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Abstract
The goal of this thesis is to design a
laboratory model to support control and
system theory laboratories. The thesis
reviews the state-of-the-art available
laboratory models and compares their
capabilities to new requirements.

A new laboratory model is conse-
quently developed. It is a cost-effective,
simple and robust carry-home model. It
uses the BeagleBone Blue a Linux-based
computer as the main computing unit.

Model hardware consists of Merkur
platform, 3D printed components and
electrical components. This model can be
simply described as a pendulum on a cart.

The laboratory model is physically mod-
elled with Lagrange’s equations. Iden-
tification experiments were conducted.
Simulink demo simulation, as well as a
simple feedback control loop, were devel-
oped.

Keywords: automatic control,
BeagleBone Blue, laboratory model,
pendulum on a cart

Supervisor: doc. Ing. Tomáš Haniš,
Ph.D.
Czech Technical University in Prague,
Faculty of electrical engineering,
Department of Control Engineering -
K13135,
Karlovo náměstí 13,
121 35 Praha 2

Abstrakt
Cílem této práce je navrhnout labo-
ratorní model pro podporu laboratoří
automatického řízení a teorie systémů.
Práce reviduje nejmodernější dostupné
laboratorní modely a porovnává jejich
možnosti s novými požadavky.

Následně je vyvinut nový laboratorní
model. Jedná se o levný, jednoduchý
a robustní model, který si studenti
mohou vzít domů. Jako hlavní výpočetní
jednotku používá BeagleBone Blue,
počítač založený na Linuxu.

Hardware modelu se skládá z plat-
formy Merkur, 3D tištěných součástek
a elektrických součástek. Tento model
lze zjednodušeně popsat jako kyvadlo na
vozíku.

Laboratorní model je fyzikálně mo-
delován pomocí Lagrangeových rovnic.
Byly provedeny identifikační experimenty.
Byla vyvinuta demo simulace Simulink a
také jednoduchá zpětnovazební regulační
smyčka.

Klíčová slova: automatické řízení,
BeagleBone Blue, kyvadlo na vozíku,
laboratorní model

Překlad názvu: Vývoj laboratorního
modelu pro výuku řídicích algoritmů
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Chapter 1
Introduction

Hands-on education is arguably the most important education for an electrical
engineer there is. Lessons taught in laboratories and with actual hardware are
irreplaceable. When the Covid-19 pandemic happened, students and teachers
could not meet at the laboratory and therefore missed a lot of experience,
they could have got.

Students of the Faculty of Electrical Engineering need this kind of experi-
ence, so the goal was to either buy or develop a new laboratory model. The
laboratory models available [3], [4], [5] did not meet the requirements. The
management of the Department of Control Engineering decided to develop a
new laboratory model that would meet the requirements.

1.1 Goal and requirements

This thesis aims to develop a control algorithms laboratory model. The
requirements are as follows.. Laboratory model must be a simple, cost-effective and robust device.. It has to be a carry-home model.. It must be suited for basic and advanced control system design and

demonstration.. It must be able to run Matlab Simulink simulations.
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Chapter 2
Hardware

This chapter describes the hardware components of the model. The model
consists of mechanical components including 3D printed parts and electrical
components. Figure 2.1 depicts a diagram of the model. Figure 2.2 shows
pictures of the model.

Hood

Chassis

Powered
wheels

BeagleBone Blue

Pendulum

Measured
axis

Magnetic 
rotary

sensors

Multiplexer

Battery

Pendulum
frame

Figure 2.1: The model diagram
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2. Hardware ......................................

(a) : Side view (b) : Front view

Figure 2.2: The model pictures

2.1 Design overview

This section describes the components of the model. Merkur building platform
was widely used with the addition of the 3D printed components [6] and some
bought components including electrical parts. The pendulum itself was made
with the help of a lathe.

Merkur is a Czech building platform [7]. Merkur components were used
for the model to provide a uniform yet modular platform, simple to use in
DIY projects. The Merkur platform provides a higher level of precision and
rigidity of resulting construction compare to for example LEGO Mindstorm
alternatives.

2.1.1 Chassis

The chassis of the model consists of four wheels, a platform and some fasteners.
One axis with two wheels is not driven (1). The other two wheels are both
driven by a DC motor (2a), (2b). The non-driven axis also holds a magnet
for the magnetic rotary sensor to measure the rotation angle of the axis (3).
Figure 2.3 shows chassis with its components. Figure 2.4 depicts the magnet
sitting on the non-driven axis with the magnetic rotary sensor.

The non-driven axis was cut and tapered at one end according to the
wheel_axis.pdf drawing, which is in the attachments. The taper was
made so that the magnets could fit onto the axis. The magnet has a ra-
dial magnetic field for measuring purposes. Magnet dimensions are in the
magnet_drawing.pdf in the attachments.

On the top of the chassis sits the main computing unit of the model,

4



................................... 2.1. Design overview

Figure 2.3: The chassis with its components; 1: non-driven axis, 2a, 2b: driven
wheels, 3: magnet with magnetic rotary sensor

Figure 2.4: Closeup of the magnet of the lower magnetic rotary sensor

5



2. Hardware ......................................
BeagleBone Blue (4). BeagleBone Blue [8] is mounted to the chassis using
a 3D printed component. Next to the BeagleBone Blue are two 16850 LiPo
batteries (5). Figure 2.5 shows mentioned components.

Figure 2.5: Top of the chassis with its components; 1: non-driven axis, 2a, 2b:
driven wheels, 3: magnet, 4: BeagleBone Blue, 5: battery pack

2.1.2 Hood

The hood of the model sits on the top of the chassis. It is covering both the
BeagleBone Blue and the battery pack. Multiple components are attached to
the hood.

The lower magnetic rotary sensor (6) is attached using a 3D printed part.
This magnetic rotary sensor measures the non-driven axis rotation. I2C
multiplexer hub (7) is also attached to the hood with another 3D printed
part. The 3D printed pendulum frame is attached to the hood (8).

The upper magnetic rotary sensor (9) is attached to the pendulum frame.
This sensor measures the pendulum’s rotation angle. Figure 2.6 shows a
picture of the hood with its components. A closeup of the lower magnetic
rotary sensor is in the Figure 2.7.

2.1.3 Pendulum

The pendulum was designed by me and manufactured by our faculty. A
lathe and drilling machine were used to manufacture the pendulum. The
pendulum itself is made out of brass. Brass is an alloy of copper and zinc.
The pendulum axis drawing, rod drawing and weight drawing are in the
pendulum_drawing.pdf in the attachments.

6



................................... 2.1. Design overview

Figure 2.6: The hood with its components; 6: lower magnetic rotary sensor, 7:
multiplexer hub, 8: pendulum frame, 9: upper magnetic rotary sensor

Figure 2.7: The lower magnetic rotary sensor

7



2. Hardware ......................................
Figure 2.8 shows the pendulum (10) inserted between the two pendulum

frames. Inside each pendulum frame is a roller skate bearing. The bearing
dimension type is 608 of ABEC 9 or ABEC 7 quality. The pendulum sits in
these bearings.

Figure 2.9 presents a closeup of the magnet sitting on the pendulum next
to the upper magnetic rotary sensor.

Figure 2.8: The pendulum frame with its components; 10: pendulum, 9: upper
magnetic rotary sensor with a magnet in the circle

2.2 Electrical components and sensors

This section describes the electrical components of the model. The electrical
components were connected according to the electrical diagram depicted in
Figure 2.10.

2.2.1 BeagleBone Blue

The main computing unit of this model is BeagleBone Blue [8], which is a
Linux-based computer suitable for embedded robotics and control-oriented
applications. It uses Octavo OSD3358 microprocessor. We used WiFi, H-
Bridge drivers, connectors for DC motors, power regulation, state-of-charge

8



........................... 2.2. Electrical components and sensors

Figure 2.9: The upper magnet closeup

LEDs for 2-cell LiPo and I2C bus from all its peripherals. BeagleBone Blue
is supported by Matlab Simulink. Matlab Simulink support made this whole
project suitable for students as a friendly laboratory model.

2.2.2 Merkur DC motors

The model uses two Merkur DC motors as a source of motion. They come
with fasteners and wheel carriers. Figure 2.3 shows these two motors as (2a)
and (2b).

2.2.3 LiPo batteries

Two 16850 LiPo batteries were used as a power source for the whole model.
LiPo batteries are widely used in industry and academics. These batteries
carry 3.7 volts and were used in series to power BeagleBone Blue.

Two single battery boxes were used to hold two 16850 LiPo batteries.
Single battery boxes have two cables coming out of them. Put together in
series they have four cables coming out of them. The two middle cables were
connected and used as a balance connector. The balance connector is used by
the BeagleBone Blue when charging to rechange both LiPo cells evenly [9].

9



2. Hardware ......................................

DC
MERKUR
MOTOR 2

DC
MERKUR
MOTOR 1

7.4V 
BATTERY

PACK

I2C MAGNETIC ROTARY SENSORS

I2C MULTIPLEXER HUB

DEMONSTRATOR ELECTRICAL DIAGRAM

Figure 2.10: The model electrical diagram
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................................ 2.3. 3D printed components

2.2.4 I2C bus sensors

Two Grove 12-bit Magnetic Rotary Position Sensor / Encoder (AS5600) [10]
were used. These sensors operate on the I2C bus. The first sensor was used
to measure the angle of rotation of the pendulum. The second sensor was
used to measure the angle of rotation of the wheel axis.

These magnetic sensors have a non-changeable I2C address. This means
that the user cannot read data from both sensors at the same time. So to
use both sensors simultaneously, an I2C multiplexer hub was necessary.

Radial field magnets were used with the magnetic sensor to measure the
angle of rotations as mentioned above. The magnets were glued and put onto
the tapered parts of the axis and pendulum. Magnet dimensions are in the
magnet_drawing.pdf file in the attachments.

Grove 8 Channel I2C Multiplexer/I2C Hub (TCA9548A) [11] was used to
collect data from both magnetic sensors. It operates on the I2C bus. Two of
the maximum eight channels are occupied by the sensors.

Six remaining channels are free for future extensions and modifications
with new peripherals. Multiplexer was used to alternate between the two
magnetic sensors to safely read the pendulum’s rotation angle and wheel axis
rotation angle.

2.2.5 Accessories

LiPo batteries, that power BeagleBone Blue, need to be occasionally recharged.
Therefore 12-volt power adapter with a barrel connector is used.

SD card is needed for functioning BeagleBone Blue. Section 3.1.1 describes
how is the SD card used with BeagleBone Blue. The SD card needs at least
4GB of space.

A standard micro USB cable is needed for communication between the
BeagleBone Blue and a computer. This cable needs two male connectors at
each end. One male connector should be USB-A type for the computer at one
end. The other male connector should be USB Micro-B for the BeagleBone
Blue at the other end.

2.3 3D printed components

Hardware connections between Merkur parts and electrical parts were done
using 3D printed components [6]. All 3D printed components are listed below.

11



2. Hardware ......................................
2.3.1 Pendulum frame

Two 3D printed frames are used to hold the pendulum and bearings in place.
Both blocks have holes for bearings and the pendulum. Blocks are held
together with three 50 mm M3 spacers.

The blocks are not identical although very similar. One block has three
cylindrical protrusions with holes for M2 screws. With the help of these
protrusions, one of the two magnetic sensors is held in place. The other block
does not have any protrusions.

The sensor is screwed by its mounting holes with M2 screws inside the holes
in the protrusions. With the sensor in place and magnet on the pendulum,
the angle of the rotation of the pendulum can be measured.

Both blocks have holes made for M3 inserts. Holes are made inside the
side with the smallest area. With these inserts, blocks are screwed together
with the hood.

It is also possible to rotate both blocks and the pendulum around the
pendulum axis to create an inverted pendulum. The inverted pendulum can
be used for the same education purposes as the non-inverted pendulum.

Figure 2.11 depicts both the 3D model from Fusion 360 software and the
actual 3D print.

(a) : Pendulum frame in Fusion 360 (b) : Pendulum frame 3D print

Figure 2.11: Pendulum frame comparison
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................................ 2.3. 3D printed components

2.3.2 I2C multiplexer hub mounting

I2C multiplexer hub is screwed to the hood with the help of another 3D
printed component. This component is to fit the multiplexer hub onto the
hood and hold it in place. Merkur M3.5 screws and bolts are used in this case.

Figure 2.12 shows both the 3D model from Fusion 360 software and the
actual 3D print.

(a) : Multiplexer hub mounting in
Fusion 360 (b) : Multiplexer hub mouting 3D print

Figure 2.12: Multiplexer hub mounting comparison

2.3.3 Magnetic rotary position sensor mounting

The magnetic rotary position sensor mounting is used to hold the magnetic
sensor in place at the side of the hood. The holder is placed directly side by
side with the wheel axis, where one of the two magnets is placed. The sensor
then measures the angle of the rotation of the wheel axis.

Figure 2.13 depicts both the 3D model from Fusion 360 software and the
actual 3D print.

(a) : Magnetic rotary position sensor
mounting in Fusion 360

(b) : Magnetic rotary position sensor
mounting 3D print

Figure 2.13: Magnetic rotary position sensor mounting comparison
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2. Hardware ......................................
2.3.4 BeagleBone Blue holder

The BeagleBone Blue holder is used to hold BeagleBone Blue in place on
the top of the chassis. The holder is designed specifically for BeagleBone
Blue and Merkur components. By using this holder BeagleBone Blue is safely
placed between the chassis and hood.

All its important ports are accessible and it will not move, when the user
needs to pull some of the cables out of BeagleBone Blue.

Figure 2.14 shows both the 3D model from Fusion 360 software and the
actual 3D print.

(a) : BeagleBone Blue holder in Fu-
sion 360 (b) : BeagleBone Blue holder 3D print

Figure 2.14: BeagleBone Blue holder comparison
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Chapter 3
Software

3.1 BeagleBone Blue setup

This section will cover all there is to do before the first Simulink code can
be run on the BeagleBone Blue. This procedure is taken from the official
Beagleboard Getting Started website [12] with the addition of my solutions.

3.1.1 Debian Image

BeagleBone Blue is a Linux-based computer with Debian operating system.
To control it BeagleBone Blue with Matlab and Simulink, the right Debian
image on the BeagleBone Blue must be used.

Matlab supports only the following version of Debian image: Debian 9.5
2018-10-07 4GB SD LXQT. Debian image for Beagle boards can be down-
loaded from Beagleboard official website [13].

The next step is writing the downloaded image to the SD card, which will be
used with BeagleBone Blue. SD card programming utility like balenaEtcher
[14] is needed for this task.

Connect the chosen SD card to the computer. All data from this SD
card will be erased, so make a backup beforehand. Use the balenaEtcher
application to write the downloaded Debian image to the SD card. After a
couple of minutes, the write should be done.

The SD card can be now inserted into the powered-down BeagleBone Blue
and then the power can be applied by connecting a USB cable or power
adapter to the board.

3.1.2 Starting BeagleBone Blue

Before connecting to BeagleBone Blue, power needs to be provided either
by a USB cable or a 12-volt adapter. There are two ways to connect to the
BeagleBone Blue. Either by a USB cable or wirelessly by WiFi.

15



3. Software.......................................
Connecting by USB cable

Before connecting to the BeagleBone Blue, insert the SD card into the SD
card slot. For connecting to BeagleBone Blue, plug the USB cable into the
board and plug the other end into the computer. LED (0) should light steadily.
The other LEDs should start blinking according to their default configurations.

The BeagleBone Blue will run a DHCP server and will reserve an IP address
192.168.7.2 for itself. Use http://192.168.7.2 to connect to the BeagleBone
Blue via the USB cable.

An introduction page should open. Scroll down and use the Cloud9 IDE
to access BeagleBone Blue files.

Connecting via WiFi

The BeagleBone Blue will also work as an access point. The access point will
be named BeagleBone-XXXX, the XXXX will vary between boards.

Default password is BeagleBone. Connect to this access point via WiFi
connections and use the password above. BeagleBone Blue can be now
accessed with this address http://192.168.8.1 via wireless WiFi connection.

3.1.3 Debian password

The default user in the BeagleBone Blue is debian. The default password
for debian user is temppwd. To control BeagleBone Blue with Simulink in
real-time, sudo needs to be enabled without a password. Cloud9 IDE can be
used to access the BeagleBone Blue files. First open the /etc/sudoers file
by using sudo visudo. At the end of the /etc/sudoers file add this line.

debian ALL=(ALL) NOPASSWD:ALL

Then use Ctrl+X, Y, and Enter to save and exit the file. This procedure
was taken from this article [15].

With this adjustment, Simulink will be able to run simulations on the
BeagleBone Blue.

3.2 Matlab and Simulink setup

Matlab 2019b and Matlab 2021a were tested with the BeagleBone Blue.
Any Matlab version newer or the same as 2019b can be used. Matlab
toolboxes, support packages, and products must be installed before working
with BeagleBone Blue. These products are listed below.. Simulink
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.MATLAB Coder. Simulink Coder. DSP System Toolbox. Simulink Coder Support Package for BeagleBone Blue Hardware [16]

3.2.1 Installing BeagleBone Blue Support Package

When installing the Simulink Coder Support Package for BeagleBone Blue
Hardware Matlab installation window will appear.

Instruction on how to install this package and configure BeagleBone Blue
for the use with Simulink will be on the screen. The installation can connect
the BeagleBone Blue to a chosen WiFi network, which is practical.

The BeagleBone Blue can be always connected to the WiFi network later.
This article describes connecting to the BeagleBone Blue remotely via WLAN
[17].

3.2.2 I2C Simulink library fix

In this project, the I2C bus is used. There is a defect in the Simulink source
codes for I2C blocks. Simulink with an I2C block from BeagleBone Blue
library will not run unless this issue is fixed.

To fix this defect the user needs to follow a few steps that are described
below. Run the following command in the Matlab command line.

edit(fullfile(codertarget.bbblue.internal.getSpPkgRootDir,
'src','MW_I2C.c'))

A file named MW_I2C.c should open. Scroll down to see lines 77 and 78.
It should look like this.

76 #include <fcntl.h>
77 #include <linux/i2c-dev.h>
78 #include <sys/ioctl.h>
79 #include <sys/types.h>

Now insert the following lines between lines 77 and 78.

1 #ifndef I2C_M_RD
2 #include <linux/i2c.h>
3 #endif

Now the lines from 77 to 81 should look like this.
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77 #include <linux/i2c-dev.h>
78 #ifndef I2_M_RD
79 #include <linux/i2c.h>
80 #endif
81 #include <sys/ioctl.h>

With this fix, Simulink files with I2C blocks should run without problem.

3.3 Using Simulink to control BeagleBone Blue

This section will cover how to use Simulink with the BeagleBone Blue after
all steps above have been successfully implemented.

A lot of the following steps have been adopted from the Mathworks Simulink
Coder Support Package for BeagleBone Blue Hardware documentation [18].

3.3.1 BeagleBone Blue IMU calibration

If the user intends to use a magnetometer, accelerometer or gyroscope located
inside the MPU-9250 sensor, calibration is in place. This calibration is
described in the Mathworks documentation [19].

3.3.2 Connecting to BeagleBone Blue with Matlab

Matlab Simulink can utilize both the USB connection and wireless WiFi
connection to the BeagleBone Blue. The IP address will differ for these two
connection options as mentioned above.

Use this command to establish a connection to the BeagleBone Blue with
Matlab. For the USB connection use

bbblue = beagleboneblue('192.168.7.2');

and for the WiFi connection use

bbblue = beagleboneblue('192.168.8.1');

This command needs to successfully run every time Matlab is restarted or
the connection to the BeagleBone Blue is interrupted. The bbblue variable
should be in the Matlab Workspace.

3.3.3 Simulink setup for the BeagleBone Blue

Start Matlab and then a new Simulink model. This Simulink model will be
used to control the BeagleBone Blue. Click on the Run On Hardware Board
in the APPS tab and select BeagleBone Blue. This option should be seen if
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the user has installed all the Matlab products described above 3.2.

The best way to ensure the beagleboneblue() command is active all the
time is to put it to the Initialization function (InitFcn) from Model Properties
Callbacks. Use the right mouse button and then click Model Properties.

A small window should open. In this window find Callbacks. In the Model,
callbacks select InitFcn and insert it in the Model initialization function.

The IP address will be different for the USB connection and for the WiFi
connection as mentioned above. This setting will run the command every
time a simulation is run.

Figure 3.1 shows the InitFcn window in Simulink with the beagleboneblue()
command for connection via WiFi.

Figure 3.1: Model properties: Callbacks: InitFcn

Now go back to the blank Simulink model and click the right mouse button
again. This time select Model Configuration Parameters. A small window
should open.

In the window select Hardware Implementation and open Target hardware
resources. From groups choose Board Parameters. The Device Address should
be either 192.168.7.2 for the USB connection or 192.168.8.1 for the WiFi
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3. Software.......................................
connection. Username should be debian. Password should be temppwd.

Figure 3.2 shows the Target hardware resources setting for the WiFi
connection.

Figure 3.2: Model properties: Callbacks: InitFcn

If all these steps all implemented the Simulink model should run. Try
putting a LED block and a Button block in the Basic section from the Support
Package for BeagleBone Blue into the simulation.

Figure 3.3 shows these two block connected.

 BB BLUE

 Mode

 BB BLUE

 Red

Figure 3.3: Button block connected to the LED block

Now press Monitor & Tune in the HARDWARE tab. The model should
start shortly on the BeagleBone Blue. Pressing the MOD button should light
up the red LED on the BeagleBone Blue while the Simulation is running.
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3.3.4 Using Simulink blocks to control the model

This section describes what blocks are used to control our model.

Motor control

Use the DC motor block from the Actuators section in the Simulink Coder
Support Package for BeagleBone Blue Hardware to control any DC motors
connected to the BeagleBone Blue. The BeagleBone Blue has four channels for
DC motors so choose the right Motor index in the DC motor block parameters.

This block takes only uint8 integer as input so be sure to use the Data
Type Conversion block before the DC motor block. Input ranges from 100
to -100 power, 100 meaning maximum power in one direction, 0 meaning no
power and -100 meaning maximum power in the other direction.

Figure 3.4 shows usage of the DC motor block.

 BB BLUE

 Motor index : 1

Figure 3.4: DC motor block with maximum input power

Motors need sufficient power for them to rotate, so the battery pack or the
12-volt adapter needs to be connected.

Reading data from the I2C bus

Two I2C blocks from the Communication section in the Simulink Coder
Support Package for BeagleBone Blue Hardware are used to read data from
the I2C bus and write data into the I2C bus.

This model uses the I2C multiplexer hub to communicate with both mag-
netic sensors, the one that measures pendulum rotation and the other one
that measures wheel rotation.

I2C multiplexer hub has its I2C address. This address is hardware selectable.
The default address is 0x70. The Grove magnetic sensors unfortunately do
not have a selectable address. Their address is 0x36.

That is why the multiplexer is needed to communicate with both magnetic
sensors. Without it, there would always be a collision between these two
sensors with the same address.
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Figure 3.5: I2C multiplexer hub: command byte definition [1]

Using I2C multiplexer hub to read both magnetic sensors

The I2C multiplexer hub [1] has eight channels. Two channels are occupied
by the magnetic sensors.

To switch between the two magnetic sensors the user needs to write one
byte (8 bits) to the multiplexer address. In our case, the address is 0x70.

The byte written to the multiplexer address affects which channels of the
multiplexer are enabled and which are disabled.

For example, if we would write 0x01 to the multiplexer, only channel 0
would be enabled. All other channels would be disabled.

Figure 3.5 shows how the byte sent to the multiplexer address affects which
channel is enabled or disabled.

Figure 3.6 shows I2C write block with the right configuration, to write
0x01 data to the 0x70 address of the multiplexer.

BB BLUE

I2C
Master Write

Slave: 0x70

Data

Figure 3.6: I2C write block with the multiplexer address
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Sequence of using the I2C blocks to read both magnetic sensors

Each magnetic sensor is connected to one multiplexer channel. The user
needs to enable one channel and read the magnetic sensor connected to the
enabled channel.

Then disable the first channel and enable the other channel and read the
magnetic sensor that is connected to the new enabled channel.

The order of this writing and reading from the I2C bus is crucial. If the
user would switch only one read or write it would not work.

Let us say that one magnetic sensor is connected to the channel 0 and the
second magnetic sensor is connected to the channel 7.

The sequence of writing and reading goes as follows...1. Write 0x01 data to the 0x70 address. This tells the multiplexer to enable
only channel 0...2. Read data from the 0x36 address. This data represents the angle from
the magnetic sensor and it is described in detail in the next sections...3. Write 0x80 data to the 0x70 address. This tells the multiplexer to enable
only channel 7...4. Read again data from the 0x36 address. This data represents the angle
from the other magnetic sensor.

Priority and execution order of the Simulink blocks

Simulink blocks have their priority. This priority can be set. Use right-click
on the block and choose Properties. Priority is in the lower half of the opened
window.

The execution order of all the blocks in the simulation is affected by the
block priority. This execution order is what enables us to use the blocks in
the right sequence.

A lower priority number means that this block is going to be executed earlier.
The I2C write block to control enabled multiplexer channels needs to have a
lower priority number than the I2C read block that reads the angle data value.

Two I2C read blocks are used to read the angle value data from the magnetic
sensor. This is described in the next section, but the priority must be set like
this...1. first I2C write block to enable the first channel - priority 1
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3. Software.........................................2. first I2C read block - priority 2..3. second I2C read block - priority 3..4. second I2C write block to enable the second channel - priority 4..5. third I2C read block - priority 5..6. fourth I2C read block - priority 6

Figure 3.7 shows the Priority setting. In this example, the priority is set
to 1.

Figure 3.7: Priority setting in the Block Properties

Reading from one magnetic sensor

Reading data from magnetic sensors requires a few steps. The steps are taken
from the magnetic sensor datasheet [2].

Firstly the right multiplexer channel must be enabled as described above.
Then the user must read the data from the right address and the right register
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two times.

The user can read one or more bytes but the magnetic sensor that we used
measures a 12-bit value representing the angle. So the user needs to read
one byte two times and then combine these two bytes to get the actual angle.
Figure 3.8 shows the exact blocks from the Simulink model for this reading
procedure.

BB BLUE

I2C
Master Read

Slave: 0x36

Data

BB BLUE

I2C
Master Read

Slave: 0x36

Data

Shift Left
Logical

Length : 8

Bitwise
OR

Bitwise OR

1

Absolute angle

Figure 3.8: Simulink blocks to read the angle value from the magnetic sensor

First, the user reads one byte from the magnetic sensor at address 0x36
and the 0x0C register. This register holds the four upper bits of the angle
value.

Figure 3.9 shows the two registers that we use to read angle value.

Figure 3.9: Angle registers [2]

Figure 3.10 shows I2C Read block parameters with the corresponding
register address.

Another byte with another I2C read block must be read but from a different
register. Register 0x0D holds the lower eight bits of the angle value. Same pa-
rameters as in figure 3.10 except the Slave register address is changed to 0x0D.

Both values are converted to uint16 type. The upper value is logically
shifted left by 8. Next, the Bitwise OR block is used to combine both values.
The output is the 12-bit angle value.

To convert the 12-bit value to radians, two conversions are used. First is
multiplying the 12-bit value by a constant as shown in equation 3.1 where
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Figure 3.10: I2C Read block parameters

ABIT is the 12-bit angle value and AD is the angle in degrees.

AD = ABIT · 360
212 = ABIT · 0.087 (3.1)

The last adjustment is converting the degrees to radians. The last two
conversions of the 12-bit value are done in the same block as shown in Figure
3.8.

3.3.5 Getting the relative angle to the start of the simulation

The computed angle in radians is just an absolute angle value. A relative
angle to the start of the simulation is needed to control the model. This is
achieved by using another few blocks and a Matlab function.

Figure 3.11 shows the Simulink blocks for converting between the absolute
and relative angle.

The first block after Absolute angle input is the Unwrap block from the
DPS System Toolbox. This block is crucial as it adds 2π radians to the input
value of the block when the difference between the two last input values is
bigger than chosen tolerance.
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angle

t
angle_shift 1

Relative angle

Moving
Average

1

Absolute angle

Figure 3.11: Absolute to relative angle block sequence

Figure 3.12 shows the Unwrap block parameters with the chosen tolerance
as π radians.

Figure 3.12: Unwrap block parameters with the π radians tolerance

The next block is a Matlab function. It has two inputs. One input is the
unwrapped angle, second input is the Simulation time from the Clock block.

This Matlab function stores the input value at the start of the Simulation
and subtracts it from the input value throughout the simulation.

This way the output value is always relative to the start of the simulation.
Listing 3.1 shows this function.

Listing 3.1: Matlab function for subtracting initial value of the input
1 function angle_shift = fcn(angle, t)
2 persistent init_angle
3 if isempty(init_angle)
4 init_angle = 0;
5 end
6 if t == 0
7 init_angle = angle;
8 end
9 angle_shift = angle − init_angle;

Moving Average block is the last block used in the sequence. It is also from
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the DPS System Toolbox.

The magnetic rotary sensor has a static nonlinearity around zero angle
value. The Moving Average block smoothens out the jump in angle values.

Now we have the relative angle to the start of the simulation of the pendu-
lum rotation and wheel rotation. Wheel rotation can be multiplied by the
wheel radius to get the position of the model.

3.3.6 Logging Signals

Logging signals is an important feature of this model. Input values as the
signals to control the motors and output values as the angle rotation values
need to be logged so the model can be identified and regulators designed.

Block named To File is used to save the desired signal. Figure 3.13 shows
the To File block parameters. Save Format needs to be set to Array.

These signals are saved to the BeagleBone Blue as MAT files. To get these
files into the computer a getFile() command is used.

Figure 3.14 shows use of the getFile() inside the StopFcn Callback. These
commands are executed at the end of the simulation so all the MAT files are
copied from the BeagleBone Blue to the computer.

3.3.7 Checksum mismatch error handling

When simulation is run on the BeagleBone Blue it creates numerous files in
the BeagleBone Blue directory root including MAT files of logged signals.

During this one session working with the BeagleBone Blue, a checksum
mismatch error will not arise.

But after restarting Matlab with these files still in the BeagleBone Blue
directory checksum mismatch error arises preventing the user from running
any simulation on the BeagleBone Blue.

These is a simple fix. The deleteFile() command deletes files from the
BeagleBone Blue directory root.

Best way to use this command is to put it in the CloseFcn Callback. Figure
3.15 shows the deleteFile() command and with its arguments.

The CloseFcn Callback is run every time the simulation is closed. So after
every session, this command will delete the files created by the simulation, thus
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Figure 3.13: To File block parameters

preventing the Checksum error from happening at the start of the next session.
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Figure 3.14: StopFcn Callback with the getFile() command

Figure 3.15: CloseFcn Callback with the deleteFile() command
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Chapter 4
Control

4.1 Modelling dynamic system

This section describes the physical modelling of the laboratory model using
Lagrange’s equations [20].

Figure 4.1 shows the necessary parameters to describe the laboratory model
as a dynamic system.

F(t)
f_c

φ(t)

b_p, m_p, l, J

(t)m_c

b_c, r

v(t)

h

(x_c, y_c)

(x_p, y_p)

u(t)

Figure 4.1: The model parameters

Two coordinates
[
x(t)
θ(t)

]
are used to describe the full state of the model,

where x(t) is displacement of the whole model and θ(t) is pendulum’s angle.
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The model is divided into two components. The first is the cart and the

second is the pendulum.

Parameters belonging to the cart component of the model are listed below:. bc viscous friction of the cart;.mc mass of the cart;. r radius of the cart wheels;. fc gain from motors to generated force.

The force F (t) generated by the motors input voltage u(t) is described by
the equation below.

F (t) = fc · u(t) (4.1)

The rotation angle of the wheels is φ(t). Using the radius of the wheels we
get displacement of the model as follows

φ(t) · r = x(t). (4.2)

Wheel slip is neglected.
Derive the displacement by time we get velocity of the model

dx(t)
dt

= v(t). (4.3)

Parameters belonging to the pendulum component of the model are listed
below:. bp viscous friction of the pendulum;.mp mass of the pendulum;. l length of the pendulum;. J moment of inertia of the pendulum;. h height of the pendulum.

As mentioned above, the pendulum angle is θ(t).

4.1.1 Cart energy and dissipation

Coordinates of the cart are

xc = x, (4.4)
yc = 0. (4.5)

Velocity is time derivation of the coordinates as follows

ẋc = ẋ = v, (4.6)
ẏc = 0. (4.7)
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Translational energy of the cart is

T ∗
tc = 1

2(mc + mp)(ẋ2
c + ẏ2

c ). (4.8)

Dissipation acting on the cart is

Dc = 1
2bcẋ

2
c . (4.9)

4.1.2 Pendulum energy and dissipation

Coordinates of the pendulum are

xp = xc + l sin(θ), (4.10)
yp = yc + h − l cos(θ). (4.11)

Velocity is time derivation of the coordinates as follows

ẋp = ẋ + l cos(θ)θ̇, (4.12)
ẏp = l sin(θ)θ̇. (4.13)

Potential energy of the pendulum where g is gravitational acceleration is

Vp = mpgyp. (4.14)

Translational energy of the pendulum is

T ∗
tp = 1

2mp(ẋ2
p + ẏ2

p). (4.15)

Rotational energy of the pendulum is

T ∗
rp = 1

2Jθ2. (4.16)

Dissipation acting on the pendulum is

Dp = 1
2bpθ2. (4.17)

4.1.3 Lagrange’s equations

The Lagrange’s equations will look like this.

L = T ∗
tc + T ∗

tp + T ∗
rp − Vp (4.18)

D = Dc + Dp (4.19)

Derivation by time and by coordinates is in place. The two final equation
will look like this.

d

dt

∂L

∂x
− ∂L

∂x
= −∂D

∂x
+ fcF (4.20)

d

dt

∂L

∂θ
− ∂L

∂θ
= −∂D

∂θ
(4.21)
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After all the derivation the equations look like this.

mpẍ + θ̈lmp cos(θ) − lmp sin(θ)θ̇2 + ẍ(mc + mp) = −bcẋ + Ffc (4.22)
Jθ̈ + θ̈l2mp + ẍlmp cos(θ) + glmp sin(θ) = −bpθ̇ (4.23)

Substitution is made for simplicity. These are the four states of the model.

x1 = x (4.24)
x2 = θ (4.25)
x3 = ẋ (4.26)
x4 = θ̇ (4.27)

Input u(t) is substituted for u.

u = u(t) (4.28)

Equations 4.22 and 4.23 are second-order differential equations. First-order
equations are needed for linearisation purpuses.

So the equations are rewriten like this.

ẋ1 = x3

ẋ2 = x4

ẋ3 = [uJfc − Jbcx3 + ufcl
2mp − bcl

2mpx3

+ l3m2
px2

4 sin(x2) + gl2m2
p cos(x2) sin(x2)

+ Jlmpx2
4 sin(x2) + bplmpx4 cos(x2)]/[Jmc

+ 2Jmp + 2l2m2
p + l2mcmp − l2m2

p cos(x2)2]

ẋ4 = −[bpmcx4 + 2bpmpx4 + 2glm2
p sin(x2)

+ l2m2
px2

4 cos(x2) sin(x2) + ufclmp cos(x2)
− bclmpx3 cos(x2) + glmcmp sin(x2)]/[Jmc

+ 2Jmp + 2l2m2
p + l2mcmp − l2m2

p cos(x2)2]

(4.29)

With these four first-order equations, a linear model of the laboratory model
is made.

4.1.4 Linearisation

The model is linearised in an operating point where all the states and input
are zero.

x1 = 0, x2 = 0, x3 = 0, x4 = 0, u = 0 (4.30)
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General matrices A and B are

A =



∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ1
∂x3

∂ẋ1
∂x4

∂ẋ2
∂x1

. . . . . .
∂ẋ2
∂x4

... . . . . . . ...

∂ẋ4
∂x1

. . . . . .
∂ẋ4
∂x4


, B =



∂ẋ1
∂u
...

...

∂ẋ4
∂u


. (4.31)

As output of the linearised model displacement of the cart x1 and pendulum
rotation x2 is choosed. Matrices C and D are as follows

C =
[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]
. (4.32)

4.2 Model identification

Three identification experiments were conducted. All the figures below show
a comparison between the linear model and a real hardware model.

First is pendulum identification. Figure 4.2 shows the pendulum response
to initial angle 0.0964 radians. This experiment helped to identify the pendu-
lum parameters as mentioned above.

The real hardware pendulum, which is rendered in blue colour, stops its
movement sooner. This is because the friction of a real pendulum is not linear
therefore the linear model can not perfectly describe the real pendulum and
continues to oscillate longer.

35



4. Control .......................................

Figure 4.2: Pendulum identification: response to initial condition

The second experiment was a step response to maximum power 100 of the
cart with a locked pendulum. Figure 4.3 shows this experiment.

This experiment helped to identify the cart parameters mentioned above.
The response is almost linear, but in the beginning, we can see an exponential
part of the response.

The last experiment was a step response of the model to the maximum
power of 100 with a free pendulum. Figures 4.4 and 4.5 show the pendulum
angle and cart displacement.
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Figure 4.3: Cart identification: step response

Figure 4.4: Model identification: step response: pendulum
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Figure 4.5: Model identification: step response: cart
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This was the main experiment that helped identify the dynamic model
parameters. Pendulum height was measured with a standard meter. Gravita-
tional acceleration is well known.. bc = 14.068 kg m2 s−1

. bp = 1.822 · 10−4 kg m2 s−1

. fc = 0.051 A s m−1

.mc = 0.926 kg.mp = 0.125 kg. l = 0.101 m. J = 7.466 · 10−5 kg m s−2

. h = 0.12 m. g = 9.8 m s−2

Identification was done with the help of a Matlab graphical user interface
designed by me. Figure 4.6 shows this GUI.

The so-called UI-sliders were the main reason for designing this GUI. The
UI-sliders change model parameters and redraw the step response.

Initial parameter estimates were used to complete the state-space model
and to find the step responses.

Then the parameters were adjusted with the help of the UI-sliders so the
step responses of the laboratory model and mathematical model overlap in
the best possible way.

The UI-sliders allowed me to identify the model parameters in a reasonably
robust and flexible way.

With the model parameters identified we substitute these values to the A
and B matrix.

A =


0 0 1 0
0 0 0 1
0 1.0961 −13.2950 0.0016
0 −101.6004 123.9695 −0.1488

 , B =


0
0

0.0483
−0.4506

 (4.33)
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Figure 4.6: Identification GUI

4.3 Control

To demonstrate the functionality of the laboratory model a control strategy
was developed. The strategy was supposed to be simple, fast and without
unnecessary overshoots.

Two regulators were designed to control the laboratory model. First reg-
ulator F is dampening the pendulum and the regulator R is regulating the
model displacement [21].

In addition, a dead-zone correction was used with the laboratory model.
Figure 4.7 shows the feedback control loop architecture used.

x

-

θLaboratory 
model

+

u
+Rr + e

F

Deadzone 
correction

Figure 4.7: Feedback control loop
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The regulator F is given by a transfer function shown in a equation 4.34.
It consists of a real zero z = 0 and complex poles p = −17.6550 ± 15.0599i.

F = 9104.4s

s2 + 35.31s + 538.5 (4.34)

The regulator was designed with the help of the rltool. Figure 4.8 shows
the step response, root locus and Bode plot of the model system with the
regulator in the feedback loop as in Figure 4.7.

Figure 4.8: Pendulum filter rltool design

Figure 4.9 shows pendulum response to a changing reference without damp-
ening. Figure 4.10 shows motor input that oscillates the pendulum.
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Figure 4.9: Pendulum without dampening

Figure 4.10: Motor input: pendulum is not damped

Figure 4.11 shows pendulum response to a changing reference with damp-
ening. Figure 4.12 shows motor input that oscillates the pendulum.
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Figure 4.11: Pendulum with dampening

Figure 4.12: Motor input: pendulum is damped
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For regulation of the laboratory model displacement a P regulator R was

designed 4.35.
R = 284.15 (4.35)

Figure 4.13 shows the step response, root locus and Bode plot of the model
system with the filter and P regulator.

Figure 4.13: Displacement P regulator rltool desing

Figure 4.14 shows displacement reference tracking with the P regulator.
There is a noticeable error in the displacement of the laboratory model. That
is caused by a dead-zone [−7, +7] of the motor input power.

A dead-zone correction 4.1 was designed to regulate the motor input when
the P regulator action is inside the dead-zone 4.1.

Listing 4.1: Matlab function for controlling the model inside the motor dead-zone
1 function out = deadzone(in, error)
2 lower = 0;
3 upper = 10;
4 error_val = 0.001;
5 deadfix = 10;
6

7 if in > lower && in < upper && abs(error) > error_val
8 out = + deadfix;
9 elseif in < lower && in > −upper && abs(error) > error_val

10 out = − deadfix;
11 else
12 out = in;
13 end
14 end

Figure 4.15 shows reference tracking with the dead-zone correction.
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....................................... 4.3. Control

Figure 4.14: Model displacement without dead-zone correction

Figure 4.15: Model displacement with dead-zone correction
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Chapter 5
Conclusion

In this thesis, a new laboratory model was developed. Existing laboratory
models available were reviewed and compared to our requirements. None of
the available models was sufficient so new model was developed.

The model hardware consists of a Merkur platform, 3D printed parts and
electrical parts. It can be simply described as a pendulum on a cart. The
main computing unit of the model is BeagleBone Blue a Linux-based computer.

Seed Studio I2C magnetic rotary sensors and an I2C multiplexor hub were
used to measure the pendulum angle and wheel rotation. The model is battery
powered and can be controlled via a wireless WiFi connection which is very
convenient.

Simulink demo simulation was developed to control the model. Identifi-
cation experiments were conducted and a linear and nonlinear model was
designed. A simple feedback control loop was implemented and verified on
the actual hardware.

The model is a simple, cost-effective and robust carry-home platform ca-
pable of demonstrating basic and advanced control system designs. It is
designed like a plug-and-play device, so students can easily work with this
model without a complicated explanation of how the model works.

It has been successfully added to the Automatic Control course taught
at the Faculty of Electrical Engineering at the Czech Technical University.
Students used the model to complete their term paper. The results were
excellent as expected.
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Appendix A
Attachments

The following files are attached to the thesis.

drawings\pendulum_drawing.pdf the pendulum drawing
drawings\magnet_drawing.pdf the magnet drawing
drawings\wheel_axis.pdf the wheel axis drawing
datasheets\as5600.pdf the I2C magnetic rotary sensor datasheet
datasheets\tca9548a.pdf the I2C multiplexer hub datasheet
datasheets\beaglebone_blue_datasheet.pdf the BeagleBone Blue datasheet
3d_models\beagle_holder.stl the BeagleBone Blue holder
3d_models\hub_mounting.stl the multiplexer hub mounting
3d_models\pendulum_frame_with_sensor_mount.stl the pendulum frame
with sensor mount
3d_models\pendulum_frame_without_sensor_mount.stl the pendulum frame
without sensor mount
3d_models\sensor_mounting.stl the sensor mouting
matlab_files\all_values.mat MAT file with the identified model parame-
ters for GUI
matlab_files\beagle_model.m Matlab script with the linear model and the
regulators
matlab_files\iden_GUI_full.m the identification graphical user interface
matlab_files\MW_I2C.c the I2C Matlab Simulink modified library source
code
matlab_files\pendulum.mat the measured pendulum response data for GUI
matlab_files\pos.mat the measured cart displacement response data for
GUI
pendulum_on_cart_mercur.zip Automatic Control course term paper as-
signment by Ing. Denis Efremov
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