
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Planning for the MoleMOD system

Michaela Brejchová

Supervisor: RNDr. Miroslav Kulich, Rh.D.
Field of study: Cybernetics and Robotics
Subfield: Systems and Control
May 2018

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

456985Osobní číslo:MichaelaJméno:BrejchováPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotikaStudijní program:

Systémy a řízeníStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Plánování pro systém MoleMOD

Název bakalářské práce anglicky:

Planning for the MoleMOD system

Pokyny pro vypracování:

Seznam doporučené literatury:
[1] Petrš, Jan, Havelka, Jan, Florián, Miloš and Novák, Jan, MoleMOD - On Design specification and applications of a
self-reconfigurable constructional robotic system, ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th
eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 159-166
[2] Steven M. LaValle, Planning Algorithms, Cambridge University Press, 842 pages, 2006

Jméno a pracoviště vedoucí(ho) bakalářské práce:

RNDr. Miroslav Kulich, Ph.D., inteligentní a mobilní robotika CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 16.01.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
RNDr. Miroslav Kulich, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor

RNDr. Miroslav Kulich, Rh.D. for his
guidance, patience and comments that
helped me to completed the project.

Also, I would like to thank Ing. arch.
Jan Petrš for the figures of the MoleMOD
system and Collada files with models that
he provided me.

Declaration
I declare that the presented work was

written independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, May 2018

iii

Abstract
The aim of this thesis is to design a plan-

ning algorithm for the MoleMOD system
that is created at the Faculty of Architec-
ture of the Czech Technical University in
Prague. The system is designed to build
various constructions of special modules.
These modules have tunnels inside, where
the worm-shaped robots can move, and
shift modules.

The first part deals with a description
of MoleMOD system, robots and building
blocks, and possibilities of its use.

Then the theory of discrete planning
and the design of the algorithm follow. An
informed method for state-space search
will be used, more precisely the A∗ al-
gorithm, adapted for the MoleMOD sys-
tem’s needs.

The last part is about the Gazebo sim-
ulator in which the algorithm output will
be tested. For that, it is necessary to
create models of individual parts of the
system including their kinematics.

Keywords: MoleMOD, planning, A*
algorithm, Gazebo simulator

Supervisor: RNDr. Miroslav Kulich,
Rh.D.

Abstrakt
Cílem této práce je navrhnout plánovací

algoritmus pro systém MoleMOD, který
vzniká na Fakultě architektury ČVUT v
Praze. Jde o systém navržený pro stavbu
různých konstrukcí ze speciálních modulů.
V těchto modulech jsou tunely, kterými
mohou prolézat roboty tvarem připomí-
nající červy, a moduly přemisťovat.

První část práce se zabývá popisem
systému MoleMOD, robotů a stavebních
bloků, a možnostmi jeho využití.

Následuje teorie diskrétního plánování a
návrh samotného algoritmu. Použit bude
algoritmus pro informované prohledávání
stavového prostoru, přesněji algoritmus
A∗, upravený pro potřeby systému Mole-
MOD.

Poslední část je o simulátoru Gazebo,
ve kterém se bude výstup algoritmu testo-
vat. K tomu je zapotřebí vytvořit modely
jednotlivých částí systému včetně jejich
kinematiky.

Klíčová slova: MoleMOD, plánování,
algoritmus A*, simulátor Gazebo

Překlad názvu: Plánování pro systém
MoleMOD

iv

Contents
1 Introduction 1
2 MoleMOD 3
2.1 Robots . 3
2.2 Modular building units 4
2.3 Application 4
3 Planning 7
3.1 Discrete Planning 7
3.2 A* algorithm 7
3.3 MoleMOD . 9
3.3.1 State . 9
3.3.2 Actions 10
3.3.3 Cost calculation 11

3.4 An example of planning 12
3.5 Planning time 14
4 Simulation environment for the
MoleMOD system 17
4.1 Gazebo . 17
4.1.1 World and model files 17
4.1.2 Plugins 19

4.2 Models . 19
4.2.1 Modules 20
4.2.2 Robots 21

5 Testing models in Gazebo 25
5.1 Simple movements 25
5.2 Movements for the planning 25
6 Conclusion 29
References 31
A Models of modules 33
B Planning tasks 35
C CD content 37

v

Figures
2.1 The MoleMOD system 3
2.2 Structure of the system 4
2.3 Pillows inflaction 4
2.4 Building . 5

3.1 Examples of states 9
3.2 Moving in a tunnel 10
3.3 An example of movement 10
3.4 Cooperation of two robots 11
3.5 An example of planning 12
3.6 Possible next states for the initial
state . 13

3.7 Possible next states 13
3.8 The building step by step 14
3.9 Planning tasks for time
measurement 14

3.10 Time of planning dependent on
the task (diverse numbers of robots) 15

3.11 Time of planing dependent on the
number of models (diverse types of
tasks) . 15

3.12 Another task for time
measurment . 16

3.13 Time of planning dependent on
the number of models 16

4.1 An example of SDF 19
4.2 Triangle meshes 20
4.3 Importing mesh 21
4.4 The simplest model 22
4.5 The rotating model 23
4.6 Moving in a tunnel - the final
model . 24

4.7 The final model 24

5.1 Forward moving 25
5.2 Turning right 26
5.3 Moving in the straight tunnel . . 26
5.4 Turnning in the module 26
5.5 Lifting . 26
5.6 A problem with modules 27

Tables
3.1 Time of planning 1 15
3.2 Time of planning 2 16

vi

Chapter 1
Introduction

Currently, advanced technologies are used almost everywhere, even in archi-
tecture. Due to higher safety and speed requirements, the use of the robotic
systems is more popular. Robots do not need to sleep; they are faster and
more precise than humans. They also can work in locations, where it would
be really dangerous for people.

The MoleMOD system is a new type of robotic system for usage in architec-
ture to build static constructions as well as movable and adaptive. The system
consists of two kinds of units - passive and active. The idea of this project is
that the active elements (robots) move the passive elements (building units)
and thus create various constructions.

The system as a whole and all its parts are described in more details in the
following chapter. It also contains examples of possible practical applications
in the future.

The third chapter deals with planning. It contains a description of the
discrete planning and state-space search using the informed A∗ algorithm
followed by the design of the state-space for the MoleMOD system and the
modification of the planning algorithm for the needs of the system.

The fourth chapter is about creating models in the robotics simulator called
Gazebo. The plans returned by the planning algorithm will be tested in the
simulator, so it is necessary to make models of active and passive components
of the system. In the case of the active elements, it is needed to add also
kinematics.

The summary of the thesis is in Chapter 5. Apart from that, it contains
some ideas for the future enhancement of the algorithm to make the planning
faster even for a higher number of modules and robots.

1

2

Chapter 2
MoleMOD

MoleMOD is a new revolutionary building robotic system. In fact, it is a kind
of a modular robotic system (MRS). The system is cheaper than standard
MRS because it does not need so many mechanical and electronic parts. It
consists only of passive building modules (MOD) and active robots (Moles)
that can move the modules from the inside.

Figure 2.1: The MoleMOD system (by Jan Petrš)

The system is inspired by colonies like termites, ants or bees, which perma-
nently rebuild and adapt their "houses" to surroundings and current conditions.
In the future, MoleMOD should be adaptive and movable or static, what will
be at needed at the moment.[1][2]

2.1 Robots

The robot is made up of three parts: a body, a rotator and a head. Every
part has a specific purpose. The head is used for rotating special screws that
joint two modules. Each robot has two revolving heads, which are located on
both ends of the body. They may also serve as wheels so the robot can ride.

Both heads are connected by a soft body. The body allows movement of
the whole robot and control of the heads directions. It is split by rotator into

3

2. MoleMOD

Figure 2.2: Structure of the system (by Jan Petrš)

two pieces consisting of three "vertebras" and three silicone pillows that are
between them. The pillows can be inflated or deflated. Thanks to this it is
possible to inflect, stretch or attract the whole body. The motion is similar
to the movement of worms.

The last part of the robot is the rotator and is used for revolving with
modules that are connected to robots.[1][2]

Figure 2.3: Pillows inflation (by Jan Petrš)

2.2 Modular building units

The final building consists only of the modular units. They are like bricks
but can be adapted and moved by robots. The robots serve as workers or
building machines.

The big advantage of the system is that the units can have several shapes.
They only need to have same faces, which are connected by special joints.
Each unit has at least one hole or tunnel, where robots can move. Thanks to
that, the final construction is like a maze.

Another advantage of passive building units is that they do not need to be
of a special material. They can be made of recycled plastics, wood, carbon,
concrete or polystyrene and so on. Nevertheless, the weight is important, so
the lighter materials are better.[1][2]

2.3 Application

The MoleMOD system is very adaptable and can be used in many various
situations. There are lots of locations in the world that are not safe for people,

4

..................................... 2.3. Application

or there is a problem to build. Places like deserts, mountains or polar regions,
which cannot be inhabited, but it can be necessary to build there. MoleMOD
may not be used only for building houses, but also for bridges, pylons or
research stations.

The system does not need cranes or other machines. Therefore it is quite
easy to transport it to the building site. It will even be possible to transfer
only robots; building modules will be created by a 3D printer from local
materials. This way the system could be used for the colonization of another
planet.

Other uses may be for example temporary constructions. Tribunes for
sports events, such as the Olympic Games or the World Cup races, markets,
exhibitions, festivals, events that last only a few days or weeks.

No less important is the possibility of using the system in case of a disaster.
It can be building of bridges after a flood, shelters for people who have lost
their homes due to a catastrophe and so on. Also, it can be used after a
nuclear disaster, when the presence of humans is not possible because of
radiation.[1][2]

Figure 2.4: Building (by Jan Petrš)

5

6

Chapter 3
Planning

This chapter describes a planning algorithm for the MoleMOD system. The
task is to put building modules into required construction by a sequential
moving of models.

3.1 Discrete Planning

The basic idea of the discrete planning is that different situations are called
states and set of all states, which are possible in the world, is called state
space. The world can be changed by actions. When an action u is applied
to the current state x, a new state x′ is found according to state transition
function:

x′ = f(x, u).
The action space U(x) represents all actions that can be applied to x. The

same action can be used for several states. Then we define the set of all
possible actions:

U =
⋃

x∈X

U(x).

The task of a planning algorithm is to find a series of actions that step
by step transform the initial state to a goal state xG or a set of goal states
XG.[3]

3.2 A* algorithm

The A∗ algorithm count among informed methods for state-space search. It
means that each state is somehow evaluated. In the case of the A∗ algorithm
it is the function:

f(x) = g(x) + h(x).
g(x) is the cost of the entire way from the initial state to the current state x.

It can be calculated incrementally in the algorithm, so there is no difference
between the real cost g∗(x) and the computed cost g(x).

7

3. Planning.......................................
Function h(x) is called heuristic function. Unfortunately, we are not able

to calculate the real cost h∗(x) of the way between state x and the goal state.
However, we can estimate it. We need its value to be as close to the value of
h∗(x) as possible. If 0 ≤ h(x) ≤ h∗(x) for every x, we say that the heuristic
function is admissible and the algorithm is guaranteed to find the cheapest
way from initial to the goal state.

In many cases, we can make a reasonable underestimate of the cost. For
example for planning of moving on a 2D grid, assuming that the cost of
the way is the total number of steps, we can use the underestimate h(x) =
|i′ − i| + |j′ − j|, where (i, j) are coordinates of one state and (i′, j′) are
coordinates of another state. When there are some obstacles, the real cost
can increase, but it never will be lower, because this is the least possible cost
of the way between two states. If a longer way is taken, there is a possibility
that the algorithm will not work correctly. For some states the computed
cost might be higher than the real cost and the algorithm may choose a state
that has a lower cost, but in fact, it has a higher cost.[3]

The entire A∗ algorithm is shown in Listing 3.1. All open states are saved
in an open list. In each cycle, the list is searched and the best state is selected
(line 3). That means the algorithm computes f(x) for every state in the open
list and return the state with the lowest value. Then the state is inserted into
a closed list (line 4) and removed from the open (line 5). If the state is the
goal state, the algorithm terminates (line 7). Otherwise, the state expands
(line 9) to other states that are stored in an expanded list. Every state e from
this list, if it is not already in the closed, is inserted into the open and the
cost of the way from the initial state g(e) is computed. And then the cycle is
repeated until a solution is found.

1 open. insert (initial)
2 while (open is not empty)
3 x = best(open)
4 closed . insert (x)
5 open. remove (x)
6 if (x is goal)
7 return SUCCESS
8 else
9 expanded = expand (x)

10 expanded = expanded - closed
11 open = open + expanded
12 return FAILURE

Listing 3.1: The A∗ algorithm in the pseudocode

Operations at lines 10 and 11 need to be specified. Because some of the
expanded states may already be in the open list or the closed list, it is
necessary for the correct function of the algorithm to select just one of them.
In case that x is already in the open list and its cost is better, then the state
is not added into the list. If the cost of the state in the open list is worse,
then the newly expanded state is added to the list and the original is removed.

8

......................................3.3. MoleMOD

The similar procedure is followed if x is already in the closed list. The better
state is added to the open list and removes from the closed list. If it is worse
than the state in closed, nothing happens.[8]

3.3 MoleMOD

To simplify the task, I will consider only two-dimensional space and cube-
shaped building modules with tunnels crosswise that allow the robot to move
up, down and to both sides. I will also not contemplate connecting blocks by
special joints.

3.3.1 State

A state is represented by an arrangement of the buildings modules and robots
positions. For the needs of the program, it is characterized by an array of
values.

0 empty place
1 module
2 module with a robot

For example, states from Fig.3.1 are represented by the two-dimensional
matrices below.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 1 1 1 1

0 0 0 0 0
0 0 0 0 0
0 2 0 0 0
0 1 0 0 0
0 1 1 1 0

0 0 2 0 0
0 0 2 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

state 1 state 2 state 3

Figure 3.1: Examples of states

9

3. Planning.......................................
3.3.2 Actions

From a state to a next state it is passed by robots moving and shifts modules.
All actions depend on the positions of robots and modules, the total number
of robots and other conditions.

The simplest motion that the model can perform is moving from one block
to another. The condition for this action is that the position, where the robot
moves to, is not outside a given area and also there is a module. This way
the model can move to the right, to the left, up and down.

Figure 3.2: Moving in a tunnel (by Jan Petrš)

Another important movement is lifting modules. In reality, the model
expands and partially inserts into the blocks beside. After that, the robot lifts
one block up and place it on the top of the second one. Finally, the model
retracts into one of the two blocks. To reduce the number of possibilities,
I will require the robot picks up the module, where it originally was, and
remains in the module after the movement. To the motion can be executed,
there has to be a free space around the moving block.

Putting down is similar to lifting. The robot expands into the module
under its position and then contracts with the top one. For simplicity, the
model starts and finishes again in the moved block.

Figure 3.3: An example of movement (by Jan Petrš)

The last motion that is possible with only one robot is moving a module
to the right or the left. The model is in the block that we want to shift. If
the place next to the block is free and under it, there is another module, the

10

......................................3.3. MoleMOD

robot expands to this module. Then it moves the block to the empty position
and contract. The moving finishes again in the shifted module.

All movements, which were mentioned above, are valid also for the case
with more robots. The advantage is that they can be performed at the same
time, so the entire construction is done much faster.

Figure 3.4: Cooperation of two robots (by Jan Petrš)

Besides, robots can work on a movement together. A module is lifted by
one robot to a certain position, where a second robot takes it and completes
the move as shown in Fig.3.4.

The planning algorithm applies one action, where cooperation of two robots
is used. When the block is lifted by one robot, it is like stairs, the block
moves not only up but also to a side. In some cases, however, it is necessary
to move just upwards.

The movement starts identically as lifting. The robot in the module expands
to the module beside and then elevates the block one position up. The second
robot has to be in the module that lies on the block where the robot stretched
to before. The second robot expands and "catches" the module. The first
robot contract to the underlying block.

3.3.3 Cost calculation

Because the problem resembles a moving on a 2D grid, the cost of the way
between two states is computed similarly. The distance of a model or a block
moving is equal to |i′− i|+ |j′− j|, where (i, j) are coordinates of the robot or
the module in the first state and (i′, j′) are its coordinates in the second state.
However, computing the distance in every step means to find the module or
the robot that has just been moved, and calculate how far has shifted. That
is senselessly complicated. Because the number of movements is limited and
each has a specific distance that never changes, it is much simpler to assign a
value d to every movement.

g(xn) = g(xn−1) + d(m).

In the case of one robot, it is obvious. The robot can perform only one
movement in one step. But with more robots it is complicated. For example,
two robots can shift two blocks at the same time or gradually in two steps.
The second option does not have any advantages, it only prolongs the building,
so it is necessary to obviate it. That can be done by adding 1 to the distance
in every step.

11

3. Planning.......................................

g(xn) = g(xn−1) + d(m) + 1,

where d(m) is the sum of costs of the motions that have been made to get
from the state xn−1 to the state xn.

Counting the distance to the goal state is more difficult. A robot moves to
a block, shifts it, moves to another block, shifts it and so over and over again
until the goal state is reached. It is almost impossible to calculate the real
cost.

When a block moves between two states, the cost is equal to |i′− i|+ |j′−j|.
If more blocks are moved, the cost is

∑N
n=1 |i′n − in|+ |j′n − jn|, where N is

the number of blocks that have been moved.
To the total cost have to be added costs of robots moving. But it is hard

to reckon them in advance. It depends on the number of robots and modules
and their positions. Every time a robot moves a block to the correct locations,
it has to move to the next one. The minimal cost of the way from a module
to another is one. The total cost of the way between blocks is equal to
nwrong − nrobot, where nwrong is the number of the modules in the wrong
positions and nrobot is the total count of robots. For example, one robot to
shift five blocks needs to do at least four steps without modules. When there
is a robot in every block, the total cost of the robots’ movements can be zero.

Therefore, the estimation of the cost of the way from the current state x
to the goal state xG is:

h(x) =
nwrong∑

n=1
(|iGn − in|+ |jGn − jn|) + nwrong − nrobot.

3.4 An example of planning

Fig.3.5 shows a simple problem for the planning algorithm. The task is to
build an L-shaped construction of five modules placed side by side on the
ground using one robot.

Figure 3.5: An example of planning

12

................................ 3.4. An example of planning

In the first planning cycle, the open list contains only one state, the initial
state. It is expanded and new states are inserted into the list. In this case, it
is possible to move to two different states (Fig.3.6).

Two of the five modules are in the wrong places. The total distance h(x)
to the correct positions is 7. g(x) is for the initial state equal to 1.

Figure 3.6: Possible next states for the initial state

The first option is that the robot will move one module to the right (Fig.3.6,
the state on the left). This movement will increase g(x), but it will not be
closer to the target.

The second possibility (Fig.3.6, the state on the right) is to lift the block,
where the robot is currently located, and put it on the module nearby. The
motion will increase g(x) to a higher value than the previous one, but also
will reduce h(x) by moving one module to the correct position.

f(x1) = g(x1) + h(x1) = 1 + 7 = 8

f(x2) = g(x2) + h(x2) = 2 + 5 = 7

The second state is better, so it is expanded (Fig.3.7) and removed from
the open list. The first state (on the left) will not be inserted into the open,
because it is already in the closed. The second and third states will be stored
in the open, so the list now contains two state with f(x) = 8 and one state
with f(x) = 9.

Figure 3.7: Possible next states

The rest of the planning is similar. From the open list, the state with
the lower f(x) is selected and expanded. Then all new convenient states are
added to the list and the cycle is repeated.

13

3. Planning.......................................

Figure 3.8: The building step by step

3.5 Planning time

The time that the algorithm needs to find a solution depends on several
factors. The most important is the number of blocks and robots. The more
blocks or robots, the longer time the search will take.

Figure 3.9: Planning tasks for time measurement

Fig.3.9 illustrates six planning tasks. In each pair, the upper state represents
the initial layout of the blocks and the state below the goal arrangement. All
tasks have been successively solved for different numbers of robots and for all
cases the time of the planning was measured.

14

.................................... 3.5. Planning time

time [ms]
1 robot 2 robots 3 robots 4 robots 5 robots 6 robots

task 1 0.24
task 2 1.87 2.02
task 3 3.08 18.23 5.10
task 4 9.00 75.60 117.95 9.91
task 5 15.50 224.10 614.93 332.15 18.63
task 6 35.64 1212.75 4390.14 4000.69 706.35 22.48

Table 3.1: Time of planning 1

1 2 3 4 5 6

task

0

500

1000

1500

2000

2500

3000

3500

4000

4500

tim
e

[m
s]

1 robot
2 robots
3 robots

Figure 3.10: Time of planning dependent on the task (diverse numbers of robots)

1 2 3 4 5 6

number of robots

0

500

1000

1500

2000

2500

3000

3500

4000

4500

tim
e

[m
s]

task 4
task 5
task 6

Figure 3.11: Time of planing dependent on the number of models (diverse types
of tasks)

15

3. Planning.......................................
Fig.3.10 shows that the time needs to find a solution, if the system contains

more robots, is significantly higher than the case of one robot.
However, Fig.3.11 demonstrates that the ratio of modules and robots is

also important. Robots need sufficient amount of space to move, so in the
case that most blocks are occupied, the number of options is reduced.

The other case is, if the quantity of modules is quite higher than the
number of robots, so the robots have plenty of space for moving. Each robot
can perform some movements, the number of moves depends on the specific
conditions. One more robot adds its motions and combinations of its moves
and moves of others. The larger space and the more blocks it contains, the
more movements will be possible.

Figure 3.12: Another task for time measurment

number of robots time [s]
1 0.048
2 13.373
3 24.002
4 156.559

Table 3.2: Time of planning 2

1 2 3 4

number of robots

0

20

40

60

80

100

120

140

160

tim
e

[s
]

Figure 3.13: Time of planning dependent on the number of models

16

Chapter 4
Simulation environment for the MoleMOD
system

This chapter provides a description of the Gazebo simulator and design of
models for testing the MoleMOD system. The first part contains information
about the simulator, its functionality and worlds and models creations. The
second section describes models made for the MoleMOD system and some
basic movements.

4.1 Gazebo

Gazebo is an open-source robotics simulator. It can be used to design robots,
test algorithms and artificial intelligence systems using realistic scenarios.
The simulator offers indoor and outdoor environments with the possibility
of setting several properties, such as wind, gravitation, friction and so on.
Gazebo includes multiple physics engines (ODE, Bullet, Simbody and DART),
a library of robot models and environments, several types of sensors and
functional graphical and programmatic interfaces.[4]

4.1.1 World and model files

A world file includes all the elements, such as robots, lights, sensors or static
object. The files use SDF (Simulation Description Format), an XML format
that was originally developed as a part of the Gazebo simulator for description
objects and environments.

Model files are similar to world files but contain only specifications for a
model. The model created by this file can be included in a world file, so it
is possible to use one model several times without rewriting the entire code.
Also, there is the online model database.

SDF models can be just simple shapes but also complex robots. Basically, a
model consists of links, joints, sensors, collision objects, visuals and plugins.[5]

link A link contains the physical properties. It is a body of the model or its
part. It may have many collision and visual elements.

collision A collision element is a geometry that is used to check collisions.
A link can contain many collisions.

17

4. Simulation environment for the MoleMOD system.....................
visual A visual element visualize parts of a link. A link can have many

visuals or none.

joint A joint connects two links. Each joint has a parent and a child, an
axis of rotation and some other properties.

sensor A sensor collects data from the world and these are then used by a
plugin. A link can have sensors but do not need them.

An example of a simple world is shown in Listing 4.1. The world contains
two models included from the database - the sun and the flat ground. The
third model consists of a cube-shaped link with a size of 1× 1× 1 meter. It
is located at the origin of the coordinates; just the z coordinate is non-zero
to raise the link above the ground plane.

1 <sdf version ="1.4" >
2 <world name=’my_world ’>
3 <include >
4 <uri >model :// sun </uri >
5 </include >
6 <include >
7 <uri >model :// ground_plane </uri >
8 </include >
9 <model name=’my_model ’>

10 <link name=’cube ’>
11 <pose >0 0 0.5 0 0 0</pose >
12 <collision name=’collision ’>
13 <geometry >
14 <box >
15 <size >1 1 1</size >
16 </box >
17 </geometry >
18 </collision >
19 <visual name=’visual ’>
20 <geometry >
21 <box >
22 <size >1 1 1</size >
23 </box >
24 </geometry >
25 </visual >
26 </link >
27 </model >
28 </world >
29 </sdf >

Listing 4.1: An example of SDF

18

....................................... 4.2. Models

Figure 4.1: An example of SDF

4.1.2 Plugins

A plugin is a C++ code that is compiled as a shared library. Plugins can
modify a simulation, for example, it can move models, change parameters of
links, models or a world, respond to events, insert new models and so on.

There are six types of plugins:. world.model. sensor. system. visual.GUI

Each plugin type deals with a different part of the simulation. A world
plugin is attached to a world and controls its properties. A model plugin is
connected to a model, sensor plugin to a specific sensor etc.

A plugin type should be chosen according to its usage. For this thesis, I
have opted a model plugin, because it allows changing the physical properties
of the models when the simulation is running or set velocity to the joints.

4.2 Models

This section describes the particular steps of creating models for the Gazebo
simulator. It contains a delineation of the concrete models of the robot, the
parts of which the model is assembled and their capabilities.

19

4. Simulation environment for the MoleMOD system.....................
4.2.1 Modules

Creating modules in the simulator would be unnecessarily complicated. A
module is a passive element. It does not need to be able to move; this is
done by a robot. Despite that, modules are quite complex. Even a simple
cube-shaped block with only one straight tunnel would be set up of at least
four parts.

That can be solved by using a triangle mesh, a collection of triangles that
are connected to define the shape of a 3D object. A mesh can be saved as
a Collada file (.dae). Collada means Collaborative Design Activity. It is an
XML-based format that was developed to make it easier to transport 3D
assets between applications.[6]

Figure 4.2: Triangle meshes[7]

As can be seen in Fig.4.2, to create a sphere of triangles is not a simple
task. The more triangles, the more accurate it will be, but it will never look
like a perfect sphere.

A cube is a much simpler shape than a sphere. The modules with angular
tunnels are not nearly as complex as the modules with cylindrical tunnels.
A robot made of cubes instead of cylinders or spheres also can move more
precisely thanks to larger contact surfaces. Therefore, all models’ links are
cube-shaped.

1 <sdf version ="1.4" >
2 <world name =" default ">
3 <include >
4 <uri >model :// sun </uri >
5 </include >
6 <include >
7 <uri >model :// ground_plane </uri >
8 </include >
9 <model name =" my_mesh ">

10 <pose >0 0 .2 0 0 0</pose >
11 <link name=’tunnel ’>
12 <visual name=’visual ’>
13 <transparency >0.5 </ transparency >
14 <geometry >
15 <mesh >

20

....................................... 4.2. Models

Figure 4.3: Importing mesh

16 <uri >file ://1. dae </uri >
17 <scale >1 1 1</scale >
18 </mesh >
19 </geometry >
20 </visual >
21 <collision name=’collision ’>
22 <geometry >
23 <mesh >
24 <uri >file ://1. dae </uri >
25 <scale >1 1 1</scale >
26 </mesh >
27 </geometry >
28 </collision >
29 </link >
30 </model >
31 </world >
32 </sdf >

Listing 4.2: Importing mesh

4.2.2 Robots

The robot consists of three parts: a soft body, revolving heads and a rotator.
But this is too complex. Therefore I will try to create a simplified model to
use in a simulation.

The simplest model

The simplest model is made of two cubes connected by a prismatic joint. This
model can move in one direction forwards or backwards by expanding and

21

4. Simulation environment for the MoleMOD system.....................
contracting of the joint and changing the frictions of the links.

The forward motion consists of four parts:..1. setting frictions..2. the joint expansion..3. setting frictions..4. the joint contraction

Figure 4.4: The simplest model

The frictions of the links can be set in a model plugin. Before moving itself,
it is necessary to lower the friction of the front cube (the first cube in the
direction of the movement). For expanding the joint, a positive velocity is set
to the joint in the plugin. Then the front cube starts moving.

The simulator updates in certain intervals. After the set number of itera-
tions, the plugin changes the velocity sign and swaps frictions – higher for
the front cube and lower for the back cube. After repeating the same number
of iterations, the joint is set to zero.

The rotating model

For turning, it is needed to add a revolute joint in the middle of the model.
Because the simulator cannot connect two joints, it is necessary to add two
links and one more prismatic joint. Now the model is made of two head cubes,
two small middle cubes, two prismatic joints and one revolute joint.

The first prismatic joint connects the first head cube with the first middle
cube. This cube is joined with the second middle cube by the revolute joint.
These both cubes are immaterial and they are placed on themselves. The
second middle cube is connected to the second cube with the second prismatic
joint.

After these changes, the code of the plugin has to be adapted. For transla-
tion, both prismatic joints expand and contract at the same time.

Rotation is similar to translation. The four parts of motion are:..1. setting frictions..2. the joint rotation to the direction, where we want to turn..3. setting frictions..4. the joint rotation to the different direction

22

....................................... 4.2. Models

Figure 4.5: The rotating model

At first, the friction of the cube that we want to shift is reduced. Then
the plugin set an input velocity to the revolute joint. This velocity can be
positive or negative; it depends on the direction, where the robot has to turn.
After that, frictions are swapped and velocity with an opposite sign is set to
the joint.

In contrast to the moving ahead, this motion stops after one step and will
never be repeated, because the model would spin on the same place.

Translation/rotation controller

Unfortunately, the movements we now have are not precise enough. The joints
move for the same time, but it does not guarantee that their final position is
the same. To make the motion more accurate, a simple controller has been
designed. The output to control is the joint position – how the length of the
prismatic joint has changed or the angle of rotation for the revolute joint.

1 if(position < required_value - accuracy) {
2 setVel (vel);
3 } else if(position > required_value + accuracy) {
4 setVel (-vel);
5 } else {
6 setVel (0.0);
7 }

Listing 4.3: A simple joint controller

Listing4.3 shows a primitive controller that sets a positive velocity to the
joint, if its position is lower than the required one, negative if larger or zero
if it is in the interval determined by the deviation.

For better control, we can divide the possible positions into more intervals.
The result will be similar to the example above; it will only contain more
conditions.

The controller used in the simulator is divided into five intervals. At the
beginning of the motion, the joint is set to an initial speed. When the joint
position is close to the required position, the speed is decreased to half the
value.

The controller accuracy is 50 micrometres. In this range, the joint is set to
zero velocity. If the position is larger or smaller, it depends on the direction

23

4. Simulation environment for the MoleMOD system.....................
of the motion, the plugin sets a negative speed to the joint. Thanks to this
condition there is no need to set the reverse speed for the contracting, the
controller will solve it. Also, it is not necessary to count updates; one step
consists of expanding to input length and contracting back to “zero”.

Figure 4.6: Moving in a tunnel - the final model

The second input for ahead motion is a count of iterations, but in this case,
it is not the count of updates, but the number of uses of the controller (the
total sum of all expanding and contracting). The distance the model moves
is equal to the product of one step length and the number of iterations (in
meters).

The final model

Unfortunately, the model with just one revolute joint is not sufficient. To
turn in a tunnel or lift a building unit, at least two revolute joints are needed.
It is also not convenient to use a simple revolute joint, because it can rotate
only around one axis. With the joints, the robot could rotate sideways or
up and down, but could not do both of these operations. A solution to this
problem is to use another joint. The joint is called universal in the simulator
and it can rotate around two axes.

The final model consists of three main cubes, four prismatic joints, two
universal joints and four little immaterial cubes that are between joints.

Figure 4.7: The final model

24

Chapter 5
Testing models in Gazebo

The models for the simulator have been made; the next step is to test them.
In the previous chapter, the model of the MoleMOD robot was introduced
and two simple moves (forward moving and rotation) were described.

5.1 Simple movements

Forward movement works on the same principle that has been described
previously. The only difference is that the final model has four prismatic
joints instead of two. The model could use all four joints when moving, but
it is simpler to use only two, for example, the first and the fourth joint. That
will spare us larger changes in the code and also the motion will be more
accurate.

Figure 5.1: Forward moving

The rotation remains practically the same. Only two minor changes are
necessary. The last model contains two universal joints, so it is needed to
decide which joint will rotate. Then the rotation axis has to be set because
the universal joint can rotate around two axes.

5.2 Movements for the planning

However, for simulating the work of the system, these two motions are not
sufficient. For the basic version of the planning, it is essential to add lifting
(putting a module on a next block or lifting a module just up), shifting
modules and moves of robots in tunnels.

25

5. Testing models in Gazebo

Figure 5.2: Turning right

We have already done the robot movement in a straight tunnel. It is
exactly the same as the forward moving. The length of the motion is adjusted
according to the size of the block.

Figure 5.3: Moving in the straight tunnel

Turning in a tunnel is more complicated. Because the robot is only a little
bit smaller than the tunnel, it is impossible to turn around at once. It is
needed to combine both types of moves - rotation and translation. This can
be achieved by using a joint controller.

Figure 5.4: Turnning in the module

Similar to turning, also the lifting is a combination of translational and
rotational motion.

Figure 5.5: Lifting

Regrettably, the lifting is not completed and the shifting blocks does not
work at all. The reason is the curious behaviour of block models in the
simulator that occurs if two or more modules are close to each other.

26

.............................. 5.2. Movements for the planning

Fig.5.6 shows two formations of the same shape. One is made of boxes,
the other one of the meshes. The default setting is on the left; the running
simulation is on the right. Both, boxes and meshes, have the same properties,
but the result is different.

Figure 5.6: A problem with modules

27

28

Chapter 6
Conclusion

The planning algorithm for the MoleMOD system has been successfully
designed. It can be used for planning in a two-dimensional space of specified
size. The number of robots can be various, but cannot exceed the number of
modules. Possible actions are robot moving up, down or sideways, putting a
block up on the next block or putting it down next to the block below. It
can also lift a block or take it down and catch that block by another robot
and shift a module to sides.

In the future, it will be necessary to extend the planning algorithm into
three-dimensional space. Then it is needed to incorporate special joints that
keep the modules together. Also choosing a state has to be modified to speed
up the search for solutions.

For example, the states that are closer to the goal may be preferred. As
well the heuristic function can be improved. It should focus more on the
movement of the robots. The current estimate of the cost of the way between
two blocks may be quite inaccurate, especially for planning with a larger
number of robots.

Another aim of the thesis was to design a simulation environment for the
MoleMOD system and to test the planning algorithm in the Gazebo simulator.
The models of robots and building modules are done, but to test the planning
failed due to the strange behaviour of the models of modules. At first, it
is necessary to solve this problem; then the simulation environment can be
completed.

Finally, the joint controller can be modified to make moving in the simulator
more accurate and faster.

29

30

References

[1] Jan Petrš, Jan Havelka, Miloš Florián and Jan Novák, MoleMOD - On
Design specification and applications of a self-reconfigurable construc-
tional robotic system, ShoCK! - Sharing Computational Knowledge!
- Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza
University of Rome, Rome, Italy, 20-22 September 2017, pages 159-166

[2] MoleMOD | Jan Petrš. Studio Florián | FLOW [online]. Retrieved from
http://www.studioflorian.com/projekty/347-jan-petrs-molemod

[3] Steven M. LaValle, Planning Algorithms, Cambridge University Press,
842 pages, 2006

[4] Gazebo [online]. Copyright c©2014 Open Source Robotics Foundation.
Retrieved from http://gazebosim.org/

[5] SDF [online]. Copyright c©2014 Open Source Robotics Foundation. Re-
trieved from http://sdformat.org/

[6] The Khronos Group Inc [online]. Copyright c©2018 The Khronos. Re-
trieved from https://www.khronos.org/collada/

[7] Day 6: Drawing Primitives in OpenGL ES | Hessan Feghhi. Hessan Feghhi
[online]. Retrieved from http://hessan.annahid.com/game-development-
days/day-6/

[8] Michal Pěchouček, Milan Rollo, Informed search algorithms
[lecture]. In CourseWare Wiki [online]. Retrieved from
https://cw.fel.cvut.cz/old/courses/ae3b33kui/lectures/start

31

32

Appendix A
Models of modules

The following figures show some types of tunnel that may be inside building
units.

33

A. Models of modules

34

Appendix B
Planning tasks

The following figures show some planning tasks solved by the designed algo-
rithm.

35

B. Planning tasks

36

Appendix C
CD content

. codes. planning - all files needed for planning algorithm. collada - testing meshes. simulation - world files and plugins for testing models. thesis - the entire thesis in pdf. video - videos from the Gazebo simulator. pictures - pictures of the MoleMOD system and models from the Gazebo
simulator

37

