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Abstract

Metamaterials are materials engineered
to exhibit properties that do not normally
occur in nature. They usually comprise
multiple building elements in repeating
patterns and can be tailored to specific ap-
plications. This makes them a subject of
great interest for numerous applications,
including, but not limited to, designing
prosthetics, building computers, and as-
sembling space structures. While existing
literature has predominantly focused on
the structural design and static behaviour
of metamaterials and lattice–based materi-
als, their properties hold promise for build-
ing dynamic structures, including robots.
This thesis centers on the design of control
systems for such structures.

This thesis introduces three structures:
the Voxel Tower, robot ŽůžO, and Digi-
comb. They enable the addressing of key
steps and considerations in the controller
design for lattice–based structures, such
as actuation methods and model acquisi-
tion process.

The Voxel Tower serves as the focal
point of this research, exploring two sce-
narios in control engineering: stabilisation
together with disturbance attenuation and
reference tracking. Linear Quadratic Reg-
ulator (LQR) and Koopman Model Pre-
dictive Control (KMPC) algorithms are
employed to address these tasks. The im-
plementation of said control strategies is
supplemented with real hardware exper-
iments and simulation results. The re-
maining two structures serve primarily as
test platforms for assessing the suitability
of mechanical metamaterials for building
dynamic structures. Nevertheless, KMPC
for reference tracking for ŽůžO is also de-

signed and its performance is validated
through simulations.
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structures, digital materials, optimal
control, feedback control, data–driven
modelling
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Abstrakt

Metamateriály jsou uměle navržené mate-
riály vykazující vlastnosti, které se v pří-
rodě běžně nevyskytují. Ve většině pří-
padů vznikají sestavením mnoha základ-
ních elementů do pravidelných vzorů a lze
je přizpůsobit konkrétní úloze. Díky tomu
jsou zajímavé pro řadu oblastí, mezi které
patří návrh protéz, sestavování počítačů
a stavba vesmírných struktur. Dosavadní
výzkum se soustředil především na návrh
struktury a studium statického chování
metamateriálů a mřížkových materiálů,
nicméně díky svým vlastnostem by mohly
najít uplatnění i při stavbě dynamických
struktur, včetně robotů. V této práci se
zaměříme na návrh řídicích systémů právě
pro tyto struktury.

V této práci představíme tři struktury:
Voxelovou věž, robota ŽůžO a Digicomb.
Na nich ukážeme řešení klíčových kroků
při návrhu řídicího systému právě pro
mřížkové struktury a popíšeme skuteč-
nosti, které je potřeba při návrhu zohled-
nit. Mezi tato témata patří vyřešení způ-
sobu aktuace mřížkových struktur a jejich
modelování.

Jádro této práce tvoří Voxelová věž,
na které budeme zkoumat dva problémy
z oblasti automatického řízení: stabilizaci
spolu s odmítáním poruch a sledování re-
ference. K řešení těchto úloh použijeme li-
neárně kvadratický regulátor (LQR) a Ko-
opmanův prediktivní regulátor (KMPC),
jejichž implementaci doplníme reálnými
experimenty. Přestože zbylé dvě struktury
slouží především k otestování, zda jsou
mechamické metamateriály vhodné pro
stavbu dynamických struktur, navrhneme
a simulačně ověříme KMPC algoritmus
pro sledování trajektorie také pro ŽůžA.

Klíčová slova: metamateriály, mřížkové
struktury, digitální materiály, optimální
řízení, zpětnovazební řízení, na datech
založené modelování

Překlad názvu: Řídicí systém pro
flexibilní modulární struktury
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Chapter 1

Introduction

The presence of elements with lattice-based architecture can be observed in
various natural structures. Robert Hook’s observation in 1655 highlighted
the lattice structure found in different types of wood, including cork [Hoo65].
Similarly, the internal structure of bones also exhibits a lattice arrangement
(Fig. 1.1a). Lattice-based materials have a significant merit: a high stiffness-to-
weight ratio in comparison to monolithic structures [Ash05]. This appealing
characteristic makes them particularly interesting for space applications,
where utilizing less material not only reduces the weight of structures but also
facilitates transportation. Lattices have captured the interest of researchers
across multiple domains, including robotics, civil engineering, and architecture.
As a proof of that, the renowned Eiffel Tower stands as a testament to the
potential of lattice structures. The periodic nature of the underlying structure
of a material aligns with the concept of material digitalisation. It also
opens up significant possibilities for developing automated assembly systems
for such materials. Ongoing research in this area is being conducted, for
instance, by the Center for Bits and Atoms (CBA) group at the Massachusetts
Institute of Technology (MIT), USA.In this introductory chapter, we describe
the fundamental concepts utilised in this work, including advantages and
applications of mechanical metamaterials, laying the groundwork for the
designing control algorithms for morphing lattice–based structures.

To understand the idea of digitalising physical materials, consider this
perspective. While 3D printers and CNC cutters driven by digital computers
are commonly used for fabrication, they still rely on analog materials prone to
errors. Consequently, even identical parts printed on the same 3D printer can
differ slightly. To address this issue, we can introduce the notion of ’discrete’
or ’digital’ directly into the material. By assembling discrete parts to form the

1



1. Introduction ..........................................

(a) : Electron microscop scan of a nor-
mal human bone architecture (Picture by
Alan Boyde from the Bone Research So-
ciety). (b) : Eiffel Tower in Paris.

Figure 1.1: Lattice structures in nature and around the world.

structure, the random errors are mitigated. Having discrete blocks instead of
a continuous structure offers also other advantages. Firstly, it simplifies the
process of making changes or repairs to the system since malfunctioning blocks
can be easily replaced. Additionally, this approach enables the assembly of
large, heterogeneous structures by combining individual blocks with (possibly)
different properties. To draw an analogy to a well–known example, the concept
of ’digital materials’ shares similarities with the principle of constructing
objects using LEGO blocks.

Metamaterials are engineered materials with unique properties not found
in natural materials. For example, so called negative–index metamaterials
possess unusual optical properties, allowing them to exhibit a negative refrac-
tive index. This means that they can refract light in the opposite direction
compared to conventional materials, allowing for unconventional devices such
as superlenses and cloaking devices to be explored. Metamaterials are created
by arranging elements in repeating patterns, making them an exemplary case
of digital materials. An example of that is given by Benjamin Jenett in his
PhD thesis, where he presents a collection of discrete building elements that
embody the defining features of metamaterials. They posses distinct physical
properties and when assembled, these blocks demonstrate characteristics such
as a negative Poisson’s ratio, where the material shrinks perpendicular to the
applied force rather than expanding [Jen20].

The inherent discrete nature of digital materials enables the exploration
of their automated assembly methods. Nature can serve as a source of in-
spiration, where collective efforts of organisms like ants or bees demonstrate

2



.......................................... 1. Introduction

collaborative completion of tasks. Our body iteslf is made up of 20 amino
acids constituting the building blocks of proteins. [WPN14] present a termite–
inspired team of small robots capable of cooperative construction, communi-
cation, and consensus-building for structure assembly. A different automatic
assembly system tailored for building lattice based structures is presented
in [JC17] and [JARCG19]. The authors utilise inchworm archetype robots
with grippers for attachment, traversal, and material placement. [TM08] pro-
poses a similar principle of robot attachment and transportation of building
modules. [vMGM+23] presents an alternative approach. Instead of relying
on robots to assemble the structure, the authors introduce a method for
automated folding of carefully prepared material into origami lattices.

Prior to the assembly, the design of the resulting structure of the material
needs to be established. Creating metamaterials involves considering multiple
criteria and determining the optimal topology of individual building elements
to achieve desired properties. [TDZK22] addresses this challenge by employ-
ing clustering and topology optimization strategies in the design of a modular
beam. Another approach, demonstrated in [CTdR+16], utilizes a combinato-
rial strategy to design even aperiodic metamaterials. Moving to the study
of static properties, three structures, namely a bridge, a boat, and a shelter
built from lattice–based materials, under static load are studied in [JCGC16].
Similar study of static characteristics of mechanical metamaterials is also
described in [CG13].

Modularity, a property often employed in reconfigurable structures, is
facilitated by materials that can be automatically assembled from discrete
building blocks. One advantage of modular systems is their simplified repair
process, as malfunctioning modules can be directly replaced. Additionally,
reconfigurable systems offer the ability to perform different tasks using the
same set of parts, but in different configurations, eliminating the need for
multiple dedicated systems. Achieving various configurations can be done
through self-reconfiguration, as seen in self-reconfigurable robots [MK07]
like PolyBot [YDR00] and SUPERBOT [SMS06]. Alternatively, external
interference can be employed, making the process of changing configuration
similar to the automated (dis)assembly of the structure.

Digital metamaterials, possessing the properties of modularity, and capa-
bility of being automatically assembled, and tailored to specific use cases,
offer intriguing possibilities across various applications. They find relevance
in fields such as soft robotics, production of wearable devices, prosthetics,
and fashion industry [MJS+18]. Additionally, research is being conducted on
the assembly of electronic devices [LGG16], potentially enabling optimised
computational devices tailored for specific problem-solving tasks. The ap-

3



1. Introduction ..........................................
plications of digital metamaterials extend even to the construction of space
structures [JC17], showcasing their diverse potential.

For the sake of clarity it is important to shed more light into the terminology
describing the material used in this work. Terms such as metamaterial, lattice–
based material, modular material, and digital material are general terms that
may encompass a range of different materials and can sometimes overlap
in their definitions. The materials studied in this work embody all of these
concepts and exhibit properties common to all four definitions. Therefore, the
names may be used interchangeably depending on the specific focus and the
property being emphasized. Additionally, in this text, some of the individual
discrete building blocks will be referred to as voxels, which can be understood
as a volumetric version of a 2D pixel.

In the previous discussions, we have highlighted the appealing properties
and potential applications of lattice-structured metamaterials, primarily
focusing on static structures like advanced computers or space stations.
However, less attention has been given to the challenges of building robots
and actuated dynamical systems using digital materials, which is the main
focus of this work.

In this text, we introduce a mobile robot and two other dynamical struc-
tures constructed from mechanical metamaterials. We address a range of
tasks associated with their development and discuss specific steps involved in
implementing control systems, including selecting appropriate modeling frame-
works and designing efficient actuation mechanisms. Our goal in this thesis
is not to develop a single unified control approach for all lattice structures.
Instead, we individually study the three structures depicted in Figures 1.2, 1.3,
and 1.4. From our observations, we try to derive generalized insights that
can facilitate the future development of a unifying framework.

The structure of this text is as follows. Chapter 2 provides a summary of
the current state of the art in the field of controlled flexible and metamaterial
structures. In Chapter 3, we introduce the types of metamaterials used for
building the structures described in this work. Chapter 4 then describes three
possible modelling approaches that can be used to model digitial materials
and discusses their applicability to the problem at hand. Chapters 5, 6 and 7
focus on the three presented structures: the Voxel Tower, the ŽůžO robot, and
Digicomb, respectively. The Chapter on the Voxel Tower is the most elaborate
as it complements the design of control algorithms with real experiments.
The last structure in Chapter 7 is presented mostly for completeness and to
showcase also different type of mechanical metamaterial used for building
dynamical structures. Finally, Chapter 8 concludes the text by summarising
the main results and discussing potential avenues for future work.

4



.......................................... 1. Introduction

(a) : Front view. (b) : Side view.

Figure 1.2: Voxel Tower.

(a) : Front view. (b) : Side view.

Figure 1.3: Robot ŽůžO.

(a) : Side view. (b) : Top view.

Figure 1.4: Digicomb.
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Chapter 2

Related Work

Despite the concept of metamaterials and lattice structures not being entirely
new, the literature on active control of such structures is still limited. As
mentioned earlier in Chapter 1, researchers in the field of metamaterials
have shown interest it two main areas. Firstly, there has been a focus on
the structural design of these materials to achieve desired properties, such
as directional compliance. Examples of such studies include [CTdR+16,
SSP+19, TDZK22]. Secondly, there has been considerable attention given to
investigating the static behaviour and properties of metamaterials [JCGC16].

Nevertheless, some research on active control of metamaterials exists.
In a recent paper [PRFJ+23], elements of active control are introduced
into structures composed of similar building blocks as those utilised in this
thesis. The authors formulate an optimization problem to achieve nature–
inspired motion in a snake–like swimming robot and also present foundations
for a controlled morphing wing. Morphing and flexible structures receive
considerable attention in the field of aerospace [BBA+11]. For instance,
in [GHC+21] feedback linearisation control is designed for a morphing missile.

However, not only mechanical metamaterials (like in [PRFJ+23]) are being
studied, as there is also interest e.g. in acoustic metamaterials. Usage of these
materials is motivated by the presence of band gaps, which are frequency
ranges with high levels of sound wave attenuation. In [CDM17], it is shown
that the narrow band gap of an array of Helmholtz resonators can be ex-
tended by incorporating feedforward control through embedded loudspeakers.
Another approach to creating a new band gap using proportional feedback
control, this time using piezoelectric actuators, is described in [CZL20].

7



2. Related Work..........................................
While not labelled the same, several problems studied in the field of

control of metamaterials share similarities with tasks encountered in other
well–established domains. Among those problems is the task of vibration
control [Pre18], extensively explored in the context of flexible structures.
In [HTD06], an active vibration control strategy for a flexible beam utilising
genetic algorithms is presented and validated in simulations. A conventional
approach to damping is presented in [Bal78], where state feedback control
is employed and experimentally validated using a real beam. Additionally,
[Mei13] investigates vibration control in complex planar structures, such as
L–shaped and portal frames. The mitigation of oscillations is not limited to ar-
tificially manufactured scenarios and arises in numerous real–world situations.
For example, [SSS90] presents strategies for controlling structures subjected
to seismic excitation, and [PG07] provides a comprehensive description of
feedforward and integral force feedback control of lattice–structured satellite
boom.

Over the years, flexible structures have received significant research atten-
tion, also leading to the application of more advanced control strategies in
their domain. For instance, optimal control techniques for flexible structures
were of significant interest, particularly towards the end of the 20th cen-
tury [GN81, SKM89]. Notably, research in [PF90] focused on time–optimal
bang-bang control for achieving rest–to–rest motions of flexible structures.
Despite the passage of time, the interest in controlling flexible structures
remains strong, and state–of–the–art control techniques continue to be em-
ployed. For instance, in [AWP20], nonlinear Model Predictive Control (MPC)
is applied to a multibody system consisting of deformable beams.

To put this work into the context of current research, we outline our main
goals and their alignment with the state of the art in controlled mechanical
meatamaterials. Our primary focus is on structures akin to those presented
in [PRFJ+23]. These structures have so far only been subjected to feedforward
control and precomputed input sequences. In this thesis, we aim to advance
further and to develop feedback and optimal control algorithms for these
structures. This will facilitate the solution of more complex tasks and expand
the potential applications of lattice–based structures.

8



Chapter 3

Digital Materials

One of the main advantages of mechanical metamaterials is their versatility.
Just through different combinations of the individual building blocks, the
resulting structures can be tailored to various applications. Digital mate-
rials can be used for building large static structures, such as a bridge or a
shelter [JCGC16] as well as for assembling electronic circuits [LGG16]. It all
comes down to designing the right building blocks for the task at hand. In this
chapter we describe the digital material utilised in this work. The building
blocks were inspired by discrete material systems developed by the Center for
Bits and Atoms at MIT and can be divided into two groups. The first group
is derived from a cellular material published in [JCGC16, JCT+20, Jen20].
It consists of 3D printed faces that can be connected to form voxels with
various physical properties (rigid, compliant, chiral and auxetic). The second
type of metamaterial comprises foldable hylite (an aluminium composite with
polypropylene core and aluminium cover sheets) plates that can form much
more durable structures.

In this chapter, we provide an overview of the individual building elements
used in this work. We start by describing the rigid voxel in Section 3.1, followed
by the introduction of semi-compliant and actuated voxels in Sections 3.2
and 3.3, respectively. Additionally, we dedicate Section 3.4 to the description
of the second group of digital material – the Discrete Folded Material.

During the intial stages of our work, we experimented with the original
voxel–based material from CBA. However, we found that certain modifications
to the building blocks were necessary to better align the material with our

9



3. Digital Materials ........................................
requirements. These modifications concerning the rigid and compliant faces
and their details are described in their respective sections.

Regarding the fabrication of individual voxel faces, we 3D print them from
PETG filament utilising an off-the-shelf MK3S+1 Průša printer. Using the
GSWRP (graduate student with rivet pliers) method, individual faces can be
connected to constitute a cuboctahedral voxel, described by two characteristic
dimensions: lattice pitch P and strut length L (Fig. 3.1a). Resulting voxels are
then screwed together along their faces to form larger structures (Fig. 3.1c).

A comprehensive analysis of mechanical properties of voxels is beyond the
scope of this work and extensive studies on this topic have been documented
in other publications. We will provide a brief overview, highlighting the main
differences between individual voxels and their respective applications. For
a more in–depth examination of properties of the metamaterials used, we
recommend referring to sources such as [JCT+20] or [Jen20].

3.1 Rigid Voxel

The rigid voxel, depicted in Fig.3.1b, consists of six rigid faces (Fig. 3.1a) and
is designed for applications requiring structural integrity and minimal defor-
mation under external loads. The rigid face from [Jen20] differs from the one
used in this work only in size. To achieve compatibility with other hardware,
such as the BLDC motor used for actuation, we scaled up the dimensions of
the face. The modified face now has lattice pitch of P = 9 cm and strut
length of L = 6 cm, compared to the original dimensions of Po = 7 cm and
Lo = 5 cm.

In the structures investigated in this thesis, the rigid voxel serves two
primary purposes. Firstly, it functions as a housing for sensors and various
components, including batteries and microcontrollers. Secondly, it acts as
reinforcements, enhancing the stiffness of the structures. An example of both
is the application of the rigid voxel in constructing ŽůžO (Chapter 6).

1https://www.prusa3d.com/product/original-prusa-i3-mk3s-kit-3/
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..................................... 3.2. Semi–compliant Voxel

P

L

(a) : A single rigid face.

(b) : Rigid voxel. (c) : Rigid multivoxel lat-
tice.

Figure 3.1: The decomposition of a rigid voxel lattice.

(a) : A single compliant
face.

(b) : Assembled semi–
compliant voxel. (c) : Semi–compliant mul-

tivoxel beam.

Figure 3.2: The decomposition and use case of a semi–compliant voxel.

3.2 Semi–compliant Voxel

The semi-compliant voxel (Fig. 3.2b) is composed of four rigid and two
compliant faces. While multiple configurations of compliant and rigid faces are
possible, resulting in various voxels, we detail the most prevalent configuration
found in our structures. Our particular arrangement of the compliant faces
allows the voxel to maintain stiffness in compression, while permitting bending
along one axis. This behavior is achieved through the coordinated action
of the compliant faces: when one face is compressed, the other extends. It
can be utilised in applications, where planar bending is desired, such as the
Voxel Tower, described in Chapter 5. Furthermore, the semi–compliant voxel
constitutes the backbone of the actuated voxel, introduced in the following
Section 3.3.

11



3. Digital Materials ........................................

(a) : Original compliant face
used at CBA [Jen20].

δzFz
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(b) : Graphical illustration of
the measured deformation.
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(c) : Comparison of the compliant faces under compression.

Figure 3.3: Testing of the original compliant face.

The design of the compliant face shown in Fig. 3.2a was modified from the
original presented in [Jen20] (Fig. 3.3a). This redesign is credited to Krištof
Pučejdl2, member of the AA4CC group at CTU and the main motivation
behind it was to address the limited compression and deformation capabilities
of the original face. To showcase the improved compression ability, we con-
ducted a series of finite element analysis simulations in Fusion 360, vertically
compressing the faces and measuring the induced displacement (Fig. 3.3b).
The results in Fig. 3.3c demonstrate that the new compliant face allows
nearly twice as much displacement compared to the original face. Moreover,
it maintains the linear relationship between the applied force Fz and the
induced displacement δz.

2http://aa4cc.dce.fel.cvut.cz/users/ 4pxtdnlfpf
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........................................ 3.3. Actuated Voxel

3.3 Actuated Voxel

Various methods of actuation for metamaterials were studied in literature.
Piezoelectric actuators in the form of patches attached to the individual meta-
material cells were employed in [LMWW20]. The viability of tendon-based
actuation was studied e.g. in [PRFJ+23] and it showed to be a reasonable
choice even when considering larger lattice structures, such as a snake–like
beam. The tendons are attached on one end to a servo motor and on the other
end to the point where the transmitted force should act. Thanks to being a
straightforward method in principle, tendon–based actuation has achieved
a considerable attention throughout the years [JKID90, OKH14], especially
in the field of soft robotics [VCG+16], where tendons are used for solving
tasks such as stiffness control [LCCY94]. Furthermore, [Jen20, PRFJ+23]
successfully translated this method into the field of actuation and control of
mechanical metamaterials.

Initially, we also relied on tendons for actuating voxel–based structures.
This choice was a natural first step, as it followed the inspiration from the
CBA group and the method was relatively easy to implement. However, there
are a several flaws with this approach. Foremost, tendon–based actuation
does not fit into the philosophy of digital materials. The essence of digital
materials lies in their modularity and reconfigurability. The characteristics of
individual modules should arise through entirely self–contained properties such
as compliance, the ability to gather information, or the capacity to initiate
motion, either individually or in combination. By combining such modules
we can build structures with desired specifications. For instance, the need
for increased driving force can be addressed by serially connecting multiple
actuation modules rather than designing a new component. Additionally, the
installation of tendons spanning multiple voxels would be significantly more
challenging to automate compared to connecting a single block. These factors
motivated us to develop a self-contained method of actuation that can be
fully integrated within a single voxel

We will call the voxel containing the actuation simply as actuated voxel. It
denotes a module capable of self–deformation, thereby inducing motion in the
overall structure. When designing the actuated voxel, the key consideration is
determining the specific shape change required to achieve the desired motion
of the entire structure. This opens up various possibilities for realising the
actuated voxel. For instance, a module generating rotational motion (Fig. 3.4)
can be constructed using chiral faces from [Jen20]. Chiral faces exhibit
twisting in response to axial strain, making them suitable for this application.
A standard motor connected to the botom of the voxel could be utilised to
initiate rotation. Individual chiral faces would not oppose the rotation while
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3. Digital Materials ........................................

(a) : The chiral voxel face [JCT+20].

rotation

motor

(b) : Chiral–based actuation principle.

Figure 3.4: The illustration of an rotating actuated voxel.

still providing enough structural support. However, our particular application
does not require rotational or twisting motion. Instead, we found that a
voxel capable of tilting the upper face by stretching and contracting its sides
aligns better with our needs. We have physically implemented this actuation
principle, resulting in the specific type of actuated voxel described below.

Our specific actuated voxel comprises three main components: a 52083

brushless motor (1), an FOC Moteus Driver r4.114 (2), and a mechanical
motion transmitter (3) (Fig. 3.5b). The motor was selected for its com-
patibility with the driver, which integrates a magnetic encoder for precise
motor control, microcontroller, and CAN-FD interface. Unlike traditional
servo or stepper motors, this combination enables us to operate the motor
in torque control mode. The mechanical motion transmitter consists of two
3D printed slim compliant beams connecting the motor shaft to the top
face of the semi–compliant voxel. The transmitter converts the rotation of
the motor into push–pull motion acting on the top face of the voxel. This
results in tilting the voxel as one compliant face is compressed and the other
extended. We illustrate the motion principle in Figure 3.5d, which shows
simulation results of a simplified voxel model under static applied torque.
The simulation results, obtained using Fusion 360 software, also show stress
distribution and the corresponding deformation. An important remark is
that this method of actuation deforms the housing voxel itslef, distinguishing
it from methods often used e.g. in modular robotics. There, movement is
usually achieved through separate actuated joints that connect individual

3https://mjbots.com/products/mj5208
4https://mjbots.com/products/moteus-r4-11
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.................................... 3.4. Discrete Folded Material

(a) : Render of the actuated voxel.

(1)

(2)

(3)

(b) : Decomposition into individual parts.

(c) : Real assembled prototype.

(d) : Simulation results of the actuated
voxel under applied torque.

Figure 3.5: The actuated voxel utilised in this work.

modules. In contrast, our actuated voxel is equal with other building blocks
when viewed in the context of the whole structure. Meaning there is no need
for any other further interface and the movement directly arises through the
deformation of the modules.

3.4 Discrete Folded Material

The relatively high fragility of the aforedescribed voxels was a concern as
we have spent quite some time with replacing broken voxel faces. Therefore,
we describe also an alternative, much more durable kind of metamaterial:
the Discretely Folded Material (DFM). It differs from the voxels above both
in material and assembly. Voxels were 3D printed and then the individual
faces were connected together using rivets. In contrast, the DFM consists of
cleverly cut out parts of hylite that can be folded along predefined lines to
form 3D structures. This material is credited to Alfonso Parra Rubio at the
Center for Bits and Atoms, MIT. Because with DFM the researchers at CBA
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3. Digital Materials ........................................

(a) : A single discrete folded
building block.

(b) : Example of a discrete folded structure.

Figure 3.6: Discrete folded material.

pursue building structures like morphing aircraft wing, its high load bearing
capacity is of great importance. Besides that, another perk of this material is
that we can assemble large and durable 3D structures from building blocks
produced quite simply using ordinary 2D fabrication methods. Furthermore,
the stiffness of the resulting structure can be easily adjusted by configuring
individual building elements.

Regarding the components, there is basically just one type and when
folded, it resembles a hollow zig–zag triangular prism (see Fig. 3.6a for better
intuition). These compose structures by being attached to a flexible centroid
(Fig. 1.4). One interesting property of the centroid is that it retains constant
length when bending and the modules are designed to be compliant with that.
While having a single governing shape, the parameters of the elements are
tunable to achieve various properties. The stiffness of the whole structure is
governed by the shape of the trapezoidal side profile of the building blocks
(orange dashed line in Fig. 3.6a): the steeper the trapezoid, the more flexible
the structure is. For a better idea of how a strucutre from this material can
look like, see the Figure 3.6b. The structure in the figure acts as a joint, with
an actuator in the middle that can rotate with the attached left and right
parts. The individual building blocks are then mounted onto the centroid
(the centroid is not visualised) in opposite orientations giving the structure a
regular and symmetric 3D shape.
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Chapter 4

Approaches to Mathematical Modelling
and Simulation

The procedure of designing almost any control algorithm cannot do without a
mathematical model. This model serves not only for the design process itslef
but also for validating the resulting controller. We dedicate this chapter to
describing the modelling frameworks and simulators employed in this work.

In general, three simulation and modelling approaches are possible, each
carying its benefits and drawbacks. The first approach is to utilise some
existing simulation tool. In the context of digital materials, a correctly
chosen software would allow for describing the discrete nature of the material
and provide a suitable environment for simulating the coupled dynamics
of individual blocks. At the same time, this approach is limited by the
capabilities of the chosen simulator and adding or modifying functionalities as
required might prove difficult. Another approach is to abandon the discrete
nature of the material and instead create a continuous approximation that
captures the essential properties of the system. This approach is appealing
due to its reliance on well–established physical principles and the ability to
specify the desired level of detail during the design process. However, by
adopting this approach, we sacrifice the discrete nature of the system, leading
to a substantial simplification of the dynamics and potential loss of certain
degrees of freedom. The third approach involves utilising a fully equation–free
data–driven method to construct the model. The motivation behind this
approach is following. Firstly, there are cases where the underlying dynamics
are too complex to be accurately captured by equations. Secondly, utilizing
correct data has the potential to reveal previously unknown relationships.
However, it is important to note that the absence of equations and limited
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4. Approaches to Mathematical Modelling and Simulation .......................
prior knowledge of the system can sometimes impact the precision of the
model.

First, in Section 4.1, we provide an overview of two existing simulation tools:
one developed at MIT and the other here, at CTU. Then, in Section 4.2, we
discuss the process of creating a model using conventional techniques at the
price of abandoning the discrete nature of the material. Finally, in Section 4.3,
we introduce an universal data-driven model acquisition framework called the
Dynamic Mode Decomposition (DMD).

4.1 Existing Simulators

When it comes to deciding what tools can be used for simulating particular
objects, often the idea of using a simulation software tailored to the studied
structure comes to mind first. In this section, we describe two such simulators.
Namely, the Metavoxels simulator and the Rigid Body simulator.

The Julia–based Metavoxels simulation and modelling software, developed
by Amira Abdel–Rahman1 at CBA, is a tool for designing and simulating
voxel–based lattice structures. It utilises a node and edge representation,
where nodes correspond to voxel connection points and edges represent the
trusses of individual voxels. When simulating structures with a large number
of elements the simulator allows for hierarchical simplification by grouping
multiple nodes and edges into a single node, reducing the computational
complexity of the simulation.

The core of the simulator resembles the direct stiffness method and utilises
stiffness relations between individual elements to compute the resulting forces
and displacements. Individual trusses, each defined by a pair of vertices, are
modelled using the following beam model[

Fn

Mn

]
= K

[
Dn

Θn

]
, (4.1)

where Fn, Mn, Dn and Θn are nodal forces, moments, displacements, and
roatations, respectively. K is here the stiffness matrix of a given edge/beam.

The Metavoxels framework offers potential for creating precise and com-
putationally tractable models and simulations. It considers a wide range of

1https://amiraa.pages.cba.mit.edu/home/
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...................................... 4.1. Existing Simulators

material parameters, including coefficients of thermal expansion, Poisson’s
ratio, and various damping constants. However, this high level of customis-
ability presents challenges when building models without precise knowledge
of all these parameters and their role in the simulation. Moreover, not all
parameters have clear physical interpretations, and their values were tuned
to best fit the voxels and structures developed at CBA. Furthermore, it is
important to note that the simulator is still under development, as Amira
herself mentioned. Additionally, the simulator is best suited for voxel struc-
tures actuated by tendons, which is the primary means of actuation at CBA.
While the Metavoxels simulator is an interesting tool, it can be challenging
to utilise it effectively for creating simulations that facilitate the design of
control algorithms.

Nevertheless, we tested the simulator by creating a downsized model of the
Voxel Tower (Section 5). We kept some material parameters unchanged, while
other we experimentally tuned to achieve a visual resemblance of the model to
the real Tower. To enable deflection angle approximation, we integrated a new
sensor interface into the simulator. To estimate the deflection, the sensing
model utilises the relation φ = atan(y, x) with φ [deg] being the deflection
angle and x [mm] and y [mm] the coordinates of the sensor. Additionally,
we implemented a new actuation principle resembling the actuated voxel.
Figure 4.1 displays the graphical output of the simulator, featuring 2D and
3D views of the Voxel Tower model. To validate the implemented changes,
we experimentally tuned a straightforward velocity P damper u = 3φ̇, where
u is the action applied to the nodes where the actuated voxel is acting. The
response of the damped system is shown in the Figure 4.1c. Although the
performance of the damper falls short of being optimal or satisfactory, the
purpose of it was to test the integration of all the implemented features.
However, due to the aforedescribed challenges, we made the decision not to
continue investing in the framework. At the time of writing, the created
model was not sufficiently precise or suitable for our needs.

The Rigid Body simulator utilises the RigidBodyDynamics2 library written
in Julia to create models. This simulator was implemented by Dominik Hodan
during the Team Project course at CTU as a tool to simulate robot ŽůžO
(Chapter 6). The structures are modelled as a smart interconnection of planar
and revolute joints with forces acting on each of the joints. The advantages
of this approach are again, the possibility of expressing the discrete nature
of the system with a lot of degrees of freedom. However, being the same
type of simulator as the Metavoxel simulator carries the burden of having
similar downsides. Namely, that some of the parameters are difficult to tune
right and it can be challenging to model structures for which the library
does not have an immediate support. For example, the library is not meant
for modelling closed kinematic chains with floating base. To model ŽůžO,

2https://juliarobotics.org/RigidBodyDynamics.jl/stable/
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4. Approaches to Mathematical Modelling and Simulation .......................

(a) : Side view of the created Voxel Tower.
Black square in the fourth voxel repre-
sents the sensor.

(b) : 3D view of the Voxel Tower model.
Orange are compliant and black are rigid
sides.
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(c) : Response of the damped system to an intial ramp disturbance
to the top of the tower.

Figure 4.1: The Metavoxels simulator.

Dominik had to devise a workaround by introducing virtual joints with no
mass to enable the library to solve the robot’s dynamics. Given these reasons
and the fact that we are now working with a new version of the robot, for
which the model was not created, we include the description of the Rigid
Body simulator just for the sake of completeness to document its existence.
For illustration, the visualisation of ŽůžO is in the Figure 4.2.
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...................................... 4.2. Analytical Approach

Figure 4.2: Graphical output of the Rigid Body simulator.

4.2 Analytical Approach

The second approach to modelling involves utilising the knowledge of the
underlying physics that governs the structure. We demonstrate this analytical
modelling procedure on the robot ŽůžO. It is a rolling robot constructed
using digital material, achieving rolling motion through the displacement of
its heavy central block connected to the outer wheel rim via flexible segments.
This way ŽůžO shifts its center of mass, enabling the rolling motion. Figure 1.3
depicts the complete robot.

Due to the discrete nature of ŽůžO’s building material, deriving differential
equations for each degree of freedom becomes highly challenging, if not
impossible. To facilitate the modelling process, we will adopt the following
approximations and assumptions. Firstly, we will transition from discrete
building blocks to a continuous matter representation. Additionally, we will
consider the rim to be perfectly rigid. Furthermore, our focus will be solely
on the fundamental aspects of the robot, simplifying it to a point of mass
connected to the rigid ring via four springs. These simplifications lead to the
creation of a simplified model, as depicted in Figure 4.3.

The mathematical model was developed using Lagrangian formalism. This
constitutes describing the system in terms of its kinetic and potential energies,
T and V . They are then used to determine a smooth function L known as
the Lagrangian.

L(q, q̇) = T (q, q̇)− V (q, q̇). (4.2)

First step in describing the robot is to determine its degrees of freedom and
generalised coordinates q that can uniquely describe the state of the robot at
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Figure 4.3: Simplified ŽůžO model.

any given time. Our choice of the generalised coordinates is

q =
[
q1 q2 q3

]>
=
[
θ xm ym

]>
,

where θ [rad] is the current angle of the wheel and xm [m] and ym are [m]
coordinates of the mass with respect to the center of the disc (expressed in
the coordinate system Od). The transition from the local disc–connected
frame Od and the global frame Og is possible using the classical 2D rotation
matrix R(θ) ∈ SO(2), resulting in the following transformation.

xg(q) = x+ xm cos(θ)− ym sin(θ), (4.3)
yg(q) = r + xm sin(θ) + y cos(θ). (4.4)

Furthermore, we can differentiate (4.3) and (4.4) to get expressions for ẋg(q, q̇)
and ẏg(q, q̇). In the above formulas, we utilise the assumption that the robot
is moving without slipping and therefore the relation between the center of
the disc [x y]> and θ is [x y]> = [−θr r]>.

In order to evaluate (4.2) we must compute the kinetic and potential energies
of the system. Consider the former first. The system is an interconnection
of two parts: a rolling disc and a point of mass. Upon denoting individual
kinetic energies of disc and mass as Td and Tm respectively, the total kinetic
energy becomes

Td(q, q̇) = 1
2mdẋ

2 + 1
2Jdθ̇

2 = 3
4mdr2θ̇2, (4.5)

Tm(q, q̇) = 1
2mm

(
ẋ2

g(q, q̇) + ẏ2
g(q, q̇)

)
, (4.6)

T (q, q̇) = Td(q, q̇) + Tm(q, q̇), (4.7)

where md is the mass of the disc, mm is the central mass, ẋ is the translational
velocity of the rolling disc and Jd = 1

2mdr2 is the disc’s moment of inertia.
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...................................... 4.2. Analytical Approach

When considering the potential energy V , it is important to account for
the flexible segments that connect the central mass of the robot to its outer
rim. We model these segments as generalised springs and as such they
contribute to the total potential energy of the system. Upon associating a
label i ∈{A,B,C,D} to each spring, based on the attachment points on the
rim (Fig. 4.3), the total potential energy can be computed as a sum of partial
potential energies as

V (q, q̇) =Vd(q, q̇) + Vm(q, q̇) + VA(q, q̇)+
VB(q, q̇) + VC(q, q̇) + VD(q, q̇).

(4.8)

Note, that in (4.8) Vd = 0 as the disc is only allowed to roll on the ground.
Vm(q, q̇) = mm g yg(q) is the potential energy of the central mass (with g being
the gravitational acceleration). The potential energy of a spring i depends
on its deformation di and the spring constant ki as Vi = 1

2ki d
2
i . Considering

the same k for all the springs, we can write (4.8) as

V (q, q̇) = mm g yg(q) + 1
2k
(
d2

A(q) + d2
B(q) + d2

C(q) + d2
D(q)

)
. (4.9)

The deflection di of each spring can be computed in the rim–connected
coordinate frame as the difference between its nominal length r (radius of the
wheel) and its current length, based on the position of the mass [xm ym]>

dA(q) = r−
√

(−r + xm)2 + y2
m, db(q) = r−

√
(r + xm)2 + y2

m,

dC(q) = r−
√
x2

m + (−r + ym)2, dD(q) = r−
√
x2

m + (r + ym)2.

Using (4.7) and (4.9), equation (4.2) can be written as

L(q, q̇) = 3
4mdr2θ̇2 + 1

2mm
(
ẋ2

g(q, q̇) + ẏ2
g(q, q̇)

)
+

mm g yg(q) + 1
2k
(
d2

A(q) + d2
B(q) + d2

C(q) + d2
D(q)

) (4.10)

giving the Lagrangian of the system.

We also need to account for the dissipative processes in the system. A
simple model of rolling friction between the robot and the ground is considered
as per

Fr = (md + mm) Crr g, (4.11)

where Crr is the rolling resistance coefficient. Another dissipative process in
the system is the damping in the springs. It is characterised by the damping
constant b and acts only in the direction of the springs. We consider only
the spring A first. A simple damper is described by Fd = bζ̇, where ζ
represents the length of the damper and in this case is equal to the length of
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4. Approaches to Mathematical Modelling and Simulation .......................
the spring. Our goal is now to express its rate of change. For spring A, the
fixed attachment point is represented by the position vector pd

A = [0 − r]>
(in coordinate system Od), and the difference between the two ends of the
spring is given by ζA = pd

m − pd
A = [xm (ym + r)]>. We can now differentiate

the norm of ζA to get the following damper equation

FdA = 1
2b d

dt

(√
ζ>A ζA

)2
. (4.12)

For the other springs we utilise the same approach. In (4.12), we use squaring
and dividing the result with one half for the sake of nicer results.

The position of the mass is driven by four actuators, each associated
with one of the flexible segments. Ultimately, the combined action of these
actuators comprises the non–conservative forces Fx and Fy acting on the
central mass. In order to determine, how individual actuators contribute
to the resulting forces, we need to compute the angle φi between the disc–
connected coordinate system Od and vector −ζi, expressing the directions of
individual springs i. The angles φi are then

φA = atan(−xm,−r− ym), φB = atan(−ym, r− xm),
φC = atan(−xm, r− ym), φD = atan(−ym,−r− xm).

Upon associating a label ui with the control action of each actuator, we can
express the forces Fx and Fy by projecting ui onto the coordinate axes of Od

Fx = uA sin(φA) + uB cos(φB) + uC sin(φC) + uD cos(φD), (4.13)
Fy = uA cos(φA) + uB sin(φB) + uC cos(φC) + uD sin(φD). (4.14)

To be concise, we can introduce a vector u = [uA uB uC uD]> and write (4.13)
and (4.14) shortly as Fx(u, q) and Fy(u, q), respectively.

Finally, a general form of the Euler–Lagrange equation is

d
dt
∂L(z, ż)
∂ż

− ∂L(u, ż)
∂z

= −∂D(z, ż)
∂ż

+ F, (4.15)

where z and ż are some generalised coordinates, D represents the dissipative
and F = [Fx Fy]> the non–conservative forces, respectively. Because there
are three generalised coordinates describing the system there will also be
three Euler–Lagrange equations, each associated with one coordinate.

d
dt
∂L(q, q̇)
∂θ̇

− ∂L(q, q̇)
∂θ

= −Fr, (4.16)

d
dt
∂L(q, q̇)
∂ẋm

− ∂L(q, q̇)
∂xm

= −∂ (FdA + FdB + FdC + FdD)
∂ẋm

+ Fx(u, q), (4.17)

d
dt
∂L(q, q̇)
∂ẏm

− ∂L(q, q̇)
∂ym

= −∂ (FdA + FdB + FdC + FdD)
∂ẏm

+ Fy(u, q). (4.18)
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Symbol Description Value Unit
r Radius of the rim 0.46 m

md Mass of the rim 0.2 kg
mm Mass of the central block 0.9 kg
Crr Coefficient of rolling resistance 0.1 -
b Damping constant 2 Nm/s
k Spring constant 30 N/m

Table 4.1: Parameters of the nonlinear ŽůžO model.

This results in a system of three second order differential equations that can
be translated into six first order differential equations constituting the model of
the robot described with a state x =

[
θ θ̇ xm ẋm ym ẏm

]>
. We have focused on

detailing the crucial steps leading to the derivation of equations (4.16), (4.17),
and (4.18). However, due to space limitations and the fact that obtaining the
final form of the differential equations is no longer specific to the described
approach, we have omitted their inclusion. We do provide a list of physical
parameter values used in the model in Table 4.1. It should be noted that
not all of these parameters perfectly align with the physical reality. While
easily determinable parameters, such as the radius of the rim, were directly
measured and used in the model, other, like the spring constant of the flexible
segments, were selected iteratively to achieve visually similar behaviour to
the real robot. However, no extensive validation against the real robot has
been performed and the model currently captures the utilised principle of
motion rather than a particular structure. The precise identification of all
parameters poses a challenge that can be addressed in future work.

4.3 Dynamic Mode Decomposition with Control
(DMDc)

Dynamic Mode Decomposition (DMD) is a versitile matrix decomposition
and dimensionality reduction technique that can also be used for obtaining
best–fit linear models. It stemms in the field of fluid dynamics and was
developed to extract dynamic information from flow fields. It was first defined
as an algorithm by Schmid [Sch10] and since then it proved useful in a variety
of areas ranging from video processing, epidemology [KBBP16] to control
of dynamical systems [PBK16]. Since the control of dynamical systems is
almost exclusively coupled with some form of inputs, the DMD algorithm for
autonomous systems is ommitted for the sake of brevity. Instead, we describe
only its version for systems with inputs – DMD with control (DMDc).
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4. Approaches to Mathematical Modelling and Simulation .......................
We will start by briefly describing the Koopman operator approach to

analysing dynamical systems which offers the rationale behind the DMDc.
However, its thorough understanding is not crucial in the context of this
work. Then, we detail the process of obtaining a linear predictor of nonlinear
dynamics using the DMDc algorithm, which is a method that we encounter
in several places in the text.

The main appeal of the Koopman operator is that it provides a well
grounded approach for describing nonlinear dynamics using linear operator
with the ability of describing the nonliearity ideally. However, such Koopman
operator can end up being infinitely dimensional and thus we try to approxi-
mate it using a classical (finite) linear predictor (4.23). We use DMDc to find
the matrices A, B and C defining the linear system predicting the nonlinear
dynamics.

The foundations for utilising the Koopman operator for analysing dy-
namical system were laid by the works of Koopman and von Neumann in
the 1930s [Koo31, KN32]. Consider now an autonomous discrete dynamical
system

x[k + 1] = T (x[k]) , x[k] ∈M, (4.19)

defined on the state spaceM governed by a nonlinear transition mapping
T (x[k]). For the sake of illustrativeness we are restricting ourselves to the case
of autonomous systems only, however all of the Koopman operator theory
can be extended to systems with external inputs and we reffer the reader
to [KM18a] for more insight. The core idea is to shift the focus from the
mapping T to some (possibly infinitely many) user–defined functions of the
states, so–called observables. This is motivated by the fact that upon defining
observable as a function ψ :M−→ R,∈ F , where F is typically an inifinitely
dimensional vector space, the Koopman operator K : F −→ F defined as

(Kψ) (x[k]) = ψ (T (x[k])) = ψ (x[k + 1]) (4.20)

advances every observable ψ from the time step k to k + 1. One of the
fundamental properties of K is its linearity since for any two observables ψ1
and ψ2 and scalars α1 and α2 the following holds

K (α1ψ1 + α2ψ2) = α1K (ψ1) + α2K (ψ2) . (4.21)

So, using the Koopman operator one can convert the analysis of finite–
dimensional nonlinear system into the analysis of the infinite–dimensional
linear operator with possibly infinitely many observables ψ of the original
states. Thus we aim to find a finite–dimensional approximation of such
operator using (4.23). For more information about the Koopman operator
theory, the reader is reffered e.g. to [BBKK21].
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Consider now the extension of (4.19) to the case of systems with inputs

x[k + 1] = Tu (x[k], u[k]) , x[k] ∈M, u[k] ∈ U . (4.22)

The process of obtaining an accurate linear predictor of the nonlinear dynam-
ics (4.22) includes lifting the nonlinear dynamics into a higher dimensional
space where the evolution of the lifted state becomes approximately linear.
This can be done by selecting appropriate s lifting mappings (observables).
For the sake of compactness, we will combine all observables into one vector
Ψ = [ψ1 · · · ψs]> which allows for constructing the predictor’s state from the
states of the system as z[k] = Ψ(x[k]) = [ψ1 (x[k]) ψ2 (x[k]) · · · ψs (x[k])]>.
Then the predictor takes a form of a discrete linear system

z[k + 1] = Az[k] +Bv[k],
ŷ[k] = Cz[k],

(4.23)

with ŷ[k] being the prediction of the ouput y[k] of the nonlinear system at
time k, z[k] being the lifted state and v[k] = Ψ(u[k]) the lifted input.

We have selected the lifting observable ψ to be the so–called delay embedding.
This resorts to stacking time–shifted copies of the state variables as the
lifted state vector z[k]. (4.24) expands the resulting form of z[k] for s delay
embeddings. The use of delay embeddings as the observable mapping has
been documented and justified e.g. in [TRL+14].

z[k] =


x[k − s]

...
x[k − 1]
x[k]

 . (4.24)

The next step is to collect p snapshots of measured values yi and ui ∀i ∈
{1, . . . , p} (i being the index in the measured sequence of shapshots) on the
real nonlinear system. Then, we can arrange the data in the following manner
while assuming that the measurements satisfy the relation y+

i = T (yi, ui)
(here, note that x = y)

Xlift =
[
Ψ(y1) Ψ(y2) · · · Ψ(yp)

]
=
[
z1 z2 · · · zp

]
,

X
′
lift =

[
Ψ(y+

1 ) Ψ(y+
2 ) · · · Ψ(y+

p )
]

=
[
z+

1 z+
2 · · · z+

p

]
,

Ωlift =
[
Ψ (u1) Ψ (u2) · · · Ψ (up−1)

]
=
[
v1 v2 · · · vp−1

]
.

Here the matrix X ′
lift is just Xlift after time–shifting k := k + 1. Using the

above, we can rewrite the state evolution equation (4.23) for all k as

X
′
lift ≈ AXlift +BΩlift. (4.25)
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X
′
lift ≈ A B

DMDc

Xlift

Ω′
lift

G

Γ

Figure 4.4: Data distribution in the DMDc algorithm.

Utilizing the matrices Xlift, X
′
lift and Ωlift, DMDc finds best–fit approxima-

tions of A and B that satisfy (4.25) for all snapshots i. Relation (4.25) can
further be rewritten as

X
′
lift ≈

[
A B

] [Xlift
Ωlift

]
= GΓ, (4.26)

so that G = [A B] is the augmented operator matrix and Γ = [Xlift Ωlift]> is
the augmented data matrix. An illustration showing the data arrangement
in (4.26) is in the Figure 4.4.

We find the matrix G from (4.26) to minimise the following error

||X ′
lift −GΓ||F , (4.27)

where ||M ||F =
√∑n

j=1
∑m

k=1M
2
jk is the Frobenius norm. G is then given by

G = X
′
liftΓ†, (4.28)

where † denotes the Moore–Penrose pseudoinverse. One method for finding
the minimzer of the Frobenius norm is Singular Value Decomposition (SVD).
Using the SVD of Γ = UΣV ∗, (4.26) can be expressed as

G = X
′
liftV Σ−1U∗. (4.29)

The operators A and B are then extracted from G by suitably splitting along
columns into two matrices. Effectively, when splitting the left singular vectors
U into two separate components U1 ∈ Rsn×sn and U2 ∈ Rsn×sm, A and B
are found as (m being the number of inputs into the system)[

A B
]

=
[
X

′
liftV Σ−1U∗1 X

′
liftV Σ−1U∗2

]
. (4.30)

In this case, where the mapping ψ just rearanges the state variables, the
matrix C can be directly constructed so that the output ŷ[k] corresponds
with the not–delayed current values of x[k] ∈ Rn as

C = [0n×sn In×n] . (4.31)
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Figure 4.5: Comparison of the nonlinear system and linear predictions.

We showcase the performance of the linear predictor that can be obtained
using this method in the Figure 4.5. There, we plot the comparison of a
measured response of the Voxel Tower (described in Chapter 5) and the
DMDc–based predictions of states φ (angle) and φ̇ (angular velocity) when
subjected to sine–wave input.

For a more in–depth treatment of this topic, we reffer the reader for
example to [AKM18]. The convergence of the DMDc algorithm that utilises
observables was then proven in [KM18b]. Another way of constructing
predictors exploiting the system dynamics was then proposed in [KM20].

29



30



Chapter 5

Voxel Tower

Building upon the foundation laid in the preceding chapters, we now shift
our focus to the heart of this work: the three digital material structures.
In this chapter, we introduce the first of these structures: the Voxel Tower
in Figure 5.1a. It comprises 7 vertically connected semi–compliant voxels
and one rigid voxel housing an inertial measurement unit MPU92501 IMU
sensor. The whole structure is driven by the actuated voxel at its bottom
end. Acting as the central control hub is a Raspberry Pi 4b2, which runs
the control algorithms. The deveolpment of said algorithms forms the main
contribution of this chapter and is discussed upon addressing some preceeding
tasks, including, but not limited to, the creation of a linear model for the
system.

We organise this chapter as follows. Firstly, we establish the mathematical
foundation for describing the system and address some subtleties in creating a
linear model. We proceed to studying its validity in Section 5.1. Subsequently,
in Section 5.2, we address challenges encountered when utilising measured data
to develop the model. We then explore two control scenarios for the presented
structure: disturbance attenuation and oscillation damping in Section 5.3,
and trajectory tracking in Section 5.4. Finally, Section 5.5 concludes the
chapter with a discussion on the level of accomplishment of individual tasks
and the insights gained from the conducted experiments.

The Voxel Tower represents a single–input–multiple–output (SIMO) system
that contains one actuator at the bottom and one sensor for measuring the

1https://www.sparkfun.com/products/16832
2https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
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(a) : Photo of the Voxel Tower in motion.

φ IMU

actuator

u

compliant faces

rigid faces

(b) : A graphic of the Voxel Tower sys-
tem with the meaning of individual vari-
ables.

Figure 5.1: The Voxel Tower.

tilt of the structure. Despite its apparent simplicity, the structure presents a
variety of interesting and challenging tasks that need to be addressed. One
such challenge is the placement of sensors, a topic that has been extensively
studied [BBMR87, NT19]. While acknowledging that there is no claim to
optimality, we experimentally decided to mount the sensor halfway up the
structure. This positioning allows us to capture even higher modes of the
structure, adding to the range of movement we can study.

The dynamics of the Voxel Tower can generally be described by a map

ẋ(t) = f(x, u, t), (5.1)

where x(t) ∈ Rn=2 and u(t) ∈ R are the state vector and input at time t
and f(·) is an unknown function. The state of the system can be expressed

as x(t) =
[
x1(t)
x2(t)

]
=
[
φ(t)
φ̇(t)

]
, where φ(t) [deg] and φ̇(t) [deg/s] are the

tilt angle and velocity, respectively. u(t) [Nm] is the torque applied to
the motor. Furthermore, since both states can be directly measured using
the IMU sensor, they are also considered as outputs of the system. To
reduce the noise in the measured velocity, we applied a moving mean filter
based on 10 measurements. We sample the dynamics (5.1) (taking the
filtered velocity) by performing measurements on the system at time instants
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kTs, k ∈ N ∪ {0}, where Ts = 0.005 s is the sampling period of the system.
The obtained snapshots of measured data are then utilised to create a discrete
linear predictor approximating the continuous nonlinear dynamics (5.1). We
compute the predictor (5.2) using the approach described in Section 4.3.

We developed two models: one for stabilisation and another for tracking.
The only difference between the two models is the lifting map ψ, specifically
the number of delay embeddings s. The stabilisation model used s = 2
delay embeddings, while the tracking predictor yielded better results with
s = 3. The motivation behind having two models was the observation that
the tracking performance was not sufficient using the model for stabilisation.
Therefore, we decided to design a separate predictor specifically for tracking.
In this part, we use the notation introduced in Section 4.3. To avoid repetition
and maintain brevity, we refrain from restating the definitions and notation
in this section. In case a symbol’s meaning is unclear, we refer the reader
back to Section 4.3 for clarification.

As we have already indicated, the chosen lifting map ψ was to intro-
duce delay embeddings. With this choice, we can construct the matrices
Xlift, X

′
lift and Ωlift from the measured snapshots. These we then use to

compute the linear predictor utilising the lifted state z[k] = Ψ(x[k]) and input
v[k] = Ψ(u[k])

z[k + 1] = Az[k] +Bv[k],
ŷ[k] = Cz[k],

(5.2)

utilising the DMDc algorithm as per (4.30) and (4.31). A slight caveat arises
when considering s > 0 delay embeddings. Namely, that using the lifted
inputs Ωlift in (4.30) results in B having s+1 > 1 columns. However, this does
not correspond with the reality of having a single input to the system. We
expand v[k] and rewrite the state evolution equation from (5.2) to illustrate
the issue

z[k + 1] = Az[k] +

 | | |
bs · · · b1 b0
| | |


︸ ︷︷ ︸

B


u[k − s]

...
u[k − 1]
u[k]


︸ ︷︷ ︸

v[k]

, (5.3)

where bi is a column of B corresponding with ith delayed entry in the vector
v[k]. We can solve this discrepancy by incorporating the delayed inputs into
the state vector, producing a new predictor

z̄[k + 1] = Az̄[k] +Bu[k],
ŷ[k] = Cz̄[k],

(5.4)
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5. Voxel Tower ..........................................
with z̄[k] = [z[k] u[k − s] · · · u[k − 1]]> being the new augmented state vec-
tor.

Besides producing the augmented state vector z̄[k], we need to alter the
system matrices accordingly as well. Using the labels of individual columns
of B as in (5.3), we can write the augmented state matrices as

A =

 A bs
· · · b1

0s×n I1
s×s

 , B =

 b0
01×s−1

1

 ,
C =

[
1 002×2s 0 1 02×s

]
,

where I1
s×s is a s × s matrix with ones on its superdiagonal. This way we

have obtained a linear predictor of the nonlinear dynamics of the Voxel Tower
with incorporated delay embeddings but just one input.

The process of creating the two aforementioned models then boils down to
creating two predictors (5.2) using different number of delay embeddings and
then composing two sets of A,B and C, each with different dimensions and
based on the different matrices A and B.

5.1 Linear Model Verification

The above text discusses the derivation and final form of the state matrices
describing the linear predictor (5.4). In the following two sections, we discuss
the practical aspects of the model acquisition problem.

The DMDc algorithm is a data–based method and as such its performance
heavily rests on the supplied identification data. The identification data
should be rich enough to contain as much of the system’s dynamic modes and
characteristics as possible. To ensure this, we created a set of 13 identification
experiments, each lasting between 20 and 60 seconds. In these experiments,
we applied various input signals such as step changes, ramps, and random
composite harmonic signals. Figure 5.2a visualizes some of these signals along
with their corresponding measured responses. However, we observed that some
of the experiments produced data that negatively affected the performance
of the developed controllers, despite reasonable predictions during the open
loop verification. These subtleties and their impacts are described in more
detail in the following Section 5.2.
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(a) : Example of identification data.
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(b) : Comparison of the two DMDc models.

Figure 5.2: Identification and verification of the DMDc model of the Voxel Tower.

In light of that observation, we selected only a subset of the measured
experiments to be used for fitting the model. The selected responses were then
stacked together to form the data matrices Ωlift, Xlift and X ′

lift from (4.26).

We collected a separate set of measured responses for testing purposes,
which were not used in model creation. These measurements were used to
validate the resulting predictor A, B, and C. We assesed the accuracy of
individual models by applying a given input and comparing the model’s
predictions with the measured responses. Figure 5.2b illustrates models’
correct predictions of the system’s response. In terms of angle, both models
capture the behaviour of the nonlinear system quite well as the predictions
closely follow the measured response. Although the models did not fully
capture the high–frequency velocity oscillations, they accurately described
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5. Voxel Tower ..........................................
the overall trend and average changes. Therefore, we consider the models
good enough to be used in controller design.

A quick note on the comparisson of the two models with different number
of delay embeddings follows. Although their predicted responses are nearly
identical, the rationale behind having two models stems from our observation
during the design of the tracking controller. We found that the model with
three delay embeddings (s = 3) exhibited significantly better behavior in this
context.

5.2 Examining Sets of Identification Experiments

In light of the observation discussed in the previous section, we now turn
our attention to the impact of identification data on the designed controller.
Surprisingly, some of the measured identification responses had a negative
effect on the controller, instead of improving it by providing the model with
furhter information about the system’s behaviour. To maintain brevity, we
assign labels to the individual experiments using their corresponding index
in the set ranging from 1 to 13.

To illustrate the issue, we tuned an MPC controller with almost ideal
tracking response. Although this controller is too aggressive for driving the
real system, it performs well on the linear model, allowing us to effectively
demonstrate the problem at hand. The response of the linear model driven
by this controller is in Figure 5.3b. We utilised identification experiments
{1, 3, 6, 11, 12, 13} to create the model. However, when including e.g.
experiment no. 2 into the training set, the same controller completely fails in
trying to follow the reference signal. This is illustrated in Figure 5.3b. At the
same time, the inclusion or exclusion of experiment 2 in the training set does
not appear to affect the model’s ability to accurately predict the real system’s
behaviour, as shown in Figure 5.3a. Consequently, it becomes challenging to
identify problematic responses in advance solely by evaluating the predictions
of the linear model.

To investigate the root cause of the issue, we analysed the predictor matrices
A and B. We revealed that the presence or absence of certain data in the
identification process has a notable impact on the input matrix B. The
specific values of resulting matrices B (without experiment 2) and B′ (with
experiment 2) are provided below. It is worth noting that we investigated
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(a) : Both models predicting the outputs of the real system.
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(b) : Both models being controlled by an MPC.

Figure 5.3: Behaviour of predictors created with and without utilising the
experiment no. 2.

this for the model with 3 delay embeddings.

B =
[
0 0 0 0 0 0 0.1566 2.7876 0 1

]>
,

B
′ =

[
0 0 0 0 0 0 0.0728 −0.7539 0 1

]>
.

A quick remark: A similar pattern, as described below, persisted even when
we explored different combinations of experiments. However, to maintain
conciseness, we will not provide detailed information about these combinations.
Instead, we have selected one specific case involving a pair of good and bad
experiments that effectively demonstrate the issue.

The form of matrix B′ is not an issue by itslef but it can give us more
insight into the behaviour of the faulty model. Individual elemets of B′ are
noticeably smaller in absolute value than the entries of B, signifying a much
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(a) : Identification experiment number 3.
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(b) : Identification experiment number 2.

Figure 5.4: The good and bad identification experiments.
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(b) : Close up into the frequencies and
amplitudes from the experiment 2.

Figure 5.5: Results of the performed frequency analysis.

lower influence of the input signal on the system. Furthermore, considering
this observation in the context of the visualised experiments 2 and 3 in
Figure 5.4, we notice one possible explanation. The core of the problem
might be that in the experiment 2 (Fig. 5.4b), we excited the system too
much, resulting in the inertia and own dynamics of the system overcoming the
motor as the dominant driving force. As a result, the model fails to learn the
input–output mapping accurately. To support this assumption, we performed
a frequency analysis of the response in experiment no. 2. By comparing
the resulting frequency spectrum (Fig. 5.5b), computed using Fast Fourier
Transform, with the frequency spectrum of the Voxel Tower (Fig. 5.5a), we
observed that the response in Fig. 5.4b exhibited highest amplitudes near
the resonance frequency of the system. This confirms our assumption that
the input in experiment 2 induced behavior that masks meaningful dynamics
and actuator influence, rendering it unsuitable for identification purposes. In
contrast, in experiment 3 (Figure 5.4a), despite lower amplitudes and slower
changes in the driving signal, the influence of the actuator on the system is
more evident.
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5.3 Stabilisation

The correct understanding and control of vibrations, oscillations, and the
behaviour under external disturbance are crucial to any static, let alone
flexible, structure. Especially vertical structures are constantly exposed to
various forms of external disturbance and sources of oscillations, such as wind,
air turbulences, and, less frequently, earthquakes [TKS15].

In this section, we design and validate a Linear Quadratic Regulator (LQR)
for oscillation damping and disturbance attenuation. The discrete version of
an LQR is a controller that minimises the following classical quadratic cost
function.

J(u, z̄) =
∞∑

k=0

(
z̄[k]>Qz̄[k] + u[k]>Ru[k]

)
. (5.5)

Considering the notation introduced earlier, we can formulate the optimisation
problem that leads to the LQR as

min
u,z̄

∞∑
k=0

z̄[k]>Qz̄[k] + u[k]>Ru[k],

subject to: z̄[k + 1] = Az̄[k] +Bu[k],
with parameters: z̄[0] is given.

(5.6)

In (5.6), matrices Q and R represent the penalties on the state and input,
respectively. The design of an LQR essentially involves an iterative process
where we adjust the elements of Q and R until the resulting controller aligns
with our design goals. Utilising the MATLAB syntax, the tuned penalty matrices
are

Q = blkdiag(02s×1, 100, 1, 0s×1), R = 50000.

Matrix Q takes this form because it is multiplied with the state vector z̄[t],
which contains s delay embeddings. Specifically, the first 2s elements represent
delayed states and last s elements represent delayed inputs. The weights
100 and 1 then correspond with x1[t] (angle) and x2[t] (angular velocity),
respectively.

Due to the way (5.6) is formulated (specifically, because of the first term
in the summation), LQR, by default, aims to drive the state vector z̄ to zero.
This is desirable for our current application, where the zero state corresponds
with the Voxel Tower standing still in the upright position. However, for
applications where the desired state is not zero, such as tracking, it is necessary
to modify the LQR algorithm, e.g., by introducing integral control.
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ẋ = f(x, u, t)
Moving mean

LQR
u = Kz̄

z̄

u

φ

φ̇

Figure 5.6: Signal diagram of the LQR control scheme.

Returning to the focus of this section – stabilisation, we can use the LQR
algorithm without modifications. The optimal control minimising (5.5) results
in a state feedback controller

u[t] = −Kz̄[t]. (5.7)

The optimal gain matrix K can be found as

K =
(
B
>
SB +R

)−1
B
>
SA, (5.8)

where S is the solution of the associated discrete–time algebraic Ricatti
equation

A
>
SA− S −A>S B

(
B
>
SB +R

)−1
B
>
SS A+Q = 0. (5.9)

Using penalties Q and R as evaluated above, the computed state feedback
gain K is

K =
[
−1.64 −0.59 −2.03 0.83 2.67 −0.85 1.96 1.46

]
· 10−2.

The Figure 5.6 depicts a signal diagram illustrating the feedback intercon-
nection of the entire controlled system, including its individual components.

To validate the designed controller, we conducted three testing scenarios.
Two of these scenarios involved studying the response to non–zero initial
conditions, while the third scenario focused on evaluating the controller’s
ability to reject disturbances. We describe the designed experiments below.

1) Non–zero inital tilt: The first testing scenario involved tilting the
tower and observing its response after a period of rest (φ̇ = 0 deg/s). We
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Figure 5.7: Response to non–zero initial deflection of -5 deg.

conducted experiments with two different initial deflections: φ(0) = −5 deg
and φ(0) = −20 deg, to account for small as well as large starting angles.
For each experiment, we compared the response of an autonomous system
to the system controlled by the LQR. The measured results are presented in
Figures 5.7 and 5.8.

2) Non–zero initial tilt and velocity: In real-world scenarios, it is rare for
a structure to be completely still. Therefore, it is important to consider
situations where not only the initial angle, but also the initial velocity is
non–zero. This can occur in cases where the controller acts as a backup and
is only activated when the system is not behaving as desired or when control
goals change. To ensure repeatability, we set the initial state of the system
using the actuator at the bottom of the structure. In this testing scenario,
we first applied a precomputed sine wave torque excitation to the system
(indicated by the red area in Fig. 5.9) to initiate movement. After 6 seconds,
when the tower was already in motion, we switched to the LQR algorithm
to govern the actuator. The results of these experiments are presented in
Fig. 5.9, where we compare the behaviour of the damped system with the
undamped response.

3) Disturbance rejection: The ability to surpress the effect of external
disturbance is crucial to any structure operating in real–world environments,
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Figure 5.8: Response to non–zero initial deflection of -20 deg.

including digital material structures. In this testing scenario, we focus on
the effect of a 0.5 s step changes in the force acting on the structure, which
simulate the disturbances. We implement the simulated disturbance utilising
the actuated voxel. During the time of the disturbance (indicated by the red
areas of plot 5.10), the motor acts as its source, before the LQR takes back
over. The disturbance signal is shown in the bottom plot of Fig. 5.10 as a
black dashed line. The figure also illustrates the response of the Voxel Tower
to the disturbance, comparing the behaviour of the undamped system with
the system controlled by the LQR.

5.4 Reference Tracking

The second common problem in control engineering is known as reference
tracking. This problem revolves around achieving the desired behaviour
of the controlled system according to a predefined pattern. For the Voxel
Tower, this pattern might consist of predefined values of the tilt angle that
the system should mirror. The motivation behind this type of control lies
in applications where e.g. an end–effector is attached to a flexible beam
or where the structure needs to adjust its orientation based on changing
environmental conditions. Reference tracking is a well–studied problem in

42



...................................... 5.4. Reference Tracking

Figure 5.9: Response to non–zero initial angle and velocity.

control theory, and numerous research works have been published on this
topic, including those specifically addressing trajectory tracking for flexible
structures. In [PSSNCL15] the authors utilise the finite difference method to
model a single flexible link robot and employ a PID controller to regulate the
position of the beam’s tip. Another approach, using iterative learning control
(ILC) method for control of an X–Y positioning platform with flexible beams
on each axis is described in [SYCX21].

To solve the tracking problem, we opted to implement the Koopman Model
Predictive Control (KMPC), first introduced in [KM18a] and utilised for
controlling complex dynamical systems as demonstrated e.g. in [DKH22].
This approach combines the classical Model Predictive Control (MPC) with
a discrete linear predictor describing the system obtained using the Koopman
theory. We use the predictor (5.4) derived earlier and created using the DMDc
algorithm from Section 4.3. The decision to utilise MPC was motivated by
its ability to incorporate input constraints, which is crucial considering the
tendency of printed voxel faces to break under excessive stress.
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Figure 5.10: Results of the disturbance attenuation experiment.

5.4.1 Koopman Model Predictive Control

The classical Model Predictive Control (MPC) is a discrete–time optimal
control algorithm. It works by using optimisation to find input sequences that
minimise a given cost function J(·) over some time frame (so–called prediction
horizon). Upon computing the optimal input sequence, it applies only its first
element, thereby producing new measured output of the system, and repeats
the whole process in the next time step. Internally, the MPC uses a linear
model of the system to predict its behaviour over the prediction horizon and
this is where Koopman theory comes into play. The KMPC does not rely on
models obtained by e.g. linearising the model around some equilibria but
rather uses Koopman theory to approximate the system’s behaviour. This
section is based on multiple texts. Among our main sources of information for
this part were the lecture notes to the Optimal and Robust Control3 course
here at CTU. Some further aspects of combinig the MPC equations with the
Koopman–based predictor are based on [DKH22, AKM18].

We will now formulate the KMPC optimisation problem for tracking. Let
ŷ[t] = Cz̄[t] be the predicted output of the system and r[t] the reference signal
at time t. Then, upon introducing the regulation error e[t] := r[t]− ŷ[t] we can
define the tracking problem as finding such input sequence ut = {u[t+ k]}Nk=0

3https://moodle.fel.cvut.cz/course/view.php?id=5716
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that results in et −→ 0 over the prediction horizon of length N . Such sequence
can be found by solving the following optimisation problem at every time
step t

min
ut,et

J
(
{e[t+ k]}Nk=0, {u[t+ k]}Nk=0

)
,

subject to z̄[k + 1] = Az̄[k] +Bu[k], k = 0, 1, . . . , N − 1,
e[k] = r[k]− Cz̄[k],
umin ≤ u[k] ≤ umax,

with parameters z̄[0] = Ψ(y[t]),
r[k] given, k = 0, 1, . . . , N,

(5.10)

where y[t] is the measured output of the nonlinear system at time t and
umin and umax are the lower and upper bounds on input, respectively. The
loss function J(·) attains the standard quadratic form for an MPC tracking
problem [AKM18]

J (et, ut) =1
2e[t+N ]>Se[t+N ]+

+1
2

N−1∑
k=0

(
e[t+ k]>Qe[t+ k] + u[t+ k]>Ru[t+ k]

)
.

(5.11)

Matrices Q � 0 and S � 0 penalise the error inside and the end of the pre-
diction horizon, respectively, while R � 0 penalises the input. An important
remark is that the problem (5.10) is a convex quadratic program. For such
problems, there exist a number of high–performance solvers, and in this work,
we have chosen to use the OSQP solver [SBG+20].

We need to address a caveat regarding the previous formulation. There
may be cases where nonzero input u[t] 6= 0 is required to track a steady
reference i.e. to have e[t] = 0. However, with (5.11) as above, these are
two competing conditions when minimising. This issue can be resolved by
adopting the incremental formulation of the problem (5.10) and penalising
the increments of u[t]: ∆u[t] = u[t] − u[t − 1]. To achieve the incremental
formulation we extend the state vector by introducing a new state variable
zu[t] := u[t− 1]. This leads to the augmented state description as follows

[
z̄[t+ 1]
zu[t+ 1]

]
=
[
Ā B̄
0 I

]
︸ ︷︷ ︸

Ã

[
z̄[t]
zu[k]

]
︸ ︷︷ ︸

z̃[t]

+
[
B
I

]
︸︷︷︸

B̃

∆u[t], (5.12)

ŷ[t] =
[
C̄ 0

]
︸ ︷︷ ︸

C̃

[
z̄[t]
zu[t]

]
. (5.13)
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Using the above, the cost function from (5.11) can be written in terms of z̃
and ∆u as

J(z̃,∆u) =1
2
(
rN − C̃z̃N

)>
S
(
rN − C̃z̃N

)
+

+1
2

N−1∑
k=0

[(
rk − C̃z̃k

)>
Q
(
rk − C̃x̃k

)
+ ∆u>k R∆uk

]
.

(5.14)

To address space limitations, we relabeled the time indices in (5.14). Specif-
ically, we introduced the notation ri = r[t + i] to represent the time steps
more concisely. Because constant terms in (5.14) such as r>NS rN play no
role in the optimisation, we can ignore them. Furthermore, by creating
the following vectors r = [r[t] · · · r[t+N ]]>, z̃ = [z̃[t] · · · z̃[t+N ]]> and
∆u = [∆u[t] · · · ∆u[t+N − 1]]>, we can now write the cost function as

J(z̃,∆u) = 1
2 z̃>Qz̃− r>T z̃ + 1

2∆u>R∆u (5.15)

and use that to find the optimal input sequence. The matrices Q, T and R
are explicitly stated in (A.1).

However, this still minimises simultaneously over the input sequence as
well as over the state variables. Thus, the dimensionality of the problem
scales with the number of state variables. This is impractical, as using our
lifting function ψ would be at price of high computational complexity of the
optimisation. To overcome this issue, we can get rid of the dependence on z̃,
by expressing it in terms of inputs and the initial state z̃[t]. This formulation
is known as dense formulation of the problem and as such, it no longer suffers
from the curse of dimensionality. The dense formulation is enabled by writing
z̃ as

z̃ =


B̃

ÃB̃ B̃

Ã2B̃ ÃB̃ B̃
... . . .

ÃN−1B̃ · · · B̃


︸ ︷︷ ︸

C

∆u +


Ã

Ã2

...
ÃN


︸ ︷︷ ︸

ˆ̂
A

z̃[t]. (5.16)

After substituting the above into (5.15), expanding, and ignoring constant
terms, the cost function becomes

J(∆u) = 1
2∆u>

(
C
>
QC +R

)
︸ ︷︷ ︸

H

∆u +
[
z̃[t]>r>

] [ ˆ̂
A>QC

−T C

]
︸ ︷︷ ︸

F
>

∆u. (5.17)
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Figure 5.11: (K)MPC schematics.

Using this, we can finally write the formulation of the (K)MPC optimisation
problem that is solved at each time step. The problem is as follows

min
∆u

1
2∆u>H∆u +

[
z̃[t]>r>

]
F
>

∆u,

subject to: ∆umin ≤ ∆u ≤ ∆umax,

umin ≤ u ≤ umax,

with parameters: z̃[t] = Ψ(y[t]),
r given,

(5.18)

where ∆u = [∆u[t] · · · ∆u[t+N − 1]]> is the input sequence over which we
perform the optimisation. The best such sequence is obtained at each time
step t and its first element is applied. On top of constraining ∆u[t], we can
incorporate constraints on u[t] as well, by cleverly utilising the augmented
state vector z̃[t] and expressing u[t] as u[t] = ∆u[k] + zu[k]. Specific values
of ∆umin/max, u,min/max and other parameters particular to the optimisation
problem’s solution are provided in Appendix A. An illustration of the (K)MPC
principle is in Figure 5.11a. We also depict the schematics of reference tracking
solution using feedback interconnection of a KMPC controller with the system
in Figure 5.11b

Tuning the KMPC again involves adjusting the state and input penalty
matrices Q and R. However, in comparison to LQR, the number of tunable
parameters increases by the prediction horizon length N and the final state
penalty matrix S. This makes tuning the controller more challenging, es-
pecially considering the sensitivity of the Voxel Tower to these parameter
values. To keep things concise, we only provide the submatrices Qy, Sy, and
Ry, corresponding to the output y of the system (first row with φ, second
with φ̇). Since penalising previous states is not meaningful, elements of the
matrices Q, S, and R, associated with the delayed variables are all zero. The
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following are the final values that yielded the best performance.

Qy =
[
2 0
0 1e−4

]
, Sy =

[
3 0
0 1e−4

]
, Ry = 80000, N = 10.

Now, having introduced the used control strategy, we can proceed to the
description of performed experiments. To test the designed controller, we
generated four reference trajectories, which primarily consisted of step or
gradual changes of the desired angle. Throughout all the experiments, the
reference velocity remained zero. This choice was made considering that the
tower was intended to remain stationary or move slowly, and abrupt velocity
changes, such as when mirroring a step, would only lead to poorer responses.
Additionally, each experiment is accompanied by a simulation using the linear
model.

1) Step trajectory: The first type of trajectory involved a single step change
in the tilt angle. This simple trajectory allowed us to perform a sanity check
on the basic functionalities and assess the capabilities and limitations of
the controller. We observed the maximal achievable steady deflection to be
around ±5 deg. This limitation was due to the constraint on the input torque,
which in turn affected the maximum steady angle that could be achieved.
The results of the experiment are presented in Figure 5.12.

2) Composed step trajectory: In these experiments, we required multiple
consecutive step changes in the tilt angle. The key difference from the single
step trajectories was that the structure might still be in motion when the next
change in the reference arrives. Furthermore, we are more likely to encounter
this kind of reference in real–world applications. For example, the system
can be asked to periodically translate between multiple predefined positions.
We conducted two experiments with trajectories of this type and present the
measured responses in Figures 5.13 and 5.14.

3) Ramp trajectory: The third type of tested trajectories differs in that it
no longer involves abrupt changes in the angle. Instead, the angle changes
gradually. Such motion can be desired when tracking a moving object and
tests a different behaviour of the system compared to the previous two types.
In this case, we generated only one reference trajectory. The resulting behavior
of the system is presented in Figure 5.15.
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(a) : Comparison of the model and the real system.
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(b) : Tracking error in individual output variables.

Figure 5.12: Single step reference tracking results.

5.5 Discussion

In this chapter, we addressed two control problems for the Voxel Tower:
the problem of stabilisation and trajectory tracking. Firstly, we tested the
robustness of the designed control strategy against disturbances and non–
zero initial conditions. This is particularly relevant in scenarios where the
structure needs to remain stable, such as tall antennas exposed to wind gusts
or vibration damping in satellite booms. Secondly, we examined the system’s
ability to accurately execute motions prescribed in terms of the deflection
angle φ(t) and angular velocity φ̇(t). This has potential applications again
in the field of signal transmission, specifically in antenna positioning rather
than stabilisation.
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(a) : Comparison of the model and the real system.

0 10 20 30 40 50

-4

-2

0

2

0 10 20 30 40 50

-2

0

2

(b) : Tracking error in individual output variables.

Figure 5.13: Multi–step reference tracking results, first.

1) Stabilisation: The results of all the experiments depicted in Figures 5.7,
5.8, 5.9, and 5.10 confirm the success of the stabilising LQR design. In each
experiment, the controlled system consistently outperformed the autonomous
(undamped) system in terms of settling time and oscillations damping.

. Focusing on the experiment involving the non–zero initial angle condition,
as illustrated in Figures 5.7 and 5.8, we can draw several conclusions. In
both experiments, the controlled system achieved a settling time of less
than 1 second and maintained stability thereafter. The undamped system,
in contrast, continued to oscillate, relying solely on its limited natural
damping to eventually come to a stop. Additionally, this experiment
highlights effectiveness of the designed controller in rapidly dampening
both small and large initial deflections, exhibiting consistent performance
varying initial conditions.
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(a) : Comparison of the model and the real system.
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(b) : Tracking error in individual output variables.

Figure 5.14: Multi–step reference tracking results, second.

. The experiment involving non–zero inital conditions for both state vari-
ables demonstrates the ability of the LQR to dampen the system even
when it is in motion. We can support this claim by referring to Figure 5.9,
which compares the results of the controlled system with the autonomous
response. The measured results indicate that the controller can bring the
structure to a still position within a maximum of two seconds. However,
we can note that the damping response is not as smooth as when the
initial condition was steady (zero velocity). This may be attributed to
the abrupt change in control action when transitioning to the LQR from
the excitation signal, which likely triggered higher–frequency oscillations.
These oscillations are also visible in Figure 5.10, where the disturbance
was also an instantaneous change in the applied torque. Nevertheless,
when compared with the autonomous system, the damped system again
behaves in a superior manner, as the undamped system continues to
oscillate with almost unchanged amplitude.
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(a) : Comparison of the model and the real system.
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(b) : Tracking error in individual output variables.

Figure 5.15: Ramp tracking results.

. The final stabilisation experiment aimed to assess the ability of the LQR
to mitigate the effect of disturbances on the system. The measured re-
sponses once again show the successful dampening of oscillations induced
by the disturbance. Similar to the experiments studying initial condition
responses, the controller required approximately 1 second to recover from
the disturbance and bring the system to a stable state. This recovery
time roughly corresponds to one period of the resulting oscillations. In
contrast, the undamped system was affected by the disturbance quite
substantially.

To improve the experimental setup, a suggestion arises regarding the
generation of the disturbance. It is impractical that as of now, the distur-
bance and the control algorithm cannot act simultaneously. Therefore,
in the future the disturbance could be introduced, e.g., through a moving
platform on which the Voxel Tower is mounted. This approach would
allow for testing how the controller behaves during the disturbance itself,
rather than limiting its aftermath.
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2) Reference Tracking: Having discussed the performance of the designed
control algorithm in stabilising the system, we will now shift our focus to the
second task: reference tracking. For this purpose, we decided to implement
a KMPC controller. One of the reasons behind this choice was its natural
incorporation of constraints on the input signals. To assess the performance
of the controller in reference tracking, we generated three types of testing
references.

. The measured response, depicted in Figure 5.12a, demonstrates the
correct reaction of the system to a single step change in reference. The
Tower effectively reaches and maintains the desired deflection. The
tracking error in terms of φ(t) in Figure 5.12b reliably decreases to zero,
indicating convergence to the reference signal. In contrast, the velocity
mirrors the reference only loosely, which is expected since its deviation
is not heavily penalised. However, increasing the penalty on velocity
would lead to worsened response, as velocity is a noisy signal and the
trajectory is primarily characterized by the angle.

Additionally, observing the Action Input subplot in Figure 5.12a, we can
infer that the system approaches its limit when maintaining a steady
deflection of 5 degrees, as indicated by the motor torque reaching close
to its upper bound of 0.5 Nm.. The conclusions drawn from Figures 5.13 and 5.14 build upon the the
observations from the first experiment. In this scenario, the deflection
angle φ(t) is expected to follow a reference signal consisting of a sequence
of steps changes with varying amplitudes. In both of the currently
discussed experiments, the system continues to successfully reach desired
values of φ(t). Furthermore, the Figures 5.13b, and 5.14b also suggest
that the pace at which the system reacts to each of the step changes
is similar to the case with just one step and does not depend on the
amplitude of the change. Notably, the behaviour predicted by the
linear model aligns with the measured response of the system, with the
exception of velocity. The measured velocity exhibits more oscillatory
behaviour, which the model fails to capture. This observation further
supports the decision not to heavily penalize velocity, as its fast–changing
nature is not adequately represented in the model.. In the final experiment, we aimed to evaluate the system’s response to
gradual changes in the reference signal. This is why, instead of step
changes, we introduced ramps to the generated trajectory. Despite this
change, the observed behaviour is not significantly different from what we
observed in the previous experiments. The angle of the system steadily
changes until it reaches the desired value. However, we did notice that the
velocity oscillations, as depicted in Figure 5.15, have smaller amplitudes
compared to, for example, the velocity in Figure 5.13. This can likely be
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(b) : Individual reference tracking errors.

Figure 5.16: Influence of including velocity on the model’s oscillations.

attributed to the slower rate of change in the reference signal, resulting
in a slower response of the system.

While the stabilising LQR performed very well and perhaps even exceeded
our expectations in some of the tested scenarios, the hopes for the performance
of the KMPC controller were higher. Although the system was able to track
the desired reference, there are certain aspects of the results that leave room
for improvement. A common denominator of all the measured responses
is a relatively slow convergence to the reference (around 15 seconds) and
an oscillatory response. Even though the amplitude of the oscillations in
φ(t) is not particularly high, their presence showed to be problematic when
attempting to achieve a more aggressive and faster response.

The KMPC controller’s inability to dampen the observed oscillations may
stem from their absence in the linear model. This led us to explore an alter-
native approach without incorporating velocity. Utilising delay embeddings,
we created another model that solely relies on the delayed measurements of
φ(t) and compared its response with the model that considers velocity. The
comparison is visualised in Figure 5.16. As per the Subfigure 5.16b, excluding
velocity did not bring significant improvement. Although the convergence to
the reference value is slightly faster, the system exhibits the same amount, if
not more oscillations.

Another possible explanation for the KMPC’s inability to dampen these
oscillations is the presence of delay in the structure. This delay may be
attributed to the underactuated and flexible nature of the system, meaning
it requires time for the motion to propagate from the actuator to the rest of
the structure.
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Figure 5.17: Increasing the prediction horizon destabilises the system.

The oscillations proved limitting when attempting to tune a faster response
of the system. While we were able to tune almost an ideal simulated response,
in reality, faster changes in the deflection angle led to excessive oscillations
that rendered the controller ineffective. This is depicted in the Figure 5.17
where we attempted to improve the behaviour by adjusting the prediction
horizon to N = 20. Despite the expected improvement, in reality, the system
became unstable. Tuning the KMPC with such scenarios proved to be a
delicate task, as striking a balance between tracking performance and excessive
oscillations was challenging.

3) Summary and Possible Improvements: In summary, we have successfully
achieved both of our primary objectives. The stabilisation task was effectively
addressed using the damping LQR, which demonstrated impressive results
in damping oscillations and mitigating disturbances within a time frame of
approximately one second. Additionally, in terms of tracking performance,
we were able to successfully follow a changing angle trajectory. However, one
significant challenge remained unresolved: the presence of small but persistent
oscillations in the system. These oscillations limited our ability to tune a
faster and more aggressive response.

Regarding stabilisation, there are following potential improvements to con-
sider. First, it would be beneficial to explore a different source of disturbance.
As mentioned earlier, mounting the Voxel Tower onto a shaking bed would
allow us to observe the system’s behavior also during the disturbance, rather
than solely after it. Additionally, the experiment in Figure 5.9 cound be
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reiterated, this time with a more aggressive input that would generate higher
velocities provide further valuable insights.

In connection with tracking, we can suggest a couple of improvements to
enhance the behaviour of the system. First, creating a better model could
be beneficial. This can involve fitting a new DMDc model with different
parameters or collecting new data to better describe the behaviour of the
Voxel Tower. Secondly, using a higher–quality sensor with less noise and
more stable readings could be helpful. Although the choice for an off-the-shelf
MPU9250 IMU sensor was driven by scalability and accessibility, a better
sensor would result in smoother and more accurate measurements. Lastly,
exploring alternative control strategies is also worth considering. While MPC
was chosen initially for its ability to incorporate input constraints, other
options such as an LQI controller (LQR enriched with integral control) could
yield improved performance, considering the satisfactory results obtained
with the stabilizing LQR. These potential improvements and changes can be
considered for future work.
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Chapter 6

Robot ŽůžO

The Voxel Tower discussed in the previous chapter was a good platform for
testing control algorithms. It has a simple, well defined beam structure that
makes the system easy to approach and grasp. Yet it gives rise to a number
of challenging and interesting control problems that can be solved. Despite
all of that, it does not really test the limits of the building material. This is
where we introduce ŽůžO – a mobile, rolling robot built from digital material.
Because of the robot’s structure, we put the material to the test, subjecting
it to constant deformation and varying stress and strain. Furthermore, as
ŽůžO rolls, the material frequently makes contact with the ground, resulting
in increased wear and potential damage to the material. All the above makes
ŽůžO intriguing not only for control engineers but also as a means to asses
the suitability of digital materials for constructing intricate mobile structures.

ŽůžO (Fig. 6.1) consists of two main components: an outer rim enabling
rolling motion and a central block housing actuators, a battery, and control
logic. The central block is attached to the rim through flexible segments.
Their flexibility plays a vital role in the robot’s chosen motion principle based
on [MKB+15]. ŽůžO achieves motion by shifting its center of mass through
manipulating the position of the central (heavy) block. This is accomplished
through four tendon–based actuators, each located within one of the flexible
segments. Our motivation to rely on tendons was that it was the easiest way
to achieve the necessary compression of the flexible segments.

The first iteration of the robot was constructed by a four–member team
as part of the Team Project course at CTU. The team consisted of Dominik
Hodan, Konstantin Khoklov, Marina Ionova, and myself. I then continued
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(a) : First iteration of the robot. (b) : Current state of ŽůžO .

Figure 6.1: ŽůžO robot.

working on the robot and rebuilt it into its current state. The first version
of the robot (Fig. 6.1a) had several construction weaknesses that severly
limited its rolling motion capabilities. The contracting segments were overly
rigid, limiting the mobility of the central block. In contrast, the rim was too
compliant, leading to insufficient support for the weight of the entire structure.
Another significant drawback of the first iteration was the single–rim design,
confining all components to a single plane. Consequently, manual suport was
necessary to prevent the robot from toppling or losing balance. These issues
led to the need for a refined version of the robot that would no longer suffer
from these drawbacks. To address the issue of insufficient compliance in the
segments, we opted for a flexible filament during printing. This not only
resolved the stiffness problem but also prevented the segments from breaking
when subjected to greater compressions. Subsequently, we reinforced the rim
with rigid beams that effectively bear the weight of the structure (orange
crosses in the Fig. 6.1b). These supports resulted in ŽůžO maintaining a
round shape, thus improving its rolling capabilities. Last but not least, we
added a second rim to enhance the robot’s stability and enable independent
function without external support. These modifications culminated in an
improved version of the robot, possessing enhanced properties. The current
state of the robot is shown in the Figure 6.1b.

At present, the robot can be operated remotely using a joystick. The
joystick’s position serves as a reference for adjusting the position of the
central block, taking into account the robot’s current orientation measured
by the installed IMU. Given a joystick position [xj yj]>m and orientation θ, we
can compute the action inputs for individual actuators ∈ {A,B,C,D} as

uA = xj sin(θ)− yj cos(θ), uC = −uA,

uB = xj cos(θ) + yj sin(θ), uD = −uB,

using the labels from Fig. 4.3 and ensuring that motors C and D are acting
opposite to their respective counterparts.
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Having a physical realisation of the robot that can now roll motivates us
to pursue the design of automatic control algorithms. Although the robot
can currently be operated manually, it is not yet prepared for the deployment
of control algorithms. Hence, during their implementation, we will solely
rely on the simplified nonlinear model presented in Section 4.2 for validation
purposes. To develop the aforementioned algorithms, we will once again
employ a linear model obtained through DMDc, as discussed in Section 4.3.

6.1 From Nonlinear Model to DMDc

Due to not having the option to test the algorithms on the real robot, we will
resort to utilising the nonlinear model instead. To recapitulate, the nonlinear
description of ŽůžO uses six states

θ [rad] = the rolling angle,
θ̇ [rad/s] = the rolling velocity,
xm [m] = x position of the central block,

ẋm [m/s] = x velocity of the central block,
ym [m] = y position of the central block,

ẏm [m/s] = y velocity of the central block,

four inputs and two outputs. The outputs consist of the horizontal position
of the center of the robot x [m] (not the position of the block) and its
translational velocity ẋ [m/s]. For more insight into the meaning of the
variables, we refer to Figure 4.3.

First step in obtaining the linear model is to collect identification data.
We performed 20 experiments on the nonlinear model, with each experiment
lasting 10 seconds. During the experiments random inputs were applied to
each motor and we sampled system with period Ts = 0.05 s. The initial
orientation of the robot, always set to θ = 0 rad, holds significant importance.
This is because different motors are engaged for achieving the same movement
depending on the robot’s orientation. For instance, when the robot wants
to start rolling to the right, it utilises different motors when θ = 0 rad
then when θ = π rad. Furthermore, when the robot is rolling, it constantly
switches the engaged motors, to keep the central block in the desired position.
Initially, we intended to introduce perturbations in the starting angle during
the identification experiments to incorporate this behaviour into the linear
model. However, this approach led to poor performance. Consequently, we
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decided to limit our range of operation to small angles (|θ| / 0.5 rad) where
the model showed to be sufficiently precise, when tuned around θ = 0 rad.

After converting the identification data into matrices Xlift, X
′
lift and Ωlift,

we created a linear model for the system. Surprisingly, we observed that the
model achieved reasonable predictions of the nonlinear states, even without
the need for delay embeddings (unlike the case with Voxel Tower). In light of
that, we can construct the following the following linear predictor

z[k + 1] = Az[k] +Bv[k],
ŷ[k] = Cz[k],

(6.1)

where z =
[
θ θ̇ xm ẋm ym ẏm

]>
. The outputs of the system are the horizontal

displacement and velocity of the rim. Assuming the robot moves without
slipping, the following matrix C enables the determination of these outputs.

C =
[
−r 0 0 0 0 0
0 −r 0 0 0 0

]

We utilise the robot’s radius r = 0.46m to transform between rotational and
translational positions and velocities. The comparison of the predicted and
nonlinear states is shown in the Figure 6.2a. To keep it concise, we have
chosen to display only the states θ, xm, and ym. The excitation input is
visualised in the Figure 6.2b. Upon studying the Figure 6.2a, we observe
that the predictor slowly diverges from the measured values, particularly in θ
and xm. However, this is not a significant concern for us, as we will use the
model with KMPC. For KMPC, only the model’s performance on a short
horizon is crucial. The predictions of the model in Figure 6.2 remain accurate
for approximately 2 seconds, which has proven to be sufficient for succesful
controller tuning.

To gain more insight into the behaviour of the model, we implemented a
visualisation tool using MATLAB. This tool enables us to replay the conducted
experiments and facilitates a better understanding of the data by providing a
way for interpretting it within the context of the whole robot. The graphical
output of this visualiser is in Figure 6.2c.

6.2 Reference Tracking

For mobile robots, the ability to track reference is crucial. This is because
the task of navigating from point A to point B is typically divided into
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Figure 6.2: Simulations and visualisations of ŽůžO .

three subproblems: identifying the goal, planning the path, and employing a
reference tracking algorithm to accurately follow the planned path towards
the goal.

We decided to use the same tools we opted for when we were solving the
trajectory reference problem for the Voxel Tower in Section 5.4. That is,
the KMPC algorithm. Having discussed KMPC in detail in Section (5.4.1),
we will now focus on highlighting the differences resulting from the unique
structure of ŽůžO and presenting the results.

The main distinction lies in the computation of the KMPC matrices H
and F from Equation (5.18), where we employ the predictor (6.1). This
leads to matrices with different dimensions and entries, while the rest of the
KMPC tuning procedure remains unchanged. Furthermore, unlike the Voxel
Tower, ŽůžO has multiple inputs on top of having more than one output.
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6. Robot ŽůžO ..........................................
The KMPC weights and parameters that yield the best observed behaviour
of the nonlinear model are

Q =
[
300 0
0 10

]
, S =

[
100 0
0 0.5

]
, R =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 , N = 20.

The weights in matrices Q and S correspond with the horizontal displacement
x[k] and velocity ẋ[k] of the wheel and matrix R penalises changes in individual
inputs. N is again the prediction horizon.

We conducted two testing scenarios to verify the controller’s performance.
Each scenario defined a trajectory for ŽůžO to track, taking into account the
requirement to operate near θ = 0 rad. The experimental results, presented
in Figures 6.3 and 6.4, include simulations of both, the nonlinear model as
well as the linear predictor.

6.3 Discussion

In this chapter, we introduced a rolling robot called ŽůžO, which represents
another application of digital materials. Initially, we encountered several
challenges with the robot’s first iteration. We did not use the optimal filament
for printing some of the voxels, and the overall structure required significant
refinement. Additionally, during the initial experiments, many voxels broke,
often leading to the destruction of almost the entire robot. These difficulties
nearly led us to consider abandoning the concept of a rolling voxel-based
robot due to doubts about the material’s ability to support the structure.
But upon implementing the aforedescribed structural improvements, such as
utilising different filament for printing and reinforcing the rim of the wheel,
the robot started demonstrating promising functionality. We even had the
opportunity to showcase the new remote–controlled version at MakerFaire in
Prague to promote our faculty.

The main focus of this chapter was the development and subsequent testing
of a reference tracking algorithm for ŽůžO. The performance of the controller is
demonstrated in Figures 6.3 and 6.4. Since the physical deployment of control
algorithms on the robot was not yet feasible, we validated the controller
using its simplified nonlinear model. For that, we created two reference
trajectories: an increasing and decreasing ramp signal and an oscillating
sine wave. To ensure the validity of our linear model, we restricted the
range of θ to |θ| / 0.5 rad. Both the controlled nonlinear and linear models
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successfully followed the slowly changing ramp as well as the faster sine wave.
Additionally, the linear model exhibited precise predictions of the nonlinear
outputs x and ẋ, supporting our claim that it is sufficient for designing control
algorithms, despite the deviations observed towards the end of the experiment
in Figure 6.2a.

Comparing the predicted and nonlinear states in Figures 6.3a and 6.4a,
we can make the following observations. Most of the predicted states show
varying levels of agreement with their nonlinear counterparts, but they still
follow the same trends. This is unfortunately not the case with predictions
of ym as they seem to be completely wrong. This discrepancy is attributed
to the influence of gravity acting downward in the y axis. It is surprising
that the DMDc model did not account for the influence of gravity, especially
considering that gravity was present in the identification data. Furthermore,
it correctly predicted its effect on the ym state in the Figure 6.2a. However,
even with this discrapancy in predictions of ym, the system was still able to
track the reference accurately.

The successful implementation of a KMPC controller for the nonlinear
model of ŽůžO paves the way towards further pursuing the automatic control
of the real robot. To achieve that, there are still several tasks that need to
be addressed. First, regarding the nonlinear model. The model captures the
fundamentals of the robot’s dynamics, but a more precise identification of
individual parameter values is needed for developing control algorithms specific
to the real robot. This entails determining the exact values of parameters
governing its behaviour, ensuring a stronger alignment between the model
and the robot’s actual characteristics. The limited validity of the linear model
is also an issue. In order to resolve that, we could e.g. use different algorithms
from the field of nonlinear control or use control strategies for hybrid systems,
such as switching between multiple linear models, based on θ.
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Figure 6.3: Ramp tracking results.
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Figure 6.4: Sine wave tracking results.
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Chapter 7

Digicomb

Both the aforedescribed structures were constructed using mechanical meta-
material heavily inspired by the work published by the CBA group at
MIT [Jen20, JCT+20, PRFJ+23]. The focus of this work was to introduce
automatic control into structures built from this material. The concept of
feedback–controlled structures was intriguing to both our group and the CBA
group, leading to a collaborative effort during our one-week visit to Boston,
Massachusetts, USA. The visiting group consisted of Jiří Zemánek, Krištof
Pučejdl, Adam Uchytil, and myself from the CTU. The results presented
in this chapter reflect the joint effort of our group mainly in collaboration
with Alfonso Parra Rubio from CBA. During our time at MIT, I was mainly
occupied with setting up the interface between the sensors and motors as
well as performing the experiments and obtaining the linear model of the
structure.

Alfonso is currently exploring the potential of using a kirigami–like principle,
involving cutting and folding hylite plates, to create structures that offer
greater endurance and higher load bearing capacity than the voxel–based
structures described in the previous chapters. These folding metamaterials
were discussed in Section 3.4, with the promise of utilising them in high–strain
applications where other materials may fail. One potential application is the
design of a morphing aircraft wing, building upon the research presented
in [PRFJ+23], which also dealt with a deformable voxel–based wing.

In the initial stages, our focus was primarily on testing the actuation prin-
ciple, deformation sensing and gaining better understanding of the properties
of the material. Digicomb, depicted in Figure 7.1 is described in Section 7.1.
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(a) : Honeycomb. A remote resemblance
is there!a

ahttps://coloradohemphoney.com/ (b) : Motors bending the real Digicomb
structure.

Figure 7.1: Honey– and Digicomb.

Subsequently, the performed experiments are outlined, and the measured
data is discussed in Section 7.2. Finally, we highlight potential vectors for
further research.

In this structure, the interconnectedness of a honeycomb meets digital
material. The name ’Digicomg’ is derived from two elements: ’honeycomb’
and ’digital’ and was chosen to expresses the distinct visual resemblance
between the structure and a honeycomb, while also highlighting its digital
nature.

7.1 Assembled Prototype

The main components of the assembled prototype (Fig. 7.1b) include a flat
fiberglass centroid and DFM hylite elements (Section 3.4). The structure
consists of three DFM blocks mounted on each side of the centroid, with the
middle element thinned to facilitate bending. We drive the structure using
two 5208 brushless motors attached directly to the hylite blocks. This direct
drive configuration offers advantages such as eliminating parasitic effects
and losses from gears or tendons. The actuators are distributed to allow for
actuation and bending along the entire length of the centroid. One of the
further design goals was for the structure to be self–supporting, meaning it
should bear its own weight without relying on the actuators to carry it. While
this goal has not been fully achieved, as the structure still bends when held
horizontally, the actuators can exert sufficient torque to overcome gravity.
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Additionally, when the structure is mounted vertically, this bending issue
is not a concern. To measure deformation, we attached two strain gauges
(SG) to opposite sides of the centroid, across from the motors. Utilising these
strain gauges we can precisely measure even small deformations. However,
processing the measured data still presents some unresolved issues. We utilise
the HX711 SparkFun1 amplifier to enable the readings of the strain gauges.
For communication with the amplifier we use a Raspberry Pi C++ library2.
However, the library is primarily intended for building digital scales, so the
interpreted values are not directly applicable to our application. As a result,
we are currently reading raw numbers without interpretating them as voltage
ratios. Despite that, the obtained values adequately reflect changes in the
structure, as demonstrated by the graphs in Figure 7.2.

Based on the data gathered during the experiments, which are described
in Section 7.2, we created a mathematical model, again utilising the DMDc
method (Section 4.3). This resulted in a discrete state description of form

x[k + 1] = Ax[k] +Bu[k],
y[k] = Cx[k]

(7.1)

where x = [d1 d2]> is the state vector containing the strain gauge displace-
ments d1 and d2. u = [u1 u2]> is the vector of inputs. This time, no delay
embeddings were required to obtain a model that sufficiently captures the
dynamics of the system, as is showcased in the Figure 7.3. Because space and
the dimensionality of the system permits it, we provide the numeric values of
individual state matrices below.

A =
[

0.7431 0.0308
−0.0539 0.9114

]
, B = 1e6 ·

[
3.9500 −1.1192
0.9022 −1.6267

]
, C =

[
1 0
0 1

]
.

7.2 Discussion

Although achieving a morphing wing is still a distant goal, our limited time
in Boston allowed us to assemble and test the initial downsized prototype,
marking an important first step and serving as a proof of concept. The
direct drive configuration of the motors proved suitable for actuation, as they
provided sufficient torque to deform the structure (Fig.7.1b). Moreover, this
configuration enables rapid propagation of torque changes, as demonstrated

1https://www.sparkfun.com/products/ 13879
2https://github.com/ endail/hx711

69



7. Digicomb ...........................................

0 1 2 3
-5

0

5
10

6

0 1 2 3

-0.2

0

0.2

(a) : Response to opposite excitation sig-
nals with opposite phases.

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

10
6

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

(b) : Close up on the response to an
abrupt change in torque.

Figure 7.2: Testing of actuation and sensing.
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Figure 7.3: Validation of the DMDc model.

in Figure7.2b, where the reference torque of motor 2 transitions from 0 to
-0.05 Nm at t = 0 s.

Using strain gauges to measure the induced deformation also seems to be
a reasonable decision as the gathered data show very clear dependence on
the applied torque. It is interesting to note that the mirror mounting of the
motors means that when the motors act with opposite phases (Fig. 7.2a)
the resulting measured values have the same sign. This means that opposite
motor torques result in the structure transforming to an ’U’ shape (when
in horizontal position) and indeed, this shape corresponds with the same
direction of deformation for both strain gauges. The sensors even succeed in
measuring the fast transients in Figure 7.2b. There is still work left to do in
the processing of the signal, but the employment of these sensors is justified.
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Regarding the conducted experiments, the majority of them describe a
similar setting as the experiment depicted in Figure 7.2. Specifically, they
focus on studying the system’s behavior in an open–loop setup. We applied
a predetermined torque, and observed the resulting response of the system.
These experiments primarily aimed to assess whether the applied torque was
capable of achieving the desired deformation and to evaluate the reliability of
the gathered sensor data.

We utilised the measured data to create a linear model capable of predicting
the behaviour of the system. This model exhibits sufficient accuracy in cap-
turing both slow transients (see Figure 7.3a) and faster dynamics (Fig. 7.3b).
Although further validation on additional data is necessary, based on the
measured responses, the model adequately represents the system’s behaviour.

In conclusion, the structure described above is not a fully developed project
or a functioning prototype of a morphing wing. However, it shows the
successful completion of initial steps within a limited timeframe, providing a
foundation for further study and development of the system. Although there
are still some structural flaws, such as imperfect motor mounts, these can be
easily addressed in future iterations. Unfortunately, due to the limited time at
MIT, we were unable to test any feedback control algorithms on the structure.
Therefore, the next logical step would be to utilise the mathematical model
(Eq. (7.1)) to design a controller that can achieve a predefined shape for the
structure. Additionally, exploring larger versions with more actuators and
sensors would be a natural progression. Nonetheless, Digicomb represents
one of the first dynamically controlled structures with integrated sensing,
constructed from the discrete folded digital material. It opens the door to a
an interesting project with a lot of future potential.
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Chapter 8

Conclusion

In this work, we studied mechanical digital metamaterials as building com-
ponents for dynamic structures and mobile robots. Namely, we focused on
three structures: the Voxel Tower, robot ŽůžO, and Digicomb. To advance
the capabilities of the structures, we integrated digital materials with algo-
rithms of optimal control. Specifically, we employed LQR for stabilisation
and damping, while KMPC served as our choice for trajectory tracking. The
effectiveness of both algorithms was verified through numerous tests, includ-
ing experimentation with a real prototype of the Voxel Tower. Although
trajectory tracking for ŽůžO was limited to simulations, we addressed various
aspects of control system development, including the task of model creation.
By focusing on each structure individually and extracting general insights,
our findings contribute to the broader field and aim to help with future
development of one unifying framework for controlling such structures.

We began this work by summarising the current state of the art in the field
of controlled metamaterials and flexible structures. Additionally, we outlined
the primary objectives of this thesis, which involved studying the feasibility of
digital material for constructing dynamical structures and developing control
strategies for them. In Chapter 3, we described the two groups of digital
materials employed in this thesis, namely 3D printed voxels and folded hylite
plates. Notably, our work involved developing an actuated voxel: a means
for actuating the structure on the level of a single voxel. This novel method
aligns more closely with the philosophy of digital materials compared to the
use of tendon–based actuators, which are typically employed in voxel–based
structures. Next, we detailed three modelling approaches that we explored
throughout this thesis. We established that the most general approach to
modelling was the data–driven DMDc which has been successfully applied to
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8. Conclusion...........................................
all of the studied structures. On the other hand, we have not had much success
in modelling the systems using existing simulation software, primarily due to
the numerous unknown parameters involved. We also explored the process
of abandoning the discrete nature of the system and using a conventional
modelling approach of Lagrangian formalism, resulting in a simplified model
of ŽůžO. This approach proved useful when complemented with the DMDc
model, providing a basic means of validation for the designed controller. We
dedicated the Chapters 5, 6 and 7 to describing the individual structures that
we studied.

The biggest spotlight was on the Voxel Tower, described in Chapter 5. We
explored the influence of identification data on the resulting linear predictor
and tackled two control problems: stabilisation and reference tracking. For
stabilisation, we used LQR tuned on the linear model obtained with the
DMDc method. This controller effectively dampened oscillations and attenu-
ated disturbances within a short timeframe of 2 seconds, hence proving the
design of a stabilising algorithm successful. To achieve reference tracking, we
adopted the KMPC due to its natural ability to integrate our linear model
and constraints. Although the system’s response was not as fast as desired
and exhibited small, yet persistent oscillations, the controller successfully
tracked the reference signals. The amplitude of the reference signals was
further limited by the bounds on the driving torque of the motor. Future im-
provements could involve generating better identification data and employing
alternative control strategies. Additionally, for stabilisation, mounting the
Tower on a shaking bed could be explored as a better means of generating
disturbances.

In Chapter 6, we focused on the rolling robot ŽůžO, which (not intention-
ally) served also as a platform for testing the suitability of individual voxels
for constructing complex dynamical structures. We discussed the process of
obtaining a DMDc linear predictor by utilising a nonlinear simplified model
from Section 4.2. This allowed us to design a KMPC controller for the simpli-
fied nonlinear model and to validate it through simulations, since the physical
ŽůžO robot was not equipped for deploying control algorithms. The KMPC
controller successfully tracked the reference trajectories, when staying in the
range of θ where the linear predictor provided an accurate approximation of
the nonlinear system. Future work includes rigorous parameter identification
of the nonlinear model, verification against the real robot, and preparing the
real robot for implementing the designed control algorithms.

Finally, in Chapter 7 we introduced the third structure which was created
in collaboration with the CBA group at MIT. However, we did not go much
beyond the introduction. We presented some experiments performed on the
real structure and validated its linear model. However, due to the limited time
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during our visit at CBA, we were unable to try any feedback control algorithms.
Therefore, this chapter served as a foundation for future collaborative work.

Despite the distinct characteristics of each structure, whether in terms
of material or type, we identified relevant observations that were consistent
across all the studied structures. These findings should be taken into account
when seeking a unified approach to controlling lattice–based structures. The
first observation we made relates to the model creation process. It is crucial
to employ a versatile framework that can accommodate various types of
measurements and structures with minimal reconfiguration. In this work,
we utilised the DMDc algorithm and based on our gathered experience we
see data–driven modelling as a promising direction to explore in the con-
text of modelling general lattice–based structures. DMDc proved capable
of modelling diverse structures: static and mobile, incorporating data from
various sensors (IMU, strain gauge, etc.), just with different identification
data. Concerning the control algorithms, we employed KMPC to reference
tracking for two completely different structures. However, the selection of
the controller was primarily driven by the task rather than the underlying
structural similarities. In conclusion, finding a unifying approach is a chal-
lenge that demands substantial investment of time and effort. However, the
initial steps taken in this work, including exploring various approaches to
specific subproblems and gaining familiarity with the building material, have
contributed to making this challenge more approachable.

To summarise and recapitulate, among the main contributions of this
work was the development of feedback control algorithms for lattice–based
structures and the subsequent validation of said algorithms. The implemen-
tation of these control strategies has successfully expanded the capabilities of
mechanical metamaterial structures beyond open–loop control and relying on
precomputed input sequences. While there is still room for improvement in
certain aspects, the presented work opens the door to pursuing applications
that demand more advanced control techniques. Throughout this thesis, we
gained valuable insights regarding the nature of mechanical metamaterials
and their potential for constructing dynamic structures. Collectively, these
observations serve as a stepping stone towards the development of a unified
framework for modelling and controlling lattice–based structures, offering a
promising path for future advancements in this field.
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Appendix A

KMPC Parameters

In this appendix, we provide formulas for computing matrices Q, T , and R,
which we left out in the main text to maintain brevity.

Q =


C̃>QC̃

. . .
C̃>QC̃

C̃>SC̃

 ∈ RnN×nN ,

T =


QC̃

. . .
QC̃

SC̃

 ∈ RpN×nN ,

R =

R . . .
R

 ∈ RmN×mN .

(A.1)

In the given context, N represents the length of the prediction horizon, while
m and p denote the number of inputs and outputs of the augmented system,
respectively. Additionally, n refers to the dimension of the augmented state
vector z̃. Furthermore, we provide specific values for the bounds on the input
increments ∆u[t] and the inputs u[t] themselves.

∆umin =

−0.1
...
−0.1

 = −∆umax ∈ RN , umin =

−0.5
...
−0.5

 = −umax ∈ RN .
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Appendix B

Contents of the Attachement

Together with this thesis, we submit the following files containing source code
and other files and material important to the presented work. The contents
are listed below in Table B.1.

Folder Contents
MATLAB scripts MATLAB files supporting the design

and validation of control algorithms
Simulink schemes Simulink models with implemented

control for the Voxel Tower
LATEX LATEXsource files generating this text

Table B.1: Contents of the attached folders.
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