
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Tomáš Staruch

Motion Planning for Grasping and Delivering Bricks
by Unmanned Aerial Vehicles

Department of Cybernetics

Thesis supervisor: Ing. Martin Saska, Dr. rer. nat.

January, 2020

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

465829Personal ID number:Staruch TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Motion Planning for Grasping and Delivering Bricks by Unmanned Aerial Vehicles

Bachelor’s thesis title in Czech:

Plánování pohybu v úloze sběru a pokládání cihel autonomní helikoptérou

Guidelines:
The goal of the thesis is to design, implement and experimentally verify a motion planning approach for construction of a
wall by an unmanned aerial vehicle (UAV). The task is motivated by the second challenge of the MBZIRC 2020 competition,
https://www.mbzirc.com/challenge/2020.
1. Design and implement a realistic environment with bricks and wall in a Gazebo simulator under ROS for experimental
verification.
2. Design, implement and verify in Gazebo a middle-level motion planning method for grasping of colour bricks. Designing
the end-effector, low-level control, and the perception algorithm are not part of the thesis.
3. Design, implement and verify in Gazebo a middle-level motion planning method for placement of the bricks to build the
wall. The algorithm will respect actual state of the wall (position and state of neighbouring bricks that are already placed
in desired positions).
4. Evaluate reliability of the delivering procedure for different states of the wall and bricks of different size. Provide this
information for a high-level planning method, which is solved in parallel to this thesis.

Bibliography / sources:
[1] V Spurny, T Baca, M Saska, R Penicka, T Krajnik, J Thomas, D Thakur, G Loianno and V Kumar. Cooperative
Autonomous Search, Grasping and Delivering in a Treasure Hunt Scenario by a Team of UAVs. Accepted in Journal of
Field Robotics, 2018.
[2] LaValle, S. M.. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Saska, Dr. rer. nat., Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 07.01.2020Date of bachelor’s thesis assignment: 12.02.2019

Assignment valid until: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Martin Saska, Dr. rer. nat.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Author statement for undergraduate
thesis:

I declare that the presented work was developed independently and that I have listed
all source of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague day............................. ..

Acknowledgements

I would like to thank Dr. Martin Saska and Ing. Tomáš Báča for their great support
during the project. Furthermore, I would like to thank Vı́t Krátký and other members of
Multi-robot System group for valuable advice during the project and especially during the
realization of the experiments.

Abstract

The aim of this work is to design, implement and verify methods for
motion planning for grasping and placing color bricks by UAV to build a
wall. For grasping the bricks is used information from an onboard camera,
which is able to detect bricks. For placing the bricks are created curved
trajectories by using three different interpolations (B-spline, Catmull-
Rom and Hermite). The functionality and precision of methods is verified
in GAZEBO simulator, which allows simulating the real conditions of the
flight. Results of simulations are compared and analyzed further.

Keywords

UAV, motion planing, building construction

Abstrakt

Ćılem této práce je navrhnout,implementovat a ověřit metody plánováńı
pohybu pro sběr a pokládáńı barevných cihel pomoćı autonomńıch he-
likoptér s ćılem stavby zdi. Ke sb́ıráńı cihel jsou použity informace z
kamery připevněné na helikoptéru, pomoćı které docháźı k detekci cihel.
Pro pokládáńı cihel jsou vytvářeny zakřivené trajektorie pomoćı třech
r̊uzných interpolaćı (B-spline, Catmull-Rom a Hermite). Funkčnost a
přesnost metod je ověřena v GAZEBO simulátoru, který umožňuje sim-
ulaci reálných podmı́nek letu. Výsledky simulaćı jsou porovnány a dále
analyzovány.

Kĺıčová slova

Bezpilotńı letoun, plánováńı pohybu, stavba budov

Contents

List of Figures

List of Tables

1 Introduction 1

1.1 State of the art . 2

1.2 Task specification . 3

2 Realistic environment 5

3 Method for grasping 9

3.1 Landing object estimator . 10

3.2 Landing object controller . 12

3.3 Upgrade visual servoing node . 13

3.4 Testing Visual servoing node . 14

4 Method for placement 17

4.1 Types of trajectories for placing the brick 17

4.2 Creating of the trajectory for placing the brick 19

4.3 State machine for placing method . 28

5 Experiments in simulator 31

5.1 Experiments with using of the Hermite interpolation 32

5.2 Experiments with using of the Catmull-Rom interpolation 38

5.3 Experiments with using of the B-spline interpolation 44

5.4 Experiments with all other types of trajectories by using optimal B-spline
trajectory . 50

Contents

5.4.1 Trajectory with type 3 . 50

5.4.2 Trajectory with type 4 . 53

5.4.3 Trajectory with type 5 . 56

5.4.4 Trajectory with type 1 . 59

6 Conclusion 63

Bibliography 65

Appendices 69

Appendix List of abbreviations 73

Appendix 3D graphs with planned and real trajectories 75

List of Figures

2.1 Picture of first created world for simulation 7

2.2 Picture of the last created world for simulation, 9.11.2019 7

3.1 State machine for grasping procedure . 12

4.1 The figure contains sketches of four types of trajectories used for placing the
brick. 18

4.2 The figure contains sketches of the last type of trajectory used for placing
the brick. 19

4.3 Description of straight trajectory (first part of the trajectory) 20

4.4 Description of curve trajectory (second part of the trajectory) 21

4.5 Example of curve trajectory generated by B-spline 24

4.6 Example of curve trajectory generated by Catmull-Rom spline 25

4.7 Example of curve trajectory generated by Hermite spline 27

4.8 Example of ”sliced” points . 27

4.9 State machine for placing procedure . 29

5.1 World modified for experiments . 32

5.2 Planned and real trajectory in 2D, axis zx, Hermite interpolation 34

5.3 The figure contains dependencies of velocities and positions in all coordinates
on time . 35

5.4 The final position of placed brick with optimal trajectory, Hermite interpo-
lation . 36

5.5 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory from Hermite interpolation 37

5.6 Planned and real trajectory in 2D, axis zx, Catmull-Rom interpolation . . 40

List of Figures

5.7 The figure contains dependencies of velocities and positions in all coordinates
on time, Catmull-Rom interpolation . 41

5.8 The final position of placed brick with optimal trajectory, Catmull-Rom
interpolation . 42

5.9 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory from Catmull-Rom interpolation 43

5.10 Planned and real trajectory in 2D, axis zx, B-spline interpolation 46

5.11 The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation . 47

5.12 The final position of placed brick with optimal trajectory, Catmull-Rom
interpolation . 48

5.13 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory from B-spline interpolation 49

5.14 Planned and real trajectory in 2D, axis zx, B-spline interpolation, trajectory
type 3 . 50

5.15 The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 3 51

5.16 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory of type 3 from B-spline interpolation . . . 52

5.17 Planned and real trajectory in 2D, axis zy, B-spline interpolation, trajectory
type 4 . 53

5.18 The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 4 54

5.19 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory of type 4 from B-spline interpolation . . . 55

5.20 Planned and real trajectory in 2D, axis zy, B-spline interpolation, trajectory
type 5 . 56

5.21 The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 5 57

5.22 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory of type 5 from B-spline interpolation . . . 58

5.23 Planned and real trajectory in 2D, axis zy, B-spline interpolation, trajectory
type 1 . 59

5.24 The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 1 60

5.25 The figure displays a sequence of pictures from video, which is describing
the experiment with a trajectory of type 1 from B-spline interpolation . . . 61

List of Figures

1 Planned and real trajectory in 3D, Hermite 76

2 Planned and real trajectory in 3D, Catmull 77

3 Planned and real trajectory in 3D, B-spline 78

4 Planned and real trajectory in 3D, type 3 trajectory 79

5 Planned and real trajectory in 3D, type 4 trajectory 80

6 Planned and real trajectory in 3D, type 5 trajectory 81

7 Planned and real trajectory in 3D, type 1 trajectory 82

List of Figures

List of Tables

2.1 Table of specified dimensions and weights to date 9.11.2019 5

5.1 Table of experimental result with using of Hermite interpolation 33

5.2 Table of experimental result with using of Catmull-Rom interpolation . . . 39

5.3 Table of experimental result with using of B-spline interpolation 45

1 CD Content . 71

2 Lists of abbreviations . 73

List of Tables

List of Algorithms

1 Description of code for adding one plane 6
2 Description of function (objectCallback) which process message from camera

(creating the map) . 11
3 Description of function (objectCallback) which substitute information from

the camera by information from simulator (main function of fake object detector) 15
4 Description of function (calculate points) which is creating points for curve

trajectory . 22

List of Algorithms

Chapter 1

Introduction

Contents
1.1 State of the art . 2

1.2 Task specification . 3

Bachelor’s thesis originated from the Mohamed Bin Zayed International Robotics
Challenge (MBZIRC) competition. ”MBZIRC provides an ambitious and technologically
demanding set of challenges. Robotics is poised to have a transformative impact in a
variety of new markets and on various human social aspects. These include robot applica-
tions in disaster response, healthcare, domestic tasks, transport, space, manufacturing, and
construction.”[1] The competition takes place in Abu Dhabi every three years. The com-
petition consists of the accomplish of a few different challenges every year. Every challenge
contains the newest problems that should be solved by new original solutions. In the lat-
est competition, challenges involve capturing intruder UAVs inside the arena, constructing
large structures by autonomous robots and using UAVs for help in firefighting.

In the past, it was needed months of work with a lot of people to build a building.
Construction of buildings is much more frequent these days, therefore it was needed to
develop a faster and cheaper way to do that. The latest approach to this problem is the
3D printing of buildings. This approach has many advantages like a reduction of the costs
and time and minimizing the pollution of the environment, but this technology still has
many limitations, more information in [2]. One of these limitations is the size of the 3D
printer which strictly limits the size of the final building. 3D printing system that employs
multiple mobile robots printing concurrently a large, single-piece, structure is proposed in
[3]. Another modern approach is building structures by autonomous robots. This approach
will be more described in the section 1.1.

Challenge two is motivated by the automatic construction of large structures with
the use of autonomous robots. Specifically, three unmanned aerial vehicles (UAVs) and

2 Chapter 1. Introduction

one unmanned ground vehicle (UGV) are available for this task. The goal of the task is
to use these vehicles to autonomously collaborate to locate, pick, and assemble a set of
brick shaped objects, to construct a digitally pre-specified structure. The task contains
four types of bricks, each has a different size and color (red, green, blue and orange). Some
bricks (e.g. Blue) may need to be assembled only by the UAVs. Two or more UAVs have
to collaborate to be able to carry heavier bricks (e.g. Orange bricks) or UGV can carry
these bricks.

This work deal with creating an environment in the Gazebo simulator that would
faithfully imitate the real environment for challenge two. This simulator will be used for
testing implemented methods that are needed for the challenge (e.g. locating, picking). It
also deals with implementing a middle-level motion planning method for grasping bricks
and with a middle-level motion planning method for placement bricks. These methods could
be used for solving challenge two. Grasping, delivering and dropping objects contained the
previous MBZIRC competition too. This article [4] is dealing with the previous competition.
We have verified the presented methods by several simulations in Gazebo simulator under
Robot Operating System (ROS).

1.1 State of the art

Construction of buildings by autonomous robots is one of the most modern approaches
in the construction industry, that’s why only a few approaches existing which is used in
practice. Research is still largely in progress in this area. Testing of new technologies in
simulators or closed testing areas is also in progress. Automation in construction is con-
siderably behind automation in manufacturing, comparison of these industries is discussed
in [5].

These papers provide an overview of information about mobile robots. This article
([6]) addresses and classifies the relevant studies in terms of applications, materials, and
robotic systems. Similarly, this chapter in the book ([7]) introduces various construction
automation concepts that have been developed over the past few decades and presents
examples of construction robots that are in current use (as of 2006) and/or in various
stages of research and development. In the last article [8] is fabricated a brick wall semi-
autonomously in a laboratory environment. Based on this experiment, generic functional-
ities of the mobile robot and its developed software are presented.

One of the approaches is to use a cable-driven robot for automated construction
this approach is described in [9]. This paper [10] presents a simulation-based approach to
analyze the technical and economic feasibility of wire robots. SPIDERobot is a cable-robot
system developed to perform assembly operations and using of this robot in construction
is discussed in [11].

Multiple mobile robots are used to fold 2D laser-cut stock into 3D curved structures
in [12]. This approach is similar to our task where we use 3 UAV and 1 UGV which is

1.2. Task specification 3

working in parallel. Articles aren’t found describing specifically UAVs which is building
the wall or structure. Probably, UAVs used to build the structure weren’t used that’s
why the competition was created. Nowadays UAVs are mostly used to monitoring, e.g.
constructions, buildings or bridges which are described in [13].

1.2 Task specification

The goal of the competition is to autonomously build a structure by three UAVs
and one UGV. The position of the structure to be built is known before starting the task.
This structure is created by four different types of bricks (red, blue, green, orange) and the
position of these bricks in structure is pre-specified before starting the task. These bricks
have the mass evenly distributed and are located in four different piles, where each pile
contains the same type of bricks. Positions of the piles are completely unknown beforehand,
therefore, it will be needed to execute mapping of the area to create the map[14].

Only multi-rotor helicopters (marked as UAVs in this work) were used in this work,
that’s why we focus on them. It is assumed that positions of the UAVs are accurately known,
e.g. using GPS or for more accuracy using RTK GPS. Moreover, it is assumed that UAVs
are online, which means the UAVs are capable to communicate for sharing their actual
planned trajectories and the information about their actual positions with each other.
For the purpose of the autonomous solution of the task, it is further assumed that the
software for high-level motion planning is existing[15],[16]. This software coordinates three
UAVs to construct a structure in obstacle free environment by using the map, positions of
individual UAVs and their communication. The software has to plan trajectories for UAVs
with a collision avoidance approach and the software uses different software methods to
accomplish partial tasks, for example, to pick the brick or to place the brick.

Our aim is to implement a method to grasp the brick and method to place the brick.
For the purpose of grasping the bricks, it is assumed that UAV is equipped with a mecha-
nism that can grasp the brick and carry it, e.g. by using electromagnets. This mechanism is
attached to UAV so that the mechanism nearly doesn’t negatively influence the properties
of UAV during the flight. This property must be satisfied while the mechanism is carrying
the brick. The other assumption is that the UAVs are equipped with a camera and with
software that recognizes the bricks[17]. This software can determine the precise location of
the brick and return the coordinates of this brick.

For the purpose of placing the bricks, it is assumed that the precise position of UAV
is known. It isn’t possible to place the brick on the required location without knowing the
current position of UAV. The other assumption is that the mechanism currently carries
the brick. This brick is attached to the UAV in its center (on the longer side of the brick in
the middle) and the sides of the brick are parallel with sides of UAV (brick is not rotated
in yaw axis).

Some of these assumptions aren’t necessary, e.g. the attaching of the brick, but their

4 Chapter 1. Introduction

breach causes the solution of the task more difficult. It will be impossible to build the
structure in which be the bricks correctly and precisely placed.

Chapter 2

Realistic environment

The first task of work is to create an environment that would be very similar to
the specified environment for challenge two. Arena in challenge two will be approximately
50mx60m and it will contain four randomly located piles of bricks, with each pile consisting
of similar-sized bricks. The start position will be specified in the area, where will be placed
UAVs and UGV. At last, the size and color of four types of bricks is defined as:

Color approximate size of bricks weight of bricks

Red 0.30x0.20x0.20 m ≤ 1kg
Green 0.60x0.20x0.20 m ≤ 1kg
Blue 1.20x0.20x0.20 m ≤ 1.5kg

Orange 1.80x0.20x0.20 m ≤ 2.0kg

Table 2.1: Table of specified dimensions and weights to date 9.11.2019

Existed environment grass plane.world was used, which contains a grass plane
having a size of 250x250 m and it has real physics. At first, the size of the grass plane was
changed to 50x60 m according to the specifications and the new simulation environment
mbzirc construct wall.world was created. In the next step, four asphalt planes were
created and they were located near each corner of the plane. These planes could be located
randomly according to the specifications, but we place them to the static locations. The
mapping procedure will be necessary at the beginning of the task that is the reason why
static locations of planes aren’t fault. At last, two asphalt lanes were created in shape of
letter L and placed in the middle of the grass plane. This lane indicated the foundations of
the wall. For creating each plane was added visual section of code to model of the ground
plane. This code is described below.

6 Chapter 2. Realistic environment

Algorithm 1 Description of code for adding one plane

visual name . name of the plane (wall place 1)
pose frame = x y z roll pitch yaw pose . position of plane center
cast shadows false cast shadows
geometry

plane
normal x y z normal . normal to plane (0 0 1 is plane in xy)
size x y size . value of coordinates is equally divided to both sides from

the pose
plane

geometry
material

script
uri location of a material script uri
uri location of a texture for material uri
name name of material name . in our case - vrc/asphalt

script
material

visual

Five bricks of each type were created, where each brick had to be created like a single
object in code. It was important to set the same collision and visual size of objects. If
these sizes weren’t the same, then the brick could penetrate other brick or on the other
side, brick could lean on air. In the next step, we had to compute inertia for each brick. If
the inertia was set incorrectly, then usually UAV couldn’t grasp bricks. Inertia for brick is
computed as inertia for block :

ixy = 0, ixz = 0, iyz = 0

ixx = 0.083 ·mass · (y · y + z · z)

iyy = 0.083 ·mass · (x · x + z · z)

izz = 0.083 ·mass · (x · x + y · y)

Bricks of the same color were placed on individual asphalt planes after creating
objects. Some of these bricks were rotated in coordinates x,y for better testing of grasping.

7

Figure 2.1: Picture of first created world for simulation

This world was uploaded to git for mbzirc competition. The world had to be updated
a few times because of changes in the assignment of challenge two. The size and weight of
bricks were changed a few times, according to these changes inertia had to be recomputed.
The next important change originated from the detection of green bricks. It was difficult to
recognize green brick on grass for this reason grass plane was replaced by an asphalt plane.
The surface isn’t defined in the challenge, but mostly the surface during competitions is
similar to asphalt. The last changes included adding more bricks into the existed zones
with bricks.

Figure 2.2: Picture of the last created world for simulation, 9.11.2019

8 Chapter 2. Realistic environment

Chapter 3

Method for grasping

Contents
3.1 Landing object estimator . 10

3.2 Landing object controller . 12

3.3 Upgrade visual servoing node 13

3.4 Testing Visual servoing node 14

The second task of work is to design, implement and experimentally verify a motion
planning method for grasping color bricks. A similar problem was solved in the task of
the previous mbzirc competition. In this task, It was needed to grasp a magnetic circular
object and transport it to the box. The solution of this task is described in [18].

The method for grasping these objects was created in node visual servoing. This
node contained two different codes, landing object estimator and landing object controller.
The landing object estimator must identify the state of a UAV, by using information
from sensors, and the location of the object to be grasped, by information from the cam-
era. The landing object controller contained state machine which ensured grasping
and dropping of the objects. These two codes communicated together constantly for ex-
changing of information during using of this method.

Robot Operating System (ROS) was updated to a new version since the mentioned
node visual servoing was created. For this reason, it was needed to understand working
of the node and rewrite it so that this node could be used in new version of ROS. Also,
it was needed to modify the node for the detection of bricks (blocks) instead of circle
objectives.

10 Chapter 3. Method for grasping

3.1 Landing object estimator

UAV is equipped with several different sensors, e.g. camera, GPS, RTK GPS, and
high sensor. Information from these sensors is fused in terms of accuracy and speed by
Landing object estimator to obtain a reliable position of UAV. Extended Kalman Filter
is used for fusing the sensors. However, for this task (grasping the bricks) is required an
extremely precise position of UAV. For this purpose is used differential RTK GPS and
measurements from this sensor are fused using a Linear Kalman Filter to correct this
position.

Landing object estimator has to get information from the object detection node
for correct functionality. This node recognizes objects which the camera has seen and then
publishes coordinates of all these objects. Also, this node is able to provide an estimate of
the relative distance when flying above an object [19]. Estimator creating a map by using
this information. This map is changing during the task by these rules: ”

• Objects which have not been seen for more than 5 seconds are deactivated.

• Objects which are deactivated for more than 3 seconds are deleted from the map.

• Measurements from the object detector are paired with objects in the map using a
min-distance bipartite graph matching, constrained by the color of the objects.

• Objects located outside of the working area are deleted from the map, and new
measurements in such areas are discarded.

”[18]

If UAV fails in grasping the object then the object and 4m radius around the object
will be banned on the map for some time. This time could be specified in the config file.

3.1. Landing object estimator 11

Algorithm 2 Description of function (objectCallback) which process message from camera
(creating the map)

for over all object do
load the object
if Object in Dropout zone then

discard this object
end if
if Object is grasped by drone then . compared position of all UAVs and object

discard this object
end if
if Object in banned area then . grasping failed

discard this object
end if
function find closest object in map
if closest object not found then . create new object in map

create new object in map
create new object for Kalman
add object to the map

else . fuse this object with map
update altitude of object
set the covariance based on altitude
if Kalman correction succeeds then

update position of object
update time . when the object was last seen

else
discard this object

end if
end if

end for

This code describes only the main idea of function. Some parts of the function are
not included, e.g. check the content of the received message.

Estimator publishes information, which is needed for grasping the object, such as
the precise position of UAV or position of the object to be grasped. This information is
used by Landing object controller which can partly manage Estimator. For example,
the Estimator can switch between sensors, from which gets information, depending on the
current state of the Controller.

12 Chapter 3. Method for grasping

3.2 Landing object controller

Landing object controller ensures the execution of the method for grasping the
bricks. This code can be managed by 3 different services (start, stop and drop) and on the
other hand, this code uses several external services, e.g. controlling the magnet, ban area
in the map or switching sensors. For grasping procedure is used service start 1, which
starts grasping the nearest static object in the map. This procedure is supervised by the
state machine described on 3.1.

IDLE_STATE

ALIGN_STATE

start 1

LAND_STATE

ABORT_STATE

object lost

lost align

error

WAIT_STATE

lost align

error

ALIGN2_STATE

lost align

error align timeout

GRASP_STATE

REPEAT_STATE

UAV tilted grasp timeout

TAKEOFF_STATE

error

Figure 3.1: State machine for grasping procedure

• IDLE STATE - this state is inactive. The controller is waiting for the service call. For
example, after calling service start 1 the controller find the nearest static object in
the map.

• ALIGN STATE - this state aligns a UAV above object. Alignment is eventually ensured
by creating a trajectory to align the UAV and the object. The UAV is aligned with
the object if the distance between the center of the object and UAV in coordinates
x,y is smaller than 1.5 meters. If the object is lost in the map then grasping procedure
is abort.

• LAND STATE - in this state, the UAV is slowly descending to height 1.5 meters above
the object.

3.3. Upgrade visual servoing node 13

• WAIT STATE - this state checks alignment to the object and occurring of error.

• ALIGN2 STATE - this state checks alignment to the object, occurring of error and
timeout for aligning and descending.

• GRASP STATE - this state gently descending until the magnet is not connected with
the object. The state is checking timeout for grasping and tilt of the UAV. After
attaching the object is computed the new weight of UAV and object and some sensors
are switched off because they can’t work correctly with the attached object. In this
article is described the setting of the regulator for precise landing on the object
according to wind and changing of the weight. [20]

• TAKEOFF STATE - this state is rising back to the original height.

• REPEAT STATE - this state rises to the height 3.5 meters where the state is switched to
aligning. If aligning was achieved 3 times then occurs error and grasping procedure
is aborted. In this case, the object is banned for some time.

• error - if the grasping object is lost in the map or the UAV lost aligning for 5 times
then the error is created.

Parameters such as height for repeat state or number of alignments before the pro-
cedure is aborted can be changed in params.yaml.

For dropping procedure is used service drop. When the service is called, UAV descends
to dropping altitude which can be set in params and then drops the object. UAV rises to
takeoff altitude after releasing the object. This service could be called only in the dropping
zone otherwise this service doesn’t be executed.

3.3 Upgrade visual servoing node

Node visual servoing was written in an older version of ROS as mentioned above.
This version of ROS was used in the previous mbzirc competition. Since that, ROS released
a new version, which contained new libraries with new functions. Simultaneously, some
libraries were canceled and replaced by new ones or combined with others. With the new
version of ROS, it was remade uav core node which is used by the multi-robot system
department and contains ordinarily used functions. For this reason, it was needed to replace
old libraries by the new libraries including functions which are from these libraries. It was
used the ROS forum [21] for finding the correct replacement of an old function (in which
library is newly located).

After rewriting libraries, it had to be rewritten package.xml which contained de-
pendencies on other nodes or libraries. package.xml is closely related to CMakeLists.txt

which is used to compile the node. Next for the successful compilation of the node, it

14 Chapter 3. Method for grasping

was created a new node mrs msgs mbzirc that contained the same types of messages as
object detection. The object detection node didn’t exist for the actual competition
and the old node couldn’t be used because the node detected only circle objects.

During editing codes, it was deleted some parts, which aren’t needed for the actual
competition. In Estimator were deleted parts that solved only moving objects and parts
which contained some areas as the dropping zone. In Controller were deleted similar parts
as in Estimator, e.g. it was deleted condition for dropping object only in dropping zone.

Lastly, it were redirected Subscribers and Publishers in the launch file for correct
communication with other nodes. This step could be executed when the compilation was
successfully done. Because for precise redirecting was used running ROS and listening all
publish and information about them.

3.4 Testing Visual servoing node

Visual servoing node is first tested in the simulator. It is needed to create a method,
which will allow connecting bricks and UAVs in the simulation. Thus, It will simulate a
mechanism for attaching the bricks. The method will be replaced by a signal to mechanism
in the real environment. The same method was created in the previous competition mbzirc
and it was included in a node named object movement.

Object movement is simulating the mechanism as an electromagnet. The node creat-
ing a joint between each UAV and object in simulation. Names of these objects and UAVs
have to be defined in params.yaml and names must faithfully correspond with names in
simulation. This code check distance between objects with some periodicity, which can be
set in params. If the first object is close enough to the center of the second object (again
it is a parameter in params), then it is possible to connect these objects. However, these
objects must be UAV and in our case brick and at the same time the UAV must have set
on the magnet.

The node object movement is updated by similar modifications as in the node
visual servoing. These changes contain update libraries, modifying dependencies in package.xml

and CMakeLists.txt and launch file. The code included parts, which were used for moving
objects. These parts were removed because they weren’t needed. It is possible to attach a
brick to UAV in simulation after these modifications.

Unfortunately, the testing still can’t start running because the node doesn’t get in-
formation from object detection which is not created for new competition yet. For this
reason, it is created the new node named fake object detector which hands over infor-
mation about objects to the node without using a camera. By using information from the
camera (or fake camera) is UAV guided to the precise position of the brick [22],[23].

3.4. Testing Visual servoing node 15

Algorithm 3 Description of function (objectCallback) which substitute information from
the camera by information from simulator (main function of fake object detector)

function objectCallback(gazebo message with models)
if not inicialization of simulator then

return
end if
delete old objects in array
for all objects in simulator do

if name is ”groundplane” then
continue

end if
if name is uav then

continue
end if
create new object
set type of static object
copy position from simulation
push object to array

end for
end function

Created objects in function have same type as objects from object detection. The
object detection can be substituted by publishing created array with objects. The array
is published with a defined time period (0.05 s) because if the period is much shorter then
the Estimator crash. The Estimator isn’t able to process information from ”camera” so
fast, because a real camera can’t publish information with a shorter period.

After starting the simulation, It is possible to grasp brick, carry it and drop it from
the defined altitude at this time. It is created a simple node basic trajectory for easier
testing of the overall function of nodes to build the wall and cooperating between each
node. This node controls one UAV by a sequence of basic actions specifically the actions
are:

• go to for moving UAV in simulator, service of the same name is called. This service
is more described 4.3

• Grasping for calling service to grasp a brick,

• Droping for calling service to drop brick.

This sequence is performing like a queue and the next action starts immediately after
the previous action is finished. The queue is represented by the switch statement where
each case in the switch is one action. Because of this structure is very easy to extend the
queue by copying the case and for go to by copying and changing the position.

16 Chapter 3. Method for grasping

Continuity of actions is ensured by subscribing information from other nodes:

• Finishing of go to is detected by information from odometry/odom main, where is
actual position of the UAV (GPS). UAV finished the movement if is the difference
between required and actual position smaller than 0.1 meters.

• Finishing of Grasping is detected by information from state machine in the Controller.
The state machine is changing IDLE STATE to a different state after calling service,
and after finishing this service It will return to IDLE STATE.

• Finishing of Droping is detected the same as the finishing of grasping.

This node was used for testing grasping and dropping the bricks by UAV and for
simulation of building the wall. If UAV was above the brick then the UAV successfully
finished grasping of brick every time. The brick was attached relatively in the center that
was needed for the correct dropping of the brick and building of a wall. Unfortunately,
relatively small grip error sufficed to generate a much worse error in the placement of brick
in the wall. The brick was laying on the other brick which was next to it (therefore the
brick laid obliquely). Because of this error, it is needed to design an alternative solution
for placing the bricks.

Chapter 4

Method for placement

Contents
4.1 Types of trajectories for placing the brick 17

4.2 Creating of the trajectory for placing the brick 19

4.3 State machine for placing method 28

The third task of work is to design, implement and experimentally verify a motion
planning method for placing of color bricks to the structure. An original idea to solve this
problem assumes that a node that will solve this problem get message from a high-level
motion planning method that will contain actual state of the wall, the position where to
place the brick and position where to move after placing the brick. Trajectory will be
planned so that the brick will be placed as accurately as possible according to the actual
state of the wall.

4.1 Types of trajectories for placing the brick

As mentioned above if just carried brick isn’t attached directly in the middle then
the error can easily originate during placing the brick. The brick will be laying on the other
brick which is next to it (so the brick will lay obliquely). Therefore it is needed to design
an alternative approach for placing the bricks.

The first approach to this problem was to calculate the deviation of carrying the
brick from ideal (directly in the middle and without rotation) by using the visual flow of
the onboard camera. The deviation would be used to move or rotate UAV so that the UAV
could place the brick as if the brick is attached in the optimal position. Unfortunately, it
wasn’t clear where the camera will be placed on the UAV. Therefore it isn’t guaranteed
that the deviation will be always detected correctly. This solution isn’t robust enough and,

18 Chapter 4. Method for placement

therefore, an alternative approach to solve the problem is developed which is using other
than direct trajectories.

The second and used approach in this task uses different trajectories to place the
brick. These trajectories depend on the state of the structure and position where the
brick should be placed. The approach is able to eliminate small deviation of carrying the
brick and mostly completely eliminate oblique placing of the brick. It is supposed that the
structure is built gradually by individual floors otherwise it could happen collision with
already placed bricks by using this approach. Five different trajectories are designed which
depend on the state of the structure and are described in the figure below 4.1.

(a) Sketch of second trajectory to place the
brick

(b) Sketch of third trajectory to place the
brick

(c) Sketch of fourth trajectory to place the
brick

(d) Sketch of fifth trajectory to place the
brick

Figure 4.1: The figure contains sketches of four types of trajectories used for placing the
brick.

It is visible on the figures that these four trajectories are almost the same and the
difference between trajectories is only in ”curve” (in direction of what axis will be executed

4.2. Creating of the trajectory for placing the brick 19

turnover). Accuracy and speed of executing the trajectories depend on the size of the curve
and the quantity of points of which is curve created. The last type of trajectory isn’t
creating the curve and the brick is placed by straight trajectory as is visible on the next
figure 4.2.

(a) Sketch of first (straight) trajectory to
place the brick without bricks

(b) Sketch of first (straight) trajectory to
place the brick with bricks

Figure 4.2: The figure contains sketches of the last type of trajectory used for placing the
brick.

This type of trajectory is developed for placing the new brick on the next floor because
here isn’t possibility of formatting the collision with bricks 4.2b. Or on the other hand, this
trajectory could be used to place the brick between two already placed bricks 4.1d. This
state of the structure is very dangerous because of easy formatting the error and therefore
the state shouldn’t ever occur.

Thanks to the update of the assignment of competition was found that the specifi-
cation of structure (where should be placed each color brick) will be communicated before
starting the challenge. A sequence of actions will be planned before the challenge and
therefore input message for this method is changed. The input message now contains one
of five types of trajectories by which should be placed the brick, position where to place
the brick and position where to move after placing the brick.

4.2 Creating of the trajectory for placing the brick

In this section will be described the creating of placing trajectory for brick with
the curve, therefore, one of the trajectories from figure 4.1. The creating of a straight
trajectory will not be explicitly mentioned because the trajectory is created similarly only
the points are in one straight line. The shape of trajectory can be modified in several ways
by changing parameters in config file. For example, It is possible to modify the width

20 Chapter 4. Method for placement

and height of the curve or number of points from which is curve created. This approach
provides a simple modifying of the trajectory and that’s why it is possible to search the
middle between fast and successful executing of the method.

The creating of the trajectory is divided into two parts because of the request of
robustness solution and finishing of each part is checked individually. The first part is
created by a straight trajectory for descending. Description of the part is shown in figure
4.3.

Figure 4.3: Description of straight trajectory (first part of the trajectory)

• Letter A is Start position for placing the brick

• Letter B is Start spline position which is the position where the curve is starting
to be executed

• Letter C is Place position which is the position where the brick should be placed

• Number 1 is the quarter distance between letter A and B

• Number 2 is the half distance between letter A and B

• Number 3 is the distance between letter B and C which could be set by parameter
altitude curve offset

• Number 4 is the distance between letter A and B which could be set by parameter
altitude offset

• The approximate trajectory that the UAV will fly through is shown by green color
on the figure.

4.2. Creating of the trajectory for placing the brick 21

Point C is included in the input message and by using this point and parameters
(3,4) are calculated points A and B. If the points A and B are the same then this part of
trajectory is skipped and only the second part is executed. On the other hand, the rest
two black points are calculated and together with points A and B are sent to UAV. These
points are sent to the MPC trajectory tracker, which is described below 4.2, in correct
order which is from top to bottom. Finishing this part of the trajectory is detected by
matching actual position of the UAV and point B. If the distance between UAV and the
point is close enough then this part was successfully executed.

The second part is created by a curve trajectory for attainment position for placing
the brick which is described in figure 4.4.

Figure 4.4: Description of curve trajectory (second part of the trajectory)

• Letter A is Start spline position which is the position where the curve is starting
to be executed

• Letter B is Place position which is the position where the brick should be placed

• Number 1 is the distance between letter A and B which could be set by parameter
altitude curve offset

• Number 2 is the half distance of the width of curve set by parameter curve offset.This
distance is same for 2 points.

• Number 3 is the full distance of the width of curve set by parameter curve offset

• Number 4 is the quarter distance between letter A and B. This distance is the same
for the point above this, but the distance is computed from the point A .

22 Chapter 4. Method for placement

• Number 5 is the half distance between letter A and B.

• The approximate sketch of trajectory that the UAV will fly through is shown by
green color on the figure.

Point B is included in the input message and by using this point and parameters are
calculated all other points as in the first part. Next, these points are used for creating
a curve trajectory by using functions from the created library named uav localization

core [24]. The library is containing three functions for calculation curve points: smooth
path bspline, smooth path catmull and smooth path hermite. Every function has pa-
rameters that are affecting the created trajectory. In pseudocode below 4 is described how
the points for the curve trajectory are calculated by using one of these functions.

Algorithm 4 Description of function (calculate points) which is creating points for curve
trajectory

function calculate points(type of trajectory, start position for spline, place posi-
tion)

Switch
functions for individual types of trajectories . Returning 5 RawPoints from

Figure above
EndSwitch
for all points (RawPoints) do

convert point to another structure . Structure needed for used library
end for
smooth path bspline(input points, output points, reducer epsilon, line parameter,

distance treshold, curve points) . possibility to change trajectory
step path(input points, output points, step len) . step len is adjustable parameter
for all point from function step path do

convert point back to original structure . structure usable by UAV
end for
return converted points

end function

In pseudocode is used function for creating a b-spline trajectory. The function has
four parameters that are influencing the final points of the trajectory. Of course, the final
points are much more influenced by the input points to this function. These parameters
are:

• reducer epsilon is float number, which is used for limiting the total number of
points. This algorithm is used [25] which is connecting two points and then calculate
the shortest distance of the point from this straight line. If the distance is smaller
than the number reducer epsilon then the point is removed.

4.2. Creating of the trajectory for placing the brick 23

• line parameter is float number, which is multiplying a vector, which is calcu-
lated from two consecutive points. The vector is multiplied by line parameter and
summed with the point from which is calculated. The size of the vector can be limited
by distance threshold parameter.

• distance threshold is float number, which is limiting the size of the summed vector
with a point.

• curve points is integer number, which is setting the number of points created by
cubic interpolation.

This function gradually takes a point and the previous point and calculates vector to
the previous point, which is then multiplied by line parameter. If the vector isn’t limited
by distance threshold, then the vector is summed with the chosen point and the newly
created point is added to the end of an array. Otherwise, the size of the vector is decreased
and then is summed. Next, the chosen point is added to the array. The similar calculation
of vector is done with the next point too and then the newly created point is added to
array too. This process is executed for all input points except for the first and the last
point. These points are added separately. In our case, the process is executed for 3 black
points in figure 4.4.

The array is checked after each adding of a point. If the array is containing at least
4 points then the output points of the curve are created by using b-spline interpolation for
the last 4 points of array. The number of created output points depends on curve points

parameter. Equation for this interpolation is:

u =
i

curve points

output point =
u3 · (−P0 + 3P1 − 3P2 + P3)

6

+
u2 · (3P0 − 6P1 + 3P2)

6

+
u · (−3P0 + 3P2)

6

+
P0 + 4P1 + P2

6
i ∈ N,< 0, curve points >

P0, P1, P2, P3 are last four point of the array,

where P3 is last and P0 is third to the last

B-spline interpolation

(4.1)

24 Chapter 4. Method for placement

If parameter reducer epsilon 4.2 is bigger than 0, then the number of output points
can be reduced. The reduction depends on the location of points and the value of the
parameter.

Example of the curve trajectory generated by B-spline interpolation with these pa-
rameters: altitude curve offset = 1[m], curve offset = 1.5[m], reducer epsilon

= 0.01, line parameter = 1.5, distance threshold = 1, curve point = 50. The green
points are input points to the function (computed points from parameters in config), the
blue points are output points from function (the points are defining curve trajectory) and
the red line is the final curve trajectory (connected blue points by the straight line).

Figure 4.5: Example of curve trajectory generated by B-spline

The next function from the library is smooth path catmull. The function has only
2 parameters: reducer epsilon 4.2 and curve points 4.2, which are described above.

This function gradually takes all input points and adding them to the array without
any change. The only exception is the first and the last point. These points are ”multiplied”,
which means adding these points two times to the array. The array is checked after each
adding of a point. If the array is containing at least 4 points then the output points of the
curve are created by using Catmull-Rom spline interpolation for the last 4 points of array.
The number of created output points depends on curve points parameter. Equation for
this interpolation is:

4.2. Creating of the trajectory for placing the brick 25

u =
i

curve points

output point =
u3 · (−P0 + 3P1 − 3P2 + P3)

2

+
u2 · (2P0 − 5P1 + 4P2 − P3)

2

+
u · (−P0 + P2)

2
+P1

i ∈ N,< 0, curve points >

P0, P1, P2, P3 are last four point of the array,

where P3 is last and P0 is third to the last

Catmull-Rom spline interpolation

(4.2)

Like in the function for b-spline, the number of output points can be reduced de-
pending on the reducer epsilon 4.2 parameter and location of the points.

Example of the curve trajectory generated by Catmull-Rom spline interpolation with
these parameters: altitude curve offset = 1[m], curve offset = 1.5[m], reducer

epsilon = 0.01, curve point = 50. The green points are input points to the function
(computed points from parameters in config), the blue points are output points from func-
tion (the points are defining curve trajectory) and the red line is the final curve trajectory
(connected blue points by the straight line).

Figure 4.6: Example of curve trajectory generated by Catmull-Rom spline

26 Chapter 4. Method for placement

The last function for computing the curve points for a trajectory is smooth path

hermite. The function has the same parameters as the function for Catmull trajectory,
that are reducer epsilon 4.2 and curve points 4.2, which are described above.

This function is using 4 input points (computed points from parameters in config)
and by using these points compute one point of the curve trajectory.

percent =
i

curve points− 1

tx =(quantity of input points− 1) · percent

index = full part of number tx

u = decimal part of number tx

i ∈ N,< 0, curve points)

P0 = index− 1, P1 = index,

P2 = index + 1, P3 = index + 2

(4.3)

If the index of the point (P0,...,P3) is negative (the point is not in the array), then it
is taken the first point of the array (index = 0). If the index of the point is bigger or equal
like the size of the array then it is taken the last point of the array. If the index is pointing
in the array then it is taken this point from the array. The first and last points can be
”multiplied”, which means using these points two or more times as Px. These points are
then used for computing curve point by Hermite interpolation.

output point =
u3 · (−P0 + 3P1 − 3P2 + P3)

2

+
u2 · (2P0 − 5P1 + 4P2 − P3)

2

+
u · (−P0 + P2)

2
+P1

Hermite spline interpolation

(4.4)

Like in the two previous functions, the number of output points can be reduced
depending on the reducer epsilon 4.2 parameter and location of the points.

Example of the curve trajectory generated by Hermite spline interpolation with these
parameters: altitude curve offset = 1[m], curve offset = 1.5[m], reducer epsilon

= 0.01, curve point = 50. The green points are input points to the function (computed
points from parameters in config), the blue points are output points from function (the
points are defining curve trajectory) and the red line is the final curve trajectory (connected
blue points by the straight line).

4.2. Creating of the trajectory for placing the brick 27

Figure 4.7: Example of curve trajectory generated by Hermite spline

By using one of the three functions mentioned above is generated curve trajectory
which is defined by output points from these functions. Next, the points are split into
two halves and used in the function named step path. The function ”slices” the created
curve trajectory by using parameter step len. The second half, of the split points, is used
in the same function but with the half step len parameter for slower velocity. Distance
between created final points is precisely step len (or step len/2) . Points with the same
gap between themselves are created and sent to the MPC trajectory tracker.

Example of the sliced points from a curve trajectory. Parameter step len = 0.1. The
green points are raw points (computed points from parameters in config), the red points
are ”sliced” points from the function (the points are the final points, through which the
UAV will fly) and the blue line is the curve trajectory (trajectory generated from spline
function).

Figure 4.8: Example of ”sliced” points

28 Chapter 4. Method for placement

The final points (”sliced” points) are sent to the MPC trajectory tracker, which is
more described in [26] section D. The tracker supposes that the points are sampled with
0.2s. Therefore, the velocity between each point will be equal to the distance between them
divided by 0.2.

velocity =
step len

0.2

Theoretical compute of velocity for ”sliced” points (first half)

(4.5)

In reality, the velocity of the UAV will be affected by the initial state of UAV and the
limitations of the MPC tracker. For example, the limitations include limitation of velocity,
acceleration and cylinder radius (the sharpness of the curve). MPC tracker hence limitate
the behavior of the UAV so that the UAV is able to fly through the trajectory. In general,
the smaller parameter step len (more final points) causes the slower flying through curve
trajectory and smoother placing of the brick.

Creating of curve trajectory is easily modifying by changing 3 parameters in config

file or by changing parameters one of three functions for curve trajectory, which is just used.
This easy modifying provides a changing of curve trajectory according to the requirements.

The MPC tracker is checking the surroundings of the UAV and trying to avoid col-
lisions with other UAVs. The attempt to avoid a collision could disturb the placing of the
brick and therefore it is supposed that the UAVs won’t try to simultaneously place the
brick near to each other. This should be provided by high-level motion planning according
to the width of the curve.

4.3 State machine for placing method

• IDLE STATE is an inactive state. The code is waiting for the input message from a
high-level motion planning method.

• TRAVEL1 STATE is state which ensures the move of UAV to start position for placing
the brick. The move is accomplished by using service go to 4.3. Next, this state is
checking an exceeding number of tries for repeating the placing and if the number is
overrun then the placing of the brick is aborted. The UAV will start moving to the
final position with the brick after method is aborted.

• DROP1 STATE is state which ensures descending to start spline position by using the
trajectory described 4.3. But if the start position for placing the brick is the same as
start spline position then this state is skipped. Next, if this state doesn’t finish the
trajectory in the predefined time period by parameter then the state is switched to
TRAVEL1 STATE and another attempt will be tried. Finishing of the state is checked
by comparing actual position with a goal position.

4.3. State machine for placing method 29

IDLE_STATE

TRAVEL1_STATE

input message

DROP1_STATE

Start_pos

DROP2_STATE

Start_spline_pos
= Start_pos

RISE_STATE

try=
max_try

time_out
(try+1)

Start_spline_pos

time_out
(try+1)

DETACH_STATE

Place_pos

Detaching
brick

TRAVEL2_STATE

Start_pos

Final_pos

Checking_gripper

DROP1 or DROP2
STATE

TRAVEL1_STATE

Figure 4.9: State machine for placing procedure

• DROP2 STATE is state which ensures executing of curve trajectory described 4.4. If the
state doesn’t finish the trajectory in the predefined time period by parameter then
the state is switched to TRAVEL1 STATE and another attempt will be tried. Finishing
of the state is checked by comparing actual position with a goal position.

• DETACH STATE is state which ensures detaching of the brick from UAV. Finishing the
state is checked by successfully releasing the brick from the gripper.

• RISE STATE is state which ensures the rising of the UAV to the start position. The
move is accomplished by using service go to 4.3.

• TRAVEL2 STATE is state which ensures the last move to the final position before fin-
ishing the procedure. The move is accomplished by using service go to 4.3.

• Checking gripper is function which is checking the actual state of the gripper. So
the function is checking if the brick is still attached to the UAV. If the UAV loses
the brick that is just being carried then the procedure is abandoned with error and

30 Chapter 4. Method for placement

publish a message with the position where the brick was lost to the terminal. The
function changes the state according to the current state and occurs in finishing the
procedure with the error.

The service go to is used for planning a trajectory of UAV with collision avoidance.
If multiple UAVs are deployed then it is assumed that they are localized within the same
world coordinate system. Furthermore, it is assumed that the position of each UAV is well
known, e.g. with the use of a GPS sensor. The method which is used by the service is more
described in this article [26].This service is included in node mpc tracker and send the
UAV to a goal position in global coordinates.

Chapter 5

Experiments in simulator

Contents
5.1 Experiments with using of the Hermite interpolation 32

5.2 Experiments with using of the Catmull-Rom interpolation . 38

5.3 Experiments with using of the B-spline interpolation 44

5.4 Experiments with all other types of trajectories by using op-
timal B-spline trajectory . 50

To test the precision of the method for placing the brick, the tests were realized
in Gazebo simulator under the Robot Operating System. The map, in which were the
experiments are realized, is the map created in Chapter 1 of this work. To the center of the
map was added blue brick which simulated brick wall under construction 5.1. The searching
of the best trajectory for placing the brick is tested only on one type of trajectory (type
2). The precision of the left four trajectory types will be tested with found best trajectory.

The main objective of the experiments is to place the brick as close as possible to
the blue brick without damaging already place brick. The required coordinates of the
newly placed brick are x = 0.75, y = 0.00 (for trajectory type 2). With these coordinates,
the brick is touched to the already placed brick (fits perfectly). During the experiments
is the biggest emphasis attached on not to damage the already placed bricks. Then the
emphasis is descending attached to the precision of placing the brick, time of executing
the whole trajectory and length of the trajectory. All three functions for compute spline,
which are mentioned above, are used to find the optimal trajectory, which is best fulfills to
the requirements. For executing each test is sent a message with this information: [place
position: [x,y,z,yaw], final position: [x,y,z,yaw] and trajectory type: [1-5], at the
beginning.

During each experiment is executing grasping of the brick. For this reason, a different
result can occur though the set parameters are the same. The precision of placing the

32 Chapter 5. Experiments in simulator

Figure 5.1: World modified for experiments

brick is strictly depending on the grasping of the brick. For the biggest possible precision
of grasping the brick is used the newest update of the node for MBZIRC competition
(upgraded version of method from Chapter 3).

5.1 Experiments with using of the Hermite interpo-

lation

In the first part of the tables (light blue color) are parameters, which can be modified
in config file. The parameters for Hermite interpolation are set as: reducer epsilon = 0.01
and curve points = 50. In the second part of the table (white color) are measured metrics
from the simulator. Value in ”deviation of placed brick” column is computed from the
required coordinates (x = 0.75,y = 0.00). Value in ”damage of already placed brick”
column is true if the brick is shifted in any way from the original position. Value in ”touch
the placed brick” is true if the newly placed brick is touching the already placed brick. The
last column ”Success” is true if the method is finished without errors.

During these experiments was changed ”place position” because of finding a more
precise trajectory. For the first three rows is ”place position” equals to [0.7, 0.0, 0.1, 1.57].
In two next rows (4,5) was decreased z coordinates, which was then again raised to 0.1m
because the brick touched the ground sometimes. In the first five rows from the table can be
seen that the grasped brick is shifted of 0.03m in coordinate y, that is why ”place position”
is modified in coordinate y to 0.03. In the seventh row is a curve trajectory enough precise
so coordinate x could be changed to the required coordinate (0.75). ”Place position” is not
modified from the seventh row and the value of the position is [0.75,0.03,0.1, 1.57].

The parameter altitude offset is fixed on value 0.5[m]. This value could be more
decreased for the current state of the wall, but it could cause a collision with already placed
bricks. Therefore it is left sufficient space between just carried brick and wall.

5.1. Experiments with using of the Hermite interpolation 33

N
o.

A
lt

it
u
d
e

off
se

t
[m

]
S
te

p
le

n
[m

]

C
u
rv

e
off

se
t

[m
]

A
lt

it
u
d
e

cu
rv

e
off

se
t

[m
]

T
im

e
of

ex
ec

u
ti

n
g

w
h
ol

e
tr

a
je

ct
or

y
[s

]

R
ea

l
le

n
gt

h
of

w
h
ol

e
tr

a
je

ct
or

y
[m

]

P
la

n
n
ed

le
n
gt

h
of

w
h
ol

e
tr

a
je

ct
or

y
[m

]

D
ev

ia
ti

on
of p
la

ce
d

b
ri

ck
[m

]

D
am

ag
e

of
al

-
re

ad
y

p
la

ce
d

b
ri

ck

T
ou

ch
th

e
p
la

ce
d

b
ri

ck

S
u
cc

es
s

1
0.

5
0.

05
0.

5
0.

4
10

.4
9

0.
98

1.
18

0.
00

3
0.

03
6

F
T

T
2

0.
5

0.
05

0.
5

0.
3

10
.3

5
0.

98
1.

22
0.

02
1

0.
03

2
F

F
T

3
0.

5
0.

05
0.

5
0.

25
11

.2
9

1.
00

1.
26

0.
02

8
0.

03
4

F
F

T
4

0.
5

0.
05

0.
3

0.
25

8.
52

0.
67

0.
88

0.
01

1
0.

03
8

F
F

T
5

0.
5

0.
01

0.
3

0.
25

21
.2

0
0.

79
0.

90
0.

03
4

0.
03

2
F

F
T

6
0.

5
0.

08
0.

28
0.

25
6.

76
0.

57
0.

83
0.

01
1

0.
00

6
T

T
T

7
0.

5
0.

08
0.

28
0.

25
6.

71
0.

57
0.

83
0.

02
5

0.
01

1
F

F
T

8
0.

5
0.

06
5

0.
25

0.
25

7.
11

0.
58

0.
79

0.
04

8
0.

00
7

F
F

T
9

0.
5

0.
08

0.
25

0.
25

6.
72

0.
55

0.
77

0.
03

0
0.

00
5

F
F

T
10

0.
5

0.
08

0.
2

0.
25

6.
37

0.
52

0.
72

0.
01

4
0.

00
8

F
F

T
11

0.
5

0.
08

5
0.

2
0.

25
6.

34
0.

52
0.

72
0.

01
2

0.
00

6
F

F
T

12
0.

5
0.

09
0.

2
0.

25
6.

31
0.

52
0.

72
0.

01
7

0.
01

3
F

F
T

13
0.

5
0.

08
5

0.
2

0.
25

6.
44

0.
52

0.
72

0.
01

3
0.

01
2

F
F

T
14

0.
5

0.
08

5
0.

15
0.

5
5.

0
0.

51
6

0.
58

0
0.

00
9

0.
00

0
F

F
T

15
0.

5
0.

08
5

0.
15

0.
5

4.
99

0.
51

6
0.

57
9

0.
01

4
0.

01
5

F
F

T

T
ab

le
5.

1:
T

ab
le

of
ex

p
er

im
en

ta
l

re
su

lt
w

it
h

u
si

n
g

of
H

er
m

it
e

in
te

rp
ol

at
io

n

34 Chapter 5. Experiments in simulator

In the last six rows of the table are deviation x and y only around 1 cm. The size
of the deviation is changing accordingly to the grasping of the brick. At the same time,
the brick wall isn’t damaged that’s why this trajectory is satisfactory for the requirements
of the task. As optimal trajectory for Hermite interpolation can be chosen two trajecto-
ries with these parameters: altitude offset: 0.5[m], step len: 0.085[m], curve offset:
0.2[m] and altitude curve offset: 0.25[m] for the first trajectory (rows 11 and 13)
and altitude offset: 0.5[m], step len: 0.085[m], curve offset: 0.15[m] and altitude

curve offset: 0.5[m] for the second trajectory (rows 14 and 15).

The second trajectory (rows 14,15) has similar deviations of placing the brick, but the
execution of trajectory is faster. This is caused by omitting the first part of the trajectory
(4.3). On the other hand, the carried brick is extremely close to the placed brick if the
brick is attached far from UAV (probably can’t occur in real simulations), and a collision
with the wall could occur. From this reason is chosen the first trajectory (rows 11,13) as
optimal which is slower but safer. The required position for placing the brick is [0.75, 0]
and the sent message contains: place position: [0.75, 0.03, 0.05, 1.57], final position:
[0.75, 0.03, 0.9, 1.57], type of trajectory: 2.

Figure 5.2: Planned and real trajectory in 2D, axis zx, Hermite interpolation

The trajectory in figure 5.2 is realized from beginning of DROPPING1 STATE to end of
RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and blue line
is a really executed trajectory (information from odometry, e.g. GPS). The red line isn’t
rising back with the blue line, because it is used go to service for rising, which is included
directly in MPC tracker. The 3D plots of this trajectory can be seen in Appendices.

The UAV isn’t able to execute the red trajectory (too sharp curve and high speed),
that’s why the MPC tracker changed the trajectory.

5.1. Experiments with using of the Hermite interpolation 35

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.3: The figure contains dependencies of velocities and positions in all coordinates
on time

36 Chapter 5. Experiments in simulator

From figure 5.3, we can see a change of position and velocity in dependence of time.
When is the velocity changed then it is following a change of position with some time re-
sponse. The velocity and the position is measured by a sensor on a UAV (e.g. accelerometer,
GPS), which means that the values can have some deviation.

(a) The final position of placed brick with op-
timal trajectory, view in coordinates x,z

(b) The final position of placed brick with op-
timal trajectory, view in coordinates x,y

Figure 5.4: The final position of placed brick with optimal trajectory, Hermite interpolation

The figure 5.4 shows the placed red brick next to the blue brick, which is the result
of experiment, which is described by the above-mentioned figures. The deviation of placed
brick is 0.018 for x coordinate and 0.018 for y coordinate.

In the figures 5.5 below is displayed a sequence of pictures from video, which is
describing this experiment. Unfortunately, it wasn’t possible to create the graphs and
video simultaneously, that’s why the video was created in the next run of simulation with
the same parameters. The placed brick can have other deviations and graphs have probably
different shapes. The whole video is available on: https://www.youtube.com/watch?v=
tqEX1YPlZOY

https://www.youtube.com/watch?v=tqEX1YPlZOY
https://www.youtube.com/watch?v=tqEX1YPlZOY

5.1. Experiments with using of the Hermite interpolation 37

Figure 5.5: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory from Hermite interpolation

38 Chapter 5. Experiments in simulator

5.2 Experiments with using of the Catmull-Rom in-

terpolation

In the first part of the tables (light blue color) are parameters, which can be modified
in config file. The parameters for Catmull-Rom interpolation are set as: reducer epsilon
= 0.01 and curve points = 50. In the second part of the table (white color) are measured
metrics from the simulator. The same meaning of columns like in the previous table 5.1.

The Catmull-Rom interpolation has similar trajectories as Hermite interpolation,
which can be seen in figures 4.7, 4.6. Therefore the searching for optimal trajectory was
much easier and the first estimate of parameters is taken from optimal Hermite trajectory.
The required trajectory is set at coordinates [0.75, 0] from the beginning and ”Place posi-
tion” sent to UAV is [0.75,0.03,0.1, 1.57]. Again, the parameter altitude offset is fixed
on value 0.5[m].

5.2. Experiments with using of the Catmull-Rom interpolation 39

N
o.

A
lt

it
u
d
e

off
se

t
[m

]
S
te

p
le

n
[m

]

C
u
rv

e
off

se
t

[m
]

A
lt

it
u
d
e

cu
rv

e
off

se
t

[m
]

T
im

e
of

ex
ec

u
ti

n
g

w
h
ol

e
tr

a
je

ct
or

y
[s

]

R
ea

l
le

n
gt

h
of

w
h
ol

e
tr

a
je

ct
or

y
[m

]

P
la

n
n
ed

le
n
gt

h
of

w
h
ol

e
tr

a
je

ct
or

y
[m

]

D
ev

ia
ti

on
of p
la

ce
d

b
ri

ck
[m

]

D
am

ag
e

of
al

-
re

ad
y

p
la

ce
d

b
ri

ck

T
ou

ch
th

e
p
la

ce
d

b
ri

ck

S
u
cc

es
s

1
0.

5
0.

08
5

0.
2

0.
25

6.
29

0.
51

8
0.

72
2

0.
02

9
0.

00
5

F
F

T
2

0.
5

0.
08

5
0.

2
0.

25
6.

31
0.

51
9

0.
72

2
0.

01
4

0.
00

0
F

F
T

3
0.

5
0.

08
5

0.
2

0.
25

6.
42

0.
52

1
0.

72
2

0.
01

1
0.

00
2

F
F

T
4

0.
5

0.
08

5
0.

2
0.

25
6.

23
0.

51
6

0.
72

2
0.

01
9

0.
01

4
F

F
T

5
0.

5
0.

09
5

0.
2

0.
25

6.
39

0.
51

9
0.

72
2

0.
02

1
0.

01
0

F
F

T
6

0.
5

0.
09

5
0.

2
0.

25
6.

27
0.

51
3

0.
72

2
0.

02
1

0.
01

4
F

F
T

7
0.

5
0.

07
5

0.
2

0.
25

6.
54

0.
53

8
0.

72
2

0.
01

7
0.

01
1

F
F

T
8

0.
5

0.
07

5
0.

2
0.

25
6.

6
0.

53
4

0.
72

2
0.

02
7

0.
00

9
F

F
T

9
0.

5
0.

07
5

0.
2

0.
25

6.
56

0.
54

0
0.

72
2

0.
01

7
0.

01
3

F
F

T
10

0.
5

0.
05

0.
2

0.
25

7.
2

0.
56

8
0.

72
2

0.
06

6
0.

00
4

F
F

T
11

0.
5

0.
08

5
0.

25
0.

3
6.

53
0.

55
1

0.
78

3
0.

03
3

0.
00

5
F

F
T

12
0.

5
0.

08
5

0.
25

0.
3

6.
68

0.
55

5
0.

78
3

0.
02

5
0.

00
4

F
F

T
13

0.
5

0.
08

5
0.

15
0.

5
5.

3
0.

51
6

0.
58

3
0.

01
1

0.
00

7
F

F
T

14
0.

5
0.

08
5

0.
15

0.
5

5.
3

0.
52

0
0.

58
3

0.
01

9
0.

00
4

F
F

T

T
ab

le
5.

2:
T

ab
le

of
ex

p
er

im
en

ta
l

re
su

lt
w

it
h

u
si

n
g

of
C

at
m

u
ll
-R

om
in

te
rp

ol
at

io
n

40 Chapter 5. Experiments in simulator

Collision with the wall didn’t occur during all experiments with this interpolation.
Therefore the optimal trajectory is chosen according to the smallest deviation of placed
brick. The smallest values are in rows 2,3,4 and 13,14. As optimal trajectory for Catmull-
Rom interpolation can be chosen two trajectories, which are with the same parameters
as for Hermite interpolation. As mentioned above, these interpolations are similar for our
point set, therefore it is chosen the second trajectory, which wasn’t shown.

The second trajectory have these parameters: altitude offset: 0.5[m], step len:
0.085[m], curve offset: 0.15[m] and altitude curve offset: 0.5[m] for the second tra-
jectory (rows 13 and 14). This trajectory is omitting the first part of the whole trajectory
for placing (4.3).

The required position for placing the brick is [0.75, 0] and the sent message con-
tains: place position: [0.75, 0.03, 0.05, 1.57], final position: [0.75, 0.03, 0.9, 1.57], type
of trajectory: 2.

Figure 5.6: Planned and real trajectory in 2D, axis zx, Catmull-Rom interpolation

The trajectory in figure 5.6 is realized from beginning of DROPPING1 STATE to end of
RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and blue line
is a really executed trajectory (information from odometry, e.g. GPS). The red line isn’t
rising back with the blue line, because it is used go to service for rising, which is included
directly in MPC tracker. The 3D plots of this trajectory can be seen in Appendices.

The UAV isn’t able to execute the red trajectory similarly as in the Hermite inter-
polation, but the planned trajectory isn’t so difficult and therefore the real trajectory is
much closer to the planned trajectory.

5.2. Experiments with using of the Catmull-Rom interpolation 41

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.7: The figure contains dependencies of velocities and positions in all coordinates
on time, Catmull-Rom interpolation

42 Chapter 5. Experiments in simulator

From figure 5.7, we can see a change of position and velocity in dependence of time.
The velocity and the position is measured by a sensor on a UAV (e.g. accelerometer, GPS),
which means that the values can have some deviation.

(a) The final position of placed brick with op-
timal trajectory, view in coordinates x,z

(b) The final position of placed brick with op-
timal trajectory, view in coordinates x,y

Figure 5.8: The final position of placed brick with optimal trajectory, Catmull-Rom inter-
polation

The figure 5.8 shows the placed red brick next to the blue brick, which is the result
of experiment, which is described by the above-mentioned figures. The deviation of placed
brick is 0.014 for x coordinate and 0.013 for y coordinate.

In the figures 5.9 below is displayed a sequence of pictures from video, which is
describing this experiment. As in the previous experiments, it wasn’t possible to create
the graphs and video simultaneously, that’s why the video was created in the next run of
simulation with the same parameters. The graphs and deviations of placed brick are not
corresponding with the video. The whole video is available on: https://www.youtube.
com/watch?v=2pzTVb4q7p8

https://www.youtube.com/watch?v=2pzTVb4q7p8
https://www.youtube.com/watch?v=2pzTVb4q7p8

5.2. Experiments with using of the Catmull-Rom interpolation 43

Figure 5.9: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory from Catmull-Rom interpolation

44 Chapter 5. Experiments in simulator

5.3 Experiments with using of the B-spline interpo-

lation

In the first part of the tables (light blue color) are parameters, which can be modified
in config file. Next two columns contain parameters to set function for B-spline, which
are line parameter and distance threshold. Left two parameters are set as: reducer
epsilon = 0.01 and curve points = 50. In the second part of the table (white color) are
measured metrics from the simulator. The same meaning of columns like in the previous
table 5.1.

The B-spline interpolation has the possibility to change function parameters, against
two mentioned interpolations. The first estimate of parameters is again taken from optimal
Hermite trajectory. It was executed more experiments with this interpolation although the
approximate results are known from previous two interpolations. This is caused by the
possibility to modify the trajectory through parameters in the function. The required
trajectory is set at coordinates [0.75, 0] from the beginning and ”Place position” sent
to UAV is [0.75,0.03,0.1, 1.57]. Again, the parameter altitude offset is fixed on value
0.5[m].

5.3. Experiments with using of the B-spline interpolation 45

No.

Altitudeoffset
[m]

Steplen[m]

Curveoffset[m]

Altitudecurve
offset[m]

Lineparameter

Distance
threshold

Timeof
executing
whole
trajectory[s]

Reallengthof
whole
trajectory[m]

Plannedlength
ofwhole
trajectory[m]

Deviationof
placedbrick[m]

Damageof
alreadyplaced
brick

Touchthe
placedbrick

Success

1
0.

5
0.

08
5

0.
20

0,
25

1.
5

1
7.

79
0.

52
0

0.
67

2
0.

02
0

0.
00

0
F

F
T

2
0.

5
0.

08
5

0.
20

0.
25

1.
5

1
6.

19
0.

50
9

0.
67

0
0.

02
0

0.
01

1
F

F
T

3
0.

5
0.

08
5

0.
20

0.
25

0.
5

10
6.

31
0.

51
4

0.
67

0
0.

01
3

0.
00

2
F

F
T

4
0.

5
0.

08
5

0.
20

0.
25

0.
5

10
6.

19
0.

50
8

0.
67

0
0.

02
0

0.
00

4
F

F
T

5
0.

5
0.

08
5

0.
30

0.
35

0.
5

10
6.

58
0.

56
0

0.
76

5
0.

01
9

0.
00

7
F

F
T

6
0.

5
0.

07
0

0.
30

0.
35

0.
5

10
6.

74
0.

58
0

0.
76

8
0.

04
0

0.
00

7
F

F
T

7
0.

5
0.

08
0

0.
25

0.
50

0.
5

10
5.

62
0.

55
2

0.
65

7
0.

02
4

0.
00

5
F

F
T

8
0.

5
0.

08
0

0.
25

0.
50

0.
5

10
5.

72
0.

55
7

0.
65

7
0.

01
8

0.
01

5
F

F
T

9
0.

5
0.

08
0

0.
15

0.
50

0.
5

10
5.

31
0.

51
2

0.
56

2
0.

00
9

0.
00

5
F

F
T

10
0.

5
0.

08
5

0.
15

0.
50

0.
5

10
5.

17
0.

51
7

0.
56

2
0.

00
9

0.
00

7
F

F
T

11
0.

5
0.

08
5

0.
15

0.
50

1.
5

1
5.

20
0.

51
1

0.
56

2
0.

01
1

0.
01

0
F

F
T

12
0.

5
0.

08
5

0.
15

0.
50

1.
5

1
5.

10
0.

51
4

0.
56

2
0.

01
5

0.
01

1
F

F
T

13
0.

5
0.

06
0

0.
15

0.
50

1.
5

1
5.

66
0.

52
5

0.
56

2
0.

01
5

0.
01

2
F

F
T

14
0.

5
0.

06
0

0.
15

0.
50

1.
5

1
6.

96
0.

52
8

0.
56

2
0.

02
1

0.
00

8
F

F
T

15
0.

5
0.

06
0

0.
15

0.
50

0.
5

10
5.

73
0.

52
2

0.
56

2
0.

02
5

0.
00

5
F

F
T

16
0.

5
0.

07
0

0.
15

0.
50

0.
5

10
5.

56
0.

52
1

0.
56

2
0.

01
7

0.
00

1
F

F
T

17
0.

5
0.

07
0

0.
15

0.
50

0.
5

10
5.

50
0.

51
9

0.
56

2
0.

01
4

0.
00

7
F

F
T

18
0.

5
0.

08
0

0.
15

0.
50

0.
5

10
5.

20
0.

51
4

0.
56

2
0.

02
0

0.
00

1
F

F
T

T
ab

le
5.

3:
T

ab
le

of
ex

p
er

im
en

ta
l

re
su

lt
w

it
h

u
si

n
g

of
B

-s
p
li
n
e

in
te

rp
ol

at
io

n

46 Chapter 5. Experiments in simulator

Collision with the wall didn’t occur during all experiments with this interpolation.
Therefore the optimal trajectory is chosen according to the smallest deviation of placed
brick. The smallest values are in rows 9,10,11. If we compare row 9 with row 18, which has
the same parameters, we can see the bigger dispersion against the rows 10,11. Therefore,
the optimal parameters are chosen according to row 10 which has smaller deviations. The
parameters are : altitude offset: 0.5[m], step len: 0.085[m], curve offset: 0.15[m],
altitude curve offset: 0.5[m], line parameter: 0.5 and distance threshold: 10. This
trajectory is omitting the first part of the whole trajectory for placing (4.3).

The required position for placing the brick is [0.75, 0] and the sent message con-
tains: place position: [0.75, 0.03, 0.05, 1.57], final position: [0.75, 0.03, 0.9, 1.57], type
of trajectory: 2.

Figure 5.10: Planned and real trajectory in 2D, axis zx, B-spline interpolation

The trajectory in figure 5.10 is realized from beginning of DROPPING1 STATE to end of
RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and blue line
is a really executed trajectory (information from odometry, e.g. GPS). The red line isn’t
rising back with the blue line, because it is used go to service for rising, which is included
directly in MPC tracker. The 3D plots of this trajectory can be seen in Appendices.

The UAV isn’t able to execute the red trajectory similarly as in the previous inter-
polations. We can see that the UAV is rising up before reaching the place position. This is
happening during all interpolations. The reaching of a position is checked by flying into a
”circle” around place position. For fixing this problem is needed to decrease the circle in
code (number in if condition).

5.3. Experiments with using of the B-spline interpolation 47

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.11: The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation

48 Chapter 5. Experiments in simulator

From figure 5.11, we can see a change of position and velocity in dependence of time.
The velocity and the position is measured by a sensor on a UAV (e.g. accelerometer, GPS),
which means that the values can have some deviation.

(a) The final position of placed brick with op-
timal trajectory, view in coordinates x,z

(b) The final position of placed brick with op-
timal trajectory, view in coordinates x,y

Figure 5.12: The final position of placed brick with optimal trajectory, Catmull-Rom in-
terpolation

The figure 5.12 shows the placed red brick next to the blue brick, which is the result
of experiment, which is described by the above-mentioned figures. The deviation of placed
brick is 0.013 for x coordinate and 0.014 for y coordinate.

In the figures 5.13 below is displayed a sequence of pictures from video, which is
describing this experiment. As in the previous experiments, it wasn’t possible to create
the graphs and video simultaneously, that’s why the video was created in the next run of
simulation with the same parameters. The graphs and deviations of placed brick are not
corresponding with the video. The whole video is available on: https://www.youtube.
com/watch?v=itcU1tpQaRQ

https://www.youtube.com/watch?v=itcU1tpQaRQ
https://www.youtube.com/watch?v=itcU1tpQaRQ

5.3. Experiments with using of the B-spline interpolation 49

Figure 5.13: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory from B-spline interpolation

50 Chapter 5. Experiments in simulator

5.4 Experiments with all other types of trajectories

by using optimal B-spline trajectory

For all experiments above was used only trajectory of type 2. In this section will
be shown all other types of trajectories with using B-spline interpolation with optimal
parameters found in section 5.3.

5.4.1 Trajectory with type 3

This type of trajectory is similar to type 2. The only difference between these types
is in math sign. Type two is a curve in +axis x and type 3 is a curve in -axis x. The closer
description is in 4.1b

Required position for this type of trajectory is [−0.75, 0] and the sent message con-
tains: place position: [−0.75, 0.03, 0.05, 1.57], final position: [−0.75, 0.03, 0.9, 1.57],
type of trajectory: 3.

Figure 5.14: Planned and real trajectory in 2D, axis zx, B-spline interpolation, trajectory
type 3

The trajectory in figure 5.14 is realized from beginning of DROPPING1 STATE to end
of RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and blue
line is a really executed trajectory (information from odometry, e.g. GPS). The 3D plots of
this trajectory can be seen in Appendices. The MPC tracker again changing the trajectory
so as the UAV is able to fly through the trajectory.

5.4. Experiments with all other types of trajectories by using optimal
B-spline trajectory 51

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.15: The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 3

52 Chapter 5. Experiments in simulator

Figure 5.16: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory of type 3 from B-spline interpolation

5.4. Experiments with all other types of trajectories by using optimal
B-spline trajectory 53

In the figures 5.16 above is displayed a sequence of pictures from video, which is
describing this experiment. The deviation of place brick is [0.013, 0.005]. As in the previous
experiments, it wasn’t possible to create the graphs and video simultaneously, that’s why
the video was created in the next run of simulation with the same parameters. The graphs
are not corresponding with the video. The whole video is available on: https://www.

youtube.com/watch?v=tVhH71Km5u0

5.4.2 Trajectory with type 4

Type four trajectory is a curve in +axis y. The closer description is in 4.1c

Required position for this type of trajectory is [0, 0.25] and the sent message con-
tains: place position: [0.03, 0.25, 0.05, 0], final position: [0.03, 0.25, 0.9, 0], type of

trajectory: 4.

Figure 5.17: Planned and real trajectory in 2D, axis zy, B-spline interpolation, trajectory
type 4

The trajectory in figure 5.17 is realized from beginning of DROPPING1 STATE to end
of RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and
blue line is a really executed trajectory (information from odometry, e.g. GPS). The 3D
plot of these trajectories can be seen in Appendices. The MPC tracker again changing the
trajectory so as the UAV is able to fly through the trajectory.

In the figure can be seen small loop on the bottom, which occurred during the dam-
aging the wall. The ”leg” of the UAV encountered to the wall and the already placed brick
was partly shifted. The deviation of already placed brick (blue) is [0, 0.007] and deviation of
placed brick (red) is [0.004, 0.011]. The main reason for this error is described below 5.4.2.

https://www.youtube.com/watch?v=tVhH71Km5u0
https://www.youtube.com/watch?v=tVhH71Km5u0

54 Chapter 5. Experiments in simulator

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.18: The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 4

5.4. Experiments with all other types of trajectories by using optimal
B-spline trajectory 55

Figure 5.19: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory of type 4 from B-spline interpolation

56 Chapter 5. Experiments in simulator

In the figures 5.19 above is displayed a sequence of pictures from video, which is
describing this experiment. As in the previous experiments, it wasn’t possible to create
the graphs and video simultaneously, that’s why the video was created in the next run of
simulation with the same parameters. The graphs are not corresponding with the video.
The whole video is available on: https://www.youtube.com/watch?v=P3XRGrC0gBc

Unfortunately, the error occurred only in the first run of the experiment and can’t
be seen in the video. As mentioned, the error occurred by encounter a ”leg” of the UAV
to the wall, therefore it is possible to safely place the bricks only in one straight line in the
simulator. This error can be solved by ”longer” gripper, so the ”legs” can’t encounter the
wall or the brick could be dropped from a higher altitude. The second solution will much
decrease the precision of the placing the brick.

5.4.3 Trajectory with type 5

Type five trajectory is a curve in -axis y. The closer description is in 4.1d

Required position for this type of trajectory is [0,−0.75] and the sent message con-
tains: place position: [0.03,−0.75, 0.05, 0], final position: [0.03,−0.75, 0.9, 0], type

of trajectory: 5.

Figure 5.20: Planned and real trajectory in 2D, axis zy, B-spline interpolation, trajectory
type 5

The trajectory in figure 5.20 is realized from beginning of DROPPING1 STATE to end
of RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and
blue line is a really executed trajectory. The 3D plots of this trajectory can be seen in
Appendices. The MPC tracker again changing the trajectory so as the UAV is able to fly
through the trajectory.

https://www.youtube.com/watch?v=P3XRGrC0gBc

5.4. Experiments with all other types of trajectories by using optimal
B-spline trajectory 57

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.21: The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 5

58 Chapter 5. Experiments in simulator

Figure 5.22: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory of type 5 from B-spline interpolation

5.4. Experiments with all other types of trajectories by using optimal
B-spline trajectory 59

In the figures 5.22 above is displayed a sequence of pictures from video, which is
describing this experiment. The deviations of placed brick is [0.005, 0.012]. As in the
previous experiments, it wasn’t possible to create the graphs and video simultaneously,
that’s why the video was created in the next run of simulation with the same parame-
ters. The graphs are not corresponding with the video. The whole video is available on:
https://www.youtube.com/watch?v=yN-YYa9zlYU

5.4.4 Trajectory with type 1

Type one trajectory is a straight trajectory. The closer description is in 4.2a and 4.2b.

Required position for this type of trajectory is [0, 0] and the sent message contains:
place position: [0, 0.03, 0.2, 1.57], final position: [0, 0.03, 1.2, 1.57], type of trajectory:
1.

Figure 5.23: Planned and real trajectory in 2D, axis zy, B-spline interpolation, trajectory
type 1

The trajectory in figure 5.23 is realized from beginning of DROPPING1 STATE to end of
RISE STATE. Red line is a planned trajectory (points sent to the MPC tracker) and blue line
is a really executed trajectory. The 3D plot of this trajectory can be seen in Appendices.
The MPC tracker again changing the trajectory so as the UAV is able to fly through the
trajectory.

https://www.youtube.com/watch?v=yN-YYa9zlYU

60 Chapter 5. Experiments in simulator

(a) Dependence of speed of UAV in coordinate
x on time

(b) Dependence of position x of UAV on time

(c) Dependence of speed of UAV in coordinate
y on time

(d) Dependence of position y of UAV on time

(e) Dependence of speed of UAV in coordinate
z on time

(f) Dependence of position z of UAV on time

Figure 5.24: The figure contains dependencies of velocities and positions in all coordinates
on time, B-spline interpolation, trajectory type 1

5.4. Experiments with all other types of trajectories by using optimal
B-spline trajectory 61

Figure 5.25: The figure displays a sequence of pictures from video, which is describing the
experiment with a trajectory of type 1 from B-spline interpolation

62 Chapter 5. Experiments in simulator

In the figures 5.25 above is displayed a sequence of pictures from video, which is
describing this experiment. The deviations of placed brick is [0.004, 0.046]. As in the
previous experiments, it wasn’t possible to create the graphs and video simultaneously,
that’s why the video was created in the next run of simulation with the same parame-
ters. The graphs are not corresponding with the video. The whole video is available on:
https://www.youtube.com/watch?v=d2NpvDsH4UM

The straight trajectory was tested only for place brick on the new ”floor” (place brick
without bricks) 4.2a. The second usage of the trajectory 4.2b wasn’t tested, because the
state of the wall couldn’t occur with good high-level motion planning.

The brick slips down from the wall in the simulator. This error can be seen in the
video or on the last picture in figure 5.25. The error causes a bigger deviation in axis y and
damaging of the wall (blue brick). The error is caused by the Gazebo simulator or by the
created world (bad physics or material of the bricks). In real experiments, the error won’t
occur with high probability.

https://www.youtube.com/watch?v=d2NpvDsH4UM

Chapter 6

Conclusion

The motion planning method for grasping and placing the color bricks is presented in
this work. The grasping method described in chapter 3 is able to grasp any the brick if the
fake object detector substitutes information from the camera. After the software for
recognizing the brick was created, the method is able to grasp any brick with 80% success.
The method was upload on git for mbzirc competition and the method was upgraded
by members of Multi-robot System group since that. The node was split into two nodes
grasping and estimation. Now, this method is grasping bricks with 100% success and the
brick is attached only with small deviations in x,y coordinates. This method is used for
the task in mbzirc competition.

The method for placing the bricks, described in chapter 4, contains five types of
trajectories, where each trajectory is created for precise fitting the brick into the wall
depending on state of the wall. The shape of these trajectories can be easily modified by
parameters according to the requirements. The curve trajectory can be created by three
different interpolations (B-spline, Catmull-Rom and Hermite). The all mentioned types of
trajectories are working similarly and have similar precision.

The different interpolation almost doesn’t have an influence on our simple curve
trajectory created by five points with similar gaps. If the parameters are the same, then
the experiments have similar results for all mentioned interpolations. The small difference
between result is probably caused by grasping the brick.

During experiments was found error when trying to place the brick from the side
(not directly in one straight line). This error can be seen in section 5.4.2. The ”leg” of the
UAV encountered the wall and damaged the wall. The error can be solved by using longer
gripper, so the brick will be attached under UAV and the ”leg” can’t encounter the wall.
The other solution is to drop bricks from higher altitude, but this solution decrease the
precision of placing the brick.

Now, if the optimal parameters are chosen then deviation from the required position
is around 1.5 cm. But, if the complete fitting of the bricks (bricks are touching each other)

64 Chapter 6. Conclusion

is required then it is needed to change the condition of releasing the brick. It will be needed
to shift the required position of the brick ”into the wall” so as the brick will touch the wall
during placing. Then, it will be needed to release the brick according to some pressure on
the UAV. This solution includes a more complicated approach to the problem.

Bibliography

[1] D. F. AL-MASKARI. Mbzirc 2020. [Online]. Available: https://www.mbzirc.com/
challenge/2020

[2] M. Sakin and Y. C. Kiroglu, “3d printing of buildings: Construction of the
sustainable houses of the future by bim,” Energy Procedia, vol. 134, pp. 702 –
711, 2017, sustainability in Energy and Buildings 2017: Proceedings of the Ninth
KES International Conference, Chania, Greece, 5-7 July 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1876610217346969

[3] X. Zhang, M. Li, J. H. Lim, Y. Weng, Y. W. D. Tay, H. Pham, and
Q.-C. Pham, “Large-scale 3d printing by a team of mobile robots,” Automation
in Construction, vol. 95, pp. 98 – 106, 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0926580518304011

[4] V. Spurný, T. Báča, M. Saska, R. Pěnička, T. Krajńık, J. Thomas, D. Thakur,
G. Loianno, and V. Kumar, “Cooperative autonomous search, grasping, and deliv-
ering in a treasure hunt scenario by a team of unmanned aerial vehicles,” Journal of
Field Robotics, 10 2018.

[5] J. G. Everett and A. H. Slocum, “Automation and robotics opportunities: Construc-
tion versus manufacturing,” Journal of Construction Engineering and Management,
vol. 120, no. 2, pp. 443–452, 1994. [Online]. Available: https://ascelibrary.org/doi/
abs/10.1061/%28ASCE%290733-9364%281994%29120%3A2%28443%29

[6] H. Ardiny, S. Witwicki, and F. Mondada, “Construction automation with autonomous
mobile robots: A review,” in 2015 3rd RSI International Conference on Robotics and
Mechatronics (ICROM), Oct 2015, pp. 418–424.

[7] K. S. Saidi, T. Bock, and C. Georgoulas, Robotics in Construction. Cham:
Springer International Publishing, 2016, pp. 1493–1520. [Online]. Available:
https://doi.org/10.1007/978-3-319-32552-1 57

[8] K. Dörfler, T. Sandy, M. Giftthaler, F. Gramazio, M. Kohler, and J. Buchli, Mobile
Robotic Brickwork. Cham: Springer International Publishing, 2016, pp. 204–217.
[Online]. Available: https://doi.org/10.1007/978-3-319-26378-6 15

https://www.mbzirc.com/challenge/2020
https://www.mbzirc.com/challenge/2020
http://www.sciencedirect.com/science/article/pii/S1876610217346969
http://www.sciencedirect.com/science/article/pii/S0926580518304011
http://www.sciencedirect.com/science/article/pii/S0926580518304011
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9364%281994%29120%3A2%28443%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9364%281994%29120%3A2%28443%29
https://doi.org/10.1007/978-3-319-32552-1_57
https://doi.org/10.1007/978-3-319-26378-6_15

66 Bibliography

[9] T. Bruckmann, H. Mattern, A. Spengler, C. Reichert, A. Malkwitz, and M. Konig,
“Automated construction of masonry buildings using cable-driven parallel robots,”
in ISARC. Proceedings of the International Symposium on Automation and Robotics
in Construction, vol. 33. Vilnius Gediminas Technical University, Department of
Construction Economics . . . , 2016, p. 1.

[10] H. Mattern, T. Bruckmann, A. Spengler, and M. Konig, “Simulation of automated
construction using wire robots,” in Proceedings of the 2016 Winter Simulation
Conference, ser. WSC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 3302–3313.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3042409.3042503

[11] J. P. Sousa, C. G. Palop, E. Moreira, A. M. Pinto, J. Lima, P. Costa, P. Costa,
G. Veiga, and A. Paulo Moreira, The SPIDERobot: A Cable-Robot System for On-site
Construction in Architecture. Cham: Springer International Publishing, 2016, pp.
230–239. [Online]. Available: https://doi.org/10.1007/978-3-319-26378-6 17

[12] S. Kalantari, A. T. Becker, and R. Ike, “Designing for digital assembly with a con-
struction team of mobile robots.” ACADIA, 2018.

[13] Y. Ham, K. K. Han, J. J. Lin, and M. Golparvar-Fard, “Visual monitoring of civil
infrastructure systems via camera-equipped unmanned aerial vehicles (uavs): a review
of related works,” Visualization in Engineering, vol. 4, no. 1, p. 1, 2016.

[14] J. Chudoba, M. Kulich, M. Saska, T. Báča, and L. Přeučil, “Exploration and mapping
technique suited for visual-features based localization of mavs,” Journal of Intelligent
& Robotic Systems., vol. 84, no. 1, pp. 351–369, 2016.

[15] J. Faigl, P. Váňa, R. Pěnička, and M. Saska, “Unsupervised learning-based
flexible framework for surveillance planning with aerial vehicles,” Journal
of Field Robotics, vol. 36, no. 1, pp. 270–301, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21823

[16] D. Zahrádka, R. Pěnička, and M. Saska, “Route planning for teams of unmanned
aerial vehicles using dubins vehicle model with budget constraint,” in Modelling and
Simulation for Autonomous Systems, J. Mazal, Ed. Cham: Springer International
Publishing, 2019, pp. 365–389.

[17] P. Štěpán, T. Krajnik, M. Petrlik, and M. Saska, “Vision techniques for on-board
detection, following and mapping of moving targets,” Journal of Field Robotics, vol. 36,
no. 1, pp. 252–269, 2019.

[18] G. Loianno, V. Spurny, T. Baca, J. Thomas, D. Thakur, T. Krajnik, A. Zhou, A. Cho,
M. Saska, and V. Kumar, “Localization, grasping, and transportation of magnetic
objects by a team of mavs in challenging desert like environments,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1576–1583, 2018.

http://dl.acm.org/citation.cfm?id=3042409.3042503
https://doi.org/10.1007/978-3-319-26378-6_17
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21823

Bibliography 67

[19] V. Walter, T. Novák, and M. Saska, “Self-localization of unmanned aerial vehicles
based on optical flow in onboard camera images,” in Lecture Notes in Computer Sci-
ence, vol 10756. Cham: Springer International Publishing, 2018.

[20] W. Giernacki, D. Horla, T. Báča, and M. Saska, “Real-time model-free minimum-
seeking autotuning method for unmanned aerial vehicle controllers based on fibonacci-
search algorithm,” Sensors, vol. 19, pp. 1–30, 01 2019.

[21] R. support. Ros forum. [Online]. Available: https://answers.ros.org

[22] T. Baca, P. Stepan, V. Spurny, M. Saska, J. Thomas, G. Loianno, and V. Kumar,
“Autonomous landing on a moving vehicle with an unmanned aerial vehicle,” Journal
of Field Robotics - online first, 2019.

[23] T. Baca, P. Stepan, and M. Saska, “Autonomous landing on a moving car with un-
manned aerial vehicle,” in 2017 European Conference on Mobile Robots (ECMR), Sep.
2017, pp. 1–6.

[24] M. Nemec and D. Suster, “uav localization core,” https://mrs.felk.cvut.cz/gitlab/
nemecm43/uav-localization-core, 2020, [Online; accessed 5-January-2020].

[25] Wikipedia contributors, “Ramer–douglas–peucker algorithm — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%
93Douglas%E2%80%93Peucker algorithm&oldid=931337557, 2019, [Online; accessed
18-December-2019].

[26] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajec-
tory tracking and collision avoidance for reliable outdoor deployment of unmanned
aerial vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018.

https://answers.ros.org
https://mrs.felk.cvut.cz/gitlab/nemecm43/uav-localization-core
https://mrs.felk.cvut.cz/gitlab/nemecm43/uav-localization-core
https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&oldid=931337557
https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&oldid=931337557

68 Bibliography

Appendices

CD Content

In Table 1 are listed names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
thesis sources latex source codes
source codes program source codes
videos videos from experiments in simulator
trajectory bags data sets for graphs and python code for print

Table 1: CD Content

72

List of abbreviations

In Table 2 are listed abbreviations used in this thesis.

Abbreviation Meaning
MBZIRC Mohamed Bin Zayed International Robotics Challenge
GPS Global Positioning System
RTK Real-time kinematic
MPC model predictive controller
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
ROS Robot Operating System
No. Number of experiment

Table 2: Lists of abbreviations

74 Appendix . List of abbreviations

3D graphs with planned and real
trajectories

76 Appendix . 3D graphs with planned and real trajectories

Figure 1: Planned and real trajectory in 3D, Hermite

77

Figure 2: Planned and real trajectory in 3D, Catmull

78 Appendix . 3D graphs with planned and real trajectories

Figure 3: Planned and real trajectory in 3D, B-spline

79

Figure 4: Planned and real trajectory in 3D, type 3 trajectory

80 Appendix . 3D graphs with planned and real trajectories

Figure 5: Planned and real trajectory in 3D, type 4 trajectory

81

Figure 6: Planned and real trajectory in 3D, type 5 trajectory

82 Appendix . 3D graphs with planned and real trajectories

Figure 7: Planned and real trajectory in 3D, type 1 trajectory

83

	List of Figures
	List of Tables
	Introduction
	State of the art
	Task specification

	Realistic environment
	Method for grasping
	Landing_object_estimator
	Landing_object_controller
	Upgrade visual_servoing node
	Testing Visual_servoing node

	Method for placement
	Types of trajectories for placing the brick
	Creating of the trajectory for placing the brick
	State machine for placing method

	Experiments in simulator
	Experiments with using of the Hermite interpolation
	Experiments with using of the Catmull-Rom interpolation
	Experiments with using of the B-spline interpolation
	Experiments with all other types of trajectories by using optimal B-spline trajectory
	Trajectory with type 3
	Trajectory with type 4
	Trajectory with type 5
	Trajectory with type 1

	Conclusion
	Bibliography
	Appendices
	Appendix List of abbreviations
	Appendix 3D graphs with planned and real trajectories

