generated. The set of objects to be measured is depicted
in Figure 4.1.

Since this work is being created in tandem with the exploratory action selection framework
[17], the objects being measured have been chosen for their ambiguous properties. For
example, the two sponges and 9-hole peg box in Figure 4.1 have been chosen for their
similar appearances yet different properties. The wooden box for example is much heavier
and much stiffer than the two sponges. The two sponges between each other have different
stiffnesses despite being almost identical in appearance.

4.0.1 Database structure
Given the knowledge built up in Section 3.2 the database has been designed in Django with
its structure depicted in Figure 4.2. Some additional fields were added in the attempt to
wholly cover hypothetical scenarios not possible at the lab, such as Other fields in Object
Instance, Grasp for files or JSON data.

Username
Email

Organization

Owner
Common name

Maker
Dataset id
Dataset
Other

Object instance

Setup
Image

Owner

Name

Parameters
Type

Output quantities

Measurement

Sensor output
Sensor output file

Sensor

Measurement

Name
Type

Owner

Repository

Entry
Name

Std
Mean

Units
Other

Other file

User

Object Instance

Measurement

Setup

Sensor Output

Entry Property Element

Setup ElementTranslation
Rotation

Measurement
Object Pose

Translation

Has grasped
Rotation

Measurement
Grasp / Gripper Pose

Speed
Max force

Other

Figure 4.2: Implementation of the database’s structure.

4.0.2 Measurement
Measuring was performed on the physical setup from Figure 3.1. For the measurement
Butler from Section 3.4.2 was used.

28

..................................... 4. Experiments and Results

Compatibility issues
Some compatibility issues arose when trying to insert Butler into the main script. The
biggest one of them was discrepancies between Python2.7 and Python3 versions. To solve
this, the decorator was rewritten in neutral Python compatible with both versions of
Python.

Recording experiments
To record an experiment on the setup at the lab the function exploratoryAction was
decorated like so:

@Butler(keywords=['[BUTLER-TEST]', '[INFO]',
'[INFER-INFO]', '[INFER]',
'[ACSEL]', '[ACSEL-INFO]'],

setup_file="/home/robot3/vision_ws/src/.../butler/setup.json",
data_variables=('self.data_variables'))

def exploratoryAction(self, planned_action, mod_specs,
translation_pos, mes_rot, iteration, ID):

What this does is save all prints coming from this function that contain one or more of the
keywords, it copies the setup.json into the experiment folder, saves the self.butler_values
variable into a file called data_variables.json and saves the first return value of the
decorated function into measurement.json.

The format of the return value has been hitherto uncertain but based on the database
structure it is expected to be roughly in the format as shown below. Later on in the
formatting stage the lexicological roots of the names of the members as enumerated below
are going to be recursively searched for and matched with regular expressions.

class PropertyMeasurement:
e.g. mass, elasticity, vision, sound
property_name
measurement_type # continuous, discrete
parameters/prediction/output
units
grasp/gripper_pose
object_pose
values
repository
other
other_file

The data_variables variable contains the dictionary:

29

4. Experiments and Results.....................................
{"camera": {"image": "img_cam1.png"}}

At the lab specific objects were measured one by one, so in this case the function
add_object_context can be used to add extra information. For example, when we are
measuring the plastic banana from the YCB dataset we call the following inside the
decorated exploratoryAction function:

def exploratoryAction(...):
...
context_dict = {"dataset_id": "011_banana",

"dataset": "ycb",
"common_name": "banana_ycb"}

Butler.add_object_context(context_dict)
...

This results in an object_context.json containing:

{"common_name": "banana_ycb", "dataset_id": "011_banana", "dataset": "ycb"}

The resulting directory structure after running a measurement with the above modifica-
tions is depicted in Figure 4.3 for a object category vision measurement.

Figure 4.3: An example directory structure of a vision category measurement.

4.0.3 Physical measurement
To obtain grasps it is necessary to have some frame of reference of the objects and to know
the gripper pose. This was achieved with CosyPose [26] trained and setup at the lab by
Jan Behrens from the Czech Intitute of Information Robotics and Cybernetics (CIIRC).

CosyPose estimates the 6D pose of pretrained objects from an input RGB image. In our
case, CosyPose was trained only on a subset of 21 YCB objects called YCBV [27]. One
such object is the plastic cup with the labels 065-f_cups, whose measurement can be seen
in Figure 4.4.

30

..................................... 4. Experiments and Results

Figure 4.4: Stiffness measurement of the plastic cup from the YCB dataset.

Grasp generation

One of the goals of this work is to generate grasp proposals. To that end, Lukáš Rustler
helped with getting PointNetGPD [25] up and running on the local setup. Due to random
noise issues in the point cloud generated by the Intel D435 depth cameras, the grasp
generation was only able to be used on soft objects.

One caveat of this configuration is that, for example, for the sponges from Figure 4.1 there
is no general consensus on their coordinate systems. That is why there were arbitrarily—not
randomly, which means the edges of the objects line up with the axes of their coordinate
systems—coordinate systems assigned to the objects Just like the add_measurement_img
functionality from Section 3.4.2, images of how the objects were positioned relative to the
robot base were added in post-processing, see Section 4.0.4.

4.0.4 Formatting
After the experiments have been saved to disk, it is time to compile the experiments into a
single uploadable JSON dictionary. For that a module was created to search the experiment
and property folders for JSON files and files on disk that are pointed to in the value fields
in measurement.json and data variable JSONs.

For each property directory—in Figure 4.3 it is cat-vision_0—there is created one
almost uploadable JSON file that has now standardized keys that the uploader module can
then use to access the fields.

The formatting module checks the property directory for permissible variations of
properties that are necessary to make the property entry uploadable.

31

4. Experiments and Results.....................................
Post-processing

Sometimes—due to human error or otherwise—some mistakes are introduced or fields
left out from the measurement. If these mistakes are in the form of, for example missing
dataset in the object_context.json, then there is a function for that as well.

def change_experiment_jsons(update_dict,
experiment_directory,
json_file_name,
rule,
replace=False):

What this does is it updates any JSON file named json_file_name located in the
experiment_directory inplace with the update_dict argument if the path to the file
json_file_name fulfills a rule set by rule.

change_experiment_jsons({"repository": "https://github.com/user/repo"},
"path/to/experiment_2022_04_29_16_51_03",
"measurement.json",
lambda x: "at-vision" in x and "data" in x)

The above call of the function is intended to update all paths that look like this:
path/to/experiment_2022_04_29_16_51_03/*at-vision*data*/measurement.json
with the mapping {"repository": "https://github.com/user/repo"}. This is equiv-
alent to updating the JSONs like python dictionaries:

measurement["repository"] = "https://github.com/user/repo"

4.0.5 Uploading
The formatted dictionaries are then loaded and processed right before uploading, removing
all absolute path references whilst leaving only the base names of the files. The files pointed
to in the formatted dictionaries are opened and loaded into memory. Once these two steps
are done, the request can be made.

Server interface
Interfacing with the server is done through the Python requests library. An example of
this is as follows:

req = requests.request(method="POST",
url=url, auth=auth_tuple,
data=data_dict, files=file_bytes)

32

..................................... 4. Experiments and Results

Downloading is simply done by reading the website text and loading it as a JSON file.

r = requests.request("GET", "http://www.cvut.cz/")
data_dict = json.loads(r.text)

Downloading will be left for the user to handle.

Implementation
The final function that we use to upload data is lazy_post_measurements.

def lazy_post_measurements(auth_tuple, url)

. auth_tuple: This is a tuple in the form ("username", "password").. url: This is the URL to post to. For the local client it is 127.0.0.1/rest/[measurements,
entries]

This function expects the previous steps from the processing pipeline to have already
been taken. The lack of other arguments is due to the fact that the experiments’ and
formatted dictionaries’ locations are expected to be defined in a config.py file which is
located in the same directory as butler.py.

When called, it uploads whatever JSON file has not yet been uploaded and returns a
dictionary showing which files have been uploaded successfully.

{"path/to/formatted_experiment.json": true/false, ...}

4.0.6 Database
Let us now examine what the database and its website looks like. The back-end functionality
is already accessible with scripts but we also want a user-friendly front-end with links to
all of the components of the database and documentation on how to use it. The website
is going to be deployed on https://ptak.felk.cvut.cz/ipalm/ and may be visible on
http://bayes.felk.cvut.cz as well. The database’s source code is in the repository
https://github.com/Hartvi/object_database.

Homepage
The homepage for the database is a crossroad to different sub-applications, see Figure 4.5.
The three semantic sections are the Django database, the Django Rest Framework (DRF)
and the offline experiment logger and uploader.

The DRF homepage is in Figure 4.6. There we can see the publicly visible models and
the links to the lists of

33

https://ptak.felk.cvut.cz/ipalm/
http://bayes.felk.cvut.cz
https://github.com/Hartvi/object_database

4. Experiments and Results.....................................

Figure 4.5: The website homepage. The top left is the Django Rest Framework (DRF) home
and user register form, below is the internal database structure. On the right from the top there
is the automatically generated interfacing documentation from the DRF and below there is the
documentation for the experiment logging and uploading module.

Database REST API (Django Rest Framework)

The Django Rest Framework conveniently provides a user interface. The appearance of a
measurement entry can be seen in Figure 4.7.

Create account

This redirects the user to a create user form. One can only post to the server with an
account.

Database structure

The database structure has already been shown in Figure 4.2 The database, as displayed
when the link is clicked, otherwise has additional internal Django-specific models and fields.

REST docs

These docs are automatically generated by DRF and only show how to interact with
individual components of the database.

Data collector docs

The documentation for the offline module butler was generated from docstrings using the
Sphinx automatic documentation tool [28]. The top of the documentation page can be seen
in Figure 4.10.

34

..................................... 4. Experiments and Results

Figure 4.6: The DRF homepage with links to lists of the main data models from the database.

Benchmarking
How do we compare the methods of obtaining object properties? In many cases, there is no
ground truth measurement of a property. Even if there were a ground truth measurement
such as a professional stiffness measurement of, say, the YCB mustard bottle, it may not be
comprehensive enough to describe the stiffness of every part of the bottle; its stiffness would
also depend on its contents, whether it is open, etc. A professional setup may measure
stiffness with flat plates pushing on the mustard bottle, yet a gripper may grasp it in a way
impossible to do with conventional professional setups.

For that reason a complete description of the measurement is necessary. Grippers with
the same shape may even produce different output quantities: one of them might output
the gripper’s motor current while the other one has a flat pressure sensor mounted on its
pads.

One option for comparing the quality of property estimates is comparing the algorithms
based on the source data type used for the estimations. For example, in the BOP challenge
[29] contestants are divided into groups based on the type of input to their object pose
estimation algorithms. There are separate leaderboards for RGB, RGBD and depth-only
algorithms. Another metric is the speed at which the algorithms produced their results.

35

4. Experiments and Results.....................................

Figure 4.7: An uploaded categorical measurement as it appears rendered by the Django Rest
Framework. Only one category has been left in for brevity.

36

..................................... 4. Experiments and Results

Figure 4.8: The register form to create a user.

Figure 4.9: Automatically generate DRF documentation.

37

4. Experiments and Results.....................................

Figure 4.10: The documentation page generate using Sphinx.

38

Chapter 5

Conclusion, Discussion, and Future Work

In this work we have discussed how previous works relate to our goal and what functionalities
they bring to the table. It was established that there is space for a database that would
enable different datasets to live in the same data structures. To that end, an interactive
database was created in Django and Django Rest Framework to enable users to freely
upload and download measurement and property estimation data. To relieve the user of the
burden of formatting the data specifically for the server, a logging module called Butler
was created. Butler is a function decorator which means that in the user’s code it can be
added above the function that outputs the measurement and property estimation data.

The Butler module was tested on the local setup and a subset of the YCB dataset and
some other common household objects were measured at the lab. The objects frames of
reference were generated using CosyPose and using the knowledge of the pose of the gripper
and of the objects, grasps were generated and added to the measurements. This way, grasps,
in addition to other measurements, were added to the database’s repertoire.

There was also discussed a methodology of comparing the performances of individual
setups and algorithms. One option is comparing the source data type. For example in the
BOP challenge [29] the rankings are split by the type of input the algorithms used: RGB,
RGBD or depth-only. Another metric is the speed at which the algorithms produced their
results.

The database as created with Django is able to be automatically migrated, which means
that it has an updatable structure. In theory the database could then encompass all
manners of robotic experiments, provided there is enough disk space and an interface to
upload them.

The limitation at this point is the lack of features. As of now the database is just raw
structured data storage. Another issue might be ease of use, as the Butler module and
uploading was only tested on the local setup, albeit in Python versions 2 and 3.

In the future testing the Butler module on other setups would provide valuable feedback
on how to make it easier to use, improve its functionality and clarify the documentation.
Furthermore, it would help to extend the database to be able to represent different gripper
configurations and perhaps even derive a general representation of deformable objects, such
as cloths.

If there are at some point in the future hundreds or thousands of measurements saved in

39

5. Conclusion, Discussion, and Future Work..............................
the database, then there are features that begin to be useful: for example data visualization
or cross-checking the reliability of measurements.

An example of data visualization could be a widget that would, on request, fetch all
measurements performed on the plastic banana from YCB and graph the results for each
property that was measured on the banana.

Another possibility would be to display all stiffness measurements, the number of stiffness
measurements, the number of measurements performed on a particular object and enable
all the different types of queries in general. There could be created all sorts of summaries
from the database. On the homepage it could for example show the total number of
measurements, total number of objects measured and total number of properties estimated.

The cross-checking of measurements would be a more complicated feature. There is no
central authority to validate measurements; even users by themselves do not have complete
authority to check another user’s measurement because there is some uncertainty tied
to each measurement. To consider a measurement sufficiently valid, it would have to be
replicated by several users. Even then it would not be 100% certain that the result is
one number—any measurement result would stay in the form of a distribution of points,
each with their own measure of uncertainty. This topic has been explored in probabilistic
reasoning [17] and seems like a good case for the use of probabilistic blockchains [30].

40

Bibliography

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition. IEEE, 2009, pp. 248–255.

[2] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-100 (canadian institute for advanced
research).” [Online]. Available: http://www.cs.toronto.edu/~kriz/cifar.html

[3] P. Stoudek and M. Mareš, 2020. [Online]. Available: https://gitlab.fel.cvut.cz/
body-schema/ipalm/ipalm-grasping

[4] R. Dahl, Charlie and the Chocolate Factory. Puffin Books, 1964.

[5] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb
object and model set: Towards common benchmarks for manipulation research,” in
2015 international conference on advanced robotics (ICAR). IEEE, 2015, pp. 510–517.

[6] F. Bottarel, G. Vezzani, U. Pattacini, and L. Natale, “Graspa 1.0: Graspa is a robot
arm grasping performance benchmark,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 836–843, 2020.

[7] D. Morrison, P. Corke, and J. Leitner, “Egad! an evolved grasping analysis dataset for
diversity and reproducibility in robotic manipulation,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 4368–4375, 2020.

[8] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg,
“Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics,” 2017.

[9] M. Thosar, C. A. Mueller, G. Jäger, J. Schleiss, N. Pulugu, R. Mallikarjun Chennaboina,
S. V. Rao Jeevangekar, A. Birk, M. Pfingsthorn, and S. Zug, “From multi-modal
property dataset to robot-centric conceptual knowledge about household objects,”
Frontiers in Robotics and AI, vol. 8, p. 87, 2021.

[10] M. Ciocarlie, “Ros household objects,” 2014. [Online]. Available: http:
//wiki.ros.org/household%20objects

[11] M. Vincze, M. Rudorfer, M. Suchi, I. G. Camacho, J. Borras, G. Alenya, A. Leonardis,
M. Srihadran, A. Alliegro, and T. Tommas, “Benchmarks for understanding robotic
grasping,” 2022. [Online]. Available: https://www.acin.tuwien.ac.at/project/burg/

41

http://www.cs.toronto.edu/~kriz/cifar.html
https://gitlab.fel.cvut.cz/body-schema/ipalm/ipalm-grasping
https://gitlab.fel.cvut.cz/body-schema/ipalm/ipalm-grasping
http://wiki.ros.org/household%20objects
http://wiki.ros.org/household%20objects
https://www.acin.tuwien.ac.at/project/burg/

5. Conclusion, Discussion, and Future Work..............................
[12] M. Suchi, T. Patten, D. Fischinger, and M. Vincze, “Easylabel: A semi-automatic

pixel-wise object annotation tool for creating robotic RGB-D datasets,” in
International Conference on Robotics and Automation, ICRA 2019, Montreal,
QC, Canada, May 20-24, 2019, 2019, pp. 6678–6684. [Online]. Available:
https://doi.org/10.1109/ICRA.2019.8793917

[13] M. R. Loghmani, B. Caputo, and M. Vincze, “Recognizing objects in-the-wild: Where
do we stand?” in IEEE International Conference on Robotics and Automation (ICRA),
2018.

[14] M. Hoffmann and M. Pliska, “Single-grasp deformable object discrimination,” 2022.
[Online]. Available: https://osf.io/zetg3/

[15] S. Patni and M. Hoffmann, “Elasticity estimation of soft objects using
robot grippers,” 2021. [Online]. Available: https://osf.io/gec6s/?view_only=
979775a79d934a0083a1b2008544183e

[16] M. Dimiccolil, S. Patni, and M. Hoffmann, “Ycb-impact sounds dataset,” 2022.
[Online]. Available: https://osf.io/4tcp6/

[17] A. Kružliak, “Exploratory action selection to learn object properties through robot
manipulation,” 2021. [Online]. Available: http://hdl.handle.net/10467/94461

[18] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recognition in the wild with
the materials in context database,” Computer Vision and Pattern Recognition (CVPR),
2015.

[19] J. Hartvich, A. Kružliak, and M. Pliska, “Object category and material inference with
detectron2.” [Online]. Available: https://prezi.com/i/rrf1sj4fgrxr,2020

[20] J. K. Behrens, M. Nazarczuk, K. Stepanova, M. Hoffmann, Y. Demiris, and K. Miko-
lajczyk, “Embodied reasoning for discovering object properties via manipulation,” in
2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 10 139–10 145.

[21] “Definition of physical object,” accessed on 02.04.2022. [Online]. Available:
https://www.collinsdictionary.com/dictionary/english/physical-object

[22] “Django documentation,” 2022, accessed on 04.04.2022. [Online]. Available:
https://docs.djangoproject.com/en/4.0/

[23] M. Makai, “Django orm,” 2021, accessed on 04.04.2022. [Online]. Available:
https://www.fullstackpython.com/django-orm.html

[24] IBM, “REST APIs,” 2021, accessed on 20.04.2022. [Online]. Available: https:
//www.ibm.com/cloud/learn/rest-apis

[25] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang, “Pointnet-
gpd: Detecting grasp configurations from point sets,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 3629–3635.

42

https://doi.org/10.1109/ICRA.2019.8793917
https://osf.io/zetg3/
https://osf.io/gec6s/?view_only=979775a79d934a0083a1b2008544183e
https://osf.io/gec6s/?view_only=979775a79d934a0083a1b2008544183e
https://osf.io/4tcp6/
http://hdl.handle.net/10467/94461
https://prezi.com/i/rrf1sj4fgrxr, 2020
https://www.collinsdictionary.com/dictionary/english/physical-object
https://docs.djangoproject.com/en/4.0/
https://www.fullstackpython.com/django-orm.html
https://www.ibm.com/cloud/learn/rest-apis
https://www.ibm.com/cloud/learn/rest-apis

.............................. 5. Conclusion, Discussion, and Future Work

[26] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “CosyPose: Consistent multi-
view multi-object 6d pose estimation,” in European Conference on Computer Vision.
Springer, 2020, pp. 574–591.

[27] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes,” arXiv preprint
arXiv:1711.00199, 2017.

[28] G. Brandl, “Sphinx documentation,” 2022. [Online]. Available: https://www.
sphinx-doc.org/en/master/

[29] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother,
and J. Matas, “BOP challenge 2020 on 6d object localization,” in European Conference
on Computer Vision. Springer, 2020, pp. 577–594.

[30] T. Salman, R. Jain, and L. Gupta, “Probabilistic blockchains: A blockchain paradigm
for collaborative decision-making,” in 2018 9th IEEE Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON). IEEE, 2018, pp.
457–465.

43

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483636Personal ID number:Hartvich JiříStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Estimating Object Properties Through Robot Manipulation - Dataset and Benchmark

Bachelor’s thesis title in Czech:

Odhadování fyzikálních vlastností objektů pomocí robotické manipulace – dataset a srovnávací měřítko

Guidelines:

While progress in computer vision has been largely fueled by shared datasets and benchmarks, advances in robotics in
general, and in robot manipulation in particular are slower, in part due to the unavailability of shared data and protocols.
The project IPALM (Interactive Perception-Action-Learning for Modelling Objects, https://sites.google.com/view/ipalm)
aims to fill this gap by providing methods, datasets and benchmarks focused on automatically extracting physical object
properties like stiffness, mass, or surface roughness, which can be subsequently used for manipulation.
1. Survey existing datasets and benchmarks related to robot manipulation (e.g., [1][2][4]).
2. Design software that meets the following criteria:
a. Database of categories of every-day objects and prior probability distributions of their properties (e.g. a mug is typically
from ceramic, has a mean mass of 100 g, etc.). The database can be seeded from [2].
b. Interface the database with software that explores a particular object instance in front of a robot camera and manipulator
- following up on [3]. Exploratory actions will be selected and new measurements will be added to the database with
appropriate tags (e.g., which gripper and which parameters were used).
c. Grasp proposals or means of obtaining them will be part of the database.
3. Create a pilot dataset using the objects available at the lab (e.g,.YCB dataset [2]).
4. Prepare a protocol for benchmarking - comparing the performance of different robot setups and algorithms in finding
object properties. Evaluate the framework of [3] and create a first entry in a leader board.
5. Prepare and interface for expansion of the database, with the possibility of active participation of contributors from the
outside.

Bibliography / sources:

[1] Bottarel, F., Vezzani, G., Pattacini, U., & Natale, L. (2020). GRASPA 1.0: GRASPA is a robot arm grasping performance
benchmark. IEEE Robotics and Automation Letters, 5(2), 836-843. https://github.com/robotology/GRASPA-benchmark
[2] Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., & Dollar, A. M. (2015). The YCB object and model set:
Towards common benchmarks for manipulation research. In 2015 International Conference on Advanced
Robotics (ICAR) (pp. 510-517). IEEE. https://www.ycbbenchmarks.com/
[3] Kružliak, A. (2021), 'Exploratory action selection to learn object properties through robot manipulation', Bachelor thesis,
Faculty of Electrical Engineering, Czech Technical University in Prague.
[4] Morrison, D., Corke, P., & Leitner, J. (2020). EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility
in robotic manipulation. IEEE Robotics and Automation Letters, 5(3), 4368-4375. https://dougsm.github.io/egad/

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Mgr. Matěj Hoffmann, Ph.D. Vision for Robotics and Autonomous Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 17.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Matěj Hoffmann, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

	Introduction
	Related Work
	YCB (Yale-CMU-Berkeley Object and Model set)
	GRASPA (Robot Arm graSping Performance benchmArk)
	EGAD (Evolved Grasping Analysis Dataset)
	RoCS (Robot-Centric dataSet)
	ROS household objects
	BURG (Benchmarks for Understanding Robotic Grasping)
	Individual property datasets
	Single-grasp deformable object discrimination
	Elasticity estimation of soft objects using robot grippers
	YCB-impact sounds dataset

	Summary
	Relation to current work

	Materials and Methods
	Experimental Setup
	Physical Setup
	Measurement Pipeline
	Exploratory actions

	Data Format
	Top-down View
	Bottom-up View

	Django
	Django Rest Framework
	Overall structure

	Data Storage Pipeline
	Butler
	Butler implementation

	Experiments and Results
	Database structure
	Measurement
	Physical measurement
	Formatting
	Uploading
	Database

	Conclusion, Discussion, and Future Work
	Bibliography

