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Abstrakt / Abstract
Tato práce se zabývá návrhem auo-

mobilové řídicí jednotky s rozhraními
CAN, FlexRay a Ethernet, jejíž hlavní
účel je poskytnutí komunikačního roz-
hraní mezi automobilem a externí
platformou pro vývoj algoritmů auto-
nomního řízení.

První část této práce poskytuje
přehled zmíněných komunikačních stan-
dardů a popis použitých vývojových
nástrojů. Ty jsou především vývojový
kit Microzed, tvořící jádro celého za-
řízení, Vivado design suite, pro práci
s programovatelnými logickými poli
kitu, a operační systémy používané
v embedded systémech. V následující
části jsou diskutovány všechny kroky
hardwarového návrhu a výběr vhod-
ných komponent. Zde je největší prostor
věnován zajištění obsluhy FlexRay
sběrnice. Dále je stručně okomentován
postup portování driveru FlexRay sběr-
nice na systém Linux. Závěr práce je
věnován testování vytvořeného zařízení
a zhodnocení jeho funkčnosti.

This thesis deals with the proposal of
car control unit with a CAN, FlexRay
and Ethernet interfaces, whose main
purpose is to provide a communication
interface between a car and an external
control unit for the development of
self-driving algorithms.

The first part of this thesis provides
an overview of aforementioned commu-
nication standards and description of
development tools. These are mainly
the Microzed development kit, the core
of the whole device, the Vivado design
suite for work with a programmable
logic array of the kit, and operating
systems used in embedded systems. In
following part, all steps of hardware
design and choosing of suitable com-
ponents are discussed. Here, the main
focus belongs to putting the FlexRay
bus into operation. Afterward, a port-
ing of FlexRay driver implementation
to the Linux system is briefly com-
mented. End of this thesis is devoted to
testing the device and evaluation of its
function.
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Chapter 1
Introduction

The modern-day automotive industry relies more and more on a X-by-wire control.
Classical mechanical solutions are replaced by electronics circuits. An electronic control
of the main engine is nothing new. Also, driving assistants such as power steering or
safety systems such as ABS are standards. An automatic gearbox, an adaptive cruise
control or a parking assistant is becoming common in modern cars. In the end, we can
say that absolutely everything is driven by electronic signals in nowadays cars.

With the development of artificial intelligence and increasing computational perfor-
mance of embedded systems, a challenging task of developing self-driving cars arises.
Sure, there are already several successful self-driving car models in the real operation.
But the know-how is often proprietary and still, a lot of problems need to be solved.
Problems range from a fast and precise car localization over an optimal trajectory
planning to recognizing car surroundings.

At the Department, many algorithms for solving these problems are in a development.
We already have a 1/10 model car for testing the self-driving algorithms. My colleagues
are quite successful in this area, what shows their recent victory in the international
F1/10 Autonomous Racing Competition. Thus, we would like to move our algorithms
to the next level and test them on a real car.

To be able to communicate with the real car, we need to somehow send control
commands inside the car system. It’s not so easy at all. The car system consists of
several tens of control units. These units are interconnected by several different bus
architectures. Also, some units can supervise other units, to check if they operate
correctly, by inspecting communication on the various buses. If we want to test the
algorithms for autonomous driving, that will run on some control unit, with the real
car, we need to be able to communicate with the other control units present in the car.

1.1 Goal of this thesis
In this thesis, I will develop a new control unit. Its main purpose is to provide a gateway
function between several different bus interfaces in the car. These are mainly the CAN
bus and the FlexRay bus. Via this gateway, we want to integrate our computational
control unit into the car system. Because this device is intended for use on the real car,
it should work reliably and in real-time.

This goal consists of several tasks. First, we need to choose or create a suitable
hardware. Then port or implement all needed drivers and functionality. In the end,
the basic performance tests have to be done.

We will work mainly with the CAN and the FlexRay buses since they are most
commonly used for communication between ECUs. The CAN bus is well known and
time-proven. The FlexRay is relatively new protocol. FlexRay bus is not so commonly
used as the CAN, so the availability of open source drivers and controllers is somewhat
limited, also possibilities for obtaining FlexRay controller chips are scarce. Therefore,
the main focus of this thesis will be in a handling of the FlexRay.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
It is out of the scope of this thesis to have a self-driving car. The goal is just to

prepare a suitable instrument for future work on this problem.

1.1.1 Meaning of the term “real-time”
The term “real-time” is often used in this text. The meaning of this term may vary in
different applications and needs to be specified. It means that on every one event in
the system, the response comes, in the worst case, within some specified time interval.
An example of the event and the response in our gateway system is receiving a message
from the bus and forwarding it.

I derived this worst case delay from the speed of a human response. This is usually
taken as 0.1 s. Most of the events, which we want to manage, serve for some control.
The control reference is set by a human or by some system which replaces a human
action. A control speed has to be much faster. We have to take into account a possibility
of summing delays on several system segments. Thus, I conservatively want to have the
maximum 5 ms worst case delay on my gateway for the most critical events.

2



Chapter 2
Theoretical background

In this chapter we first introduce the CAN and FlexRay protocols. Then we look at
AXI4 bus with the main focus on the AXI4-Lite version of this protocol. At the end of
this chapter, the main principles of scheduling in operating systems are discussed.

2.1 CAN bus overview

Controller Area Network (CAN) is a standard widely used in automotive since the
nineties. The main purpose of this norm is to provide a simple and reliable interface for
communication between multiple MCU’s (typically dozens) inside vehicles. Basically,
CAN is a multi-master serial bus allowing message priority. According to ISO OSI
model, CAN defines the physical and the data link layer.

On a physical layer CAN consists of one twisted pair of cables with the typical
impedance of 120 Ω. Each bus also has to be terminated by a resistor of this resistance.
Bits are transferred by a differential signal. When logical 0 is transferred, also called a
dominant bit, the voltage on the wires is driven to 0 and 5 V. When logical 1, called a
recessive bit, is transmitted, the bus is not driven and there is zero voltage between the
wires caused by termination resistor. All nodes should be synchronized. Because there
is not shared clock signal between nodes resynchronization occurs at each recessive to
dominant transition. Each message is transmitted in a frame. To determine which
node should transmit at a time all nodes receive what they transmit. At the beginning
of the frame, all nodes start to transmit simultaneously. In a case of transmitting the
recessive bit and receiving the dominant bit, the node should stop the transmission and
start again in a next frame.

On a data link layer, we can show how the frames should look like. The basic format
of the frame is the following. First dominant bit demarks start-of-frame followed by
identifier (ID) bits. After there is control sequence declaring a count of data bytes
following data. At the end of the message comes CRC code and acknowledgment. Value
of ID part can determine the priority of the message. ID with an earlier recessive bit has
lower priority. After transmission of ID, just one node should keep transmitting. The
standard length of ID is 11 bits but also some variants allow 29 bits length. Maximum of
data per one transfer is 8 bytes. This was a brief description of the most commonly used
data frame. Next types are the remote frame for request of data, error and overload
frame. The last two types serve for reporting of unexpected states on the bus.

There are several variants of CAN definitions varying mainly in maximum allowed
bit rate. In our project we use high speed CAN with the maximum speed of 1 Mbit/s
on a several meters long bus. Next variant is, for example, CAN FD (flexible data
rate). It allows switching to up to eight times faster transfer during the data part of
the frame.
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2. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 SocketCAN Linux driver

An open source implementation of socketCAN is part of the Linux kernel. It provides
for a programmer interface similar to UDP and TCP/IP networking based on Berkeley
sockets. This driver allows multiple applications to access one CAN device or one
application to handle multiple CAN devices. For setting up the communication first
we have to set up CAN interface and create a socket. Afterwards, we need to bind the
socket to a CAN interface. Then we can simply use read() and write().

2.2 FlexRay bus overview

In a modern day, automotive industry demands on safety, reliability and data rates
rapidly increase. In order to fulfill these needs a new standard was developed. The
FlexRay bus is a protocol which should replace the CAN bus in the most critical
automotive applications such as steer-by-wire, brake-by-wire, etc. Like a CAN, the
FlexRay also defines how the communication should look like on the physical and the
data link layer.

Generally, the physical layer of the FlexRay is similar to the CAN. It consists of one
or optionally two channels. Each channel is a twisted pair of wires with the impedance
between 80− 100 Ω with a differential signal. The optional second channel can be used
for duplicated communication increasing reliability by data redundancy or for doubling
data rate. The maximum allowed data rate is 10 Mbit/s on one channel. Because the
FlexRay bus is time triggered, all nodes in a bus have to have a clock drift less than
0.15 % from the reference clock.

There are main differences between CAN and FlexRay in how the communication is
organized and how the single one bit is transferred. A single message cycle consists of
a static and dynamic segment, symbol window and idle time. For the static segment,
there is a fixed schedule. Each node has its own time slot where the other nodes cannot
transmit. This segment is used for the transfer of the most safety-critical data, which
we typically need to send periodically. In the dynamic segment, the nodes can process
arbitrary communication with the assigned priority. Here it is the same like on the
CAN bus. The symbol window is used for network maintenance. A short portion of
the network idle time (NIT), where no data is transferred, is used for a global time
synchronization. In the simplest FlexRay variant, only the static segment and NIT are
mandatory.

The one message cycle usually takes about 1 ms and is driven by macroticks (1 µs
typical). One macrotick consists of several microticks, the smallest time unit of the local
clock. The number of microticks per macrotick can vary on different nodes. We need to
synchronize the start time of messages at each node. For this purpose, at least 2 nodes
in a FlexRay cluster has to transmit a synchronization message in their static segment.
From the time of receiving synchronization messages, a time shift is computed. Then
the desired amount of microticks is added or removed in the NIT. For measuring of
global time, macroticks and 6-bit cycle counter are used. The zero time is the start of
a frame with cycle counter value equals to zero.

The data are transferred in frames. The standard format of the frame is shown in
the figure 2.1. As in a CAN frame, we can see the frame ID in the header, followed by
data and CRC bits. In addition to CAN, the cycle counter bits are contained.

4
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Figure 2.1. FlexRay frame format, taken from [1].

At the level of a single bit transfer, the FlexRay provides a fault tolerant mechanism
for receiving bits. Each bit is held for several clock cycles and its value is determined
as a majority of received bytes. This approach can filter a single bits faults caused by
incorrect synchronization or a clock drift.

More information about FlexRay specification can be found in [1].

2.3 AXI4 bus overview

Advanced extensible interface (AXI) is a parallel bus designed for interconnection of
a processor with its peripherals. In this project, we will use it for an integration of
the CAN and the FlexRay bus controllers into the system. The bus architecture is
a master-slave with independent parallel channels for a data and address reading and
writing and one channel for a write response. This interface is suitable for direct
mapping of peripherals to the processor memory. The full AXI specification provides
a variable data and address buses width. We will use a less complex version AXI-Lite
for a basic connection of peripheral with fixed size registers. There also exists the AXI-
Stream version which is designed for streaming of a large amount of data from or to
the peripheral.

5



2. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2. AXI bus channel architecture of reads, taken from [2].

Figure 2.3. AXI bus channel architecture of writes, taken from [2].

2.3.1 AXI-Lite signal description
Because we will need to implement our own AXI-Lite peripheral, in this section, I
discuss all needed signals in detail. All signal names and design flow are taken from [3].

Read Address Channel
S AXI ARADDR Address bus from master to slave peripheral.
S AXI ARVALID Valid signal, asserting that the S AXI ARADDR can

be sampled by the slave peripheral.
S AXI ARREADY Ready signal, indicating that the slave is ready to ac-

cept the value on S AXI ARADDR.

6
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Read Data Channel
S AXI RDATA Data bus from the slave peripheral to the master.
S AXI RVALID Valid signal, asserting that the S AXI RDATA can be

sampled by the master.
S AXI RREADY Ready signal, indicating that the master is ready to

accept the value of the other signals.
S AXI RRESP A response status signal showing whether the trans-

action completed successfully or whether there was an
error.

Write Address Channel
S AXI AWADDR Address bus from master to slave peripheral.
S AXI AWVALID Valid signal, asserting that the S AXI AWADDR can

be sampled by the slave peripheral.
S AXI AWREADY Ready signal, indicating that the slave is ready to ac-

cept the value on S AXI AWADDR.

Write Data Channel
S AXI WDATA Data bus from the master to the slave peripheral.
S AXI WVALID Valid signal, asserting that the S AXI WDATA can

be sampled by the master.
S AXI WREADY Ready signal, indicating that the master is ready to

accept the value of the other signals.
S AXI WSTRB A strobe status signal showing which bytes of the data

bus is valid and should be read by the slave.

Write Response Channel
S AXI BREADY Ready signal, indicating that the master is ready to

accept the BRESP response signal from the slave.
S AXI BRESP A response status signal showing whether the trans-

action completed successfully or whether there was an
error.

S AXI BVALID Valid signal, asserting that the S AXI BRESP can be
sampled by the Master.

All channels control the transactions by handshaking using READY and VALID
signals. When these signals are asserted the transaction on a channel is processed in
one clock cycle. During an implementation, it is important to take care of correct
handling of these signals. For example, waiting for the READY signal before asserting
the VALID signal can lead to a deadlock.

Through the response channel, we will send just an acknowledgment that the data
writing was successfully done. Full AXI implementation defines a several error states
but we won’t need them in our project.

2.4 Schedulers in operating systems
Our final application should work in the soft real-time. This means that every task
finishes its execution within some defined time interval. Only in some special and rare
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2. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
situations is allowed to overrun the deadline. This interval can vary between tasks
according to their period and priority. Usually, there are many tasks ready to be
executed at a single point in time. A task execution is scheduled by the operating
system. Several scheduling policies are commonly used for this purpose. Generally,
we divide scheduler algorithms into groups based on their priority handling (static or
dynamic) and preemptive policy (preemptive or non-preemptive). The static priority
means, that task’s priority is the same all the time. Whereas, in the dynamic priority
case it can change in time. The preemptive scheduler means, that a running task is
stopped when a new task with a higher priority becomes ready for execution.

Differences are in schedulers used in the Linux kernel and real-time operating systems.
A good comparison of real-time scheduling in the Linux and in the RTOS can be found
in the article [21]. Briefly, the Linux kernel, extended to the real-time version, offers a
more options for a scheduler configuration than a typical RTOS.

Here are introduced main policies used by schedulers.

2.4.1 FIFO
This is the simplest scheduling policy. Each new task is added to the end of a task queue
before all other tasks with lower priority. The running task runs until it is blocked or
preempted by a new task with a greater priority. The disadvantage of this algorithm is
that the processed task can run for a long time and another task has to wait.

2.4.2 Round-robin
An improvement of the previous method is the round-robin scheduling. Here a time
quantum is set and each task is executed for the maximum of this quantum, then it is
sent to the end of FIFO and next task is executed. The problem with the FIFO and
static priority task are that low priority tasks can wait for a long time until all other
higher priority tasks are finished. This can be solved by the dynamic priority scheduler,
where the priority of tasks increases with time.

2.4.3 Deadline schedulers
For the most critical tasks, the dynamic priority can be set according to a task deadline.
We have to determine the deadline for each arriving task. Then the “earliest deadline
first” scheduling policy is used.

8



Chapter 3
Components and development tools

This chapter provides a description of basic parts used for building the gateway. These
are the MicroZed board and FlexRay bus controller Cypress MB88121. Next, we will
discuss how to work with Xilinx Vivado design suite and how to implement a custom
peripheral inside the programmable logic array using this toolkit. The end of this
chapter briefly shows how to configure a Linux distribution to run on the platform with
custom peripherals.

3.1 MicroZed development board
The core of the gateway is MizroZed board with Xilinx Zynq-7000 system on a chip.
The Zynq chip contains dual-core ARM Cortex-A9 processing system (PS) and FPGA
programmable logic (PL). There are also several peripherals such as USB, Ethernet,
two CANs, GPIO and other common interfaces directly connected to the PS. The main
advantage of this chip is the already mentioned PL which allows us to implement all
the missing hardware we need for the gateway. A detailed description can be found in
the Zynq-7000 technical reference manual [4].

On the MicroZed board are assembled all components needed for running the Zynq
processor, without any carrier board. The core is a power supply cascade with voltage
level supervisors. The board can be supplied through the micro USB from a PC or
through the barrel jack connector, which optionally can be assembled on the board, or
through the supply pin from the carrier board. The power supply over the USB port
is suitable just for basic testing of standalone MicroZed.

The processor contains DDR memory controller so 1 GB DDR3 RAM is also popu-
lated on the board. The maximum frequency of DDR is 1066 MHz. Another memory
present on the board is 128 MB flash on a QSPI bus. The flash memory can be used
for a system deployment. The last memory we can use is a microSD. The maximum
supported size is 32 GB. The SD card will store a Linux kernel, a root filesystem and
a program performing the gateway function.

For communicating with the user a USB port is present on the MicroZed board.
The basic use is like a serial line terminal to allow user to monitor and interact with
the running system. The next interface we can directly use is Gigabyte Ethernet port.
It significantly reduces the time needed for the development of software because it is
possible to set the system to boot over an Ethernet network. From a practical point of
view, it is much faster than to download a new program to the SD card after each little
change. The last interface ready for use on the standalone MicroZed is JTAG connector.
The JTAG is used for a bare metal programming of the processor or for deploying the
PL design. The important ability of the JTAG is monitoring signals inside the PL on
the running system. But our design during this project was not so complicated so I
didn’t need to use this feature for a debugging. For interacting with the MicroZed board
over the JTAG interface a special JTAG/USB converter is needed. This converter is
not supplied with the MicroZed board and has to be ordered separately.

9



3. Components and development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other peripherals have to be routed out from the MicroZed through two 100 pins

microheaders. On microheaders, we can access PL ports and several GPIO’s. Also,
the JTAG, the reset pin and power supply pins for MicroZed are here. It is possible
to connect all PS peripherals through the PL ports. The PCB with all expansions is
called the carrier board. How the design should be done is described in the document
[5]. The design of the carrier board is one of the main quests of this project. Details
can found in chapter 4.

3.2 FlexRay controller MB88121

Next core component of the gateway is the FlexRay controller. There are a lot of
processors with integrated FlexRay peripheral available but all of them usually provide
just one dual channel interface. There is not freely available and fully working HDL
implementation of IP (intellectual property) core which we could easily port to the
Zynq PL. There is one project at the faculty at the Department of Measurement where
they developed their own FlexRay IP core running on the programmable logic. More
information related to this project can be found for example in [15] But this core was
developed on a different platform and for a performance testing purpose. Porting it to
the Zynq platform would be quite time-consuming. So we decided to use an external
bus controller and integrate it into the system. There are no many standalone FlexRay
controllers available on a market. Some producers, which offers these components,
are NXP Semiconductors, Cypress Semiconductor or Infineon Technologies. The NXP
MPC5777M MCU provides what we need, but its FlexRay core is based on the different
implementation, for which we would need to write a new driver. From all alternatives,
the best one is the standalone FlexRay bus controller MB88121 from Cypress because it
contains the Bosch E-Ray FlexRay core for which our department already has a driver
code from some older projects. The next important reason is that this chip was the
only one available on the stock of electronics components suppliers.

As already mentioned, this chip provides FlexRay bus controller. Also, it contains
8 KB message RAM for input and output buffers and it provides filtering of received
messages. The maximum allowed speed on the bus is 10 Mb/s which is the maximum
speed defined by FlexRay specification. For connecting to the bus we need to add a
physical layer transceivers to the chip. I choose the TJA1082, the same as was already
used in the projects with FlexRay at the department.

The MB88121 provides several possibilities how we can connect it to the system.
These are the 16-bit parallel multiplexed and non-multiplexed bus and SPI bus. The
SPI bus is the most simple one but it is serial and it can run at the maximum frequency
of 8 MHz. The maximum possible data raye on the FlexRay bus is greater then we can
transfer via SPI bus so this interface is not suitable for our purpose.

We will use the parallel non-multiplexed interface. It provides the fastest access to
the chip registers. The bus consists of 16 data wires (D15 to D0), 11 address (A10 to
A0) wires, bus clock (BCLK) and bus control signals. These are active low chip select,
read, write and active high ready (RDY) signal. Address wires always have the input
direction to the chip. A direction of data pins depends whether read or write signal is
asserted. If none of them is asserted, data pins are in the high impedance state. The
RDY signal is output from the chip and it signalizes if data on the bus are valid or
already processed. The datasheet [6] doesn’t specify the maximum frequency of the
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bus clock. In examples1, they use 32 MHz BCLK so I set this frequency as the allowed
maximum.

Figures 3.1 and 3.2 show the timing diagrams of the reading and the writing op-
erations. Internal registers of the MB88121 chip have 32-bit width. For this reason,
we need to process two writes or two reads operation with the 16-bit data bus in one
access.

Figure 3.1. MB88121 read register timing diagram in 16-bit non-multiplexed mode, taken
from [6].

Figure 3.2. MB88121 write register timing diagram in 16-bit non-multiplexed mode, taken
from [6].

1 Section “Operation in 16-bit non-multiplexed parallel bus mode” of the datesheet [6]
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Based on these timing diagrams we can implement finite state machine (FSM) in the

Zynq PL for the bus control. This FSM should be connected and mapped through the
AXI bus to the PS to provide access to the chip.

Next, three interrupt signals are available in the parallel non-multiplexed mode.
The last important notice is about handling the RDY signal during the write oper-

ation. From the timing diagram 3.2 one can understand that RDY pin is de-asserted
after each full write operation. But testing the chip showed us that the RDY signal
falls down only when writing to some registers, not all of them. So the FSM cannot
expect the RDY low every time but has to handle it when this situation occurs.

3.3 Vivado design suite
For working with Xilinx FPGA we will use Vivado IDE. It provides intellectual property
(IP)-based design. Each IP can be independently instantiated and configured and
interconnected with the system via the AXI4 interface. On each design level, Vivado
allows us to process logic simulation, IO and clock planning, power analysis, a definition
of constraints and a lot of other features.

On the lowest level, a behavior of IP’s is defined with the use of VHDL or Verilog
language. I choose the VHDL for my work. Vivado also provides an IP core generation
from C or C++ code. This process is called high-level synthesis (HLS) and it is a
way how a program running on the PS can be parallelized by moving it into hardware
peripheral. The HLS is useful for example for DSP functions which can be quite hard
and time-consuming to describe in HDL. Our project doesn’t require computationally
demanding functions so I didn’t study the HLS in more detail.

There are hundreds of Vivado manuals on the Xilinx websites. The most common
approach how to work with this IDE is via its GUI. But all control is based on Tool
control command (Tcl) language which is widely used standard. We can see all processed
Tcl commands in the Tcl command line in the GUI window.

With default workflow, also called project mode, the Vivado automatically generates
a project directory tree. All project files are automatically managed and tracked by
Vivado. A second possible approach is a non-project mode. Here we have to create
our custom Tcl scripts for managing design sources and process all necessary steps.
We use the project mode workflow. Although a project directory tree seems to be
unnecessarily extensive, my experiments with non-project workflow lead to problems
with synchronization and propagation of changes in source files into the whole design.
The list of Tcl commands implemented in Vivado is in the manual [7].

Design steps are showed on a diagram in a figure 3.3. First, we have to create custom
IP blocks or use predefined IP’s from Vivado IP catalog. Next step is to configure all IP’s
and interconnect them in a block diagram. Here Vivado offers a lot of automation. Both
in automatic configuration of default blocks properties and an automatic connection of
corresponding signals. Afterwards, we need to define IO ports and associate them
with physical pins of Zynq’s PL. This can be made in IO planning editor in Vivado
GUI. This generates a constraints file with a port to package pin assignment and some
other properties definitions. Next steps are a synthesis, which converts the design into
interconnection of basic FPGA components and implementation, which computes how
the design is routed in a real FPGA. The last step is generating a bitstream file for PL
configuration.
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IP Packager,
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Implementation,
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Figure 3.3. Vivado IDE design flow.

3.3.1 Creating a custom IP in IP packager
An IP packager provides a way how to create a new IP core block for use in the Vivado
IDE. It is possible to package HDL sources or the whole project. When creating a
new IP block, the Vivado offers a predefined AXI4 interface with memory-mapped
registers coded in VHDL language. These default files are a good starting point when
implementing a custom AXI slave IP core.

Next ability of the IP packager is a definition of IP blocks ports and parameters.
To each port is possible to assign a special signal type such as a clock or reset signals.
These properties are used for optimizations during synthesis and implementation. Sev-
eral ports associated with one interface should be grouped together to provide more
organized block diagrams. IP packager allows us to define such interfaces. All the
new IP blocks and interface definitions have to be sourced in the main Vivado project
manually. Then, the Vivado manages all changes in IP sources automatically.

3.3.2 Note on handling tristate buffers
Sometimes it is necessary to use bidirectional signals. In this project, it is the case
of the data signal from and to the MB88121 FlexRay controller. The standard way
how to code input-output buffer in VHDL is described in [8]. The following schema is
recommended.

entity three_st is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st;

architecture archi of three_st is
begin

O <= I when (T=’0’) else ’Z’;
end archi;

This code tells that port O is output or in the high impedance state depending on the
tristate control signal T. The problem arises when we use this approach inside the Zynq
FPGA. Internally there exists just logic zero or logic one signal values and nothing like
the high impedance state. So although this structure is allowed by VHDL language,
the logic simulation doesn’t show any mistakes and the synthesis and implementation
don’t throw any errors or warnings, the resulting design works unpredictably wrong.
In the worst case, it can lead to shunt between a connected peripheral, driving signal
to some logic level and wrongly set Zynq pin, driving to the opposite logic level.

For correct handling of tristate signals, we need to work with a triple of input, output
and tristate control signals in the whole design. Each tristate signal triple should be
grouped into a tristate interface predefined in Vivado. After, correct port settings are
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done automatically by Vivado. Going through generated source files showed us that
tristate control is implemented similarly to the previous listing in an HDL wrapper
file generated from the block design. The high impedance state is allowed only on the
outermost level when working with physical PL ports.

3.3.3 Writing the IO constraints file
There are several parameters which need to be specified during the I/O planning phase.
These are stored in already mentioned constraints file (.xdc - Xilinx design constraints).
We can edit them with IO planner editor or by hand in a .xdc file with the use of
Tcl commands set_property and get_ports. The main parameters are listed in the
following table 3.1. The full Tcl command in the constraint file can look as follows.

set_property PACKAGE_PIN P16 [get_ports mb_clk];

Tcl Property Values Description
PACKAGE PIN W14, R18, ... Number of package pin/pad.
IOSTANDARD LVCMOS33, LVCMOS18,

LVTTL, ...
I/O standard defines voltage
levels, port impedance, etc.

PULLTYPE PULLUP, PULLDOWN,
NONE

Setting the internal resistor
pull type.

Table 3.1. Parameters of I/O ports

Ports of the PL are organized in banks. The Microzed platform contains two banks
available for PL interfacing. Some parameters, like an I/O standard derived from bank
voltage supply, we want to set for all ports in the bank. This can be simply done by a
single Tcl command.

# Set the bank voltage for IO Bank 34 to 3.3V by default.
set_property IOSTANDARD LVCMOS33 [get_ports -of_objects [get_iobanks 34]]

I didn’t find a manual describing all possible parameters of Tcl commands for creating
I/O constraints. During their discovery, I used example constraints files or output of
Tcl command line in the Vivado GUI or intuition.

3.3.4 Debugging of FPGA design
The Vivado offers several tools for testing and debugging the design in different devel-
opment phases. First is the behavioral simulation. We use this for a validating of our
HDL codes. The behavioral simulation is suitable for short pieces of code describing
basic components. In the simulator, we create a test-bench for the tested component.
In the test-bench, inputs signals are defined and applied to the component. Then,
outputs are simulated and the user has to determine if they are correct or not. Writ-
ing of the test-bench needs almost the same effort as an implementing of components.
For more complex components, it can be hard to determine and test all possible input
combinations.

Second is a timing simulation. It is done on a synthesized FPGA design. Here, we
can check a signal delay and a jitter on physical logic blocks, as it would be wired in
the chip. Because our application is relatively slow in comparison to capabilities of the
used FPGA, I didn’t use this type of simulation. I expected that timing requirements
are easily met in every configuration.

In simulations, we can hardly cover all possible states of the whole design. It is good
to see what happen inside the FPGA during a runtime. An in-circuit logic analyzer can
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be composed to the design. An arbitrary signal can be selected to be monitored. In the
block diagram, we can use the Integrated Logic Analyzer IP core. This core provides
an interface via the JTAG connector. The JTAG is automatically recognized by the
Vivado and an analyzer GUI is a default part of the IDE.

3.3.5 Versioning of Vivado project
The project directory contains a lot of automatically generated content, compilation
products and a lot of files that are not in a human-readable format. It is not a good
idea to track changes by git or other versioning systems. Since the Vivado projects are
internally managed using Tcl commands, we can export a Tcl script for recreating the
project in any development phase. The script is created by the following command.

vivado -mode batch -nolog -nojournal -source recreate.tcl

This script together with HDL design sources should be versioned in git. But there
is one annoying issue. If we make some changes in a project recreated by Tcl script,
these changes are not propagated into all automatically generated files. For example, if
we add some physical ports in the top level block diagram, we have to manually change
an HDL wrapper used for synthesis. This should be normally done by Vivado. I didn’t
discover if this behavior is a feature or a bug. To save an effort with this and similar
issues, I did just backups, not versioning during the project development.

3.3.6 Running Vivado on a remote server
The synthesis and the implementation are quite time-consuming and computationally
demanding process. On a laptop, with i5 CPU and 8 GB RAM, it takes between 5 to
10 minutes to generate a new bitstream file ready for deploying to the PL after every
little change in the Vivado project. This really slows down the project development.
But it is possible to run bitstream generation remotely on some server.

If we have a good network connection, the simplest option is to mount our directory
with installed Vivado and the project directory to the server machine. For this purpose
we use the program sshfs, which needs to be installed on the server. Afterwards, we
can run a custom Tcl script for building the project by the following command.

vivado -mode batch -nolog -nojournal -source build_remote.tcl

Vivado in the batch mode processes a given Tcl script without running GUI. All
generated files are then stored on a local computer in the mounted project directory.

By this workaround, we can move computations to the remote machine. Not all
steps of synthesis and implementation can be parallelized on multiple processors so
time savings are not so significant as I hoped. I expect a greater advantage of this
approach when computing an HLS which is much more computationally demanding.
But I didn’t test it because I didn’t need to use the HLS in this project.

3.4 Embedded Linux
The basic applications running on the Zynq can be written as a standalone C program.
The Zynq processor is relatively powerful so we need some operating system for running
advanced applications using different resources and requiring some level of multitasking.
There are two options. One of them is to use FreeRTOS real-time operating system,
second is to use the Linux operating system. At the department, there is already a
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configured and tested Linux kernel image for the Microzed platform. I decided to use
this Linux image and adjusted it for the gateway.

Usually, we don’t need a fully featured Linux platform in the embedded applications.
But it is necessary to have a more user control over hardware peripherals than we
usually need when working with a Linux distribution running on a personal computer.
For making a custom distribution containing only necessary kernel parts and a basic
root file system is suitable to use the Buildroot tool1 and Xilinx Linux kernel2. Both
of them is freely available on the Github.

In the kernel configuration, we specify which packages and peripheral drivers are
needed for our platform. A user-friendly GUI for configuration pops up after calling
make menuconfig in the kernel build directory. In a similar way also the Buildroot can
be configured.

3.4.1 Device Tree
It is a data structure describing hardware components so that the operating system can
use them. Each new peripheral created in the PL, which should be controlled by the
kernel, needs to be added to the device tree. The Vivado offers a tool for generating the
device tree for custom PL peripherals. Manual how to generate the device tree is on
the webpage [17]. The generated folder contains a file pl.dtsi which can be included
in the main device tree file. After this step, the kernel can work with all IPs in the PL.

3.4.2 Access to hardware from userspace
The main purpose of the Linux operating system is to “separate a user and the hard-
ware”. In embedded applications, we want to work with a hardware. For this purpose,
we need to use a kernel drivers providing some interface for working with peripherals.
A lot of them can be controlled by an ioctl command3.

In the case of memory mapped peripheral, there is no needed for Linux kernel drivers
or device tree definitions. All we need to do is to tell the Linux where the peripheral is
mapped. The routine for this purpose can be made based on the mmap command. This
routine is also already available and tested in our department. When the peripheral is
mapped into the userspace, it is possible to implement device driver outside the kernel
space.

3.4.3 Real-time Linux
A standard way of using the Linux on a personal computer doesn’t require real-time
behavior. But for embedded applications, the Linux offers several ways how it can be
configured to provide responses fast enough for real-time systems.

First, we don’t use the whole Linux kernel but just the most basic parts. Also, we
don’t need to focus on a power consumption optimality, thus all system suspending
functions are disabled. It reduces overheads significantly.

Next, we can manage how the Linux schedule the execution of processes. Functions
for work with the scheduler are available in the library sched.h4. By default, the Linux
process is scheduled with the SCHED_OTHER attribute. This means that it is a non-real-
time process with a static priority 0. The running thread is chosen from the static
priority 0 list, based on a dynamic priority determined inside the list.
1 https://github.com/buildroot/buildroot
2 https://github.com/Xilinx/linux-xlnx
3 man ioctl
4 http://man7.org/linux/man-pages/man7/sched.7.html
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For real-time processes, a priority greater then 0 is set and different policy is
selected. The SCHED_FIFO attribute for simple priority queue execution can be
used. Or SCHED_RR for the round-robin policy. Hard-real-time processes can set the
SCHED_DEADLINE attribute. Here also the runtime, the deadline and the period of the
execution have to be set in addition to the priority.

The last way how to make the Linux real-time is to use realtime-preempt patch
set. Now, these patches are not part of the mainline kernel, so they must be installed
additionally. These patches provide for example a better handling of interrupts. This
means that only necessary workaround is done inside an interrupt handler before it
returns to the normal execution.

3.4.4 Useful libraries for parallel applications
In addition to standard Linux libraries, we may need to use some other libraries, which
make our work easier. For multiple threads and shared resources management serves the
pthread.h library. From this library, we will use an interface for work with semaphores
and mutexes. This mechanism allows us to protect critical sections in the code against
a access from multiple threads at one time.

Our device should work as a gateway in the final application. This means that it
should handle several I/O sources at one time. Messages on different I/O’s can come
with different time intervals and it can be non-deterministic. We have to process each
message as soon as possible after it comes. The way how to achieve this is to poll all
sources of messages. Some of I/O’s can also generate interrupts. We can write such an
application with the use of Pthreads (POSIX Threads) library and create several threads
for several I/O sources. It is easy to make a mistake in a multiple threads management
which can easily lead to a deadlock. The libev1 library will save our effort. It is an
event loop for handling different types of events. The one type is timeout event, the
second is I/O event, which we use. The I/O event is a new input on the I/O source.
When the event occurs, an assigned callback function for processing a new message is
executed. We don’t need to do any other work than to write callbacks with the use of
this library.

3.5 FreeRTOS
Some hardware, which we will use during a gateway testing, uses the FreeRTOS2. This
is small and simple real-time operating system kernel implementation written in C. It
is deterministic and fast. The FreeRTOS application is organized in independent tasks.
Each task has assigned its priority. Here higher number means higher priority. Tasks
are scheduled by the round-robin algorithm. For tasks and resources management, the
FreeRTOS offers mutexes, semaphores, timers and other mechanisms. The usage and
all features are described in the document [9]. There are no advanced features, such
as device drivers, memory management, etc. Some libraries are written to provide
more functionalities, such as lwIP, a lightweight open source TCP/IP stack designed
for embedded systems, and others.

All settings of FreeRTOS are done in one file FreeRTOSConfig.h. For example, we
can configure the scheduler to be preemptive or we can set the system tick interval.
When working with timers, a special care has to be taken to not work with the timer
which drives system ticks. Otherwise, the application can behave wrongly.
1 http://software.schmorp.de/pkg/libev.html
2 https://www.freertos.org/
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3.6 Rapid Prototyping Platform (RPP)

For testing the gateway, a working FlexRay bus with some traffic is needed. We have
a testbed consisting of several RPP boards at our department (figure 3.4). The RPP
board was also developed at the department. Its description can be found in [19]. It is
a board based on the TMS570 safety MCU with FlexRay peripheral, several power out-
puts and others peripherals. Its purpose is a development of power control applications,
with a possibility of code generation from Simulink.

On the testbed, a steer-by-wire demo application is implemented. Two RPP boards
with DC motors with encoders are connected through the FlexRay bus. One DC motor
simulates a steering wheel, second an actuator. A position of a shaft is measured, then
sent via the FlexRay bus to the second board which controls the motor to received
position.

The testbed will be used for experiments. It is possible to switch steer-by-wire demo
to use a CAN bus too, so the whole gateway can be tested here.

For a work with testbed and RPP boards, we need a Code Composer Studio IDE
from Texas Instruments. Here, we can write and compile the code and also debug the
application via JTAG interface. All source codes and support packages for RPP board
were developed with the version 5 of Code Composer Studio. Using the newer version
can be problematic.

Figure 3.4. Testbed with RPP boards

3.7 Bus traffic analyzers
During an application development, it is good to see what happens on the bus. For the
CAN bus, we have the USB2CAN device. This is a converter from CAN to USB, which
can be connected to the PC and serves as a regular CAN node. The connection to the
CAN bus is done by the standard DB9 connector with pinout showed in the following
table.
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Pin Signal Description
1 - No connection
2 CANL CAN low bus line
3 CAN GND CAN Ground
4 - No connection
5 CAN SHLD Connected to CAN GND via 100 Ω/0.1 µF
6 CAN GND CAN Ground
7 CANH CAN high bus line
8 - No connection
9 - No connection

Table 3.2. Pin assignment of USB2CAN device

Next, we have the VN3600 FlexRay analyzer from the Vector company. It works only
on a Windows machine with the specialized commercial software CANoe. The CANoe
offers a lot of features from a bus monitoring to a simulation of a whole CAN or FlexRay
cluster with a graphical interface. A data format in the CANoe can be defined with
use of FIBEX (Fieldbus Exchange Format). Arriving messages are handled as events.
The event-based language CAPL is used for writing applications in the CANoe. A
documentation of the CAPL language can be found in [16]. For the FIBEX format,
I didn’t find any comprehensive documentation. In this project, we use the CANoe
tool just for simple monitoring of traffic on the FlexRay bus. I had need to study the
CANoe deeply.

Figure 3.5. Pinout of FlexRay AB to A and B channels cable [20].

The VN3600 has one dual channel FlexRay interface. It serves for passive monitoring
of the traffic without any influence on the FlexRay cluster, or it can be used as regular
FlexRay node for interconnecting the real cluster and simulation in CANoe. Both
FlexRay channels are routed through a single DB9 connector. A cable wiring for routing
the signal to two distinct channels is shown in the figure 3.5.
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3.8 Microzed APO education kit

A great resource for inspiration and starting point of my design is education kit MZ
APO. It is a device based on the Microzed board, developed by Pavel Píša. We have sev-
eral pieces of this kit at the department for the teaching of the Computer Architectures
course.

The device consists of the Microzed and carrier board. The carrier board contains
an LCD display, LED diodes, which can be used for visualization of a 32-bit word,
three rotational (IRC) inputs connected by the SPI, and several other peripherals for
demonstration basic principles of a computer system. The whole description of the kit
can be found at the Computer Architectures course webpage [22]. The project is also
available at the git repository1.

On this kit, I learn how to work with the Microzed board. Next, it was an inspiration
how to properly create a power supply for the Microzed and how to create an FPGA
design.

1 http: / / rtime . felk . cvut . cz / gitweb / fpga / zynq / canbench-sw . git / shortlog / refs / heads /
microzed_apo
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Chapter 4
Electronic design

Following chapter focus on concrete steps and decisions made during the development of
hardware part of the gateway. Namely design of the carrier board for the Microzed. We
will discuss main components used, schematics and some rules of placing components
and routing tracks on a PCB. All schematics referred by this chapter are in appendix
B.

4.1 Power supply
The core of each electronic device is a power supply. Our gateway is powered by
standard car-battery. This means that the input voltage is normally about 12 V, but
the gateway has to stay operational with a much lower input voltage. Such a situation
can occur during a car starting when the battery voltage rapidly steps down. For this
reason, the input voltage is filtered by a large battery of capacitors. The purpose of
capacitors is to slow down input voltage changes, so the main regulator can handle
them.

Between the input jack and capacitors is a diode. Its purpose is a protection against
polarity switch. Also, it protects capacitors against a discharging back to the input
during a voltage decrease.

I choose switching regulators for the Microzed power supply. From all technologies,
switching regulators have the greatest efficiency, up to 90 %, so they produce less heat.
Negative of switching regulators is noise caused by switching. For making the noise as
low as possible we need to take care of placing external components around regulator
circuit. Mainly, the output capacitor, inductance, and diode which are connected as
shown in figure 4.1. On a PCB, These components should be placed close to the
regulator circuit so that area inside current loops I1 and I2 is small. The inductor has
to be shielded and feedback track routed out of these current loops.

Figure 4.1. Switching regulator simplified schematic.

Inside Microzed board, there is a power supply cascade for creating all needed voltage
levels for running Zynq processor and included peripherals, except the supply for banks
with I/O pins from PL. The cascade is driven by series of power good (PG) signals as
shown in figure 4.2. The last PG signal is used as a power-on-reset (POR) signal. The
carrier board is designed to provide 5 V input voltage for main supply of Microzed. On
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the output of 5 V regulator is voltage supervisor circuit. Its output is used as power
enable signal (PWR Enable in the figure). Next regulator is for creating 3.3 V VCCIO
voltage for PL banks. This regulator is driven by VCCIO EN signal from the Microzed.
An output of 3.3 V supervisor is connected to the PG Module. All PG signals are open-
drain, the output from the supervisor circuit is also open-drain so we can safely use it
as next POR.

Figure 4.2. Power supply cascade on the Microzed board, taken from [10].

4.2 FlexRay controller connection
Function and interface of the controller MB88121 were already discussed in a section
3.2. We need to connect two controllers. Data, address and bus clock wires are common
for both of them. Bus control signals have to be routed separately to each controller.
When we are routing high-frequency signals, we should have in mind some rules of
design. Because the speed of signal propagation is not infinite, the first step is to
determine a length of wires where problems can occur. When the wavelength of a
signal is comparable or less than a length of tracks, signal values on the opposite ends
of the wire can be different. Length and impedance of all tracks of the bus have to
be the same, to provide the same delay on each track. In some applications, a signal
propagation delay has to be estimated and used when driving a bus. Differential signals
are commonly used in high-speed applications.

From the datasheet [6], the maximum frequency of the bus is 32 MHz. With a signal
speed approximated by the speed of light, we get a signal wavelength of about 10 m.
Length of wires on the PCB is several centimeters long. That’s much less than the
wavelength so I don’t expect problems caused by slow signal propagation. But still, it
is a good practice to route tracks with the similar lengths and with constant distances
between tracks. The most noise producing signal is the bus clock. For reducing this
noise, a ground plate is split around the whole length of this track.

Other pins of controllers are connected according to the datasheet. Close to each
power supply pin is a capacitor filtration. 8 MHz crystal oscillator is used. Unused
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input pins are pulled down by a resistor, output pins are left unconnected. Mode
selection pins are hardwired to select 16-bit non-multiplexed bus mode. Next time
I would route mode selection pins to pin headers because I needed to change their
configuration during the debugging process to a simple SPI mode when I checked if the
controller is operational.

4.3 Bus transceivers connection
Each FlexRay controller needs two FlexRay transceivers. The TJA1082 chips are pop-
ulated. The transceiver needs two voltage supplies. One for a logic level, in our case
it is 3.3 V. Second for a FlexRay bus driving, it is 5 V. Both voltage levels are already
present in the carrier board power supply circuit. A bus plus (BP) and bus minus (BM)
signals are routed out from the board via a standard DB9 connector. The FlexRay bus
can optionally be terminated by 100 Ω resistor connected to pin header. For a moni-
toring of bus and transceiver status, the chip contains two status bytes which can be
read via SPI bus. For a simple error detection, just one wire can be used. More details
about TJA1082 chip are in its datasheet [11].

Both, SPI line and simple error signal are connected to the PL. But only one way of
error and status detection can be used at a time. To activate the simple error detection
mode, logic zero has to be connected to the SPI chip select signal and logic one to the
SPI clock.

A connection of CAN bus transceivers is similar. Again we need two voltage levels,
3.3 V for the logic and 5 V for the bus. Bus signals are also routed via the DB9
connector and can be terminated by 120Ω resistor with use of a jumper. Two CAN
controllers are present in the Zynq’s PS, third is implemented in the PL.

We don’t use CAN standby mode thus a logic zero is connected to the standby
activation signal. This is done in the PL so we can start using standby mode in the
future.

4.4 PCB design
The main idea for the design of the carrier board PCB was to place Microzed footprint
into the middle of the PCB such that USB and ethernet connectors are at the edge of
the board. Then put all peripheral components around the Microzed and power supply
components as far as possible from the processor and all signal lines. Double sided PCB
was enough for routing all wires. The board was made by the Pragoboard company by
the POOL service method. We set the design rule limits in a PCB editor according to
the specification provided by the manufacturer. Next time I would use higher tolerance
and larger vias than those presented by the supplier. During assembling, I found several
nonconductive vias which I had to repair.

Purpose of one already finished board was testing and debugging the gateway design.
Thus it contains several indicating LED diodes, several push buttons for manually
driving some signals which purpose was not clear from the Microzed documentation
and test points for easier signal monitoring. Several design bugs were made in the
first board, such as mirrored footprints for DB9 connectors, wrongly placed labels in
silkscreen layer and others details. This thesis contains already corrected schematics
and PCB layouts. All user buttons were removed from the carrier board because they
are unnecessary. A reset button is already on the Microzed board. Only one user-LED
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connected to the PL for its basic testing and power on LED are still presented in the
new carrier board design.

On the testing board, all components were soldered by hand and some of them
were several times reassembled. The mode selection pins on one MB88121 chip were
reconnected during the debugging process so an ugly hack had to be made on the board.
After finishing the debugging process, the board is fully working but not suitable for
reliable use in the real car. A next board should be created from the provided production
materials.

The testing board is depicted in figure 4.3. Battery of capacitors were not assembled
because we connected the board only to a laboratory power supply, not to the real car
battery. A layout of all connectors and other parts, important for user, is highlighted.
In the new design, layout of these interfaces is almost the same.

Figure 4.3. Carrier board.
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Chapter 5
FPGA design

This chapter continues in the description of hardware design. Here, we comment the
work which was done with the programmable logic arrays on the Zynq processor. All
used IP cores are briefly introduced, and one self-made IP core is described in a more
detail.

Figure 5.1. Zynq configurable block diagram. Taken from the Vivado suite.

A design of PL peripherals was made in the Vivado IDE, which was introduced in
the section 3.3. The first component in a block diagram is a Zynq7 Processing System.
This represents all peripherals and CPU’s in the PS. In a configuration menu, we
see a block diagram of the Zynq (figure 5.1). Here we choose which peripherals are
needed for a project. By default, DDR interface, USB and timer are set. These default
configurations are for peripherals contained on the Microzed board. Next, the CAN0
and CAN1 is selected. It is possible to route each peripheral from PS to some concrete
GPIO pins or via arbitrary PL pins. I used PL pins because it provides more flexibility
in designing the PCB. For connection of all custom peripherals, the AXI master interface
is enabled. Some of the peripherals generate interrupt signals. The Zynq allows up to
16 interrupt lines from PL to PS shared by both cores. In addition, both CPU cores
can be interrupted separately by a fast private interrupt line and interrupt generated by
PS peripherals can be routed from PS to the PL. In this project, only standard shared
interrupts from PL to PS are enabled. Up to 64 GPIO pins are available for a user in
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the PL, we need just several of them. The main driving of PL is done by a clock and
reset signal. A clock frequency can range from 0.1 to 250 MHz and several independent
clock sources can be used. For our gateway, two clocks are needed. A fast clock for
all PL logic such as an AXI bus management and slow clock for driving the parallel
bus for FlexRay controllers. Settings of clock sources from PS is done during a booting
process by the first stage bootloader (FSBL). The Vivado automatically generates a
ps7_init.c and ps7_init.h for the FSBL. However I couldn’t discover how to include
these files in the bootloader, called u-boot, so I use just one 100 MHz clock source, which
is running by default. The slower clock for FlexRay controllers bus are synthesized in
the PL and its frequency is set to 31.25 MHz, which is a value closest to the maximum
frequency allowed for the MB88121 chip, easily synthesizable in the PL.

Other components of the block design are:.Third CAN controller, an SJA1000 IP core.Finite state machine for control of the parallel bus to MB88121 controllers.AXI interconnect IP.Processor system reset IP, driving the reset signal of all peripherals.Clocking wizard for synthesizing a slower clock. IPs for concatenating GPIO’s and interrupts

The whole block design of the Zynq’s PL is attached in the appendix C

5.1 SJA1000 IP Core
We use this open-source Verilog implementation of CAN controller. It is available from
the site [18]. The implementation is fully compatible with its hardware counterpart.
The SJA1000 core was already tested at the department by Martin Jeřábek in his thesis
[12].

Only one difference between the hardware part and soft IP core is its interfacing
to the processor. The hardware part uses an 8-bit parallel bus, as we can see in the
documentation [13]. The IP core uses memory mapped registers through the AXI bus.
The core contains one interrupt signal which needs to be handled by the PS.

Support for SJA1000 chip is in the Linux mainline kernel. It provides several ways
of integrating controllers into the system. The direct memory mapping is suitable for
our purpose.

The Vivado doesn’t generate correct device tree when this IP core is contained in the
PL design. The reason may be some missing Vivado specific definitions and settings in
the core. A manually written instance in the device tree looks as follows. An example
is taken from [12].

sja1000_0: sja1000@43c10000 {
compatible = "nxp,sja1000"; /* driver from the kernel */
reg = <0x43c10000 0x10000>; /* registers offset and size */
nxp,external-clock-frequency = <100000000>;
interrupt-parent = <&intc>;
interrupts = <0 29 1>; /* number of interrupt line */
reg-io-width = <4>;

};

We had to set correct drivers for CAN controller and interrupt handling. Next
the correct address in the memory, clock frequency and correct interrupt line. I didn’t
discover how interrupts are numbered. The correct number doesn’t match to any pieces

26



. . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Finite State Machine for communication with MB88121

of information I could read from Vivado’s and Zynq’s documentation. I just guessed
the correct number from device trees generated for default components contained in
the Vivado, connected to the same interrupt in the block design.

Functions provided by this IP core and its Linux driver are sufficient for our project
so I didn’t go deeply into implementations and reading datasheets.

5.2 Finite State Machine for communication with
MB88121

The main part of work with FPGA was done on an implementation of IP core inter-
connecting an AXI bus from the PS and a parallel bus from the MB88121 chip. The
core consists of two main parts. First, the AXI bus interface providing a bus control
described in the section 2.3, the second part is an FSM (Finite State Machine) for read
and write operations from the chip. The FSM implements timing diagrams on figures
3.1 and 3.2 described in the section 3.2. The main problems to solve are the correct
handling of AXI bus control signals and different clock domain synchronization. The
AXI bus is driven by a clock with frequency 100 MHz whereas the chip’s bus works at
the 31.25 MHz.

The figure 5.2 shows the main signal flows in the IP core. During the write transac-
tion, data and address, where the data should be written, is sent by the PS, read from
the AXI write data and address channels and latched in internal registers. Then a write
enable signal mb_wren, triggering the write transfer to the chip, is generated and sent
to the FSM. Latched data (WDATA) and address (WADDR) are written to the parallel bus.
Now the whole IP is waiting until the FSM processes the write transaction. During
this time the AXI bus is blocked and waiting for the write response signal. When the
writing to the chip is finished, a write_fin signal is generated and the write response
is sent through the write response channel to the PS.

A read transaction is implemented in a similar way. A read address (RADDR) is sent
by the PS through the AXI read address channel and latched in the IP core. Then a
read-enable (mb_rden) signal is generated and read transaction from the MB88121 chip
is started. The AXI bus has to wait until data (RDATA) are read and a read_fin signal
is generated. Finally, RDATA is sent to the PS through the AXI read data channel.

27



5. FPGA design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
slow clock domain
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Figure 5.2. Block diagram of the MB88121 communication controller.

The LATCH and SYNC block provides adjusting control signals timing between
different clock domains. In our case, this task is relatively simple because of a big
difference in clock speeds. The faster clock is used as the main driving signal. When
routing a signal from fast clock domain to the slower one, we need to latch a signal
value long enough to be sampled by the slower clock.

In the opposite way, when routing a signal from the slower clock domain, a correct
sampling by the fast clock has to be done. The clock frequencies are not divisible thus
we have to handle this problem as an asynchronous signal synchronization. Generally,
the signal change occurrence is important. The easiest way how to detect signal change
is by using the xor gate and two last sampled values. Then we can catch a rising or
falling edge of a slower signal by adding an and gate. A resulting implementation in
the VHDL can look as follows.

process (clk) is
begin

if rising_edge(clk) then
delayed_signal <= signal;

end if;
end process;
sig_rising_edge <= (signal xor delayed_signal) and (signal and ’1’);

A next thing which has to be solved is handling a chip select signal to determine
which chip is accessed. I decided to add chip select bit as a next bit on the AXI address
bus. We use 12-bit address bus for one chip although only 11 bits are needed for
accessing all registers on the MB88121 chip. The reason for this extension is that Linux
on the ARM architecture uses 4K large pages, so we align the address range to this
size. It should be better for managing the device by the kernel. By the chip select bit,
we extended address bus to 13-bit width. A correct mapping to the Linux user-space
leads to no additional procedures needed for the chip select control in the PS. The chip
select is driven only by selecting to which mapped address space we write to or read
from. In the IP core, an 11-bit address and chip select signals are separated from the
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AXI read and write address channels. Now we use just two FlexRay controllers. Using
this approach, we can easily extend the IP core for driving more slaves.

This IP core doesn’t require any settings. Nor special driver nor device tree instance
is needed. Now we can directly access registers of the FlexRay controller on addresses
defined in the MB88121 datasheet [6].

The last thing still has to be implemented before this gateway can be used in a
real application. When an unexpected situation occurs, for example, a broken wire on
PCB or badly soldered pin, the FSM can be stuck in some state. Thus the AXI bus
keeps blocked and an application will wait forever for finishing the transaction. Such
a behavior is not acceptable in safety-critical applications. This situation should be
recognized by adding a counter for checking a timeout for the transaction. Then set a
bus response signal (S AXI BRESP) to indicate that some fault has occurred.

5.3 AXI interconnect IP core
This IP provides an automatically generated interface for connecting more AXI slaves
to one master in the PS. All slaves can vary in their parameters. Some components
from which the AXI interconnect IP is composed are:.AXI crossbar - for connecting similar slaves.AXI Data Width Converter - connect one slave to one master with a different data

width.AXI Clock Converter - connect one slave to one master with different clock frequencies

The Vivado processes all settings of this IP without any user effort and each change
in the design is propagated into the IP core instance.

5.4 System reset IP core
This IP generates reset signals. We use only external reset input from the PS but
auxiliary reset signal can be used too. All input signals can be configured as active low
or active high. A default configuration is an active low. A POR signal is generated by
the IP when power-on reset conditions occur. Output reset signals are sequenced such
that AXI interconnect IP is reset first, peripherals are reset after 16 clock cycles. With
this IP, no additional procedures are needed for correct resetting of PL peripherals.
The MB88121 chips resets are also driven by this IP core.

5.5 Clock generating IP core
The slower clock for the control of MB88121 bus is generated in the clocking wizard
IP core. Outputs from the IP are a clock signal and a locked signal which indicates
that the clock is stable and can be used for peripheral clocking. The clock signal in the
MB88121 communication controller is enabled by an and gate on the line:

clk <= clk_in and locked;

29



5. FPGA design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 GPIO and interrupt routing

Each GPIO is a tristate buffer. Input-output-tristate triples are routed out from the
PS. We use only input direction for connecting bus error detection signals from FlexRay
transceivers. So output and the tristate control signal can be left unhandled.

Constant signals are added to the design. One for disabling a standby mode of CAN
transceivers. Next two to activate simple error detection mode for FlexRay transceivers
and disable SPI status reading mode.

From each FlexRay controller, three interrupt signals are connected to the PS. Al-
though currently, a FlexRay driver implementation doesn’t use interrupt routines, it is
prepared for a possible future extension.
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Chapter 6
Hardware design summary

Previous two chapters described all steps of the hardware design. Before we move
towards to software and performance testing, I will sum up what we already have.

We designed a carrier board for the Microzed with all physical interfaces. The gate-
way is built on the Microzed board. Some of the interface controllers are directly on
the Microzed board, some of them are synthesized in the PL or assembled as an ex-
ternal chip on the carrier board. The layout of interface controllers is shown in the
diagram 6.1. Namely, the USB, Ethernet and two CAN controllers are parts of the
Zynq processing system. One CAN controller is realized as an IP core in the Zynq’s
programmable logic and two FlexRay controllers are connected as standalone chips.

Processing system

USB ETH 2xCAN

AXI

Programmable logic

1xCAN

16-bit

bus

External

2xFR

Figure 6.1. Gateway interfaces diagram.
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Chapter 7
FlexRay driver porting

There is already available FlexRay driver implementation. I took it from the master
thesis of Michal Horn [14]. The driver is written in C language for the FreeRTOS
real-time operating system running on the TMS570 processor with integrated FlexRay
controller. The FlexRay controller’s functions and registers are the same in the TMS570
like in the MB88121 chip.

Structure of the driver has several layers. First, definitions of basic structures and
register offsets, then low-level procedures for accessing and configuring peripheral regis-
ters. Above the main low-level functions, interface functions which check return values
and provide thread safety, are implemented. Last, user-friendly functions are imple-
mented in the main applications, varying in their purposes.

Thread safety is assured by the use of a mutex. An interface for working with mutexes
in FreeRTOS is similar like that provided by the pthread.h library available in Linux.

Next thing, which I needed to add to the code, was mapping the peripheral’s phys-
ical address to the virtual one, inside the user-space process. I took the function
map_phys_address implemented by Pavel Píša for work with the MZ APO education
kit. The function first opens the /dev/mem file, which provides access to the physical
memory. Then the memory is mapped by the mmap function. A pointer to the memory
is returned. All memory blocks are aligned to the page size used by the operating
system.

After these changes, I was able to successfully run one FlexRay node on the gateway.
For controlling both FlexRay interfaces by the driver, I had to remove all global variable
definitions. To do that, I rewrote some configuration structure definitions. Now they
store also the base address of peripheral and other things which were hard-coded in the
previous implementation. All functions were rewritten to use a pointer to node-specific
configuration structure instead of global variables. Now the driver is more portable but
it leads to little less readable code because of more function parameters.

The driver provides a development error detection mode. A lot of checking func-
tions and driver status monitoring is performed to make the development easier,
but it slows down the application. We can set this mode on by the definition
#define DET_ACTIVATED in a drivers header file.

Several things are still missing in the driver implementation after my changes. First,
an important issue is the lack of dynamic segment control. The second thing is a missing
transceiver’s status monitoring.
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Chapter 8
Experiments and testing

After assembling the hardware, configuring the system and adjusting the driver, we
have to test if everything works correctly. First, we deal with basic CAN and FlexRay
testing, then we move on to FlexRay performance tests.

8.1 Basic CAN interfaces test
To prove that all CAN interfaces on the gateway are working, first, we check that all
CAN interfaces are recognized by the system. After executing the command ip a in a
command line, the following lines should be listed.

# ip a
...
2: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

link/can
3: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

link/can
4: can2: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

link/can
...

This indicates that both internal CAN controllers and one in the PL can be accessed
as network interfaces.

To check whether the interface is really working, we have to configure it and set it
up. It is done by the commands:

# link set can0 type can bitrate 1000000
# ip link set can0 up

The set can0 parameter determines selected interface, and bitrate 1000000 sets
the communication speed. Then we can send some message manually by the command
cansend or read messages by the command candump.

An external USB to CAN interface, connected to the PC, was used for checking the
communication.

8.2 Basic FlexRay interfaces test
For FlexRay testing, RPP boards and the steer-by-wire demo is used. Same FlexRay
nodes, as are on the sensor and actuator RPP board, are implemented also on the
gateway. Then the bus between RPP boards is split into two separate FlexRay buses,
interconnected by the gateway. A schema of this experiment is in the figure 8.1. Starting
of communication and receiving and sending of FlexRay frames can be tested on this
arrangement. The simplest test contains just receiving a shaft position, from one RPP
board, then send it to the second board. If the steer-by-wire demo works with a bus
cut by the gateway, we can say that FlexRay controllers and drivers are working.
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Gateway

FR0 FR1

RPPRPP MM

Figure 8.1. Arrangement for basic FlexRay testing.

8.3 Round-trip time measurement
A next thing, we should discover, is how the gateway affects a data transmission la-
tency. To do that, I measured the round-trip time in different configurations. The
measurement is programmed on the one RPP board. Two tasks with high priority
do this job. In the first task, a timer is started and a unique message is sent to the
FlexRay cluster. The second task waits until the same message is received from the
cluster, then stops the timer and compute delay between sending and receiving the
message. Afterward, the delay is stored in a histogram and a semaphore is released
to start a new measurement. A route, which the message go through before it is sent
back, vary between experiment configurations. All configurations are variants of the
arrangement from the figure 8.1.

In all experiments, the FlexRay bus is configured to work with 1 ms long cycles. The
timer used for measurement is the main FreeRTOS timer configured also to period 1
ms. Thus, the time measurement is not so accurate, mainly when we measure short
times. But in real-time applications, we need to know the maximum delay. If we round
it up, nothing happens. An information about the shortest delay is not so interesting
for us.

8.3.1 Measurement results
First, as a reference measurement, a round-trip from one RPP board (here RPP1) to
the second (RPP2) and back is measured. Because RPP boards run just several simple
FreeRTOS tasks, I expect the shortest possible round-trip time. It turned out to be the
truth. From the table 8.1, we see that all messages returned at latest at 3 ms. During
all measurements in this section, 100000 messages were sent.

Delay [ms] 1 2 3 4 5
Count [%] 0 88.5 11.5 0 0
Delay [ms] 6 10 14 18 > 18
Count [%] 0 0 0 0 0

Table 8.1. Round-trip time histogram: RPP1 → RPP2 → RPP1.

The second measurement, in the table 8.2, shows a round-trip from the RPP board
to the gateway and back. Here the maximum delay of the returned message is 4 ms.
Although, the Zynq processor on the gateway is much faster than that on the RPP
board. The Linux on the gateway has much more overheads during the user application
execution than the FreeRTOS on the RPP board.
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Delay [ms] 1 2 3 4 5
Count [%] 0 85.9 13.1 1.0 0
Delay [ms] 6 10 14 18 > 18
Count [%] 0 0 0 0 0

Table 8.2. Round-trip time histogram: RPP1 → GW → RPP1.

Next experiment shows a possible problem, which can occur on the gateway. The
experiment configuration is the same as during the previous measurement. Messages
are sent only between the RPP board and the gateway. The only difference is that the
second FlexRay interface on the gateway cannot properly initialize a communication.
The bus cable is unplugged. From the table 8.3 we see that a real-time behavior is
broken. Here maximum measured delays are hundreds of milliseconds. The reason is
obvious. Both FlexRay interfaces are independent but they have common device driver.
While the driver is trying to initialize one interface, it blocks the communication with
the second interface. The initialization process is relatively time-consuming, especially
when the interface cannot be initialized due to some faults. But this case can be handled
in the application by the monitoring of FlexRay status.

Delay [ms] 1 2 3 4 5
Count [%] 0 75.8 22.5 0.3 0
Delay [ms] 6 10 14 18 > 18
Count [%] 0 0 0 0 1.4

Table 8.3. Round-trip time histogram: RPP1 → GW → RPP1, when the problem occurs
on the second FlexRay interface on the gateway.

In previous experiments, we tested and compared a response of the FlexRay interface
on the RPP board and on the gateway. Now we will test an effect of the gateway when
connecting two distinct FlexRay buses. The experiment arrangement is exactly the
same as in the figure 8.1. The message is sent from the RPP1 to the RPP2 through
the gateway, then returned the same way back to the RPP1. The table 8.4 shows us
that now the maximum delay is 6 ms. That’s twice longer than sending messages only
between two RPP boards. But still, it can be seen as a good result.

Delay [ms] 1 2 3 4 5
Count [%] 0 0 8.6 48.2 40.2
Delay [ms] 6 10 14 18 > 18
Count [%] 3.0 0 0 0 0

Table 8.4. Round-trip time histogram: RPP1 → GW → RPP2 → GW → RPP1.

But when there is a big load on the gateway, the response is much worse. We put a
more traffic on FlexRay buses and a load is generated on the gateways processor. I run
the command

while true; do echo; done

during the measurement. Now the maximum delay is increased to the value 18 ms, as
shown in the table 8.5. This is not a good behavior.
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Delay [ms] 1 2 3 4 5
Count [%] 0 0 7.8 49.2 39.0
Delay [ms] 6 10 14 18 > 18
Count [%] 3.0 0.4 0.4 0.2 0

Table 8.5. Round-trip time histogram: RPP1 → GW → RPP2 → GW → RPP1, when
gateway is busy.

We can fix this problem by changing the default configuration of the Linux scheduler.
A library sched.h provides the function sched_setscheduler(). We can select several
real-time scheduler policies. In this experiment, the FIFO policy is selected and a
priority of message forwarding process is set to the highest possible. Then the round-
trip time measurement, during a high load on the gateway, is repeated. From the table
8.6, we see that now the delay is acceptable.

Delay [ms] 1 2 3 4 5
Count [%] 0 0 2.6 62.3 31.5
Delay [ms] 6 10 14 18 > 18
Count [%] 3.5 0.1 0 0 0

Table 8.6. Round-trip time histogram: RPP1 → GW → RPP2 → GW → RPP1, when
gateway is busy, with increased priority of FlexRay management process.

The last experiment measures the influence of the development mode of the FlexRay
driver. Everything is the same like in the previous experiment, only the definition
#define DET_ACTIVATED is removed from the driver header file. From the table 8.7,
we see, that changes are not so significant.

Delay [ms] 1 2 3 4 5
Count [%] 0 0 2.5 62.1 31.9
Delay [ms] 6 10 14 18 > 18
Count [%] 3.5 0 0 0 0

Table 8.7. Round-trip time histogram: RPP1 → GW → RPP2 → GW → RPP1, when
gateway is busy, with increased priority of FlexRay management process and deactivated

the development mode.

8.4 Precise measurement of a delay on the FlexRay
gateway

Previous measurements give us a general idea about what to expect when using the
FlexRay part of the gateway. A more accurate measurement of the delay of FlexRay
messages going through the gateway can be measured by the Vector VN3600 device
and the CANoe software.

The measurement setup is shown in the figure 8.2. A general setup is the same
as in previous experiments. We have two separate FlexRay clusters connected by the
gateway. In addition, the VN3600 device is connected to each cluster. Because it has
only one dual channel FlexRay interface, we use only one channel for monitoring of
each cluster. A traffic is the same on both channels, so we don’t lose any information.

36



. . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Precise measurement of a delay on the FlexRay gateway
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Figure 8.2. Arrangement for measurement a delay on the gateway.

In the CANoe software, we can detect each message in both clusters and measure the
time of reception. The accuracy of measurements is about several microseconds. One
message being forwarded by the gateway is monitored. In the CANoe, the message is
determined by its slot ID in the static segment. Then the time of reception in both
clusters is logged. Afterward, logged messages are paired according to their unique
content and the delay is computed. The measurement was run on the gateway with
high load and with scheduler set to real-time function. We use the same settings like
in the last experiment in the previous section 8.3

A histogram of delays of about 100000 messages is in the figure 8.3. We can see that
the maximum delay, caused by one passage through the gateway is less than 2.2 ms.
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Figure 8.3. Histogram of message delays on the gateway.

If we think a little about the histogram, we can expect, that delays should be multiples
of the communication cycle length. It is 1 ms in this case. But both clusters are
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independent and not synchronized together. A little difference between communication
cycle lengths may appear. Thus, during a long time of measurement, delays are linearly
changing. This issue is shown in the figure 8.4. Here, several thousands of measured
delays are plotted in the graph during a measurement time.
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Figure 8.4. Time development of delays on the gateway.

Based on the graph 8.4, we can say that delays would be multiples of cycle period
only with synchronized clusters. Next, we see that the message is sent at the latest in
the third cycle after it is received. If clusters would be synchronized, in the second cycle.
In the ideal case, all messages would be sent in the first following cycle after receiving.
If we use a message cycle longer than 2.2 ms, this ideal case is already achieved.

8.5 Power consumption
Although this gateway is not expecting to be a big power load in the car system, to
finish the measurement and testing, the power consumption is measured. The table 8.8
shows the measurement results. In all cases, the gateway is supplied by 12 V power
supply.

State Current [mA] Power [W]
Startup 260 3.12
Standby 210 2.52
Running 220 2.64

Table 8.8. Gateway power consumption

The current was measured during several possible working states. As can be expected,
the maximal power consumption is during the booting and startup process. A difference
between standby mode and during processing of some high load application is not so
significant. This is caused by disabling of all power saving functions of the Linux kernel,
which could affect the real-time behavior.
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Chapter 9
Future work

At this point, we have a working gateway. In the near future, we would like to connect
this gateway to the real car. Before an experimenting with self-driving algorithms can
start, we have to create a new bug-free carrier board based on materials in appendixes
of this thesis. Next, the communication interface between FlexRay controller and AXI
bus needs to be extended with bus response signals. These are missing in the current
implementation, that can lead to unsafe behavior of the device. This issue was already
discussed in the section 5.2.

From the point of view of CAN interfaces, everything should work just now. But
in the FlexRay driver implementation, a control of communication over the dynamic
segment is still missing. Although it is not a mandatory part of the FlexRay commu-
nication, we expect, that this segment will be present in the car. Our FlexRay driver
offers much more opportunities for the future work. The goal could be to provide the
Berkeley socket interface for standardized networking. Also, the full driver implemen-
tation could be provided for other users as a part of the Linux.
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Chapter 10
Conclusion

In this thesis, the control unit for use as the gateway between automotive buses was
designed, assembled and tested. Namely, the unit contains three CAN interfaces, two
dual-channel FlexRays and an ethernet and a USB in addition. Next, I ported the
already available FlexRay driver implementation to the Linux machine.

With the end of the work, the gateway is ready to start experimenting with the real
car. Although, some work needs to be done before it could be safely used for self-driving
algorithm testing.

The main advantage of the developed device is the number of available network
interfaces. This should fulfill our needs with a reserve. In the case that we would
need to use more interfaces, the power of the programmable logic allows us to simply
implement new ones by the copy-paste method. Only the carrier board would have to
be redesigned.

On this device, no closed source or commercial software is running. We have a source
code available for all parts of the gateway, that means an easier debugging of future
applications. This is the main advantage over other alternative devices, available on
the market.
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Appendix A
Shortcuts

AXI Advanced extensible interface
CAN Controller area network
ECU Electronic control unit

FPGA Field-programmable gate array
FSBL First stage bootloader
FSM Finite state machine
HDL Hardware description language
HLS High level synthesis

IP Intellectual property
QSPI Quad serial peripheral interface
PCB Plane connections board

PL Programmable logic
POR Power-on reset

PS Processing system
SPI Serial peripheral interface

TCL Tool command language

43



Appendix B
Schematics
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Figure B.1. Root sheet
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Figure B.2. Power supply
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Figure B.3. Connector JX1

47



B Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure B.4. Connector JX2

48



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure B.5. FlexRay controller
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Figure B.6. FlexRay transceiver
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Figure B.7. CAN transceiver
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Appendix C
PL block diagram
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Appendix D
Obsah přiloženého CD

text/ This thesis in the pdf format.
pcb/ Kicad project with schematics and PCB design of the device.

datasheets/ Documentation of main used electronic components.
vivado/ Vivado project and IP repository.

linux zynq.zip Linux image for the device.
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Assignment of this thesis
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