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Abstract

This thesis deals with the design of multiple autonomous search strate-
gies for a team of UAVs in search and rescue (SAR) missions in sub-
terranean environments in which the goal is to find certain objects of
interest - survivors, backpacks etc. and to report their positions to a
base station outside the environment in a limited time. This problem is
simplified as the problem of maximizing the surface area cumulatively
covered by the cameras of all robots. To store information about surface
coverage, a robust and incrementally built surface mapping structure is
designed and implemented. To enable quick long-distance path planning
and lightweight sharing of the robots’ world representation, an incre-
mentally built topology map is designed and implemented. A framework
for sharing information about topology, coverage and frontiers among
robots in a lightweight manner is also presented. Finally, three differ-
ent fully autonomous search strategies that utilize the designed mapping
and sharing structures and focus in different parts on coverage path plan-
ning and volumetric exploration are presented and evaluated both in the
realistic Gazebo simulation and on a real UAV platform.

Keywords: unmanned aerial vehicle, search and rescue, robotic explo-
ration, cooperative exploration, coverage path planning, topology repre-
sentation
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Abstrakt

Tato bakalářská práce se zabývá návrhem několika strategíı pro tým
autonomńıch bezpilotńıch helikoptér v podzemńıch záchranných miśıch,
v nichž je ćılem nalézt co nejv́ıce předem daných objekt̊u - přeživš́ıch,
batoh̊u, atd. v omezeném čase a předat informaci o jejich poloze na
základnu u vstupu do prozkoumávaného prostřed́ı. Tato problematika
je zjednodušena převodem na problematiku maximalizace celkově prozk-
oumané plochy povrch̊u prostřed́ı pomoćı kamer umı́stěných na robotech.
Pro ukládáńı informace o prozkoumanosti povrch̊u je v této práci
navržena a implementována robustńı povrchová mapovaćı struktura
vytvářená za letu na palubě drony. Za účelem rychlého plánováńı
cest skrze prozkoumávané prostřed́ı, aproximace vzdálenost́ı cest k ex-
ploračńım bod̊um a možnosti sd́ıleńı tvaru prostřed́ı je dále navržena
a implementována topologická online mapovaćı struktura. Dále je také
navržena architektura pro sd́ıleńı informaćı o topologii, povrchu a ex-
ploračńıch ćılech mezi roboty. Následně jsou navrženy tři strategie, které
použ́ıvaj́ı zmı́něné mapovaćı struktury a kombinuj́ı metody pro klasickou
robotickou exploraci a merody pro prozkoumáváńı povrch̊u. Tyto strate-
gie jsou otestovány v simulaci i na reálné bezpilotńı helikoptéře.

Kĺıčová slova: bezpilotńı helikpotéra, záchranné mise, robotická ex-
plorace, kooperativńı explorace, coverage path planning, topologická
reprezentace
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Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 DARPA SubT Challenge . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Specification . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

In the recent years, autonomous unmanned aerial vehicles (UAVs) have started play-
ing an increasingly significant role in areas in which they can be beneficial and even life
saving for humans. Teams of autonomous UAVs are currently being used for the mapping
and archiving of historical objects [1, 2], such as churches and cathedrals, where they can
reach areas that would require humans to construct scaffoldings and shut down the objects
for long periods of time. Another currently researched and potentially very helpful topic
is using autonomous UAVs for firefighting, where they could potentially react much faster
than conventional firefighting approaches by flying into windows of burning buildings and
extinguishing the fires [3] or by using swarms of UAVs in woodland areas [4]. UAVs are also
currently employed in the project AERIAL CORE [5, 6] for the task of assisting construc-
tion workers that operate on tall and dangerous power line towers, where fatality rates are
high.

The use of autonomous UAVs most important for this thesis is that of robotic search
and rescue (SAR). The goal of SAR missions is to find survivors and possible hints of
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survivors in areas hit by disasters such as floods, earthquakes, explosions, cave ins etc or
to find people lost in the wilderness. Up until the recent years, SAR missions required
human rescue teams to enter hazardous environments and risk their lives to find survivors.
Recent research efforts have demonstrated [7] that autonomous robot systems could help
human rescue teams by quickly providing the rescue teams with a map of the environment
and even localizing survivors. Autonomous robots could therefore reduce the loss of life by
finding survivors faster and also by reducing the rescuers’ exposure to dangerous elements
in the environment.

This thesis focuses specifically on SAR in subterranean environments, such as caves,
tunnels, mines and enclosed urban structures. This branch of SAR is particularly chal-
lenging due to the fact that global navigation satellite system (GNSS) localization is not
available, and as such, robots must employ precise simultaneous localization and mapping
(SLAM) algorithms. Furthermore, the signal range in these areas can be very limited, which
means that the robots need to utilize strategies for creating a communication network and
to be able to act completely autonomously, when no robots are in range and there is no
connection to an outside team base.

To support research in the field of subterranean SAR, multiple competitions have
been held, one of which is the DARPA Subterranean (SubT) Challenge. This thesis is
motivated by the active and very successful participation of the CTU-CRAS-NORLAB
team [8, 9] in the first two rounds of the DARPA SubT challenge, and aims to design
strategies for the final round of this challenge.

1.2 DARPA SubT Challenge

This thesis focuses on the final circuit of the DARPA SubT challenge1. The main
objective of the DARPA SubT challenge is to localize objects of interest (henceforth called
artifacts) – backpacks, ropes, mobile phones, figurines of survivors etc. – in hazardous sub-
terranean environments and then to transmit the information about the objects’ positions
to an outside teambase. The detection of these artifacts, some of which are shown on Fig-
ure 1.2, is achieved through various object-recognition algorithms and is not the focus of
this thesis.

The score for a particular run is calculated as the number of artifacts that are correctly
localized (i.e. reports with a position error less than approx. 5 m) and reported back to the
outside base. The aim of the designed strategies is to maximize this score for a given run.

The previous three circuits of the DARPA SubT challenge have taken place in pre-
defined types of environments — firstly in tunnel environments, then in urban environ-
ments, and lastly in cave environments. The environments to be explored in the final circuit
will have features of all the previous three circuits and as such, the developed strategies

1https://www.subtchallenge.com

https://www.subtchallenge.com
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Figure 1.1: A UAV being used for exploration of an urban environment in a real world
(left) and a UAV exploring a cave environment in the Gazebo simulator (right)

Figure 1.2: Some of the artifacts that are to be found in the DARPA SubT Challenge.

must not rely on any pre-defined environment structure. An example of an urban and a
cave environment is shown in Figure 1.1.

1.3 Problem Specification

In this thesis we consider the problem of searching for known objects (henceforth
called artifacts) in an unknown, possibly dangerous environment using a heterogenous
multi-robot team comprised of unmanned ground vehicles (UGVs) and unmanned aerial
vehicles (UAVs). The aim of this thesis is to develop strategies for the UAVs that maximize
the number of artifacts that are detected and reported back to an outside base during a
time-constrained mission. These assumptions are made for the missions:

1. The envinroments are completely unknown prior to the mission, meaning that the
robots have no volumetric or surface representation of the environment at the start
of each mission.

2. Communication is severly limited in these environments and loss of signal will usually
occur after only a few tens of meters.
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3. The environments may contain dangerous features (e.g. rockfalls, dust, bodies of
water) and as such, robots may get stuck or completely destroyed during the mission.
The designed strategies must account for this possible loss of robots.

4. Each robot is utilizing a method providing the UAV’s position within the environment
and continuously building an occupancy map representation of the environment. All
mapping and planning algorithms designed in this thesis are based on the occupancy
octree (OOT) [10] structure, and as such, we assume that each robot is either using
the OOT as its primary occupancy map representation or that it is building an OOT
in addition to its primary occupancy map. Furthermore, we assume that the drift of
localization and mapping methods is negligible.

5. The composition of the robot team is not fixed. The team can be comprised of
multiple UAVs, multiple UAVs and multiple UGVs, or a single UAV, depending on
the specific mission.

6. We only design planning algorithms for the UAVs, but the mapping structures and
map sharing framework are designed such that the UGVs can build the same maps
as the UAVs and share them in the same manner with the UAVs.

7. If there are any UGVs in the robot team, the UGVs enter the environment first
and deploy a set of breadcrumbs (communication nodes) that form a mesh network
together with all UGVs and UAVs. The UAV should therefore not only be able to
navigate back to home, but also to nearest communication nodes, if such nodes are
available.

8. The UAVs can be launched at any time after at least 5 minutes have passed since
the launch of the preceeding UAV. The homing procedure of a given UAV is initiated
by a mission control node that we do not control in this thesis. We must, however,
implement a method for quick pathfinding back to the base station.

9. Each UAV is equipped with sensors providing data for building an occupancy map
(3D LiDAR, depth cameras) and also at least one RGB camera which is used for the
detection of the objects of interest. We assume the visual detection software to be
working perfectly and that if an artifact comes into the FoV of a UAV’s cameras, it
will be detected.

With the robot team composition and robot deployment timing pre-defined, the task
of designing strategies collapses into the task of developing planning and mapping algo-
rithms that will be running on board of the robots. For simplicity and compatibility, the
mapping structures and algorithms developed in this thesis are used for each strategy.
This means that each strategy is completely defined by the planning algorithms (both for
planning short distance collision-free trajectories and long-distance viewpoints paths) that
are employed on the UAVs and for this reason, the terms strategy and planning algorithms
are used interchangeably further in this text.
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The mission assumptions automatically put certain requirements on the strategies
that are to be developed. Firstly, the individual UAVs must be able to act completely
autonomously, since loss of signal can occur very soon after entering the environment.
Therefore, the mapping and planning algorithms must be designed so that they can be run
onboard of each UAV alongside visual detection and control algorithms. Since the flight
time of the UAVs is limited, the algorithms should also be able to keep the UAV moving
at all times to fully utilize the flight time.

With the given mission assumptions, we can simplify the problem as follows: De-
sign mapping and planning algorithms for the robot team that guide the UAVs through
trajectories that maximize the overall number of artifacts that are seen by the UAVs’ cam-
eras and then reported to an outside base station. To simplify the problem even more,
let us define important terms for the surface S of the environment and the volume V is
encompassed by S.

The volume of the explored environment, denoted as V , can be divided into occupied
space Vocc, free space Vfree (free of obstacles) and unknown space Vunk. We further define
the known space Vkno as Vkno = Vocc∪Vfree. Since sensor perception considered in this work
stops at most opaque surfaces, we can say that in a theoretical scenario, where we consider
the sensors and mapping to be perfect, all points of Vocc are boundary points between Vfree
and Vunk and form a surface S which, for subterranean environments, can be thought of as
a manifold.

At a given time, we can define Skno ⊆ S as the known parts of the surface (e.g. the ones
discovered by the robot’s sensors used for mapping) and Sunk = S \ Skno as the unknown
parts of the surface. Furthermore, since the FoV of the sensors used for mapping can be
different from the FoV of object recognition cameras, we define Sinsp ⊂ S as surfaces that
have been inspected by the visual sensors and Suni as surface that has not been inspected.
We also assume the object recognition FoV to be a completely encompassed in the FoV of
the mapping sensors and therefore we can write

Suni ∪ Sinsp = Skno ⊆ S. (1.1)

Because all artifacts considered in this thesis are opaque and therefore form a part
of S, and since we assume that the detection algorithms will detect an artifact every time
it is visible in the robot’s object recognition FoV, we can transform the problem of finding
artifacts into the problem of inspecting surfaces that are likely to contain artifacts. Based
on information about the artifacts’ likely positions available at the start of the mission (for
example in some cases we might know that no artifacts will be on the ceiling parts of the
surface), we can define a reward function for parts of the surface R(s), s ∈ S.

If we then assume that with the used strategies, all robots will manage to report all
artifacts that they find back to the base station, we can transform the problem of searching
for artifacts into the problem of maximizing a value Rtotal defined as

Rtotal =

∮
Stotal

R(s)ds, (1.2)
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Stotal =
N⋃
i=1

Siinsp, (1.3)

where Siinsp denotes the surface inspected by robot i at the end of the mission and N is
the number of robots. If R(s) is constant, the problem further simplifies into the problem
of maximizing the total area Stotal covered by the robots’ cameras.

This problem could be solved by available coverage path planning algorithms if the
surface S was known apriori. However, that is not the case in this work. Therefore, the
strategies to be designed must combine methods for expanding the known surface Skno and
known volume Vkno, and also methods for inspecting the known surface.

For these reasons, this task has been divided into these sub-tasks which form the
assignment of this thesis:

1. Design and implement a surface mapping structure for storing surface coverage in-
formation (Sinsp and Suni) that can be incrementally built onboard the UAV.

2. Design and implement a topological environment representation that can be used to
share information about topology, surface coverage, and frontiers with other robots.

3. Develop and evaluate multiple strategies that try to solve the problem of simultaneous
exploration and surface inspection by utilizing the occupancy, surface, and topology
maps.

4. Implement a collision-free trajectory generator that the planning algorithms can use
for short-distance collision-free navigation.

5. Extend the designed strategies with cooperative approaches.



1.4. Preliminaries 7

1.4 Preliminaries

1.4.1 Mathematical Notation

Symbol Meaning

x column vector in Cartesian coordinates
ξ viewpoint consisting of a position pξ and a heading ϕξ
O,S,F,G,L occupancy octree, FacetMap, FrontierMap, SegMap, L-SegMap
Vfree, Vunk, Vocc free, unknown and occupied volume
Sinsp, Suni inspected and uninspected surface
m voxel
N6(m) 6-neighborhood of a voxel m
fg frontier cluster point
F frontier cluster
ψ facet consisting of a position ps and a normal ns
Ψinsp,Ψuni inspected and uninspected facets
σ SegMap segment with a center cσ and voxels m ∈Mσ

pij position of a portal between σi and σj

Table 1.1: Mathematical notation and symbols that are common in this thesis

1.4.2 Occupancy OcTree

The primary environment representation of the designed system is a binary occupancy
octree (OOT) implemented from the OctoMap library [10] which is being created by an
octomap server node from available depth sensor data. Non-binary OOTs exist and are
commonly used in robotics, but for the purpose of this task, only a binary OOT is used.
A binary OOT, denoted further as O is a structure that divides space into cubic volumes,
called voxels, that are assigned one of these three values:

� Free - the whole space of the voxel is known to be free of obstacles

� Occupied - the voxel contains an obstacle

� Unknown - no information is available for the voxel (this is the default state of all
voxels)

The OOT stores voxel information in a memory-efficient manner by first creating the voxels
at a set resolution and when there are 8 adjacent voxels with the same value, collapsing
them into a single, larger voxel with double the side length. The voxels are then stored in
a tree with a maximum depth of 16, at which the smallest voxels reside. The resolution



8 Chapter 1. Introduction

(side length of the smallest possible voxels) of the OOT used in this work was chosen as
ρ = 0.2 m.

Since many methods in this thesis rely on iterating through the OOT and looking at
voxels adjacent to a given voxel, we define a set of voxels N6(m) for a given voxel m as the
6-neighborhood of m — meaning all voxels of the same size as m that share a face with
m.

Figure 1.3: Occupancy octree representation of the environment being explored. The UAV’s
pose is represented by the three axes.

1.4.3 UAV Control Interface

A UAV in free space has 6 degrees of freedom (DOF) — 3 for position and 3 for
orientation. In this work, we do not deal with the very rich subject of controlling the
UAV’s 6 DOF and assume that there is a working control manager node that takes care
of this control. We only navigate the UAV by setting viewpoints ξ, which are defined by a
position pξ and a rotation around the world z axis φξ, and then assume that collision-free
path planning, trajectory generation, trajectory tracking and control algorithms will safely
navigate the UAV to these viewpoints across small distances.

We only set viewpoints that are safe, which in the context of this work means that
the distance from the nearest occupied or unknown voxel from a given viewpoint’s position
is higher than some value dsafe. The obstacle distance at a given point p can be easily
queried from a k-d tree [11] that is built from the OOT.

We also utilize the collision-free trajectory planner to query whether a safe path exists
between two given points. The calculation of collision-free paths is computationally very
expensive and is usually only done at the last step of the planning algorithms to ensure
that reachable viewpoints are being set.
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For higher-speed flight, we also define the concept of a viewpoint path as a series of
viewpoints Ξ = (ξ1, ξ2, ξ3, ..., ξn) that are given as input to a collision-free path planner
and trajectory generator node that creates a safe and smooth trajectory through these
viewpoints. The downside of this is that to comply with the dynamics of the UAVs, it is
not ensured that the position and heading of each viewpoint will be perfectly reached and
also while flying through the viewpoint, the UAV can be rotated not only along the z axis.
We accept this fact and optimistically set viewpoint paths assuming that the viewpoints
will be reached.

1.5 Related Work

The field of manned and unmanned robotic SAR is currently being intensely re-
searched. Many advances have already been made in using robots for search and rescue in
disaster areas such as floods, earthquakes etc, collapsed tunnels etc. An extensive survey
of recent state of the art approaches to robotic SAR can be found in [7].

As stated by the authors in [7], most research efforts so far have focused on the
development of individual robots which usually depend on an external control center for
route planning. To the author’s best knowledge, not much current research has been focused
on this particular task of autonomous simultaneous exploration and surface inspection in
subterranean environments by a team of UAVs and as such, the related works presented
below are the building blocks that could be used to solve this task.

1.5.1 Single-robot Volumetric Exploration Methods

The field most related to the task given in this thesis is autonomous robotic explo-
ration of enclosed environments. These methods are different from the given task because
they only focus on expanding the known space Vkno and not on the inspection of surfaces.
The work that comes probably the closest to the single-UAV part of this task is [12], in
which the authors present a system for both exploration and surface inspection, but only
for the situation when the surface is represented by an apriori fully known mesh, which is
not the case in this thesis.

The probably most popular approach to robotic exploration is to create strategies
based on the concept of frontiers [13, 14, 15, 16], first described in [17]. The original
approach is to detect frontiers – the boundary between Vfree and Vunk in the world repre-
sentation of the robot and then to navigate the robot to areas near the frontier.

Detecting the frontiers for the whole available map and planning collision-free paths
in large environments can however be very computationally expensive. To tackle these
issues, many authors enhance the RHNBV method by building navigation graphs or only
detecting and exploring nearby frontiers.



10 Chapter 1. Introduction

For example in [13], the authors divide the exploration task into two modes of oper-
ation:

1. As long as there are frontiers near the robot, explore those frontiers using a local
planer utilizing rapidly exploring trees (RRT) [18] which maximize information gain
while minimizing traveled distance.

2. If there are no frontiers near the robot, switch to a long-distance planner using a
graph that is built during the mission to navigate to the nearest frontiers.

In [14] the authors focus more on faster local exploration by constructing a struc-
ture of frontier clusters and then solving a traveling salesman’s problem (TSP) for a rich
set of viewpoints that are sampled near the clusters. The local viewpoint paths are then
recalculated whenever the occupancy map changes, which allows for very fast exploration.

The principle of computing frontiers for the whole environment only when there are
no nearby frontiers and the concept of viewpoint trajectories is adapted in the strategies
presented in this thesis in chapter 4.

1.5.2 Topology Mapping

To allow for efficient high-level mission planning and fast long-distance navigation, it
can be useful to build a more abstract representation of the environment than an occupancy
map. The task of abstraction and compression of the robot’s world representation is also
important for cooperative methods for subterranean SAR, since communication is usually
severely limited in subterranean environments. Many approaches have been designed for the
task of building abstract topological maps but most of the research in this field so far has
focused only on 2D environments [16, 19, 20, 21]. The 2D topological representations are
usually based on Voronoi decomposition, which is not well applicable to 3D environments.

A very simple representation of the environment in 3D could be the trajectory traveled
by a robot. This representation can allow for very naive backtracking to the base station and
can also be used by other robots to extract very rough information about the environment
(e.g., ”the robot went through this tunnel, so I should go explore the other one”).

Navigating along the traveled trajectory would however suffer in areas which the
robot has passed multiple times. To solve this, the authors in [13] only build the graph
along the trajectory if the given positions have not yet been traveled. This results in
better navigation, but the environment’s shape can only be reconstructed from it if the
environment is comprised solely of tunnels of a roughly fixed size, which is generally not
the case in this thesis.

An approach more suitable for environments that are more generally structured is
the TopoMap, presented in [22]. The TopoMap tries to fill the explored environment with
convex spherical clusters of free space voxels which are then merged into larger convex
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clusters. Connections, called portals by the authors, are then found at positions where the
robot can transition from one cluster to another. By connecting together portals inside each
segment, the authors create a navigation graph that can be used for quick path planning.
Because shapes of convex clusters can also be easily approximated (by spheres, ellipsoids
or bounding boxes), the TopoMap was chosen as the basis for topological mapping in this
work and is further described in chapter 3.

1.5.3 Coverage and Inspection Planning

Coverage path planning is a field that deals with the problem of for example how
to efficiently cover a large area on a map with a team of UAVs with downward facing
cameras or how to clean a room or mow a lawn in the smallest amount of time. Most
coverage planning methods deal with a 2D area which they decompose into polygons and
then traveling through them in a zigzag manner [23, 24].

This could be used for the purpose of searching a subterranean environment if we
would only assume artifacts to be on the ground and if the environments would consist of
large areas in which the ground can be decomposed into 2D areas for the zigzag pattern.
However, in the DARPA SubT challenge, artifacts can be on the walls and ceilings as well
and the environments can be very vertically diverse, and for this reason, we focus more on
the task of robotic surface inspection.

Surface inspection path planning methods [12, 25, 26] seek to cover a given surface
with a moving camera (usually on a UAV) while minimizing some defined variables (e.g.
time, distance). In most of these methods, the surface S is represented by a mesh that is
known apriori, which is not the case in this work. The ideas from these works are however
utilized for surface inspection of the surface representation designed in this work, described
in chapter 2.

One last example of surface inspection worth mentioning is [27], in which the au-
thors explore an environment with RGB-D cameras and combine surface and volumetric
exploration. In their case, since they use the RGB-D camera for both the visual and depth
sensing, the FoV for visual detection and for frontier exploration is nearly identical, which
differs from the sensor model we assume, but the idea of utilizing saliency for exploration
is interesting and could potentially be useful for SAR.

1.5.4 Cooperative Exploration Methods

In SAR missions, cooperative coverage path planning [23, 28] and exploration strate-
gies [15, 29, 30, 31, 32] are vital, as without utilizing these strategies, robots could search
areas already searched by other robots, which is generally not wanted. Many multi-agent
planning strategies however assume centralized planning or planning where all robots can
communicate at any given point. The strategies considered in this thesis must however
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account for loss of signal and therefore we only assume cooperative strategies in which
the robots make decisions autonomously with the current information obtained from other
robots.

One example of cooperative exploration that accounts for loss of signal is described
in [15], where the authors define a utility value for frontier cells in a 2D occupancy map
and then update the utility of the cells based on current positions and goal positions of
other robots. This approach is robust in that in the worst case scenario, when no robots
can communicate, each robot will explore the whole environment and any information from
other robots reduces the space that is explored redundantly.

1.6 Outline

In chapter 2 the design of a surface representation that is built from the OOT, and
is further used for surface inspection path planning, is described.

The design of a topological map representation for quick long-distance path planning
based on the principles of the TopoMap [22] is presented in chapter 3.

The designed methods for extracting information about frontiers [17] and using this
information for the generation of exploration viewpoints are discussed in chapter 4.

The designed methods for compressing information about surfaces, topology and
frontiers into a shareable map and a framework for sharing and updating these maps is
presented in chapter 5.

Three proposed autonomous search strategies that utilize the designed mapping struc-
tures are then described in chapter 6.

Lastly, the designed strategies and mapping structures are evaluated both in simula-
tion and in the real world in chapter 7.
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Surface Mapping
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The first goal of this thesis is to design and implement a robust surface representation
that can store information about surface coverage and allow for surface inspection planning.
The most commonly used surface representation used in surface inspection methods is a
mesh, used for example in [12] or [25]. These methods consider the mesh to be static and
known at the beginning of the mission. However, in the missions considered in this thesis,
the environment is completely unknown apriori and the only available information about
it is in the form of the OOT that is continually being built during a mission.

It could be possible to build a mesh dynamically from the OOT, but this approach
was deemed too complicated and is not further discussed. The OOT by itself also can not be
used as the required representation, as we have no reliable way of storing surface coverage
information in it. Because the surface of the environment is represented in the OOT as
occupied voxels, we could, theoretically, create a separate octree with the same resolution
as the OOT, in which we would assign each occupied voxel a value that represents how well
it has been covered by the robot’s cameras. This approach was tried in the early stages
of the work on this thesis, but was soon abandoned, as the OOT can be noisy and the
occupied voxels in the binary OOT can shift. This approach also does not give any implicit
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information about the normals of the surfaces, which can be useful for better determining
whether a given part of the surface has been inspected, as detecting some artifacts might
require the robot to look at them at a certain angle.

For this reason, a novel surface representation, named FacetMap, is designed in this
thesis. The requirements for this representation can be stated as follows:

1. It must be built from the OOT and as such, it must account for the noise of the OOT.
The building of the surface representation should also be as efficient as possible,
because during fast exploration, the OOT can grow very quickly.

2. It has to store a value for surfaces that symbolizes how well they have been inspected
by the robot’s cameras. Due to lighting, noise and other visual factors, the surface
coverage value could theoretically be a real number, but for the purpose of this
thesis, we only consider the surfaces to be either inspected (belonging to Sinsp) or
uninspected (belonging to Suni).

3. It must provide information about surface normals so that we can only mark the
surfaces that are being looked at at an acceptable as inspected. The normals will
also be used for assigning to which parts of the free space the surfaces belong and
for calculating surface coverage in a general area in chapter 5, where the sharing of
surface coverage information is discussed.

4. It should allow for fast calculation of the surfaces that are visible by a camera at
a given position p and rotation q. The calculation must be fast for the reason that
the UAV can move very quickly and therefore we must update the coverage value of
visible surfaces at a high frequency. Fast querying of visible surfaces is also vital for
any surface inspection methods that utilize viewpoint sampling and evaluation.

2.1 FacetMap

The FacetMap is a proposed surface mapping structure, built online from an OOT.
The FacetMap represents the known surface as a set of small surface elements, called facets
in this work. A facet ψ, in the context of this work, is defined by its center position pψ,
normal vector nψ and a value symbolizing the facet’s coverage γψ. More formally, we define
a facet as a triplet:

ψ = (pψ,nψ, γψ).

A single facet thus represents a small, approximately circular surface area with a radius of
rfacet with its center at position pψ and a normal nψ. In this work, we will assume that
each robot is building its own FacetMap, which we denote as S and that each FacetMap
holds a set of facets Ψ. For simplicity, we only consider two values of the coverage: γψ = 1
symbolizing full coverage of a facet and γψ = 0 symbolizing no coverage of the facet.
Therefore, we can divide Ψ into a set of inspected facets Ψinsp and uninspected facets Ψuni.
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Figure 2.1: The occupancy octree (left) and the FacetMap created from it with inspected
facets marked as blue and uninspected facets marked red (right)

To deal with the noise of the OOT and to also not have too granular data, the facets
are generated at the positions of occupied voxels at a certain distance from any pre-existing
facets. For simplicity, we set this distance to be the same as rfacet. Specifically in this work,
since the highest voxel resolution of the OOT is ρ = 0.2 m , we set

rfacet = 1 m. (2.1)

This way, even if there is small noise in the occupied voxels near a given facet, it will block
new facets from being created near that position. Had we selected the value of rfacet too
low, new uninspected facets could be created at the parts of the surface, where inspected
facets are already present and that could cause the UAV to inspect some surfaces multiple
times and any long term inspection planning would therefore be inefficient.

The obvious problem with this approach lies in thin surfaces that have free space on
both sides. Ideally, we would want to generate facets on both sides of the surface with their
normals in opposite directions. In the approach used in this work, however, the facets will
usually not be generated at all, because the free space gradient of a very thin wall will
usually be very small and, as described further in this chapter, we discard any possible
facets for which |nψ| is below a certain threshold. Furthermore, even if the facets were
generated on one side, they would block the facets on the other side from being generated
due to the other facets being too close. This could be potentially solved by adding some
additional conditions to the facet creation process, but for the purpose of this thesis, we
assume that most walls and ceilings are sufficiently wide and do we not address this issue
further.

2.2 Approximation of surface normals from the OOT

To determine the normal of a facet at position p, the following method is used. The
main idea of this method is to calculate a gradient vector ~∇φ of free space from voxels of
the OOT and if the magnitude of this vector is higher than some threshold mmin, normalize
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it and declare it the normal of the surface. Let us define a function φ(m) for a voxel m as

φ(m) =

{
1, m ⊂ Vfree

0, m 6⊂ Vfree

The surface normal is then calculated as an approximate gradient of the function φ in a
bounding box with a side length of dfsg (a user-defined parameter) centered around the
point x at which the normal is to be calculated. In this calculation, we only assume the
voxels at the highest resolution of the OOT (in this work having a side length of ρ = 0.2 m.

We first select all free voxels of the OOT that fall into the bounding box and denote
this set of voxels as M bbx

free(x). We then iterate over each voxel m ∈ M bbx
free(x), look at its

neighboring voxels m′ ∈ N6(m) and if φ(m′) = 0, meaning that m′ is either occupied or
unknown, we add a normalized vector in the direction of free space to ∇φ(x). Formally,
we can write the gradient at position x as

∇φ(x) =
∑

m∈Mbbx(x)

∑
m′∈N6(m)

pm − pm′

|pm − pm′|
(1− φ(m′)). (2.2)

After calculating this vector, we look at its magnitude. If |∇φ(x)| is below a certain chosen
threshold, for example due to noisy data at that position, we do not generate a facet at
the given position. Otherwise, we declare that the queried position x belongs to a surface,
which at position x has a normal

nψ =
∇φ(x)

|∇φ(x)|
. (2.3)

2.3 Building the FacetMap

Because the OOT is constantly being updated around the robot, the surfaces of the
FacetMap need to be periodically updated as well. The OOT only changes near the robot,
and for this reason, we only recalculate facets in a bounding box D of a specified size,
centered around the robot’s position, and keep any facets that are outside of D. In this
work, the FacetMap is updated by periodically calling the procedure RecalculateFacets()
defined in algorithm Algorithm 1. This procedure simply finds all uninspected facets that
lie in D, deletes them, and calculates new ones by sampling positions of occupied voxels at
the maximum depth of the OOT that are rfacet far from any other inspected or uninspected
facets. The inspected facets are kept in the FacetMap until the end of the mission and block
any new uninspected facets from being generated in their vicinity.

2.4 Querying Visible Facets

A crucial method that is used for mapping inspected surfaces and for determining
information gain of viewpoints is the method VisibleFacets(p,q) which tries to find the
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Algorithm 1 The procedure used for recalculating uninspected facets in a bounding box
D around the robot’s position

Input D = Bounding box centered on the robot’s position
Input rfacet = Facet generation blocking distance
Input mmin = Minimum magnitude of the free space gradient for generating a facet
Input/Output Ψ = Facets of the FacetMap

1: procedure RecalculateFacets(D, rfacet, mmin, Ψ)
2: Ψnear ← {ψ ∈ Ψ|pψ ∈ D} . Facets that lie in D
3: Xocc ← Center positions of all occupied voxels of the OOT in D
4: for ψ ∈ Ψnear do
5: if γψ = 0 then
6: Ψ← Ψ \ ψ . erase uninspected facets in D
7: end if
8: end for
9: for x ∈ Xocc do
10: if ∀ψ ∈ Ψ : |pψ − x| > rfacet then . if no facet is near

11: ~∇φ = FreeSpaceGradient(x) . calculate gradient

12: if |~∇φ| ≥ mmin then . if gradient is large enough

13: Create new facet ψnew = (x, ~∇φ/|~∇φ|, 0)
14: Ψ← Ψ ∪ ψnew . save new facet
15: end if
16: end if
17: end for
18: end procedure
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facets that are visible by the robot’s cameras at position p and rotation q. This is achieved
by casting rays in the OOT from a given camera’s position in the directions and to a
distance specified by the camera’s FoV rotated by q. The OOT allows the raycasting to be
performed efficiently and for each ray, it returns a position where the ray hit an occupied
voxel. If the ray goes out of range or it hits an unknown voxel, it is discarded.

For each ray that hits an occupied voxel, we store the position of the hit voxel as hi
and the direction of the corresponding ray di. For each ray, we then search for uninspected
facets ψ ∈ Ψuni near hi and if the angle between di and nψ is above a certain threshold
(meaning that the camera is looking at a facet ψ at an angle roughly perpendicular to the
surface), we add the facet to the resulting set of visible facets Ψvis. After a chosen number
of rays n has been cast, the procedure VisibleFacets(p,q) returns Ψvis.

The choice of n determines, how accurate we want the estimation of visible facets to
be. This can be useful for evaluating viewpoints for surface inspection, as we can reduce
n to increase computational speed at the cost of less precise estimation of the information
value, if we need to sample many viewpoints. To speed up this procedure, which is used in
the mapping and planning algorithms very often, we store facets within an octree with a
resolution ρF lower than that of the OOT (specifically in this work, a resolution ρF = 1.6 m
is used). In the FacetMap octree, each leaf voxel holds a list of inspected and a list of
uninspected facets. This allows much faster querying of facets near a position than if the
facets were stored in a single list and were iterated over for each query.

2.5 Updating coverage

With the procedure VisibleFacets(p,q), mapping which surfaces have been in-
spected is simple. At a high rate, we call the procedure VisibleFacets(p,q) at the current
robot’s position and rotation and thus obtain a set of visible facets Ψvis. For each visible
facet ψ ∈ Ψvis, we then set the coverage value γψ to 1 and move it from Ψuni to Ψins.

2.6 Computing viewpoint surface inspection value

With the procedure VisibleFacets(p,q), we also define a surface inspection infor-
mation value of a given viewpoint ξ. We define this value as

IS(ξ) = nvisible, (2.4)

where nvisible is the amount of facets returned by the VisibleFacets(p,q) procedure at
the position p and orientation q defined by ξ.
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2.7 Generating Surface Inspection Viewpoints

The strategies for surface inspection presented in this work are sampling based and
require a method for efficiently querying informative and safe viewpoints in a given area. For
this reason, we define a procedure GenerateSurfaceViewpoints(D, full), which finds
interest points for facets that lie in D, samples viewpoints near these points of interest and
evaluates found safe viewpoints. The method has two variants - a full calculation (applied
when the argument full = true) for computing a rich set of viewpoints and a reduced
calculation (if full = false) for faster computation of a sparse set of viewpoints.

The method can be described as follows:

1. From each uninspected facet ψuni ∈ Ψuni we project a point xp as

xp = pψuini + dprojnψuni (2.5)

where dproj is a user-defined constant. We thus obtain a set of projected points
xp ∈ Xp which we then downsample by a distance ε (so that no two points are
closer than ε from one another) and thus obtain a downsampled set of projected
points Xds.

2. Because we do not always want to inspect every individual facet, we filter out the
projected points xds for which the number of the nearby originally projected points
xp ∈ Xp (the number of points xp ∈ U(xds, ε2), where U(xds, ε2) is the ε2 neigh-
borhood of point xds and ε2 is a user-defined distance) is lower than a user-defined
threshold εint. We thus obtain a set of interest points Xint in areas with a large
amount of uninspected facets.

3. For each interest point xint ∈ Xint we uniformly sample a defined number of points
in U(xint, ε2) and headings ϕ ∈< 0, 2π) and thus obtain a set of sampled viewpoints
ξ ∈ Xsampled and proceed to test the viewpoints.

4. We first test each point for whether it is in safe space, meaning that the distance
from the nearest unexplored or occupied voxel of xξ is greater than dsafe, where dsafe
is the minimal safe distance of the UAV from obstacles, defined at mission start.

5. Secondly, we test each viewpoint for whether it falls into a segment σ of the robot’s
SegMap (described in section 3.2). We discard viewpoints that do not belong to any
segment of the SegMap. Furthermore, if the reduced calculation of this method is
selected, we also discard any viewpoint that falls into a segment σ for which we have
already found at least one acceptable viewpoint. This can speed up the calculation
drastically.

6. Thirdly, we test each viewpoint for whether its surface inspection information value
IS(ξ) is sufficiently large. If

IS(ξ) < εinfoval, (2.6)
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Figure 2.2: An illustration of the GenerateSurfaceViewpoints() procedure. On the left
image, interest points (red balls) are first projected from uninspected facets and filtered.
A rich set of viewpoints (colored arrows) are then generated in the vicinity of the interest
points (right).

where εinfoval is a user-defined minimal information value of the generated viewpoints,
we discard it.

7. Lastly, we test each remaining viewpoint for whether it is reachable from the UAV’s
position. Because we required each viewpoint to belong to a segment, determining
reachability is very fast, because we can use the A* navigation over the topological
graph of the SegMap (described in section 3.3). We discard all viewpoints that fall
into currently unreachable segments.

8. The calculation of viable viewpoints for a given interest point xint is stopped pre-
emptively, if enough viable viewpoints are found for the given interest point. In the
full calculation variant of the algorithm, the sufficient number of viewpoints for an
interest point can be defined. In the reduced calculation, we stop the sampling for
xint after finding just one safe, informative, and reachable viewpoint.
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This chapter focuses on the design of a topological representation of the environment
for fast navigation, planning, and lightweight sharing of key features of the environment
and mission-important information. The requirements for the environment representation
to be used by autonomous search strategies considered in this thesis can be summarized
as follows.

1. Fast and incremental building - Because we want to use the representation for plan-
ning and sharing during the mission, the representation must be able to be built
onboard with the limited resources available. A single update iteration must also be
fairly quick so as not to block any planning algorithms that use the representation.

2. Reconstruction of shape and connectivity - The most important aspect for autonomous
multi-robot search strategies is to be able to share information about the environment
(i.e., which parts of the environment are completely explored, which parts have all
surfaces covered, which parts are dangerous etc.). Since the communication between
robots in subterranean environments is usually severely limited, the representation
must be very lightweight. This means that there should exist a way to compress the
representation information into a very lightweight bundle, which the other robots can
then rebuild into precise information about the environment.

3. Quick navigation - The representation should allow for quickly determining collision-
free paths and approximating travel distances in both the local representation and in
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the one built from the information from other robots. For the local representation,
we can use this to quickly compute reachability and approximate distances to points
of interest, which is useful for any kind of long-distance planning.

3.1 TopoMap

In [22], the authors present the TopoMap — a topological mapping structure that fills
the explored space with convex clusters, finds connections between these clusters (on the
boundaries of these clusters), and then creates a connectivity graph from these clusters and
their connections which can easily be used for fast path planning. The main advantage of
the TopoMap is, however, its shareability. We can easily approximate convex clusters with
polygons, boxes, ellipsoids, or spheres, all of which create a different amount of uncertainty
about whether a given point truly belongs to a given segment in the original TopoMap.

One disadvantage of the original TopoMap is that the authors only mention building
the TopoMap offline after a robot has explored the environment. Another disadvantage
is that the original pathfinding algorithm only allows path planning between points that
both lie in a segment, which may not always be the case for an incrementally built version
of the map. The convex merging and growing also uses the Quickhull [33] algorithm, which
could be computationally expensive for on-board online map building.

For these reasons, an incrementally built, faster, and more rough variant of the
TopoMap – the SegMap – was designed in this thesis and is described further.

3.2 SegMap - an online TopoMap

The SegMap is a proposed incrementally built shareable environment representation
based on the principles of the TopoMap. Its main features are identical to those of the
TopoMap — it is composed of segments σ ∈ S which are connected by portals pij ∈ P .
Each segment σ represents a set of free space voxels m ∈ Mσ,m ⊂ Vfree. And each portal
represents a position pij at which a robot can safely pass from σi to σj. We also define xm
as the center point of a given voxel m and N6(m) as the 6-neighborhood of voxels adjacent
to m.

The voxel resolution at which the SegMap operates is an important factor to consider.
Building the SegMap at a lower resolution with very large voxels may be considerably faster,
but since the cluster expansion algorithm only considers voxels that contain no occupied
or unknown space, it may cause that segments will not generate in very narrow passages.
Building at a higher resolution would solve this issue completely but would also bring high
computation and memory requirements. All UAVs considered in this work are roughly
0.8 meter in size, and as such, the voxel resolution r = 0.8 m was chosen. Identically to the
TopoMap, the segments of the SegMap are also grown and merged in a convex, compact
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Figure 3.1: An example of a SegMap created in the finals world during an exploration run

manner. Some changes have, however, been made to the growing and merging algorithms
to make them faster and more suitable for iterative onboard computation.

3.2.1 Growing Segments

The approach to growing segments used in this work and described in Algorithm 2
is very similar to the one described in [22]. Two main changes have been made to trade
precision for faster computation. Secondly, the authors state that they accept candidate
voxels into the segment, if rays from the voxel to all other segment voxels are obstacle-free.
This can be very computationally demanding, and as such, we cast rays from the candidate
voxel only to the set of downsampled points Cds and discard the voxel if any of the rays
passes through Vunk or Vocc, as shown on line 22 of Algorithm 2.

The expansion process is governed by three parameters that can be tuned according
to specific requirements for computational speed and the overall SegMap building strategy.
These parameters are:

� δcomp - The compactness threshold. To ensure spherical cluster growth, Pricipal Com-
ponent Analysis (PCA) is calculated for border voxels of the segment at each step.
Then the maximum border voxel distance hmax from the segment center ci in the di-
rection of the least significant axis v3 of the PCA is computed. To force the segment
to expand in the direction of its least significant axis, we only add voxels m that
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Algorithm 2 Function used to expand a given segment σi
Input δcomp = Compactness factor
Input dds = Downsampling distance
Input smax = Maximum segment size
Input/Output σi = The segment with border voxels Mσi

border that is supposed to be
expanded

1: function ExpandSegment(δcomp, dfilter, smax,σi)
2: MF ←Mσi

border

3: while MF 6= ∅ do
4: CF ← centers of voxels MF

5: Cds ← points from CF downsampled by distance dds
6: xc ← center position of Cds
7: v1, v2, v3 ← CalculatePrincipalAxes(Cds)
8: lmax ← maxp∈CF |p · v3|
9: Mtest ←

⋃
m∈MF

N6(m)
10: MNF ← ∅
11: for m ∈Mtest do
12: if ∃σj : m ∈Mσj then . do not add voxels from other segments
13: continue
14: end if
15: if m 6⊂ Vfree then . do not add non-free voxels
16: continue
17: end if
18: if |xm − xc| > max(lmax + δcomp, smax) then . maintain compactness
19: continue
20: end if
21: Cast rays r ∈ R from ∀p ∈ Cds to xm in the OOT
22: if ∃r ∈ R : r ∩ (Vunk ∪ Vocc) 6= ∅ then . maintain convexity
23: continue
24: end if
25: MNF ←MNF ∪m . add the voxel to frontier voxels
26: Mσi ←Mσi ∪m . add the voxel to voxels of σi
27: end for
28: MF ←MNF

29: end while
30: end function
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sastisfy

|xm − xc| < hmax + δcomp (3.1)

where xc is the center of the segment at the particular step of the expansion process.

� dds - The downsampling distance. This parameter determines how far apart the down-
sampled points for convexity and compactness computation will be. A large value of
dds will cause fewer rays to be computed, which leads to faster computation at the
cost of less convex growth.

� smax - The maximum size of a grown segment. A higher value will result in less
merging being done, but may cause more unnatural overall segmentation than if
smaller segments were grown and merged, as stated by the authors in [22].

3.2.2 Connecting Segments

Algorithm 3 Function used to find the currently safest portal positions for a given segment
σi. This function uses the function ObstacleDist(x) of the OOT which returns the distance
from x to the nearest occupied or unknown voxel of a given point.

Input σi = The segment with border voxels Mσi
border for which the connections are

supposed to be recalculated
Output Pσi = Set of portals that connect σi to other segments

1: function GetSafestPortals(σi)
2: for σj ∈ G \ σi do
3: Xij ← ∅ . initialize a set of possible portal positions for every other segment
4: end for
5: for m ∈Mσi

border do
6: for m′ ∈ N6(m) do . look at neighbor voxels of border voxels of σi
7: if ∃σj ∈ S : m′ ∈ σj then
8: Xij ← Xij ∪ xm+xm′

2

9: end if
10: end for
11: end for
12: for σj ∈ S do
13: if Xij 6= ∅ then
14: p′ij ← arg maxx∈Xij ObstacleDist(x) . safest portal of σi and σj
15: Pσi ← Pσi ∪ p′ij
16: end if
17: end for
18: end function
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Finding portals between segments is fairly straightforward. In [22], the authors define
portals as areas where segments are adjacent and then navigate through the centers of these
areas. This is a good approach for when the segments are almost perfectly convex, but this
may not be the case in the rougher SegMap where the centers of these areas might lie in
unsafe space. For this reason, we store a portal as the safest position (with the maximum
distance from unknown and occupied space) at which there are adjacent voxels of two given
segments and recalculate these positions whenever one of the connected segments changes
using the function GetSafestPortals() shown in Algorithm 3.

3.2.3 Merging Segments

Algorithm 4 Function that tries to merge segments σi and σj. If the resulting merged
segment is convex, segment σj is merged into σi

Input dds = Downsampling distance
Input cconvex = Convexity threshold
Input/Output σi, σj = The segments with border voxels Mσi

border and M
σj
border respec-

tively, that are attempted to be merged

1: function TryMergingSegments(dds, σi, σj)
2: MCB ← ∅ . initialize set of combined border voxels
3: for m ∈Mσi

border ∪M
σj
border do

4: for m′ ∈ N6(m) do
5: if ∃m′ ∈ N6(m) : m′ 6∈Mσi ∪Mσj then . if voxel is border
6: MBC ←MBC ∪ xm′ . add it to the combined border voxel set
7: end if
8: end for
9: end for
10: XBC ← center positions of XBC

11: Xds ← points from XBC downsampled by distance dds
12: Cast rays between ∀xa, xb ∈ Xds in the OOT
13: y ← percentage of rays that intersected Vocc ∪ Vunk
14: if y > cconvex then
15: return
16: end if
17: Mσi ←Mσi ∪Mσj

18: S ← S \ σj
19: end function

Similarly to the expansion algorithm, Algorithm 4 has also been modified to enable
for faster and iterative calculation. Its main difference from the original algorithm is that
instead of using the Quickhull algorithm, a similar simplification as with the expansion
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algorithm is used. The combined border points XBC of the segments are downsampled
according to a pre-defined distance dds and then rays are cast in the OOT between each pair
of xa,xb ∈ XBC . The segments are then merged if the percentage of rays that intersected
non-free space is below a defined threshold cconvex.

3.2.4 SegMap Build Loop

There are many possible ways to iteratively build the SegMap with the above defined
functions for expanding, connecting, and merging segments. The approach chosen for this
work is to periodically try to grow, connect, and merge some randomly selected segments
in a bounding box B of a defined size around the robot.

The number of merges and expansions is specified by user-defined parameters Ngrown,
Nexpand, and Nmerge through which we can control the approximate time taken by one
iteration. A single iteration of the update loop is defined as follows:

1. If the robot is currently in a voxel m that does not belong to any segment, initialize
a new segment σi with Mσi = {m} and expand it using ExpandSegment() (see
Algorithm 2).

2. Cast Nrays from the robot’s position in random directions through free space. If a
ray encounters a voxel m that does not belong to a segment, then initialize a new
segment at that voxel and expand it with ExpandSegment() . Stop the rays upon
leaving Vfree or B. The maximum number of segments grown in this this manner in
a single iteration is limited to Ngrown.

3. Randomly select Nexpand segments inside B and then expand each selected segment
using ExpandSegment().

4. Randomly select Nmerge portals in B and try to merge the segments connected by
these portals using TryMergingSegments() (see Algorithm 4). Only try merging
the segments if at least one segment has changed since the last merge attempt.

After each expansion or successful merge, the safest portals for the changed segments
are also recalculated using the function UpdateConnections() (see Algorithm 3). This
process is also illustrated in Figure 3.4.

3.3 Navigation in the SegMap

One of the important reasons for the use of the SegMap is that it can be used to
quickly plan paths across the segments. The path planning algorithm is analogous to the
algorithm used in [22] with one difference — the authors only allow path planning from
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Figure 3.2: An OOT of a UAV in an urban environment (left), the SegMap created from the
OOT during the flight (middle) and the navigation graph created by the SegMap (right)

Figure 3.3: A SegMap created during the flight of a UAV that has reached a dead end
(left) and the generated path across portal positions of the SegMap that leads the UAV to
a frontier in another branch of the tunnel (right).

point pa to pb if both pa and pb lie in some segment. Because the update loop of the SegMap
does not always fill the entire free space and navigation to a point outside a segment might
be required, this condition must be relaxed.

Therefore, one step is added to the beginning of the algorithm, which tries to assign
a given point p to some segment by casting rays in the OOT in random directions and
checking whether the ray hits a segment. If at least one ray hits some segment σi, a collision-
free path planner tries to plan a path from p to some point inside σi. If a path exists, p
is assigned to the given segment and the algorithm proceeds to plan an A* path across
the dual navigation graph of the SegMap. The navigation over segment portals to a point
outside of a segment is shown in Figure 3.3.

We also define a function D(x,y) which tries to find a path between points x and
y in the SegMap and if such a path is found, it returns the sum of euclidian distances
between the individual portals of the path.
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Figure 3.4: Illustration of the SegMap iterative building process. New segments are being
created, expanded and then merged into the large orange cluster in a large convex cavern.
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Most robotic exploration methods are based on either sampling viewpoints and com-
puting their information value (approximate amount of unknown space Vunk that would
be uncovered at that viewpoint with the given sensor configuration) [13], or on finding
frontiers (defined in [17] as the boundary between Vfree and Vunk) in the environment and
then sampling viewpoints near these frontiers and navigating to them [14].

Since the environments for subterranean SAR can be large, sampling viewpoints
across the whole environment could be costly, and therefore the approach using frontiers
was chosen for this thesis. This chapter explains the process used in this thesis for the
detection and clustering of frontiers and generating viewpoints that explore these frontiers.

4.1 FrontierMap

For a given occupancy representation, the frontier is defined as the boundary between
free space Vfree and unknown space Vunk. Specifically for the binary OOT, the frontier can
be defined as the boundary between free voxels and occupied voxels. We define a frontier
element point

f =
pmfree + pmocc

2
(4.1)
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as the position between a free voxel mfree and an occupied voxel mocc and then construct
the frontier representation based on these points. However, since frontier element points
can be created in the OOT due to noise (e.g., free voxels being created behind a wall
of occupied voxels or rays of voxels being created due to LiDAR anomalies) and since
exploration of these frontiers is generally unwanted, some authors also utilize clustering
methods to determine which frontiers are worth exploring [14].

In this thesis, we first cluster the frontier element points, label these clusters based
on their size as either informative or as noise, and store information about these clusters
in a structure F, called a FrontierMap. The information about these clusters allows us to
then sample viewpoints only in the vicinity of these clusters. For the purpose of this thesis
the FrontierMap F is recalculated whenever the planning or map sharing algorithms need
to generate frontier viewpoints, either for the whole map or for a given bounding box.

4.2 Frontier Detection and Clustering

The first step of the FrontierMap computation is to detect frontier element points in
the OOT. To do this, we iterate over free-space voxels in the OOT and check whether they
are adjacent to unknown space and if so, create frontier element points f according to the
definition in (4.1). For this iteration, we utilize the important advantage of the OOT that
it stores voxels in a tree, and therfore the only free-space voxels at the deepest level of the
OOT are the ones near occupied voxels or near unknown space, since in large areas of free
space, the voxels are merged into larger voxels.

We therefore iterate over the free-space voxels at the deepest level of the OOT and
generate a set of frontier element points Fep. Since the resolution of the OOT in this thesis
is 0.2 m, this information is very granular, and for this reason, we downsample these points
into a set of points f1, f2, ..., fN ∈ Fds in which no points are less than 4 m apart.

After downsampling, we begin to cluster the points fds ∈ Fds. The clustering algorithm
chosen in this approach is a modified version of the DBSCAN [34] algorithm because it does
not require an apriori knowledge of the number of clusters, such as in K-means clustering.
The original DBSCAN algorithm requires 2 pre-set values — ND and εD and based on
these values looks at the neighborhood

Uε(f) = {fi ∈ Fds||f − fi| < ε} (4.2)

of each downsampled point and classifies each point f ∈ Fds as either a core point – if there
is more points than ND in Uε(f) or as a non-core point, if there is fewer points than ND in
Uε(f).

The most computationally demanding part of DBSCAN is querying the number of
points in a given ε area around a given point which is done for every point. Ideally, we
would want to label the points as core points or non-core points based on the number
of frontier element points in Uε(f), but that would mean iterating over too many points.
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For this reason, during the downsampling, we also store the number ni of frontier element
points that were downsampled into each point fi ∈ Fds and then label the points as core
points if ∑

fi∈Uε(f)

ni ≥ ND, (4.3)

and as non-core points otherwise.

Lastly, we perform the final step of the DBSCAN algorithm in the same way as in
the original algorithm, which assigns each core point to a cluster, each non-core point to
a cluster if there exists a cluster point in its ε neighborhood and all other points as noise,
which is discarded. Thus, we obtain a set of clusters of points F1, F2, F3, ...FN ∈ F that
make up the FrontierMap. A visualization of the resulting clustered points can be seen in
Figure 4.1.

Figure 4.1: A visualization of the result of the modified DBSCAN clustering algorithm.
Each colored cube represents a clustered point. Each set of cubes with the same color
represents a separate cluster.
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4.3 Computing Viewpoint Frontier Information Value

For the purpose of evaluating whether a given viewpoint ξ will explore frontiers,
we could define the frontier exploration value of a viewpoint ξ as the number of frontier
exploration points that are visible with the given sensor configuration of the UAV from
the viewpoint ξ. Because we, however, do not store frontier element points, we define the
frontier exploration value IF (ξ) of a viewpoint ξ as

IF (ξ) =
nunk
n

, (4.4)

where n is a user-defined number of rays that are cast in the OOT in random directions
in the FoV of the robot’s mapping sensors and nunk is the amount of these rays that hit
an unknown voxel before hitting any occupied voxel.

4.4 Generating Frontier Exploration Viewpoints

Generally, not all parts of the frontier can be explored by a given robot robot with
a given sensor configuration, due to the fact that a safe robot configuration which clears
the frontier with mapping sensors might not exist. For this reason, we cannot naively send
the robot to any frontier cluster, but we need to first determine if there are some safe
viewpoints with high information value near these clusters. Since we assume the mapping
sensor configuration of the UAV to be roughly symmetrical along the Z axis, we do not need
to determine headings, and can simplify this task to finding informative, safe, reachable
positions near each cluster and the terms viewpoint and point are used interchangeably in
the rest of this section.

For this reason, we define a procedure GenerateFrontierViewpoints(D, full). This
procedure, similarly as in Section 2.7, can be run in its full computation variant, which
computes a rich set of viewpoints (for local goal selection) or in its reduced variant, which
only samples viewpoints for cluster points f ∈ Fi in a single cluster if they are far away
from each other or no viewpoint has yet been found for the cluster (for long-distance goal
selection). The procedure is illustrated on Fig. 4.2 and works thus:

1. For each point f that belongs to a cluster, we sample a user-defined number N of
points x ∈ X uniformly in a sphere around f and begin to test them for safety,
information value and reachability.

2. We first test each point for whether it is in safe space, meaning that the distance of
x from the nearest unexplored or occupied voxel is greater than dsafe, where dsafe is
the minimal safe distance of the UAV from obstacles, defined at mission start.

3. Secondly, we test each point for whether it falls into a segment σ of the robot’s
SegMap (described in Section 3.2). If the tested point does not fall into the space of
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Figure 4.2: Visualization of the frontier viewpoint generation. First, the free space voxels,
that are exposed to unknown space are found in the OOT (left). Then they are down-
sampled and clustered using DBSCAN (middle). Finally, viewpoints that explore those
frontiers are found in nearby free space (right).

any segment, we also cast rays from x and try to determine if any segment is at least
visible from x, and if so, assign x to it. We discard points that are not assigned to
any segment of the SegMap.

4. Thirdly, we test the frontier information value IF (x) of the sampled point. If

IF (x) < εinfoval, (4.5)

where εinfoval is a user-defined minimal frontier information value of the generated
points, we discard the point x.

5. Lastly, we test whether the point is reachable from the UAV’s position. Because we
required each point to be assigned to a segment, determining reachability is fast,
because we can use the A* navigation over the topological graph of the SegMap
(described in Section 3.3). We discard all points that fall into currently unreachable
segments.

6. The computation of viable viewpoints for a given frontier cluster point f stops after
at least one safe, informative, reachable viewpoint has been found for f . Furthermore,
in the full computation variant of this procedure, if we find a viewpoint for a given
point f ∈ Fi, we also do not generate new viewpoints for other frontier points in Fi
that are closer than 10 m from f .
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The possible methods for extracting mission-important information from a robot’s
local maps to share among robots are potentially endless. Deciding which information gets
to be shared depends heavily on the given mission goal and communication constraints.
For the task specified in this thesis, the following requirements for the sharing process were
made:

� At least rough information about free, occupied and unknown space should be shared,
because the robots should be able to estimate if they are currently in space that has
already been discovered by other robots or if they are in completely new space.
Connectivity information should also be shared, so as to enable other robots to find
out for example how far a given point in the received map of another robot is from
goal positions in the received map.

� Information about frontiers should be sent in some form so that the receiving robot
can discern not only whether a given frontier that it creates in its own OOT belongs
to the space already explored by other robots (which we call globally explored space in
this work), but also to determine if the given frontier will lead to globally unexplored
space, which should be represented by frontiers in the shared maps.

� Surface coverage should also be shared, so that strategies that focus on completely
inspecting all surfaces in a given area can ignore areas that have been inspected by
other robots, which we call globally inspected areas in this work.
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The simplest solution would be to share the whole OOT and FacetMap of each
robot, as that would allow the receiving robots to precisely compute frontier and surface
inspection goals in the received maps and even attempt to merge these maps with their
local maps. This would, however, be excessively demanding for the given bandwidth as
the OOTs and FacetMaps can become quite large for bigger environments. On the other
hand, sharing minimalistic information, such as executed trajectory, positions of frontiers
and some clustered surfaces, could solve the issue of bandwidth, but merging information
from two robots could be difficult (for example if a robot receives two maps, how could we
decide whether a frontier in the first map has already been explored in the second map?).

The SegMap can prove to be very useful for the above mentioned requirements.
We can utilize the convexity of the segments, that the authors of Topomap [22] used for
quick path planning, to also send spatial information. Since the free-space segments are
roughly convex, we can approximate their shapes with convex geometric shapes such as
spheres, ellipsoids, bounding boxes or polygons, and then share these shapes. We can also
easily share connectivity of these shapes simply based on which segments are connected
portals, and thus create a lightweight topological graph where each node is assigned a shape.
Furthermore, frontier information can be shared by sending positions of frontier viewpoints
(the extraction of which is described in section 4.4) and attaching these positions to the
nearest segments that we know the viewpoints are reachable from. Attaching frontiers to
segments is important, as if we did not do it, a receiving robot might assign the frontier
to a different segment (for example to a room that shares a wall with the room where the
frontier actually is but the path to which is much longer) and then waste time going to
places that bring no global exploration reward. Lastly, we can utilize the shapes to share
information about areas in which the surfaces have been inspected by simply computing
how many facets in the FacetMap belong to a given segment and then sending that as a
single number for each segment.

For the purpose of this task, the shape used to represent segments is a bounding box
with 4 degrees of freedom. This shape was chosen for the reasons that using spheres would
mean we would have to keep the segments roughly spherical (since for example if we had
two rectangular rooms above one another and then approximated each with a sphere, they
would drastically overlap) and the usage of complex shapes such as polygons was deemed
too complicated for this task. The bounding boxes can also very well approximate tunnels
and rooms in urban and tunnel environments.

We define a new map type — an L-SegMap L as the lightweight representation of a
SegMap, FacetMap and a FrontierMap using the ideas mentioned above, and we share these
L-SegMaps between robots. The process of creating L-SegMaps, sharing them between
robots and updating them with other L-SegMaps is described further in this chapter.
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Figure 5.1: Diagram of the framework used to create, update and share L-SegMaps between
robots

5.1 L-SegMap Sharing Framework

The framework for extracting and compressing important information from a robot’s
SegMap, FrontierMap and FacetMap into an L-SegMap, sharing of the L-SegMaps and
updating of the received L-SegMaps is shown in Figure 5.1. In this section, the process of
compressing information from the FacetMap, FrontierMap and SegMap of a given robot
is described. The process of compressing shapes and surface coverage is also shown in
Figure 5.2.

5.1.1 Sharing Topology

The geometrical shape used to compress segments’ shapes in this work is a bounding
box with 7 degrees of freedom (DOF):

� 3DOF - xB, yB, zB - coordinates of the center of the box

� 3DOF - da, db, dc - side lengths of the box

� 1DOF - α - rotation around the z axis

Ideally, the bounding box should maximize the number of points that belong to the segment
and also belong to the bounding box of the segment and minimize the number of points
that are in other segments but also fall into the bounding box. We simplify this task of
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Figure 5.2: The transition from an occupancy octree (left) to a SegMap (middle) and
then compression to an L-SegMap (right). The colors of the L-SegMap are distributed as
a heatmap of surface coverage (red being mostly uninsptected, blue and purple mostly
inspected)

finding an optimal bounding box for a given segment σi to the task of finding the bounding
box with the minimal volume that contains all voxels mσi ∈Mσi .

This problem can be solved with the usage of the Quickhull algorithm [33] but for
simplification and faster computation, the center point of the bounding box(xB, yB, zB)T

was set to be the centroid of voxels in σi and then a simple method of interval division for
α ∈< 0, π

4
) was employed to approximate the optimal α.

5.1.2 Sharing Frontiers

The approach chosen for sharing of frontier information is to send one frontier view-
point for each frontier cluster in the FrontierMap F and also information about the nearest
segment the viewpoint is reachable from. This way the other robots can plan paths to these
frontiers in the received maps.

5.1.3 Sharing Surface Coverage

The approach chosen for sending surface coverage information is to compute the
percentage of inspected surfaces that belong to a given segment. For this computation, we
must first decide how to determine to which segment a given facet belongs. We do this
by casting a ray from each facet in the direction of its normal and if the ray intersects a
segment σi, we assign the facet to that segment. For each segment, we thus obtain a number
of inspected facets nins and uninspected facets nuni and then simply send the value

γσi =
nins

nins + nuni
(5.1)
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for each segment. Doing this raycasting for each facet whenever we want to send the current
SegMap would, however, require a time-consuming recomputation. For this reason, the
surface coverage is cached for each segment and peridocially recomputed only for segments
that are near the robot at a given time.

5.2 Localization in Received L-SegMaps

A very important feature of the L-SegMap is that it allows a robot to approximately
determine whether a given point x belongs to the segmented free space explored by another
robot which has shared its L-SegMap. Because the shared shapes are bounding boxes, we
of course lose some information about the shape of the segment and as such, the points
can be assigned to wrong segments.

To deal with this problem, a probabilistic approach is proposed. We define a func-
tion P(x, σLi ) that represents an estimated probability that a point x belongs to the free
space belonging to the original segment σi when only its lightweight version with just the
simplified shape information σLi is available.

Specifically for the used shape of bounding boxes, we define this function in the
following manner. First we transform the coordinates of point x to the coordinate system
of the bounding box by substracting the position of the box’s center cB and then projecting
into the three axes of the bounding box, which are the original axes of the world coordinate
system rotated around the world z axis by α. The transformed position can be written as

x′ =

cosα − sinα 0
sinα cosα 0

0 0 1

 (x− cB). (5.2)

We then define relative distances ra, rb, rc in the direction of the bounding box axes as

ra =
xx
da
, rb =

xy
db
, rc =

xz
dc
. (5.3)

where xx, xy, xz are the x,y,z components of x′ and da, db, dc are the side lengths of the
bounding box.

We select the largest relative distance as rmax = max{ra, rb, rc} and then set the
result of the function P(x, σLi ) as

P(x, σLi ) =


0, rmax ≥ 1
1−rmax

0.2
, 1 > rmax > 0.8

1, rmax ≤ 0.8

(5.4)

With this function, we assign 0 probability that a point belongs to the original seg-
ment σi when it is oustide its the bounding box. When it is inside the box, the probability
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increases the closer it is to the center of the box and when the point lies in a box that is
the original box scaled by the factor 0.8, the probability estimate is set to be 1.

By assigning points to segments in a received L-SegMap L, we can then search and
plan along the segments and portals of the received L-SegMap. This is very useful, because
this allows the planning algorithms for example to determine whether frontier viewpoints
in the local maps of the robot will lead to another frontier in the received L-SegMap or if
it leads into a dead end completely explored by another robot. The methods utilizing the
localization feature of the L-SegMaps are described in detail in subsection 6.2.2.

5.3 Merging Information from L-SegMaps

In this thesis, the L-SegMaps are not merged into a single map, but rather the newest
L-SegMap from a given robot is always kept, and when a new L-SegMap is received or when
the robot’s full SegMap changes, all stored L-SegMaps are updated.

The information that needs to be updated is frontier information. This is due to the
fact that if an L-SegMap contains a frontier viewpoint ξF and then the robot receives an
L-SegMap from a different robot in which ξF falls into explored space, we want to discard
that viewpoint, as it has probably been already explored by the other robot.

For this reason, we keep a global frontier utility value uF (ξ) for each sent frontier
viewpoint and then update these values based on information from other L-SegMaps, when
they are recevied, and also based on the current SegMap of the robot.

Let us assume that a robot has received a set of L-SegMaps L in which only the
most recent L-SegMap from each robot is saved. During a single recalculation iteration,
the utility of a frontier viewpoint ξF in L-SegMap L is calculated as

uF (ξF ) = 1− max
L′∈L\L

max
σL∈L′

P(ξ, σ) (5.5)

Less formally, we can say that the utility of a frontier in a received L-SegMap decreases with
the probability that the frontier viewpoint falls into explored space of any other L-SegMap.

The L-SegMaps are also updated with the robot’s local SegMap in the same manner,
albeit with higher precision, because we can compute the intersections of bounding boxes
and the voxels of a segment and also precisely determine if a frontier falls into the OOM of
the robot. We could also update surface coverage values of segments based on the overlap
with other segments in other L-SegMaps but that has not been explored in this thesis.
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Figure 5.3: Illustration of L-SegMaps being updated with other L-SegMaps onboard robot
C From left to right, top to bottom: An L-SegMap sent from robot A with frontiers with
uF (ξ) = 1 marked as black dots. Robot C is waiting in the staging area. (1), an L-SegMap
sent from robot B (2), the two L-SegMaps overlaid and updated one with the another
onboard robot C with the frontiers whose value is updated to uf (ξ) = 0 marked as white
(3) and the two L-SegMaps updated with the SegMap of robot C after it has launched and
navigated directly to the only globally unexplored frontier (4)
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In this chapter, three different search strategies are proposed. The main requirement
for these strategies is that they need to be autonomous. This means that the robots must
be able to act completely alone, as they can easily lose communication with the outside
base and other robots.

For this reason, all three designed strategies are based on the principle of each robot
autonomously choosing currently best goals according to a pre-defined reward function,
with the available information (current state of the maps O, S, F, G and received L-
SegMaps L), and then navigating towards these goals.

For each strategy, its single-UAV and cooperative (i.e. utilizing received L-SegMaps)
variants are presented. The cooperative variant will work in the same fashion as the single-
UAV variant if no L-SegMaps are received, but the variants are presented separately to
better explain how they were designed.

The cooperative methods rely on sharing lightweight information in the form of L-
SegMaps, described in chapter 5, that are periodically broadcasted from all UAVs and
UGVs. The UAVs then improve their reward functions with the currently received L-
SegMaps and can easily replan when new L-SegMaps are received.

The strategies differ in the goal viewpoints they consider and the utilized reward func-
tions. What they have in common is that they all utilize the occupancy octree, FacetMap,
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SegMap, and TopoMap described in the previous chapters for fast high level planning and.
They also share the structure of a global and a local planner described in the section below.

6.1 Global-Local Search Planning Structure

Global Planner Local Planner
goal area

Path Planner &
Trajectory Generator

Trajectory Tracking &
UAV Control

trajectory reference

viewpoint
path

Figure 6.1: The designed planning structure that is common for all 3 strategies that are
presented in this work

All three presented strategies share a structure that is common for large scale indoor
exploration, which is to divide planning into a global planner and a local planner, such as
in [13]. In [13], the local planner generates informative trajectories in a small area around
the UAV for as long as there are any informative areas nearby. When the local planner sees
no available frontiers in the nearby area (for example upon reaching the end of a tunnel),
the global planner, which plans across the whole environment, is triggered and relocates
the UAV to informative areas, and upon reaching them activates the local planner anew.

In this work, a similar approach to [13] was designed and is illustrated in Figure 6.1.
The global planner calculates possible areas of interest (for frontier exploration or surface
inspection, based on the specific strategy) in the whole environment and guides the local
planner to these areas. The local planner then plans at a high frequency and tries to
maximize the information gain from frontiers or surfaces in the UAV’s nearby area.

Since the global planner must sample informative viewpoints (we do not want to
send the robot to areas that contain frontiers or surfaces that are not explorable by any
robot configuration with the given sensors, for example in narrow areas) throughout the
whole environment, which is continually expanding and since no caching is utilized for
these viewpoints, the density of sampled viewpoints must be drastically lower than for the
local planner. For frontier viewpoints, it achieves this by utilizing the reduced variant of
the method described in section 4.4 to obtain a set of widely-spaced frontier exploration
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viewpoints ΞG
F = GenerateFrontierViewpoints(BO, false) in the bounding box BO of

the entire OOT. For surface inspection viewpoints in the DEI strategy, it achieves this
through, analogically, using the reduced variant of the surface inspection viewpoint gen-
eration algorithm described in ΞG

S = GenerateSurfaceViewpoints(BO, false) described
in section 2.7.

The local planner only plans in a small bounding box Blocal around the UAV’s current
position and can therefore use the full calculation of viewpoints to obtain a rich set of fron-
tier viewpoints ΞL

F = GenerateFrontierViewpoints(Blocal, true), and in the DEI strat-
egy also a rich set of surface viewpoints ΞL

S = GenerateSurfaceViewpoints(Blocal, true)

Furthermore, to reduce computational strain on the UAV, the global planner replans
only when either:

1. the local planner cannot find informative and reachable viewpoints in the nearby
area,

2. a user-defined time has passed since the last global replanning, or

3. a new L-SegMap is received (in the cooperative variants of the strategies)

When the replanning of the global planner is triggered, it computes the sparse set of
viewpoints ΞG = ΞG

S ∪ ΞG
F and selects the best viewpoint from ΞG according to a global

reward function specified by the employed strategy. It then tries to navigate the UAV to
a user-defined distance δglobal from the viewpoint. When the UAV gets closer than δglobal
to the viewpoint, the planning is passed to the local planner. If the local planner is active
when the global planner produces a new viewpoint, the global planner first checks, if the
local planner is not already exploring near that best global viewpoint and if it is, it does
not change its course.

To enable smoother motion and maximally utilize the implemented trajectory genera-
tor, the local planner does not only plan towards the best next viewpoint from the current
position ξcurr, but rather holds a path of viewpoints Ξpath. When the current length of
the viewpoint path becomes lower than a user-defined path length, a best next viewpoint
is calculated relative to the last viewpoint in Ξpath. The trajectory generator then plans
smooth collision-free trajectories through these viewpoints, which can be much faster than
always going to a single viewpoint, stopping and selecting a new one. The local planner
then appends viewpoints to Ξpath based on a reward function calculated relative to the last
viewpoint in Ξpath. The local planner uses a reward function that is defined as the sum of
the global reward function used by the global planner and a motion factor, which takes
into account the dynamics of the UAV.

All three presented strategies share this structure and planning paradigm. They differ
mainly in the reward functions they use for selecting best next viewpoints and in the way
they travel to viewpoints.
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6.2 Receding Horizon Next Best View Strategy

The first designed strategy — an application of the receding horizon next best view
(RHNBV) approach — focuses solely on the exploration of frontiers. Robotic frontier-
based exploration is a widely researched topic and many methods exist for this task. In
this work, the Receding Horizon Next Best View (RHNBV) method, which is used for
volumetric exploration in e.g. [12, 13, 17], was chosen as the baseline method and then
adapted to the global-local planner structure. The principal idea of the RHNBV method is
to iteratively find viewpoints that will uncover frontiers, select the best viewpoint according
to a defined reward function and then to navigate the robot to the best viewpoint.

In the single-UAV variant of this strategy, the reward function is designed to prefer
the currently nearest viewpoints. Some applications of RHNV design the reward function
to maximize information gain while minimizing distance. In this work, we consider all large
enough frontier clusters to be equal in the terms of information value (since it would be very
hard to determine how much volume of Vunk will be uncovered after exploring the frontier)
and only minimize distance traveled to the frontiers. In the cooperative variant, the reward
function also looks into received L-SegMaps to determine whether a given frontier in the
robot’s local FrontierMap falls into space that has already been explored by other robots
(which we call globally explored space in the rest of this chapter). If so, the UAV evaluates
the frontier based on whether exploring the frontier will move the UAV towards frontiers
that have not yet been explored by any robot.

6.2.1 Single-UAV Approach

When the UAV does not have any received L-SegMaps, we assign each viewpoint that
uncovers frontiers in a large enough (not considered as noise in the DBSCAN algorithm
in section 4.4) frontier cluster to have the same importance and only consider distances
to these viewpoints. We utilize the SegMap G to quickly calculate approximate distances
to frontier viewpoints ξ ∈ ΞG

F using the function of the segmap D(G, ξ1, ξ2) described in
section 3.3. We define the global reward function of the RHNBV strategy for a frontier
viewpoint ξ in globally unexplored space relative to a given viewpoint ξprev as

RGU
RH(ξ, ξprev) ≡ −D(G, ξ, ξprev). (6.1)

As defined in the global-local planner structure, the global planner simply chooses the best
next viewpoint ξ∗ relative to the UAV’s current viewpoint ξcurr (composed of the UAV’s
current position and heading) as

ξ∗ ≡ arg max
ξ∈ΞGF

RGU
RH(ξ, ξcurr). (6.2)

and navigates the UAV to it. When the UAV gets closer than δglobal to ξ∗, the local planner
is engaged.
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The reward function for the local planner was designed as the sum of the global
reward function and a factor RM

RH(ξ) which deals with the dynamics of the UAV and
depends on the specific hardware used on the UAV. In this work, we assume all UAVs
to have multi-row LiDAR sensors. For these sensors, a very effective way of exploring
frontiers is to dynamically determine the direction in which there is the majority visible
frontier viewpoints, and then to increase the reward of frontier viewpoints based on the
distance from the UAV in this direction. Formally, we write this factor as:

RM
RH(ξ, ξprev) = αLFh · (pξ − pξprev) (6.3)

where h is the normalized direction towards the frontiers and αLF is a user-defined pa-
rameter that specifies the importance of this factor. The direction h is calculated by first
calculating the sum h′ of normalized direction vectors towards all local frontier viewpoints
Ξvisible ⊆ ΞL

F that have a clear line of sight towards ξprev as

h′ =
∑

ξ′∈Ξvisible

pξ′ − pξprev
|pξ′ − pξprev |

(6.4)

and then setting h as

h =

{
h′

|h′| , |h
′| ≥ αdirmag

0, |h′| < αdirmag
(6.5)

where αdirmag is a user-defined threshold. This is done so that the local planner is more
incentivized to plan according to the global rewards in complex areas, such as crossroads
or large rooms, and more according to the frontier direction when in tunnels or corridors.

6.2.2 Cooperative Approach

Without any information about the exploration progress of other robots, a team of
UAVs using the RHNBV strategy can and usually will explore some areas multiple times,
even when there are areas that have not been explored by other robots. A very simple
possible solution could be to add a preferred direction factor to the global reward function
and then set different preferred directions for each UAV. This approach was briefly tested,
but it does not bring an acceptable guarantee that the UAVs will not explore areas already
explored by other robots.

For this reason, the following approach utilizing received L-SegMaps was designed:
Let us consider a robot that is currently searching the environment and has received some
L-SegMaps L1, L2, ..., LN (each considered L-SegMap is the newest one received from a
given robot). When the robot generates some frontier viewpoints ξ ∈ ΞF (either from the
global or local planner), it first assigns for each viewpoint ξ ∈ ΞF and each L-SegMap Li a
probability estimate Pvisited(ξ,Li) that ξ lies in any of the segments σL of Li by utilizing
the function P(x, σL) defined in section 5.2 as

Pvisited(ξ,Li) = max
σL∈Li

P(pξ, σ
L). (6.6)
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We construct a set of L-SegMaps L in which the viewpoint ξ might lie within visited space
as

Lpos(ξ) = {L ∈ L1,L2, ...,LN |Pvisited(ξ,L) > 0}. (6.7)

We can then calculate a probability estimate pGU that the frontier viewpoint ξ lies in
globally unexplored space as

pGU(ξ) = 1− max
L∈Lpos(ξ)

Pvisited(ξ,L). (6.8)

If pGU = 1, the global reward function for ξ is the same as in the noncooperative
variant of the RHNBV strategy. However, if pGU < 1, exploring the frontier might not, by
itself, expand the globally explored space, but exploring this frontier might move the UAV
towards frontiers that were not explored by any other robots.

Since the L-SegMaps store information in a graph structure, same as the local SegMaps
G, we can search for the frontiers that are nearest to the viewpoint’s position pξ in a given
L-SegMap. The travel distance computation of a SegMap requires the start and end point
to be assigned to a segment. The frontiers that are sent in the L-SegMaps are already each
assigned to one of its segments, but we must decide to which segment to assign the queried
viewpoint ξ. For each L-SegMap L ∈ Lpos, we select the segment most likely to contain ξ
as

σLml(ξ) = arg max
σL∈L

P(xξ, σ
L). (6.9)

For each frontier viewpoint ξLF sent in the L-SegMap L we can then execute topological
path A* planning along the portals of L using the function D(L,pξLF ,pξ), same as with a

local SegMap, and thus obtain an estimated travel distance between ξLF and ξ. We then
define the global reward of exploring ξ from a current viewpoint ξprev if pGU(ξ) = 0 as

RGE
RH(ξ, ξprev) = −D(ξprev, ξ) + max

L∈Lpos(ξ)
max
ξLF∈L
−D(ξ, ξLF )

uF (ξLF )
. (6.10)

where u(ξLF ) is the frontier utility value that is updated for each frontier viewpoint in an
L-SegMap based on the method described in section 5.3. We then combine this with the
reward function for frontiers in globally unexplored space RGU

RH into the total cooperative
reward function for frontier viewpoints

Rtotal
RH (ξ, ξprev) = pGU(ξ)RGU

RH(ξ, ξprev) + (1− pGU(ξ))RGE
RH(ξ, ξprev). (6.11)

This reward function is used for both the global planner and local planner as the global
reward function in the RHNBV strategy.

6.3 Viewpoint Enhanced RHNBV Strategy

The main downside of the RHNBV strategy is that it has no notion of surface infor-
mation gain. With the RHNBV strategy, the UAV can miss out on inspecting large surface
areas even if it would only have to fly with a different heading.
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The proposed RHNBV strategy with viewpoint enhancing (RHNBV-VPE, referred
to also as VPE in this thesis) tries to take full advantage of the fact that UAVs can
change their heading almost independently on the executed trajectory, meaning that with
a given sequence of positions, we can roughly choose the headings throughout the trajectory
(subject to maximum heading rate constraints) and the UAV will execute this trajectory
in almost the same time as the original trajectory.

In this strategy, the global and local planner work in exactly the same way as in
the RHNBV strategy. The only difference from the RHNBV strategy is that the generated
viewpoint path is additionally enhanced before being sent to the trajectory generator node.

6.3.1 Single-UAV Approach

The viewpoints in the viewpoint paths of the RHNBV strategy have no defined
heading and are defined only by their position. Therefore, in the RHNBV strategy, the
UAVs will usually travel directly towards frontier positions or when traveling across large
distances, between portals of segments, and naively aim the UAV in the direction of flight.

When the trajectory generator receives a viewpoint path, it generates a trajectory of
tuples (position p, heading ϕ) that the UAV will then attempt to follow. If the RHNBV
strategy is employed, the headings of the trajectory are set by the trajectory generator and
thus do not deal with surface inspection.

The method works for trajectory enhancing works as follows: Whenever the RHNBV
strategy adds a new viewpoint ξnew to the current viewpoint path in which the currently
last viewpoint is denoted as ξlast, the viewpoint enhancement is triggered and works as
follows:

1. We first ask the trajectory generator, how it would normally reach ξnew from ξlast
and thus obtain a trajectory of positions p1 , p2, ..., pN and headings ϕ1, ϕ2, ... ϕN .

2. Then, we iterate over the position and heading trajectory and cut this trajectory
every dcutting (where dcutting is a user-defined parameter) meters and thus obtain Ncut

positions and headings that we denote as pcut1 , pcut2 , ..., pcutNcut
and ϕcut1 , ϕcut2 , ... ϕcutNcut

.

3. For each cut viewpoint ξcuti , represented by the cut position and heading, we calculate
the frontier exploration value and surface inspection value by using the methods
described in section 2.6 and section 4.3 , respectively.

4. If IF (ξcuti ) > kF , where kF is a user-defined constant, we do not replace the cut
viewpoint with a new one and move on to the next cut position. We do this for the
reason that when the UAV moves near frontier areas, the FacetMap will usually not
have enough data about surfaces to calculate IS(ξcuti ).
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5. For each cut viewpoint, we then sample viewpoints ξsample ∈ Ξsample in a sphere
around ξcuti and try to find a viewpoint that would cover a much larger uninspected
surface area than the original cut viewpoint. Namely, we try to find any viewpoint
ξsample for which

IS(ξsample) > kSIS(ξcuti ) (6.12)

where kS is a user-defined constant that determines how much more surface inspection
information the sampled viewpoints must bring than the original cut viewpoint ξcuti

to set them as additional viewpoints in the viewpoint path. We denote all viewpoints
that satisfy this condition for a given cut position as Ξ++.

6. For each cut position, if Ξ++ 6= ∅, we add the viewpoint

ξ∗ = arg max
ξ∈Ξ++

IS(ξ) (6.13)

to the viewpoint path.

7. We stop cutting the trajectory 2dcutting before the last position of the trajectory and
then try to enhance ξnew (the viewpoint that was originally the only one to be added
to the path) by adding a heading requirement to it. Similarly as with cut positions,
we do not add a heading requirement if IF (ξnew) > kF , which will mostly happen
when the RHNBV is currently near a frontier.

We then pass this enhanced trajectory to the trajectory generatory which will adapt its
trajectory according to the required viewpoints in the viewpoint path. The single-UAV
variant of this strategy then works in exactly the same way as the RHNBV strategy, but
uses the viewpoint enhanced trajectory generation instead of the one in RHNBV which
does not consider informative headings.

6.3.2 Cooperative Approach

The cooperative extension of this strategy is simply to block the enhancement of
cut viewpoints if the cut position xcut lies in a segment of the L-SegMap that has its
surface coverage value above a certain user-defined threshold γmin. Formally, we block the
viewpoint enhancement at position xcut if

max
L∈Lpos(xcut)

max
σL∈L

γσLP(xcut, σL) > γmin, (6.14)

where γσL ∈< 0, 1 > is the surface coverage value of segment σL shared in the L-SegMaps.
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6.4 Dead End Inspection Strategy

None of the strategies mentioned so far can ensure complete inspectedness of surfaces
of the environment even if given enough time. One strategy that would consider not only
frontier viewpoints but also surface inspection viewpoints could be to calculate frontier
and surface viewpoints and then assign each frontier viewpoint a reward of −D each and
surface inspection viewpoints −D+αsurf , which would greedily focus on exploring frontier
and surface viewpoints, while preferring the former or the latter based on the sign of αsurf .
This strategy was briefly tested, but soon abandoned because the assumption was made
that it would be better to focus on thoroughly searching the environment from its end
rather than from the start, because areas close to the start will be visited by most robots
of the robot team and as such, the likelihood of missing an artifact can be lower than in
the far reaches of the environment, where only a few robots will venture.

For this reason, a novel strategy — dead end inspection (DEI) — was designed. This
strategy considers both surface inspection viewpoints ΞS (generated using the procedure
GenerateSurfaceViewpoints() described in section 2.7) and frontier exploration view-
points ΞF (generated using the GenerateFrontierViewpoints() procedure described in
section 4.4). To force the UAV to fully search dead ends and to not leave areas of unin-
spected surfaces in distant areas of the environment, the DEI strategy also rewards view-
points that are further from the base station.

6.4.1 Single-UAV Approach

For the DEI strategy, we define a separate global reward function for surface inspec-
tion viewpoints ξS ∈ ΞS and frontier exploration viewpoints ξF ∈ ΞF . We define the global
reward function for frontier exploration viewpoints ξF in globally unexplored space relative
to a previous viewpoint ξpref as

RGU
DE(ξ, ξprev) = Dhome(G, ξ)−D(G, ξ, ξprev). (6.15)

and for surface inspection viewpoints as

RS
DE(ξ, ξprev) = Dhome(G, ξ)−D(G, ξ, ξprev) + αsurf , (6.16)

where αsurf < 0 is a user-defined constant that specifies how much the UAV should prefer
frontier exploration over surface inspection, Dhome(G, ξ) is the travel distance from the
base station to viewpoint ξ calculated using the SegMap and D(G, ξ1, ξ2) is the travel
distance between two viewpoints also calculated using the SegMap G (see section 3.3 for
more details).

As in the RHNBV strategy, if the viewpoints are considered by the local planner,
a motion-specific factor is also added to the rewards of the viewpoints. For frontier ex-
ploration viewpoints, the motion specific factor is defined in the same manner as in the
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RHNBV strategy in (6.3). For surface inspection viewpoints, the factor is defined simply
as

RSM
DE (ξ, ξprev) = −kheading|ϕξ − ϕξprev | (6.17)

where kheading is a non-negative user-defined parameter that penalizes heading change, so
that if the UAV is for example examining a large room, it flies along the walls instead of
chaotically changing its heading according to the nearest viewpoints.

In tree-like structured parts of the environment, this reward function will cause the
UAV to execute a sort of depth first search, which can be beneficial for the multi-robot
missions, because if we are sure that a branch of the environment has been completely
searched, we can discard it and stop other robots from exploring it.

6.4.2 Cooperative Approach

For each frontier viewpoint ξF we calculate a probability estimate that it belongs
to globally unexplored space pGU(ξ) in the same manner as in the RHNBV strategy. The
reward function for exploring a frontier already explored by other robots could possibly
take into account the amount of uninspected surface areas that will be accessed through
this frontier, but for simplicity, this was not examined in this thesis. The reward function
for frontiers with pGU(ξ) = 0 is defined simply as the reward function RGE

RH in the RHNBV
strategy, enhanced with the distance from home:

RGE
DE(ξ, ξprev) = Dhome(ξ)−D(ξprev, ξ) + max

L∈Lpos(ξ)
max
ξLF∈L
−D(ξ, ξLF )

uF (ξLF )
. (6.18)

where u(ξLF ) is the frontier utility value that is updated for each frontier viewpoint in an
L-SegMap by the method described in section 5.3. We then combine this with the reward
function for viewpoints in globally unexplored space RGU

RH into the total cooperative reward
function for frontier viewpoints

Rtotal
RH (ξ, ξprev) = pGU(ξ)RGU

RH(ξ, ξprev) + (1− pGU(ξ))RGE
RH(ξ, ξprev). (6.19)

The cooperative handling of surface inspection is the same as in the VPE strategy. For
simplicity, we do not assign a new reward function for surface inspection viewpoints in
explored space, but rather simply discard these viewpoints if they lie in space that has a
high reported surface coverage. Formally, we discard surface inspection viewpoints ξ if

max
L∈Lpos(pξ)

max
σL∈L

γσLP(pξ, σ
L) > γmin, (6.20)

where γσL ∈< 0, 1 > is the surface coverage value of segment σL shared in the L-SegMaps
and γmin is a user-defined surface coverage threshold. We then use the global reward func-
tion RS

DE for the surface inspection viewpoints that were not discarded.
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This chapter describes the implementation and evaluation of the proposed theoretical
strategies and mapping structures. All three proposed strategies were evaluated for single-
UAV missions in the realistic Gazebo simulation and the DEI strategy was also evaluated
on a real UAV platform in an urban environment. To compare the approach using L-
SegMap sharing with the noncooperative approach, the RHNBV strategy was tested on
a team of 3 UAVs in simulation first for the situation where UAVs share L-SegMaps and
then for when no L-SegMaps are shared.

7.1 Implementation

The theoretical mapping and planning structures have been implemented as a C++
library based on ROS, that allows for both standalone map building (e.g., for creating
L-SegMaps onboard UGVs and sharing them with UAVs), and also for simultaneous map
building and high level planning based on the built maps. The mapping algorithms can
be run with any system structure based on ROS that provides the mapping algorithms
with binary OOT data, odometry and a camera sensor model. The planning algorithms
were integrated into the MRS system, available as open source at https://github.com/ctu-
mrs/, which handles SLAM, autonomous UAV control, trajectory tracking and artifact

https://github.com/ctu-mrs/
https://github.com/ctu-mrs/
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recognition. For the purpose of evaluating the strategies, a simple trajectory planner node
(for collision-free path planning and trajectory generation) was also implemented and is
described in the following section.

7.1.1 Trajectory Planner

The structure of the global-local high level planning described in Section 6.1 is com-
patible with any trajectory and motion planners that safely navigate the UAV through
viewpoints given by the local planner. For the purpose of testing and demonstrating the
designed strategies, a simple path planner that creates collision-free trajectories through
the OOT and uses a primitive braking mechanism for when the predicted trajectory is
not safe, was implemented along with a simple trajectory generator that creates a roughly
smooth trajectory from the collision-free path. We call the whole node consisting of a path
planner and trajectory generator a trajectory planner.

The implemented trajectory planner works by first calculating a safe position tra-
jectory with no regard for heading, then sampling this trajectory based on the currently
desired velocity and then assigning each sampled position a heading that aims the UAV
in the direciton of flight and aligns it with the required heading ϕξ1 , if heading alignment
is required. The headings set at each position of the trajectory are selected to satisfy the
maximum heading rate ω specified by the UAV controllers.

For the calculation of a safe position trajectory (safe in this context meaning that
the distance of each position of the trajectory from the nearest unknown/occupied voxel is
greater than dmin) from the current position of the UAV xcurr to the position of the first
next viewpoint xξ1 , the planner performs a modified A* search across free-space voxels
from the MRS OOT A* library. The A* calculaton sets the free-space voxels of the OOT
at the deepest level as nodes of the search graph and uses euclidian distance between the
center of a given voxel and the end position as the heuristic function.

After sampling the position trajectory based on the desired velocity (as the trajectory
tracking and control nodes of the MRS system set the desired velocity based on the density
of the positions in the trajectory), each sampled point is assigned a heading. The heading
assignment process is to set the heading of a point pi = (xi, yi, zi)

T as

ϕi = atan2(yi − yi−1, xi − xi−1), (7.1)

when the UAV is at least a distance dalign from the end position. If heading alignment is
required for ξi and the UAV is closer than dalign to the end position, the headings at the
trajectory position are set as a linear interpolation from the UAV’s current heading to the
required heading.

This trajectory is then passed to the trajectory tracking and control nodes in the
MRS system. As control errors can occur, the executed trajectory can be different from the
reference one, and might therefore cause collisions. Fortunately, the MRS trajectory tracker
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node publishes the trajectory that is predicted to be executed. This predicted trajectory
is then utilized for a simple braking mechanism which stops the UAV (sends and empty
trajectory to the trajectory tracker) whenever any point in the predicted trajectory is less
than dsafe far from any obstacles. If this causes the UAV to get stuck in a position that is
less than dsafe far from obstacles, the value dsafe for path planning is temporarily lowered
until the UAV is again at a safe position, and then set back to the primary value.

This trajectory planner has been utilized in the early stages of the work on this thesis
and worked sufficiently for testing the designed strategies. During the work on this thesis,
however, a member of the MRS team developed a safer, smoother trajectory planner. To
better demonstrate the strategies (as the original trajectory planner would stop at each
viewpoint, which would considerably slow down the VPE and DEI strategies simply because
they publish paths with more viewpoints) and for safety reasons concerning the real world
experiment, this better trajectory planner was used for the rest of the work and is also
utilized in the experimental evaluation of the strategies in both simulation and in the real
world experiment.

7.2 Evaluation of Strategies in single-UAV Missions

The three designed strategies RHNBV, VPE and DEI were evaluated in the realistic
Gazebo Ignition simulation. To ensure identical conditions for each run, the experiments
were executed in the CloudSim environment using the Amazon Web Services servers pro-
vided by DARPA for the teams preparing for the competition.

The world chosen for evaluating these strategies is the world Simple Cave 3 from
the DARPA SubT tech repository 1. This world consists of multiple branches, and was
chosen mainly for the demonstration of the DEI strategy, as there are dead ends near to
the starting area and also since it was expected that the results should not vary much
based on which branch the UAV selects.

For each strategy, the run that has inspected the highest amount of facets is presented,
and surface inspection maps and graphs of the remaining runs are shown in the full results
of experiments.

7.2.1 Evaluation Metrics

For evaluating the designed strategies, the following values were computed for each
run:

� Vkno[m
3] = Volume of all occupied and free-space voxels in the OOT at the end of

the run

1https://subtchallenge.world/home

https://subtchallenge.world/home
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Strategy Vkno[m
3] Sinsp[−] Skno[−] pinsp[−] pspv[−] vexp[m/s] A[−]

RHNBV 95742.27 12173.67 16246.67 0.75 0.127 1.64 4
VPE 90749.7 11210.5 14938.5 0.752 0.124 1.5 2
DEI 82597.31 10718.67 13842.0 0.776 0.13 1.59 4.33

Table 7.1: Values of the evaluated metrics (described in subsection 7.2.1) from the single-
UAV evaluation experiments averaged over all runs of each strategy that did not end in a
crash of the UAV

� Sinsp[−] = Number of inspected facets in the FacetMap at the end of the run

� Skno[−] = Number of facets, both inspected and uninspected, in the FacetMap at the
end of the run

� pinsp[−] =
Sinsp
Skno

= number of inspected facets divided by the number of known facets
in the FacetMap at the end of the run

� pspv[−] =
Sinsp
Vkno

= number of inspected facets divided by the total volume at the end
of the run

� vexp[m/s] = average speed of the UAV during exploration (during the time between
exiting the staging area to the beginning of the homing procedure)

� A = number of correct artifact reports at the end of the run. This value does not
evaluate the strategies well, as it relies on detection algorithms and also since artifacts
are not distributed evenly through the environment, but is shown nonetheless.

7.2.2 Results and Discussion

For the demonstration of the main principles of the strategies, one run for each
strategy is inspected in detail in this section. The full results of the experiments containing
data for each run and the resulting maps of the environment are in the full results of
experiments.

As can be seen on the maps in Figure 7.2, Figure 7.6, and Figure 7.6, each strategy
has demonstrated the ability to explored a considerable portion of the environment’s vol-
ume and surface. As was expected, the RHNBV strategy left many patches of the surface
uninspected. The RHNBV-VPE has slightly helped this issue, but not by much. The DEI
strategy, however, has demonstrated its ability to almost perfectly inspect surfaces in a
dead end, as shown in Figure 7.6. The main achievement of this is that when the DEI has
fully inspected a branch of the environment, we can stop all other robots from exploring
that branch, compared to the RHNBV strategy which might miss more artifacts in that
branch.



7.2. Evaluation of Strategies in single-UAV Missions 59

0 200 400 600 800 1000 1200 1400
Time [s]

0

20000

40000

60000

80000

100000

O
ct

oM
ap

fr
ee

sp
ac

e
vo

lu
m

e
[m

3 ]

0 200 400 600 800 1000 1200 1400
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

N
um

be
r

of
in

sp
ec

te
d

fa
ce

ts
[-

]

Inspected
Known

Figure 7.1: Volumetric exploration progress (left) and surface inspection progress showing
the number of inspected facets and the total number of facets in the FacetMap (right) for
the 2. run of the RHNBV strategy

The average explored volume and the average percentage of inspected facets shown
in Table 1 also fit the expectations for all three strategies. The RHNBV strategy explored
the largest volume of space but has the smallest percentage of inspected facets. The VPE
strategy explored a slightly smaller volume of space, but inspected a higher percentage
of facets than the RHNBV strategy, and the DEI strategy explored the least amount of
volume but has the highest percentage of inspected facets.

A slight difference of the strategies can also be seen on the graphs of volumetric
exploration in Figure 7.1, Figure 7.3, and Figure 7.5. The time for which the explored
volume of the DEI strategy is constant (the time spent backtracking from a dead end) is
considerably higher than that of the RHENBV strategy that was returning from a slightly
longer branch of the environment. This means that the DEI spent a long time inspecting
the surfaces in the dead end, which was expected.

The ability of the SegMap to navigate the UAV over large distances has also been
demonstrated, as all the UAVs have successfully backtracked from each far end of the
environment and all UAVs returned safely in each run, except for run 2 of the VPE strategy,
where the UAV crashed, which was, however, not the fault of the algorithms designed in
this thesis.

The FacetMap has also been shown to be useful as a surface representation of an apri-
ori unknown environment, since the facets fit the contours of the environment very well and
the inspected facets roughly fit the surfaces that have been seen by the UAV’s cameras (as
can be seen in the videos in the multimedia material at http://mrs.felk.cvut.cz/musil2021thesis).

http://mrs.felk.cvut.cz/musil2021thesis
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Figure 7.2: The map of inspected (blue) and uninspected (red) facets in the FacetMap
projected onto the XY plane at the end of the 2. run of the RHNBV strategy. The distances
are in meters.
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Figure 7.3: Volumetric exploration progress (left) and surface inspection progress showing
the number of inspected facets and the total number of facets in the FacetMap (right) for
the 2. run of the VPE strategy
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Figure 7.4: The map of inspected (blue) and uninspected (red) facets in the FacetMap
projected onto the XY plane at the end of the 2. run of the VPE strategy. The distances
are in meters.
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Figure 7.5: Volumetric exploration progress (left) and surface inspection progress showing
the number of inspected facets and the total number of facets in the FacetMap (right) for
the 3. run of the DEI strategy
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Figure 7.6: The map of inspected (blue) and uninspected (red) facets in the FacetMap
projected onto the XY plane at the end of the 3. run of the DEI strategy. The distances
are in meters.

7.3 Cooperation of a UGV and UAVs

During the work on this thesis, the strategies were periodically evaluated in simulation
with a team comprised of UAVs and UGVs, where we only controlled the UGVs. As the
mapping and sharing structures designed in this work are able to be used with any robot
that provides odometry and an OOT, the FacetMap, FrontierMap and SegMap mapping
structures and the sharing of L-SegMaps were integrated onto the UGVs in simulation,
and one of the test runs with the UGVs sharing L-SegMaps is presented in this section.

In this experiment, which is illustrated in Figure 7.7, the UGV entered the envi-
ronment first and on the first crossroad in the environment, explored the right hand side
branch, but could not explore it completely, as there is a tall vertical tunnel in the branch,
and went to explore further into the second branch of the environment.

The UGV deploys a trail of communication nodes, and as such, it was sharing its
current L-SegMap with the UAVs even when it was far from the staging area. When the
UAV1 launched, the nearest globally unexplored frontier was in the vertical tunnel of the
right hand side branch of the first crossroad, and therefore it went to explore it. After
exploring it, the only frontiers were near the UGV and the UAV went to explore them.
However, since a slower, earlier version of the RHNBV strategy was used in this experiment,
the battery of the UAV was exhausted upon reaching the next crossroad, which happened
also to the other UAVs. Nonetheless, this experiment has demonstrated the applicability
of the mapping and sharing methods to other robots than only UAVs.
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Figure 7.7: An illustration of cooperative exploration of a cave environment with UAVs
(pink, orange, white) and a UGV (green). The UGV explores the ground level of the right
branch and moves further into the cave (top), then UAV1(pink) explores the upper part
of the right branch (middle) and then UAV1 and the remaining UAVs attempt to explore
further in the cave but crash (right). Note that the UAVs do not explore the right branch
again after UAV1 has explored it. A video of the run is also available in the multimedia
materials at http://mrs.felk.cvut.cz/musil2021thesis

http://mrs.felk.cvut.cz/musil2021thesis
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7.4 Comparison of Cooperative and Noncooperative

Approaches

To compare cooperative and noncooperative variants of the designed strategies, three
test runs were executed for a team of three UAVs using the cooperative variant of the
RHNBV strategy and three runs using the single-UAV variant of the RHNBV strategy.
As with the evaluation of single-UAV strategies, the experiments were executed on the
CloudSim servers provided by DARPA.

To demonstrate the main differences of the approaches, one map is shown for the
cooperative variant and one for the noncooperative variant. Maps from the rest of the runs
can be found in the full results of experiments.

The main difference can be seen in that in the noncooperative run shown in Fig-
ure 7.8, the UAVs explored muliple rooms multiple times. The fact that the UAVs went
separate directions at the start of the mission without cooperation is by pure luck. In the
cooperative run shown in Figure 7.9 the UAVs did not explore much of the space explored
by other UAVs as in the noncooperative run, which could, however, have been affected
by the fact that the UAV1 and UAV3 crashed into one another. This was caused by a
situation, where the UAVs met in the narrow corridor in the middle of the enviornment,
exchanged information about the environment and for both of the UAVs, the nearest glob-
ally unexplored space was in the left branch of the corridor. The UAVs went to explore this
frontier, each from a different side, but due to momentum, they tried to explore frontiers
further in the corridor and crashed into one another. This could be solved in the future by
sharing the current goals of UAVs and also by recalculating the current goal at a higher
frequency when another robot is nearby.

7.5 Experiment on a real UAV

One of the goals of this thesis was to prepare the planning and mapping algorithms
for deployment on a real UAV using the MRS system. The algorithms were prepared and
then tested in a single-UAV mission in a harsh and dangerous environment on a UAV
equipped with an Ouster OS0-128 LiDar, a Bluefox MLC200wc camera, two Realsense
D435i depth cameras (one facing up, one facing down) and a NUC10i7fnk with 16GB
RAM. Videos and photos from this experiment are available in the multimedia materials
at http://mrs.felk.cvut.cz/musil2021thesis. The environment chosen for the real-world ex-
periment was a dilapidated former beer brewery. This building consists of a large ≈ 8 m
tall room on ground level with multiple large windows and pillars and also an underground
level filled with small pillars that at some point were only ≈ 2 m apart, low ceilings and
hanging chains, small pipes and water puddles. The large upper room is connected with
the basement by multiple ≈ 3 m wide holes in the ground, shown in Figure 7.10.

http://mrs.felk.cvut.cz/musil2021thesis
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Figure 7.8: Map of the Urban Circuit Practice 3 world explored by 3 UAVs using the
noncooperative variant of the RHNBV strategy. The distances in this map are in meters.
The map is composed of overlapped OOTs from each robot. These OOTs are misaligned
due to localization drift.
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Figure 7.9: Map of the Urban Circuit Practice 3 world explored by 3 UAVs using the
cooperative variant of the RHNBV strategy. The distances in this map are in meters. The
map is composed of overlapped OOTs from each robot. These OOTs are misaligned due
to localization drift.
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Figure 7.10: The UAV moving through a hole to explore frontiers in the lower level of the
brewery.

The main danger of this environment was in the extreme amounts of dust that had
accumulated there over the years. Even with intensity based LIDAR scan filtration, the
OOT created onboard the UAV was very noisy. The main problem was that after the UAV
had taken off in the upper room, the floor in the OOT, started to slowly rise due to large
swaths of dust being lifted by the UAV. This situation is shown in Figure 7.12. This caused
that new facets were created above the facets first created and explored on the ground,
which was expected with such extreme noise. However, even with such extremely noisy
OOT data, both the FacetMap and SegMap produced satisfying results and allowed the
search algorithms to function as intended.

Two main experiments were conducted, in both of which the 3rd strategy - Dead End
Inspection - was employed. The parameters αS of the strategy was set to αS = −30. Since
the environment was small, the feature of this strategy searching from the end of a dead
end back towards home could not have been evaluated. Instead, the strategy, according
to the reward functions, first explored frontiers and when there were viewpoints with high
surface information value and a high bonus from small heading change, it started to prefer
the viewpoints, as expected. The environment, as pereceived by the UAV and the real
image of the UAV at roughly the same time are shown on Figure 7.11

In the first experiment, the operating area of the UAV was constrained to a height
of h ∈ (−0.5 m, 8 m). As expected, the UAV explored frontier viewpoints for the first few
minutes and then started to choose surface inspection viewpoints over frontier exploration
viewpoints. Interestingly, even with the constrained minimal height, the UAV dipped into
one of the holes connecting the two rooms to clear frontiers.
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Figure 7.11: The UAV inspecting surfaces on the wall of the brewery’s upper room both
on camera (left) and at approximately the same time in RVIZ (right)

Figure 7.12: The effects of extreme noise from dust on the FacetMap - OOT and FacetMap
soon after start of flight (left) and the OOT lifted by the effect of dust and hence addi-
tionally created facets (right)
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The main goal of this thesis was to design and implement multiple high level plan-
ning methods and mapping structures based on an occupancy octree (OOT) for teams of
autonomous UAVs in the DARPA SubT Challenge.

Firstly, an online mapping structure for building a surface representation during the
mission, storing information about coverage of surfaces, and for the generation of surface
inspection viewpoints — the FacetMap — was designed and implemented in chapter 2.
Secondly, a topology mapping structure — the SegMap — built upon the principles of
the TopoMap [22], and enhanced with the ability to be computed online was designed
and implemented in chapter 3. This topological mapping structure has demonstrated the
ability for high-speed long-distance path planning and travel distance estimation. Thridly,
for the task of classic robotic volumetric exploration, a structure for extracting and storing
information about frontiers in the environment — the FrontierMap — was designed and
implemented in chapter 4.

A framework for compressing the designed maps into a lightweight map, called an
L-SegMap in this thesis, sharing L-SegMaps among robots, and updating L-SegMaps based
on L-SegMaps from other robots was also designed and implemented in chapter 5.

Three high level planning strategies that combine volumetric exploration methods and
surface inspection methods were designed and implemented in chapter 6 and evaluated in
chapter 7. These strategies were also enhanced with cooperative approaches that utilize
the shared L-SegMaps. The first strategy — RHNBV — is an application of the receding
horizon next best view method [17], which, when combined with the designed mapping
structures, has demonstrated high speed exploration.

The RHNBV strategy was further enhanced with surface inspection methods in the
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VPE strategy, which performs receding horizon exploration in the same manner as the
RHNBV strategy but also adds additional surface inspection viewpoints along the path to
frontier exploration viewpoints.

Lastly, a novel strategy — DEI — was proposed in this thesis. This strategy performs
frontier exploration until it reaches a dead end, and then begins to systematically inspect
all surfaces from the dead end back to the best next frontier. This strategy appears to be
the most promising for multi-robot exploration, as when a branch of the environment is
completely searched, all other robots can be stopped from searching that area again.

The designed strategies were integrated into the MRS system and evaluated in single-
UAV missions in the realistic Gazebo simulator, where they showed the ability to explore
large areas of a cave environment. The cooperative extension of the RHNBV strategy was
also demonstrated on multiple test runs in simulation and compared with the noncooper-
ative version of the RHNBV strategy for a team of 3 UAVs.

Furthermore, the DEI strategy was deployed on a real UAV platform in a harsh
environment, where it demonstrated the robustness of the mapping structures and the
high-level planning architecture, and successfully searched the environment.

In addition to the original assignment of this thesis, the mapping structures and the
map sharing framework were implemented as a C++ ROS based library that can be used on
any robot that is building an OOT. The benefit of this was demonstrated in simulation in
an experiment with a UGV and multiple UAVs where the UGV was building the designed
mapping structures and sharing L-SegMaps with the UAVs.

8.1 Future Work

Many areas of the strategies and mapping structures proposed in this thesis leave
room for improvement. Most importantly, a simple mechanism for the sharing of the current
goal of each robot in the shared L-SegMaps could drastically reduce the chance of the
UAVs simultaneously exploring the same area, which can happen in the current state
of the cooperative strategies. The SegMap could also be enhanced with methods that
would allow it to adapt to a dynamic environment (for example with gates closing or
passages collapsing) and the problem of thin walls in the FacetMap could also be solved
in future work. The area of future work most interesting for the author would is to design
cooperative strategies that would better utilize the surface coverage information shared in
the L-SegMaps for each segment (for example to explore frontiers that lead to areas with
uninspected areas rather than only to explore frontiers that lead to globally unexplored
frontiers) and to broach the subject of multi-agent planning.
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Appendices





Full Experiment Results

The full results of the single-UAV evaluation and cooperative vs noncooperative ap-
proach comparison are presented in this section.

Strategy Run Vkno[m
3] Sinsp[−] Skno[−] pinsp[−] pspv[−] vexp[m/s] A[−]

RH-NBV 1 86436.67 11365 14709 0.773 0.131 1.64 4
RH-NBV 2 104074.09 12945 17569 0.737 0.124 1.65 5
RH-NBV 3 96716.05 12211 16462 0.742 0.126 1.63 3
VPE 1 94979.83 11335 15709 0.722 0.119 1.46 2
VPE 2 86519.58 11086 14168 0.782 0.128 1.55 2
VPE 3 73204.14 7597 11591 0.655 0.104 1.59 3
DEI 1 82531.66 10633 13775 0.772 0.129 1.63 4
DEI 2 73477.19 9906 12399 0.799 0.135 1.59 4
DEI 3 91783.08 11617 15352 0.757 0.127 1.55 5

Table 1: Full results of the single-UAV strategy evaluation. The meanings of the evaluated
metrics can be found in subsection 7.2.1
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Figure 1: The two runs of the cooperative RHNBV strategy on the Urban Circuit3 world
that are not shown in chapter 7.

Figure 2: The two runs of the noncooperative RHNBV strategy on the Urban Circuit3
world that are not shown in chapter 7.
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Figure 3: The map of the 1. run of the RHNBV strategy in the single-UAV strategy
evaluation.

Figure 4: The map of the 3. run of the RHNBV strategy in the single-UAV strategy
evaluation.
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Figure 5: The map of the 1. run of the VPE strategy in the single-UAV strategy evaluation.
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Figure 6: The map of the 3. run of the VPE strategy in the single-UAV strategy evaluation.

Figure 7: The map of the 1. run of the DEI strategy in the single-UAV strategy evaluation.
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Figure 8: The map of the 2. run of the DEI strategy in the single-UAV strategy evaluation.



CD Content

In Table 2, the names of all root directories on the attached CD are listed.

Directory name Description
thesis the thesis in pdf format
src/thesis latex source codes
src/search planning software source codes
media multimedia materials

Table 2: CD Content
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List of abbreviations

In Table 3 are listed abbreviations used in this thesis.

Abbreviation Meaning
SAR search and rescue
UAV unmanned aerial vehicle
UGV unmanned ground vehicle
GNSS global navigation satellite system
OOT occupancy octree
PCA principal component analysis
SLAM simultaneous localization and mapping
RHNBV receding horizon next best view strategy
VPE viewpoint enhancement strategy
DEI dead end inspection strategy

Table 3: Lists of abbreviations
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