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Abstrakt

Tato práce využ́ıvá simulačńı nástroj OMNeT++ k simulaci śıt́ı Profinet. Výsledné
řešeńı model̊u jednotlivých śı̌tových zař́ızeńı je vysoce parametrizovatelné a připravené
pro možnost budoućıho rozš́ı̌reńı. Dále se práce zabývá také samotnou parametrizaćı
śıtě, jednotlivých zař́ızeńı a prob́ıhaj́ıćı komunikace. Pro možnost automatizace simulaćı
byla také v rámci této práce navržena jednoduchá API knihovna. Výsledný model byl
následně ověřen měřeńımi a také bylo naznačeno jeho možné použit́ı pro diagnostiku
modelovaných śıt́ı.

Kĺıčová slova: Profinet, modelováńı śıtě, OMNeT++, JSON

Abstract

This thesis uses OMNeT++ simulation tool for the Profinet network modelling. The
introduced modules which are used to model the real network devices are implemented
in a highly customizable way with a possibility of future extensions. Thesis also intro-
duces a parametrization structure for the defined modules as well as for the network
topologies themselves. A simple API support for the implemented solution is also pro-
vided to automate the simulation process. Several experiments were conducted to show
the possible uses of the Profinet simulation model and to verify it.

Keywords: Profinet, network modelling, OMNeT++, JSON
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Part 1

Introduction

1.1 Assignment overview

The main task of this thesis was to use the OMNeT++ simulation tool for the Profinet
network modelling. The designed tool was used to model a real physical Profinet
network. The acquired model was then used for network diagnostics.

1.2 Proposed solution

Profinet is a widely used industrial Ethernet standard[1]. The designed simulation
model therefore operates on the link layer introduced by the ISO/OSI reference model[2]
and aims to model basic devices typical for Profinet - end nodes and switches. The de-
signed model introduces several simplifications that are typical for Ethernet industrial
use. Only full-duplex communication within a loop-free network with static topology
was considered. This means that no MAC[3] (medium access control) and loop reso-
lution mechanisms[3] have to be modelled. Also only 100Mbit Ethernet standard[3] is
considered since it is the only one supported by the Profinet[1]. However on the other
hand, priority mechanics using VLAN priority tagging[3] are included in the model’s
behaviour to distinguish real-time and non real-time communication.

The simulation environment OMNeT++[4] was chosen by the thesis assignment for
the simulation implementation. The OMNeT++ framework is well supported and fre-
quently updated. It also contains an open source library INET [4] that models various
network layers and their protocols, including link layer and Ethernet. Usage of some of
the INET ’s defined parts was considered, yet it turned out to be too complex to adjust
for our needs. Therefore the proposed Profinet simulation model was implemented.

Apart from the simulation model itself, means of parametrization had to be defined.
Two mostly used data container formats were considered - JSON[5] and XML[6]. In
the end the JSON format was chosen since it is well supported, easily parsed and better
readable by humans.

To support the usage of the designed simulation model for external applications an API
was defined in a form of a shared pre-compiled library.

All the implementation was done under the Ubuntu Linux distribution to be compatible
with already existing tools developed in our department.
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Part 2

Implementation

2.1 OMNeT++

In this chapter, a basic description of the OMNeT++ simulation framework and the
description of all of the implemented parts in the introduced Profinet simulation model
are given. These are:

• Message EthFrame in section 2.1.2.

• Channel ethernet 100Mb in section 2.1.3

• Simple module EndStation in section 2.1.4.

• Simple module SimpleSwitch in section 2.1.5.

• Compound module GenericDevice in section 2.1.6.

• Possibility of deriving user modules to extend the proposed functionality in sec-
tion 2.1.7.

2.1.1 Framework overview

OMNeT++ is a discrete event simulator designed primarily for building network simulators[4].
It is implemented as a modular component based C++ library and it introduces a net-
work description (NED) language extension operating above the C++ core[7]. An
Eclipse based IDE with the NED language support is also provided. In addition, NED
files can be viewed and edited in two modes - source code and graphical[7]. Typical
OMNeT++ simulator consists of several layers (see figure 1):

• Messages — All communication between connected network modules is done
using messages. Messages are implemented as a C++ class that can contain user
data that are to be transported through the network. Another way to utilize
messages is to use them as timed self-messages to construct timed events within a
given module. The core library provides user with two generic types of messages
implemented in C++ classes cMessage and cPacket (derived from cMessage, pro-
vides more functionality). User can define custom messages that extend one of
the generic classes using a simplified C++ format supported by the OMNeT++
framework. Only the message type and variables that the message should hold are
defined using this format. The corresponding C++ class is automatically built by

3



2.1 OMNET++

Figure 1: OMNeT++ structure.

the OMNet++ framework. The class also automatically implements setters and
getters for all of the defined variables. In the case of the Profinet simulation model,
message EthFrame (extending cPacket) was designed (more in section 2.1.2), its
inheritance diagram is shown on fig. 2.

Figure 2: Inheritance diagram for class EthFrame.

• Channels — All connections between modules in a network topology (and within
compound modules as well) are done using channels. There are 3 basic channel
types defined in the library core of the OMNeT++ - ideal channel, datarate
channel and delay channel. In our simulation model, mainly datarate channel is
used to accurately simulate connections with desired bit rates. A custom channel
ethernet 100Mb derived from the datarate channel has been designed using the
NED language (see section 2.1.3).

• Modules — Devices in the network topology are modelled using modules. There
are two types of modules user can define:

4



2.1 OMNET++

– Simple module — This module consists of two parts. First part is a C++
class derived from a blank simple module class cSimpleModule that specifies
how the module behaves (for example how it reacts on incoming messages).
Second part is a NED file describing module’s parameters, statistical signal
definitions and connections to the outer world (gates). The parameters are
automatically available to the tied C++ implementation. In the designed
tool, there are two simple modules defined - EndStation (see section 2.1.4)
and SimpleSwitch (see section 2.1.5). Inheritance diagram is shown on fig-
ure 3.

– Compound module — This is a complex module that can combine multi-
ple simple modules and/or another compound modules into one. It is defined
only with a single NED file which specifies interconnections, gates or parame-
ter assignments. One compound module combining one EndStation and one
SimpleSwitch together has been designed - GenericDevice (see section 2.1.6).

Figure 3: Inheritance diagram for classes EndStation and SimpleSwitch.

• Network topology — Network topology is designed using the NED language
in a similar way as a compound module is - all of the modules and their inter-
connections are listed. Also, modules’ parameters are assigned. Typically, there
are several networks defined within a project which may only differ in modules’
parameters or it may define a completely different topology.

Note, that the designed Profinet simulation model uses a JSON structure to cap-
ture the network topology (discussed in section 2.2). The NED file containing the
topology is created automatically by the designed API (introduced in section 2.3)
based on the JSON file provided.

• Simulation configuration — The configuration is done within an *.INI file
that uses a special syntax (Refer to[7]). Various simulation parameters (duration,
source network, etc.) can be assigned as well as remaining unassigned modules’
parameters. A single configuration file can be shared by multiple networks.

Note, that the designed Profinet simulation model uses a JSON structure to
parametrize the simulation (discussed in section 2.2). The INI file containing the
simulation parameters is created automatically by the designed API (introduced
in section 2.3) based on the JSON file provided.

5



2.1 OMNET++

Special part of the framework are statistical signals. These are defined in simple modules
and are recorded by the simulation to produce simulation results. The framework
provides basic statistical functions (such as mean, variance, max value, min value, etc.)
that can operate on the defined signals. There are two types of signals:

• Scalar signals — After the simulation completion only a single number is recorded
per statistical signal. This type of signal saves disk space as well as the result
evaluation time.

• Vector signals — Output of this type of signals is a sequence of all recorded
event occurrences with their corresponding timestamps. Especially for longer
simulations, the vector signals produce large-sized files.

Before any simulation can be run, all the source C++ files needs to be compiled. From
the user point of view, this has already been taken care of and the executable has been
created. However, should a user define additional simple modules or messages, the
simulation model has to be recompiled. This option is discussed in section 2.1.7. All
the NED files are loaded dynamically and do not require compilation, therefore user can
create INI files, network topologies and even compound modules without any limitation
while using a single executable.

OMNeT++ provides user with two simulation environments - Tkenv graphical runtime
environment and Cmdenv command-line environment.

2.1.2 Message EthFrame

For the purpose of an Ethernet communication simulator an appropriate message type
had to be defined - the EthFrame message. It extends the cPacket class from the
OMNeT++ core library and is defined in a file /src/ethFrame.msg using the simplified
C++ format. The framework automatically creates /src/ethFrame m.h and /src/eth-
Frame m.cc files before every compilation (if they are missing or the message definition
has changed). In these C++ source/header files, the class EthFrame is properly defined
based on the simplified notation given by /ethFrame.msg file. The following variables
are defined in the EthFrame message to model the actual Ethernet frame with an ex-
plicit VLAN tagging format specified by the IEEE 802.3 (Ethernet frame) and IEEE
802.1q (VLAN tagging) standards (see figure 4)[3]:

• (int64) destinationAddress — Destination MAC address. Although the address
is in fact 6 bytes long it is stored in a 8 byte type (int64). The frame physical data
length is defined independently of any defined variables, therefore the difference
of the data sizes has no effect on the transmission times throughout the datarate
channel.

• (int64) sourceAddress — Source MAC address.

• (short) typeLength — Type/length encapsulation.

6



2.1 OMNET++

• (short) vlanProtocolId — VLAN protocol identifier. It has a fixed value of
0x8100.

• (short) vlanTagCtrl — VLAN control tag. It holds information about VLAN
identifier and VLAN frame priority.

• (char) data[] — User data. The length of the array is specified after the object is
created. Application may use this array freely to store user or application specific
data.

• (int) fcs — Frame check sequence.

Figure 4: Explicitly tagged VLAN Ethernet frame.

The current implementation of the simulation model does not utilize all of the defined
variables, yet they were included anyway to maintain the frame’s structure and to be
available for the future use.

Setters and getters are automatically implemented for all of the defined variables. Also,
the parent class cPacket provides the EthFrame message object with two similar useful
functions - setByteLength( int64 byte size ) and setBitLength( int64 bit size ). These
define the actual data size of the EthFrame and affect the propagation time through the
datarate channels. If the actual EthFrame data size is not specified, the propagation
delay through any channel is zero.

2.1.3 Channel ethernet 100Mb

This custom channel is defined in a NED file ethernet 100Mb.ned and it is located in the
root folder of the simulation model. The designed channel extends OMNeT’s datarate
channel with the following parameters assigned:

• datarate — Data rate speed value. Set to industrial standard of 100Mbit/s.

• disabled — False (default value). The channel is enabled.

• delay — Cable length delay is currently neglected, the parameter is set to 0
(default value).

• ber — Bit error rate. The simulation model currently presumes error-free com-
munication. Value is set to 0 (default value).

• per — Packet error rate. The simulation model currently presumes error-free
communication. Value is set to 0 (default value).

7



2.1 OMNET++

2.1.4 Simple module EndStation

This simple module models the behaviour of a basic one port addressable end point
device. It is capable of receiving and sending Ethernet frames (modelled as packets
EthFrame - see section 2.1.2) and contains both input and output queues. As we don’t
assign the frames any particular meaning, when receiving a frame its statistics are
recorded and after that the frame is discarded. The mechanics behind frame creation
and frame sending will be discussed further in section 2.1.4.3. As every simple module
does, the definition consists of two parts - a C++ class and a NED definition. A
function scheme is depicted on fig 5.

Module EndStation can be connected to any other module defined within the project
(even with another EndStation).

Figure 5: EndStation simple module.
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2.1 OMNET++

2.1.4.1 NED definition

The NED file endStation.ned defining this simple module is located in the root folder
of the project. The module is connected to the outer world by a single full-duplex port
(gate in the NED terminology).

Parameters Following parameters have been defined:

• (double) minFrameSpacingTime @unit(s) — Inter-frame gap. It is the minimal
time gap between two consecutive frames. This parameter has a default value of
0.96 µs which corresponds to the 100Mbit Ethernet standard [3]. The special tag
@unit(s) signs that the expected value is entered using a time unit (framework
takes care of any conversions).

• (int) macAddressOui — Upper 3 bytes of MAC address (organizationally unique
identifier part). Default value 0x400000 (unicast, locally unique).

• (int) macAddressOap — Lower 3 bytes of MAC address (organizationally as-
signed portion part).

• (string) sourceJson — Serialized JSON string containing given endStation’s pa-
rameters and events (including custom events). This string is automatically gen-
erated by the API and should not be altered by the user. The default value is an
empty string which corresponds to a blank module without any events.

Note: All parameters with defined default value don’t have to be specified when creating
network, but can be overwritten if desired. The NED parameters cannot use integral
type with more than 4 bytes, therefore the MAC address had to be split into two parts.

Statistical signals Last important part present in the NED file is a statistical signals
definition. There is one statistical signal defined which records the propagation delay
times of arriving frames for each priority level - frameDelayByPriority *. The wild-
card ’*’ stands for given priority number. All VLAN priority levels are considered (0-7
inclusive). The signal contains the following statistical template:

• mean — Scalar measurement that captures the mean value of propagation delay
of received frames throughout the network at given priority level.

• minimum — Scalar measurement that records the minimal value of propagation
delay of received frames throughout the network at given priority level.

• maximum — Scalar measurement that records the maximal value of propagation
delay of received frames throughout the network at given priority level.

• count — Scalar signal that records the total number of received frames at given
priority level.

9



2.1 OMNET++

• vector — Vector measurement that records propagation delay times of all re-
ceived frames at given priority level with their timestamps.

2.1.4.2 C++ class

The class EndStation is defined in files endStation.h and endStation.cc located in the src
folder. It is derived from a generic simple module class cSimpleModule and overrides
several of its methods. The class structure is designed to support polymorphism to
allow user an easy definition of derived classes that alter this module’s behaviour.

Public methods Brief overview of this module’s public methods:

• public EndStation() — Class constructor. Registers actions supported by this
class.

• public ∼EndStation() — Class destructor. Frees dynamically allocated memory
and cancels any pending timed events.

Protected methods

• protected virtual void initialize() — This method is automatically called after
the class constructor. It initializes class variables, loads NED parameters, parses
JSON string specified in the NED definition using parseJson method and cre-
ates statistical signals based on the template defined in the NED file. Periodic
event sendFrameEvent that is responsible for sending generated EthFrames is also
created.

• protected void registerAction( std::string action identifier, ActionHandlerType
action handler ) — This method registers an user-defined action handle method
and binds it with given string identifier. It is called typically in the class con-
structor. More on actions in section 2.1.4.3. An example of this method’s usage
is shown in listing 1.

Input parameters:

– (std::string) action identifier — String identifier tied to the given action.
When this identifier is entered in the JSON file and the corresponding event
is triggered, the action tied to this ID is executed. Note: If there is al-
ready an entry stored with the given string ID, the action handle function is
overwritten.

– (ActionHandlerType) action handler — The type of this parameter is ac-
tually std::function <void(cMessage*)> - a function wrapper that stores a
function pointer of the given function. Important: It is necessary that the
action handle function has return type void and one input parameter of type
cMessage*.

10



2.1 OMNET++

1 std::string action_id = ACTION_SEND_ETH_FRAME; //string ID
2 ActionHandlerType action_handler = std::bind( &EndStation::

sendEthFrame, this, std::placeholders::_1);
3

4 registerAction( action_id, action_handler );

Listing 1: Adding an action example.

The code in listing 1 assigns the function sendEthFrame of the class EndStation
to a string ID defined as a constant string ACTION SEND ETH FRAME.

• protected virtual void handleMessage( cMessage *msg ) — This method over-
writes the implementation of its parent class cSimpleModule. It is called whenever
a self-message time elapses or a message arrives on the input port. Three possible
variants may occur:

– There is an EthFrame message (which inherits from cMessage - see sec-
tion 2.1.2) arriving on the input port. In this case, the input cMessage is
retyped to EthFrame and is received by calling function receiveFrame upon
it.

– A time-triggered event defined in the JSON file has triggered (more on events
and triggers in section 2.1.4.3). In this case triggerHandle routine is called
upon the input message which contains the trigger information.

– SendFrameEvent self-message that takes care of the timing of sending frames
has been triggered. This means that there are frames ready in the output
buffer queue and the inter-frame gap after previous sending has elapsed.
Function sendFrame is called.

Input parameters:

– (cMessage*) msg — Pointer to the triggering message.

• protected virtual void receiveFrameRoutine( EthFrame *frame ) — This method
is automatically called upon every received frame within the private function re-
ceiveFrame. It gives the user a possibility to implement additional operations
upon the arriving frame (ie. for derived classes). It is left blank in the current
build. Important: Do not delete the frame in this method.

Input parameters:

– (EthFrame*) frame — Pointer to the received frame.

• protected int insertFrameToOutputQueue( EthFrame *frame ) — Purpose of
this method is to allow the user to insert frames into the output queue (which is
a private class variable) when designing custom actions.

Input parameters:

– (EthFrame*) frame — Pointer to the frame that is to be sent.
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Return value:

– SUCCESS when successful. Note: No other return value is present in the
current build, but it may change in the future.

• protected void sendEthFrame( cMessage *action msg ) — This is an action
handle routine that is registered in the class’ constructor using the registerAction
method. Its string identifier is a constant ACTION SEND ETH FRAME which
equals to ”sendEthFrame”. In this function an EthFrame is created and put
into the output queue based on the parameters attached to the input action msg
parameter.

Input parameters:

– (cMessage*) action msg — Pointer to a message containing given action’s
parameters loaded from the JSON file. An additional description is given in
section 2.1.4.3.

Private methods

• private void parseJson() — This method is called in the initialize method and
attempts to parse the JSON string specified by the sourceJson NED parameter.
If the JSON structure is invalid, the given module will be blank without any
events. Otherwise, information about this module’s events are stored and all the
necessary time triggers are scheduled. The JSON parser used is introduced in[8].

• private void triggerHandler( cMessage *trigger msg ) — This method is called
whenever any event that is loaded from JSON file has triggered (both timed
and non-timed triggers are included). Based on the information attached to the
input parameter trigger msg, corresponding actions are performed (using method
performAction). If the trigger was time-based, it is rescheduled.

Input parameters:

– (cMessage*) trigger msg — Pointer to a message containing information
about the trigger.

• private int performAction( cMessage *action msg ) — This method looks up
the desired action specified within the input parameter action msg in registered
actions. If a match is found, the action is executed.

Input parameters:

– (cMessage*) action msg — Pointer to a message containing information
about the action that is to be performed.

Return value:

– ACTION UNKNOWN — No action matching the required one was found.

– ACTION PERFORMED — Action has been performed.

12



2.1 OMNET++

• private void sendFrame() — This method sends the first frame in the output
queue (FIFO) and searches for any events that may be triggered by this outgoing
frame. If such trigger is found, method triggerHandle is called upon it. Also, if
there are any frames left to be sent in the output buffer, next sending is scheduled.

• private void receiveFrame( EthFrame *frame ) — This method receives given
frame, emits statistical signals and searches for any events that may be triggered
by this incoming frame. If such trigger is found, method triggerHandle is called
upon it.

Input parameters:

– (EthFrame*) frame — Pointer to a frame that is being received.

2.1.4.3 Events

One of the most important mechanics introduced is the event system. Events are defined
using a JSON structure (described in section 2.2) and are loaded in the initialize method
in every EndStation simple module (or any derived one) present in the simulation
network. Events are capable of parametrizing module’s behaviour and are closely tied
to custom actions implemented in the C++ class representing the given simple module
(EndStation or any module derived from it). Event sequence diagram is depicted on
figure 6. Each event consists of two parts:

• Trigger — A condition to be met for actions to execute.

• Actions — Methods to be executed when the event is triggered.

Figure 6: Events sequence diagram.
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Trigger is responsible for execution of specified actions at defined conditions. At
the moment there are 4 trigger types hard-coded in the simple module EndStation
implementation (and its derivatives):

• cyclic — Timed trigger that repeats with a period given by a normal distribution
Nt(µt, σ

2
t ). In the JSON structure of this trigger, user must specify two additional

<type-specific-parameters> parameters:

– (double) mean — The mean value µt of the normal distribution Nt(µt, σ
2
t )

[ms].

– (double) stdDev — The standard deviation value σt of the normal distri-
bution Nt(µt, σ

2
t ) [ms].

– (double) initPhase [optional] — Time of the first trigger regardless of the
period setting [ms]. If not specified, the trigger triggers after the first period
given by the previous two parameters elapses.

• acyclic — Timed trigger that repeats with a period given by an uniform dis-
tribution Ut(a, b). In the JSON structure of this trigger, user must specify two
additional <type-specific-parameters> parameters:

– (double) lowLimit — The lower bound value a of the uniform distribution
Ut(a, b) [ms].

– (double) highLimit — The upper bound value b of the uniform distribution
Ut(a, b) [ms].

– (double) initPhase [optional] — Time of the first trigger regardless of the
period setting [ms]. If not specified, the trigger triggers after the first period
given by the previous two parameters elapses.

• incomingFrame — This trigger type is triggered by every incoming frame with
the specified event ID that generated that frame. In the JSON structure of this
trigger, user must specify one additional <type-specific-parameters> param-
eter:

– (int) refID — Sensitive event ID of the incoming frame.

• outgoingFrame — This trigger type is triggered by every outgoing frame with
the specified event ID that generated that frame. In the JSON structure of this
trigger, user must specify one additional <type-specific-parameters> param-
eter:

– (int) refID — Sensitive event ID of the outgoing frame.

Unlike actions, triggers are hard-coded and there is currently no mechanic to alter them
or add new ones.
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Actions are user defined methods that are performed whenever a trigger occurs. User-
defined new actions are implemented using C++ in classes derived from the EndStation
in a standardized way - the action handle method has a void return type and has one
input parameter of the type (cMessage* ). An example of the action handle method
declaration is shown in listing 2. Also, the user must register these new functions in
the class constructor and assign a string ID to it (that serves as the type field in the
JSON action definition). An example of the registration is shown in listing 1.

1 void anotherAction( cMessage *action_msg );

Listing 2: Action handle method declaration example.

The input parameter action msg has parameters attached to it using data containers of
cPar type (pairs string ID - value). The parameters are loaded from the JSON actions
structure defined in section 2.2.3 as the <type-specific-parameters>parameters. Two
additional parameters are always available - PAR EVENT ID which stores the event ID
specified in the JSON file and PAR ACTION ID which is an unique number identifier
of an action for given event ID (starting form 0). An examples of how to get parameter
value from the given action message is shown in listing 3. If the action is creating
EthFrames, it is necessary to add to them a cPar parameter PAR EVENT ID so that
they will trigger non-timed triggers.

1 long eventID = action_msg->par( PAR_EVENT_ID ).longValue();
2 double doubleVal = action_msg->par( "doubleValuePar" ).doubleValue();

Listing 3: Getting parameter value examples.

Whenever a new action is added, it is stored in a private variable (user cannot interact
with it directly), which is in fact a map of pairs – handle function pointer and its string
ID descriptor. When an event is triggered, the correct pair is looked up based on the
given string ID (loaded from the JSON file) and the tied handle function is executed.
User can specify unlimited amount of parameters tied to given action in the JSON
configuration file. All these parameters will also be available within the action handle
function.

There is one action implemented and registered in the EndStation simple module –
sendEthFrame (briefly discussed in section 2.1.4.2). In the JSON structure, this
action requires one following <type-specific-parameters> parameter:

• (int) destination — Identifier (ID) of the destination device.

• (int) priority [optional] — Priority of the frame. Valid values are 0-7 (inclusive).
When not specified or an invalid value is entered, the default priority 0 is used.

• (int) dataLength [optional] — User data byte length of the frame. Valid values
are 42-1500 (inclusive). When not specified or an invalid value is entered, a default
value 46 bytes is used.
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2.1.5 Simple module SimpleSwitch

This simple module models the behaviour of a simplified VLAN aware Ethernet switch.
The module has a selectable number (theoretically unlimited) of ports and a selectable
number of output priority queues for each of the ports (up to 8). This setting is done
globally for all of the ports. Frames from the highest priority level queue are always
sent first. There is a hard-coded table (see table 1) defined in the module that puts
frames to the correct output priority queue based on the number of the priority queues
present and the priority of the given frame itself. This mapping is recommended by the
IEEE 802.1p standard[3]. A function scheme is depicted on fig 7.

The switch also implements a self-learning MAC address lookup table. The table is
static and does not implement any decay due to the assumption of a static topology. If
the destination address is not yet listed in the table, the switch floods frames to all the
ports except for the one on which they arrived.

Switching (forwarding) delay of the frame propagation through the switch from input
to output queue is modelled using normal distribution NSD(µ, σ2).

User can connect any module defined within the project to the SimpleSwitch module.

Frame priority
Number of output queues present

1 2 3 4 5 6 7 8

0 (default) 0 0 0 1 1 1 1 2

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1

3 0 0 0 1 1 2 2 3

4 0 1 1 2 2 3 3 4

5 0 1 1 2 3 4 4 5

6 0 1 2 3 4 5 5 6

7 0 1 2 3 4 5 6 7

Table 1: Priority queue mapping based on number of queues and frame priority.

2.1.5.1 NED definition

The NED file simpleSwitch.ned defining this simple module is located in the root folder
of the project. Given module is connected to the outer world by an array of full-duplex
ports (gates in the NED terminology).

Parameters The following parameters have been defined:

• (double) minFrameSpacingTime @unit(s) — Inter-frame gap. It is the minimal
time gap between two consecutive frames. This parameter has a default value of
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0.96 µs which corresponds to the 100Mbit Ethernet standard[3]. The special tag
@unit(s) signs that the expected value is entered using a time unit (framework
takes care of any conversions).

• (double) switchingDelayMean @unit(s) — Mean value µ of the normal distri-
bution NSD(µ, σ2). Default value 10µs.

• (double) switchingDelayStdDev @unit(s) — Standard deviation value σ of the
normal distribution NSD(µ, σ2). Default value 1µs.

• (int) numPorts — Number of ports available to connections. Default value 8.

• (int) numPrioQueues — Number of output priority queues on each port. Valid
values are 1-8 inclusive. Default value 4 queues.

• (int) inQueueSize — Size (number of frames it can hold) of the input queue on
each port. Default value 256 frames.

• (int) outQueueSize — Size (number of frames it can hold) of each of the output
priority queues on each port. Default value 256 frames.

Note: All parameters with defined default value don’t have to be specified when creating
network, but can be overwritten if desired.

Figure 7: SimpleSwitch simple module.
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Statistical signals There are three statistical signals defined which record different
traffic on each port:

• portTrafficIn * — frame size of the arriving frames on given port.

• portTrafficOut * — frame size of the outgoing frames on given port.

• portTrafficTotal * — frame size of both outgoing frames and arriving frames
on given port.

The wild-card ’*’ stands for given port number. Only used ports’ statistics are recorded.
Port numbering begins at 0. For each statistical signal, there is a statistic template
with the following scalar measurements:

• mean — Mean value of the frame data size.

• sum — Total frame data size processed.

• count — Number of frames processed.

Statistical signal portTrafficTotal * records also one vector measurements:

• vector(count) — Vector signal that records the total number of processed frames
on given port in time (with timestamps).

Note: Only one statistical signal uses a vector recording. This is to reduce output file
size. User can easily alter the recorded measurements in the NED file - no compilation
is needed.

2.1.5.2 C++ class

The class SimpleSwitch is defined in files simpleSwitch.h and simpleSwitch.cc located
in the src folder. It is derived from a generic simple module class cSimpleModule and
overrides several of its methods.

Public methods

• SimpleSwitch() — Class constructor. Initializes the MAC address lookup table.

• ∼SimpleSwitch() — Class destructor. Cleans up dynamically allocated queues.

Protected methods

• protected virtual void initialize() — This method is automatically called after the
class constructor. It initializes class variables, loads NED parameters and creates
statistical signals with defined statistical templates defined in the NED file.

• protected virtual void handleMessage( cMessage *msg ) — This method over-
writes the implementation of its parent class cSimpleModule. It is called whenever
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a self-message time elapses or message arrives on the input port. Three possible
variants may occur:

– There is an EthFrame message (which inherits from cMessage - see sec-
tion 2.1.2) arriving on the input port. In this case, the input cMessage is
retyped to EthFrame and is received by calling function receiveFrame upon
it.

– serveInputFrame self message that takes care of the timing of frame propa-
gation and forwarding has been triggered for given port. This means that
there are frames ready in the input queue on some port and the propagation
(bridge) delay after previous forwarding for given port has elapsed. Function
serveFrame is called.

– SendFrame self message that takes care of the timing of sending frames has
been triggered. This means that there are frames ready in some of the output
priority queue on some port and the inter-frame gap after previous sending
for given port has elapsed. Function sendFrame is called.

Input parameters:

– (cMessage*) trigger msg — Pointer to the triggering message.

Private methods

• private void sendFrame( int port, cMessage *msg ) — This method sends the
first frame in the highest level non-empty priority output queue (FIFO) for given
port. If there are any frames left to be sent in any of the the output queues, next
sending for the given port is scheduled. Also, the statistical signals are emitted.

Input parameters:

– (int) port — Number of the sending port.

– (cMessage*) msg — Pointer to a sendFrame self message to be rescheduled
if there are more frames to be sent.

• private void receiveFrame( EthFrame *frame ) — This method receives given
frame by placing it in the input queue of the port on which it arrived, emits
statistical signals and schedules self message serveInputFrame to model the bridge
delay (if not already scheduled). If the input queue is full, the frame is discarded.

Input parameters:

– (EthFrame*) frame — Pointer to a frame that is being received.

• private void serveFrame( int port ) — This method forwards the first frame in
the given port’s input queue. The destination port is determined using the MAC
address lookup table. If the destination address cannot be found within the table
or the destination is a multicast address, all the ports except the one on which
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the frame arrived, are flooded. Also, the frame’s source address is added as a new
table entry with the corresponding port tied to it(if not already present in the
table). The frame is then placed into one of the output priority queues based on
the frame’s VLAN priority and the total number of output priority queues present
in the switch (as seen in table 1). If the given priority output queue is full, the
frame is discarded.

At the simulation start, the MAC address table is empty, therefore the first few
communication cycles will generate some extra traffic, because of the flooding.
This effect also occurs in real switches. Since we usually consider steady state
of the communication this effect can be neglected in a long term simulations or
avoided completely with a warm-up period. The warm-up period specifies time
before which no statistical signals are recorded. It is set in the simulation part of
the JSON definition described in section 2.2.2.

Input parameters:

– (int) port — Number of the port being served.

2.1.6 Compound module GenericDevice

This is a complex module that combines two already defined simple modules - one End-
Station and one SimpleSwitch. The functionalities of both simple modules are preserved
and merged. This applies to the C++ implementation as well as to the NED definition.
These modules are connected together using an ideal channel (unlike any other con-
nection that is modelled by the ethernet 100Mb channel) with an unlimited data rate.
This models a fast bus that will be used in a real device. The connection consumes the
EndStation’s only port and one ”hidden” port (port 0) of the SimpleSwitch. Module’s
scheme is depicted on figure 8.

GenericDevice compound module aims to model a generic addressable device with
multiple ports and switching capabilities. It is capable of substituting both individual
simple modules making them obsolete within the network topology design, yet the
module can be connected to any other module defined within the project.

Compound modules are defined solely using a single NED file and cannot implement
any additional C++ functionality.

2.1.6.1 NED definition

The NED file genericDevice.ned defining this compound module is located in the root
folder of the project. Given module is connected to the outer world by an array of
full-duplex ports (gates in the NED terminology).
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Figure 8: GenericDevice compound module.

Parameters All parameters of both sub-modules must be specified when using this
compound module. Module GenericDevice defines only one ”own” parameter:

• (int) numPorts — Number of free ports that can be used to connect other
modules. The number does not include the hidden port that connects the sub-
modules. This parameter sets the numPorts parameter of inner SimpleSwitch
module incremented by 1 (to compensated the hidden port). Default value 2.

For parameters defined in the simple stations refer to corresponding sections (EndSta-
tion - section 2.1.4.1, SimpleSwitch - section 2.1.5.1).

Statistical signals All statistical signals defined within each sub-module are merged
as well. For their definition refer to corresponding sections (EndStation - section 2.1.4.1,
SimpleSwitch - section 2.1.5.1).

2.1.7 Derived modules

In this section, the process behind the creation of a new derived module using the
OMNeT++ IDE is described. Also, an example simple module DerivedEndStation and
compound module DerivedDevice are created and provided in the Profinet simulation
model.
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Currently, only the simple module EndStation is adjusted to support user-created simple
modules derived from it. When such a module is created, it is also possible to form a
compound module combining it with the SimpleSwitch module. The process is described
in the following steps:

• Creating the derived simple module DerivedEndStation - section 2.1.7.1.

• Combining the created module with a SimpleSwitch module to create the com-
pound module DerivedDevice - section 2.1.7.2.

• Compilation - section 2.1.7.3.

A class diagram including the DerivedEndStation module is depicted on figure 9.

Figure 9: Overall class diagram.

2.1.7.1 Simple module creation

To create a new blank simple module, right click on the profinetSim project in the
Project Explorer window, which is usually located on the top left corner of the OM-
NeT++ IDE, and select New → Simple Module. In the pop-up window enter the desired
module name (in our example DerivedEndStation) and press Next. After that, select A
simple module option and press Finish.
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Total of 3 files are automatically created in the root folder - NED file derivedEnd-
Station.ned, C++ header file derivedEndStation.h and C++ source file derivedEndSta-
tion.cc. It is advised to move the C++ files to the src folder located in the project root
folder to preserve established file structure. Note: User may choose to create the files
manually, but the final code should look the same.

NED definition Firstly, let’s deal with the NED file derivedEndStation.ned. To
ensure compatibility with the parent simple module EndStation, the same structure
(parameters, gates, statistical signals) must be defined. User may add new parameters
or statistical signals freely, yet those will not be counted with by the designed API
(described in section 2.3). The most convenient way is to simply copy the EndStation’s
NED file definition and change the module’s name. The default edit mode of the IDE
is the graphical one. To switch to Source view, select the Source tab at the bottom left
corner of the main window. The NED file code is shown in listing 4 (comments have
been omitted).

1 package profinetSim;
2

3 simple DerivedEndStation
4 {
5 parameters:
6 double minFrameSpacingTime @unit(s) = default(0.96us);
7 int macAddressOui = default(0x400000);
8 int macAddressOap;
9 string sourceJson = default("");

10

11 @signal[frameDelayByPriority_*](type= simtime_t);
12 @statisticTemplate[frameDelayByPriority](record=mean, min, max

, count, vector);
13 gates:
14 inout port;
15 }

Listing 4: DerivedEndStation NED file definition

C++ header file By default, the parent class of a new simple module is the class
cSimpleModule. To change the parent class, the endStation.h header file has to be
included and the cSimpleModule class name has to be changed to EndStation. Also, to
preserve the EndStation’s behaviour, the automatically added functions handleMessage
and initialize has to be deleted. If the purpose of this derived module is to add additional
actions, the only methods to declare (and implement) are the constructor and the action
handle routine (method). The action handle routines have a fixed format (see listing 2)
that is described in section 2.1.4.3. An example of such defined header file is shown in
listing 5. User may also define any other methods or override existing ones if desired.
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1 #ifndef __PROFINETSIM_DERIVEDENDSTATION_H_
2 #define __PROFINETSIM_DERIVEDENDSTATION_H_
3

4 #include <omnetpp.h>
5 #include "endStation.h"
6

7 namespace profinetSim {
8

9 class DerivedEndStation : public EndStation
10 {
11 public:
12 DerivedEndStation();
13

14 protected:
15 void anotherAction( cMessage *action_msg );
16 };
17

18 }
19

20 #endif

Listing 5: DerivedEndStation header file definition

1 namespace profinetSim {
2

3 Define_Module(DerivedEndStation);
4

5 DerivedEndStation::DerivedEndStation(){
6 std::string action_id = "anotherAction";
7 ActionHandlerType action_handler = std::bind( &DerivedEndStation::

anotherAction, this, std::placeholders::_1);
8

9 registerAction( action_id, action_handler );
10 }
11

12 void DerivedEndStation::anotherAction( cMessage *action_msg ){
13 //example of parameter load
14 int intPar = (int) action_msg->par( "intField" ).longValue();
15 double doublePar = action_msg->par( "doubleField" ).doubleValue();
16 std::string strPar = action_msg->par("strField").stringValue();
17

18 //create blank frame and put it to the output queue
19 EthFrame *frame = new EthFrame("frame");
20 frame->setByteLength( 64 + FIXED_FRAME_PART_SIZE );
21 frame->setSrcAdress( 0 );
22 frame->setDestAdress( 1 );
23 insertFrameToOutputQueue( frame );
24 }
25 }

Listing 6: DerivedEndStation source file definition
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C++ source file This file implements the methods declared in the header file. In
the case of our example module, the action handler method anotherAction has been
implemented and also registered in the constructor with a string identifier ”anotherAc-
tion”. The example code is shown in listing 6. Note, that all of the parent’s public and
protected methods are available for use (see section 2.1.4.2 for the EndStation C++
implementation).

2.1.7.2 Compound module creation

To combine the designed derived simple module DerivedEndStation with a SimpleSwitch
simple module only a single NED file is needed.

To create a new blank compound module, right click on the profinetSim project in
the Project Explorer window, which is usually located on the top left corner of the
OMNeT++ IDE, and select New → Compound Module. At the pop-up window enter
the desired module name (in our example case DerivedDevice) and press Next. After
that, select An empty compound module option and press Finish.

If no NED parameters were added in the NED definition of the DerivedDevice module,
simply copy the source code of the GenericDevice compound module and substitute
EndStation with DerivedEndStation. The NED code of the DerivedEndStation is shown
in listing 7.

1 package profinetSim;
2

3 module DerivedDevice
4 {
5 parameters:
6 int numPorts = default(2);
7

8 gates:
9 inout port[numPorts];

10 submodules:
11 simpleSwitch_i: SimpleSwitch {
12 numPorts = sizeof(port)+1;
13 }
14 endStation_i: DerivedEndStation {
15 }
16 connections allowunconnected:
17 EndStation_i.port <--> simpleSwitch_i.port[0];
18 for i=0..sizeof(port)-1 {
19 simpleSwitch_i.port[i+1] <--> port[i];
20 }
21 }

Listing 7: DerivedDevice NED file definition.
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2.1.7.3 Compilation

When the derived modules are defined, the Profinet simulation model project has to
be recompiled. To start the compilation, right click on the profinetSim project in
the Project Explorer window, which is usually located on the top left corner of the
OMNeT++ IDE, and select Build Project.

The compilation text output is printed in a Console tab located under the main editing
window. If the compilation is successful, the tool is ready to be used.

2.2 JSON definition

In order to provide the user with a clear and comprehensive way to capture network
topologies and to enter the required parameters, a JSON structure has been designed.
The JSON file contains information about the simulation parameters, the network topol-
ogy definition and the device parameters (with events). Optionally, another JSON file
can be used to define custom events. This JSON file shares the same structure as an
”inline” definition of custom events introduced in section 2.2.3. Also, a brief JSON
format overview is described in section 2.2.1.

The highest level of the main JSON file’s structure contains three main parts:

• Simulation parameters - section 2.2.2.

• Custom events - section 2.2.3 [optional].

• Network definition - section 2.2.4.

– Nodes - section 2.2.4.1.

– Links - section 2.2.4.2.

2.2.1 JSON format overview

JSON is a lightweight data-interchange format[5] that can easily be read by humans
and parsed independently by various programming languages (in our case C++). User
data can be inserted in two types of containers:

• Objects — Objects are wrapped by bracers ”{}” and contain data with a follow-
ing notation: ”name”: value. Where name is a string identifier. Multiple entries
are separated by commas ”,”.

• Arrays — Array is a construction wrapped by brackets ”[]” that can hold multiple
items that usually share the same value type. Entries are separated by commas
”,”.
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Valid value types are: object, array, decimal number and string. Also several special
values may be entered: null, true and false. It is clear, that values of type object and
array may be arbitrarily nested. The highest level value type is an object without any
string identifier (name).

An example code demonstrating the JSON structure is listed in the code listing 8.

1 {
2 "stringPar" : "hello world",
3 "numberPar" : 1.58,
4 "arrayPar" : [{ "anotherPar" : 1,
5 "objectPar" : { "type" : "generic",
6 "value" : 1.11
7 },
8 "lastPar" : "bye"
9 },

10 { "anotherPar" : 2,
11 "objectPar" : { "type" : "special",
12 "value" : 8.11
13 },
14 "lastPar" : "byebye"
15 }
16 ]
17 }

Listing 8: JSON structure example

2.2.2 Simulation parameters

Simulation parameters are given within the top level JSON object under a string iden-
tifier simulation. The parameters are (the expected data type for the C++ parser is
stated within the parentheses before every parameter):

• (string) name — Name of the network. This parameter is used as a name of a
network topology NED file generated automatically by the defined API.

• (double) duration — Desired duration of the simulation given in [ms]. It is valid
up to three decimal digits.

• (double) warmUp [optional] — Warm-up period of the simulation given in [ms].
It is valid up to three decimal digits. This parameter specifies the time at the
beginning of the simulation in which no statistical signals are recorded. Note
that this will effectively shorten the simulation duration (result-wise). The first
recorded signal will have a timestamp greater or equal to the warmUp period. If
not specified, default value 0 is used.

• (string) inputs — Path to a folder containing the designed OMNeT++ simulation
model.
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• (string) customEvents — Location of custom events definition. Custom events
allow to define events that may be used by multiple devices or to simplify the
nodes’ definitions. There are two possible entries - either a keyword ”inline”
meaning that custom events are defined within the main JSON file under an object
labelled customEvents (see section 2.2.3) or a generic string that is represented
as a path to an external JSON file defining the custom events. The custom
events definition is optional and user may choose to define all the events within
the respective nodes. In this case, keyword ”inline” has to be used (the object
customEvents in the main JSON file can be left out blank or not present at all).
If the external JSON file option is selected, it is important to make sure that the
specified file path is valid from the perspective of the API application invoking
the simulation when using relative pathing.

• (string) output — Output file name containing simulation results.

2.2.3 Custom events

This part introduces the JSON structure of events. The structure is common for ”inline”
custom events, external JSON file custom events as well as for events defined within
each node (device) - these are simple labelled events (see section 2.2.4.1). Object named
customEvents is located at the top level object of the main JSON file (for ”inline”
notation) and contains an array of the following values:

• (int) id — An unique event identifier. It is used as a reference ID to link given
custom event to a certain node (device). Also serves as a reference ID for incoming
and outgoing frame triggers.

• (string) name [optional] — Name of the event. This parameter is not used in
any way and serves only for user clarity purpose.

• trigger — Condition on which the given event executes actions tied to it. Triggers
are introduced in section 2.1.4.3. It is an object value containing the following
values:

– (string) type — Trigger type. Four trigger types have been defined - cyclic,
acyclic, outgoingFrame and incomingFrame.

– <type-specific-parameters> — Additional parameters required by the
given type of the trigger.

• actions [optional] — Array of actions that will be performed each time this
event is triggered. Although this parameter is optional, it does not make sense
not to specify any actions since the event would be ”blank”. If multiple actions
are specified, they are executed in the same order as defined here. Actions are
introduced in section 2.1.4.3. Each item (object) of the array must contain the
following parameters:
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– (string) type — Action type. Actions supported will differ across the defined
modules. Currently only one action is defined in the EndStation simple
module - sendEthFrame.

– <type-specific-parameters> — Additional parameters required by the
given type of the action.

1 {
2 ...
3 "customEvents" : [{ "id" : 0,
4 "name" : "PN_IO communcation",
5 "trigger" : { "type" : "cyclic",
6 "mean" : 2,
7 "stdDev" : 0.01,
8 "initPhase" : 0.5
9 },

10 "actions" : [{ "type" : "sendEthFrame",
11 "destination" : 1
12 },
13 { "type" : "sendEthFrame",
14 "destination" : 2
15 }
16 ]
17 }
18 ]
19 ...
20 }

Listing 9: Custom events example.

2.2.4 Network definition

JSON Object named network is located at the top level object of the main JSON file
and contains two arrays to define the simulation network - nodes and links.

2.2.4.1 Nodes

Each item of the nodes array represents a single device to be modelled in the network.
It captures all of the necessary parameters of the respective NED modules using the
following structure:

• (int) id — An unique node identifier. Serves as the lower 3 bytes of the MAC
address for addressable devices (the NED parameter macAddressOap). For NED
parameters concerning the MAC address refer to EndStation’s NED definition in
section 2.1.4.1.

• (string) type — Type of the node (device). The value of this parameter must
match (case-sensitively) one of the defined modules (EndStation, SimpleSwitch,
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GenericDevice or any other user defined modules) to determine the node’s be-
haviour and supported actions.

• (int) macAddressOui [optional] Upper 3 bytes of the MAC address. If not
specified, the default value is provided by the corresponding NED parameter.
For NED parameters concerning the MAC address refer to EndStation’s NED
definition in section 2.1.4.1.

• (string) name [optional] — Node’s name. If defined, it is used as the node’s
name within a NED file describing the network when it is generated using API
functions.

• switch [optional] — Contains parameters regarding the switch part of the device
(if present in the specified module). If not specified, the default values of corre-
sponding NED parameters are used (refer to NED file definition of SimpleSwitch
module in section 2.1.5.1). It is a JSON object value containing the following:

– (int) numPorts — Number of free ports available for connection. Does not
include the inner port used in compound module GenericDevice.

– (int) numPrioQueues — Number of the output priority queues on each
port.

– switchDelay — The switch (bridge/propagation) delay is modelled using a
normal distribution of probability NSD(µ, σ2) - this JSON object contains a
pair of parameters describing this normal distribution.

∗ (double) mean — Mean (expected) value µ of the given normal distri-
bution [ms].

∗ (double) stdDev — Value of the standard deviation σ of the given
normal distribution [ms].

• endStation [optional] — Contains parameters regarding the end point part of
the device (if present in the specified module). At the moment, this JSON object
contains only events definition:

– events [optional] — Array of the event definitions. There are two possible
type of entries:

∗ regular — The event is fully described here. The structure is the same
as introduced under the customEvents object in section 2.2.3.

∗ custom — The event has been defined as a custom event (either using
”inline” notation or an external JSON file). In this case a different
structure of an event item is required:

· (int) refID — Custom event reference ID as stated in the filed id of
the custom event’s definition.
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· actions [optional] — An array of additional actions to be added
to given custom event. The JSON structure of actions has been
introduced in the section 2.2.3.

An example of nodes array is shown in listing 10.

1 "nodes": [
2 {
3 "id": 0,
4 "type": "GenericDevice",
5 "name": "PLC",
6 "switch": {
7 "numPorts": 2,
8 "switchDelay": {
9 "mean": 0.005796,

10 "stdDev": 0.000046
11 }
12 },
13 "endStation": {
14 "events": [
15 {
16 "refID": 45,
17 "actions": [
18 {
19 "type": "sendEthFrame",
20 "destination": 1
21 }
22 ]
23 }
24 ]
25 }
26 }
27 ]

Listing 10: Node’s JSON definition example.

2.2.4.2 Links

Device connections are captured using the JSON array named links. Each connection
is full duplex and has to be listed only once (the end points are interchangeable). The
structure of each link object is given as:

• (double) source — Start point of the connection. The value must obey a special
notation: <module-id>.<port-number>.

• (double) target — Endpoint of the connection. The value must obey a special
notation: <module-id>.<port-number>.
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1 "links": [
2 {
3 "source": 0.1,
4 "target": 1.1
5 }
6 ]

Listing 11: Link’s JSON definition example.

Note, that the port numbering starts at 1. An example of links array is shown in
listing 11.

2.3 Profinet simulation API

A C++ pre-compiled shared library has been designed to provide an API support to
the designed Profinet simulation model. The API contains methods to parse the JSON
file and to automatically create files needed for the simulation execution based on the
loaded topology and parameters. Also, a method to execute prepared simulation is
implemented.

The API is currently available under Linux operating systems only, which may be
subject to change in future builds.

2.3.1 API implementation

The API is implemented as a C++ class ProfinetSimApi within a defined namespace
profinet sim api. In this section a brief overview of the class’ methods is described. An
example usage of the API is discussed in section 2.3.2 and shown in listing 12.

Public methods

• public ProfinetSimApi() — Class constructor. Defines default values of the
simulation parameters.

• public int loadInputFile( std::string inputFileName ) — This method loads the
given JSON file and creates a network NED file based on the parsed topology.
Also, the method loads the simulation parameters, stores them within the object
and creates an INI file corresponding to the generated NED file. Both of the cre-
ated files are stored within the simulation model’s folder specified by the inputs
simulation parameter value of the source JSON file. The files are named according
to the name simulation parameter value of the source JSON file with an appro-
priate suffix (<name>.ned for the network topology NED file and <name>.ini
for the simulation initialization file). Simulation parameters of the JSON file are
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discussed in section 2.2.2. If all is successful, the simulation is ready to be exe-
cuted. User can use the isSimulationReady method to check if the simulation is
ready. The JSON parser used is introduced in[8].

Input parameters:

– (std::string) inputFileName — File name of the input JSON file.

Return value:

– STATUS OK — JSON parsing and files creation was successful.

– ERR IO — A file could not be opened/created.

– ERR PARSE — JSON file structure is not valid.

• public int executeSimulation() — This method runs the loaded simulation (if
loaded successfully) using system function by executing automatically created
shell command. The simulation is done using a Cmdenv (command-line environ-
ment, see OMNeT++ manual[7] for further information) which takes over of the
user program until it is finished. The simulation progress is printed out in the
standard output roughly every 2 seconds by the Cmdenv. After the simulation
is done, the recorded statistical signals are saved to the output files located in
results folder which is created in the root folder of the Profinet simulation model.

Return value:

– STATUS OK — Simulation was successful and the output files have been
created.

– ERR SIM NOT RDY — Simulation was not ready, it must be properly
loaded using the loadInputFile method first.

– other — Other error codes that were returned by the system call. Refer to
OMNeT++ documentation for further information[7].

• public std::string getNetworkName() — Returns the loaded value of the name
simulation parameter.

Return value:

– (std::string) — The simulation network name.

• public std::string getInputsFolderPath() — Returns the loaded value of the
inputs simulation parameter.

Return value:

– (std::string) — The location (path) of the Profinet simulation model.

• public double getSimulationDuration() — Returns the loaded value of the du-
ration simulation parameter.

Return value:
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– (double) — The duration of the simulation [ms].

• public double getWarmUpPeriod() — Returns the loaded value of the warmUp
simulation parameter.

Return value:

– (double) — The warm-up period of the simulation [ms].

• public bool isSimulationReady() — Returns if a simulation is ready to be exe-
cuted.

Return value:

– true — The simulation has been loaded and is ready for execution.

– false — The simulation is not ready for execution.

• public int getStatus() — Returns the last error code that occurred in any of the
API functions. After this function is called, the status is reset to STATUS OK.

Return value:

– STATUS OK — No error since the last call of this method.

– ERR IO — I/O error occurred (a file could not be read/created).

– ERR PARSE — JSON parse error - bad structure.

– ERR SIM NOT RDY — There was an attempt to run the simulation that
was not properly loaded.

2.3.2 API usage

To use the API, the pre-compiled shared library libprofinetSimApi.so file has to be
added to the user project’s linker libraries. The provided header file ProfinetSimApi.h
has to be added to the compiler includes and also has to be included in the source files
where the API functions are called. An example C++ client program using the API
has been implemented using Eclipse IDE and GCC toolchain under the Ubuntu 14.04
Linux distribution (profinetSimApiConsoleApp).

To add the shared library to the linker libraries in the Eclipse IDE, right click your
project and select Properties. In the Properties window select C/C++ Build → Settings
→ GCC C++ Linker → Libraries tab and add the folder containing the shared object
libprofinetSimApi.so as is depicted on figure 10.

Similarly, to add the include path containing the header file, select C/C++ Build →
Settings → GCC C++ Compiler → Includes in the Properties window.

When the environment is set, a simple example of API usage is shown in the listing 12.
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Figure 10: Adding API shared library to the linker.

1 #include "ProfinetSimApi.h"
2

3 using namespace std;
4 using namespace profinet_sim_api;
5

6 /*
7 * Example of omnet API library usage
8 */
9 int main() {

10 string inputFile = "/home/user/workspace/omnetApi_client/data/
input/network.json";

11 ProfinetSimApi *api = new ProfinetSimApi();
12

13 api->loadInputFile( inputFile );
14 if( api->isSimulationReady() ){
15 api->executeSimulation();
16 }
17

18 printf( "\n\nExit code: %d", api->getStatus() );
19

20 return 0;
21 }

Listing 12: API example usage.
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2.3.3 Console application

A console application profinetSimApiConsoleApp has been implemented under the
Ubuntu Linux distribution. It takes one input when called - a string representing
the path to the main JSON source file. The application will attempt to parse the given
JSON, create the network topology NED file as well as the INI file. If the parsing is
successful it will also run the prepared simulation. API’s exit code is printed out in the
standard output. An example of use is shown in listing 13.

1 ./profinetSimApiConsoleApp /home/user/workspace/myJson.json

Listing 13: API console application usage.

Important: User has to make sure the shared library libprofinetSimApi.so is properly
loaded within the system. One possible way of doing this is to create a *.conf file in
the /etc/ld.so.conf.d system folder containing a file path to the folder containing the
shared library and then bind it using the command ldconfig as a superuser.
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Part 3

Modelling a network

3.1 Physical network

A physical Profinet network was available for testing and model verification. The
network consists of the following devices (the topology is depicted on figure 11):

• PN IO Controller - Siemens CPU 315-2 PN/DP

• Switch 1 (PN IO Device) - Harting FTS 3082-ASFP

• 3x PN IO Device - Siemens IM151

• Switch 2 (PN IO Device) - Siemens Scalance XF204

Figure 11: Test network topology.

The project hardware configuration sets the following Profinet real-time communication
among the devices:

• Cyclic communication in both directions between the Controller and Siemens
IM151 IO devices every 2 ms using a producer-consumer system.

• Cyclic communication in both directions between the Controller and both switches
every 128 ms using a producer-consumer system.

Apart from the defined PN communication which uses a PNIO protocol with VLAN-
tagged frames with priority 6, other protocols are also present (at steady state) - LLDP,
STP and ARP. These protocols formed about ∼0,2% of the total communication in the
test topology and their frames are not explicitly VLAN-tagged which means that they
use the default priority value of 0.
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3.2 Setting the parameters

In order to simulate the network, the source JSON file has to be set up. Apart from
the known characteristics such as link connections or the number of the devices’ ports,
this includes the switching parameters of the devices as well as their communication
parameters that form the events definitions. Both of these are discussed in this section.

All of the devices have been modelled using the GenericDevice module defined in sec-
tion 2.1.6. This means, that they have to specify both the switching parameters and
the events definitions.

3.2.1 Switching parameters

To determine accurate switching behaviour, the switching (forwarding) delay must be
set. As discussed in the section 2.1.5, this delay is modelled using the normal distribu-
tion NSD(µ, σ2). To acquire the parameters, a measurement has been designed.

To measure the delay, two identical and transparent Ethernet taps were connected
between the measured device and the adjoining devices in the network topology. The
full duplex traffic flowing through both taps was recorded using a Siemens BANY device
and send to PC to be stored in a *.pcap file. All the recorded frames are stored with their
corresponding timestamps with a time precision of ns. The measuring network scheme
for the Switch 1 device measurement is shown on figure 12. To ensure enough data
to accurately compute the desired parameters, 5 minute measurements were recorded.
This translates to several hundreds of thousands recorded frames depending on the
selected measured device.

For data analysis a standalone program packetAnalyser was implemented in C++ us-
ing a libpcap[9] library under the Ubuntu Linux distribution. The analysis program
is not included in the Profinet simulation model and is briefly discussed in the Ap-
pendix A. The algorithm itself is fairly simple - timestamps of two closest consecutive
frame recordings sharing the same source and destination addresses as well as identical
program counters are subtracted to acquire the switching delay time of the given frame.
The two frames are in fact recordings of one single frame recorded by the respective
taps as the frame propagates through the network. Both directions are considered to
ensure the measurement is valid and that the two taps are in fact as close to identical
as possible. Generally speaking, the measurements showed that the difference between
results from both directions can be neglected. The timestamp differences were stored
for all of the frames propagating through the given device to form a sample for statis-
tical analysis. The sample mean and sample variance (and standard deviation) were
computed and used in the JSON file capturing the test network.

All of the non-end point devices in the test topology were measured using this method.
The end point devices’ (PN IO Controller and PN IO Device 3 ) parameters were
estimated based on the rest of the measurements to preserve the topology and hardware
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Figure 12: Measurement scheme for the Switch 1 device.

configuration. The PN IO Device 3 is identical to PN IO Device 1 and PN IO Device
2 which were both measured. Both of those measurements yielded almost identical
parameters therefore the same values have been used for the last, non measured device
PN IO Device 3 without introducing any error. The same values have been used for
the PN IO Controller as well since the devices share a common manufacturer. A minor
offset error may have been introduced by this extrapolation, yet it would affect all of
the PNIO frames (which form ∼99.8% of all of the steady state communication) in
both directions since all the PNIO traffic either originates or ends in the controller.
Therefore when comparing the frame propagation delays throughout the network for
various devices or priority levels, the error is the same in all cases and can be dealt with
easily.

The final parameter values of the normal distribution NSD(µ, σ2), both measured and
estimated, assigned to the network devices are as following:

• PN IO Controller: µ = 5.796µs, σ = 0.046µs

• Switch 1 (Harting): µ = 4.689µs, σ = 0.096µs

• PN IO Device 1: µ = 5.796µs, σ = 0.046µs

• PN IO Device 2: µ = 5.796µs, σ = 0.042µs

• Switch 2 (Scalance): µ = 8.508µs, σ = 0.294µs

• PN IO Device 3: µ = 5.796µs, σ = 0.046µs
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Also, an addition independent traffic flow dependency on the switching delay (con-
sidering only the mean value) for devices with more than 2 ports was examined. All
devices but the switches have only 2 ports and physically cannot accept any additional
traffic except for what runs in the established communication. Therefore only the two
switches were included in this measurement. An experiment was designed using two
identical Ethernet taps and Siemens BANY as depicted on figure 13. The BANY is
able to generate an external traffic with a variable load and customizable frames. The
BANY has a total of 4 ports that are able to transmit or record frames. In this case two
ports are used as frame generators and two are used to record the frames. In order to
be able to record frames propagated through the measured switch, only one direction
of communication can be recorded at one time. Each of the BANY ports assigned for
frame generation in fact simulate one virtual device. These virtual devices send frames
only to each other, the generated traffic is therefore independent and not forwarded to
the ports used by the Profinet application. Using the variable additional traffic load
(up to 100% of the 100Mbit/s channel), the measurement showed that the switching
delays of the watched Profinet communication are influenced only in a minor way by
the additional independent traffic.

Figure 13: Measurement scheme for the Switch 1 device with additional traffic.

The graphs for both measurements are shown on figure 14 for the Switch 1 (Harting)
and on figure 15 for the Switch 2 (Scalance). Since the influence is very light, only a
few (4) values of the traffic load were tested [0%, 20%, 80%, 100%].
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Figure 14: Switching delay dependency on additional traffic of Switch 1.
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Figure 15: Switching delay dependency on additional traffic of Switch 2.

3.2.2 Communication parameters

The communication is modelled using the events system introduced in section 2.1.4.3.
Each communication channel (meaning pair source - destination for given protocol) is
modelled using one event with the cyclic trigger (modelled using normal distribution)
and one sendEthFrame action. The cyclic time trigger has been chosen since we ap-
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proach each non PNIO communication protocol and channel independently with no
prior knowledge. The PNIO is given as cyclic by the network hardware configuration.

In order to accurately set all of the communication channels, a measurement was con-
ducted to capture all of the traffic on each link of the network. The traffic was captured
using a single Ethernet tap and recorded by a Siemens BANY that also stored it as a
*.pcap file. The traffic was analysed using a standalone program packetAnalyser im-
plemented in C++ using the libpcap library[9] This support program is not included
in the Profinet simulation model and is briefly discussed in the Appendix A. In addi-
tion a network analysis tool Wireshark[10] was used to view, filter and count recorded
frames. The measurement showed that the following link layer protocols are present
in the communication - LLDP, ARP, STP and PN DCP. These form ∼0.2% of all the
traffic (rest is PNIO communication) on the link Controller - Switch 1.

The link between Controller and Switch 1 has been chosen to demonstrate the sim-
ulation model since it covers the heaviest PNIO traffic (the results are discussed in
section 3.4). The priorly known parameters for PNIO communication introduced in
section 3.1 were also measured to verify their values and to be used in some of the con-
ducted experiments described in section 3.4.1. The following communication protocols
and their parameters for cyclically triggered events were measured on the chosen link
(t0 stands for the initPhase JSON parameter):

PNIO protocol

• Controller → Switch 1: µ = 127.999ms, σ = 0.041µs, t0 = 118.833ms

• Controller → IO device 1: µ = 2.000ms, σ = 0.046µs, t0 = 1.827ms

• Controller → IO device 2: µ = 2.000ms, σ = 0.043µs, t0 = 0.827ms

• Controller → Switch 2: µ = 127.999ms, σ = 0.089µs, t0 = 120.833ms

• Controller → IO device 3: µ = 2.000ms, σ = 0.046µs, t0 = 1.834ms

• Controller ← Switch 1: µ = 128.740ms, σ = 17.213µs, t0 = 6.234ms

• Controller ← IO device 1: µ = 2.000ms, σ = 0.147µs, t0 = 0ms

• Controller ← IO device 2: µ = 2.000ms, σ = 0.117µs, t0 = 1.392ms

• Controller ← Switch 2: µ = 127.991ms, σ = 5.302µs, t0 = 28.009ms

• Controller ← IO device 3: µ = 2.000ms, σ = 0.366µs, t0 = 0.895ms

PN DCP protocol

• Controller ← Switch 2: µ = 59996.052ms, σ = 0.368ms, t0 = 43876.632ms
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LLDP protocol

• Controller → Switch 1: µ = 414.269ms, σ = 10.958ms, t0 = 75.103ms

• Controller ← Switch 1: µ = 2524.466ms, σ = 26.949ms, t0 = 818.366ms

• Controller ← IO device 1: µ = 1189.247ms, σ = 18.586ms, t0 = 75.030ms

STP protocol

• Controller ← Switch 1: µ = 999.439ms, σ = 17.030ms, t0 = 1199.709ms

ARP protocol

• Controller ← Switch 2: µ = 59996.175ms, σ = 0.432ms, t0 = 13878.932ms

3.3 Running the simulation

When all the parameters needed for the JSON structure are set, the simulation can be
run. There are several possible ways how to run the simulation:

• Use the designed API library in a user application. This is discussed in sec-
tion 2.3.2.

• Use a provided console application that uses the API. See section 2.3.3.

• Manually run the simulation in the OMNeT++ IDE. This option is described in
section 3.3.1.

Note that the simulation requires a valid JSON file to be successfully run.

3.3.1 Using the OMNeT++ IDE

In order to run the simulation manually, user has to be provided with a NED file
describing the given network and an INI file configuring the simulation. If this is not the
case, these files has to be created. They are automatically created by the API function
loadInputFile and placed in the project root (which is discussed in section 2.3). User
may also choose to create those files manually corresponding to the provided JSON file,
in this case please refer to OMNeT++ documentation[7].

When the two files are present in the root folder of the simulation model, to run the
simulation click on the desired INI file in the Project Explorer window and select Project
→ Run. The progress is printed in the Console window located at the bottom of the
IDE.
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3.4 Simulation results

After a successful simulation, the result files containing all the defined statistical signals
are created and stored in the results folder located in the root folder of the simulation
model. Two files are created - <outputName>.sca containing the scalar statistical
signals and <outputName>.vec containing the vector statistical signals. These can be
analysed directly in the OMNeT++ IDE by double clicking the given file in the Project
Explorer window and then creating an Analysis File. When prompted, simply press
finish to create the file. To view the results open the analysis file and switch to Browse
data tab in the bottom left corner of the IDE’s main window as can be seen in figure 16.
Note that the created Analysis File is created in the root folder not in the results folder.

Figure 16: Browsing results in the OMNeT++ IDE.

The result files are in fact text files that can be viewed in or parsed by various pro-
grams. Refer to [7] for their syntax definitions. To analyse the resulting vector file and
to compare these results with real data captured in a *.pcap file, a MATLAB script
vectorAnalysis.m has been created. The real data reference was created based on the
captured *.pcap file in a standalone C++ program packetAnalyser which uses the libp-
cap library[9]. Both support tools are not included in the Profinet simulation model
and are briefly discussed in the Appendix A.

3.4.1 Experiments

Several experiments were conducted on the chosen link Controller - Switch 1 to verify
and use the simulation model. The real data sample captured on this link is 319.349s
long which determines the simulations’ duration. This duration translates to over 9.6 ·
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105 frames. Both of the data samples (real and simulated) have been re-sampled to unify
them for comparison. The sampling period is set to TS = 1s therefore the comparison
graphs ends at the time tF = 319s. Note that when reading the graphs shown, negative
simulation error means the simulation predicted less frames in given time than there
actually were in the real data.

3.4.1.1 Experiment 1

In this experiment, we modelled only the PNIO communication based on the prior
knowledge of the communication cycles as they were introduced in section 3.1. Based
on the frame difference between the simulation and the measured data we altered the
model to best fit the real data and again checked the frame difference.

Figures 17 and 18 depict a simulation error for each direction of the communication
on the chosen link using the initial model. Each direction of communication has been
altered as following:

• Controller → Switch 1 : The frame difference at the final time tF = 319s is
ndiff = −771 frames (see fig. 17). To compensate this error, one event with
the cyclic trigger and one sendEthFrame action destined to the Switch 1 was
added to the Controller JSON device description. The trigger’s parameters are:
µ = 414.285ms, σ = 0ms and initPhase = 0ms. The σ parameter would only add
more noise to the data (decreasing readability) and was not considered. Although
the normal distribution is not defined for σ = 0, in this case the constant value µ
is used instead. The µ parameter was obtained as follows:

µ =
tF

|ndiff | − 1
[s] (1)

Note that the denominator is not directly number of the frame difference ndiff

but rather the number of frame periods between them.

• Controller ← Switch 1 : The frame difference at the final time tF = 319s is
ndiff = −713 frames (see fig. 18). To compensate this error, one event with
the cyclic trigger and one sendEthFrame action destined to the Controller was
added to the Switch 1 JSON device description. The trigger’s parameters are:
µ = 448.033ms, σ = 0ms and initPhase = 0ms. The parameter µ was obtained
using eq. 1.
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Figure 17: Experiment 1 simulation error on link Controller → Switch 1.
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Figure 18: Experiment 1 simulation error on link Controller ← Switch 1.
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Figure 19: Experiment 1 simulation error on link Controller ↔ Switch 1 after the
compensation.

The total simulation error after the compensation is shown on figure 19. If we consider
that the total number of frames is ∼9.6 ·105, the estimation error is in the order of 10−5.
Both of the JSON files (describing original and altered model) are attached on CD in
folder experiments/ex1.
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3.4.1.2 Experiment 2

In this experiment, we modelled the PNIO communication based on the prior knowledge
of the communication cycles as they were introduced in section 3.1 and all of the
remaining protocols’ traffic based on the measurement. Based on the frame difference
between the simulation and the measured data we altered the model to best fit the real
data and again checked the frame difference.

Figures 20 and 21 depict a simulation error for each direction of the communication
on the chosen link using the initial model. Each direction of communication has been
altered as following:

• Controller → Switch 1 : The frame difference at the final time tF = 319s is
ndiff = −2 frames (see fig. 20). To compensate this error, one event with the
cyclic trigger and one sendEthFrame action destined to the Switch 1 was added
to the Controller JSON device description. The trigger’s parameters are: µ =
319000ms, σ = 0ms and initPhase = 0ms. The parameter µ was obtained using
eq. 1.
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Figure 20: Experiment 2 simulation error on link Controller → Switch 1.

• Controller ← Switch 1 : The frame difference at the final time tF = 319s is
ndiff = 11 frames (see fig. 21). This means that the simulation is ahead of
the real data. This behaviour is clear if we look at the measured values of the
PNIO protocol originating from both of the switches - they don’t match the
expected values entered in the prior set-up of the network. Refer to section 3.1
for the expected values and section 3.2.2 for the measured values. To account this
deviation, the values were set according to the measurement.
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Figure 21: Experiment 2 simulation error on link Controller ← Switch 1.
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Figure 22: Experiment 2 simulation error on link Controller ↔ Switch 1 after the
compensation.

The total simulation error after the compensation is shown on figure 22. If we consider
that the total number of frames is ∼9.6 ·105, the estimation error is in the order of 10−5.
Both of the JSON files (describing original and altered model) are attached on CD in
folder experiments/ex2.
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3.4.1.3 Experiment 3

In this experiment, we modelled all of the traffic based on the measured values (see
section 3.2.2). Based on the frame difference between the simulation and the mea-
sured data we altered the model to best fit the real data and again checked the frame
difference.

Figures 23 and 24 depict a simulation error for each direction of the communication
on the chosen link using the initial model. Each direction of communication has been
altered as following:

• Controller → Switch 1 : The frame difference at the final time tF = 319s is
ndiff = −3 frames (see fig. 23). To compensate this error, one event with the
cyclic trigger and one sendEthFrame action destined to the Switch 1 was added
to the Controller JSON device description. The trigger’s parameters are: µ =
159500ms, σ = 0ms and initPhase = 0ms. The parameter µ was obtained using
eq. 1.
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Figure 23: Experiment 3 simulation error on link Controller → Switch 1.

• Controller ← Switch 1 : The frame difference at the final time tF = 319s is
ndiff = −2 frames (see fig. 24). To compensate this error, one event with the cyclic
trigger and one sendEthFrame action destined to the Controller was added to the
Switch 1 JSON device description. The trigger’s parameters are: µ = 319000ms,
σ = 0ms and initPhase = 0ms. The parameter µ was obtained using eq. 1.

The total simulation error after the compensation is shown on figure 25. If we consider
that the total number of frames is ∼9.6 ·105, the estimation error is in the order of 10−5.
Both of the JSON files (describing original and altered model) are attached on CD in
folder experiments/ex3.
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Figure 24: Experiment 3 simulation error on link Controller ← Switch 1.
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Figure 25: Experiment 3 simulation error on link Controller ↔ Switch 1 after the
compensation.

3.4.1.4 Experiment 4

In this experiment we use the simulation to detect a network failure. The final model
created in experiment 1 (see section 3.4.1.1) was used as a reference to the real data
measurement. The real data were measured on the chosen link Controller 1 - Switch 1.
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During the real data capture, the PN IO Device 3 has been disconnected from the
network at time tD = 256s. Figure 26 shows the frame difference between the simulation
and the captured real data. Note that the real data sample is only 300s long.
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Figure 26: Experiment 4 simulation error on link Controller ↔ Switch 1 after a network
failure.

3.4.1.5 Experiment 5

In this experiment we use the simulation to detect an error in the network hardware
configuration. The final model created in experiment 1 (see section 3.4.1.1) was used as
a reference to real data measurement. The real data were measured on the chosen link
Controller 1 - Switch 1. In this case, an intentional error was introduced in the PNIO
communication between the Controller and the PN IO Device 3 - the communication
period was set to 4ms instead of 2ms. Figure 27 shows the frame difference between
the simulation and the captured real data. Note that the real data sample is only 300s
long.
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Figure 27: Experiment 5 simulation error on link Controller ↔ Switch 1 with an error
in HW configuration.
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Part 4

Conclusion

A Profinet simulation model has been implemented using the OMNeT++ simulation
framework. The model is able to capture generic devices, switches or endpoints and
their traffic such as cyclic or acyclic communication on a link layer in a parametrized
way using the designed JSON structure. The model also supports deriving of user-
defined modules to model more complex devices. Also, the introduced ProfinetSimApi
API has been implemented to allow an automated simulation set-up and execution.

A physical test network has been modelled using the created simulation model to verify
it and to demonstrate its possible uses in network diagnosis. The simulation error
(frame difference) achieved on over 5 minutes long data samples was in the order of
10−5.

Future improvements may include adding additional core modules implementing unique
and more advance actions, adding additional trigger types or even enabling user-defined
triggers. Another area of improvement might be to add a compatibility support for the
Ethernet modules and frames of the INET library present in the OMNeT++ framework.
Also, additional platform support might be considered for the API.
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Appendices

A Support analysis tools

Apart from the simulation model itself, two supporting tools have been implemented
to automate the simulation result analysis and the parameter acquisition.

A.1 Matlab script vectorAnalysis.m

This Matlab script is used for parsing the resulting *.vec files containing vector statisti-
cal signals. It can also parse text files generated by the createRealDataVector function
of the packetAnalyser tool described below. If both data files are loaded, the script can
re-sample them and plot a frame difference graph. More information is provided via
commentary in the script itself.

A.2 Tool packetAnalyser

A developer tool packetAnalyser that performs various task using a libpcap library[9]
was implemented in C++ under the Ubuntu Linux distribution. Only source files
are provided since the functions’ parameters have to be modified manually as well
as the desired function calls or other modifications. Following functions have been
implemented:

• int createRealDataVector() — This method is used to generate real data vec-
tors based on a specified *.pcap file and device. The *.pcap file should only
contain measurement from one link (one way or full-duplex). Three text files
are created - packetsVecOut.txt containing frames outgoing from specified device,
packetsVecIn.txt containing frames incoming to specified device and packetsVec-
Total.txt for all frames present in the *.pcap file. The output format of all of the
generated files is as following: <timestamp><number-of-frames> separated
by a single space ” ” (each entry is on a new line). The method always returns 0.

• int delayMeasurement() — This method is used to analyse the switching delay
measurements described in section 3.2.1 based on a *.pcap file. The results (µ
and σ values) are printed in the standard output. The method always returns 0.
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• int trafficParameters() — This method is used to analyse a communication
channel measurements between two devices described in section 3.2.2 based on a
*.pcap file. The results (µ and σ values) are printed in the standard output. The
method always returns 0.
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Attached CD contents

The attached CD contains a pdf version of this thesis, the implemented tools and
example JSON definitions. The folder structure is as follows:

• dip prasekjan.pdf — pdf version of this thesis.

• /api/ — contains the profinetSimApi source files, the compiled library and the
Console application

• /experiments/ — contains JSON definitions for the conducted experiments.

• /fig/ — contains all the figures used in their original resolution.

• /profinetSim/ — contains the designed Profinet simulation tool OMNeT++ project.

• /supportTools/ — contains the implemented support tools discussed in Appendix A.
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