
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

An Improved RRT* Algorithm for Multi-Robot
Path Planning

Poludin Mikhail

Supervisor: Tiago Pereira Do Nascimento, Ph.D
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492571Personal ID number:Poludin MikhailStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

An Improved RRT* Algorithm for Multi-Robot Path Planning

Bachelor’s thesis title in Czech:

Vylepšený algoritmus RRT* pro plánování cesty pro více robotů

Guidelines:

Implement RRT and RRT* path planning algorithms for Unmanned Aerial Vehicles (UAV) in 3D and 2D scenarios using
C++ and ROS.
Evaluate performance and robustness of RRT type algorithms in different situations with varying parameters. Introduce
different obstacle avoidance approaches (such as binary search of collisions) and compare the results when using with
RRT family algorithms. Modify RRT and RRT* algorithms to consider path finding for multiple drones. Perform real robot
experiments with multi-rotor UAVs.

Bibliography / sources:

[1] Steven M. LaValle “Planning algorithms”, University of Illinois 2006
[2] Steven M. LaValle “Rapidly-exploring random trees: A new tool for path planning”, Iowa State University 1998
[3] W. Zu, G. Fan, Y. Gao, Y. Ma, H. Zhang and H. Zeng, "Multi-UAVs Cooperative Path Planning Method based on
Improved RRT Algorithm," 2018 IEEE International Conference on Mechatronics and Automation
[4] M. Kothari, I. Postlethwaite and D. Gu, "Multi-UAV path planning in obstacle rich environments using Rapidly-exploring
Random Trees," 48th IEEE Conference on Decision and Control (CDC), 2009

Name and workplace of bachelor’s thesis supervisor:

Tiago Pereira Do Nascimento, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 21.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Tiago Pereira Do Nascimento, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
First of all, I would like to thank my su-
pervisor for his guidance, feedback, and
supportive mindset.
I would also like to thank Hendrik Scheep-
ers de Bruin, who guided me during the
winter semester.
Most importantly, I thank my family for
giving me the encouragement and the op-
portunity to finish this thesis.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Mikhail Poludin

Prague, date 17.05.2022

v

Abstract
This thesis includes a brief overview of
the UAV path planning and a detailed ex-
planation of the algorithms implemented
in C++. The implementation of the RRT
and RRT* algorithms were carried out
and extended to handle the generation
of trajectories for multiple drones. Two
obstacle avoidance approaches were intro-
duced and tested with both RRT family
path-planning algorithms. Experiments
of autonomous UAV flight in a forest-like
environment were conducted in both simu-
lation and real life; for this purpose, detec-
tion and mapping of trees using an active
lidar sensor was implemented.

Keywords: RRT, RRT*, Path planning,
Obstacle avoidance, UAV.

Supervisor: Tiago Pereira Do
Nascimento, Ph.D
Karlovo náměstí 13, Praha 2

Abstrakt
Tato práce obsahuje stručný přehled plá-
nování cest pro bezpilotní drony a po-
drobné vysvětlení algoritmů implemento-
vaných v jazyce C++. Byly implemen-
továny algoritmy RRT a RRT*, které
byly rozšířeny tak, aby zvládaly genero-
vání trajektorií pro více bezpilotních le-
tounů. Byly zavedeny dva přístupy pro
vyhýbání překážkám a testovány s oběma
algoritmy plánování cest z rodiny RRT.
Experimenty autonomního letu bezpilot-
ního dronu v prostředí podobném lesu
byly provedeny jak v simulaci, tak v reál-
ném prostředí; za tímto účelem byla im-
plementována detekce a mapování stromů
pomocí aktivního lidar senzoru.

Klíčová slova: RRT, RRT*, Planování
cest, Vyhýbání překážkam, Bezpilotní
dron.

Překlad názvu: Vylepšený algoritmus
RRT* pro plánování cesty pro více
robotů.

vi

Contents
1 Path and motion planning 1
1.1 Objectives of the work 2
2 Examples of path planning
approaches 3
2.1 Combinatorial path planning 3
2.2 Sample-based path planning 5
3 Related works 7
4 Background theory 9
4.1 RRT algorithm 9

4.1.1 Explanation of the algorithm . 9
4.1.2 RRT algorithm pseudocode. . 10

4.2 RRT* path planning algorithm
theory . 11
4.2.1 Contrast to RRT 11
4.2.2 RRT* algorithm pseudocode. 12

5 UAV flight in GNSS-Denied
environments using RRT and RRT* 13
5.1 Preparation and tool investigation 13
5.2 Project source files and structure 14

5.2.1 Environment classes and usage
of the main function 14

5.2.2 Tree structure implementation 14
5.3 Implementation of the algorithms 15

5.3.1 RRT algorithm
implementation 16

5.3.2 RRT* algorithm
implementation 18

6 UAV flight with Obstacle
Avoidance 21
6.1 Point drone - inflated/virtual

obstacles, line/sphere intersects . . . 21
6.1.1 Results 23

6.2 Sphere drone - binary search of
collisions . 24
6.2.1 Results 25

6.3 Avoidance of cylindrical obstacles 26
6.3.1 Results 28

7 Statistical analysis of RRT*, RRT
and obstacle avoidance algorithms 29
8 Multiple UAV path planning 33
8.1 Converting a path to a trajectory 33
8.2 Spotting collision dangers 34
8.3 Constructing not interfering

trajectories . 35
8.4 Results . 36
9 Autonomously flying UAV 39
9.1 Sense and avoid principle 39

9.2 Required hardware 40
9.3 Obstacle detection 40

9.3.1 Simulation tests 42
10 Real world experiment 43
10.1 Summary of the experiment . . . 45
11 Conclusion 47
11.1 Future work 48
Bibliography 49

vii

Figures
2.1 Polygon cell decomposition with a

roadmap example, [1]. 4
2.2 Cylindrical cell decomposition

example, [2] with an added path in
orange. 4

2.3 "Quadtree" decomposition,
redrawn/inspired by [3]. 5

2.4 Random point sampling in 2D
search space example. Restricted
regions are shown in red. 5

4.1 Rapidly exploring random tree
expansion example, [27]. 9

4.2 Example of RRT* expansion, [28]. 11

5.1 Trivial search area definition, 2D
example. 16

5.2 3D RRT found path without
obstacles, Rviz simulation. 17

5.3 2D RRT tree visualized with
python and matplotlib. 17

5.4 3D RRT* found path without
obstacles and appropriately tuned
parameters, Rviz simulation. 18

5.5 2D RRT* graph with different
minimal number of iterations. 19

5.6 2D RRT* graph with different
neighbour radius for optimisation
rewiring. 20

5.7 2D RRT* graph with different
maximal distance between nodes. . 20

6.1 2D example of line segment with
circle intersection, C isn’t inside of a
sphere . 22

6.2 2D simulation of inflated objects
and point UAV obstacle avoidance. 23

6.3 2D example of binary collision
search. 24

6.4 3D simulation of spherical UAV
and binary search avoidance in Rviz
with RRT and RRT*. 25

6.5 2D simulation of spherical UAV
and binary search obstacle
avoidance. 25

6.6 Straight line solution example. . 26
6.7 Explanation of the intersection

problem. 27
6.8 Explanation of the intersection

with a cylinder search. 27

6.9 Wide single cylinder avoidance:
left - point drone, right - binary
search algorithm. 28

6.10 Cylinder arrangement testing: left
- point drone, right - binary search
algorithm. 28

7.1 Example of 12 randomly generated
obstacles. 29

8.1 Path to trajectory conversion
visualisation. 33

8.2 Time stamps on trajectories in
RViz. 34

8.3 Potential collision domains
between two trajectories. 34

8.4 Difference between the regrowing
tree possibilities, right - performance
mode. 35

8.5 Time delayed crossing trajectories
2D. 36

8.6 Time delayed crossing trajectories. 36
8.7 Two generated trajectories in 3D

space. 37
8.8 Example of the algorithm working

in 3D, forest like environment. 37
8.9 Example of the algorithm working

in 3D with a narrow entrance. 37

9.1 Sense and avoid algorithm. 39
9.2 Fully equipped UAV, that was used

during experiments. 40
9.3 MRS bumper tool visualised in

RViz. Number of sectors n = 30. . . 41
9.4 Diagram explaining MRS bumper

principle. View from above. 41
9.5 Simulation test of the trees

mapping in RViz and Gazebo
example. 42

9.6 Simulation test of trajectory
planning. 42

10.1 Artificial experimental forest. . . 43
10.2 Starting (green) and goal (blue)

positions for the drone. 44
10.3 Rviz visualisation of gathered

during the experimental flight data. 44
10.4 Distance that was left to

overcome after each trajectory step in
both axis. 45

viii

Tables
7.1 Measured values of the first 10

iterations in a randomly generated
environment. 30

7.2 Calculated arithmetic mean µ and
sample standard deviation σ in RRT
tests. 30

7.3 Calculated arithmetic mean µ and
sample standard deviation σ for
obstacle avoidance execution time
tests. 31

ix

Chapter 1
Path and motion planning

Motion planning and path planning is a challenge to find a sequence of moves for an agent
to reach the goal state from the start state. Motion planning algorithms, in particular,
give the programmer a way to find this sequence of moves so that it satisfies certain
constraints (such as obstacles or computational time). Today, there are a wide variety of
completely different approaches, each of them best suited for its particular purpose.

This project is concentrated on dealing with path planning for drones. Autonomous
drone navigation and route planning can serve in many applications. For example, search
and investigation missions, where it can be useful to use unmanned aerial vehicles; in an
environment with high obstacle density, such as caves, forests, etc. An operator could
send his autonomous drone for surroundings investigation while dealing with other tasks
that require human control. An optimised path-planning algorithm will provide a way
for this drone to find its trajectory fast, which is essential for rescue operations. Another
common application of drones is to film videos, and it would usually be useful to have
a drone that incorporates motion planning and autonomous obstacle avoidance. The
control system of such an aerial vehicle would follow a provided target, while the drone
is flying according to a planned trajectory.

As the demand for autonomous drones for path planning grows, a wide range of prob-
lems may arise. The first problem is that there are many different environments, and
implementing a simple path planner suitable for most world settings is a difficult and
expensive task. The second problem, for example, can be the optimisation of motion
planning, so that it can be used on a moving vehicle, which is a task requiring complex
automatic control systems. An important topic raised during the implementation of this
project is the planning of routes for multiple aerial vehicles. In this case, the drones need
to take into account the positions and movements of other drones. But this information
needs to be translated from one vehicle to another. This can be done through shared
communication systems, i.e. having one drone sending positions of every other drone.
Or, every member of a drone swarm could rely on its own sensors and data gathering
and tracking movements of others autonomously.

Several algorithms for path planning and obstacle avoidance for single and multiple
drones were implemented during this project. Together, they all provide a solid basis
for choosing the right parameters and algorithms for certain tasks, such as autonomous
path planning and movement in a forest-like environment. The code and tools were
specifically designed to allow easy introduction of new algorithms into this project or
link up implemented work to another project.

1

1. Path and motion planning
1.1 Objectives of the work

The main goal of this project is to propose and implement improvements on the RRT and
RRT* path planning algorithms to allow them to consider building paths for multiple
UAVs. To achieve that, it is necessary to prepare by implementing the following algorithms
in a structured way.. RRT path planning algorithm,. RRT* path planning algorithm,. Point UAV - Inflated objects obstacle avoidance,. Binary search of collisions obstacle avoidance.

The final objective is to test and compare the above algorithms on the performance side.
In addition, conduct experiments of autonomous flight through a forest-like environment
both in simulation and on a real drone to prove practical usability of the planning
algorithms as well.

2

Chapter 2
Examples of path planning approaches

Here is a small overview tree of different motion planning approaches:

Path planning methods

Roadmap methods

Combinatorial
methods

Sample-based
methods

Complete path,
optimization-based methods

Analytical
solutions

Approximate
solutions

Roadmap algorithms are generally considered easier to implement and their computational
time is better, but optimisation-based approaches may find the path with a smaller
energy loss. For the purpose of this thesis, this chapter will focus on roadmap methods.
Roadmap methods in particular are split into two different ones; here are some typical
examples of these algorithms:. Combinatorial methods:

- Using Voronoi diagrams
- Cell decomposition
- Visibility graphs. Sample-based methods:

- Probabilistic roadmaps
- Rapidly exploring random trees

2.1 Combinatorial path planning

The main concept of combinatorial path planning is to divide the configuration space
Cspace into connected regions by any type of algorithm and then to find the way from
the points derived from these regions. The configuration space of a robot, Cspace, is a
set of all possible positions in which the robot may be. In this project, mainly focused
on UAV-like agents, we will take all the possible positions of a drone in Euclidean space,
with 3 coordinates and 3 angles of rotation. The crucial part of the efficiency of the
combinatorial method is the algorithm to divide the search space.

3

2. Examples of path planning approaches...............................
The space division can be done by many methods and the most naive one is to di-
vide the space into equal square blocks. For a bit more complex example, let us take
the polygon cell decomposition approach. As shown in Figure 2.1, the search space is
divided into polygons, using a triangulation algorithm. Then, the centre of gravity is
calculated, and the final roadmap is built out of them.

Figure 2.1: Polygon cell decomposition with a roadmap example, [1].

Here is another example, Figure 2.2. This approach is called cylindrical decomposition.
The follow-up roadmap is derived from the centres of constructed vertical lines, represented
by two end points. In the picture, one of the possible start-goal paths is shown with the
orange line.

Figure 2.2: Cylindrical cell decomposition example, [2] with an added path in orange.

For more efficient search and decomposition, tree-shaped graphs are used. The most
common ones are the so-called quad trees (oc trees in case of 3D path planning). The
areas of interest are recursively divided into smaller ones, Figure 2.3. Such trees make
the sections smoother, and therefore, the found path will get closer to the optimal one.

4

...................................2.2. Sample-based path planning

Figure 2.3: "Quadtree" decomposition, redrawn/inspired by [3].

2.2 Sample-based path planning

The main idea of the sample-based path planning approach is to implement a search that
explores the given search space Cspace with a certain sampling scheme. The exploration
is usually done with obstacle avoidance modules that tell the sample module how to
create new samples in the particular search space.

The count of discrete samples/points can be infinite, since the real-life problem is
usually represented by real numbers that can be divided into smaller and smaller ones.
Since computers have a finite amount of memory and the computational time is often
constrained by a given task, the number of samples/iterations of the algorithm is also
purposely limited. However, when using particular methods, such as the RRT* algorithm,
it is more than enough to have a relatively small finite number of iterations to find the
close-to or the optimal way.

Figure 2.4: Random point sampling in 2D search space example. Restricted regions are
shown in red.

For better understanding of the sampling idea, consider a 2D square search space (Figure.
2.4), which needs to be explored. Sample-based approaches split the whole rectangle
into smaller ones and gradually fill it with 2D vectors/points of interest to investigate.
Generation of points of interest is called "sampling". Samples can be produced using

5

2. Examples of path planning approaches...............................
different approaches. The space could be split uniformly, exponentially from the start
position, or even randomly. The random sampling is the main concept behind so called
Rapidly Exploring Random Trees, that happened to be the main focus of this project.

6

Chapter 3
Related works

Planning path and motion is a broad area with many approaches and many articles have
been written about it. This chapter serves as a general overview of the literature studied
to establish a solid foundation for understanding the path planning concept from all
aspects.

Briefly discussed in Chapter 2, roadmap methods are one of the main path planning
movements in research. It was experimentally proven that due to the simplicity and
intuitiveness of the algorithm, it is a fast and reliable method. It can also be applied
to almost all holonomic robot systems [4]. PRM can be further improved and modified
according to practical needs. For instance, it can be applied to object manipulation
planning, a so-called Two Level Fuzzy PRM [5] modifies the algorithm for that purpose
by introducing edge probabilities. PRM can be optimised to work with hundreds of
thousands of obstacles. Lazy PRM [6] postpones collision detection for the second phase
of execution, drastically reducing computational time. This is possible because most of
the collision checks will not be valid in the resulting path, and, if postponed, thousands
of conditions will not be conducted.

Voronoi diagrams [7] and visibility graphs [8] are often compared. The Voronoi di-
agram can be built in a time of only O(nlogn) while the most efficient known algorithms
for building visibility graphs can even be O(n2) complexity in the worst case. Since
the Voronoi diagram has much fewer edges, extracting a path from a roadmap based
on the Voronoi diagram is also less time-consuming than extracting from the visibility
graph [9]. However, the optimality of the path obtained using the Voronoi diagram can
be pretty bad. But on the other hand, the visibility graphs generate a trajectory that
can be too close to obstacles. That is why, for many applications, it is better to find a
compromise between two. For example, Generalised Voronoi Diagram [10] is suitable
for polygon-based environments and can be efficiently applied to narrow entrances and
coridors, which can be problematic for some algorithms.

Potential field methods [11] are interesting examples of path planning algorithms. A
potential field is mapped onto a given search space inspired by static electric fields. An
agent or vehicle is represented as a positive or negative charge that will be attracted to
the point of lowest potential. This method uses a simple gradient descent algorithm [12]
to find a path. However, the gradient descent only finds a local minimum, which could
not be the goal state, and the algorithm may stall without finding a path. The navigation
function [13] is introduced to solve this problem. It creates such potential field mapping
that there could only be one local minimum (global minimum) in the whole state space.

7

3. Related works ...

RRTs, being the main topic of this thesis, are one-of-a-kind tools for path planning. They
can be applied to basically any search and motion planning tasks. For instance, algorithm
for ubran autonomous car driving [14] constructs RRT structure, keeping in mind the
constraints given by the circular movements of a car using a so-called forward motion
model. Of course, the RRT algorithm can be modified to find routes faster in some
cases. Bidirectional RRT [15] keeps two processes running at the same time - growing
two independent trees from a start and a goal point. The algorithm runs until two tree
branches are close enough to be connected. Then, the path is constructed as a way from
the start to that connection point plus the way from the connection point to the goal.
RRT-Connect [16] modifies the expansion step of the RRT. It iteratively grows the tree
from the last node added until the time when the goal is reached. This can significantly
improve the speed of space exploration; however, this approach does not perform well
with narrow entrances and tunnels because of the small probability of exploring the
details of the search space right after the start.

If the path finding problem extends to a swarm of agents or vehicles [17], the algo-
rithms tend to become more sophisticated and complex. First, it must be decided which
type of agent relationship will be used: centralised or distributed [18]. The centralised
approach makes use of one main agent planning all the trajectories and commanding
other vehicles. Introducing communication between drones brings certain problems to the
scene [19]. However, if the system is implemented without agent-to-agent communication,
the detection and localisation modules need to be programmed. For example, using
visual cameras [20] or ultraviolet markers onboard [21]. The planning of the path of
the swarm was also successfully attempted using reinforcement learning (Q-learning)
[22]. This method can also be split into two types: having a single guiding drone with a
neural network or having multiple drones, each having its own neural net. These neural
networks would essentially have the same architecture but different weights for every
particular purpose.

Path planning cannot be done without obstacle avoidance modules. It is essential
to use sensors to map the environment around the agent; e.g., expensive outer lidars
or low-cost infrared sensors [23]. Detection can also be done using neural networks and
segmentation using only an rgb or depth camera [24]. After mapping the obstacles,
one must implement an intersection module that tells whether an obstacle affects the
proposed path. A possible solution is to have all obstacles represented as standard
convex bodies [25], such as cylinders, shperes or cones. The agent then plans a path with
constraints given by these objects. [26] provides a detailed and extensive overview of
different concepts of collision avoidance.

My project, compared to the projects in the reviewed literature above, first describes the
detailed algorithm implementation process and, second and important, proposes a new
approach for planning multiple UAV paths in an environment defined by simple objects.
While reviewing articles, I have not found a single one implementing path planning for
multiple drones the same way. The designed algorithms are tested on the performance
side, and the experiments are conducted not only in simulation, but also in the real
world.

8

Chapter 4
Background theory

4.1 RRT algorithm

Rapidly Exploring Random Tree (RRT) is a sample-based approach algorithm. It is
widely used in autonomous robotics, mainly because it is very intuitive and effective. It is
an algorithm to quickly scan high-dimensional spaces by constructing a search tree graph
(Figure 4.1) from randomly selected points in obstacles-free areas. RRT generates very
evenly distributed rectangular graphs because the new random state is always attached
to its nearest neighbour.

It is a probabilistically complete algorithm, which means that if the algorithm is run for
a long enough time, the graph will have a solution, the path found, if one exists. It is also
a fast method compared to other planning algorithms. The most significant disadvantage
of RRT is the fact that the found way is not always optimal. For UAVs, when the search
space is usually huge and a wide variety of positions to be in is available, this approach
would usually find a very zigzag-shaped path. To reduce that to a certain degree, the
maximum possible distance d between two states is defined. When the time to connect
two vertices arrives, it is verified that the distance between them is less than d. If it is
not, then this connection cannot be made.

Figure 4.1: Rapidly exploring random tree expansion example, [27].

4.1.1 Explanation of the algorithm

The search starts with a certain starting point and a goal point in multidimensional space.
Let the starting point be S0 ∈ Cspace, and the goal be Sg ∈ Cspace. Also, the goal radius
rg is defined - the radius of a sphere around Sg, in which the path is considered found.
The tree graph T is initialised with one single node, S0. A random point Snew ∈ Cspace

is generated at each iteration of the algorithm. Then Snew is investigated to obey the

9

4. Background theory
given constraints. First, it is controlled to determine whether it lies inside any obstacle
using obstacle intersection search methods. If the answer is negative, the algorithm finds
the nearest point Snearest in the whole T and checks if a path between Snew and Snearest

is collision-free. If so, then Snew is added to T with Snearest as the parent node. Lastly,
if Snew is inside rg, then the path is considered found and the only thing left to do is
extract the path from T , which can be done by iteratively going back through the parents,
from Sg to S0.

4.1.2 RRT algorithm pseudocode

Here are the pseudocodes of the RRT path-finding algorithms that were followed in my
implementation - Algorithms 1 and 2:

Algorithm 1 RRT algorithm for path finding

Input: Initial state - S0, goal state - Sg, maximum number of vertices - n.
Output: Array of states/path - P .

1: T ← tree_init(S0)
2: number_of_iters ← 0
3: while number_of_iters < n do
4: Srand ← get_random_state()
5: Snearest ← get_nearest_state(Srand)
6: if path_is_clear(Snearest, Srand) then
7: T .add_new_edge(Snearest, Srand)
8: end if
9: if Srand ∈ Sgoal then ▷ If new state is inside the goal, consider path found

10: T .add_new_edge(Srand, Sgoal)
11: return extract_path_from_RRT(T)
12: end if
13: number_of_iters ← number_of_iters +1
14: end while

Algorithm 2 Function to extract a path from an RRT tree

Output: array of states/path - P

1: function extract_path_from_RRT(Tree T)
2: P ← Sg ▷ P - path/array of following each other states
3: Stmp ← Sg

4: while Stmp ̸= S0 do
5: P .push_back(Stmp)
6: Stmp ← Sparent_of_tmp

7: end while
8: return P
9: end function

10

...............................4.2. RRT* path planning algorithm theory

4.2 RRT* path planning algorithm theory

To find a path that is shorter than an average path produced by the RRT algorithm,
RRT* is introduced. It is essentially an optimised version of RRT. It requires more
computations, and, unlike RRT, when the path is found, it can continue to search and
optimise the path for a given number of iterations n. It is an asymptotically optimal
algorithm. This means that theoretically, when the number of iterations approaches
infinity, the algorithm finds the shortest possible way. The growth of RRT* is shown in
Figure.4.2.

Figure 4.2: Example of RRT* expansion, [28].

4.2.1 Contrast to RRT

The basics of RRT* are the same as those of RRT (generating a random state and finding
the nearest neighbour). However, a couple of improvements and additions generate
completely different results:. Tracking distance from S0 to each vertex of a tree. Each vertex would now have a

cost, which is substantially a sum of distances along the current branch of the tree.
Now, by performing the step of finding the nearest state, the algorithm will also
look for a state Sbest that provides the min{cost(Sbest) + dist(Sbest, Snew)} within a
given neighbouring radius. Now we have a new way to connect a random state to
the tree in the state Sbest,

Sbest = argmini{cost(Si) + dist(Si, Snew) | dist(Si, Snew) ≤ rn}

This feature tends to eliminate rectangular shapes in a graph.. Second feature is called rewiring of the graph. It happens right after the new state
Snew has been connected to Sbest. All nodes Si within a defined neighbour radius rn

are inspected to see whether their cost would decrease if their parent vertex was
Snew. If it is true, then the tree is rewired so that Snew is now the parent of Si. This
step makes the path look more polished, without rough angles, as opposed to RRT.

11

4. Background theory
4.2.2 RRT* algorithm pseudocode

The pseudocode explaining the RRT* algorithm is shown in algorithm 3:

Algorithm 3 RRT* algorithm to find a path

Input: Initial state - S0, goal state - Sg, maximum number of vertices - n,
neighbour radius - rn.
Output: array of states/path - P .

1: T ← tree_init(S0)
2: number_of_iters ← 0
3: while number_of_iters < n do
4: Srand ← get_random_state()
5: Sbest ← get_best_cost_state(Srand, rn) ▷ Find the cheapest neighbour in rn

6: if path_is_clear(Sbest, Srand) then
7: T .add_new_edge(Sbest, Srand)
8: Srand.cost ← dist(Srand, Sbest) + cost(Sbest)
9: end if

10: for Si ∈ Neighbours do ▷ Go through all neighbours and rewire the tree
11: Sparent ← Si.parent
12: if dist(Snew, Si) + cost(Snew) < dist(Sparent, Si) + cost(Sparent) then
13: Si.parent.remove_child(Si)
14: Si.parent ← Srand

15: end if
16: end for
17: if Srand ∈ Sgoal then ▷ If new state is inside the goal, consider path found
18: T .add_new_edge(Srand, Sgoal)
19: return extract_path_from_RRT(T)
20: end if
21: number_of_iters ← number_of_iters +1
22: end while

12

Chapter 5
UAV flight in GNSS-Denied environments using
RRT and RRT*

5.1 Preparation and tool investigation

Before the implementation started, the first thing to do was investigate the simulation
software used by the Multi Robot Systems group.

For simplicity of UAV control and simulation, Robot Operating System (ROS)
is used. It provides services such as hardware abstraction, implementation of commonly
used functionalities, and most importantly, for this project: message passing between
several processes and package management. Different running processes are represented
in a graph architecture, where the edges show message-based communication. The user
can create abstract structures called nodes that can be subscribed to or published on
a specific topic. Such an architecture is also good for debugging and error control. It
is a shell application, so to see all the messages that are sent through the given topic,
you can simply write $rostopic echo /topic_name. Official tutorials [29], were studied to
learn how to use ROS correctly.

Graphical visualisation is performed with two simulators: Gazebo and Rviz. For
the sake of simulating drones as in the real world, Gazebo is used. For the implementa-
tion of path planning and 3D tree visualisation, I used Rviz. It only takes publishing
formatted data from your code to a couple of ROS topics to achieve that, as Rviz supports
ROS. This simulator can show structures as simple as spheres and complex objects as
polygon meshes. It also accepts arrays of points that can be used as a way to graphically
visualise tree-shaped figures exactly as is needed.

To monitor different running processes and ROS servers, I used htop. This tool also
helps to kill applications so that nothing unnecessary remains while next simulations
are run. Tmux - terminal multiplexer is a tool that is also useful for the execution
of multiple processes at the same time. It is a way to efficiently use several terminal
windows at a time (sweep through them, create sub-panels).

The main programming language I decided to use for my project is C++. When
running algorithms such as RRT and RRT*, and using them live-action on a flying drone,
it is preferred to improve performance and minimise the execution time as much as
possible. Python is considered to be slower than C++, so for a project that contains
many numbers, searches, and computations, C++ is much better suited.

13

5. UAV flight in GNSS-Denied environments using RRT and RRT*
I used python and matlab for data analysis and plotting graphs. To manage data after
execution of a one program and use it later in another one (serialisation of certain objects),
I used JSON - JavaScript Object Notation file format, which is a simple text-based way
to send and store data in a structured and simultaneously readable shape. Despite its
name, it is a language-independent data format and can be used with python and C++.

5.2 Project source files and structure

In this section, a small part of the source files will be briefly and adequately explained.
Because it would be inappropriate to explain all aspects of the code here, the project is
publicly available on [30].

5.2.1 Environment classes and usage of the main function

World and Object classes

These classes are meant to be used to create and store different objects in the 3D space.
This ensures easy working with visualisation of objects and obstacles in the simulators.
Some World methods accept a ROS publisher and send all object data to Rviz in a
specified form. Rviz then shows it in its simulation. The Object class is used to contain
information about a single object, such as its 3D position and sizes. Sphere and Cylinder
classes publicly inherit from the Object, so that they can be differentiated while dealing
with obstacle avoidance.

Three-dimensional point class - Vec3

Instances of this class are essentially 3D points that only contain their x, y and z
coordinates. The class has methods and overloads of operators that provide easy maths
operations, for instance, these: dot product, division, distance between vectors, norm of a
vector. It also has a method to generate a random point in space that is used drastically
in random search trees.

Main function and TestSelector class

Considering the fact that there are many comparisons of different scenarios and simula-
tions, the TestSelector class was implemented. The main function conveniently calls one
of the available test scenarios, which are represented with a simple enum type. In each
of the written scenarios, the first thing to do before testing set-up algorithms and their
classes is to initialise a new ROS node, which will be associated with a drone that will
have the code running. The ros::Publisher and ros::Subscriber object types will be used
to handle the desired ROS topics. To see how path planning methods work, I created a
subscriber to a odometry topic, publisher to drones velocity control and a publisher to
Rviz with a name visualization_marker.

5.2.2 Tree structure implementation

I decided to represent the whole tree in a classical way as a bunch of independent nodes
that all contain an attribute pointer to their parent instance. Each of them also has an
array of pointers to its own child nodes.

14

................................ 5.3. Implementation of the algorithms

Tree node class - Node

Instance of this class will contain 3 coordinates in a Vec3 object form, the cost of this
node, a raw pointer to a parent node, and a vector of shared pointers to all of its children.
class Node {
public :

Vec3 coords ;
Node * parent = nullptr ;
bool inside_the_goal = false ;
std :: vector <std :: shared_ptr <Node >> children ;
double cost;

...
}

Class includes methods for adding children, changing a parent, finding all neighbour
Nodes placed in a given radius, and finding the nearest Node. These are frequently used
throughout the entire execution of the RRT algorithm.

For get_neighbors_in_radius and find_the_closest_node methods, std::queue was used
to sequentially go through all nodes and check if they satisfy a certain condition.

RRT_tree class

The pointer to a tree root is stored in a RRT_tree instance. In addition to the constructor
and a couple of useful methods, such as serialising the entire tree into a JSON file, it
involves the find_path method, which accepts the algorithm to be used and grows a tree
according to that algorithm.

5.3 Implementation of the algorithms

The cornerstone of actual RRT and RRT* classes is an Algorithm class. I decided
to use the virtual function declaration to ensure the simplicity of adding more path-
finding functions when needed. The virtual function of the base class Algorithm
find_path_according_to_alg is redefined in the derived classes RRTAlgorithm and
RRTStarAlgorithm.
class Algorithm {
public :

virtual std :: vector <Vec3 > find_path_according_to_alg (
const World *world_ptr ,
const AvoidanceAlgorithm &

avoid_alg ,
const Node *root ,
const Vec3 & start_point ,
const Vec3 &goal_point ,
double goal_radius ,
double neighbor_radius ,
double droneRadius) const =0;

...
}

After the last node has been added to the tree and the path has been successfully found
simultaneously, this path must be extracted from that tree to separate the node array.
There is a static find_way_from_goal_to_root method for this particular purpose.

15

5. UAV flight in GNSS-Denied environments using RRT and RRT*
5.3.1 RRT algorithm implementation

The definition of the find_path_according_to_alg virtual function is in the RRTAlgo-
rithm class. It is essentially an implementation of the pseudocodes 1 and 2 using all the
useful methods described above.

The code is designed in a way that allows you to easily change the dimension of the
search: 1D, 2D or 3D. To test the algorithm, I straightforwardly decided to make the
search area as trivial as possible - a rectangle with a side of 2 · dist(S0, SG) and a centre
on a line connecting them. The start state S0 is located on one side and the goal SG on
the other, as shown in the figure 5.1.

Figure 5.1: Trivial search area definition, 2D example.

More sophisticated implementations could define this area as an ellipse with two focusses
in S0, SG.
I decided to represent obstacles as spheres and cylinders because they are the easiest
to work with and essentially cover my needs to test the algorithms. After generating
a random point, this point needs to be checked on whether it is inside any obstacle or
whether the obstacle is located somewhere along the flying trajectory (line from the
closest point to the current, random one). I programmed two approaches to solve this
problem, which are described in Chapter 6.

Results

The algorithm finds a route successfully and quickly in both 2D and 3D scenarios. Here
are some examples of simulations without adding obstacle avoidance. Figure 5.2 shows
several simulations in Rviz. The path is found successfully; however, it is by far not an
optimal path. Figure 5.3 represents the difference between the paths depending on the
maximum distance between the nodes. When using a step size that is too small (bottom
left), algorithm requires much more time to find a way; however, usually the found way
is smoother than when using a big step size (bottom right).

16

................................ 5.3. Implementation of the algorithms

Figure 5.2: 3D RRT found path without obstacles, Rviz simulation.

Figure 5.3: 2D RRT tree visualized with python and matplotlib.

17

5. UAV flight in GNSS-Denied environments using RRT and RRT*
5.3.2 RRT* algorithm implementation

The path search and random tree growth with graph optimisation and rewiring were
implemented exactly as shown with pseudocode 3. In contrast to RRT, node costs need
to be carried out. Now, when finding the most suitable neighbour node, besides looking
at the distance to it, we also need to look at it’s cost in case it is not the best one, 4.

Algorithm 4 Find the best neighbour
1: Neighbours ← get_neighbour_in_radius(rnd_point, radius)
2: best_cost_to_new_node ← closest.cost + distance_to_closest;
3: for neighbour ∈ Neigbours do
4: is_inside_an_obstacle ← false;
5: current_cost ← neighbour.cost + distance_between_points(rnd_point, neigh-

bour)
6: if current_cost < best_cost_to_new_node then
7: for obstacle ∈ obstacles do
8: if there_is_an_intersection(neighbour, rnd_point, obstacle) then
9: is_inside_an_obstacle ← true

10: Exit_for_cycle
11: end if
12: if is_inside_an_obstacle then Continue_for_cycle
13: end if
14: best_cost_to_new_node ← current_cost
15: best_neigbour ← neighbour
16: end for
17: end if
18: end for

Results

Following figures show a couple of simulations without obstacles. Figure 5.4 shows the
typical paths found with the RRT* algorithm. The path is almost a straight line, despite
the fact that the number of iterations was set fairly low (< 50).

Figure 5.4: 3D RRT* found path without obstacles and appropriately tuned parameters,
Rviz simulation.

18

................................ 5.3. Implementation of the algorithms

RRT* is strongly dependent on several important parameters, and for simplicity, I will
compare the results with the following (most crucial) varying criteria:.Minimal number of iterations Niters.. Neighbour radius for graph rewiring Rn,.Maximal distance between nodes Dmax.

First, let us look at the changes made by varying the minimal number of iterations
Niters, Figure 5.5. As a reminder, RRT* continues to optimise the path even after it was
found for a given number of iterations, unlike RRT, which stops right away. As we can
see from the simulations in Figure 5.5, the path is being improved with time. But after
1000 iterations, it is almost a perfectly straight line, which means that it is not really
necessary to continue. When the number of iterations is set too low (upper plots), the
algorithm does not finish the optimisation. The path is not that bad, but it can definitely
be better.

Figure 5.5: 2D RRT* graph with different minimal number of iterations.

The changes made by varying the neighbour rewiring radius Rn, Figure 5.6, clearly
show the importance of finding the right parameters. When set too low, the tree looks
more like a tree produced by the RRT algorithm (top left). That is because the algo-
rithm only rewires the graph in a small radius around a point, which is not enough for
big improvements. Similarly to that, there is a situation where the neighbour radius
is set too large. However, while the final path looks great and straight, the compu-
tational time to optimise all points in a big radius can be too long for certain applications.

Lastly, changing the maximal distance between nodes Dmax, Figure 5.7, also
controls the algorithm result to performance ratio. The smaller the distance, the more

19

5. UAV flight in GNSS-Denied environments using RRT and RRT*
precise the result will be. But the number of calculations is much higher when using a
bigger distance. Interesting observation - when distance is bigger than neighbour radius,
the RRT* produces a weird firework-shaped graph, which, of course, cannot be profitable
for regular path-finding.

Figure 5.6: 2D RRT* graph with different neighbour radius for optimisation rewiring.

Figure 5.7: 2D RRT* graph with different maximal distance between nodes.

20

Chapter 6
UAV flight with Obstacle Avoidance

Obstacle avoidance can be performed in various ways. In this project, I implemented
two of them. Like the Algorithm class that has a virtual function that is redefined
in the RRTAlgorithm and RRTStarAlgorithm classes, here is a AvoidanceAlgorithm
class with a virtual function ThereIsIntersectionAlongThePath() that I redefine in the
LinearAlgebraIntersection and BinarySearchIntersection classes.

6.1 Point drone - inflated/virtual obstacles, line/sphere
intersects

This approach assumes that a drone is a single point. However, all the obstacles that I
have represented for now as spheres have an artificially enlarged radius. In other words,
a considerable amount of a safe zone is glued to the obstacles, so that the point drone
can safely be in any place outside those zones without interacting with the objects.

This way of obstacle avoidance requires two conditions to be satisfied to put a new
trajectory point to the tree:

1). New point doesn’t lay inside an obstacle,

2). The line segment between two points does not intersect any obstacle (the line between
the place of connecting to the tree Si and a new node Sn).

In this method, considering the obstacles of the sphere, first condition can easily be
judged from the distance between the obstacle centre So with radius R and the new
point:

dist(Sn, So) < R. (6.1)

Second condition requires a little more complicated maths. It is implemented in the
LinearAlgebraIntersection class and the idea was insiped by [31]. Let us assume that we
have two points S1, S2 and we want to check if the line segment between them intersects
a certain sphere with a coordinate vector S with radius r. First, we need to find the
point closest to S that is on the line. Let us find the difference of S1 and S2,

d = S2 − S1. (6.2)

Then find the squared length of this segment, in other words, the vectors norm squared,

l = dT d. (6.3)

21

6. UAV flight with Obstacle Avoidance................................
Find the second needed vector, the vector between S1 and S,

h = S1 − S. (6.4)

Do the dot product of d and h. This, divided by l will give us the percentage along the
S1-S2 line - P . If the found number is not inside the [0, 1] interval, then make it 0 or 1.

P = d · h
l

, (6.5)

P =
{

0, if P < 0
1, if P > 1

. (6.6)

The closest point to the centre of the sphere C can be calculated as follows:

C = S1 + P · d. (6.7)

Figure 6.1: 2D example of line segment with circle intersection, C isn’t inside of a sphere

Now that we have C, all that remains is to check whether it is inside this sphere, which
is almost trivial (first condition of this avoidance approach).

22

.................... 6.1. Point drone - inflated/virtual obstacles, line/sphere intersects

6.1.1 Results

This avoidance algorithm was implemented and tested successfully. Figure 6.2 shows RRT
and RRT* working in two different 2D environments. RRT finds a solution with a very
small number of iterations, but RRT* tends to have much better optimised trajectories.

Figure 6.2: 2D simulation of inflated objects and point UAV obstacle avoidance.

23

6. UAV flight with Obstacle Avoidance................................
6.2 Sphere drone - binary search of collisions

In this approach, it is assumed that the drone is a sphere of appropriate radius. This
means that no safety indent needs to be added to the obstacles, unlike the case with
a point drone. First, we need to have a function to check for two-sphere intersections
(in project, located in the AvoidanceAlgorithm class). For an intersection, the following
condition must be satisfied:

dist(c1, c2) ≤ R1 + R2, (6.8)

where c1 and c2 are the sphere centres and R1, R2 are their radii.
The collision search algorithm is as follows:

1. Define a line between start S1 and goal S2 points.

2. Find the centre of this line.

3. Assume that the UAV is at that central point and look for an intersection with the
obstacle O.

4. If the intersection has not been detected, select a new line segment. Line segment
between the centre point and the end point of the previous line that is closer to the
obstacle O centre.
If there is an intersection, then the algorithm stops, the result is found.

5. Continue from Step 2.
This is an iterative method and the depth of the collision search should be defined. It
can be defined as a number of steps to take or as a minimum step length. Minimal step
length is a more robust way because of situations where the search line is too big and a
fixed number of steps will not control all the needed points.

As a 2D example, consider the obstacle O and two points S1 and S2, Figure 6.3. The
first step is to find the middle point between S1 and S2 (I). Then check if there is a
collision, assuming that a UAV is in position (II). No, there is no collision; define the
next line segment between that centre and S2. Check for an intersection at middle point
2 (III). Continue in the same way and finally find a collision after 3 iterations (IV).

Figure 6.3: 2D example of binary collision search.

24

............................. 6.2. Sphere drone - binary search of collisions

6.2.1 Results

3D simulation of binary search avoidance is shown in Figure 6.4. Figure 6.5 represents
RRT and RRT* working in two different environments. From the gap around objects, we
can see how the drone will not approach them too closely. The lower row of the pictures
shows that RRT* is capable of finding a way even through a very narrow bottleneck-
shaped place. Also, the fan-shaped twigs of the RRT* tree are perfectly seen compared
to a kind of rectangular RRT.

Figure 6.4: 3D simulation of spherical UAV and binary search avoidance in Rviz with RRT
and RRT*.

Figure 6.5: 2D simulation of spherical UAV and binary search obstacle avoidance.

25

6. UAV flight with Obstacle Avoidance................................
Straight line solution

Of course, when there are no obstacles along the straight line between a current node
and a target, this line can be added to the tree as the best trajectory possible. This step
helps RRT reduce the number of nodes added even further, Figure 6.6.

However, for the purpose of this project, I decided to avoid using this feature, be-
cause the main goal is to see the exact RRT and RRT* behaviour, without interrogating.
Moreover, in a complex environment, such as a forest, this may take more computational
time (after adding every node, check for any intersections with any obstacle).

Figure 6.6: Straight line solution example.

6.3 Avoidance of cylindrical obstacles

Sometimes, it would not be efficient to represent certain obstacles as bare spheres. For
example, in a simple forest environment, where trees are essentially the only obstacles to
deal with. Trees are mostly in the shape of a vertical barrel. So, I also made the decision
to introduce cylinders as an obstacle type in this project. The essence of avoidance
algorithms will remain similar to spheres.

The Point drone - inflated/virtual obstacles concept was modified to separate
two types of objects with a dynamic_cast operator. The calculations were reorganised in
such a way that the method would work with cylinders. It was achieved by transforming
the problem into a 2D plane, where the cylinder is mapped to a circle and the line section
is projected to the plane. First, the algorithm ensures that the line segment does not
intersect a circle 6.1. If it does not indeed cross it or lay inside of it, then it is known that
the line would not intersect the cylinder, and the algorithm returns the answer. However,
if it does, on this occasion, we still cannot know the answer; the problem is shown in Fig.
6.7.

26

................................ 6.3. Avoidance of cylindrical obstacles

Figure 6.7: Explanation of the intersection problem.

This problem was solved transparently by investigating the end points of a line segment:
A and B. If both points are placed above or both points lie below the cylinder top point,
then the intersection is not present. Despite the simplicity of this rule, the algorithm
presented itself as very robust. In fact, this made UAV flying even safer, because the
drone would be slightly further from the corners of the cylinders. The Sphere drone -
binary search of collisions way of avoiding obstacles now also differentiates between
two types. In this case, the dodging of the cylinders is performed by finding the closest
point P on the axis of the cylinder O to the line that we are investigating A−B. The
algorithm then executes the sphere-to-sphere intersection at that point, Fig. 6.8.

Figure 6.8: Explanation of the intersection with a cylinder search.

In case the intersection is not found, the algorithm returns the result. But if the
intersection seems to occur, at this point it does not tell us anything. The first thing the
algorithm does after that is controlling the location of a P point. The problem here is
that it is not possible to approximate the cylinder with a sphere at its top or bottom
point. The code executes control of two boundaries above and below the cylinder keeping
in mind the radius of the UAV and the "rectangular" shape of the cylinder.

27

6. UAV flight with Obstacle Avoidance................................
6.3.1 Results

Both avoidance algorithms were modified to work with barrel-shaped objects. The RRT*
is used in every picture in this results section, so that a man could properly see the
avoidance working.

In Fig. 6.9, it can be seen that the algorithms perform impeccably with inordinately big
cylinders. This test allows us to see that there are no mistakes when planning above the
cylinder. It could be crucial to change the parameters of RRTs, i.e., the maximal step
length.

Figure 6.9: Wide single cylinder avoidance: left - point drone, right - binary search algorithm.

Fig. 6.10 shows how both avoidance algorithms keep their fundamental properties with
cylindrical obstacles. The binary search approach keeps all the necessary distances for
the UAV to hover around the obstacle without the danger of collision.

Figure 6.10: Cylinder arrangement testing: left - point drone, right - binary search algorithm.

28

Chapter 7
Statistical analysis of RRT*, RRT and obstacle
avoidance algorithms

Numerical analysis is an essential part of project implementation. It provides a better
understanding of the program and the details of its efficiency. As a first experiment to
obtain algorithms’ performance data, I created a script to randomly generate a given
number of obstacles in a certain area, Fig. 7.1.

Figure 7.1: Example of 12 randomly generated obstacles.

Then the start and goal positions were set to be exactly 10 metres apart. These
positions will not change throughout the experiments. After that, there is a for cycle
in the script, which will run the provided path planning algorithms N number of times.
The data to be gathered from N iterations are:. Number of nodes in a search tree - κ,. Total found path length - L,. Execution time of a planning algorithm - τ .
The collected data will be used to calculate the arithmetic mean µ and sample standard
deviation σ,

µ =
∑N

n=1 xi

N
, (7.1)

σ =

√√√√ 1
N − 1

N∑
n=1

(xi − µ)2. (7.2)

29

7. Statistical analysis of RRT*, RRT and obstacle avoidance algorithms
RRT* algorithm RRT algortihm

κ [-] L [m] τ [ns] κ [-] L [m] τ [ns]
4617 10.7688 412.381 2363 30.4182 62.2736
5612 10.4753 593.579 823 13.9266 24.4124
1446 10.979 72.850 1075 14.1057 32.6869
2509 11.5304 154.439 1709 20.5328 41.8258
762 10.497 32.801 2191 26.8105 59.656
601 11.5318 27.4014 2523 14.7748 65.6948
1368 13.631 65.322 2042 20.16 49.4019
697 11.472 30.059 1182 18.9987 37.4006
2483 10.6871 156.736 2441 21.6002 62.5806
6399 10.5717 782.126 1327 26.7231 34.6009

...

Table 7.1: Measured values of the first 10 iterations in a randomly generated environment.

Table 7.1 shows examples of κ, L and τ measured on both algorithms. The obstacle
avoidance algorithm that was used for this experiment was binary search of collisions,
because it allows a more transparent view on the difficulty of the environment with
randomly generated obstacles (Fig. 7.1).

RRT* algorithm RRT algortihm
κ [-] L [m] τ [ms] κ [-] L [m] τ [ms]

µ 2439.99 11.1201 185.265 2784.33 22.0501 87.2244

σ 1524.832 0.716886 186.816 1654.965 5.32939 75.3477

Table 7.2: Calculated arithmetic mean µ and sample standard deviation σ in RRT tests.

Table 7.2 contains calculated µ and σ from 100 generated data samples. Looking at the
arithmetic mean µ, the reader can observe that the mean number of tree nodes κ is quite
similar for both RRT* and RRT. It was intentional because the minimum number of nodes
for RRT * was set to 0, making it end after finding the first valid trajectory, just like RRT.

More interestingly, average path length L of RRT is twice larger than RRT *, making
the flight twice less efficient in the sense of distance. However, on the other hand, the
average time required for RRT to find that longer path is more than twice as long as
RRT *, which also confirms that the algorithms were designed correctly.

When analysing the sample standard deviation σ, the path length L stands out signifi-
cantly. σ is a measure of the level of dispersion of the data with respect to the mean.
The low standard deviation means that the data are clustered around the mean, and
the high standard deviation indicates that the data are more spread out. Even when
obstacles are generated randomly, which means that they can be spawned even in a
wall-like structure, RRT * manages to have σ to be 0.716886 metres. Taking into account
the Euclidean distance between start and finish (10 m), the standard deviation of a metre
of distance is 0.716886/10 = 0.0716886m = 7.16886cm for this scenario. And assuming
the normal distribution and using the 68− 95− 99.7 rule [32], in approximately 95% of
the path planning in this obstacle density, the algorithm will find a trajectory shorter

30

.................. 7. Statistical analysis of RRT*, RRT and obstacle avoidance algorithms

than µ + 2 · σ = 12.553872 metres.

The RRT algorithm, however, has much bigger σ, which means that the found path
usually oscillates greatly, between 27.379 and 16.72 metres with only 0.68 probability.

To compare the speed between two approaches to avoid obstacles, the program was run
two times: once with a point drone and obstacles with a radius increased by 0.3 m and
second with a drone of radius 0.3 m and obstacles of real size. As the parameters κ and
L will not be affected, τ is a single variable to be measured. Again, N = 100 iterations
with randomly generated obstacles provide the following.

RRT* algorithm
Binary search τ [ms] Point drone τ [ms]

µ 243.961 181.99
σ 350.323 323.487

Table 7.3: Calculated arithmetic mean µ and sample standard deviation σ for obstacle
avoidance execution time tests.

Table 7.3 shows the calculated µ and σ, which tell us that the point drone-inflated object
algorithm works faster than the binary search for collisions. But the difference is not
that significant, considering that, for precision, the number of steps for the binary search
is set to 8, which can be reduced to 4, 5, or 6, when dealing with small maximal distance
between nodes.

Sample standard deviation shows, that the time τ is greatly influenced by the com-
plexity of the generated environment, due to the fact that σ is larger than the average
execution time.

31

32

Chapter 8
Multiple UAV path planning

The concluding implementation goal of this work is to design an algorithm that could
be used to plan the paths of multiple UAVs. Unlike the case with a single drone, this
problem requires the introduction of new terminology. A path P is essentially a set
of points in a high-dimensional space. For a 3D case, each path P would contain 3D
points/vectors Pi, where i = 0, 1, A trajectory T is a set of points in space and a
schedule for reaching each particular point. Just like that, each trajectory T will contain
points and the exact time stamps on which the drone will be flying by this point.

All the planning will take place in a single coordinate system, that is, the main frame of
the UAV. Furthermore, the whole calculation process will run on a single drone. This
simplifies the problem to focus on trajectories coordination, rather than communicating
between different drones to find out all their trajectories just to adjust one’s own.

8.1 Converting a path to a trajectory

Investigating the project source files, a reader can observe the Trajectory class that
was created to work with trajectories. The main attribute of the class is a vector of
pairs, representing the trajectory T itself. The method equally_divide_path_in_time
splits the given path P into segments of a given length ds and assigns a time stamp so
that ti+1 = ti + dt. It does this by finding the direction vector between each pair of
neighbouring points in a path and gradually crawls along it, adding new points to the
trajectory, Fig. 8.1. It can be done only with the assumption that the drone will fly with
a constant speed; which in our case is assumed. The results can be seen in Fig. 8.2.

Figure 8.1: Path to trajectory conversion visualisation.

33

8. Multiple UAV path planning

Figure 8.2: Time stamps on trajectories in RViz.

8.2 Spotting collision dangers

While having N number of trajectories, we need to make sure that there is no pair of
UAVs that are going to be in the same place at the same time. Furthermore, for safety,
ξ was introduced - time, which can be described as the maximum amount of delay or
postponement for a drone to be located in the current position. It serves as an additional
time-domain buffer.

Now, to find potential crash areas, two trajectories need to be compared with each
other and to see if any points are too close to each other (intersection of two spheres, 6.8)
in a time interval < ti − ξ, ti + ξ >. In addition, the last point that does not intersect pi

of each trajectory is stored for the upcoming construction of a new trajectory. Fig. 8.3
shows the simulation in RViz.

Figure 8.3: Potential collision domains between two trajectories.

34

.............................. 8.3. Constructing not interfering trajectories

8.3 Constructing not interfering trajectories

Now, it is necessary to build N trajectories, each of them having its own starting-S0 and
goal-SG point. The drones will have their priority level. In the event of an arguable
situation, a drone with higher priority will have a shorter and smoother path than another.
The higher-priority drones will have their trajectories found before generating trajectories
for less prioritised drones. The algorithm starts from the highest-priority drone and
searches a path without any other drones’ constraints, except their starting and goal
positions. When the path is found, the second drone will have its trajectory generated.
After that, two trajectories will be investigated for collisions. If collisions were found, the
path for a second drone should be rebuilt, keeping in mind the collision areas.

Algorithm 5 Planning multiple trajectories

Input: An array of drones, each having its S0 and SG - uav_array.
Output: Each drones trajectory that doesn’t intersect other ones.

1: uav_array.sort_by_priority()
2: for uavi ∈ uav_array do
3: while collisions_were_detected do
4: if performance_mode then
5: uavi.change_starting_point_to_last_without_intersects()
6: end if
7: uavi.find_path().convert_to_trajectory()
8: for uavj ∈ uav_array[:i] do
9: find_trajectories_intersections(uavi, uavj)

10: store_last_point_without_collision()
11: uavi.add_obstacles_in_places_of_collisions()
12: end for
13: end while
14: end for

Parameter performance_mode is introduced to classify two possible path re-building
ways, Fig. 8.4. The first one is to forget about the previously constructed trajectory and
find a totally new path with newly added obstacles. The second one (performance mode)
will take the last point on a previous trajectory without a collision and start building a
tree from there. When found, it connects the found path to the tail of the last one.

Figure 8.4: Difference between the regrowing tree possibilities, right - performance mode.

35

8. Multiple UAV path planning
While using the performance mode, the size of the new search tree can be significantly
reduced. Especially when planning in a 3D space, the algorithm will find a short way
around a certain collision domain without building a massive tree from the start again.
However, the probability that the resulting trajectory will be longer than without the
performance mode is high and strongly depends on a given scenario. As for most cases,
the difference is not that critical, so the performance mode is more than acceptable for
its usage.

8.4 Results

Let us have a look at a 2D problem. First of all, in the situation of crossing trajectories,
when drones will not collide because of the timings, the algorithm performs as it should,
can be seen in Fig. 8.5. One UAV will fly through the crossing faster and there will be
no collision.

Figure 8.5: Time delayed crossing trajectories 2D.

Or more complex examples of the algorithm working with four drones and three obstacles
in a 2D plane, see Fig. 8.6.

Figure 8.6: Time delayed crossing trajectories.

Relocating to the three-dimensional world, the algorithm performs well on two crossing
trajectories, Fig. 8.7. When a group of drones and obstacles is introduced, the speed of
finding the paths decreases moderately. Even in a dense environment (Fig. 8.8, 8.9), the
calculated trajectories will not allow drones to have a collision midflight. In summary,
the multiple trajectories generation algorithm works efficiently and reliably.

36

.. 8.4. Results

Figure 8.7: Two generated trajectories in 3D space.

Figure 8.8: Example of the algorithm working in 3D, forest like environment.

Figure 8.9: Example of the algorithm working in 3D with a narrow entrance.

37

38

Chapter 9
Autonomously flying UAV

To prove the usability of the implemented path planning, it was decided to conduct an
experiment with a real UAV. The experiment is meant to be as follows: When giving
the drone coordinates in its coordinate system, with the UAV in (0, 0, 0), it must fly to
that location, avoiding all obstacles on its way. For instance, giving the drone location
(12, 0, 3) must result in it being 12 metres forward in the x-axis direction and 3 metres
above the point it was at before.

9.1 Sense and avoid principle

For our purposes, the algorithm will use the so-called S&A - sense and avoid concept,
that is discussed in [33]. The main concept is that an agent/UAV moves step by step
with a defined distance; between steps, it detects the obstacles that may cause collisions
and replans its trajectory for the next step, Fig. 9.1.

Figure 9.1: Sense and avoid algorithm.

This approach allows the experiment to be carried out in safest manner possible due to
the different adjustable parameters, such as the time delay between steps or the length of
a single step. Also, to be more confident in the safety of an experiment, the RRT * will be
used, as it creates much more predictable paths, which is better for the operator holding
the emergency stop button. The trajectory waypoints are 0.25 metres apart, and the N
number in Fig. 9.1 will be set to 4, so that the step ends to be exactly 0.25 · 4 = 1m long.

39

9. Autonomously flying UAV
9.2 Required hardware

The autonomous flying vehicle needs to have certain components for moving and obstacle
detection. All hardware was provided by the MRS group.

Figure 9.2: Fully equipped UAV, that was used during experiments.

. Tarot T650 is the name of the UAV used. Its parameters are as follows.. 650 mm frame. 15 inch carbon fibre propellers. 4x 4114 320kV motors. 6S 8000mAh LiPo battery. 3.5 kg lift-off weight

It is a big, redundant drone, with a long-lasting battery..GPS receiver. For general purposes, it is necessary to define a safety area in which
the UAV will operate.. 45 degrees Ouster Lidar and metal safety bars around it. Used for reliable obstacle
detection..Garmin distance sensor. Used for altitude measurements.

9.3 Obstacle detection

To avoid obstacles, you must first have an obstacle detection module. For the purpose
of this experiment, it was decided to fly in a forest-like environment and perform path
planning in a 2D plane. Because cylinder avoidance was already implemented in Section
6.3, trees can be represented as ideal cylinders.
To detect them all around the drone, we need a tool to scan the environment. The ROS
node of the MRS bumper, Fig. 9.3, uses a 2D or 3D Lidar sensor and divides the 360◦

plane around the drone into n identical sectors. Then it publishes an array of size n + 2
on a uav_name/bumper/obstacle_sectors ROS topic. Each element of this array is a float

40

....................................... 9.3. Obstacle detection

number representing the distance to the closest point in the current sector. 2 additional
items represent the measured height and distance to the ceiling if flying inside.

Figure 9.3: MRS bumper tool visualised in RViz. Number of sectors n = 30.

Using these n sectors, it is possible to map cylindrical obstacles using simple trigonometry.
The first sector is aligned with the x-axis of the drone, having an angle of 0◦. Other
sectors have their angle incremented counterclockwise if viewed from the top. In Fig. 9.4,
4 sectors are shown (I, II, II and IV). Vectors a, b, c represent the distance to the closest
point in the corresponding sector. Sector II has a zero vector, which means that the
Lidar has not detected any cloud-points in this sector direction. The cylindrical obstacle
positions can be obtained from each sector angle θi and distance di as such 9.1,

xi = di · cos(θi · π
180), yi = di · sin(θi · π

180). (9.1)

The radius of the current cylinder is calculated as 9.2. The constant rmin is the minimum
obstacle radius allowed, which prevents dangerous situations close to obstacles,

ri = min{rmin, di · sin(π

n
)}. (9.2)

Figure 9.4: Diagram explaining MRS bumper principle. View from above.

41

9. Autonomously flying UAV
9.3.1 Simulation tests

The resulting tree-to-cylinder mapping was first tested in a simulation. The adjustable
minimal obstacle radius allowed to tune the algorithm to be robust and ensure the
maximal safety of the UAV. Adding cylinder-type markers to RViz displays a real-time
mapping of the trees, Fig. 9.5.

Figure 9.5: Simulation test of the trees mapping in RViz and Gazebo example.

The fact that the radii of the trees are calculated in such a way that the farther
the obstacle, the bigger the radius, introduces a certain amount of uncertainty for the
planning algorithm to cope with. But because we only use a small number of bumper
sectors n, the planner will not control more than n obstacles in every iteration, resulting
in a decrease in the execution time of the trajectory planner.

Figure 9.6: Simulation test of trajectory planning.

Fig. 9.6 shows the ability of the algorithm to construct a trajectory through the mapped
obstacles and follow it. A video of a simulation test is given in this youtube link.

42

https://www.youtube.com/watch?v=c61xqZ9ARNo

Chapter 10
Real world experiment

The goal of the real experiment is to demonstrate the usability of implemented algorithms.
The task sounds the same as the one sounded in Chapter number 9: autonomously fly
through the forest-like environment to a given position relative to the UAV. To carry out
the experiment safely, soft artificial tunnel-like obstacles were built in the middle of a
field, Fig. 10.1.

Figure 10.1: Artificial experimental forest.

Several tests of flying between tunnels were performed and in this paper only the last
one will be described. Many data were recorded during the experiment. ROS feature,
called rosbag, was used to store all logs and published topics. This allows us to monitor
every aspect of the flight at any time after the experiment.

After a successful take-off of the UAV, it is required to give it a command to allow
the execution of a program. For this purpose, ROS service /StartExecution was created
(located in the /srv directory of the project).

The coordinates (0, 15, 0) were the input for the experiment, which means that the UAV
is wanted to fly 15 metres in the local Y-axis direction avoiding the tunnels. The starting
and goal points are shown in Fig. 10.2.

43

10. Real world experiment

Figure 10.2: Starting (green) and goal (blue) positions for the drone.

The altitude of the flight was unchangable (1.5 m); otherwise, the drone could create a
trajectory above all the tunnels, because it would be more efficient than flying in a 2D
plane.

Flyight visualisation can be recreated using the generated rosbag file, Fig. 10.3. It
can be clearly seen that the lidar cloud points and mapped cylinder obstacles around are
precisely correlating, so the drone is safe to create trajectories around them. The video
of the flight (top view, side view and RViz data) is accessible in this youtube link.

Figure 10.3: Rviz visualisation of gathered during the experimental flight data.

To analise the precision of reaching the goal, it is possible to use a global GPS frame.
After take-off, the drone is located at (−57.53,−20.54, 1.52) and at the end of the flight
its coordinates are (−67.37,−8.82, 1.45). The distance between these two points is 15.3
metres, which, keeping in mind the goal radius of 0.5 metres, is an achieved goal.

From the local coordinates incremented during the flight - from (0, 0, 0) to (0.11, 14.54, 0),
it can also be confirmed that the goal was reached correctly. The algorithm stopped
its execution when the distance to the goal became 0.46 metres, which is less than the
radius of the goal.

44

https://www.youtube.com/watch?v=Ni5F9tM2hWM

.................................. 10.1. Summary of the experiment

It is also possible to access the relative positions of the goal. After each trajectory
step, the drone was publishing them on Rvizs subscriber topics. These data were visu-
alised using Matlab, Fig. 10.4. There are a couple of interesting points in this scatter plot.

For instance, the third blue point on the left is slightly shifted from other points on a
seemingly straight trajectory. This happened because the UAV replanned its trajectory
to the other side of the tunnel because it discovered the fourth tunnel in the distance,
which messed with the previous plan of the drone.

-15 -10 -5 0

Distance to goal in Y axis [m]

-2

-1.5

-1

-0.5

0

0.5

D
is

ta
n

c
e

 t
o

 g
o

a
l
in

 X
 a

x
is

 [
m

]

Position deviations

Start and goal references

Figure 10.4: Distance that was left to overcome after each trajectory step in both axis.

Also, the bumpy character of the trajectory in its maximal X coordinate deviation (lowest
points on the graph) tells us an uncertainty about the distance to the closest obstacle.
This can be easily explained by the strong wind that blew that day, shaking the tunnels
and periodically tilting them for ±20 cm.

10.1 Summary of the experiment

The real world experiment with tunnel obstacles confirmed the possible usability of the
algorithms implemented during this project. Algorithms are capable to work not only on
ideal simulations with perfectly still trees and zero wind, but also in the environment
with imperfections.

45

46

Chapter 11
Conclusion

Studying the literature and other public sources of information, the author of this thesis
obtained basic knowledge on the path and motion planning problem and its aspects,
such as obstacle avoidance and possible algorithm optimisation. This knowledge allowed
structurising the implementation process in the optimal way, and it can also be used for
later contributions to the research of this field.

The whole practical side of this project can be described using a tree graph with
each branch implemented, creating a solid foundation for future development:

Autonomous flight of both
single and multiple UAVs

Path planning

RRT
algorithm

RRT*
algorithm

Obstacle
avoidance

Inflated
objects

Binary
search

Obstacle
detection

Due to the fact that the project was starting from scratch, a lot of path-planning
algorithms were programmed to test the actual RRT and RRT*. For instance, the
obstacle avoidance and obstacle visualisation must have been handled. For this purpose,
two completely different approaches were implemented: inflated objects and binary search.

The formal implementation objective of this thesis was to implement and modify standard
RRT and RRT* algorithms to consider route planning for multiple robotic agents. The
goal was achieved; designed algorithms allow one to plan not intersecting trajectories for
a swarm of drones avoiding the obstacles of the provided environment.

Several experiments were carried out both in simulation and in the real world to show the
actual usability of the designed path-planning algorithms. But first obstacle detection and
mapping needs to be introduced. It was decided to conduct experiments in a forest-like
environment, so a lidar sensor served to measure distances to the trees around the UAV.
Simulation experiments demonstrated that a single drone is capable of a slow autonomous
flight in a moderately dense forest (trees standing 2 metres apart). The real-world flight
experiment confirmed the possible usage of implemented path and motion planning even
in an imperfect environment with shaking obstacles.

47

11. Conclusion ..
11.1 Future work

The design of the project allows us to extend it during future work. Future work can be,
i.e., speeding up the drone moving through the forest by applying serious automatic control
features or conducting the experiment in the forest-like environment for multiple agents
(command each UAV its own trajectory to fly through). Or, of course, implementing
other interesting path and motion planning algorithms, for example those described in
Chapter 3. Just as important is the ability to introduce programmed algorithms to other
projects’ pipelines. RRT and RRT* would be a solid extension to a project without them.

48

Bibliography

[1] Steven M. LaValle ’Planning algorithms’, University of Illinois 2006, p. 269.

[2] Steven M. LaValle ’Planning algorithms’, University of Illinois 2006, p. 259.

[3] Roberts Eric, Motion Planning in Robotics course 1998-99,
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-
99/robotics/basicmotion.html

[4] L. E. Kavraki, P. Svestka, J. -. Latombe and M. H. Overmars, "Probabilistic roadmaps
for path planning in high-dimensional configuration spaces," in IEEE Transactions
on Robotics and Automation, vol. 12, no. 4, pp. 566-580, Aug. 1996.

[5] C.L.Nielsen, Lydia E. Kavraki, ’A Two Level Fuzzy PRM for Manipulation Planning’,
Proceedings of IROS 2000, In Press

[6] Robin Bohlin, Lydia E. Kavraki ’Path Planning Using Lazy PRM’, Proceedings od
the 2000 IEEE International Conference on Robotics & Automation

[7] Franz Aurenhammer. 1991. Voronoi diagrams—a survey of a fundamental geometric
data structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345–405.

[8] S. K. Ghosh and D. M. Mount, "An output-sensitive algorithm for computing visibility
graphs", SIAM J. Comput., vol. 20, no. 5, pp. 888-910, 1991.

[9] P. Bhattacharya and M. L. Gavrilova, "Roadmap-Based Path Planning - Using
the Voronoi Diagram for a Clearance-Based Shortest Path," in IEEE Robotics &
Automation Magazine, vol. 15, no. 2, pp. 58-66, June 2008.

[10] Canny, John F.. ’A Voronoi method for the piano move problem.’ Proceedings. 1985
IEEE International Conference on Robotics and Automation 2 (1985): 530-535.

[11] Oussama Khatib, ’Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots’, The International Journal of Robobtica Research, Vol. 5, No. 1, Spring 1986,
MIT.

[12] Robert Kwiatkowski, ’Gradient Descent Algorithm — a deep dive’,
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-
cf04e8115f21.

[13] Howie Choset [et al.], ’Principles of robot motion: theory, algorithms, and imple-
mentation’, “A Bradford book”.

49

11. Conclusion ..
[14] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli and J. P. How, "Motion planning for

urban driving using RRT," 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008, pp. 1681-1686.

[15] S. M. LaValle and J. J. Kuffner. Rapidly Exploring Random Trees: Progress and
Prospects. In Algorithmic and Computational Robotics: New Directions, pages
293–308, 2000.

[16] Kuffner, James & LaValle, Steven. (2000). RRT-Connect: An Efficient Approach
to Single-Query Path Planning.. Proceedings - IEEE International Conference on
Robotics and Automation. 2. 995-1001.

[17] Vito Trianni, ’Evolutionary Swarm Robotics, Evolving Self-Organising Behaviours
in Groups of Autonomous Robots’, 2008 Springer-Verlag Berlin Heidelberg.

[18] S. James, R. Raheb and A. Hudak, "UAV Swarm Path Planning," 2020 Integrated
Communications Navigation and Surveillance Conference (ICNS), 2020, pp. 2G3-1-
2G3-12.

[19] A. Hudak, S. James and R. Raheb, "Impact of Communication Path Loss to
Unmanned Aircraft Swarm Coherency," 2021 Integrated Communications Navigation
and Surveillance Conference (ICNS), 2021.

[20] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl,
G. Loianno and V. Kumar. System for deployment of groups of unmanned micro
aerial vehicles in GPS-denied environments using onboard visual relative localization.
Autonomous Robots 41(4):919–944, 2017.

[21] V. Walter, N. Staub, M. Saska and A. Franchi. Mutual localization of uavs based
on blinking ultraviolet markers and 3d time-position Hough transform. In 2018
International Conference on Automation Science and Engineering (CASE). 2018.

[22] Puente-Castro, A., Rivero, D., Pazos, A. et al. UAV swarm path planning with
reinforcement learning for field prospecting. Appl Intell (2022).

[23] Gageik, Nils & Benz, Paul & Montenegro, Sergio, 2015, ’Obstacle Detection and
Collision Avoidance for a UAV With Complementary Low-Cost Sensors’. IEEE Access.

[24] Dashuai Wang, Wei Li, Xiaoguang Liu, Nan Li, Chunlong Zhang, UAV environmental
perception and autonomous obstacle avoidance: A deep learning and depth camera
combined solution, Computers and Electronics in Agriculture, Volume 175, 2020,
105523.

[25] Jiandong Guo, Chenyu Liang, Kang Wang, Biao Sang, Yulin Wu, "Three-Dimensional
Autonomous Obstacle Avoidance Algorithm for UAV Based on Circular Arc Trajec-
tory", International Journal of Aerospace Engineering, vol. 2021, Article ID 8819618,
2021.

[26] J. N. Yasin, S. A. S. Mohamed, M. Haghbayan, J. Heikkonen, H. Tenhunen and
J. Plosila, "Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and
Approaches," in IEEE Access, vol. 8, pp. 105139-105155, 2020.

[27] Steven M. LaValle, Rapidly exploring Random Trees (RRTs),
http://lavalle.pl/rrtpubs.html

50

... 11.1. Future work

[28] Aaron T. Becker and Li Huang, Rapidly Exploring Random Tree (RRT) and RRT*,
January 2018
https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT

[29] http://wiki.ros.org/ROS/Tutorials

[30] https://gitlab.fel.cvut.cz/poludmik/uav-usv-path-planning

[31] Using Vector Mathematics, Line segment against sphere intersection test,
http://nic-gamedev.blogspot.com/2011/11/using-vector-mathematics-and-bit-
of_09.html, November 9, 2011.

[32] Michael Galarnyk The 68-95-99.7 rule. Towards Data Science, 2018, Jun 4.

[33] Xiang Yu, Youmin Zhang, Sense and avoid technologies with applications to un-
manned aircraft systems: Review and prospects, Progress in Aerospace Sciences,
2015.

51

	Path and motion planning
	Objectives of the work

	Examples of path planning approaches
	Combinatorial path planning
	Sample-based path planning

	Related works
	Background theory
	RRT algorithm
	Explanation of the algorithm
	RRT algorithm pseudocode

	RRT* path planning algorithm theory
	Contrast to RRT
	RRT* algorithm pseudocode

	UAV flight in GNSS-Denied environments using RRT and RRT*
	Preparation and tool investigation
	Project source files and structure
	Environment classes and usage of the main function
	Tree structure implementation

	Implementation of the algorithms
	RRT algorithm implementation
	RRT* algorithm implementation

	UAV flight with Obstacle Avoidance
	Point drone - inflated/virtual obstacles, line/sphere intersects
	Results

	Sphere drone - binary search of collisions
	Results

	Avoidance of cylindrical obstacles
	Results

	Statistical analysis of RRT*, RRT and obstacle avoidance algorithms
	Multiple UAV path planning
	Converting a path to a trajectory
	Spotting collision dangers
	Constructing not interfering trajectories
	Results

	Autonomously flying UAV
	Sense and avoid principle
	Required hardware
	Obstacle detection
	Simulation tests

	Real world experiment
	Summary of the experiment

	Conclusion
	Future work

	Bibliography

