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Abstrakt
Tato bakalářská práce se věnuje návrhu paralelnı́ architektury pro hardwarovou akceleraci řı́zenı́
pohybu šestinohého kráčejı́cı́ho robotu. Akcelerace je dosaženo paralelizacı́ komunikačnı́ho
rozhranı́ k jednotlivým servomotorům Dynamixel AX-12A, která jsou v základnı́m návrhu robotu
spojena v jednom komunikačnı́m řetězci, pomocı́ paralelnı́ architektury hradlového pole (FPGA).
Hlavnı́m benefitem použitı́ FPGA architektury je, že umožňuje vysokorychlostnı́, synchronnı́,
paralelnı́ řı́zenı́ jednotlivých nohou robotu. Při použitı́ navržené architektury bylo docı́leno
zrychlenı́ komunikace 13x oproti standardnı́mu řı́zenı́ přes ovládacı́ PC. Práce také předkládá
návrh desky plošného spoje, která zprostředkovává rozhranı́ mezi servomotory a vývojovou
deskou FPGA. Navržená deska navı́c integruje rozhranı́ k dalšı́m senzorům, ochranné prvky
zamezujı́cı́ podbitı́ napájecı́ Li-poly baterie robotu pod bezpečnou úroveň a zdroj napájenı́ pro
použitou elektroniku.

Klı́čová slova: FPGA, Hexapod, UART, Dynamixel AX-12A
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Abstract
In this thesis, a Field-Programmable Gate Array (FPGA) architecture for hardware accelerated
control of a multi-legged walking robot is presented. The core of the presented work is the devel-
opment of the FPGA architecture to parallelize and speed-up the communication with the robot’s
intelligent Dynamiel AX12-A servomotors. The presented architecture enables synchronous,
truly parallel, highspeed control of the individual legs of the robot. The experimental results
show, that the proposed architecture achieves 13 times speedup of the communication in compar-
ison to the PC implementation of the robot controller. Further, a custom designed printed circuit
board (PCB) that interfaces the FPGA development board to the robot is presented. Further, the
custom designed PCB allows interfacing of other sensors, it integrates a power converters for the
FPGA board, and a Li-poly battery watchdog to cut of the electric current to prevent depleting,
and thus damaging, of the batteries.

Keywords: FPGA, Hexapod, UART, Dynamixel AX-12A
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Chapter 1

Introduction

Modern society develops robots to make the life more comfortable. The robots are replacing
humans in physically demanding and dangerous jobs. In industry, the robots become essential parts
of the process and nowadays, the mobile robots are gaining on importance. Those robots can be used
in many applications such as search and rescue, or data-collection missions, exploration of unknown
environments, or even in military applications.

Many mobile robots exist nowadays. Those robots are designed to move in various environments
(such as water, air, and the surface). This thesis is focused on terrestrial moving robots. Those robots
can be divided into groups by way of their moving to wheel robots, robots with tracks, and walking
robots. The walking robots have an advantage in rough terrains, where they are able to move without
any destruction of the environment.

Hexapod robot platforms are used in the Computational Robotics Laboratory 1 for research projects
such as exploration [1] or terrain characterization [2]. The currently used hexapods have three de-
grees of freedom (DoF) per leg. However, Martin Zoula presents a hexapod platform with 4 DoF per
leg in his thesis [3]. Each degree of freedom is enabled by one servomotor, which means that the
currently used robot consists of eighteen servomotors (Dynamixel AX-12A). All those actuators on-
board of the currently used robots have been connected by the daisy chain, i. e., the servomotors have
to be read sequentially. All the servomotors communicate via Half-duplex Universal asynchronous
receiver-transmitter (UART), the protocol si further described in section 2.1.

To move the robot the Gait (described in Section 2.1) have to be applied. In ComRob Laboratory
adaptive gate was developed [4] and the communication speed is critical for this gate. Therefore, to
speed it up, we propose a parallel architecture to be used for the communication with the servomotors.
In such a way, each servo can be connected directly to the control unit. The disadvantage of it is an
amount of wires going along the leg, increasing the probability of defect issue on them. Thus, the
whole leg is connected in a daisy chain and the legs are connected to the control unit (legs are parallel)
in this thesis.

When the robot was controlled by a single bus, the connection with the onboard computer was
easy. However, when six buses have to be controlled the additional device is needed. It can be im-
plemented by the microcontroller (e.g., Teensy 3.6 or STM32) which enables the use of six UART
interfaces or by the Field programmable gate array (FPGA). FPGA allows the programmer to describe
the exact hardware requirements, which are then implemented by connecting individual logical ele-
ments. FPGA perfectly fits the problems which are easy to parallelise or pipelined. The FPGA is
preferred in this thesis because it enables creating the packet simultaneously and it allows for easy
synchronization of the legs, which is favourable for the locomotion control.

Other renowned institutions uses FPGA to control their robots proving that this is a good way.
First example is MIT Cheetah [5], having 4kHz control loop. Another examples are [6], [7] and [8].
The usage of FPGA has some disadvantages as well. The main one is difficult and time-consuming
programming. However, there is an opportunity to combine the power of FPGA with the speediness
of programming standard CPUs by using the system on chip (SoC) or soft-core processors. Then,
methodologies for the design of the SoC architectures [9] can be applied to speed up the development
process significantly.

1part of Ai Center, Faculty of Electronic Engineering, Czech Technical University in Prague
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1. Introduction

In this thesis, an FPGA architecture is presented that reports more than thirteen times bigger speed
of communication with using FPGA in comparison to the laptop with the USB converter.

The thesis starts with the description of the robot (Section 2.1), where all important information
about the hexapod itself, gate and used actuators are briefly described and provide background infor-
mation for understanding the importance of the communication speed. The basic principles of FPGA
technology are described in the next Section, 2.2. This Section also contains information about the
FPGA development board which is planned to be used on the robot. To use the FPGA on a hexapod,
the prototype board has to be designed. This board is described in Chapter 3. In Chapter 3.3 the soft-
ware solution is presented. It consists of the FPGA architecture, and the CPU program that enables
to test the architecture. The results of the experimental validation of the architecture are reported in
Chapter 5. Concluding remarks are dedicated to Chapter 6.
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Chapter 2

Problem Statement

This thesis is focused on the implementation of the FPGA architecture for hardware accelerated
control of a multi-legged walking robot, that is achieved by parallelization of the communication
with the individual servomotors of the robot. The FPGA communication module is used on board of
hexapod robot, and provides the connection to servomotors. The locomotion controller (described in
the next section) needs to write and read data to a servomotor with a high frequency. Before this thesis,
all servos have been connected using a single bus. by using the FPGA it is possible to communicate
with each leg separately. The locomotion controller [10] sets positions of selected servos and then
immediately reads their actual positions. For the correct movement of the robot, the time-determinism
is critical.

The main hypothesis is, that the parallel approach should make the communication with the servos
at least six time faster as we are communicating with each leg on a dedicated line, than when all servos
are connected on a single daisy chain and are read sequentially.

2.1 Hexapod Description
As was written in the introduction, hexapods are used in the Computational Robotics Laboratory as
multi-legged robots. Up to this time the PhantomX AX Mark II is used(see Figure 1). However,
two new robots are currently developed [3] [11]. The PhantomX is an open source robotic platform,
produced by Interbotix. As you can see in Figure 1, each PhantomX leg is an open chain with 3
Degrees of Freedom. Each joint is active and controlled by the Dynamixel AX-12A servomotor. The
names of the joints are Coxa, Femur and Tibia. The Coxa is connected to the torso and Tibia is a part
of the foot tip. The names of the individual joints are inspired by the insect.

Figure 1: PhantomX AX Mark II.

Hexapod can locomote using different Gaits [12]. The first and the fastest is the tripod gait.
Assume that the legs are numbered, as shown in Figure 1. The Tripod Gait starts moving legs 3,6
and 1 together, while legs 4, 5 and 2 are supporting the robot. In the next step, the supporting and
swinging legs are swapped. Another gate is Quadruped. Two legs are in swing phase and four in the
stance phase in this gate. If the robot travels in rough terrain the pentapod gait can be used. Despite
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2.1 Hexapod Description

being slow, the robot using pentapod gait is very stable. Only one leg is in swing phase at a time, the
other five are supporting the robot.

When the robot is moving on a flat surface the legs can be controlled in open-loop. However, in
the terrain, the leg has to stop when hitting the ground. If the leg does not stop and continue exerting
the force, the torso of the robot might be pulled up and other legs might lose their support. On the
other hand, when the leg does not reach the surface, the robot might fall in the next swing phase.

The ground detection can be approached in different ways, in ComRob laboratory the force
threshold-based position (FTP) controller is used [4] [10] . The ground is detected by measuring
an increasing the torque in a servo motor. Unfortunately, the Dynamixel AX-12A cannot measure
the torque directly. It uses a P-type controller, where the error angle is considered as proportional to
the torque which, unfortunately, holds only when the servo is not moving. Therefore, the locomotion
control is based on monitoring of the position error of the servomotor. The main idea is to stop the leg
movement when the difference between the set and read position of the servo is above a predefined
threshold value. Therefore, the swing-down phase is interpolated by small steps to decrease the po-
sition error when the leg starts its movement. These small steps reduce the ground reaction force as
well.

Dynamixel AX-12A
This Section is based on [13]. Dynamixel AX-12A, the consumer smart servo motor is used as an
actuator. Despite its compact size, it can produce high torque, which is produced by DC motor with
a gear reducer. The servo enables feedback control for the angular position, angular velocity and
torque. This servo motor has its operation range limited to 300◦, as shown in Figure 2. Position can be
controlled with a resolution of 1024 steps, which means that the angle can be read with the resolution
of 0.29◦.

As you can see in Figure 3 this servo motor has two Molex3P connectors. All three pins in one
connector are directly connected to the second connector. Thus the AX-12A can be operated with only
one connector attached or can be easily used in a daisy chain.

Figure 2: AX-12A reachable position. Cour-
tesy of [13]

Figure 3: AX-12A pin assigment. Courtesy
of [13]

The power supply is connected to the second pin. The input voltage should be between 9 to 12
Volts, which perfectly fits a 3-cell Li-poly battery.

The servo can be controlled via the pin3. It supports Transistor-transistor logic (TTL) logic which
is a two-state logic, that is typically used by the integrated circuits built from the bipolar transistors.
The logic zero (LOW) is represented by 0 to 0.8 V. The 2.7 to 5 V will be read as the logic one (HIGH).
Between those two values is an invalid metastable state.

The selected properties of AX-12A are summarized in Table 1.
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2.1 Hexapod Description

Table 1: Selected properties of AX-12A.

Weight: 54.6 g
Dimension: 32 mm · 50 mm · 40 mm
Resolution: 0.29◦

Gear reduction ratio: 254 : 1
Stall Torque: 1.5 Nm (at 12.0 V, 1.5 A)
No load speed: 59 rpm(at 12.0 V)
Running temperature: -5 – 70◦ C
Voltage: 9 – 12 V

The servos communicate via the half-duplex UART2 interface. The half-duplex UART is a serial
communication which connects the transmitter and the receiver using a single wire. In the case of
AX-12A, UART is used as a multi-drop bus. If a node is not transmitting, it has high impedance on
its port. Pull up resistor is connected to the bus. Therefore 5 V can be measured on the bus when all
devices have their pins in high impedance. When the device transmits logical zero, it switches the pin
to the ground and on the bus 0 V can be measured. When the node transmits logical one, its pin will be
in the high impedance. Despite, collision can’t cause a short-circuit, it can be recognized (node which
transmits logical 1 will read logical 0).

The speed of the communication can be changed in range 9,600 to 1 M bauds. Baud is a unit, for
symbol rate per second. In this case, when there are only two symbols, the baud rate is the same as bit
rate. The AX-12A is set to 1 M bauds by default. The aim is to have communication as fast as possible,
so this is a good choice. The lower speed is needed when using long wires to detect collisions.

To ensure working communication, even the last bit has to be sampled before the transmission of
the bit ends. Therefore the timing mistake should not be larger than one half of single bit duration.
The possible error, which will not affect the communication, is calculated in equation 100

bit quantity·4 =
2.5%. The previous equation does not consider the transient response. The bit quantity is multiplied
by four because both receiver and transmitter have this tolerance.

In this section communication protocol is described. The controller communicates with the Dy-
namixel servo motors by sending them packets (formatted block of data) that comply to the Dynamixel
Protocol 1.0 [13]. Two packet types can be distinguished. First one sends the controller to the servo-
motor. This packet is called an instruction packet and consists of:

• Header 1 has value 0XFF.

• Header 2 is the same as header 1.

• ID unequivocally determines each servo. The value of servo ID should be in the interval 0 to
253. When the ID is 254, the packet is considered as a broadcast 3.

• Length of the packet is needed because it is not fixed. This number should be computed as an
amount of parameters + 2. For example, the shortest packet has no parameters, the length is 2,
and this packet contains six bytes.

• An instruction contains the command for the servomotor. The possible Values are listed in
Table 2.

• Parameters are used when instruction requires additional data.

2universal asynchronous receiver-transmitter
3All servomotors reads broadcast packets.
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2.1 Hexapod Description

• A checksum is used to detect any damage of the packet. If the sum of all bytes is divisible by
255, the packet is considered as correct.

Table 2: List of packet instructions.

Value Instruction Function
Number of
parameters

0x01 Ping Used for obtaining a status packet 0
0x02 Read Reading data from the servomotor 2
0x03 Write Writing values to the servomotor 2 +
0x04 Reg Write Similar to Write, but it is executed through Action instruction 2 +
0x05 Action Triggers the previous instruction 0
0x06 Factory reset Set the control table of the servomotor to the default value settings 0
0x83 Sync write Write data on the same address at once 4 +

The servo motor replies by sending a Status Packet, which consists of:

• Header 1 has value 0XFF.

• Header 2 is the same as header 1.

• The ID of the servo which sends the status packet.

• Length.

• The Error byte displays the error status sent from the Dynamixel. Each bit represents specific
problem as shown in Table 3.

• Optional parameters.

• Checksum.

The proposed architecture is supposed to implement the protocol to relieve the computational bur-
den from the CPU and allow synchronous sending and reading of the packet communication content.

Table 3: Meaning of each bit in error byte.

Bit Name Description

Bit 0 Input voltage error Set to 1 if the voltage is out of the operating voltage range
as defined in the control table

Bit 1 Angle limit error Set to 1 if the goal position is out of the range of the angle limits.
Bit 2 Overheating error Set to 1 if the inside temperature of Dynamixel

higher then value in the control table.
Bit 3 Range error Set to 1 if the instruction is out of range for the use.
Bit 4 Checksum error Set to 1 if the checksum of the instruction packet is incorrect.
Bit 5 Overload error Set to 1 if the set torque is low to control the current load.
Bit 6 Instruction error Set to 1 if the instruction is undefined or need more parameters.
Bit 7 Unused

6



2.2 Field Programmable Gate Array

2.2 Field Programmable Gate Array
The Field Programmable Gate Arrays (FPGAs) are digital integrated circuits (ICs). The “Field Pro-
grammable” signifies that the customer can configure the design after manufacturing. The “Gate”
stands for a logic gate, which implements some Boolean function. Finally, the word “Arrays” indicate
the large quantity of the gates.

FPGA was invented in the mid-1980’s by Xilinx [14]. Nowadays, two companies are leading the
production of FPGAs. First one, is Xilinx, the inventor and the second one is Intel, who bought this
division from Aletra. In this thesis, Intel FPGA is used.

Each manufacturer, and even every device family from one manufacturer uses different technolo-
gies. In this section, the common principle is described.

The FPGA consists of logic blocks, routing and others resources (see Figure 8). This section is
based on [15], [16] and [17].

Figure 4: FPGA structure. Courtesy of [18].

Logic element
In this thesis, the Intel (Altera) terminology is used, because their FPGA board is applied. Intel call the
smallest logic block as a logic element, other manufacturers may call them differently (for example
logic cell from Xilinx [9]). A typical logic element (as shown in Figure 5 ) is composed of N-input
Look-up table(LUT), multiplexor and flip-flop. The LUT is a memory, which represents a constant
Boolean function of N variables. The LUT can be used as a memory element, as well. Multiplexor
switches the LUT’s output to a flip flop or directly to the output from the logic element. The Flip-flop
sample and hold the value until the next clock signal is activated. The LUTs are connected to bigger
parts, which Intel call logic array block (LAB).

Routing
The LABs are connected to make complex architecture via switches and wires. The wires are both
horizontal and vertical and create an interconnected matrix. The two most used technology of the
programmable switches are described below.

The majority of FPGAs are based on SRAM (Static Random Access Memory) technology, which
is based on the flip-flops and can be implemented on CMOS as the rest of the FPGA parts. The SRAM
is volatile 4, thus they have to be reconfigured each time the system is powered up. Consequently,

4Volatile memories drop their information after power lost.
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2.2 Field Programmable Gate Array

Figure 5: LUT used in Cyclon V. Courtesy of [19].

external memories (such as EPROM) is needed. However, external memory causes problems with the
protection of the intellectual property of the design.

In contrast, with EPROM, antifuse technologies retains all date even without power. However, it
can be programmed only once. When the chip is manufactured all the links are disconnected, and
during programming, high voltage makes them conductive. The advantages of antifuse are immunity
to radiation and reverse-engineering safety.

Other Resources

The FPGA contains additional components such as embedded processors or dedicated blocks for com-
munication support. Further, clock resources are described in the next paragraph.

The clock source can be both external or from an internal oscillator. Then FPGA can change the
clock frequency by PLL and DLL. The clock is then distributed to the desired elements via a clock
tree. One FPGA contains more clock trees. Therefore more clock domains can be used in the design.

Other useful resources are memories. Memories can be implemented by the LAB or by the dedi-
cated memory blocks. Memory blocks can be used in many applications such as cache for an embed-
ded processor, FIFO, single or dual port RAM.

Input/output (I/O) blocks are used to interface the FPGA to the peripheral components. The signals
can be registered or unregistered. The pins can be configured as input, output, or as bidirectional. The
voltage level should be set typically from 1.2 V to 3.3 V.

As the FPGAs are very versatile, they can implement even a full scale processors in the FPGA
fabric. Such processors are called soft processor systems (SPS). On the other hand, FPGA fabric
can be directly interfaced with an actual processor creating a hard processor system (HPS). The main
advantage of the SPS system is, that the instruction set of the processor can be easily appended with
new, accelerated instructions, at the cost the maximum clock frequency of such processor is limited
by the FPGA fabric to approximately hundreds of MHz. The HPS systems are full scale processors
that can have frequency up to units of GHz.

Utilized Field Programmable Gate Array

The DE10-Nano development board from Intel is used in this thesis (see Figure 6). This board com-
bines the dual-core ARM Cortex-A9 embedded processor (HPS) (its features are listed in Table 5)
with the Cyclone V SE programmable logic (its features are listed in Table 4). The DE10-Nano is
powered by 5 V.

The FPGA can be configured by Embedded USB-Blaster II (JTAG) cable (external JTAG is pos-
sible but not necessary) by active serial programming, which is non-volatile. In addition, the HPS can

8



2.2 Field Programmable Gate Array

Figure 6: Used FPGA device, DE10-Nano. Courtesy of www.terasic.com (cited on 19.5.2019).

configure the FPGA and it can even reconfigure parts of the FPGA during the runtime.
The DE10-Nano is equipped with LTC2308, 12-bit analog-to-digital convertor (ADC). The ADC

has eight channels, which are connected to the 2x5 header and six of them are shared with the Arduino
Analog input. Measured voltage has to be in range 0 – 4.096 V. The ADC is connected to the FPGA
fabric via SPI.

Table 4: Features of the FPGA chip.

FPGA chip Cyclone V 5CSEBA6U23I7
Number of logic elements: 110 k
Memory 5,570 kilobits
Number of PLLs 6
Number of user defined I/Os 145

GPIO Number of push buttons 2
Number of slide switches 4
Number of LEDs 8

Expansion two 40 pin headers 72 GPIO
Arduino header 16 GPIO

Other A/D convertor LTC2308
HDMI TX interface ADV7513

9



2.2 Field Programmable Gate Array

Table 5: Features of the Hard Processor system.

Processor Dual-core ARM Cortex - A9
L1 instruction cache 32 kB
L1 data cache 32 kB
L2 shared cache 512 kB

Memory On-chip SRAM 64 kB
DDR3 SDRAM 1 GB
micro SD 8 GB

Others Gigabit Ethernet KSZ9031RN
USB On-The-Go 2.0
Accelerometer ADXL345
User button 1
User LED 1
Linear Technology connector 14 pin

10



Chapter 3

Hardware Design

Aa prototype printed circuit board (PCB) has to be designed to enable the FPGA to control the
robot. The main reason is, that the servomotors communicate using the 5V logic, while the FPGA
operates on 3.3V logic, and therefore direct interfacing would damage the FPGA board. In addition
to the interfacing, the PCB provides power supply for electronics which is used on the robot, level
shifting, and some other features. The PCB design is shown in Figure 7.

In Figure 8 the block diagram of the PCB board is shown. The red colour connects the power
supply by the voltage of the battery. The orange colour represents the 5V power supply. The digital
data is drawn in the blue colour, and the analogue signals are green. The switches in the ellipse
represent a MOS transistor, controlled by the blue signal. The individual modules are described in the
following sections.

Figure 7: Prototype board.

3.1 Battery Protection
The entire robot is powered by three-cell lithium polymer battery (Li-poly) battery. The maximum
voltage of a single cell is 4.2 V when fully charged. The discharged cut-off voltage is 3 V. When the
voltage drops below this level, the battery may be irreversibly damaged. Before this happens the power
has to be switched off. In this work two transistors, P-channel power MOSFET is used (in Figure 7
marked as power switch transistors). Each transistor controls one of the two power supply branches.
One powers the servomotors, and the second one is supplying all other electronics. Those transistors
can be turned on only if the voltage has the correct polarity.

The secondary reverse voltage protection is mechanically assured by the used connectors, which
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3.1 Battery Protection

Figure 8: Block diagram of the prototype board.

Figure 9: Principle of the under-voltage protection consists of a comparator.
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3.2 Interface

Figure 10: schema of UART USB.

cannot be plugged in the wrong direction. There are two connectors. One is male XT60 (J14) and
the second one is constructed from the banana plugs, which should fit the hard case Li-poly battery(
Hardcase connector in Figure 7).

In this thesis, all voltages from all cells are monitored by the ADC. Because the maximum voltage
of the battery is 12.6 V it is decreased by the voltage divider. In addition, the hexapod robot can be run
without the FPGA. For that purpose there is an analog solution (shown in figure 9). The Zener diode
is a source of the reference voltage(2.7 V). When the voltage drops below 2.97 V the comparator turns
off both P-mos power transistors. As the Li-poly battery has three cells, three circuits are used. The
integrated circuit consists of four comparators, and the last one is used to turn on the power supply
when the battery is firstly connected. The idea of this is simple. The voltage on a resistor-capacitor
circuit slowly increases when firstly connect. When there is an under-voltage issue, the voltage is
high enough to not influence the power transistors. The comparator is powered by the battery voltage
therefore Schottky diode is used as reverse voltage protection.

The power transistors can be turned on only when right polarity is applied (as was mentioned
before) and when Switch 1 is active. When this is done, the battery can be connected, and the resistor-
capacitor circuit will open the transistor. Afterwards, the following condition has to be satisfied to
keep the transistor conductive: The FPGA PIN has to be in high impedance or high level and the the
voltage of the battery has to be above the 2.97V threshold.

3.2 Interface
The prototype board supports eight Molex connectors for servo motors. As was mentioned in sub-
section 2.1 the Dynamixel use TTL logic. However, the highest voltage which can be reached on the
FPGA IO pins is 3.3 V. For this reason level shifter(TXS0108E) is used. The pins on FPGA were
chosen to be close together to minimize the used area in the FPGA.

Block UART to USB (shown in Figure 10) provides the option to use the board without the FPGA.
This block is based on the original dynamixel USB to half-duplex UART transceiver that is used when
the robot is controlled from the PC. All eight data wires from Molex connectors are connected to the
bus switch, the other ends of the bus switch are connected with the MAX13443 fault-protected RS-485
transceiver. This IC change the half-duplex UART to full-duplex UART which is then connected to
FT232 that provides the USB connection.

The prototype board is equipped with six switches. SW1 consists of two switches for the two
power circuits. The SW2 consist of four switches. The first one (in Figure 7 the most right one) has
to be switched on if the UART to USB block is used. The second and the third ones can turn off the
under-voltage analog protection. The last switch can shortcut the third balancer pin with the battery
plus contact. It should be turned on when the hard case battery is used.
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Table 6: Meaning of used LEDs.

Board reference Colour Meaning

LED1 Green Illuminate when data is send from UART to USB.
LED2 Red Illuminate when data is send from USB to UART.
D2 Green Illuminate when power for the servomotors is active.
D6 Green Illuminate when power for the electronics is active.
D9 Green Illuminate when power for Xsens is active.
D10 Green Illuminate when power for FPGA is active.

Table 7: Used FPGA pins.

FPGA pin number Description

AF28 Xsens UART TX pin
AF27 Xsens UART RX pin
AA13 UART for leg 0
AA11 UART for leg 1
AA26 UART for leg 2
AB25 UART for leg 3
AB26 UART for leg 4
AA19 UART for leg 5
AA18 UART for leg 6
AB23 UART for leg 7
ADC IN1 output of current sensor for servomotors
ADC IN2 output of current sensor for electronic
ADC IN3 voltage of the first cell multiply by 0.6
ADC IN4 voltage of the second cell multiply by 0.37
ADC IN5 voltage of the third cell multiply by 0.25

Meaning of all LEDs used on the prototype board is described in Table 6.
The prototyping board is connected with the FPGA by two headers. One is Arduino analog ex-

pansion header and the second one is GPIO0. Despite the GPIO1 does not contain any used pin, it can
be connected to increase the rigidity of the construction. All used pins and their purpose are shown in
Table 7.

3.3 Additional Features
The prototype board enables some additional features. One is current sensing. A typical ways of
current sensing are by using current transformer or shunt resistor. However, in our application the
usage of current transformer is limited as it cannot measure the direct current and the disadvantage
of the shunt resistor is the power drop on it. For these reasons, a hall effect sensor is used in this
work. This sensor measures the magnetic field, which is generated when current flows. The output is
in Volts, and it is directly proportional to the current. The output voltage is multiplied by 0.6 (via the
resistor divider) to ensure that the voltage will be in the range of the FPGAs ADC.

The second feature of the prototype board is to provide connectivity to of an inertial measurement
unit, Xsens. The Xsens IMU needs a stable power supply, therefore a dedicated 5V power supply was
designed, which is inspired by [20]
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4. Software Solution

Chapter 4

Software Solution

4.1 FPGA Architecture
In this section, the proposed FPGA architecture is described. The whole project was programmed in
VHSIC 5 hardware description language(VHDL) via Quartus prime, the programmable logic device
design software produced by Intel. The FPGA architecture is designed as the System on Chip (SoC)
with a custom designed Servo Control core. Therefore it benefits of both the general purpose CPU
and the custom designed Servo Control core The main benefit of the CPU is, that it is easily pro-
grammable in C programming language and allows for rapid prototyping of the code. On the other
hand, Servo control core uses the parallelism of the FPGA fabric for the communication with the
individual servomotors. But the design in VHDL is time consuming.

Figure 11: Diagram showing the buildings blocks of the FPGA architecture.

Figure 11 shows the overall structure of the FPGA architecture. The custom designed Servo Con-
trol Core can be easily added to project in a platform designer software because it is implemented as
a QSYS component. Further, it can be connected to the processor using the Avalon memory mapped
interface (AvalonMM) bus. The Servo Control Core comprises from the control unit and individ-
ual communication pipelines to the connected legs, hence, all the blocks except the Control unit are
generated as many times as there are connected servo communication channels 6. The black arrows
represent the direction of data-flows and are implemented by a various number of signals. The impor-
tant part of the design is the 2-port RAM, that is used for buffering of the packets that are to be send to
the servos and for the servos responses. Each communication channel has its own 2-port RAM. The
RAM can be written with new data from processor directly through the Control unit. This allows the
processor to send an arbitrary packet to the servos. However, as the main motivation is to offload the
computations of the processor, there are the Packet maker and the Packet Receiver modules that so far

5Very high speed integrated circuit
6This parameter can be changed in control unit
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4.1 FPGA Architecture

Table 8: List of signals connecting the ”Control unit”.

Signal name Type Direction Description

Avs s0 address 16 bits long logic vector In AvalonMM address
Avs s0 read Logic signal In Read enable
Avs s0 readdata 16 bits long logic vector Out Red data
Avs s0 write Logic signal In Write enable
Avs s0 readdata 16 bits long logic vector In Write data
Avs s0 waitrequest logic signal In Busy indicator
Clock clk Logic signal In Clock signal
Reset reset Logic signal In Reset signal
UART out 8 bits long logic vector Bidirectional Half-duplex UART

implement an automated packet creation for the set position packet and the get position packet, and
parsing of the servo response. The individual blcoks are described in more detail below.

Control unit

This core implements the interface between the FPGA and the SPS or HPS processor. In the control
unit, AvalonMM interface is implemented by registers. All signals are listed in Table 8. There are
control registers to control the overall behaviour of the core. Next, there are ranges of registers that
are for direct write and read from and to the RAM. More information on the processor interface is
written in Section 4.2.

In this unit, all other components are imported and the bidirectional UART pin splits here to Tx
and Rx. It is working as follows, the UART signal is in high impedance when Tx is in logic one.
When Tx is in the logical zero, the UART signal is in logic zero as well. The Rx signal sniffs (reads)
the UART signal.

UARTcom

The Rx and Tx signals are connected (see Table 9) to the UARTcom unit that is based on the full-
duplex UART solution presented in [21]. This unit is designed as a simple state automata and it has
three states. Besides it has a byte count signal, that is used for counting the received bytes.

In the first state, the data is sending from the RAM to UART. The RAM has to contain the whole
packet because neither data nor the checksum is modified by the ”UARTcom” unit. This unit only adds
the start and stop bit to each byte. This state is started by a rising edge on ”send signal” continuously.

In the second state, the UARTcom core is reading data from the RX signal. It is started when
the unit is not sending any data and a falling edge appears on RX signal. This edge starts the clock
process, which counts half of the baud rate period and samples the RX signal. From this moment the
clock process counts the whole period. It means that the RX signal is sampled only once per period in
the middle of it. In our experience, the signal is smooth and there is no significant noise. If there will
be any problems in the future, sampling the signal for more times per period can be the solution.

The last state is the idle state. The system can get to this state when transmitting or receiving ends.
Receiving can end in two ways, one way is that byte is received correctly. In such a case, the byte
counter is incremented. The second way is that after the starting falling edge the bit is not in logic
zero or if the stop bit is not logic one. After receiving the correct bit, the process waits 250ms for the
next byte. If the next byte does not arrive during that time, the byte counter is restarted.
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4.1 FPGA Architecture

Table 9: List of signals connecting the ”UARTcom” .

Signal name Type Direction Description

Clk 50Mhz In Logic signal Clock source
Clk out Out Logic signal Clock for the RAM
Tx Out Logic signal UART transmit signal
Rx In Logic signal UART receive signal
RAM address Out 8 bits long logic vector RAM address
RAM write Out Logic signal Write enable for the RAM
RAM readdata In 8 bits long logic vector Data red from RAM
RAM writedata Out 8 bits long logic vector Data to be stored in the RAM
Send signal In Logic signal Starts the sending process
DataReady signal Out Logic signal High when data can be write to the RAM

Table 10: List of signals connecting the Dual-port ram.

Signal name Type Direction Description

Address a 8 bits long logic vector In Address of the first port
Address b 8 bits long logic vector In Address of the second port
Clock a logic signal In Clock of the first port
Clock b logic signal In Clock of the second port
Data a 8 bits long logic vector In Data for writing to the first port
Data b 8 bits long logic vector In Data for writing to the second port
Wren a logic signal In Write enable for the first port
Wren b logic signal In Write enable for the second port
Q a 8 bits long logic vector Out Data red from the first port
Q b 8 bits long logic vector Out Data red from the second port

Dual-port ram

The 2-port RAM was generated using the IP catalog. The RAM contains 256 8-bit words. Both ports
are bidirectional and have a separate clock, all signals are listed in Table 10. All packets stored in the
RAM starts from the zero address. The RAM uses one M9K embedded memory block. If data is read
during the write operation, new data is read. All signals except the output data are registered.

The next three components share the second port of the RAM. The highest priority to access the
RAM has the RAM unit. If the RAM unit is not used, the Packet maker can be used. The lowest
priority has the packet receiver core.

RAM unit

Firs unit to share the RAM is the RAM unit. This unit enables reading and writing data from the
processor to the RAM. The core is connected by the signals listed in Table 11. The process can be
started by the rising edge of “read RAM ON” or “writeRAM ON”. By this moment, the data and the
address should be valid. When the process ends, “read RAM finished” or “write RAM finished” is
at high level. This allows the processor to construct a custom packet to be send via the half-duplex
UART interface. It is also used to read the response.
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4.1 FPGA Architecture

Table 11: List of signals connecting the ”RAM unit”.

Signal name Type Direction Description

Clk Logic signal In Clock source
Asc address 8 bits long logic vector In Address from HPS/SPS
Asc write data 8 bits long logic vector In Write data from HPS/SPS
Read RAM on Logic signal In Reading from RAM enable
Write RAM on Logic signal In Writing to RAM enable
RAM q 8 bits long logic vector In RAM output
RAM data in 8 bits long logic vector Out Write data to RAM
RAM adr 8 bits long logic vector Out Address for the RAM
RAM write enable Logic signal Out Write enable
Read RAM finished Logic signal Out When 0 is busy
Write RAM finished Logic signal Out When 0 is busy
Data out 8 bits long logic vector Out Exporting the red data

Table 12: List of signals connecting the ”Packet maker”.

Signal name Type Direction Description

Clk Logic signal In Clock source
ServoID 8 bits long logic vector In ID of the servomotor
avs data 16 bits long logic vector In Required angle or starting register
SetAngle on Logic signal In Creating write angle packet enable
ReadAngle on Logic signal In Creating read packet enable
RAM write enable Logic signal Out Write enable for the RAM
RAM write data 8 bits long logic vector Out Write data to the RAM
RAM adr 8 bits long logic vector Out Address for writing in RAM
Is finished Logic signal Out Busy indicator

Packet maker

The second core which uses the shared port is the packet maker. This unit can only write to the RAM.
This unit is able to create a set angle and read angle packets. The inputs are the servo ID and the set
angle, provided by the processor through the control unit. The process will construct the rest of the
packet. All signals connection this unit si listed in Table 12 The unit can be started by applying logic
one to “SetAngle on” or “ReadAngle on”. When the process ends the signal “is finished” is high.

Packet receiver

The last core which shares the port is the packet receiver. This unit read the data from RAM and check
the information in it (such as the start bytes and checksum). If there is an error in the packet, the signal
“errorDetected” goes high. See Table 13 for more information about the signals.

This process exports ID and status byte. If the signal “ReadAngle en” is hight, the data of the
packet will be exported in signal “ReadAngle”.

This process can be turned on when the “enable” signal is high. When the process ends, the falling
edge will appear on “packet receiver on”.
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4.2 CPU Program

Table 13: List of signals connecting the ”Packet receiver”.

Signal name Type Direction Description

Clk Logic signal In Clock source
Data ready Logic signal In It is switching the core on
RAM data 8 bits long logic vector In Red data
packet receiver on Logic signal In Enable the core
ErrorDetected on Logic signal Out High when error is detected
RAM adr 8 bits long logic vector Out RAM address

4.2 CPU Program
To run and debug the FPGA architecture, the soft-core microprocessor (NIOS II) is used. The software
for the NIOS processor is written in C language.

The FPGA architecture is controlled by storing data to the registers. The FPGA core has a memory
space which is addressable by 16 bits. In this QSYS system, the address space starts on 0x08000000.
The address written in the ARM processor is four-time larger than it shows in the FPGA architecture.
To write or read data from the registers HAL library is used. The first address byte determine the
function and the second byte can be used in the function.

When the first byte is 0x00, the behaviour of the whole core can be changed. When a function
writes 0x00 on a second byte, the send signal is sent to the Uartcom core 7. There is the limitation
that 32 separated UARTs is the maximum number this architecture can control as each bit in data
signal stands for a single Uartcom core. When the processor reads this register, the data contains
value data ready which is active during the time the new data is receiving. The address 0x08000040
is reserved for the mode of the protocol unit. The address 0x8000080 enables to change the RAM for
direct access. The direct access to a RAM is available when the first byte is 0x01. The Entire RAM
can be addressed by the second byte.

The next Address space is dedicated to the information of the servo positions. Two approaches
have been considered for organisation of the memmory mapped addresses.

The First one is to have for each servo ID one register block. The block would contain the infor-
mation of the actual angle, the set angle, the status register and the leg number, where the servomotor
is placed in. The disadvantage is that there could not be two servo motors with the same IDs on the
hexapod.

The second way is to have one block for each possible leg (totally 32). This blocks will contains a
smaller block for each servo. The one servo needs three registers, one for the ID, one for the status and
one for the set and the read angle. The disadvantage is henceforth a larger memory space. However,
there is the opportunity to have the same ID on each leg, so in case one leg has a defect, the whole leg
can be quickly replaced with another.

In the herein presented architecture, we have selected the first way, as there is the need to maintain
the ability to control the robot through the USB. This disallows usage of the same servo IDs per legs,
although it would be beneficial regarding the possible repair time of the platform. A couple of RAM
should implement the interface. One RAM available for the FPGA fabric and the second for the CPU.
This ensures that no data cannot be change during the reading operation.

7This can be done by the SendToServo function
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Chapter 5

Results

Because the material for soldering the prototyping board was not delivered on time, the experi-
ments were done using prototype board equipped with the level shifter (TXS0104EDR). As there is
no need in the dimension compatibility between the FPGA and the prototype board, a smaller FPGA,
DE0-Nano, was used. This development kit has the advantage of smaller FPGA chip Cyclon IV
family, meaning the compilation takes less time.

Firstly, the FPGA architecture was created, compiled, and uploaded to the DE0-Nano. Then the
softcore program was compiled and uploaded to the chip. The programming was done via the Nios II
Software Build Tools for Eclipse.

Figure 12: Screenshot from oscilloscope of UART communication contains Status Packet sent in two
parts.

When we have started the communication with the servos, we have discovered an interesting
behaviour of the servomotors that was previously unknown to us. Some packets were not received
correctly. Oscilloscope 8 shows the record which is depicted in Figure 12. The Instruction packet
is correctly transmitted, however the status packet (Servomotor response) pause in the middle of the
transmitting. As further measurements show, this pause can be between arbitrary two bytes. Its length
was measured in a range from 90µs to 150 µs. Which is most likely caused by the servomotor control
loop.

5.1 Communication Speed
After the ”UARTcom” core was modified, to consider the byte pause (up to 200µ) as correct packet
the comparison with the PC communication can be measured. The servomotor was set to send the

8Agilent Technologies DSO6104A
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5.2 Reading from All Servomotors

Figure 13: Oscilloscope screenshot of PC com-
munication with a single servomotor.

Figure 14: Oscilloscope screenshot of FPGA
communication with a single servomotor.

Figure 15: Oscilloscope screenshot of PC com-
munication with all servomotors.

Figure 16: Oscilloscope screenshot of FPGA
communication with all servomotors.

data immediately when it is asked. The PC communicates with the servomotor via the “Robotics
USB2Dynamixel adapter“ (all servomotors shared a single UART BUS).

The results are shown in Figures 13 and 14 the oscilloscope was set to 200µs per division and 2 V
per division for both figures. The signal in Figure 14 has a lower amplitude because the oscilloscope
probe was placed to FPGA pin (3.3 V), whilst in the Figure 13 the probe measure the bus (5 V). As you
can see, the FPGA can communicate more than two times faster than the PC. The reason for that is that
the PC can access the UART only once per one millisecond which is caused by the operating system,
which transfers content of the serial buffers to the running application only once per millisecond,
unlike the FPGA which has no communication limits. FPGA needs only around 250µs for reading a
single register, but to remain on the safe side concerning the split packet problems, we have selected
440µs as the base packet communication speed.On the other hand, PC needs 1 ms to read a single
register from the servomotors.

5.2 Reading from All Servomotors
The next experiment was proving the ability to communicate with a multiple servos at the time. The
results are shown in Figure 16. In the picture, only one-half of all signals are shown because the
oscilloscope does not support six channels. As you can see, all instruction packets are synchronized
(when we zoom in on the start of the instruction packet, the time shift is less than one nanosecond, see
Figure 17 ). Therefore the read angles of all the joints are synchronized.
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5.2 Reading from All Servomotors

Figure 17: Time shift between the legs.

The motivation for this work is to speed the communication With this experiment we have proven
the feasibility of the proposed approach as the FPGA is capable of commanding all the servomotors
synchronously. All servos were set up as in the previous experiment and all servomotors connected to
PC were connected in a single daisy chain. After running the code the waveform was as visualized in
Figure 15. The first packet is longer than the others and it is bulk write after the reading phase starts.
As there are eighteen servomotors eighteen packets have to be created and send. Using the PC, all the
servomotors are read in 17.2 ms. The FPGA reads all the values in 1.3 ms which is 13 times faster in
comparison to the PC implementation.
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Chapter 6

Conclusion

In this work, a possible advantage of using FPGA for communication via half-duplex UART, with
the Dynamixel AX-12A, servomotors of the hexapod walking robot has been examined and compared
with the single bus communication. The time needed for reading angles from all hexapod servomotors
was reduced from 17.2 ms to 1.3 ms. This significant improvement has been achieved thanks to the
parallel connection of the legs, and the ability of the FPGA to read the UART anytime.

To enable FPGA to control the robot, the prototype board was designed, and it is described in
Chapter 3. Unfortunately, the components for the prototype board has not arrived in time. Thus
the prototype board was not experimentally verified. However, when the board is soldered up, it
will provide the power supply for used electronics, protect the battery from under voltage, and provide
other functions such as current sensing. Moreover, the board is prepared for using the magnetic buzzer
indicator, which will warn before the low battery has a low level. This functionality was planned to be
controlled by the FPGA, and it was not implemented yet.

The FPGA architecture was implemented as a smaller block, which might be possibly overused
in other applications and on other FPGA devices. The architecture is described in Section 4.1 and
it is built as the SoC design combining benefits of both the general purpose processor that is easy to
programm and the high performance of the FPGA fabric. The CPU program was compiled for the
softcore processor which is part of the FPGA. Despite hardware implementation onboard of the robot
was not finished and the robot was not able to locomote, it has been proved that the communication
speed significantly increases by using FPGA. Hence, we have verified the concept and the crucial
component of the adaptive locomotion control (described in Chapter 2), which is the communication
with the servomotors. The actual locomotion control of the robot can be built easily on the herein
proposed hardware and software components as it will be deployed in software of the SoC system
only.
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