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created. I would also like to thank Mikael Johansson for his inspiration and
time I have spend at the KTH in Stockholm. It was a great time.

I am grateful to my family and all my friends for being here and for
their persistent believe that I will finish this work one day. I am especially
grateful to my friend Petr Macejko, who arranged two virtual machines for
me. Without him, the presented experiments would take ages to compute.

This work has been supported by the Ministry of Education of the Czech
Republic under Research Programme MSM6840770038, by the Czech Sci-
ence Foundation under Research Programme 5 P103/10/0850 and by the
European Commission under project FRESCOR IST 034026.

Czech Technical University in Prague Jiř́ı Trdlička
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Nomenclature
General:
RL Set of all real vectors with L components
RL+ Set of all non-negative real vectors with L components
Z0
+ Set of all non-negative integer numbers

~xT Transposition of vector ~x
~0 Column vector with all elements equal to zero
I Identity matrix
[~x]+ Non-negative value in each component of vector ~x

[A~xk −~b
]
i
i-th component of the resulting vector

max~θ Maximization with respect to variable ~θ
min~x Minimization with respect to variable ~x
∇L Gradient of L
∇xL Gradient with respect to ~x
∇2L Hessian matrix of L
∇2
xyL Hessian matrix of L with respect to ~x and ~y

All vectors are a column vectors and are marked as ~x

Multi-commodity flow:
O(n) Set of links leaving node n
I(n) Set of links incoming to node n
A+ Incidence matrix of the incoming links
A− Incidence matrix of the outgoing links

~x(m) Flow vector of communication demand m for all links

~s
(m)
in Vector of flow for communication demand m incoming into the

network

~s
(m)
out Vector of flow for communication demand m leaving the net-

work
~t Vector of total flow over all communication demands
D Capacity constraints matrix
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viii Nomenclature

~µ Capacity constraints values (e.g. link or node communication
capacities)

~c Communication costs per transmitted data unit for all links
M Set of all communication demands
M Number of communication demands
m Index for communication demand (m ∈M)
N Number of nodes in the network
n Index for node n = 1, . . . , N
L Number of links in the network
l Index for link l = 1, . . . , L
l+ End node of link l
l− Start node of link l

x
(m)
l l-th component of ~x(m), i.e. flow in link l

s
(m)
out,n n-th component of ~s

(m)
out , i.e. flow leaving the network in node

n

Real-time routing:
d(m) Deadline for communication demand m (i.e. maximum com-

munication delay)
w Index for communication delay (number of communication

hops)

~x(m,w) Flow vector of communication demand m with delay w

~s
(m,w)
out Vector of flow for communication demand m leaving the net-

work with delay w
M′ Set of non-real-time communication demands
m′ Index of non-real-time communication demands

Periodic messages routing:
p(m) Transmission period for communication demand m
P Network period defined as a least common multiple of periods

p(m) ∀m ∈M



Nomenclature ix

o(m) Transmission offset for communication demand m (start time
within the network period P)

T (q) Set of pairs (m,w) routed through network in time q (see defi-
nition (2.4.4))

~t(q) Vector of total flow over all communication demands in time q

~y(m,w) Flow vector of communication demand m with delay w which
is not transmitted between nodes

Distributed routing algorithms:
α Constant step size for gradient algorithms
ε Constant proximal-point parameter
~xk Vector ~x in k-th iteration of an algorithm
~θ(m) Dual variable corresponding to equality constraints
~λ Dual variable corresponding to inequality constraints

~x′′, ~z′′, ~s′′ Proximal-point variables

L Lagrangian function
W Dual function
U Dual problem

~x Generalized flow variables (see (3.3.3))
~θ Generalized dual variables (see (3.3.14))
~b Generalized constraints vector (see (3.3.2))
~z Slack variables (see Section 3.3.1)

~s(m,w) the same definition as ~s
(m,w)
out (used in Chapter 4 for more com-

pact description)



Abbreviations

TDMA Time Division Multiple Access
CSMA Carrier Sense Multiple Access

IEEE 802.15.4 Standard for low-rate wireless networks
GTS Guaranteed Time Slots

MMCF Minimum-Cost Multi-Commodity Flow Problem
NUM Network Utility Maximization
NP Non-Deterministic Polynomial-Time

TLDRA Two Loops Distributed Routing Algorithm
OLDRAi One Loop Distributed Routing Algorithm

with Incremental flow update
OLDRAo One Loop Distributed Routing Algorithm

with Optimal flow update

x



On Distributed and Real-Time Routing
in Sensor Networks

Ing. Jǐŕı Trdlička
Czech Technical University in Prague, 2011

Thesis Advisor: Doc. Dr. Ing. Zdeněk Hanzálek

The thesis is focused on in-network distributed and real-time routing algo-
rithms for multi-hop sensor networks with linear cost functions and constant
communication delays. The work aims mathematically derived algorithms
which are based on the convex optimization theory and which are capable of
computing an exact optimal solution e.g. in terms of the energy consumption.
The work consists of three parts.

The first part is focused on centralized algorithms for real-time routing
in sensor networks. Two routing algorithms are developed in this part. The
first algorithm addresses problem with continuous data streams with a real-
time constraints on communication delay. The second algorithm addresses
problem, where the real-time data are send in messages with transmission
periods significantly bigger than one hop communication delay. The both al-
gorithms are based on a minimum-cost multi-commodity network flow model
and use a network replication to include the real-time constraints. Solved by
Linear Programming, they exhibit a very good performance, as is shown in
our experiments. Surprisingly, the performance does not degrade even in the
presence of an integral flow constraint, which makes the problems NP hard.

The second part of this work is focused on in-network distributed energy
optimal routing algorithms for non-real-time data flow with linear objec-
tive functions. Three distributed routing algorithms are mathematically de-
rived in this part: Two Loops Distributed Routing Algorithm (TLDRA), One
Loop Distributed Routing Algorithm with Incremental flow update (OLDRAi)
and One Loop Distributed Routing Algorithm with Optimal flow update (OL-
DRAo). The algorithms are based on the proximal-point method and the
dual decomposition of convex optimization problem. The algorithms com-
pute an exact energy optimal routing in the network without any central node
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xii Abstract

or the knowledge about the whole network structure, using only peer-to-peer
communication between neighboring nodes. In contrast to other works in
this area, the presented approach is not limited to strictly convex objective
functions and it even handles linear objective functions which makes the al-
gorithm and proof of its convergence more difficult. Proofs of the algorithms
convergence are presented.

The third part of this work derives a distributed routing algorithm for
real-time data streams with constant communication delays. The algorithm
is based on the OLDRAo and on the routing algorithm for continuous data
streams with real-time constraints from the two previous parts.

The behaviors of all presented algorithms have been evaluated on bench-
marks for energy optimal routing in multi-hop sensor networks, using Matlab.



Goal and Objectives
The main goal of this thesis is to bring a new knowledge into the area of
in-network distributed and real-time routing algorithms for multi-hop sensor
networks. The work aims mathematically derive algorithms which are based
on the convex optimization theory and which are capable of computing an
exact optimal solution e.g. in terms of the energy consumption.

The objectives of the thesis are:

1. Develop a centralized algorithm for real-time routing in multi-hop sen-
sor networks.

2. Derive in-network distributed routing algorithm for data flow in multi-
hop sensor networks.

3. Derive in-network distributed routing algorithm for real-time data flow
in multi-hop sensor networks.

4. Evaluate behavior of all derived algorithms on benchmarks for energy
optimal routing in multi-hop sensor networks.
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Chapter 1

Introduction

The communication systems and networks are one of the most important
phenomena of the today’s world. The almost whole word is connected and
the communication systems are still evolving. Many communication systems
are well known by the general public, like the Internet, Cell phones networks,
satellite networks etc. On the other side, many communication systems are
not so well known, but they affect our lives not less, maybe more. There
are e.g. the industrial communication networks, car communication systems,
building control systems etc.

The development in the recent years is slowly changing the configuration
and the control of the communication systems. In many areas, the networks
control is changing from the centralized systems, where one master device
is controlling the whole network, to distributed control systems, where all
the devices (or subset of the devices) are equal and they are controlling
the network cooperatively. Simultaneously, many communication systems
are changing into so called multi-hop or switched communication, which in-
creases the data throughput and the communication speed. Examples of such
systems are e.g. the industrial protocol Profinet, the switched Ethernet for
the Internet connection or the Sensor Networks.

In this chapter, we briefly mention the sensor networks, routing problem
and convex optimization, which are basis of this work. At the end of this
chapter a short outlines and work contributions are mentioned.

1



2 Chapter 1 Introduction

1.1 Sensor Networks

The sensor networks is a technology of future, which can significantly change
the world as we know it. (for more detail see e.g. [Edga 03]) The rise of this
technology is based on the recent development in the micro-electronic area.
The main idea is that we are able to create a small and cheap devices, which
are equipped with a microprocessor, a radio transceiver, some components
to interact with the environment (typically sensors) and an energy source
(typically battery). The sensor networks are meant to consist of hundreds
or thousands of devices (usually called motes or nodes), which cooperatively
work on given tasks. Primarily, the development was motivated by military
applications such as battlefield monitoring. Today, they are used in many
industrial and consumer applications, such as industrial process monitoring
and control, environment monitoring, home automation, traffic control etc.

The main challenge in the sensor networks area is the strictly resource
limitation such as limited energy, limited communication bandwidth or lim-
ited computational power. The limited resources are the main reason for
the optimization in all levels of the research. In this work we focus on the
communication problems, especially on routing algorithms.

Routing in Sensor Networks

To save energy during the communication the nodes in sensor networks use
multi-hop communication. The multi-hop communication means, that the
messages are routed to their destinations through some other nodes, in order
to decrease the transmission distance and save the energy (see illustration in
Figure 1.1.1).

The routing algorithms can be categorized as on-line or off-line algo-
rithms. The on-line algorithms choose the massage routing direction accord-
ing to actual situation in the time of the message transmission. The off-line
algorithms use precomputed routing rules. The on-line algorithms are usu-
ally more simple, more robust in the case of network damage and need less
memory. On the other side the off-line algorithms are usually more effective
in terms of energy consumption and communication bandwidth utilization
[Karl 05].

A different categorization of the routing algorithms, important for this
work, is into classes of centralized and distributed algorithms. The central-
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Fig. 1.1.1: Multi-hop communication

ized algorithms are computed in a central computational point and then the
routing rules are distributed into the network (e.g. [Chen 10]). The dis-
tributed algorithms are based on the communication and cooperation of the
individual nodes. The distributed algorithms are more robust against net-
work damage. On the other side, to achieve the same optimality as the cen-
tralized algorithms they are more complicated and they are the challenges of
the current research. The off-line routing algorithms can be both distributed
or centralized.

Real-Time Routing

In many applications in sensor networks area such as industrial process mon-
itoring and control or fire detection, which are time-critical, a real-time com-
munication is required. The objective of the real-time communication is to
ensure that all the routed messages are delivered to their destinations before
their deadlines.

There are two main methods to model the communication delay in the
sensor networks. A queuing delay, which is more suitable for networks us-
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ing CSMA and similar medium access mechanism, where the communication
delay is a function of data flow volume (e.g.[Piro 04]). A constant communi-
cation delay, which is more suitable for networks with TDMA based medium
access mechanism, where the communication delay depends on the number of
communication hops and time slots schedule [Chen 10]. In this work, we fo-
cus on the constant communication delay, which is often used in the industry
communication systems.

1.2 Convex Optimization

Convex optimization is a special class of mathematical optimization prob-
lems, which includes least-squares and Linear Programming problems. It is
widely used in many areas such as statistic and finance, automatic control,
estimations and signal processing, communications and networks, electron-
ics, modeling etc. There are great advantages to recognizing or formulating a
problem as a convex optimization problem. The most basic advantage is that
the problem can then be solved, very reliably and efficiently, using interior-
point methods or other special methods for convex optimization. These solu-
tion methods are reliable enough to be embedded in a computer-aided design
or analysis tool, or even a real-time reactive or automatic control system.
There are also theoretical or conceptual advantages of formulating a problem
as a convex optimization problem. The associated dual problem, for example,
often has an interesting interpretation in terms of the original problem, and
sometimes leads to an efficient or distributed method for solving it. [Cited:
Stephen Boyd, Lieven Vandenberghe 2004 in [Boyd 04]]

For detailed description about convex optimization see e.g. [Boyd 04,
Bert 99]. We define several terms for future use according to [Boyd 04] in
this section.

A set C is convex if the line segment between any two points in C lies in C,
i.e., if for any ~x, ~y ∈ C and any ξ with 0 ≤ ξ ≤ 1, we have

ξ~x+ (1− ξ)~y ∈ C (1.2.1)

A function f : Rn → R is convex if domf is a convex set and if for all
~x, ~y ∈ domf , and ξ with 0 ≤ ξ ≤ 1, we have

f(ξ~x+ (1− ξ)~y) ≤ ξf(~x) + (1− ξ)f(~y) (1.2.2)
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A function f : Rn → R is strictly convex if domf is a convex set and if for
all ~x, ~y ∈ domf , and ξ with 0 ≤ ξ ≤ 1, we have

f(ξ~x+ (1− ξ)~y) < ξf(~x) + (1− ξ)f(~y) (1.2.3)

And the general convex optimization problem is:

min
x

f0(~x)

subject to:
fi(~x) ≤ 0 i = 1, . . . , L
~aTi ~x = bi i = 1, . . . , N

(1.2.4)

where f0, . . . , fm are convex functions.

1.3 Outline and Contribution

This thesis is focused on the real-time and distributed routing problems in
the sensor networks. The work is divided into three parts. Each part consists
of problem introduction with related works, mathematical derivation of the
presented problem, experimental section and summary.

The first part, which is presented in Chapter 2, is focused on centralized
algorithms for real-time routing in sensor networks. Two routing algorithms,
which are based on Linear Programming theory, are developed in this chap-
ter. The first algorithm addresses problem with continuous data streams
(flow) with a real-time constraints on communication delay (Section 2.3).
The second algorithm addresses problem, where the real-time data are send
in messages with transmission periods significantly bigger than one hop com-
munication delay (Section 2.4).

The second part of this work, which is presented in Chapter 3, is focused
on distributed routing algorithms for non-real-time data flow. Three dis-
tributed routing algorithms are mathematically derived in this chapter: Two
Loops Distributed Routing Algorithm (TLDRA) in Section 3.2, One Loop
Distributed Routing Algorithm with Incremental flow update (OLDRAi) in
Section 3.3 and One Loop Distributed Routing Algorithm with Optimal flow
update (OLDRAo) in Section 3.4. The algorithms are based on the dual de-
composition of a convex optimization problem and proofs of their convergence
are presented.
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The third part of this work, which is presented in Chapter 4, is focused on
distributed routing algorithm for real-time data flow. The algorithm is based
on the OLDRAo algorithm and on the routing algorithm for continuous data
streams (flow) with real-time constraints from previous two chapters.

The main contributions of this thesis are:

1. Formulation of a real-time multi-commodity network flow problem and
its solution by Linear Programming based on graph replication.

2. Discovery of a surprisingly good Integer Linear Programming perfor-
mance for the above mentioned problem with an integral data flow
constraint, which makes the problem NP hard.

3. Introduction of a new distributed algorithm based on dual decomposi-
tion of routing problem formulated in node-link form.

4. Presentation of novel approach to distribute the linear optimization
problem by dual decomposition as an in-network distributed algorithm.
(Other works using the dual decomposition on the routing problems are
limited to strictly convex objective functions and fail in the linear case.)

5. Introduction of new mathematically derived, distributed algorithm for
energy optimal real-time routing based on network replication and
dual decomposition.

6. Performance evaluation of all presented algorithms on benchmarks for
energy optimal routing in sensor networks.



Chapter 2

Centralized Algorithms for
Real-Time Data Routing in
Sensor Networks

2.1 Introduction

Our work in this chapter is focused on centralized algorithms for data flow
routing through the multi-hop sensor network, where all data has to be de-
livered to the destinations in time. The objective is to optimize the energy
consumption for the data transfer and we assume the following constraints:
link capacities, node capacities and different deadlines for each value sensed.
All data has to be delivered before their deadlines. We assume a TDMA
(Time Division Multiple Access) protocol (e.g. GTS allocation in IEEE
802.15.4 [Koub 06a, Koub 06b]) which ensures collision-free communication
and causes communication delay. This approach is quite often in industry
and time-critical systems. Due to the TDMA mechanism assumed, the worst-
case delay from the source node to the sink node is the sum of the particular
delays for each of the hops, assumed to be an integer (derived from the pa-
rameters like TDMA period, worst-case execution time of the communication
stack...). In a particular setting, we may assume a unit hop delay (the same
TDMA period, negligable influence of the transmission delay on the physical
layer...). In this work we assume the unit hop delay (the deadlines are ex-
pressed as the number of communication hops between devices) which is very

7
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transparent for the reader and furthermore it can be generalized to integer
delays that may differ for each hop [Trdl 07].

In Section 2.2 of this chapter, we briefly introduce the multi-commodity
network flow problem which is used during the whole thesis. Section 2.3 is
focused on continuous flow problem which is well suitable for data streams or
in the case of periodically sent data with a transmission period close to one
hop communication delay. In Section 2.4 we focused on the case where the
transmission period is significantly bigger than the hop communication delay.
Sections 2.3 and 2.4 are concluded with extensive experimental simulations
to evaluate the algorithm behavior and performance.

2.1.1 Problem Formalization

We model the data flow as a multi-commodity network flow problem in node-
link form, where each commodity represents a different communication de-
mand in the network. The network topology is represented by a directed
graph where the nodes represent the devices and the oriented edges repre-
sent the oriented communication links between the devices. The communi-
cation capacities of the network and the communication cost (e.g. energy
consumption) are associated with the edges of the graph. Each communi-
cation demand has source nodes, sink nodes (multi-source, multi-sink) and
corresponding volumes. (i.e. problems such as data gathering can be defined
in this way) We extend this problem by a real-time constraint, i.e. the prob-
lem is feasible when each data flow from the source node to the sink node
obeys the deadline of the corresponding communication demand.

To solve the real-time version of the energy optimal routing, we adapt the
model to solve the minimum-cost multi-commodity flow problem (MMCF)
[Piro 04, Bert 98] with additional constraints on the number of communica-
tion hops. The number of communication hops corresponds to the worst-case
of the communication delay in the network and its constraints ensure the
real-time behavior.

2.1.2 Related Works

Traditionally, routing problems for data networks are often formulated
as linear or convex multi-commodity network flow routing problems e.g.
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[Bert 04, Chia 05, Piro 04, Bulb 07] for which many efficient solution meth-
ods exist [Bert 98, Ouor 00, Boyd 04, Joha 06b].

In [Xiao 04], the multi-commodity problem formulation is used for simul-
taneous routing and resource allocation (e.g. node related bandwidth), which
finds more efficient routing than the case of separated algorithms. One of the
advantages of this method is that several objective functions and constraints
can be put together. Using the same underlying model, we can easily combine
the solution of different works focused on partial problems.

Several papers have been performed in the area of real-time routing in
multi-hop wireless sensor networks. In [He 03], a well known soft real-time
communication protocol SPEED, is presented. The protocol uses the speed
of the message propagation to set priorities of the messages. Several works
use relation between message propagation speed and transmitting energy
to balance trade-off between energy consumption and communication delay.
In [Chip 06], a protocol called RPAR is presented, in [Brav 09] a protocol
called EDEM is presented or in [Xian 10] a distributed cross-layer routing
mechanism is presented.

There are papers which modify the geographical routing into time aware
form [Ahme 08, Chen 06]. In [Li 07] an algorithm based on direct diffusion
which balances node energy utilization is presented. In [Jurk 08] the authors
deal with real-time communications over cluster-tree sensor networks, where
they evaluate the end-to-end communication delay. In [Cacc 03], the authors
assume nodes in hexagonal cells and use inter-cell and intra-cell communi-
cation in single directions to ensure the real-time behavior. The protocol
presented in [Watt 05] uses the distance from the last transmitting node to
avoid data collisions and the data is sent in communication waves. However,
none of these algorithms can ensure real-time and energy optimal routing,
especially in high loaded networks.

We use the multi-commodity network flow model, because it does not need
any particular network structure, like a hexagonal structure in [Cacc 03], or
a tree topology in [Jurk 08]. This approach can handle any network topology
with any number of sources and destinations. In contrast with all the pa-
pers about real-time routing in sensor networks referenced here, our approach
ensures the real-time and energy optimal routing for all communication de-
mands even in high loaded networks.
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2.2 Multi-Commodity Network Flow Model

In this section, we briefly summarize the basic terminology and specify the
multi-commodity network flow model used in this work. A simple example
is introduced during this and the next section for better understanding.

Network Structure

The network is represented by a directed graph, where for each device able
to send or receive data, a node of the graph exists. The nodes are labeled
as n = 1, . . . , N . Directed communication links are represented as ordered
pairs (n1, n2) of distinct nodes. The presence of a link (n1, n2) means that
the directed communication, from node n1 to node n2, is possible. The links
are labeled as l = 1, . . . , L. We define the set of the links l leaving the node n
as O(n) and the set of the links l incoming to node n as I(n). The network
structure is described with two incidence matrices in node-link form. The
matrix of the incoming links is denoted A+ and the matrix of the outgoing
links is denoted A−.

A+
n,l =

{
1, l ∈ I(n) (link l enters node n)
0, otherwise

(2.2.1)

A−n,l =

{
1, l ∈ O(n) (link l leaves node n)
0, otherwise

(2.2.2)

Example: An example of a simple graph with 4 nodes and 5 links is shown
in Figure 2.2.1. The numbers in parenthesis stand for the node and link
labels. The values associated to the links stand for the communication
costs. The matrices A− and A+ for this graph are:

A−=


1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

 A+=


0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 1 0 1 1


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Fig. 2.2.1: Example: Graph of basic network.

Multi-Commodity Flow

In the multi-commodity network flow model, each node can send different
pieces of data to any node. Each requested data transfer through the network
is called the communication demand m and the set of all communication
demands is labeled as M. From the nature of the multi-commodity flow
model, the data flow of each communication demand can be fragmented into
more paths across the network.

The communication demands are represented as various flow commodities
entering/leaving the network in some nodes. Each demand can come into the
network in more than one node and leave the network in more nodes (multi-
source, multi-sink). Let us denote the flow volume of demand m coming into

the network in node n as s
(m)
in,n ≥ 0 and similarly the flow leaving the network

in node n as s
(m)
out,n ≥ 0. We define the vectors of the flow of demand m

leaving the network as ~s
(m)
out ∈ RN+ and the flow incoming into the network as

~s
(m)
in ∈ RN+ over all nodes. From the nature of the routing problem, it has to

hold
∑N

n=1 s
(m)
out,n =

∑N
n=1 s

(m)
in,n for all m ∈M.

Let x
(m)
l ≥ 0 be the flow of demand m routed through the link l and

~x(m) ∈ RL+ the flow vector for demand m. The flow vector and the leav-
ing/incoming flow have to satisfy the flow conservation law for each commu-
nication demand:

A−~x(m) + ~s
(m)
out = A+~x(m) + ~s

(m)
in ∀m ∈M (2.2.3)
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Total volume of the flow in the link l over all communication demands
is tl =

∑
m∈M x

(m)
l and vector ~t ∈ RL+ denotes the total flow for each link

over the network. It has to satisfy the capacity constraint D~t ≤ ~µ. Where,
~µ is the limit of the constraints and the matrix D represents the constraints
structure. When there is a separate capacity for each link, matrix D is the
identity matrix of size [L× L] and ~µ ≥ ~0 consists of the link capacities.

In summary, our network flow model imposes the following group of con-
straints on the network flow variables ~x(m):

A−~x(m) + ~s
(m)
out = A+~x(m) + ~s

(m)
in ∀m ∈M

~t =
∑

m∈M
~x(m)

D~t ≤ ~µ

~x(m) ≥ ~0 ∀m ∈M

(2.2.4)

This model describes the average behavior of the data transmission, i.e.,
the average data rates on the communication links, and ignores packet-level
details of transmission protocols. The link layer communication protocol (e.g.
TDMA) should set the bandwidths for each demand according to the flow
vectors ~x(m). The link capacity should be defined appropriately, taking into
account packet loss and retransmission, so the flow conservation law holds
with sufficient probability.

Example (continued): Let all the link capacities in our example be equal
to 1. Then the capacity constraints matrix D is the identity matrix of
size [5× 5] and ~µ = (1, 1, 1, 1, 1)T .

Let there be two communication demands both with flow volume equal
to 1. The first is routed from node 1 to node 4 and the second from node
2 to node 4. Therefore, we have: ~s

(1)
in = (1, 0, 0, 0)T , ~s

(2)
in = (0, 1, 0, 0)T ,

~s
(1)
out = ~s

(2)
out = (0, 0, 0, 1)T .

Routing Optimization

In our work, we focus on the total energy minimization over the whole net-
work. The task is to minimize the objective function by setting the flow
vectors ~x(m) for all m ∈M

ftotal cost = ~cT~t (2.2.5)
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(1)

(2) (3)

(4)No flow

Flow 1
Flow 1

Flow 2

Flow 2

Fig. 2.2.2: Example: An optimal data flow routing with capacity constraints.

The vector ~c is a column vector of the energy consumption per data unit
transmitted. The components of the vector ~c correspond with the energy
consumption for the individual links in the network. Their values are usually
determined directly from the transmission energy level in the nodes, which
is needed for a reliable connection. This is done by the MAC layer of the
communication protocol.

Another target application of this model is a sensor network, where the
energy supplies of the nodes can be recharged, with different maintenance
costs (e.g. depending on the node reachability). In such application the
recharge price is included in the vector ~c and we minimize the network long-
term maintenance cost.

Any Linear Programming solver can be used to find the optimal flow
vectors ~x(m) for all m ∈M.

Example (continued): Let the communication cost in our example be
the same as in Figure 2.2.1 (the numbers associated to the edges).
~c = (4, 10, 1, 4, 1)

One of the optimal solutions for this example is: ~x(1) = (1, 0, 0, 1, 0)T ,
~x(2) = (0, 0, 1, 0, 1)T , which means that the first flow is routed through
the nodes (1 → 2 → 4) and the second flow is routed through the
nodes (2 → 3 → 4). The total flow is the sum of the routings over all
demands ~t = (1, 0, 1, 1, 1)T and the communication cost is equal to 10.
This energy optimal routing is shown in Figure 2.2.2.
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2.3 Energy Optimal Routing of Continuous Data
Flow with Real-Time Constraints in Multi-hop
Sensor Networks

This section is focused on the continuous flow problem which is well suitable
for data streams or in the case of periodically sent data with a transmission
period close to one hop communication delay.

We extend the multi-commodity flow model by real-time constraints,
which guarantee sufficient routing delay through the network. Each com-
munication demand has its own deadline and the communication delay of
this demand has to be shorter than the deadline. We model the hop delay
as an integer value associated to each communication link. For transparent
model derivation, we assume the same communication delay over the entire
network (i.e. each communication hop causes delay equal to one). However,
the model can be easily extended to the general form (see [Trdl 07] for more
details), where the communication delays can be different integer values for
each link and demand.

First, we assume the value of the data flow to be a continuous quantity
and we allow the data flow fragmentation to go to more routing paths. This
approach is usually used for problems like video or voice data streaming to
increase the robustness of the data routing at the price of possible quality
decrease (see e.g. [Zhan 08]). Thanks to data flow continuity, the problem
is solvable in polynomial time. Furthermore we focus on two types of prob-
lems with integral data flow that are NP hard. The first type is a problem,
where the data flow can be split into more routing paths, however each frag-
ment of the data flow has to have an integral volume. The second type is a
problem, where the data flow cannot be split at all and all data flow of one
communication demand has to follow the same routing path.

Example (continued): We added the deadline constraints into our exam-
ple. Namely, the first communication demand has the deadline equal to
2 communication hops and the second communication demand has the
deadline equal to 1 communication hop. With these new constraints,
the solution shown in Figure 2.2.2 is not feasible.
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2.3.1 Mathematical Model of Real-Time Routing for Contin-
uous Data Flow

Let vector ~x(m,w) ∈ RL+ denote the flow of communication demand m with
integer communication delay w in the network. Then the flow vector ~x(m)

independent of the flow delay of demand m is equal to the sum of the flow

vectors over all acceptable delays: ~x(m) =
∑d(m)

w=0 ~x
(m,w). Where d(m) denotes

the deadline of the communication demand m. Using this equation, we can
rewrite the equation for total flow vector from the system of inequalities
(2.2.4) into a new form:

~t =
∑
m∈M

d(m)∑
w=0

~x(m,w) (2.3.1)

Vector ~s
(m,w)
out ∈ RN+ stands for the flow of the demand m leaving the

network with communication delay w and vector ~s
(m,w)
in ∈ RN+ denotes the

flow of demand m coming into the network with initial delay w. As usual, the
flow of each demand may come into the network and leave it in more nodes. If
all flow fragments of one demand coming into the network in different nodes

have the same initial delay, then ~s
(m,0)
in = ~s

(m)
in , and ~s

(m,w)
in = 0 for w > 0.

The flow of demand m leaving the network prior the deadline is:

~s
(m)
out =

d(m)∑
w=0

~s
(m,w)
out ∀m ∈M (2.3.2)

Through Equations (2.3.1, 2.3.2), we have converted the real-time con-
straint (i.e. the delay has to be shorter than the deadline) to the structural
constraint. Only the flow, whose delay is shorter than the deadline, is rep-
resented. The flow, which does not meet the deadline, causes that the flow
conservation law does not hold and then the network flow constraints are not
satisfied, i.e. this solution is not feasible.

If the flow is sent through the network, the flow delay is increased by each
communication hop. The flow of demand m coming into node n with com-
munication delay w has to either leave the network in node n with the same
delay w or reach the neighbor node with delay w+ 1. The flow conservation



16 Chapter 2 Centralized Algorithms for Real-Time Routing
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Fig. 2.3.1: Example: An optimal data flow routing with capacity and deadline
constraints.

law from Equation (2.2.3) can be written in the delay awareness form as:

A−~x(m,w+1) + ~s
(m,w)
out = A+~x(m,w) + ~s

(m,w)
in ∀m ∈M, 0 ≤ w ≤ d(m)

(2.3.3)
In summary, the constraints of the real-time multi-commodity flow rout-

ing problem can be written as:

A−~x(m,w+1) + ~s
(m,w)
out = A+~x(m,w) + ~s

(m,w)
in ∀m ∈M, 0 ≤ w ≤ d(m)

~s
(m)
out =

d(m)∑
w=0

~s
(m,w)
out ∀m ∈M

~t =
∑

m∈M

d(m)∑
w=0

~x(m,w)

D~t ≤ ~µ

~x(m,w) ≥ ~0; ~s
(m,w)
in ≥ ~0; ~s

(m,w)
out ≥ ~0 ∀m ∈M, 0 ≤ w ≤ d(m)

~x(m,0) = ~x(m,d
(m)+1) = ~0 ∀m ∈M

(2.3.4)
All feasible routings, which obey the deadlines and capacity constraints

and realize all communication demands are described by the system of in-
equalities (2.3.4). To choose the cheapest one in terms of the objective func-
tion (e.g. 2.2.5) we can use Linear Programming with these constraints.

Example (continued): Solving the example with the deadline constraints
according to (2.3.4) and objective function (2.2.5) we get the new
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(b) Expanded graph for 2 hops

Fig. 2.3.2: Intuitive presentation for the graph replication.

solution: ~x(1,1) = (0, 1, 0, 0, 0)T , ~x(1,2) = (0, 0, 0, 0, 0)T , ~x(2,1) =
(0, 0, 0, 1, 0)T , ~x(1,0) = ~x(2,0) = (0, 0, 0, 0, 0)T . This means that the
first flow is routed through nodes (1→ 4) and the second flow through
nodes (2→ 4).

~s
(1,1)
out = (0, 0, 0, 1)T and ~s

(1,0)
out = ~s

(1,2)
out = (0, 0, 0, 0)T , which means that

the first flow leaves the network in node 4 with communication delay
1 and no part of the first flow leaves the network with communication

delays 0 and 2. Similarly for the second flow ~s
(2,1)
out = (0, 0, 0, 1)T and

~s
(2,0)
out = (0, 0, 0, 0)T . ~s

(2,2)
out has no sense for the second flow because its

deadline is equal to 1.

The total load of the links is: ~t = (0, 1, 0, 1, 0)T and the communication
cost is equal to 14. The energy optimal real-time routing is shown in
Figure 2.3.1.

2.3.1.1 Intuitive Presentation of Extended Graph

In this section, we illustrate in an intuitive way the graph transformation,
which has been discussed in the previous Section 2.3.1 by mathematical equa-



18 Chapter 2 Centralized Algorithms for Real-Time Routing

tions. New variables have appeared for each communication link as well as
new constraining equations for each node. These variables and constraints
can be seen as virtual layers of the network where each layer represents a
different communication delay w. The number of the network layers is equal
to the integer deadline of the demand m plus one (the number of allowed
communication hops plus a zero layer). As consistent with the structure of
Equation (2.3.3), all communication links are redirected to the nodes in the
higher layer, which means that the flow is routed not only in node space but
also in delay space. Because the number of layers is limited by the deadline
and the flow can leave the network only in virtual nodes of the sink nodes, all
possible routings through this transformed network hold the deadlines. An
example of the expanded graph is shown in Figure 2.3.2.

2.3.1.2 Simultaneous Real-Time and non-Real-Time Routing

The network communication problems are often comprised with real-time and
non-real-time communication demands. The non-real-time routing demands
can be taken as if they would have no communication delays. Therefore, they
can be solved as the common multi-commodity routing problem presented in
Section 2.2. The only resources where the non-real-time and the real-time
flow interact are guarded by the capacity constraints. Let M′ be a set of
non-real-time demands and vector ~x(m

′) be a non-real-time flow of demand
m′ ∈M′.

A new equation of flow conservation for the non-real-time flow has to be
added to the system of inequalities (2.3.4):

(A+ −A−)~x(m
′) = ~s

(m′)
out − ~s

(m′)
in m′ ∈M′ (2.3.5)

and the equation for the total flow vector (2.3.1) has to be changed to consider
the non-real-time flow:

~t =
∑
m∈M

d(m)∑
w=0

~x(m,w) +
∑

m′∈M′
~x(m

′) (2.3.6)

With these changes in the system of inequalities (2.3.4), simultaneous real-
time and non-real-time routing is possible.
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2.3.1.3 Time Complexity

A big advantage of this approach is the polynomial-time complexity. The
exact time complexity of the computation depends on a specific solver used
for the linear optimization and on the number of variables and constraints.
We denote N as the number of nodes, L as the number of communication
links, Wmax as the maximum of deadlines d(m) and M as the number of
communication demands. The number of variables novar is the sum of the
flow variables x, sout and t:

novar = L(
M∑
m=1

(d(m))) +N
M∑
m=1

(d(m) + 1) + L (2.3.7)

If we consider that L ≤ N(N − 1) and that the number of allowed commu-
nication hops is smaller than the number of nodes (Wmax ≤ N − 1), we can
limit the worst-case number of the variables as:

Ovar(MN3) (2.3.8)

Please notice that the worst-case number of the variables for the non-
real-time multi-commodity flow problem in the node-link form is:

Ovar(MN2) (2.3.9)

2.3.1.4 Integral Flow

The major practical inconvenience of the model presented up to now is flow
fragmentation, which is not suitable for all applications (i.e. the flow from
the source node can be split and each fragment of the flow can reach the
sink node by a different path, even though a non-fragmented solution exists
which satisfies the capacity constraints). The multi-commodity routing prob-
lem with integral flow is typically solved by an Integer Linear Programming
solver through algorithms based on the Branch-and-Bound mechanism, Cut-
ting planes, Lagrangian relaxation, Evolution algorithms, etc., where the con-
tinuous problem is used to derive a partial solution (see [Bert 98, Piro 04]).

Two types of the integral flow problems in applications, where the flow
cannot be fragmented, can be defined. The first type is a problem (further
called Splittable integral flow), where the flow can be split into more routing
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paths, however each fragment of the flow has to have an integral volume (e.g.
the flow volume denotes the number of data packets, or number of bytes). The
second type is a problem (further called Unsplittable flow), where the flow
cannot be split at all and all flow of one communication demand has to follow
the same routing path (e.g. because of the increase of the protocol overhead).
Both types of the integral multi-commodity network flow problems are NP
hard even for two communications demands (see [Gare 79]). In this section,
we briefly describe the modifications of the system of inequalities (2.3.4) to
solve integral flow problems.

Splittable integral flow: To solve the real-time routing for splittable in-
tegral flow, the system of inequalities (2.3.4) has to be extended by a new
constraint: the variables ~x(m,w) have to be an integer for all communication
delays w and for the communication demands m, which are supposed to be
integral. The simultaneous routing of integral and fragmented flow is pos-
sible. The Linear Programming algorithm has to be substituted by Integer
Linear Programming. This problem can be transformed to an unsplittable
flow problem by dividing the splittable communication demands into more
unsplittable communication demands, however at the cost of a huge increase
in the number of the communication demands.

Unsplittable flow: To solve the real-time routing problem with an un-
splittable flow, we have to adapt the system of inequalities (2.3.4). The
variables ~x(m,w) have to be an integer for all communication delays w and for
all communication demands m with unsplittable flow. Moreover, the volume

of the unsplittable flow is set to one (s
(m)
in = 1) and the equation for the total

link flow (2.3.1) is changed as follows:

~t =
∑
m∈M

v(m)
d(m)∑
w=0

~x(m,w) (2.3.10)

where the v(m) denotes the real volume of the communication demand m.

2.3.2 Numerical Experiments

To demonstrate the benefits and correctness of our approach for real-time
routing, we have simulated the routing problems in Matlab. We have demon-
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Fig. 2.3.3: Topology of a randomly generated wireless network with 100 nodes and
1066 directed communication links.

strated the data collection problem in the network with 100 nodes for two
communication demands and a set of experiments to demonstrate the time
complexity of the computation algorithm. The simulation has been run us-
ing a commercial solver CPLEX 9.1 on a computer with an AMD processor
Opteron 248 at 2200 MHz, 2GB RAM DDR at 400MHz.

2.3.2.1 Data Collection Problem

For the data collection problem (i.e. multi-source, mono-sink problem) we
consider a network field of size [10 × 10] and divide it into 100 subsquares
of size [1 × 1]. One node is randomly placed into each subsquare and the
communication distance is set to 2 (i.e. node A can communicate with node
B within one hop, if and only if their Euclidean distance is less than 2).
Each node, which is not on the border of the network field, has at least three
communication links to its neighbors. Please notice, that our network is close
to the “unit-disk network”. An example of such a random network topol-
ogy is shown in Figure 2.3.3. There are two communication demands in the
network. Each node has a 50% probability that it will send data of the first
communication demand to the first sink node and a 50% probability that



22 Chapter 2 Centralized Algorithms for Real-Time Routing

0 2 4 6 8 10

0

2

4

6

8

10

field size

fie
ld

 s
iz

e

Fig. 2.3.4: Optimal real-time data flow routing in a network with 100 nodes and 2
communication demands for the data collection problem.

it will send data of the second communication demand to the second sink
node (i.e. the data flow coming into the network in node n of the demand

1 is s
(1)
in,n ∈ {0, 1} and the data flow of the demand 2 is s

(2)
in,n ∈ {0, 1}). The

deadline of the first communication demand is set to 8 communication hops
and the deadline of the second communication demand is set to 6 communi-
cation hops. The link capacities are set to 30. The communication costs per
transmitted data flow unit are set as the power of the distance between the
nodes.

The resulting data flow routing through the network is shown in Figure
2.3.4, where only the used links are shown and the links width is a logarithmic
function of the volume of the data flow routed through the link. The first
type of data flow is in black and the second data flow is in grey. Each routing
path of the first type of data flow has at maximum 8 communication hops
and each routing path of the second type of data flow has at maximum 6
communication hops.

The routing in the node-delay space is shown in Figure 2.3.5. On the
horizontal axis, the single nodes are placed and on the vertical axis, the
integer delays are placed. The data flow, which is produced by the nodes,
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Fig. 2.3.5: Optimal real-time data flow routing in node-delay space for two com-
munication demands with deadlines of 8 and 6 communication hops for the data
collection problem. The sink nodes are nodes number 54 and 13.

starts with the delay equal to zero and through each communication hop the
delay is increased. The lines width is a logarithmic function of the volume
of the data flow. The vertical lines in node 54 and in node 13 represent the
data flows reaching these two sink nodes.

2.3.2.2 Time Complexity

To demonstrate the time complexity of our approach, we have varied the
experiment of data collection presented in Section 2.3.2.1. The size of the
square field is gradually set from [2 × 2] to [10 × 10] with as the number of
nodes from 4 to 100 as well. The communication distance is kept at 2 and the
communication costs are kept as a power of the node’s distance. The number
of communication demands is set to 5 (and to 20 for the second experiment).
Each node sends data flow to 5 different sink nodes (or to 20 in the second
experiment). For each demand m and for each node n the volume of data

flow coming into the network is equal to one (s
(m)
in,n = 1). The data flow

volume of demand m, which is leaving the network in sink node i, is equal to
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N (s
(m)
out,i =

∑N
n=1 s

(m)
in,n = N). The link capacities are set as µ = 0.25NM/3

where N denotes the number of the nodes in the network and M denotes the
number of communication demands. The deadline for each communication
demand is set as d(m) =

√
N .

The simulation has been run 500 times for each number of nodes on
randomly constructed networks for both the fragmented data flow prob-
lem (2.3.4) and for the integral flow problem ((2.3.4) augmented by Section
(2.3.1.4)). The minimum, average and maximum computational times for 5
communication demands and for 20 communication demands are shown in
Table 2.3.1 and in Table 2.3.2, respectively.

Opposite to our expectations, the computation times for integral flow are
not much higher than the computation times for the fragmented flow, even
though the integral flow problem is NP hard and the fragmented flow problem
is polynomial. The performance of Integer Linear Programming is surpris-
ingly good, since the Integer Linear Programming usually solves the problems
with 1000 integer decision variables at most, while in our case we solve the
problems with up to 220000 integer variables. Let us remind everyone that
the matrix representing constraints in our Integer Linear Programing formu-
lation is not totally unimodular, thus it does not imply an integer solution in
polynomial time [Bert 98]. The difference between integral and fragmented
flow was just slightly bigger, while using a non-commercial GLPK solver.
Therefore, we have performed several attempts to make the problem more
difficult.

2.3.2.3 Time Complexity when Progressively Decreasing the Link
Capacities

To demonstrate time complexity for the instances on the limit of feasibility,
we have solved the data collection problem and we have gradually decreased
the link capacities.

The network has been constructed in the same way as in the previous
experiment. The size of the network has been set to 64 nodes ([8× 8] field),
the starting link capacities have been set to 31, the communication distance
to 2 and the communication costs as the power of the node’s distance. The
number of communication demands has been set to 10, and the data flow
volume of each node for each communication demand is equal to 1 (i.e. for
all communication demands m and all nodes n the data flow coming into
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Fig. 2.3.6: Computation times when progressively decreasing the link capacities
for 10 communication demands, fragmented flow, network with 64 nodes ([8 × 8]
field)
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Fig. 2.3.7: Computation time when progressively decreasing the link capacities for
10 communication demands, integral flow, network with 64 nodes ([8× 8] field)
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Fragmented flow [s] Integral flow [s]

Nodes min avg max min avg max

4 0.01 0.01 0.02 0.01 0.01 0.02

9 0.01 0.02 0.03 0.02 0.02 0.03

16 0.02 0.02 0.03 0.03 0.04 0.05

25 0.04 0.05 0.07 0.06 0.07 0.13

36 0.08 0.11 0.14 0.11 0.14 0.19

49 0.15 0.18 0.29 0.20 0.25 0.45

64 0.26 0.29 0.42 0.35 0.40 0.56

81 0.45 0.56 0.90 0.59 0.70 0.97

100 0.85 1.23 2.02 1.04 1.42 2.35

Table 2.3.1: Computation times for 5 communication demands [s]

the network is s
(m)
in,n = 1). The deadline for each communication demand has

been set to 8 communication hops.

The test decreasing the link capacities works as follows: We solve the data
collection problem, then we pick the link with the maximum data flow and
we decrease the link capacity to half of the volume of the data flow routed
through the link (µl = tl/2; where tl is the routed data flow in the link and
µl is the new link capacity). Then we solve the new problem. If the problem
becomes infeasible, we set the link capacity to the previous value and mark
it, so that it cannot be decreased. In the next iteration we choose the non
marked link with the maximum data flow. We repeat the test until there is
no link, able to decrease its capacity.

The computation times for fragmented flow and for integral flow are
shown in Figure 2.3.6 and Figure 2.3.7, respectively. The computation time
increases while decreasing the capacity of the links. However, even the maxi-
mum computational times are acceptable and there is little difference between
the integral and fragmented flow. The computation times at the end of the
graph correspond to the phase, when the test was decreasing the capacity of
the links with zero data flow, which does not change the optimal routing.

In order to better compare the computation times of fragmented and
integral flow we have filtered them as an average value with a floating window.
The comparison with the floating window of 100 samples is shown in Figure
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Fragmented flow [s] Integral flow [s]

Nodes min avg max min avg max

4 0.01 0.02 0.03 0.01 0.01 0.02

9 0.03 0.03 0.04 0.04 0.05 0.21

16 0.06 0.09 0.12 0.10 0.13 0.18

25 0.16 0.22 0.34 0.26 0.32 0.48

36 0.33 0.43 0.64 0.51 0.62 0.82

49 0.67 0.87 1.51 0.95 1.20 1.76

64 1.27 1.63 2.77 1.82 2.20 3.21

81 2.41 2.96 4.91 3.21 3.83 5.73

100 4.09 5.14 9.85 5.29 6.39 9.28

Table 2.3.2: Computation times for 20 communication demands [s]

2.3.8 (i.e. the first sample of the graph is the average value of the computation
times from iteration 1 to iteration 100, the second sample is the average value
of the computation times from iteration 2 to iteration 101, ...).

2.3.2.4 Time Complexity in Relation to the Number of Commu-
nication Demands

This experiment demonstrates time complexity depending on the number of
communication demands and the algorithm behavior in the case of networks
with a large number of communication demands.

The experiment is performed in a network with 100 nodes (square field
[10 × 10]), communication distance equal to 2, communication costs equal
to the power of the nodes distance, deadlines equal to 10 communication
hops and the link capacities equal to 2. The communication demands are
set between two nodes (single-source, single-sink) and the volume of the data
flow for each demand is equal to 1. In each iteration of this test we add
a random communication demand (random source and sink). When the
problem becomes infeasible, we change the last communication demand. We
have run the experiment on 508 random networks and the average, maximum
and minimum computation times are shown in Figure 2.3.9 for fragmented
flow and in Figure 2.3.10 for integral flow.
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Fig. 2.3.8: Comparison of the average computation times for fragmented and inte-
gral flow. Averaging with floating window size of 100.
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Fig. 2.3.9: Computation time for fragmented flow in a network with 100 nodes
depending on the number of communication demands.
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Fig. 2.3.10: Computation time for integral flow in a network with 100 nodes de-
pending on the number of communication demands.
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2.4 Energy Optimal Routing of Periodic Messages
with Real-Time Constraints in Multi-hop Sen-
sor Networks

In previous Section 2.3 we have derived a multi-commodity network flow
model to compute the real-time routing for sensor networks which models
the communication demands as a continuous data flow. It is well suitable for
data streams, or communication demands with transmission period close to
one hop communication delay. However in the case when the periods of data
transmissions are much bigger than the one hop communication delay, the
flow model in Section 2.3 leads to waste of the link capacities. This section
deals with the case when the transmission periods are much bigger than the
one hop communication delay.

The problem definition is based on the same underlying model as in pre-
vious Section 2.3, which is introduced in Section 2.2. Moreover, we define for
each communication demand the transmission period and the transmission
offset (start of the periodic transmission). The data volume for each com-
munication demand is redefined as data volume which is transmitted during
every transmission period. Let us remind that a data transfer from several
source nodes to one sink node with the same deadlines can be described
by one communication demand (multi-source). In a similar way, the model
allows to describe a problem with several sink nodes (multi-sink).

In this approach the transmission offset is strictly given in the setting
of the problem and it is not an object of the optimization (no transmission
offset phasing). This situation occurs e.g. in applications with synchronized
measurement or in applications designed for measurement of some discrete
process (e.g. flashes of light, short sound intensity etc.). There are applica-
tions where the transmission offset (time of the data measurement) can be
shifted for each device independently. For these applications it is possible
to achieve better solutions by inclusion of the transmission offset into the
optimization. However solving any of these problems is NP hard and we will
not investigate this problem in this work (see e.g. [Such 07]). The approach
presented in this chapter can be used as a heuristic to evaluate solutions
gained e.g. by Genetic Algorithms for the problem with the phasing.

For more transparent model derivation, we assume the same communica-
tion delay over the entire network (i.e. each communication hop causes delay
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equal to one).

2.4.1 Mathematical Model of Real-Time Routing for Periodic
Messages

Let vector ~x(m,w) ∈ RL+ denotes the flow of communication demand m with
integer communication delay w in the network.

If the flow is sent through the network, the flow delay is increased by
each communication hop. The flow of demand m ∈ M coming into node n
with communication delay w has to either stay in the node n and increase its
delay to w+ 1 or reach the neighbor node with delay w+ 1. The flow comes
into the network with zero delay (w = 0) and leaves the network with delay
d(m), the deadline of the demand m.

The flow conservation law from Equation (2.2.3) can be rewritten in a
delay awareness form as:

A−~x(m,w) + ~y(m,w) = A+~x(m,w−1) + ~y(m,w−1)

∀m ∈M, 2 ≤ w ≤ d(m) (2.4.1)

Where the ~y(m,w) ∈ RL+ denotes the flow of communication demand m ∈M
with communication delay w which is not transmitted to other node and waits
to the next transmission period with the communication delay w+1. Slightly
different form of Equation (2.4.1) holds for w = 1 and for w = d(m) + 1,
which describe the first communication hop of the flow and the flow leaving
the network:

A−~x(m,1) + ~y(m,1) = ~s
(m)
in ∀m ∈M (2.4.2)

~s
(m)
out = A+~x(m,d

(m)) + ~y(m,d
(m)) ∀m ∈M (2.4.3)

Where ~x(m,w) ≥ 0 and ~y(m,w) ≥ 0 for all m ∈M and all 1 ≤ w ≤ d(m).

Through Equations (2.4.1, 2.4.2, 2.4.3), we have converted the real-time
constraint (i.e. the delay has to be shorter than the deadline) to the struc-
tural constraint. Only the flow, whose delay is shorter than the deadline, is
represented. The flow, which does not meet the deadline, causes that the
flow conservation law does not hold and then the network flow constraints
are not satisfied, i.e. this solution is not feasible.
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Let p(m) > 0 denotes the transmission period and o(m) ≥ 0 denotes the
transmission offset (start time within the network period P ) of communi-
cation demand m ∈ M and P denotes a network period defined as a least
common multiple of periods p(m) of all communication demands m ∈M.

We use variable q ∈ N to denote a discrete time within the network
period 1 ≤ q ≤ P . To satisfy the communication capacities we have to
distinguish the flow in the communication links according to the time q within
the network period P . To do so, we define a set T (q) of pairs (m,w). If pair
(m,w) is in set T (q) it means that the flow of demand m ∈M with delay w
is routed through the network in time q.

T (q) =
{

(m,w) | m ∈M; 1 ≤ w ≤ d(m);

q = (w + u · p(m) + o(m)) mod P ;

0 ≤ u < P/p(m); u ∈ Z0
+

} (2.4.4)

Where the operand mod denotes a remainder of integer division. The
expression (u · p(m) + o(m)) is equal to the time when the flow of demand m
is coming into the network, where u is a segment number of the transmission
of the demand m within the network period P .

Now, we can define an equation for the flow in the communication links
in time q as:

~t(q) =
∑

(m,w)∈T (q)
~x(m,w) ∀1 ≤ q ≤ P (2.4.5)

In every time q within the network period P the link capacities has to
satisfy (D~t(q) ≤ ~µ).

In summary, the constraints of the real-time multi-commodity flow rout-
ing problem can be written as:

A−~x(m,w) + ~y(m,w) = A+~x(m,w−1) + ~y(m,w−1)

∀m ∈M, 2 ≤ w ≤ d(m)

A−~x(m,1) + ~y(m,1) = ~s
(m)
in ∀m ∈M

A+~x(m,d
(m)) + ~y(m,d

(m)) = ~s
(m)
out ∀m ∈M∑

(m,w)∈T (q)
~x(m,w) = ~t(q) ∀1 ≤ q ≤ P

D~t(q) ≤ ~µ ∀1 ≤ q ≤ P

~x(m,w) ≥ ~0; ~y(m,w) ≥ ~0 ∀m ∈M, 0 ≤ w ≤ d(m)

(2.4.6)
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Fig. 2.4.1: Intuitive presentation for the graph replication.

All feasible routings, which obey the deadlines and capacity constraints
and realize all communication demands are described by the system of in-
equalities (2.4.6). To choose the cheapest one in terms of the objective func-
tion ftotal cost = ~cT~t we can use Linear Programming with these constraints.

2.4.1.1 Example and Intuitive Presentation

For a more transparent presentation of the presented approach, we show a
simple example. Assume a simple graph with 4 nodes and 3 oriented links
according to Figure 2.4.1(a). The numbers in the parenthesis stand for the
node and link indexes. The link capacities are equal to ~µ = (1, 1, 1), D is the
identity matrix of size [3× 3] and the communication costs are ~c = (1, 1, 1).
We assume 2 communication demands in the network:

• The first communication demand m = 1 from node 1 to node 4, with

deadline d(1) = 3, period p(1) = 2, offset o(1) = 0; ~s
(1)
in = (1, 0, 0, 0) and

~s
(1)
out = (0, 0, 0, 1)

• The second communication demand m = 2 from node 2 to node 4, with

d(2) = 2, p(2) = 4, o(2) = 0; ~s
(2)
in = (0, 1, 0, 0) and ~s

(2)
out = (0, 0, 0, 1)
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The intuitive presentation of the network replication of the graph from
Figure 2.4.1(a) is presented in Figure 2.4.1(b) for the deadline equal to two
communication hops. This replication is an effect of Equations (2.4.1, 2.4.2,
2.4.3) which convert the real-time constraint to the structural constraint.
Each layer of the expanded graph represents a different communication delay
and the links are redirected to the higher layer (i.e. each communication hop
cause a unit delay).

The network period is P = 4 and the sets T (q) for 1 ≤ q ≤ P are:

T (1) =
{

(1, 1), (1, 3), (2, 1)
}

T (2) =
{

(1, 2), (2, 2)
}

T (3) =
{

(1, 1), (1, 3)
}

T (4) =
{

(1, 2)
}

The sets are created according to Equation (2.4.4) and means that e.g. in
time q = 2 the variables ~x(1,2) and ~x(2,2) denote the flow in the links.

Than the optimal routing for first communication demand is ~x(1,1) =
(1, 0, 0), ~x(1,2) = (0, 0, 0), ~x(1,3) = (0, 0, 1), ~y(1,1) = ~y(1,3) = (0, 0, 0, 0), ~y(1,2) =
(0, 0, 1, 0) and for the second communication demand is ~x(2,1) = (0, 1, 0),
~x(2,2) = (0, 0, 1), ~y(2,1) = ~y(2,2) = (0, 0, 0, 0) (i.e. the flow of the first commu-
nication demand is routed through the links 1, 2 and waits in node 3, the
flow of the second communication demand is routed through the links 2, 3
and waits in no node). Gantt Chart of the flow routed through the links in
time within the network period (1 ≤ q ≤ P ) is presented in Figure 2.4.2.
Where, the first communication demand is in the light gray and the second
in the dark gray.

The solution is constrained by:

• real-time constraint (maximum communication delay). It used Equa-
tions (2.4.1, 2.4.2, 2.4.3) and can be seen as a network replication (Fig-
ure 2.4.1(b)). Only flow which satisfies the real-time constrain is rep-
resented.

• the link capacities using the sets T (q) in every time 1 ≤ q ≤ P (
Equations 2.4.4 and 2.4.5 ).

Please notice, that the presented transformation to solve the real-
time routing problem preserves the problem in the minimum-cost multi-
commodity network flow formulation. Due to this fact, the well known meth-
ods from this area can be used even on the real-time problems.
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Fig. 2.4.2: Gantt Charts for the network links

2.4.1.2 Time Complexity

A big advantage of this approach is the polynomial-time complexity. The
exact time complexity of the computation depends on a specific solver used
for the linear optimization and on the number of variables and constraints.
We denote N as the number of nodes, L as the number of communication
links, Wmax as the maximum of deadlines d(m) and M as the number of
communication demands. The number of variables novar depends on number

of flow variables x
(m,w)
l , y

(m,w)
n and t

(q)
l :

novar = L

M∑
m=1

(d(m)) +N

M∑
m=1

(d(m)) + PL (2.4.7)

If we consider that L ≤ N(N − 1) and that the number of allowed com-
munication hops is smaller than the number of nodes (Wmax ≤ N − 1), we
can limit the worst-case number of the variables as:

Ovar(MN3 + PN2) (2.4.8)
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The number of constraints nocons is:

nocons = N
M∑
m=1

(d(m)) + 2PL (2.4.9)

Under the same assumptions the worst-case number of the constraints is:

Ocons
(
N2(M + P )

)
(2.4.10)

Please notice that the worst-case number of the variables for the non-real-
time multi-commodity flow problem in the node-link form is: Ovar(MN2)
and the worst-case number of the constraints for the non-real-time multi-
commodity flow problem in the node-link form is: Ovar

(
N(M +N)

)
2.4.2 Numerical Experiments

To demonstrate our real-time routing algorithm for messages with transmis-
sion period bigger than one hop communication delay, we have performed
several simulations in Matlab. We have demonstrated the data collection
problem in the network with 64 nodes for two communication demands and
a set of experiments to evaluate the time complexity of the computation
algorithm. The simulation has been run using YALMIP [Lfbe 04] and com-
mercial solver CPLEX 9.1 on a computer with an AMD processor Opteron
248 at 2200 MHz, 2GB RAM DDR at 400MHz.

2.4.2.1 Data Collection Problem

For the data collection problem (i.e. multi-source, mono-sink problem) we
consider a network field of size [8×8], divided into 64 sub-squares of size [1×1].
One node is randomly placed into each sub-square and the communication
distance is set to 2 (i.e. node A can communicate with node B within one
hop, if and only if their Euclidean distance is less than 2). There are two
communication demands in the network. Each node has a 50% probability
that it will send data of the first communication demand to the first sink node
and a 50% probability that it will send data of the second communication

demand to the second sink node (i.e. s
(1)
in,n ∈ {0, 1} and s

(2)
in,n ∈ {0, 1}). The

deadline of the first communication demand is set to d(1) = 4 communication
hops and the deadline of the second communication demand is set to d(2) = 5
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Fig. 2.4.3: Optimal real-time data routing in a network with 64 nodes and 2
communication demands for the data collection problem.

communication hops. The transmission periods are p(1) = 4 for the first
communication demand and p(2) = 6 for the second communication demand.
The transmission offsets are set to zero o(1) = o(2) = 0. The network period

P is 12. The link capacities are set to µ = 1
2 maxm∈M

∑N
n=1 s

(m)
in,n. The

communication costs per transmitted data flow unit are set as the power of
the distance between the nodes.

The resulting data routing through the network is shown in Figure 2.4.3,
where only the used links are shown and the links width is a logarithmic
function of the sum of the data flow volume routed through the link over
the network period. The first type of data flow is in black and the second
data flow is in gray. Each routing path of the first type of data flow has at
maximum 4 communication hops and each routing path of the second type
of data flow has at maximum 5 communication hops.

The routing in the node-delay space is shown in Figure 2.4.4. On the
horizontal axis, the single nodes are placed and on the vertical axis, the
integer delays are placed. The data flow, which is produced by the nodes,
starts with the delay equal to zero and through each communication hop the
delay is increased. The lines width is a logarithmic function of the volume
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Fig. 2.4.4: Optimal real-time data routing in node-delay space for two communica-
tion demands with deadlines of 4 and 5 communication hops for the data collection
problem. The sink nodes are nodes number 20 and 44.
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Fig. 2.4.5: Optimal real-time data routing in node-time space for two communi-
cation demands with deadlines of 4 and 5 communication hops and transmission
periods 4 and 6 for the data collection problem. The sink nodes are nodes number
20 and 44.
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Fig. 2.4.6: Computation times in dependence on number of nodes in the network
for fragmented flows.

of the data flow. The vertical lines in node 20 and in node 44 represent the
data flow reaching these two sink nodes and remaining in buffer until whole
message is received.

The routing in node-time space is shown in Figure 2.4.5. On the horizon-
tal axis, the single nodes are placed and on the vertical axis, the integer time
of one network period is placed. It is seen how the messages transmission
is repeated during the network period and which data are meeting in the
links and how they affect the link capacities. The lines width is a logarithmic
function of the volume of the data flow. Please notice that the last layer
of the nodes (the 13th layer) is the first layer of next network period and is
drown for more transparent visualization.

2.4.2.2 Time Complexity in Relation to the Number of Nodes

To demonstrate the time complexity of our approach, we have varied the ex-
periment of data collection presented in Section 2.4.2.1. The field size is grad-
ually set from [2×2] to [12×12] (i.e. the number of nodes from 4 to 144). The
communication distance is kept at 2 and the communication costs are kept
as a power of the node’s distance. The number of communication demands
is set to 10. Each node has a 50% probability that it will send data of each
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Fig. 2.4.7: Computation times in dependence on number of nodes in the network
for integral flow.

communication demand to the corresponding sink node. The link capacities

are set as µ = 1
8 maxm∈M

∑N
n=1 s

(m)
in,n. The deadline for each communication

demand is set as d(m) =
√
N . The transmission periods p(m) of the ten com-

munication demands are set in order as: p(1−10) = [4, 4, 6, 6, 8, 8, 12, 12, 24, 24]
and the transmission offsets are set to zero o(1−10) = 0. The network period
is 24.

The simulation has been run 300 times for each number of nodes on ran-
domly constructed networks. The minimum, average and maximum compu-
tational times are shown in Figure 2.4.6 for the fragmented data flow and in
Figure 2.4.7 for the integral splittable data flow according to Section 2.3.1.4.
The maximum values which are not inside the graph axis for the integral
flow, are in range from 1420 to 11097 seconds. Moreover, there are presented
the solution times which are needed to solve 90% of the problems.

It is seen that in the contrast to the experiments in Section 2.4.2, the
solution time for the integral data flow increases much faster than for the
fragmented data flow in this case. However, the solution times are still in an
acceptable range for a practical application.
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Fig. 2.4.8: Computation times in dependence on the network period for fragmented
flows.

2.4.2.3 Time Complexity in Relation to the Network Period

This experiment demonstrates time complexity depending on the network
period, which is defined as a least common multiple of periods p(m) over all
m ∈M.

The experiment is performed in a network with 64 nodes (field size [8×8]),
communication distance equal to 2, communication costs equal to the power
of the nodes distance. Each node has a 50% probability that it will send data
of each communication demand to the corresponding sink node. Deadlines
are equal to 10 communication hops and the link capacities are set as µ =
1
8 maxm∈M

∑N
n=1 s

(m)
in,n.

There are 8 communication demands with transmission periods equal to
p(1−8) = [1, 1, 2, 2, 3, 3, 6, 6]× i in the network. The transmission offsets are
set to zero o(1−8) = 0. During the experiment the multiplier i is gradually
increasing from 1 to 30 with as the network period P from 6 to 180.

The progress of computation time is presented in Figure 2.4.8. The in-
teresting result of this experiment is that for multiplier bigger than 9 the
computation times are not increasing and stay constant. This means that
the presented approach is usable even in case when the transmission periods
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of individual demands are much bigger than the hop communication delay. In
this case this approach can provide more effective solutions than the approach
using continuous flow approximation from Section 2.3. The constant com-
putation time in this experiment is caused by the fact that all transmission
periods are increasing together. So, the number of transmissions during the
network period is constant during the experiment. When the transmission
period increases over the deadline of the communication demand, the next
increase of the transmission period do not increase the number of capacity
constraints in (2.4.6).

The bigger computational times for small multipliers i are caused by the
small transmission periods. For small transmission periods is more suitable
the continuous data flow mode in Section 2.3 (especially for transmission
period equal to 1 because it is exactly the case of continuous data flow).
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2.5 Summary

In this chapter, we have focused on real-time routing in multi-hop networks
for both, the problems with continuous data flow (small transmission period)
and the problems of periodic messages (the transmission period is bigger
than the one hop communication delay). We have used the multi-commodity
network flow routing problem and extended it to solve real-time routing in
a general multi-hop network. Such an extension is quite simple from the
theoretical point of view, but very powerful from the practical point of view
since the multi-commodity network flow problem has no notion of time, thus
it cannot be used in many applications where the response time is the sub-
ject of constraints. Solved by Linear Programming, it exhibits a very good
performance, as was shown in our experiments.

Surprisingly, the performance does not degrade even in the presence of
an integral flow constraint, which makes the problem NP hard. Being aware
of the weaknesses of randomly generated test instances, we have performed
several steps making the problem more difficult, but the time complexity
of the Integer Linear Programming solution of the integral flow problem
was still comparable to the Linear Programming solution of the fragmented
flow problem. Up to now, we do not have a satisfactory explanation of
this phenomenon, except the conjecture that integral flow is rather simple
to achieve in our model, which makes the model a very good candidate for
applications.

The other advantage of the presented algorithms is, that the real-time
routing is described as a multi-commodity network flow problem with side
constraints. The side constraints of the problem are in form, which allow
future problem distribution as an in-network algorithm (see Chapter 4).
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Chapter 3

Distributed Routing
Algorithm

3.1 Introduction

This chapter is focused on a distributed algorithm for data flow routing
through the multi-hop wireless sensor network. The objective is to opti-
mize the energy consumption for the data transfer (minimal possible energy
consumption over the whole network), while constrained by communication
capacities (maximum data volume which can be transferred by link, or device
per a time unit).

There are many communication protocols designed for the data routing
in wireless sensor networks however, to achieve the exact energy optimal
routing which complies with the communication capacities, the system usu-
ally needs a central computational point with the knowledge of the actual
network structure and parameters (e.g. [Xiao 04]). The existence of such
a computational point decreases the robustness of the system against the
network damage and increases the communication load of the network. Fur-
thermore, the routing of such information (the actual network structure and
parameters) has to be solved in the case of the centralized algorithm.

In this chapter, we propose three distributed algorithms, which compute
the energy optimal routing without the need of any central computational
or data point. The algorithms suppose that each node knows only the cost
(energy consumption per sent data unit) of its outgoing communication links
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and the data which it is supposed to send and receive. The algorithms are
mathematically derived using the convex optimization theory and proof of
their convergence is presented.

The main purpose of this work is to present the principle of new dis-
tributed routing algorithms rather than to present application ready algo-
rithms. We believe that the presented approach can lead to new efficient
and highly adaptive routing algorithms for sensor networks. Moreover, the
approach used in this work can be adapted for general distribution of convex
optimization problems into the network.

According to our knowledge, this work is first, which solves the routing
problem with linear cost functions, using the dual decomposition.

3.1.1 Related Works

There are several works, which focus on the decomposition of network op-
timization problems described by strictly convex optimization. A system-
atic presentation of the decomposition techniques for network utility maxi-
mization (NUM) is presented in [Palo 06b, Palo 06a, Chia 07]. The authors
present several mathematical approaches to structural decomposition of the
NUM problems and classify them. In [Joha 06a, Joha 05, Nama 06] the au-
thors use the dual decomposition to decompose cross-layer optimization prob-
lems into optimization of separated layers. The presented approaches lead to
structural decomposition (e.g. to routing layer, capacity layer...) which is not
suitable for derivation of the in-network distributed algorithm. In [Joha 08] a
general distributed algorithm for strictly convex optimization problems with
common parameter for all nodes is presented.

The decomposition of an optimal routing problem is presented e.g. in
[Tsit 86, Low 99], where the authors have focused on the node-path formu-
lation of the routing problem and use the dual decomposition to find the
distributed algorithm. The presented algorithms can be described as a nego-
tiation between the source node and the path load. This approach is suitable
for problems with a small number of communication paths. However, in sen-
sor networks routing problems, where many possible communication paths
exist, we have to find a different way to distribute the routing algorithm.

In [Zhen 10] the authors independently derived a distributed routing al-
gorithm, which is based on the node-link problem formulation and so it uses
similar mechanisms as the algorithm presented in this chapter. However, the
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algorithm is limited to strictly convex objective function.

All the algorithms referenced in this section are limited to strictly convex
objective functions and fail in the case of linear objective functions which
make the problems and convergence proof more difficult. According to our
knowledge, this work is the first one, which addresses and solves the prob-
lem of the dual decomposition of NUMs for problems with linear objective
functions.

3.1.2 Multi-Commodity Network Flow Model

During this chapter, we use the multi-commodity network flow model formu-
lated as the Linear Programming to describe the basic routing problem. The
model is identical to the model introduced in Section 2.2 and we write it as:

min
x

~cT
∑

m∈M
~x(m)

subject to:

A−~x(m) + ~s
(m)
out = A+~x(m) + ~s

(m)
in ∀m ∈M

D
∑

m∈M
~x(m) ≤ ~µ

~x(m) ≥ ~0 ∀m ∈M

(3.1.1)

The vectors and matrices are defined as in Section 2.2. The vector ~c > 0 is
a column vector of the energy consumption per sent data unit. The column

vector ~s
(m)
in ≥ ~0 denotes the flow coming into the network, the ~s

(m)
out ≥ ~0

denotes the flow leaving the network and the ~x(m) ≥ ~0 denotes the flow
routed through the network for demand m. The matrices A+ and A− are
incidence matrices for incoming and leaving links defined according Equation
(2.2.1) and (2.2.2). The matrix D and the column vector ~µ describe the
capacity constraints. If there is a separate capacity for each communication
link, matrix D is the identity matrix of size [L × L] and ~µ ≥ ~0 consists of
the link capacities. For the node capacities the ~µ ≥ ~0 is column vector of the
node capacities and matrix D is Dn,l = 1 for l ∈ O(n) (link l leaves node n)
and Dn,l = 0 otherwise. (i.e. D = A−)
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3.1.3 Proximal-Point Method

To decompose the routing algorithm into the network, we use a gradient
optimization method to solve its dual problem. However, the linearity of
the objective function of the routing problem 3.1.1 would cause oscillations
in the algorithm and prevents us finding the optimal solution. We use the
proximal-point method (for details see [Bert 98]) to modify the problem into
strictly convex form, which allows the usage of the gradient method.

The proximal-point method is an iterative method described as:

~xk+1 = arg min
~x∈C

(
f(~x) + ε

(
~x− ~xk

)T (
~x− ~xk

))
(3.1.2)

Where C is a convex set, f(~x) is a convex function and the ε > 0 is a
constant. Please note, that each solution xk of the iteration (3.1.2) is a
feasible solution and that for each k ∈ N holds f(~xk) ≥ f(~xk+1). If k → ∞
then min~x∈C(f(~x)+ε(~x−~xk)T (~x−~xk))→ min~x∈C f(~x). The iteration (3.1.2)
is called the outer iteration or the proximal-point iteration in this work.
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3.2 Two Loops Distributed Routing Algorithm

We derive a Two Loops Distributed Routing Algorithm (TLDRA) in this
section. The derivation is based on the multi-commodity network flow model
(3.1.1) for the case with separate capacity for each communication link, where
the matrix D is an identity matrix.

3.2.1 Mathematical Derivation of the Two Loops Distributed
Routing Algorithm

By applying the proximal point method (3.1.2) to the energy optimal routing
problem (3.1.1), substituting ~xk by ~x′′ and A = (A+−A−), we can write the
problem for one proximal-point iteration in form:

min
x

∑
m∈M

(
~cT~x(m) + ε(~x(m) − ~x′′(m))T (~x(m) − ~x′′(m))

)
subject to:

A~x(m) = ~s
(m)
out − ~s

(m)
in ∀m ∈M∑

m∈M
~x(m) ≤ ~µ

~x(m) ≥ ~0 ∀m ∈M

(3.2.1)

Where ~x′′ is the proximal-point variable with a fixed value from the proximal-
point iteration.

3.2.1.1 Dual Problem

Please note that according to Slater’s conditions (see e.g. [Boyd 04]), the
strong duality holds for problem (3.2.1) (i.e. the optimal values of the dual
and the primal problem are equal).

The Lagrangian function of the system of inequalities (3.2.1) is:

L(~x(m), ~x′′(m), ~λ, ~θ(m)) =
∑

m∈M

(
~cT~x(m) + ε(~x(m) − ~x′′(m))T (~x(m) − ~x′′(m))

)
+
∑

m∈M
~θ(m)T (A~x(m) − ~s(m)

out + ~s
(m)
in ) + ~λT (

∑
m∈M

~x(m) − ~µ)

(3.2.2)

Where ~x(m) ≥ ~0 is the primal variable, ~λ ≥ ~0 and ~θ(m) are the dual variables.
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The dual function W is:

W (~x′′(m), ~λ, ~θ(m)) = min
~x(m)≥~0

L(~x(m), ~x′′(m), ~λ, ~θ(m)) (3.2.3)

Differentiation of the Lagrangian function (3.2.2) gives:

∂L

∂~x(m)
= ~c+ ~λ+AT ~θ(m) + 2ε~x(m) − 2ε~x′′(m) (3.2.4)

And the minimizer ~x
(m)
min of the dual function (3.2.3):

~x
(m)
min =

[
~x′′(m) − 1

2ε
(~c+ ~λ+AT ~θ(m))

]+
(3.2.5)

Where [..]+ denotes a positive or zero value in each component [..]+ =
max(~0, ..).

Then the dual problem of (3.2.1) is:

U(~x′′(m)) = max
~θ(m),~λ≥0

W (~x′′(m), ~λ, ~θ(m)) (3.2.6)

And the dual function gradients are:

∂W

∂~λ
=

∑
m∈M

~x
(m)
min − ~µ (3.2.7)

∂W

∂~θ(m)
= A~x

(m)
min − ~s

(m)
out + ~s

(m)
in (3.2.8)

3.2.1.2 Dual Gradient Algorithm

To solve the routing problem, we put together the proximal-point method
(3.1.2) and the dual problem (3.2.6). The created algorithm consists of two
nested iterations. The internal iteration is the gradient iteration which solves
the dual problem (3.2.6). The outer iteration is the proximal-point iteration
corresponding to Equation (3.1.2). The algorithm structure is presented in
Figure 3.2.1.
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Inicialization

Primal variables
Eq: (3.2.9)

Dual variables
Eq: (3.2.10; 3.2.11) r = r + 1

k = k + 1
Gradient 
iteration
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-point

iteration

END

terminate

terminate

repeat

repeat

Proximal-point 
variables

Eq: (3.2.12)

Fig. 3.2.1: TLDRA: Iteration algorithm

The termination of the iterations could be done through sophisticated
methods based on the progress of the dual variables in combination with the
global communication. However, for the verification of the concept of this
algorithm it is more practical to use a constant number of proximal-point
iterations based on a heuristic experiences. To the same way we set the
number of the gradient iterations to decrease proportioning to the index of
the proximal-point iterations.

We denote a counter of the gradient iteration as r and a counter of the
proximal-point iteration as k. The constants R(k) and K denote the number
of cycles of the corresponding iterations. The constant α > 0 is the step
size of the gradient algorithm. The dual gradient algorithm is presented in
Table 3.2.1.

In the first step of the dual gradient algorithm in Table 3.2.1, the variables
are set to arbitrarily initial values. The closer the values are to the final
solution, the faster the convergence of the algorithm becomes. This property
can be used in the case of minor changes of the network structure during
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1. Initialize the dual and the proximal-point variables:

r := 1, k := 1, ~θ(m) := ~θ
(m)
start,

~λ := ~λstart, ~x′′(m) := ~x
′′(m)
start

2. Evaluate the primal variables ~x
(m)
min:

~x
(m)
min :=

[
~x′′(m) − 1

2ε

(
~c+ ~λ+AT ~θ(m)) ]+ (3.2.9)

3. Modify the dual variables according to the gradient of the dual function (3.2.7)

~λ :=
[
~λ+ α

( ∑
m∈M

~x
(m)
min − ~µ

)]+
(3.2.10)

~θ(m) := ~θ(m) + α
(
A~x

(m)
min − ~s

(m)
out + ~s

(m)
in

)
(3.2.11)

4. r := r + 1; Go to step 2 and start a new cycle of the gradient iteration.
Repeat R(k)-times.

5. Start new cycle of the proximal-point iteration:

• Set the iteration and the proximal-point variables:

r := 1, k := k + 1

~x′′(m) := ~x
(m)
min (3.2.12)

• Go to step 2.
Repeat the proximal-point iteration K-times.

6. Read the result routing: ~x(m) = ~x
(m)
min

Table 3.2.1: TLDRA: Dual Gradient Algorithm

its operation or in case of a pre-computed routing e.g. based on Dijkstra’s
algorithm. However, we will not investigate this problem further in this
section. During the experiments in this section we initiate the variables to
zero.

3.2.1.3 Distributed Algorithm

The presented distributed algorithm is running on each node in the network.
The algorithm is synchronized by the communication between the nodes.
The structure of the computation of the distributed algorithm is the same
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as the structure of the Dual Gradient Algorithm in Figure 3.2.1, only the
communication is added.

We use x
(m)
min,i, x

′′(m)
i , λi, ci etc. to denote the i-th component of the

corresponding vector.
Due to the structure of matrix A (see Section 2.2) we rewrite the expres-

sion (3.2.9) in order to compute the flow of the communication demand m in
the link l as:

x
(m)
min,l =

[
x
′′(m)
l − 1

2ε

(
cl + λl + θ

(m)
l+
− θ(m)

l−

) ]+
(3.2.13)

Where the expression l− denotes index of the start node of the link l and l+

denotes index of the end node of the link l. I.e. l ∈ O(l−) and l ∈ I(l+)
Similarly we can rewrite the expressions (3.2.10, 3.2.11):

λl =
[
λl + α

( ∑
m∈M

x
(m)
min,l − µl

)]+
(3.2.14)

θ
(m)
n = θ

(m)
n + α

( ∑
i∈I(n)

x
(m)
min,i −

∑
i∈O(n)

x
(m)
min,i − s

(m)
out,n + s

(m)
in,n

)
(3.2.15)

Each node n is responsible for computation of the flow volume of the links
starting in the node n and for the corresponding dual variables. Therefore,

node n computes x
(m)
min,l for all l ∈ O(n) and all m ∈ M, λl for all l ∈ O(n)

and θ
(m)
n for all m ∈M.

In (3.2.13), node n computes x
(m)
min,l for all links leaving node n. It is a

function of the local variables x′′, λ, θ and the variables θ of the neighbor

nodes. Similarly, the computation of λl and θ
(m)
n in (3.2.14, 3.2.15) is a

function of the local variables and the variables of the neighbor nodes that
are within a one hop communication distance.

The algorithm for node n is presented in Table 3.2.2. In step 1, the
algorithm initializes the variables. Similarly as in Table 3.2.1, the closer the
values are to the optimal solution the less cycles of the iterations are needed.
In steps 2 and 3, the node communicates the values of the proximal-point

variables and the dual variables. In step 4, the node computes x
(m)
min,l for

the links leaving the node. In step 5, the node computes x
(m)
min,l for the links
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1. Initialize the variables:

x
′′(m)
l := x

′′(m)
start,l ∀m ∈M ∀l ∈ O(n)

θ(m)
n := θ

(m)
start,n ∀m ∈M

λl := λstart,l ∀l ∈ O(n)

2. Send/receive the proximal-point variables to/from the neighbors.

Send: x
′′(m)
l ∀m ∈M,∀l ∈ O(n)

Receive: x
′′(m)
l ∀m ∈M,∀l ∈ I(n)

3. Send/receive the dual variables to/from the neighbors.

Send: λl ∀l ∈ O(n)

θ
(m)
n ∀m ∈M

Receive: λl ∀l ∈ I(n)

θ
(m)

l−
∀m ∈M, ∀l ∈ I(n)

4. Evaluate the primal variables x
(m)
min,l for ∀l ∈ O(n) and ∀m ∈M:

x
(m)
min,l :=

[
x
′′(m)
l − 1

2ε

(
cl + λl + θ

(m)

l+
− θ(m)

n

) ]+
5. Evaluate the neighbors primal variables x

(m)
min,l for ∀l ∈ I(n) and ∀m ∈M:

x
(m)
min,l :=

[
x
′′(m)
l − 1

2ε

(
cl + λl + θ(m)

n − θ(m)

l−

) ]+
6. Modify the dual variables.

λl :=
[
λl + α

( ∑
m∈M

x
(m)
min,l − µl

)]+
∀l ∈ O(n)

θ(m)
n := θ(m)

n + α
( ∑
i∈I(n)

x
(m)
min,i −

∑
i∈O(n)

x
(m)
min,i − s

(m)
out,n + s

(m)
in,n

)
∀m ∈M

7. Go to step 3 and start a new cycle of the gradient iteration. Repeat R(k)-times.

8. Start new cycle of the proximal-point iteration:

• Preserve the dual variables θ
(m)
n and λl for ∀l ∈ O(n) and ∀m ∈M and set

the proximal-point variables:

x
′′(m)
l := x

(m)
min,l ∀l ∈ O(n), ∀m ∈M

• Go to step 2. Repeat the proximal-point iteration K-times.

9. Each node n knows the routing of the outgoing flow.
x
(m)
l = x

(m)
min,l for ∀l ∈ O(n) and ∀m ∈M.

Table 3.2.2: TLDRA: Distributed Routing Algorithm executed in node n
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entering the node from its neighbors. In step 6, the node modifies the dual
variables. Steps 7 and 8 start the new iteration cycles of the algorithm. Please

notice, in the step 5 we compute the variables x
(m)
min,l which has already been

computed in neighboring nodes in step 4. Due to this computation, we can
save a communication of the primal variables.

3.2.1.4 Node Communication Capacities

In some applications, especially in wireless networks, the node communica-
tion capacity (maximum data volume which can be transmitted by a node
per a time unit) is more appropriate than the link communication capacity,
used in this section. The link communication capacity has been used dur-
ing the algorithm derivation because of the more transparent presentation
and because of the more general behavior of the algorithm (e.g. in case of
the GTS slots allocation in IEEE 802.15.4 where each link has its capacity
assigned). The node capacity can be easily transformed to the link capac-
ity by the graph transformation where each node is replaced by two nodes
connected by a link with the given capacity. However, in this section we
present a direct transformation of the equations of the presented algorithm
to implement the node capacities more efficiently.

To describe the node capacity constraints, we define the new matrix D
as:

Dn,l =

{
1, l ∈ O(n) (link l leaves node n)
0, otherwise

(3.2.16)

A new form of the communication capacity constraints is:

D
∑
m∈M

~x(m) ≤ ~µ (3.2.17)

where ~µ ∈ RN is a vector of the node capacities for all the nodes in the
network.

These changes are directly projected into Equations in 3.2.1, 3.2.2, 3.2.4
and 3.2.7). The changes in the dual gradient algorithm in Table 3.2.1 are in
Equations (3.2.9 and 3.2.10). The new form of Equation (3.2.9) is:

~x
(m)
min :=

[
~x′′(m) − 1

2ε

(
~c+DT~λ+AT ~θ(m)

) ]+
(3.2.18)
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and the new form of Equation (3.2.10) is:

~λ :=
[
~λ+ α

( ∑
m∈M

D~x
(m)
min − ~µ

)]+
(3.2.19)

Similarly, the changes of the distributed routing algorithm executed in
node n in Table 3.2.2 are the following:
In step (4):

x
(m)
min,l :=

[
x
′′(m)
l − 1

2ε

(
cl + λn + θ

(m)
l+
− θ(m)

n

) ]+
(3.2.20)

In step (5):

x
(m)
min,l :=

[
x
′′(m)
l − 1

2ε

(
cl + λl− + θ(m)

n − θ(m)
l−

) ]+
(3.2.21)

In step (6):

λn :=
[
λn + α

( ∑
l∈O(n)

∑
m∈M

x
(m)
min,l − µn

)]+
(3.2.22)

While applying these changes, the algorithm uses one variable λn for each
node instead of one variable λl for each link. Using a similar transformation
of the equations, the algorithm can be updated to implement many different
communication constraints (e.g. both oriented link capacities, node incoming
and transmitting capacities...) and their combinations.

3.2.2 Experiments

We have performed several experiments in Matlab, to present a behavior of
the presented algorithm. We have focused on a data collection problem in this
section (i.e. multi-commodity multi-source, mono sink problem). The exper-
iments are based on the same network structure as in previous Chapter 2.

The random networks have been constructed as follows: We consider
a square field of size [size × size], where the size is changing during the
experiments. The field is divided into sub-squares of size [1 × 1]. One node
is randomly placed into each sub-square and the communication distance is
set to 2 (i.e. node A can communicate with node B, if and only if their
Euclidean distance is less than 2). The network is close to the “unit-disk
network” [Rese 06]. The communication costs per transmitted data flow
unit have been set as the power of the distance between the nodes.
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Fig. 3.2.2: TLDRA: Optimal data flow routing

3.2.2.1 Algorithm Presentation

To present the resulting optimal data flow routing in the network and the
progress of the Lagrangian function during the computation, we have per-
formed an experiment based on the network described above. The field size
has been set to 10 (i.e. there are 100 nodes in the network). There are two
communication demands in the network, each of them with a different sink
node. Each node has a 60% probability that it will send data of the first
communication demand of volume 1 to the first sink node and a 40% proba-
bility that it will send data of the second communication demand of volume

1 to the second sink node (i.e. s
(1)
in,n ∈ {0, 1} and s

(2)
in,n ∈ {0, 1}). The link

capacities have been set to µl = 1
2 maxm∈M

∑N
n=1 s

(m)
in,n. The constants of the

algorithm have been set as: α = 0.05, ε = 0.2. The initial values x
′′(m)
start,l,

θ
(m)
start,n, λstart,l have been set to 0.

The optimal data flow routing is shown in Figure 3.2.2, where the first
communication demand is in black and the second communication demand in



58 Chapter 3 Distributed Routing Algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

Iterations

La
gr

an
gi

an
 fu

nc
tio

n

 

 

Lagrangian function
Optimal value

Fig. 3.2.3: TLDRA: Progress of Lagrangian function (3.2.2)

gray. The progress of the Lagrangian function (3.2.2) is presented in Figure
3.2.3. The Lagrangian function is in black and its final value in gray. (The
final value was computed separately by a centralized algorithm for evaluation
purposes only.) The nesting of the gradient iteration and the proximal-point
iteration can be seen in Figure 3.2.3. The internal iteration (i.e. the gradient

iteration) maximize the Lagrangian function using the dual variables θ
(m)
n and

λl with constant variable x
′′(m)
l . The outer iteration (i.e. the proximal-point

iteration) minimize the Lagrangian function using the variable x
′′(m)
l .

3.2.2.2 Number of Iterations

To demonstrate the statistical behavior of the algorithm, we have performed
several tests in networks of different size. We have set the field size grad-
ually from 3 to 10 (i.e. from 9 to 100 nodes), the number of communica-
tion demands have been set to 10 (multi-source, mono-sink) with random
sinks. Each node has a 50% probability to send the data flow for each com-
munication demand with volume 1. The link capacities have been set to
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Fig. 3.2.4: TLDRA: Number of proximal-point iterations needed to achieve 0.01%
deviation from the optimal value.
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Fig. 3.2.5: TLDRA: Number of gradient iterations in the 1st proximal-point iter-
ation needed to achieve 0.01% deviation from the optimal value.
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Fig. 3.2.6: TLDRA: Number of the gradient iterations in dependence on the index
of the proximal-point iteration for the field size 10.

µl = 1
2 maxm∈M

∑N
n=1 s

(m)
in,n. The constants of the algorithm have been set

as: α = 0.1, ε = 0.6. The initial values x
′′(m)
start,l, θ

(m)
start,n, λstart,l have been set

to 0. The computation has been repeated, on random networks, 100 times
for each field size. The numbers of the iterations R(k) and K have been
set to sufficiently large values in order to ensure that each gradient iteration
achieves an optimal solution for the given proximal-point variables and that
the final solution is the energy optimal routing. The results have been eval-
uated as a maximum, average and minimum number of iterations needed to
achieve a 0.01% deviation of the Lagrangian function from the optimal value.
(the optimal value was computed separately by a centralized algorithm for
evaluation purposes only)

In Figure 3.2.4, the number of needed proximal-point iterations, in de-
pendence on the number of nodes in the network, is presented.

In Figure 3.2.5, the number of needed repetitions of the gradient algorithm
in the first cycle of the proximal-point iteration, in dependence on the number
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Fig. 3.2.7: TLDRA: Lagrangian progress for incomplete gradient iterations.

of nodes in the network, is presented.

In Figure 3.2.6, the number of needed repetitions of the gradient algo-
rithm, in dependence on the index of the proximal-point method for field
size 10, is presented. The number of the needed gradient iterations decreases
rapidly during the computation. Only the first 35 proximal-point iterations
are presented, because the next values are equal to 1.

3.2.2.3 Robustness

The presented approach requires that the gradient iteration ends with an
optimal solution for a given proximal-point variables. Due to the distribu-
tion of the algorithm, the termination of the gradient iteration is problematic
and in this chapter we use heuristic constants for the number of repetitions.
Being aware of the problems with the algorithm termination we have per-
formed several simulations to evaluate the robustness of the approach. We
have focused on the case when the gradient iterations do not reach the op-
timal solution for the given proximal-point variables in the given number of
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Fig. 3.2.8: Number of proximal-point iterations needed to achieve 0.01% deviation
from the optimal value in the case of an incomplete gradient iteration.

iterations. To ensure this behavior, we have set the number of repetitions
of the gradient iteration to 50 (R(k) = 50 ∀0 < k < K). An example of
progress of the Lagrangian function for the first 12 proximal-point iteration
(i.e. 600 gradient iterations) for R(k) = 50 is presented in Figure 3.2.7. All
parameters for this simulation were the same as in the experiment in Section
3.2.2.1, except R(k). In Figure 3.2.7, it is seen that some of the first gradi-
ent iterations do not reach the optimal solution for the given proximal-point
variables within the 50 repetitions. However the algorithm still converges to
the final optimal solution. Moreover, it converges even faster, than in Figure
3.2.3 since it does not spend that much time while searching for the optimal
solution for the given proximal-point variables.

The experiment has been repeated 50 times for each field size and the
results have been evaluated as a maximum, average and minimum number
of iterations needed to achieve a 0.01% deviation of the Lagrangian function
from the optimal value. The number of needed proximal-point iterations, in
dependence on the number of nodes in the network, is presented in Figure
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Fig. 3.2.9: Number of proximal-point iterations needed to achieve 0.01% deviation
from the optimal value for the node communication capacities.

3.2.8. It is seen that the number of the needed iterations is slightly bigger
than the number in the previous Section 3.2.2.2 (see Figure 3.2.4). However
the algorithm still converges to the final optimal solution.

3.2.2.4 Node Communication Capacities

To demonstrate the behavior of the algorithm in the case of the node com-
munication capacities, described in Section 3.2.1.4, we have performed an
experiment with the same parameters as in Section 3.2.2.2, except for the
capacity constraints. The link capacities have been replaced by the node

capacities µl = 3 maxm∈M
∑N

n=1 s
(m)
in,n. The computation has been repeated

on random networks 100 times for each field size.
The statistical results are presented in Figure 3.2.9, 3.2.10 and 3.2.11 . It

is seen, that the progress of the number of the iterations of the algorithm for
the node capacities is similar to the problem with the link capacities.
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Fig. 3.2.10: Number of gradient iterations in the 1st proximal-point iteration
needed to achieve 0.01% deviation from the optimal value for the node capacities.
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Fig. 3.2.11: Number of the gradient iterations in dependence on the index of the
proximal-point iteration for the field size 10, for the node capacities.
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3.3 One Loop Distributed Routing Algorithm with
Incremental flow update

In this section, we derive a distributed algorithm, which consist of only one
iteration loop and we prove its convergence. The algorithm is called One
Loop Distributed Routing Algorithm with Incremental flow update (OLDRAi)
and it is based on a subgradient algorithm with three nested iteration loops.
In contrast to the algorithm TLDRA derived in previous Section 3.2 the
OLDRAi do not set the flow variable x to the optimal value, but x is updated
incrementally. We focus on the link capacity case in this section.

3.3.1 Mathematical Derivation of the One Loop Distributed
Routing Algorithm with Incremental flow update

Without loss of generality, we rewrite the routing problem into the equality
form for a more transparent presentation.

min
~x

~cT~x

subject to:

A~x = ~b

~x ≥ ~0

(3.3.1)

Where

A =


A′ 0 0 0

0
. . . 0

...
0 0 A′ 0
I I I I

 ~b =


~s
(1)
out − ~s

(1)
in

...

~s
(M)
out − ~s

(M)
in

~µ

 (3.3.2)

~x =


~x(1)

...

~x(M)

~z

 ~c =


~c′

...
~c′

~0

 (3.3.3)

I is the identity matrix, A′ = (A+ − A−) and ~c′ is the original vector of the
communication costs per transmitted data unit over all links in the network
(it was marked as ~c in previous Section 3.2 and in Chapter 2).



66 Chapter 3 Distributed Routing Algorithm

Similarly as in previous Section 3.2 we use the proximal-point method
(3.1.2) to modify the problem into strictly convex form, which allows the
usage of the gradient method. The modified problem is:

min
~x′′

min
~x

~cT~x+ ε(~x− ~x′′)T (~x− ~x′′)
subject to:

A~x = ~b

~x ≥ ~0

(3.3.4)

where ε > 0.
The set of optimal solutions for problem (3.3.4) is the same as for problem

(3.3.1). For optimal solution of problem (3.3.4) holds ~x = ~x′′. The routing
problem has been separated into two nested subproblems. The internal sub-
problem is minimization over the variable ~x and it is strictly convex. The
outer subproblem minimize the internal one by the proximal-point variable
~x′′.

3.3.1.1 Dual Problem

As in Section 3.2.1.1, to solve the internal subproblem of (3.3.4) (mini-
mization over the variable ~x) we present its dual problem to derive the
distributable gradient algorithm. According to Slater’s conditions (see e.g.
[Boyd 04]) the optimal solution of the dual and primal problems are equal.

The Lagrangian function of problem (3.3.4) is:

L(~x, ~x′′, ~θ) = ~cT~x+ ε(~x− ~x′′)T (~x− ~x′′) + ~θT (A~x−~b) (3.3.5)

Where ~x ≥ ~0 is the primal variable and ~θ is the dual variable. The dual
function W is:

W (~x′′, ~θ) = min
~x≥~0

L(~x, ~x′′, ~θ) (3.3.6)

Differentiation of the Lagrangian function (3.3.5) gives:

∇xL = ~c+AT ~θ + 2ε(~x− ~x′′) (3.3.7)

∇x′′L = −2ε(~x− ~x′′) (3.3.8)

The dual problem of (3.3.4) is:

U(~x′′) = max
~θ

W (~x′′, ~θ) (3.3.9)
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And the dual function gradient is:

∇θW = A~x−~b (3.3.10)

3.3.1.2 Dual Gradient Algorithm

Using the dual problem (3.3.9) and the dual function (3.3.6) we rewrite the
routing problem (3.3.4) into form:

min
~x′′

max
~θ

min
~x≥~0

L(~x, ~x′′, ~θ) (3.3.11)

In contrast to Section 3.2.1.2, we define a gradient algorithm which consists
of 3 nested loops (one loop for each variable). It is created from Equation
(3.3.11). The internal loop solves the subproblem (3.3.6) using the gradient
of the Lagrangian function (3.3.7). The middle loop solves the dual prob-
lem (3.3.9) using its gradient (3.3.10). The outer loop minimizes over the
proximal-point variable ~x′′ using the gradient (3.3.8).

LOOP 1
LOOP 2

LOOP 3

~x =
[
~x− α∇xL

]+
END 3
~θ = ~θ + α∇θW

END 2
~x′′ = ~x′′ − α∇x′′L

END 1

(3.3.12)

The α > 0 is a constant step size of the algorithm.
We join all the loops of the gradient algorithm into one loop only, where

we update all the variables ~x′′, ~θ, ~x simultaneously. Using Equations (3.3.7),
(3.3.8) and (3.3.10) we derive one iteration of the algorithm:

~xk+1 =
[
~xk − α

(
~c+AT ~θk + 2ε(~xk − ~x′′k)

) ]+
~x′′k+1 = ~x′′k + α2ε(~xk − ~x′′k)
~θk+1 = ~θk + α(A~xk −~b)

(3.3.13)
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k denotes the iteration number and symbol [..]+ denotes a positive or zero
value in each component of the vector [..]+ = max(~0, ..).

The correctness of such algorithm is not seen directly form its derivation
and has to be proven. The proof of the algorithm convergence is not a trivial
problem and its simplified version is presented in Section 3.3.3. A necessary
condition for the algorithm convergence is α ≤ 1/2ε. Moreover, we have
performed several simulation experiments to test the algorithm convergence
in Section 3.3.2.

The variables ~x0, ~x
′′
0 and ~θ0 are set to arbitrary initial values. As in

Chapter 3.2, the closer the values are to the final solution, the faster the
algorithm converges. We do not investigate this problem further in this
section. During the experiments in Section 3.3.2 we initiate the variables to
zero.

3.3.1.3 Distributed Algorithm

The system of equations (3.3.13) is a description of one iteration of the dis-
tributable routing algorithm. However, to define the distributed algorithm
for each node, we have to rewrite Equations (3.3.13) using (3.3.2), (3.3.3)
and define variables ~θk and ~x′′k:

~θk =


~θ
(1)
k
...

~θk
(M)

λk

 ~x′′k =


~x
′′(1)
k
...

~x
′′(M)
k
~z′′k

 (3.3.14)

The presented distributed algorithm is running on each node in the net-
work and it is synchronized by the communication between the nodes. The
algorithm for node n is presented in Table 3.3.1.

We use x
(m)
k,i , x

′′(m)
k,i , θ

(m)
k,i , ci etc. to denote the i-th component of the

corresponding vector.

Due to the structure of the matrix A and vectors ~xk, ~x
′′
k,
~b and ~θk we

rewrite the expressions (3.3.13) in order to compute the flow of the commu-
nication demand m in the link l into form of Equation (3.3.15). Where the
expression l− denotes index of the start node of the link l and l+ denotes
index of the end node of the link l.
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1. Initialize the variables:

x
(m)
0,l = x

(m)
start,l ∀m ∈M ∀l ∈ O(n)

x
′′(m)
0,l = x

′′(m)
start,l ∀m ∈M ∀l ∈ O(n)

λ0,l = λstart,l ∀l ∈ O(n)

θ
(m)
0,n = θ

(m)
start,n ∀m ∈M

z0,l = zstart,l ∀l ∈ O(n)

z′′0,l = z′′start,l ∀l ∈ O(n)

k = 0

2. Send/receive the variables to/from the neighbors.

Send: x
(m)
k,l ∀m ∈M, ∀l ∈ O(n)

θ
(m)
k,n ∀m ∈M

Receive: x
(m)
k,l ∀m ∈M, ∀l ∈ I(n)

θ
(m)

l−
∀m ∈M, ∀l ∈ I(n)

3. Evaluate equations for k + 1 and for ∀l ∈ O(n) and ∀m ∈M:

x
(m)
k+1,l =

[
x
(m)
k,l − α

(
c′l + θ

(m)

k,l+
− θ(m)

k,n + λk,l + 2ε(x
(m)
k,l − x

′′(m)
k,l )

) ]+
x
′′(m)
k+1,l = x

′′(m)
k,l + 2αε(x

(m)
k,l − x

′′(m)
k,l )

zk+1,l =
[
zk,l − α

(
λk,l + 2ε(zk,l − z′′k,l)

) ]+
z′′k+1,l = z′′k,l − α

(
2ε(zk,l − z′′k,l)

)
θ
(m)
k+1,n = θ

(m)
k,n + α(

∑
i∈I(n)

x
(m)
k,i −

∑
i∈O(n)

x
(m)
k,i − ~s

(m)
out,n + ~s

(m)
in,n)

λk+1,l = λk,l + α(
∑

m∈M
x
(m)
k,l + zk,l − µl)

(3.3.15)

4. k = k + 1, go to step 2 and start a new iteration loop.

Table 3.3.1: OLDRAi: Distributed Routing Algorithm executed in node n

Each node n is responsible for computation of the flow volume of the links
leaving the node n and for computation of the corresponding dual variables.

Therefore, node n computes x
(m)
k+1,l and x

′′(m)
k+1,l for all l ∈ O(n) and all m ∈M,

zk+1,l and z′′k+1,l and λk+1,l for all l ∈ O(n) and θ
(m)
k+1,n for all m ∈M.

The algorithm for node n is presented in Table 3.3.1. In step 1, the
algorithm initializes the variables. In steps 2 the node communicates the
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variables to the neighbor nodes. In step 3 the node computes new values of
the k-th iteration.

In (3.3.15), node n computes x
(m)
k+1,l for all links leaving node n. It is a

function of the local variables x
(m)
k,l , x

′′(m)
k,l , λk,l, θ

(m)
k,n and the variables θ

(m)
k,l+

of the neighbor nodes. Similarly, the computation of the others variables is
a function of the local variables and the variables of the neighbor nodes that
are within one hop communication distance.

3.3.2 Experiments

To demonstrate the behavior of OLDRAi and to experimentally verify its
convergence, we present several experiments experiments in Matlab. The
experiments are based on the same experimental model, as the previous ex-
periments, with some small adjustments for the OLDRAi algorithm. We
have focused on problem, where for each communication demand one node
is supposed to send data flow to one sink node (i.e. multi-commodity mono-

source, mono-sink problem). s
(m)
in,n1

= 1 for the source node n1 and s
(m)
out,n2

= 1
for the sink node n2 of the communication demand m.

The random networks for the experiments have been constructed as fol-
lows: We consider a square field of size [size × size]. The size is changing
during the experiments. One node is randomly placed into each [1 × 1]
sub-square and the communication distance is set to 1.5 (i.e. node n1 can
communicate with node n2, if and only if their Euclidean distance is less
than 1.5). Such a network is close to the “unit-disk network” [Rese 06]. The
communication costs ~c′ per transmitted data flow unit have been set as the
power of the distance between the nodes. The link capacities have been set
to one µl = 1. The constants of the algorithm have been set as: α = 0.03,

ε = 0.3. The initial values x
(m)
start,l, x

′′(m)
start,l, θ

(m)
start,n have been set to 0 and

zstart,l = µl and z′′start,l = µl for all experiments except 3.3.2.2. Only feasible
problems are used.

During the experiments we evaluate the number of iterations k needed
to achieve the optimal solution as a number of iterations needed to achieve
less than 0.01% deviation of the objective function from the optimal value,
less than 0.01% communication capacity violation and less than 0.01% flow
conservation violation during last 100 iterations. (the optimal value was
computed separately by a centralized algorithm for evaluation purposes only)
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Fig. 3.3.1: OLDRAi: Optimal data flow routing (multi-commodity, mono-source,
mono-sink problem)

3.3.2.1 Example

To present the final routing and the progress of the Lagrangian function
during the computation of OLDRAi, we have performed an experiment based
on the network described above. The field size has been set to 10 (i.e. 100
nodes in the network) and the number of communication demands has been
set to 10.

The optimal data flow routing is shown in Figure 3.3.1. The progress of
the Lagrangian function (3.3.5) and its optimal value are presented in Figure
3.3.2.

On the progress of the Lagrangian function, the algorithm convergence
can be observed as the difference from its optimal value. Unfortunately, the
progress of the Lagrangian function is not generally monotonic, which makes
the proof of the algorithm convergence more difficult.

The difference between TLDRA and OLDRAi algorithms is visible from
progress of the Lagrangian functions in Figures 3.3.2 and 3.2.3.
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Fig. 3.3.2: OLDRAi: Progress of the Lagrangian function (3.3.5)

3.3.2.2 Algorithm Convergence

To experimentally verify the algorithm convergence, we have preformed a
set of experiments with random starting points on random networks.The
field size has been set to 10. There are 10 communication demands in the
network. The initial values have been set randomly from intervals: x

(m)
start,l ∈

〈0, 2〉, x′′(m)
start,l ∈ 〈0, 2〉, zstart,l ∈ 〈0, 2〉, z

′′
start,l ∈ 〈0, 2〉, θ

(m)
start,n ∈ 〈−20, 20〉

and λ
(m)
start,l ∈ 〈−20, 20〉. The intervals have been chosen as double value of

maximum/minimum of typical optimal values.

The algorithm has been run 2800 times on random networks and the
results are presented in Figure 3.3.3. There is number of iterations placed
on the horizontal axis and number of experiments which has been finished
before the number of iterations on the vertical axis.

This experiment provides an important practical verification of the theo-
retical proof of the algorithm convergence. It can be seen, that approximately
95% of the experiments have been finished in 20000 iterations. It is obvious,
that the number of the iterations is too big for the practical implementation
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Fig. 3.3.3: OLDRAi: Algorithm convergence with random starting points.

of the algorithm. However, the main aim of this work was to introduce a new
approach for distributed routing algorithms.

3.3.2.3 Number of Iterations

To demonstrate the statistical behavior of the algorithm, we have performed
two tests. In the first one we have gradually increased the field size from 3 to
13 (i.e. from 9 to 169 nodes) for 10 communication demands. In the second
one we have gradually increased the number of communication demands for
field size 10. The computation has been repeated, on random networks, 300
times for each field size and each number of demands.

The results have been evaluated as a maximum, average and minimum
number of iterations needed to achieve the optimal value and it is presented
in Figure 3.3.4 for variable field size and in Figure 3.3.5 for variable number
of demands.

The important outcome of this experiment is the observation, that the
number of the iterations is approximately linear. It follows, that the algo-
rithm is well applicable to a big networks with many communication de-
mands.
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Fig. 3.3.4: OLDRAi: Number of iterations in relation to the number of nodes.
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Fig. 3.3.5: OLDRAi: Number of iterations in relation to the number of communi-
cation demands.
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3.3.3 Proof of the Algorithm Convergence

To prove the convergence of the algorithm presented in Table 3.3.1 for α→ 0
and α > 0 we proceed as follows. We formally rewrite Equations (3.3.13) into
more suitable form. Then we define a merit function Pk such that Pk = 0
for optimal solution and show that Pk is non-increasing. Next we show for
feasible problems that, if Pk is non-decreasing for all k ≥ k0, the solution in
k0-th iteration is the optimal solution of the problem. We use a marking πk,i,

∇xL̃k,i, [AT (A~xk −~b)
]
i

to denote i-th component of vectors. Let us remind

that ε > 0, ~x ≥ ~0, ~c ≥ ~0 and that the Slater’s conditions holds for problem
(3.3.4). First we define variable ~πk:

~πk =
∂L

∂~x
− ~xk

α
= ~c+AT ~θk + 2ε(~xk − ~x′′k)−

~xk
α

(3.3.16)

We rewrite Equations (3.3.13) into a more suitable form as:

~xk+1 = ~xk − α∇xL̃k
~x′′k+1 = ~x′′k − α∇x′′L̃k
~θk+1 = ~θk + α(A~xk −~b)

(3.3.17)

∇xL̃k,i =

{
ci + [AT ~θk]i + 2ε(xk,i − x′′k,i) for: πk,i ≤ 0
xk,i
α for: πk,i > 0

(3.3.18)

∇x′′L̃k,i = −2ε(xk,i − x′′k,i) (3.3.19)

It can be easily verify, that Equations (3.3.17) are identical with
Equations (3.3.13). We can define a column change vector ~dk as
~dk = α[−∇xL̃Tk ,−∇x′′L̃Tk , (A~xk −~b)T ]T . For future use we express the second
differentiation of the L̃k:

∇2
xxL̃k,i =

{
2ε for: πk,i ≤ 0
1
α for: πk,i > 0

∇2
xx′′L̃k,i =

{
−2ε for: πk,i ≤ 0
0 for: πk,i > 0

(3.3.20)

∇2
x′′x′′L̃k,i = +2ε ∇2

x′′xL̃k,i = −2ε (3.3.21)
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We define the merit function Pk as:

Pk = 0.5|∇xL̃k|2 + 0.5|∇x′′L̃k|2 + 0.5|A~xk −~b|2 (3.3.22)

According to Karush-Kuhn-Tucker conditions (see e.g.[Boyd 04], [Bert 99])
if Pk = 0 the solution in the k-th iteration of the algorithm is the optimal
solution of problem (3.3.4). Gradient of the merit function Pk is:

∇Pk =

 ∇2
xxL̃k∇xL̃k +∇2

x′′xL̃k∇x′′L̃k +AT (A~xk −~b)
∇2
xx′′L̃k∇xL̃k +∇2

x′′x′′L̃k∇x′′L̃k
A∇xL̃k

 (3.3.23)

For α→ 0 we can express one iteration step of Equation (3.3.17) and modify
using Equations (3.3.20) and (3.3.21):

~dTk∇Pk = α
(
−∇xL̃Tk∇2

xxL̃k∇xL̃k −∇xL̃Tk∇2
x′′xL̃k∇x′′L̃k

−∇xL̃TkAT (A~xk −~b)−∇x′′L̃Tk∇2
xx′′L̃k∇xL̃k

−∇x′′L̃Tk∇2
x′′x′′L̃k∇x′′L̃k + (A~xk −~b)TA∇xL̃k

)
=

= −2αε
(
∇xL̃Tk I ′k∇xL̃k −∇xL̃Tk I ′k∇x′′L̃k −∇x′′L̃Tk I ′k∇xL̃k

+∇x′′L̃Tk I ′k∇x′′L̃k
)

−α
(
1
α∇xL̃

T
k I
′′
k∇xL̃k − 2ε∇xL̃Tk I ′′k∇x′′L̃k +∇x′′L̃Tk I ′′k∇x′′L̃k

)
=

= −2αε
(
∇xL̃k −∇x′′L̃k

)T
I ′k
(
∇xL̃k −∇x′′L̃k

)
−2αε

(
∇xL̃Tk I ′′k∇xL̃k −∇xL̃Tk I ′′k∇x′′L̃k +∇x′′L̃Tk I ′′k∇x′′L̃k

)
−
(
1− 2αε

)
∇xL̃Tk I ′′k∇xL̃k

(3.3.24)

I ′k,i,j =

{
1, i = j and πk,i ≤ 0
0, otherwise

I ′′k,i,j =

{
1, i = j and πk,i > 0
0, otherwise

(3.3.25)

From Equation (3.3.24) results that ~dTk∇Pk ≤ 0 and then the merit function
Pk is non-increasing during the algorithm for some α > 0 and α ≤ 1/(2ε).
For non-decreasing merit function Pk (i.e. ~dTk∇Pk = 0 for ∀k≥k0) we can
write from Equation (3.3.24):

∇xL̃k,i −∇x′′L̃k,i = 0 for πk,i ≤ 0

∇xL̃k,i = ∇x′′L̃k,i = 0 for πk,i > 0
(3.3.26)



3.3 One Loop Distrib. Routing Algorithm with Incremental flow update 77

From Equations (3.3.26), (3.3.19) and (3.3.17) holds:

∇xL̃k = ∇x′′L̃k = ∇x′′L̃k+1 = ∇xL̃k+1 (3.3.27)

It means, that if ∃k≥k0 : πk,i > 0 then ∇xL̃k,i = ∇x′′L̃k,i = 0 for ∀k≥k0 . From
Equations (3.3.27), (3.3.18) and (3.3.17) we can write for all components i
where holds πk,i ≤ 0: [

AT (A~xk −~b)
]
i

= 0 (3.3.28)

From Equations (3.3.16) and (3.3.17)

πk+1,i = πk,i + α∇xL̃k,i +
[
AT (A~xk −~b)

]
i

(3.3.29)

and according to Equations (3.3.28) and (3.3.27) it folows:

∇xL̃k ≤ ~0 ∀k≥k0 (3.3.30)

We can write:

∇xL̃kAT
(
A~xk+1 −~b

)
= ∇xL̃kAT

(
A~xk −~b− αA∇xL̃k

)
= (3.3.31)

= ∇xL̃kAT
(
A~xk −~b

)
− α∇xL̃TkATA∇xL̃k = 0

Using Equations (3.3.26) and (3.3.28) we get: ∇xL̃kAT
(
A~xk − ~b

)
= 0 and

then result of Equation (3.3.31) is:

∇xL̃TkAT = 0 (3.3.32)

Using Equations (3.3.18), (3.3.26) (3.3.19) (3.3.32) we can proceed:

0 ≤ ∇xL̃Tk∇xL̃k = ∇xL̃Tk
(
~c+AT ~θk + 2ε(~xk − ~x′′k)

)
= ∇xL̃Tk

(
~c−∇xL̃k

)
≤ 0

(3.3.33)
From Equation (3.3.33) follows that for non-decreasing merit function Pk (i.e.
~dTk∇Pk = 0 for ∀k≥k0) holds:

∇xL̃k = ∇x′′L̃k = 0 (3.3.34)

Consider problem (3.3.4) with both optimization variables x, x′′. Under the
condition (3.3.34) we can write a dual function of this problem as:

g(~θk) = min
~x≥~0,~x′′

L(~x, ~x′′, ~θk) =

=
∑

m∈M

(
~cT~xk0 + ε(~xk0 − ~x′′k0)T (~xk0 − ~x′′k0) + ~θ

(m)T

k (A~xk0 −~b)
) (3.3.35)
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Then for k + 1 iteration holds:

g(~θk+1) = g(~θk) + α
∑
m∈M

(A~xk0 −~b)T (A~xk0 −~b) (3.3.36)

From Equation (3.3.36) and (3.3.34) follows that for (A~xk0 −~b) 6= 0 holds:

if k → ∞ then g(~θk) → ∞. According to the duality gap theorem (see e.g.
[Bert 99]) holds max~θ g(~θ) ≤ min~x,~x′′∈S f(~x, ~x′′), where f(~x, ~x′′) represents
the objective function and S a set of feasible solutions. It follows, if (A~xk0 −
~b) 6= 0 and the merit function (3.3.23) is not-decreasing then the original
problem is not feasible. It follows for feasible problems:

(A~xk0 −~b) = 0 ∀k≥k0 (3.3.37)

We have presented a merit function Pk which is not-increasing during the
algorithm for some small α and which is equal to zero Pk = 0 for optimal
feasible solution. Next, we have shown for feasible problems that if the merit
function Pk is not-decreasing then the solution ~x = ~x′′ is the optimal solution
of the original problem.
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3.4 One Loop Distributed Routing Algorithm with
Optimal flow update

This section introduces a different one loop distributed routing algorithm,
called One Loop Distributed Routing Algorithm with Optimal flow update
(OLDRAo). It is based on the algorithm TLDRA from Section 3.2 and it is
adjusted by a similar approach as the OLDRAi in Section 3.3. The algorithm
differs from the OLDRAi in the update of the flow variable x, which is directly
set to the optimal value in each iteration of the algorithm. We focus on the
node capacity case in this section.

3.4.1 Mathematical Derivation of the One Loop Distributed
Routing Algorithm with Optimal flow update

We use the same equality form for the problem description (3.3.1) as in
previous Section 3.3, which has been adjusted by the proximal-point method
(3.1.2):

min
~x′′

min
~x

~cT~x+ ε(~x− ~x′′)T (~x− ~x′′)
subject to:

A~x = ~b

~x ≥ ~0

(3.4.1)

where ε > 0.

Only matrix A differs from the (3.3.2). It is changed for the node capacity
problem:

A =


A′ 0 0 0

0
. . . 0

...
0 0 A′ 0
D D D I

 (3.4.2)

where D is defined according to (3.2.16) and A′ = (A+ −A−).

Again, for optimal solution of problem (3.4.1) holds ~x = ~x′′. The routing
problem has been separated into two nested subproblems. The internal sub-
problem is minimization over the variable ~x and it is strictly convex. The



80 Chapter 3 Distributed Routing Algorithm

outer subproblem minimizes the internal one by the proximal-point variable
~x′′.

3.4.1.1 Dual Problem

To solve the internal subproblem of (3.4.1) (minimization over the variable ~x)
we present its dual problem, which allows to derive the distributable gradient
algorithm. The Slater’s conditions (see e.g. [Boyd 04]) hold for problem
(3.4.1).

The dual problem U(~x′′), dual function W (~x′′, ~θ) and Lagrangian function
L(~x, ~x′′, ~θ) are the same as in Section 3.3.1.1:

U(~x′′) = max
~θ

W (~x′′, ~θ) = max
~θ

min
~x≥~0

L(~x, ~x′′, ~θ) (3.4.3)

According to gradient of Lagrangian function (3.3.7), the minimizer of
L(~x, ~x′′, ~θ) over variable x is:

~xmin =
[
~x′′ − 1

2ε
(~c+AT ~θ)

]+
(3.4.4)

where symbol [..]+ denotes a positive or zero value in each component of
vector [..]+ = max(~0, ..).

The gradients of the dual function W (~x′′, ~θ) and the dual problem U(~x′′)
are:

∇θW (~x′′, ~θ) = A~xmin −~b (3.4.5)

∇x′′U(~x′′) = ∇x′′L(~xmin, ~x
′′, ~θmax) = −2ε(~xmin − ~x′′) (3.4.6)

Variable ~θmax maximizes the dual function W (~x′′, ~θ) for a given ~x′′.

3.4.1.2 Dual Gradient Algorithm

The routing problem (3.4.1) can be written as:

min
~x′′

max
~θ

min
~x≥~0

L(~x, ~x′′, ~θ) (3.4.7)

Similarly as in Section 3.2.1.2 we define a gradient algorithm with two nested
loops. The internal loop solves the dual problem U(~x′′) using the gradient
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(3.4.5). The outer loop minimizes problem (3.4.7) over the proximal-point
variable ~x′′ using the gradient (3.4.6).

LOOP 1
LOOP 2

~x =
[
~x′′ − 1

2ε(~c+AT ~θ)
]+

~θ = ~θ + α(A~x−~b)
END 2
~x′′ = ~x′′ + 2αε(~x− ~x′′)

END 1

(3.4.8)

α > 0 is a constant step size of the algorithm.
To derive the distributed routing algorithm, we join both loops of the

gradient algorithm into only one loop, where we update all the variables
~x′′, ~θ, ~x simultaneously. Using Equations (3.4.4), (3.4.5), (3.4.6) we derive
one iteration of the algorithm as:

~xk =
[
~x′′k −

1
2ε

(
~c+AT ~θk

)]+
~θk+1 = ~θk + α(A~xk −~b)
~x′′k+1 = ~x′′k + 2αε(~xk − ~x′′k)

(3.4.9)

where variable k denotes the iteration number. The proof of the algorithm
convergence is not a trivial problem and its simplified version is presented in
Section 3.4.3. A necessary condition for the algorithm convergence assumed
in the proof is α < 1/2ε. We have performed several simulation experiments
to test the algorithm convergence in Section 3.4.2.2.

There are two main differences between the OLDRAo and OLDRAi,
which can be seen from Equations (3.4.9) and (3.3.13). The flow variable
~x is set directly to optimal value in OLDRAo while in OLDRAi it is changed
incrementally. The second difference is in the update of the variables ~θ and
~x′′. While the algorithm OLDRAi uses the variable ~x from previous itera-
tion, the algorithm OLDRAo uses the variable ~x which has been computed
in the actual iteration. The OLDRAo algorithm needs less iterations than
OLDRAi to converge, according to our experiments (see Section 3.4.2.2 and
3.4.2.4).

As for the OLDRi algorithm, the variables ~x′′0, ~θ0 are set to arbitrary
initial values for the OLDRAo. The closer the values are to the final solution,
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the faster the algorithm converges. This property can be used in the case
of minor changes of the network structure during its operation or in case
of a precomputed routing e.g. based on Dijkstra’s algorithm. For variable
initialization see Section 3.4.1.4 and for experimental verification see Section
3.4.2.3.

3.4.1.3 Distributed Algorithm

To derive the distributed algorithm for one node, we proceed as in Section
3.3.1.3. We rewrite Equations (3.4.9) using definitions (3.3.2), (3.3.3) and
(3.3.14).

The presented distributed algorithm is running on each node in the net-
work and it is synchronized by the communication between the neighboring
nodes. The algorithm for node n is presented in Table 3.4.1.

We use marking x
(m)
k,i , x

′′(m)
k,i , θ

(m)
k,i , ci etc. to denote the i-th component

of the corresponding vector.

Due to the structure of matrix A and vectors ~xk, ~x
′′
k,
~b, ~θk we rewrite

the expressions (3.4.9) in order to compute the flow of the communication
demand m in link l into form of Equations (3.4.10) and (3.4.11). The expres-
sion l− denotes the index of the start node of link l and l+ denotes the index
of the end node of link l.

Each node n is responsible for the computation of the flow volume of
the links leaving node n and for the computation of the corresponding dual

variables. Therefore, node n computes x
(m)
k,l and x

′′(m)
k+1,l for all l ∈ O(n) and

all m ∈M, θ
(m)
k+1,n for all m ∈M and zk,n, z′′k+1,n and λk+1,n.

The algorithm for node n (Table 3.4.1) works as follows: In step 1, the
algorithm initializes the variables. In steps 2 and 4 the node communicates
the variables with the neighbor nodes. In steps 3 and 5 the node computes
the new values of the k-th iteration.

In (3.4.10), node n computes x
(m)
k,l for all links leaving node n. It is the

function of the local variables x
′′(m)
k,l , λk,n, θ

(m)
k,n and the variables θ

(m)
k,l+

of the

neighbor nodes. Similarly, the computation of the other variables in (3.4.11)
is the function of the local variables and the variables of the neighbor nodes
that are within one hop communication distance.
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1. Initialize the variables:

x
′′(m)
0,l = x

′′(m)
start,l ∀m ∈M ∀l ∈ O(n)

λ0,n = λstart,n

θ
(m)
0,n = θ

(m)
start,n ∀m ∈M

z′′0,n = z′′start,n

k = 0

2. Send/receive the variables to/from the neighbors.

Send: θ
(m)
k,n ∀m ∈M

Receive: θ
(m)

l+
∀m ∈M, ∀l ∈ O(n)

3. Evaluate equations for x
(m)
k,l and zk,n for ∀l ∈ O(n), and ∀m ∈M:

x
(m)
k,l =

[
x
′′(m)
k,l − 1

2ε

(
c′l + θ

(m)

k,l+
− θ(m)

k,n + λk,n

) ]+
zk,n =

[
z′′k,n − 1

2ε
λk,n

]+ (3.4.10)

4. Send/receive the variables to/from the neighbors.

Send: x
(m)
k,l ∀m ∈M, ∀l ∈ O(n)

Receive: x
(m)
k,l ∀m ∈M, ∀l ∈ I(n)

5. Evaluate equations for k + 1 and for ∀l ∈ O(n) and ∀m ∈M:

θ
(m)
k+1,n = θ

(m)
k,n + α(

∑
i∈I(n)

x
(m)
k,i −

∑
i∈O(n)

x
(m)
k,i − ~s

(m)
out,n + ~s

(m)
in,n)

λk+1,n = λk,n + α(
∑

i∈O(n)

∑
m∈M

x
(m)
k,i + zk,n − µn)

x
′′(m)
k+1,l = x

′′(m)
k,l + 2αε(x

(m)
k,l − x

′′(m)
k,l )

z′′k+1,n = z′′k,n + 2αε(zk,n − z′′k,n)

(3.4.11)

6. k = k + 1, go to step 2 and start a new iteration loop.

Table 3.4.1: OLDRAo: Distributed Routing Algorithm executed in node n

3.4.1.4 Variables Initialization

As we have mentioned in Section 3.4.1.2 the number of iterations needed to
reach the optimal solution depends on the initial variables ~x′′0, ~θ0. We can say
that the closer the initial variables are to the final solution the less iterations
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are needed and we can base an initial heuristic on this fact.
First, let us suppose some initial variable ~θ0 which satisfies condition:(

~c+AT ~θ0
)
≥ ~0 (3.4.12)

According to Equations (3.4.9), such initial variables do not cause any
changes of the algorithm variables on its own. (i.e. there is no change of
the variables if ~x′′0 = ~0 and ~b = ~0)

According to the complementary slackness condition (for details see e.g.

[Bert 98]) for the optimal solution holds: if θ
(m)
k,l+
− θ(m)

k,l− < c′l then x
(m)
k,l = 0

and if θ
(m)
k,l+
− θ(m)

k,l− = c′l then x
(m)
k,l ≥ 0. Moreover, if θ

(m)
k,l+
− θ(m)

k,l− = c′l link
l is a part of the shortest path for demand m ∈ M. This fact leads us
directly to the Dijkstra’s algorithm which can be used in distributed way. If

for all sink nodes nout we set θ
(m)
0,nout

= 0 and for the other nodes n we set

θ
(m)
0,n = the shortest distance to the sink node, we get an initial setting, which

satisfies the condition (3.4.12). Moreover, this initial setting is much closer to

the optimal solution than setting θ
(m)
0,n = 0 for all ∀n,m. In Section 3.4.2.3 we

show several experiments to present the heuristic behavior in comparison with
the zero initial setting. Please notice, that due to the capacity constraints, the
heuristic solution is usually not equal to the final optimal solution. According
to our experiments it rapidly increases the algorithm convergence.

3.4.2 Experiments

This section aims to present the behavior of OLDRAo algorithm, to ex-
perimentally verify its convergence and to compare the OLDRAo and the
OLDRAi algorithms. The OLDRAi algorithm has been adjusted for the
node capacity constraints to be comparable with the OLDRAo algorithm.
The experiments have been performed in Matlab. We have focused on one-
to-one communication problem in this section (i.e. multi-commodity mono-

source, mono-sink problem). Therefore, s
(m)
in,n1

= 1 for the source node n1

and s
(m)
out,n2

= 1 for the sink node n2 of communication demand m.
The networks are constructed as in Sections 3.2.2 and 3.3.2: One node

is randomly placed into each [1 × 1] sub-squares of a [size × size] field.
The size is changing during the experiments. The communication distance
is set to 1.5 (i.e. node n1 can communicate with node n2, if and only if
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Fig. 3.4.1: OLDRAo: Optimal data flow routing (multi-commodity, mono-source,
mono-sink problem)

their Euclidean distance is less than 1.5). The communication costs ~c′ per
transmitted data flow unit have been set as the square power of the distance
between the nodes. In contrast to Sections 3.2.2 and 3.3.2, we use a node
communication capacity in this experiments. The node capacities have been
set as µl = 2. The constants of the algorithm have been set as: α = 0.03 and

ε = 0.3. The initial values x
′′(m)
start,l, θ

(m)
start,n have been set to 0 and z′′start,n = µl

for all experiments except 3.4.2.2 and 3.4.2.4.

The number of algorithm iterations k is evaluated in the experiments as a
number of iterations needed to achieve less than 1% deviation of the objective
function from the optimal value, less than 1% communication capacity viola-
tion and less than 1% flow conservation violation during last 500 iterations.
(the optimal value was computed separately by a centralized algorithm for
evaluation purposes only)
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Fig. 3.4.2: OLDRAo: Progress of the Lagrangian function (3.3.5)

3.4.2.1 Example

To present the OLDRAo algorithm routing and the progress of the La-
grangian function, we have performed an experiment based on the network
described above. The field size has been set to 10 (i.e. 100 nodes in the
network) and the number of communication demands has been set to 10.

The optimal data flow routing is shown in Figure 3.4.1. The progress of
the Lagrangian function (3.3.5) and its final optimal value are presented in
Figure 3.4.2.

As for the OLDRAi algorithm, on the progress of the Lagrangian func-
tion, the algorithm convergence can be observed as the difference from its
optimal value. Unfortunately, the progress of the Lagrangian function is not
generally monotonic, which makes the proof of the algorithm convergence
more difficult.

Several videos for presentation of the algorithm progress in time can be
found on author web-pages [Trdl 11].
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Fig. 3.4.3: OLDRAo: Algorithm convergence with random initial variables.

3.4.2.2 Algorithm Convergence

We have performed a set of experiments with random initial variables on
random networks to evaluate the algorithm convergence and to compare the
OLDRAi and the OLDRAo algorithms. The field size has been set to 10.
There are 10 communication demands in the network. The initial values
have been set randomly from intervals: x

′′(m)
start,l ∈ 〈0, 2〉, θ

(m)
start,n ∈ 〈−20, 20〉,

λ
(m)
start,n ∈ 〈−20, 20〉 and z′′start,l =∈ 〈0, 2〉. The intervals have been chosen as

double the value of maximum/minimum of typical optimal values.

The algorithm has been run 2000 times on random networks for the algo-
rithm OLDRAo and for the algorithm OLDRAi. The results are presented in
Figure 3.4.3. There is the number of iterations placed on the horizontal axis
and the number of experiments which has been finished before the number
of iterations on the vertical axis.

This experiment provides an important practical verification of the the-
oretical proof of the algorithm convergence. 95% of the experiments have
been finished in 10688 iterations for OLDRAo and in 11600 iterations for the
OLDRAi. The average improvement over all experiments of the algorithm is
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Fig. 3.4.4: OLDRAo: Number of iterations in relation to the number of nodes.
In black, for zero initial variables. In gray, for initialization according to Section
3.4.1.4.

1513 iterations.

3.4.2.3 Number of Iterations

To demonstrate the statistical behavior of the algorithm, we have performed
two tests. In the first one we have gradually increased the number of nodes
from 16 to 144 (i.e. field size from 4 to 12) for 10 communication demands.
In the second one we have gradually increased the number of communication
demands for field size 10 from 1 to 19. The computation has been repeated,
on random networks, 300 times for each number of nodes and number of
demands.

The results have been evaluated as a maximum, average and minimum
number of iterations needed to achieve the optimal value and it is presented
in Figure 3.4.4 for the variable number of nodes and in Figure 3.4.5 for the
variable number of demands. The data for the basic algorithm without the
initial heuristic (the initial variables have been set to zero) is in black and
the data for the algorithm with the initial heuristic from Section 3.4.1.4 is in
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munication demands. In black, for zero initial variables. In gray, for initialization
according to Section 3.4.1.4.

gray.
The important outcome of this experiment is the observation, that the

number of the iterations is approximately linear in relation to the number
of the nodes. It follows, that the algorithm is easy applied to big networks
with many nodes. The improvement gained by the initial heuristic can see
in Figures 3.4.4, 3.4.5.

3.4.2.4 Network Change

The advantage of the one-loop algorithm presented in this work is that it can
automatically adjust the routing in case of network structure changes. To
evaluate the algorithm behavior in this case, we simulated a dying node as
follows:

1. We generated a random network with communication demands and
found the optimal solution

2. In the original problem from step 1, we removed one node and measured
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Fig. 3.4.6: OLDRAo: Algorithm convergence for network change simulation.

the number of iterations to find the new optimal solution

3. We repeated step 2 on the original problem for 30 different nodes with
the largest data flows

We have performed this simulation for 2000 random networks (i.e. 2000×
30 = 60000 experiments). The network size has been set to 10 and there
have been 10 communication demands.

The results are presented in Figure 3.4.6. The number of iterations is
placed on the horizontal axis and the number of experiments which have
been finished before the number of iterations is placed on the vertical axis.
There is a comparison of the algorithm OLDRAo (in black) and the algorithm
OLDRAi (in gray).

The average difference in the number of iterations is 986. 95% of the
experiments have been finished in 5000 iterations for the algorithm OLDRAo
and in 6500 iterations for the algorithm OLDRAi. Moreover, only 29.0% of

the dual variables θ
(m)
k,n , and 5.0% of the primal variables x

(m)
k,l have been

changed during the experiments for OLDRAo. It can decrease the amount
of transmitted data.
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3.4.3 Proof of the Algorithm Convergence

We prove the convergence of the algorithm presented in Table 3.4.1 for α→ 0
and for 0 < α < 1/(2ε) as follows. First, we define a merit function Pk
such that Pk ≥ 0 and Pk = 0 for the optimal solution and we show that
Pk is non-increasing during the algorithm computation. Next, we assume
the merit function Pk to be non-decreasing for all k ≥ k0 and show, for
feasible problems, that for some k1 ≥ k0 we get the optimal solution. We
use marking xk,i, ∇xLk,i, [AT (A~xk −~b)

]
i

to denote the i-th component of the

vectors. We simplify the notation of Lk, Pk, ~dk etc. instead of Lk(xk, x
′′
k, θk),

Pk(xk, x
′′
k, θk) etc. for a more compact and transparent description. Let us

remind the reader that ε > 0, ~xk ≥ ~0, ~c ≥ ~0 and that according to Slater’s
conditions [Boyd 04] the duality gap is zero for our problem.
The Lagrangian function of problem (3.4.1) is:

Lk = ~cT~xk + ε(~xk − ~x′′k)T (~xk − ~x′′k) + ~θTk (A~xk −~b) (3.4.13)

We rewrite the algorithm Equations (3.4.9) into:

~xk =
[
~x′′k −

1
2ε

(
~c+AT ~θk

)]+
~θk+1 = ~θk + α∇θLk
~x′′k+1 = ~x′′k − α∇x′′Lk

(3.4.14)

It can be easy verify, that Equations (3.4.14) are identical with Equations
(3.4.9). We define two diagonal matrices I ′k and I ′′k as:

I ′k,i,j =

{
1, i = j and

[
~x′′k −

1
2ε

(
~c+AT ~θk

)]
i
> 0

0, otherwise
(3.4.15)

I ′′k,i,j =

{
1, i = j and

[
~x′′k −

1
2ε

(
~c+AT ~θk

)]
i
≤ 0

0, otherwise
(3.4.16)

Now we can write ~xk = I ′k
(
~x′′k −

1
2ε(~c + AT ~θk)

)
. Then by differentiations of

the Lagrangian function (3.4.13) we get:

∇x′′Lk = −2ε(~xk − ~x′′k) = I ′k(~c+AT ~θk) + I ′′k2ε~x′′k (3.4.17)

∇θLk = A~xk −~b (3.4.18)
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∇2
x′′x′′Lk = I ′′k2ε
∇2
x′′θLk = I ′kA

T
∇2
θx′′Lk = AI ′k
∇2
θθLk = − 1

2εAI
′
kA

T (3.4.19)

We define merit function Pk as:

Pk = 0.5|∇x′′Lk|2 + 0.5|∇θLk|2 (3.4.20)

According to the Karush-Kuhn-Tucker conditions (for details see [Boyd 04],
[Bert 99]) if Pk = 0 the solution in the k-th iteration of the algorithm is the
optimal solution of problem (3.4.1). The gradient of the merit function Pk
is:

∇Pk=

[
∇2
x′′x′′Lk∇x′′Lk +∇2

x′′θLk∇θLk
∇2
θx′′Lk∇x′′Lk +∇2

θθLk∇θLk

]
=

[
I ′′k2εLk∇x′′Lk + I ′kA

T (A~xk −~b)
AI ′k∇x′′Lk −

1
2εAI

′
kA

T (A~xk −~b)

]
(3.4.21)

We can define a column change vector as ~dk = α[−∇x′′LTk , (A~xk −~b)T ]T . For
α→ 0 we can express one iteration step of the merit function (3.4.20):

~dTk∇Pk = α
(
−∇x′′LTk 2εI ′′k∇x′′Lk −∇x′′LTk I ′kAT (A~xk −~b)

+ (A~xk −~b)TAI ′k∇x′′Lk −
1
2ε(A~xk −~b)

TAI ′kA
T (A~xk −~b)

)
= −α

(
∇x′′LTk 2εI ′′k∇x′′Lk + 1

2ε(A~xk −~b)
TAI ′kA

T (A~xk −~b)
)
≤ 0

(3.4.22)
From Equation (3.4.22), it results that ~dTk∇Pk ≤ 0. I.e. the merit function
Pk is non-increasing during the algorithm.

Let us assume, that there is a k0, such as the merit function Pk. is non-
decreasing for all ∀k≥k0 . (i.e. ~dTk∇Pk = 0 for ∀k≥k0) From Equation (3.4.22),
we can write for ∀k≥k0 :

I ′′k∇x′′Lk = ~0 ∀k≥k0
I ′kA

T (A~xk −~b) = ~0 ∀k≥k0
(3.4.23)

And it follows:
I ′′k~x

′′
k = ~0 ∀k≥k0 (3.4.24)
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Let us suppose for some k ≥ k0 that I ′k 6= I ′k+1 and for some index i
holds:

i :
[
~x′′k −

1

2ε

(
~c+AT ~θk

)]
i
> 0 and

[
~x′′k+1 −

1

2ε

(
~c+AT ~θk+1

)]
i
≤ 0 (3.4.25)

Then we can write from (3.4.25):[
~x′′k+1−

1

2ε

(
~c+AT ~θk+1

)]
i

=
[
~x′′k−

1

2ε

(
~c+AT ~θk

)
−α
(
~c+AT ~θk

)]
i
≤ 0 (3.4.26)

From (3.4.26) follows: [
~c+AT ~θk

]
i
> 0 (3.4.27)

Under the condition α < 1/(2ε) we write from Equations (3.4.25), (3.4.17)
and (3.4.14):

0<
[
~x′′k −

1

2ε

(
~c+AT ~θk

)]
i
<
[
~x′′k − α

(
~c+AT ~θk

)]
i
=
[
~x′′k − α∇x′′Lk

]
i
=~x′′k+1,i

(3.4.28)
It means ~x′′k+1,i 6= 0, which is in contradiction with the conditions (3.4.24)
and (3.4.23). It follows that the condition (3.4.25) cannot be satisfy for any
k ≥ k0.

Because there is no i satisfying condition (3.4.25) for ∀k≥k0 , we can
write:

rank|I ′k| ≤ rank|I ′k+1| ∀k≥k0 (3.4.29)

Moreover for all i which satisfy i :
[
~x′′k−

1
2ε

(
~c+AT ~θk

)]
i
> 0 for some k ≥ k0,

we get from Equation (3.4.28):[
~c+AT ~θk

]
i
≤ ~0 ∀k≥k0 (3.4.30)

And from (3.4.17) under the condition (3.4.30) and (3.4.24) we get:

∇x′′Lk ≤ ~0 ∀k≥k0 (3.4.31)

The result of Equation (3.4.29) is that, there is a finite number of changes
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of the matrices I ′k and I ′′k such as I ′k 6= I ′k+1 and I ′′k 6= I ′′k+1 for k ≥ k0. So
for some k1 ≥ k0 holds I ′k = I ′k+1 for all ∀k≥k1 . Based on this fact we can
express from Equations (3.4.14) ~xk+1 using (3.4.23) for all ∀k≥k1 :

~xk+1 = I ′k+1

[
~x′′k+1 −

1
2ε

(
~c+AT ~θk+1

)]
= I ′k

[
~x′′k −

1
2ε

(
~c+AT ~θk

)
− α∇x′′Lk − α

2εA
T (A~xk −~b)

]
= ~xk − α∇x′′Lk

(3.4.32)

and from (3.4.23) and (3.4.32) follows for all ∀k≥k1 :

0 = ∇x′′LTkAT (A~xk+1 −~b) = ∇x′′LTk
(
AT (A~xk −~b)− αATA∇x′′Lk

)
= α∇x′′LTkATA∇x′′Lk

(3.4.33)
From (3.4.33) we get a condition, which says that for all ∀k≥k1 the change of
variable ~x′′k is a circulation in the network:

A∇x′′Lk = ~0 ∀k≥k1 (3.4.34)

Based on (3.4.34), (3.4.23), (3.4.31) and ~c ≥ ~0 we write:

0 ≤ ∇x′′LTk∇x′′Lk = ∇x′′LTk (~c+AT ~θk) = ∇x′′LTk~c ≤ 0 (3.4.35)

And the result of (3.4.35) is:

∇x′′Lk = ~0 ∀k≥k1 (3.4.36)

To express (A~xk1 − ~b) consider problem (3.4.1) with both optimization
variables x, x′′. According to the Karush-Kuhn-Tucker conditions and
Equation (3.4.36) we can write a dual function of this problem. Please
notice that ~xk∇xLk = 0 for all ∀k≥k1 according to (3.4.36) and (3.4.17).

g(~θk)= min
~x≥~0,~x′′

L(~x, ~x′′, ~θk)=~cT~xk1 + ε(~xk1 − ~x′′k1)T (~xk1 − ~x′′k1) + ~θ
T

k (A~xk1 −~b)

(3.4.37)
Then for k + 1 iteration holds:

g(~θk+1) = g(~θk) + α(A~xk1 −~b)T (A~xk1 −~b) (3.4.38)
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From Equation (3.4.38), it follows that for (A~xk1 −~b) 6= 0 holds: if k → ∞
then g(~θk)→∞. According to the duality gap theorem (see e.g. [Bert 99]), it
holds: max~θ g(~θ) ≤ min~x,~x′′∈S f(~x, ~x′′), where f(~x, ~x′′) represents the primal

function and S a set of feasible solutions. It follows, if (A~xk1 −~b) 6= 0 and
the merit function (3.4.20) is non-decreasing then the original problem is not
feasible. It follows for feasible problems:

(A~xk −~b) = 0 ∀k≥k1 (3.4.39)

We have presented a merit function Pk which is non-increasing during the
algorithm for some α→ 0 and which is equal to zero Pk = 0 for the optimal
feasible solution. Next, we have shown for feasible problems that if the merit
function Pk is non-decreasing for ∀k≥k1 then according to (3.4.36) and (3.4.39)

the merit function Pk = 0 and the solution (~xk, ~x
′′
k,
~θk) is the optimal solution

of the original problem (3.4.1).

3.4.4 Open Issues

The distributed routing algorithms, which have been derived in this chapter,
are based on the sub-gradient method with a constant optimization step α. In
this section we briefly present a possible extension of the derived algorithms,
which is based on the Newton’s method and which can significantly improve
the algorithms convergence for dense networks, where each node has many
communication links. As the dense networks are quite common in the sensor
networks area, this extension can have a significant impact. We present our
preliminary experiments to show the extension potential.

Unfortunately, the Newton’s method cannot be directly used in this case,
because it would not allow deriving the in-network distributed algorithm.
However, the algorithm still can be adjusted by heuristic and approximations
based on the Newton’s method such as Regula falsi method (e.g. [Sigl 02]),
quasi-Newton methods, or diagonal approximation (e.g. [Bert 99]).

In this section we focus on the algorithm extension based on the diag-
onal approximation to Newton’s method [Bert 99] and on an experimental
verification of the algorithm convergence and its comparison to OLDRAo
algorithm.

We start with Equations (3.4.9) of the OLDRAo algorithm and adjust
them into new form:
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~xk =
[
~x′′k −

1
2ε

(
~c+AT ~θk

)]+
~θk+1 = ~θk +Q−1k (A~xk −~b)
~x′′k+1 = ~x′′k + 2αε(~xk − ~x′′k)

(3.4.40)

where the matrix Qk ∈ RN×N is a diagonal matrix:

Qk,n,n = max
(
α−1,

[(AI ′kA
T )]n,n

2ε

)
(3.4.41)

where I ′k is defined as:

I ′k,i,j =

{
1, i = j and

[
~x′′k −

1
2ε

(
~c+AT ~θk

)]
i
≥ 0

0, otherwise
(3.4.42)

Please note, that the expression
(AI′kA

T )
2ε = ∇θθW (~x′′, ~θ) and therefore the

diagonal components of the matrix Qk are equal to the diagonal components
of the Hessian matrix ∇θθW (~x′′, ~θ).

Moreover, according to the properties of the Diagonally Dominant Ma-
trices (for details see e.g. [Saad 03]) we can write for dense networks:

(
diag

( [(AAT )]n,n
2ε

))−1
· (AAT )

2ε
→ I

where diag(..) is a diagonal matrix.

The individual components of the matrix Qk can be easily computed di-
rectly in the corresponding nodes as the number of ”opened” communication
links (i.e. ~x′′k −

1
2ε

(
~c+AT ~θk

)
≥ 0).

We have performed a set of experiments with random initial variables
with the same parameters as in Section 3.4.2.2. The α = 0.1 for the extended
OLDRAo.

The algorithm has been run 2000 times on random networks for both
OLDRAo and for the extended OLDRAo. The results are presented in Figure
3.4.7. There is the number of iterations placed on the horizontal axis and
the number of finished experiments on the vertical axis.
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Fig. 3.4.7: Extended OLDRAo: Algorithm convergence with random initial vari-
ables and its comparison with OLDRAo.

This experiment provides practical verification of the algorithm conver-
gence. 95% of the experiments have been finished in 3637 iterations for ex-
tended OLDRAo and in 10283 iterations for the OLDRAo. The improvement
of the algorithm for 95% of experiments is more than 2.8 times. The average
improvement over all experiments is 4326 iterations, which is an improvement
bigger than 2.7 times.

According to these experiments, the algorithms convergence can be sig-
nificantly improved in the future work. However, a proper mathematical
derivation, proof of the algorithm convergence and more precise experimen-
tal verification are needed in this area. This section has been included into
this work to present the potential of the derived algorithm in terms of con-
vergence improvement and to suggest the future work in this area.
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3.5 Summary

In this chapter we have presented three distributed algorithms for the en-
ergy optimal data flow routing in sensor networks. The algorithms differ in
derivation approaches which lead to their different variants. The most ad-
vance algorithm is the OLDRAo which uses the basics from the other two
algorithms derivation and which has presented the best convergence.

We have described the routing problem as a multi-commodity network
flow optimization problem and used the dual decomposition method to math-
ematically derive the distributed algorithms. The algorithms do not need any
central computational node with knowledge about the whole network struc-
ture. This rapidly increases the robustness of the algorithms in the case of
partial network damage. The algorithms use only peer-to-peer communica-
tion between the neighboring nodes which allows the routing update using
only the local communication. We have performed several simulation experi-
ments to evaluate the algorithms behavior and to test their convergence. The
mathematical proofs of the algorithms convergence are presented.

The main purpose of this chapter was to present the basic concept of new
in-network distributed routing algorithms. From the experimental section it
is seen that the presented algorithms are not application ready because of
the high number of iterations, which would lead to high number of commu-
nications. However the main strength of the algorithms is not to find the
whole optimal routing in unknown networks, but to adapt the existing rout-
ing in case of local network changes (dead/new node, loss of connection, etc.)
where the number of data communications could be significantly decreased.
Moreover, the algorithm can easily adapt to slow network changes such as
slow communication costs or capacity changes and data volume changes.

As mentioned in Introduction, the other works from the area of net-
work utility maximization (NUM) concentrate only on the strictly convex
optimization problems, or they approximate the linear problems as strictly
convex. They fail in the case of linear objective functions. According to our
knowledge, this is the first work, which addresses and solves the problem of
the dual decomposition of NUMs for problems with linear objective func-
tions. Pleas note, that the algorithm for problems with the linear objective
function is more complex and that the linearity of the objective functions
makes the proof of the algorithm convergence more difficult in comparison
to the strictly convex cases.
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Unfortunately, as the presented approach of dual decomposition of the
routing problems in node-link form is a new technique, there are only few
works in this area at this moment. The most similar work can be found in
[Zhen 10]. However, it is focused on slightly different problems. It uses a
different energy consumption model and it is limited only on problems with
strictly convex objective functions. Our work is focused on the problems
with linear objective functions and presents different quality then [Zhen 10].
Due to the differences in the used models and algorithms derivations the
experimental comparison would have a disputable contribution and would be
strongly dependent on the chosen problems.

According to our preliminary experiments the number of iterations can
be significantly decreased in future work. The algorithm can be extended by
heuristics based on the partial knowledge about the network structure (e.g.
node geographical position) and heuristics based on Newton’s method. The
results of our preliminary testing in Section 3.4.4 indicate that the Newton’s
method based heuristics can decrease the number of iterations more then 2.7
times.

Considering the fact, that the algorithms are based on Linear program-
ming formulation, we believe that the principle of the algorithms and the
approaches used to their derivation can be used to solve many different prob-
lems in the sensor networks area, like resource sharing, network localization,
object tracking, etc.
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Chapter 4

Distributed Algorithms for
Real-Time Routing

4.1 Introduction

In this chapter, we propose a distributed algorithm, which computes the
energy optimal real-time routing without the need of any central computa-
tional or data point. It is based on the modified multi-commodity network
flow model for real-time routing which is described in Chapter 2. It uses the
fact that the problem definition after the network replication stays in the
form of network flow problem with side constraints. And that the side con-
straints are in form, which allows the problem distribution as an in-network
algorithm. We apply the distribution approach (Chapter 3) on the real-time
routing problem in this chapter. According to our knowledge, this work is
first, which solves the real-time routing problem with linear cost functions
and constant communication delays, using the dual decomposition.

4.1.1 Related Works

Beside the ad-hoc real-time routing algorithms like SPEED, RPAR and oth-
ers referenced in Section 2.1.2 which route the data according to actual pa-
rameters (like time remaining to the deadline, message priority, network load
etc.), there are several works, which focus on the algorithm distributed from
their centralized mathematical description and use the precomputed routing

101
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paths. Some of the easy algorithms are based e.g. on the Dijkstra’s algo-
rithm, or on the network flooding principles (see e.g. [Karl 05]). The more
sophisticated algorithms are based on the convex optimization theory and
use the dual decomposition to derive their distributed version.

In [Zhen 10] the authors use the network flow problem formulation in
node-link form with strictly convex objective function to derive the dis-
tributed routing algorithm. Further, the authors extend the algorithm to
optimize a queuing delay which is strictly convex function of the total flow
routed through the links. This approach ignores the constant communication
delay, which is independent on the volume of the routed flow. In case of a
high flow fragmentation this approach cannot ensure the messages deadlines
satisfaction. Moreover, the queuing delay optimization cannot be used in the
case of pre-scheduled communication based on the TDMA principles (e.g.
GTS allocation in IEEE 802.15.4).

In [Anas 08] the authors derive a distributed routing algorithm, where
they minimize communication delay, which is caused by computation in the
nodes. The authors focus on the time needed for the messages decoding
and encoding in the nodes to check and regenerate the corrupted data. The
objective function of this problem is linear. The authors use the quadratic
approximation of the objective function to derive the distributed algorithm.

The distributed algorithms based on the node-path routing formulation
[Tsit 86, Low 99], which have been mentioned in Section 3.1.1 can be di-
rectly adopted for the real-time routing problems. The algorithms optimize
the data flow routed through selected paths. If only paths with acceptable
communication delay are chosen, the algorithms can ensure the maximum
communication delay. However, the node-path problem formulation is well
usable only for networks with small number of possible routing paths. For
the multi-hop networks with high density like sensor networks a different
approach has to be derived.

4.2 Mathematical Derivation of the Real-Time
Distributed Routing Algorithm

To derive the distributed algorithm for Real-time routing, we use the multi-
commodity network flow model for real-time routing which is derived in
Chapter 2 and its constraints are described by Equations (2.3.4). The model
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is written as a Linear Programming problem:

min
~x,~s

~cT
∑

m∈M

d(m)∑
w=1

~x(m,w)

subject to:

A−~x(m,w+1) + ~s(m,w) = A+~x(m,w) + ~s
(m,w)
in ∀m ∈M, 0 ≤ w ≤ d(m)

D
∑

m∈M

d(m)∑
w=1

~x(m,w) ≤ ~µ

d(m)∑
w=0

~s(m,w) = ~s
(m)
out ∀m ∈M

~x(m,w) ≥ ~0; ~s(m,w) ≥ ~0 ∀m ∈M, 0 ≤ w ≤ d(m)

~x(m,0) = ~x(m,d
(m)+1) = ~0 ∀m ∈M

(4.2.1)

To decompose the routing algorithm, we use the proximal-point method
(3.1.2) to modify the problem into strictly convex form, which allows the us-
age of the gradient methods. Moreover, we rewrite the problem into equality
form for a more transparent presentation. The new model can be described
as a convex optimization problem:

min
~x′′,~z′′,~s′′

min
~x,~z,~s

g(~x, ~x′′, ~s, ~s′′, ~z, ~z′′)

subject to:

A−~x(m,w+1) + ~s(m,w) = A+~x(m,w) + ~s
(m,w)
in ∀m ∈M, 0 ≤ w ≤ d(m)

D
∑

m∈M

d(m)∑
w=1

~x(m,w) = ~µ− ~z

d(m)∑
w=0

~s(m,w) = ~s
(m)
out ∀m ∈M

~x(m,w) ≥ ~0; ~s(m,w) ≥ ~0 ∀m ∈M, 0 ≤ w ≤ d(m)

~x(m,0) = ~x(m,d
(m)+1) = ~0 ∀m ∈M

~z ≥ ~0;
(4.2.2)
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where the objective function g(~x, ~x′′, ~s, ~s′′, ~z, ~z′′) is:

g(~x, ~x′′, ~s, ~s′′, ~z, ~z′′) = ~cT
∑

m∈M

d(m)∑
w=1

~x(m,w)

+ ε(~z − ~z′′)T (~z − ~z′′)

+ ε
∑

m∈M

d(m)∑
w=1

(~x(m,w) − ~x′′(m,w))T (~x(m,w) − ~x′′(m,w))

+ ε
∑

m∈M

d(m)∑
w=0

(~s(m,w) − ~s′′(m,w))T (~s(m,w) − ~s′′(m,w))

(4.2.3)

We have added slack variables ~z ≥ ~0 into problem (4.2.1) to convert the
problem into the equality form. The variables ~x′′, ~s′′ and ~z′′ in Equation
(4.2.3) are the proximal-point variables, which has been added to convert
the objective function from linear to strictly convex. Please notice that the
set of optimal solutions for problem (4.2.2) is the same as for the original
problem (4.2.1). For the optimal solution of problem (4.2.2) holds ~x = ~x′′,
~s = ~s′′, ~z = ~z′′. In this way the routing problem has been separated into two
nested subproblems. The internal subproblem is the minimization over the
variables ~x, ~s, ~z and it is strictly convex. The outer subproblem minimizes
the internal one by the proximal-point variables ~x′′, ~s′′, ~z′′.

4.2.1 Dual Problem

To solve the internal subproblem of (4.2.2) (minimization over the vari-
ables ~x, ~z,~s) we present its dual problem, which allows one to derive the
distributable gradient algorithm. According to Slater’s conditions (see e.g.
[Boyd 04]) the optimal solutions of the dual and primal problems have the
same optimal values in this case.
The Lagrangian function of problem (4.2.2) is:

L(~x, ~x′′, ~s, ~s′′, ~z, ~z′′, ~θ, ~λ,~γ) = g(~x, ~x′′, ~s, ~s′′, ~z, ~z′′)

+
∑

m∈M

d(m)∑
w=0

~θ(m,w)
T

(A−~x(m,w+1)−A+~x(m,w)+~s(m,w)−~s(m,w)in )

+~λT (D
∑

m∈M

d(m)∑
w=1

~x(m,w) + ~z − ~µ)

+~γ(m)T (
d(m)∑
w=0

~s(m,w) − ~s(m)
out )

(4.2.4)
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where ~x ≥ ~0, ~s ≥ ~0 and ~z ≥ ~0 are the primal variables and ~θ, ~λ and ~γ are
the dual variables. The dual function W is:

W (~x′′, ~s′′, ~z′′, ~θ, ~λ,~γ) = min
~x,~s,~z≥~0

L(~x, ~x′′, ~s, ~s′′, ~z, ~z′′, ~θ, ~λ,~γ) (4.2.5)

The minimizers of the dual function (4.2.5) are:

~x
(m,w)
min =

[
~x′′(m,w) − 1

2ε(A
−T ~θ(m,w−1) −A+T ~θ(m,w) +DT~λ+ ~c)

]+
~zmin =

[
~z′′ − 1

2ε
~λ
]+

~s
(m,w)
min =

[
~s′′(m,w) − 1

2ε~γ
(m)
]+

(4.2.6)
where symbol [..]+ denotes a positive or zero value in each component of

vector [..]+ = max(~0, ..) and ~x(m,0) = ~x(m,d
(m)+1) = ~0.

The dual problem of the internal subproblem of (4.2.2) is:

U(~x′′, ~s′′, ~z′′) = max
~θ,~λ,~γ

W (~x′′, ~s′′, ~z′′, ~θ, ~λ,~γ) (4.2.7)

The gradients of the dual function (4.2.5) are:

∇θW (m,w) = A−~x
(m,w+1)
min −A+~x

(m,w)
min +~s

(m,w)
min −~s

(m,w)
in

∇λW (m) = D
∑

m∈M

d(m)∑
w=1

~x
(m,w)
min + ~zmin − ~µ

∇γW =
d(m)∑
w=0

~s
(m,w)
min − ~s(m)

out

(4.2.8)

The gradients of dual problem (4.2.7) are:

∇x′′U (m,w) = −2ε(~x
(m,w)
min − ~x′′(m,w))

∇~z′′U = −2ε(~zmin − ~z′′)
∇~s′′U (m,w) = −2ε(~s

(m,w)
min − ~s′′(m,w))

(4.2.9)

4.2.2 Dual Gradient Algorithm

Using the dual problem (4.2.7) and the dual function (4.2.5) we rewrite the
routing problem (4.2.2) into form:

min
~x′′,~z′′,~s′′

max
~θ,~λ,~γ

min
~x,~s,~z≥~0

L(~x, ~x′′, ~s, ~s′′, ~z, ~z′′, ~θ, ~λ,~γ) (4.2.10)
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A gradient algorithm created from problem (4.2.10) consists of 2 nested loops
and it is described as (4.2.11). The internal loop solves the dual problem
(4.2.7) using the gradients (4.2.8). The outer loop minimizes problem (4.2.10)
over the proximal-point variables using gradients (4.2.9).

LOOP 1
LOOP 2

Compute the ~xmin, ~zmin, ~s
(m,w)
min

according to Equations (4.2.6),
and compute:

~θ(m,w) = ~θ(m,w) + α∇θW (m,w)

~γ(m) = ~γ(m) + α∇γW (m)

~λ = ~λ+ α∇λW
END 2

~x′′(m,w) = ~x′′(m,w) + α∇x′′U (m,w)

~z′′ = ~z′′ + α∇~z′′U
~s′′(m,w) = ~s′′(m,w) + α∇~s′′U (m,w)

END 1

(4.2.11)

α > 0 is a constant step size of the algorithm.
The important property of the algorithm (4.2.11) is that it can be dis-

tributed as in-network algorithm. Each node is responsible for computation
of the flow volume of the links leaving the node and for computation of the
other corresponding variables. All the components of the variable vectors are
function of the node local variables and of the variables of the neighboring
nodes that are within one hop communication distance. Only peer-to-peer
communication during the algorithm is needed.

However, the distributed version of such algorithm would have problems
with the termination of the internal loop and with the synchronization of the
loops between the nodes. Moreover the nested loops would cause an increase
in the iterations.

To derive one loop algorithm, we join both loops of the gradient algorithm
into only one loop, where we update all the variables simultaneously. Using
Equations (4.2.6), (4.2.8) and (4.2.9) we derive the iterative algorithm which
is presented in Table 4.2.1. The k denotes the iteration number. Proof of
the algorithm convergence is presented in Section 4.4.A necessary condition
for the algorithm convergence assumed in the proof is α < 1/2ε. We have
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1. Initialize variables ~x
′′(m,w)
0 , ~s

′′(m,w)
0 , ~z

′′(m,w)
0 , ~θ

(m,w)
0 , ~λ0, ~γ

(m)
0 .

2. Compute primal variables ~xk, ~zk, ~sk according to:

~x
(m,w)
k =

[
~x
′′(m,w)
k − 1

2ε
(A−

T ~θ
(m,w−1)
k −A+T ~θ

(m,w)
k +DT~λk + ~c)

]+
~zk =

[
~z′′k − 1

2ε
~λk

]+
~s
(m,w)
k =

[
~s
′′(m,w)
k − 1

2ε
~γ
(m)
k

]+
~x
(m,0)
k = ~x

(m,d(m)+1)
k = ~0

3. Send/Receive the primal variables ~xk, ~zk, ~sk to/from neighboring nodes.

4. Compute dual variables ~θk+1, ~λk+1, ~γk+1

~θ
(m,w)
k+1 = ~θ

(m,w)
k + α(A−~x

(m,w+1)
k −A+~x

(m,w)
k +~s

(m,w)
k −~s(m,w)

in )

~λk+1 = ~λk + α(D
∑

m∈M

d(m)∑
w=1

~x
(m,w)
k + ~zk − ~µ)

~γ
(m)
k+1 = ~γ

(m)
k + α(

d(m)∑
w=0

~s
(m,w)
k − ~s(m)

out )

5. Compute proximal-point variables ~x′′k+1, ~s′′k+1, ~z′′k+1

~x
′′(m,w)
k+1 = ~x

′′(m,w)
k + α(−2ε(~x

(m,w)
k − ~x′′(m,w)

k ))
~z′′k+1 = ~z′′k + α(−2ε(~zk − ~z′′k ))

~s
′′(m,w)
k+1 = ~s

′′(m,w)
k + α(−2ε(~s

(m,w)
k − ~s′′(m,w)

k ))

6. Send/Receive the dual variables ~θk+1, ~λk+1, ~γk+1 to/from the neighboring nodes.

7. Set k = k + 1 and start new iteration in step 2.

Table 4.2.1: Distributed, Real-Time Routing Algorithm

performed several simulation experiments to test the algorithm convergence
in Section 4.3.

The initial variables ~x
′′(m,w)
0 , ~s

′′(m,w)
0 , ~z

′′(m,w)
0 , ~θ

(m,w)
0 , ~λ0, ~γ

(m)
0 are set to

arbitrary initial values. The closer the values are to the final solution, the
faster the algorithm converges. This property is used in Section 4.2.3 for
variable initialization.
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4.2.3 Variables Initialization

As we have mentioned in Section 4.2.2 the number of iterations depends on

the initial variables ~x
′′(m,w)
0 , ~s

′′(m,w)
0 , ~z

′′(m,w)
0 , ~θ

(m,w)
0 , ~λ0, ~γ

(m)
0 . The closer the

initial variables are to the final solution the less iterations are needed. In
this work, we focus only on the dual variables. The proximal-point variables

~x
′′(m,w)
0 , ~s

′′(m,w)
0 , ~z

′′(m,w)
0 are set to zero. The variables ~λ0, ~γ

(m)
0 cannot be

estimated without the knowledge of the final routing. We set them to zero.

Let us suppose some initial variable ~θ0 which satisfy condition:

A−
T ~θ

(m,w−1)
0 −A+T ~θ

(m,w)
0 +DT~λ0 + ~c ≥ ~0 (4.2.12)

According to Equations (4.2.6), such initial variables do not cause any
changes of the algorithm variables on its own. (i.e. no variable changes

if ~s
(m)
out = ~s

(m)
in = 0)

According to the complementary slackness condition (for details see e.g.
[Bert 98]) for the optimal solution holds for two neighboring nodes: if

(θ
(m,w−1)
k,l+

− θ(m,w)
k,l− ) < cl then x

(m,w)
k,l = 0, if (θ

(m,w−1)
k,l+

− θ
(m,w)
k,l− ) = cl then

x
(m,w)
k,l ≥ 0 and the link l is a part of the shortest path for the demand
m ∈ M. (we use the index l to denote the vector component correspond-
ing to the link l, l+ to denote end node of the link and l− to denote the
start node of the link). This fact leads us directly to the Dijkstra’s algo-
rithm which can be used in distributed way. If for all sink nodes nout we set

θ
(m,w)
0,nout

= 0 for all ∀m ∈ M, 0 ≤ w ≤ d(m) and for the other nodes n we set

θ
(m,w)
0,n = the shortest distance to sink node, we get an initial setting, which

satisfies the condition (4.2.12). Moreover, this initial setting is much closer

to the optimal solution than the setting θ
(m,w)
0,n = 0 for all ∀n,m,w. In Sec-

tion 4.3.3 we present several experiments to evaluate the heuristic behavior
in comparison with the zero initial setting. Please notice, that due to the
capacity constraints, the heuristic solution does not need to be equal to the
final optimal solution. According to our experiments this heuristic rapidly
decreases the number of iterations.
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4.3 Experiments

To demonstrate the behavior and the correctness of the distributed real-time
routing algorithm, we have performed several experiments in Matlab. We
have focused on a problem, where for each communication demand one node
sends data flow to one sink node (i.e. a multi-commodity mono-source, mono-

sink problem). I.e. s
(m)
in,n1

= 1 for the source node n1 and s
(m)
out,n2

= 1 for the
sink node n2 of communication demand m.

The random networks for the experiments have been constructed as fol-
lows: We consider a square field of size [size × size], where the size is
changing during the experiments. The field is divided into sub-squares of
size [1 × 1]. One node is randomly placed into each sub-square and the com-
munication distance is set to 1.7 (i.e. node n1 can communicate with node
n2, if and only if their Euclidean distance is less than 1.7). Please notice, that
our network is close to the “unit-disk network” [Rese 06]. The communica-
tion costs ~c per transmitted data flow unit have been set as the square power
of the distance between the nodes. The node communication capacities have
been set to two µn = 2 and the maximum number of communication hops
to d(m) = 6 for all ∀m ∈ M. The constants of the algorithm have been set

as: α = 0.03 and ε = 0.3. The initial values ~x
′′(m,w)
0 , ~s

′′(m,w)
0 , ~θ

(m,w)
0 , ~λ0, ~γ

(m)
0

have been set to 0 and z′′0,n = µn for all experiments except 4.3.2 and 4.3.4.
Only feasible problems are used.

During the experiments we evaluate k as a number of iterations needed
to achieve less than 1% deviation of the objective function from the optimal
value, less than 1% capacity violation and less than 1% flow conservation law
violation during the last 500 iterations. The 500 iterations are included in
the statistics. (the optimal value was computed separately by a centralized
algorithm for evaluation purposes only)

4.3.1 Example

To present the resulting optimal data flow routing in the network we have
performed an experiment based on the network described above. The field
size has been set to 9 (i.e. 81 nodes in the network) and the number of
communication demands has been set to 8. The link capacities have been set
to µn = 4 for this problem. The initial variables ~θ0 have been set according
Section 4.2.3.
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Fig. 4.3.1: Distributed, real-time routing: Optimal, real-time data flow routing
(multi-commodity, mono-source, mono-sink problem).
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Fig. 4.3.2: Distributed, real-time routing: Optimal data flow routing in node-delay
space.
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Fig. 4.3.3: Distributed, real-time routing: Algorithm convergence with random
initial variables.

The optimal data flow routing in the network is shown in Figure 4.3.1.The
3D routing model in the node-delay space is presented in Figure 4.3.2 where
the vertical axis represents the communication delay. No communication
demand routing has more than 6 communication hops.

Several videos for presentation of the algorithm progress in time can be
found on author web-pages [Trdl 11].

4.3.2 Algorithm Convergence

We have performed a set of experiments with random initial variables
on random networks and we have evaluated the algorithm convergence.
The field size has been set to 7. There are 8 communication demands
in the network. The initial values have been set randomly from inter-

vals: ~x
′′(m,w)
0 , ~s

′′(m,w)
0 , ~z

′′(m,w)
0 ∈ 〈0, 2〉 for proximal-point variables, and

~θ
(m,w)
0 , ~λ0, ~γ

(m)
0 ∈ 〈0, 20〉 for dual variables. The intervals correspond to the

double values of typical optimal values.

The algorithm has been run 2000 times on random networks. The results
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Fig. 4.3.4: Distributed, real-time routing: Number of iterations in relation to the
number of nodes. In black, for zero initial variables. In gray, for initialization
according to Section 4.2.3.

are presented in Figure 4.3.3. There is the number of iterations placed on
the horizontal axis and the number of experiments, which has been finished
before the number of iterations, on the vertical axis.

This experiment provides an important practical verification of the the-
oretical proof of the algorithm convergence. 95% of the experiments have
been finished before 14300 iterations.

4.3.3 Number of Iterations

To demonstrate the statistical behavior of the algorithm, we have gradually
increased the number of nodes from 16 to 100 (i.e. the field size from 4 to
10) for 8 communication demands. The computation has been repeated, on
random networks, 1000 times for each number of nodes.

The results have been evaluated as a maximum, average and minimum
number of iterations needed to achieve the optimal value and it is presented
in Figure 4.3.4. There is presented the experiment progress for the basic
algorithm without the initial heuristic in black (the initial variables have
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Fig. 4.3.5: Distributed, real-time routing: Algorithm convergence for network
change simulation.

been set to zero) and for the algorithm with the initial heuristic from Section
4.2.3 in gray.

The number of the iterations is approximately linear, which means that
the algorithm can be used in case of networks with many nodes. We can see
a significant improvement of the initial heuristic in the figures.

4.3.4 Network Change

The advantage of the one-loop algorithm presented in this work is that it can
automatically adjust the data routing in case of network changes. In order
to evaluate the algorithm behavior in this case, we have simulated a dying
node in the network as follow:

1. We generated a random network with communication demands and
found the optimal solution

2. In the original problem from step 1, we removed one node and measured
the number of iterations to find the new optimal solution
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3. We repeated step 2 for 15 different nodes with largest data flow.

The simulation has been performed for 942 random original networks with
field size set to 7 and with 8 communication demands. (i.e. 942×15 = 14130
experiments)

The results are presented in Figure 4.3.5. The number of iterations is
placed on the horizontal axis and the number of experiments, which have
been finished before the number of iterations are seen on the vertical axis.

95% of the experiments have been finished before 4466 iterations. More-
over, less than 15.0% of the dual variables, and 2.0% of the primal variables
have been changed during the experiments, which significantly decrease the
amount of transmitted data.

4.4 Proof of the Algorithm Convergence

To prove the convergence of the distributed real-time routing algorithm from
Table 4.2.1, we rewrite the original real-time routing problem (4.2.2) into
more compact form and we show that the algorithm equations can be written
in the same form as Equations (3.4.14). According to the convergence proof
in Section 3.4.3 the algorithm for Real-time routing converges to optimal
solution.
We rewrite problem (4.2.2) into more transparent form:

min
~x′′

min
~x

~c′T~x+ ε(~x− ~x′′)T (~x− ~x′′)
subject to:

Ã~x = ~b

~x ≥ ~0

(4.4.1)

An example of the matrix and vectors transformation is:

Ã =

 B̃ Ĩ 0

0 S̃ 0

D̃ 0 I

 B̃ =

 B̃1 0 0
. . .

0 0 B̃M



B̃m =


A+ A− 0 0
0 A+ A− 0

. . .

0 0 A+ A−

 S̃ =

 S̃1 0 0
. . .

0 0 S̃M


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S̃m =
(
I I . . . I

)
D̃ =

(
D D . . . D

) Ĩ =

 I 0 0
. . .

0 0 I



~xk =



~x
(1,0)
k
...

~x
(1,d(1))
k

...

~x
(M,d(M))
k

~s
(1,0)
k
...

~s
(1,d(1))
k

...

~s
(M,d(M))
k

~zk



~x′′k =



~x
′′(1,0)
k

...

~x
′′(1,d(1))
k

...

~x
′′(M,d(M))
k

~s
′′(1,0)
k

...

~s
′′(1,d(1))
k

...

~s
′′(M,d(M))
k

~z′′k



~c′ =



~c
...
~c
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where I is identity matrix. The sizes of new vectors and matrices are:

~xk, ~x
′′
k,~c
′ : [N

∑
m∈M

d(m) +MN +N × 1]

~θk,~b : [L
∑

m∈M
d(m) +N

∑
m∈M

d(m) +N × 1]

Ã : [L
∑

m∈M
d(m) +N

∑
m∈M

d(m) +N ×N
∑

m∈M
d(m) +MN +N ]

B̃m : [Nd(m) × Ld(m)]

B̃ : [N
∑

m∈M
d(m) × L

∑
m∈M

d(m)]

S̃m : [N ×Nd(m)]

S̃ : [NM ×N
∑

m∈M
d(m)]

D̃ : [N × L
∑

m∈M
d(m)]

Ĩ : [N
∑

m∈M
d(m) ×N

∑
m∈M

d(m)]

The Lagrangian function of problem (4.4.1) is:

Lk = ~cT~xk + ε(~xk − ~x′′k)T (~xk − ~x′′k) + ~θTk (Ã~xk −~b) (4.4.2)

and the algorithm equations from Table 4.2.1 can be expressed as:

~xk =
[
~x′′k −

1
2ε

(
~c+ ÃT ~θk

)]+
~θk+1 = ~θk + α∇θLk
~x′′k+1 = ~x′′k − α∇x′′Lk

(4.4.3)

Equations (4.4.3) are the same as (3.4.14). Using the same procedure
as in the proof of the OLDRAo algorithm from Section 3.4.3 we prove the
convergence of the real-time routing from Table 4.2.1.
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4.5 Summary

In this chapter we have presented a distributed algorithm for the real-time
energy optimal routing in sensor networks for systems with linear cost func-
tions and constant communication delays. Such networks are very often in
the industrial environment, where TDMA derived mechanisms or mecha-
nism with significant stack computation delay are used. We have used the
centralized description of the real-time routing problem based on the net-
work replication of the multi-commodity network flow optimization problem,
which has been described in Chapter 2. Thanks to the fact, that the real-time
model stay in the form of multi-commodity network flow optimization prob-
lem with side constraints and that the side constraints are in the form, which
allow the problem distribution, we use the distribution approach presented
in Chapter 3. The final algorithm computes the real-time routing using only
peer-to-peer communication between the neighboring nodes, even for the
problems with linear objective functions. In contrast to the other works this
algorithm uses constant communication delay, independent on the routed
flow volume, which allows to use this algorithm in industrial networks with
TDMA like mechanism. The other works in this area use the queuing delay,
which is strictly convex function of the routed flow volume and it is not well
suitable for problems with hard real-time constraints. Several experiments
to evaluate the algorithm behavior and proof of the algorithm convergence
have been presented.

In this chapter we have focused on the distribution of the real-time routing
problem for the continuous data streams, which has been described in Sec-
tion 2.3. Please notice, that the same approach can be used for the real-time
routing problem with transmission period bigger than one hop communica-
tion delay described in Section 2.4.
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Conclusions

In this thesis we have focused on the in-network distributed and real-time
routing problems in the multi-hop sensor networks. The work is divided into
three parts. The first part deals with a centralized algorithm for the real-time
routing, which fulfills the work objective 1. The second part deals with a gen-
eral distributed algorithm for the non-real-time routing problems described
by multi-commodity network flow model, which fulfills the work objective 2.
The third part joints the works from the previous two parts and introduces
a distributed algorithm for real-time routing in the sensor networks, which
fulfills the work objective 3. According to the work objective 4, all presented
algorithms have been evaluated on benchmarks for energy optimal routing,
using Matlab. Further in this section, we describe the contributions of each
part in more details and we mention open issues and future work.

5.1 Summary and Contributions

In the first part of this thesis, we have introduced centralized algorithm for
the real-time routing in the sensor networks for systems with linear cost
functions and constant communication delays. Such networks are very often
in the industrial environment, where TDMA derived mechanisms or mech-
anism with significant stack computation delay are used. The algorithm is
based on the minimum-cost multi-commodity network flow model described
as a Linear Programming problem. We have used the network replication
to model the constant communication delay in the network. The derived
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real-time model stays in the form of multi-commodity network flow problem
with side constraints. The structure of the side constraints allow us to de-
rive the distributed algorithm in Chapter 4. Solved in centralized way by
Linear Programming, it exhibits a very good performance, as was shown in
our experiments. Surprisingly, the performance does not degrade even in the
presence of an integral flow constraint, which makes the problem NP hard.
It follows that the model is very powerful from the practical point of view
and can be used in many applications where the response time is the subject
of constraints.

In the second part of this thesis, we have developed three in-network
distributed routing algorithms, which are based on the dual decomposition
of minimum-cost multi-commodity network flow problem. The algorithms
derivations use the Linear Programming model in node-link form, which leads
to unique peer-to-peer distributed algorithms. Only the communication be-
tween the neighboring nodes is needed during the computation. Moreover the
algorithms compute the energy optimal routing for problems with linear ob-
jective functions. All other distributed routing algorithms based on the dual
decomposition focus only on the problems with strictly convex objective func-
tions and fail in the case of the linear objective functions. According to the
fact, that the presented algorithms are based on the general minimum-cost
multi-commodity network flow problem, it can be easily adapted for many
other problems in the sensor network area, like resource sharing, network
localization, object tracking, etc.

In the third part of this thesis, we have used the results of the previous two
parts and developed an in-network distributed real-time routing algorithm
for systems with linear cost functions and constant communication delays.
As mentioned above the centralized real-time routing problem is described
as minimum-cost multi-commodity network flow, which allow us to use the
general distributed approach form Chapter 3. The resulting algorithm finds
the energy optimal routing with real-time constraints even for the problems
with linear objective functions, using only the peer-to-peer communication
between the neighboring nodes. In contrast to the other works, this algorithm
uses constant communication delay independent on the routed flow volume.
It allow using this algorithm e.g. in industrial networks with TDMA like
mechanism. The other works in this area use the queuing delay, which is
strictly convex function of the routed flow volume and it is not well suitable
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for problems with hard real-time constraints.

The contributions of this thesis are summarized in Section 1.3. The main
contributions of this work are:

1. Formulation of a real-time multi-commodity network flow problem and
its solution by Linear Programming based on graph replication.

2. Discovery of a surprisingly good Integer Linear Programming perfor-
mance for the above mentioned problem with an integral data flow
constraint, which makes the problem NP hard.

3. Introduction of a new distributed algorithm based on dual decomposi-
tion of routing problem formulated in node-link form.

4. Presentation of novel approach to distribute the linear optimization
problem by dual decomposition as an in-network distributed algorithm.
(Other works using the dual decomposition on the routing problems are
limited to strictly convex objective functions and fail in the linear case.)

5. Introduction of new mathematically derived, distributed algorithm for
energy optimal real-time routing based on network replication and dual
decomposition.

6. Performance evaluation of all presented algorithms on benchmarks for
energy optimal routing in sensor networks.

5.2 Open Issues and Future Work

In Chapter 2, we have presented a good performance of Integer Linear Pro-
gramming for the centralized real-time routing problems. The performance
did not decrease even for integral flow constraints, which makes the prob-
lem NP hard. We have considered networks with up to 100 nodes in our
experiments. In future work, it would be interesting to develop a heuris-
tic sub-optimal algorithm for the real-time routing problem and evaluate its
performance for significantly bigger networks.

The main drawback of the distributed routing algorithms derived in
Chapter 3, is the high number of iterations which are needed to achieve the
optimal solution. The high number of iterations leads to high number of
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communication, which is not suitable for application in the sensor networks
area. We believe that the number of iterations can be significantly decreased
by several extensions in the future work. We mention several ideas, which
should according to our knowledge and experiments significantly decrease the
number of iterations:

1. The dual variables corresponding to the capacity constraints of the
problems are in some cases fixed only to one node (e.g. in the case of
link or node capacity constraints). This dual variables can be exactly
evaluated in each iteration (instead of their incremental update, which
is used in this work). This approach would lead to a less general model,
where the capacity constraints are not relaxed during the dual decom-
position. However, the number of iteration of such algorithm should be
significantly decreased.

2. The algorithms use a sub-gradient method with a constant step α.
The algorithm convergence could be increase by using a more sophisti-
cated method for the dual variables update. We suggest application of
methods based on the Newton’s method, like the Regula falsi method
(e.g. [Sigl 02]), or quasi-Newton methods. According to our prelimi-
nary experiments presented in Section 3.4.4 the Newton’s method based
heuristics can decrease the number of iterations more than 2.7 times.

3. The computation of a new flow variable xk+1 could be extended by a
nonlinear function, which is aware of the flow saturation ([..]+) and can
compute more efficient values.

The next logical step for the distributed routing algorithm for real-time
data flow is to perform several experiments in a sensor networks simulator
such as the NS-2 or RTNS [Paga 10]. The RTNS, beside the communication
aspects, allows to simulate the computational delays in the nodes. Then we
can also experiment with an asynchronous version of the distributed routing
algorithm, where the nodes are not synchronized by the communication and
each node runs independently on the others.

Other future extension of the presented routing algorithms is to join them
with other works in the sensor networks area such as topology management
and control. E.g. in [LoBe 09] authors present an adaptive topology man-
agement approach for time bounded data, which seems well suitable for this
task.
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