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Abstract
With the introduction of modern
approaches to traffic data collection come
new possibilities for making traffic safer
and less congested. It is viable to use the
data to make our cities more spacious and
productive through clever algorithms.

In large cities, emergency vehicles
have a significant impact on traffic.
Furthermore, emergency vehicles have the
highest rate of accidents, including fatal
ones, thus making the inevitable responses
of emergency vehicles safer, swifter while
having as little impact on the surrounding
urban traffic is of the utmost importance.

Traffic signal preemption is a common
method to give preference to emergency
vehicles at intersections, enabling vehicles
that would be otherwise in the way of the
emergency vehicle to clear the intersection
before it reaches them. Even if proven by
time, the methods currently in use are
technologically outdated and have many
drawbacks. The aim of this thesis is to
propose a new, modern approach to traffic
signal preemption for emergency vehicles.

This thesis proposes a new time-
optimal traffic signal preemption
algorithm designed to mitigate the
drawbacks of existing preemption
techniques using real-time traffic data
collection and V2X communication
technology. Even though the algorithm
has been verified in traffic simulations,
the current infrastructure is insufficient
for real traffic deployment.
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time-optimal control
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Czech Republic

Abstrakt
S příchodem moderních přístupů ke sběru
dat z dopravy se otevírají dveře jeho
využití ke zvyšování bezpečnosti dopravy
a snižování její hustoty. S využitím
chytrých algoritmů se nabízí možnost
využít data z dopravy k tomu, aby naše
města byla více prostorná a produktivní.

Ve velkých městech, mají vozidla ISZ
velký vliv na dopravu. Navíc mají najvyšší
pravděpodobnost nehod, včetně těch
smrtených, a tak zvýšení bezpečnosti a
zrychlení jejich výjezů a zároveň omezení
jejich vlivu na okolní dopravu je velmi
důležité.

Prioritní průjezd vozidel je běžnou
metodou preference jistých vozidel na
světelných křižovatkách, která umožňuje,
aby vozidla stojící na světelné křižovatce
ji opustila ještě před tím, než k ní dojede
vozidlo IZS. Přestože existující přístupy
jsou prověřený časem, jsou také velmi
technologicky zastaralé a mají spustu
nedostatků. Cílem této práce je návrh
moderní metody prioritního průjezdu
vozidel IZS na světelných křižovatkách.

Tato práce popisuje návrh časově
optimálního algoritmu pro prioritní
průjezd vozidel IZS, který potlačuje
nedostatky metod existujících za pomoci
sběru dopravnách dat v reálném čase a
V2X kominikační technologie. Přestože
tato metoda byla simulačně otestována,
na její nasazení do reálného provozu zatím
existující infrastruktura nestačí.

Klíčová slova: prioritní průjezd vozidel,
mikroskopická simulace dopravy, časově
optimální řízení

Překlad názvu: Modelování a
optimalizace pro zajištění prioritního
průjezdu vozidel IZS světelně
signalizovanou křižovatkou s využitím
komunikace V2X
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Chapter 1
Introduction

1.1 Motivation

In most urban environments, it is common to witness an emergency vehicle
(EV), e.g. an ambulance, a police car or a fire engine with its emergency light
signal and siren active, rushing to its assigned accident site. It often includes
going through a traffic light controlled junction (TLJ). The typical behaviour
of vehicles in the EV’s path is to slow down, approach the side of the road
and let the EV pass. Other vehicles give right-of-way to the EV. The EV can
break many standard traffic rules. In Czechia and other EU countries, EVs
can run red lights, overtake on the right, and overtake on the left, where such
manoeuvres are forbidden for regular traffic[1].

While the safety of participants in traffic is of the utmost importance,
minimising the response time of EVs also very important. Furthermore, the
effect EVs have on traffic is also often investigated since it is not uncommon
to have many active EVs within a city, each having the potential to restrict
traffic in a given direction temporarily. Thus, the possibility of resulting
traffic jams exists.

A common approach in tackling the issues mentioned above is to employ
traffic signal preemption (TSP). A scheme will give a green signal to any traffic
ahead of an EV while restricting any traffic that could collide with an EV or
slow it down. Doing so allows the EV a free passage through the TLJ. There
are various methods to tackle this problem using various communication,
computation, and conceptual strategies[2]. Most of the existing methods will
be generalised in this thesis and differentiated by selected characteristics.
Moreover, some characteristics (e.g. methods of communication) I will omit
entirely.

It should be noted that TSP is not the only strategy commonly used to
make EV responses safer and more efficient. There exists another widespread
group of methods collectively labelled as emergency vehicle route optimisation.
It is not the focus of this thesis, however.
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1. Introduction .....................................
1.2 Existing methods

1.2.1 No traffic signal preemption

As stated before, when EVs approach TLJs without any TSP capability, EV
drivers often need to make use of their special permissions to run red lights
or, in case there are vehicles already halting at the red light by the time the
EV approaches the TLJ, they need to overtake through the opposite direction
lane. Such behaviour is hazardous, however, as EVs have a high chance of
accidents[3], and most of those happen at intersections, specifically, as a result
of running red lights[1]. Thus more sophisticated methods are needed.

1.2.2 Distance-based (polygon) traffic signal preemption

preemption distance dp

Figure 1.1: Distance-based preemption

The most widespread variation of TSP in Czechia is one, where for each
incoming road of a TLJ, there is a distance dp within which an EV detection
triggers a preemption signal sequence in the respective direction of traffic.

This approach is often called a polygon preemption, as the distances
(generally a few hundreds of meters) in all incoming directions form a polygon
around the intersection. This static polygon is manually designed and
optimised for each intersection by an experienced traffic engineer.

In the nomenclature of Humagain et al., this is labeled as a passive defined-
area-based green light preemption.

This approach can lead to unnecessarily long green phases for the EV and
red phases for other vehicles, leading to the formation of jams. This is the
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...................................1.2. Existing methods

main argument against this approach and, together with the problematic
polygon design, is the main reason for its limited use.

1.2.3 Adaptive polygon traffic signal preemption

dp(2)

2

dp(3)

3

Figure 1.2: Adaptive polygon preemption

Another more advanced approach aims to mitigate the disadvantages of
the distance-based method by changing the polygon shape using real-world
traffic information. Such data can take the form of historical data aggregate,
induction loop feedback, traffic density estimates, etc. For more details on
the individual types of active TSP, see the summary by Humagain et al.[2].

dp (2, dev, vev)

2, dev, vev

dev [m]
vev [km/h]

devvev

Figure 1.3: Queue discharge preemption

An especially relevant method, queue discharge-based traffic signal preemption,
has been developed by Obrusník et al.[4]. It uses the estimate of the number
of vehicles halting due to red light at the TLJ ahead of the EV as well
as information on position and velocity of the EV given to the signal plan

3



1. Introduction .....................................
controller via vehicle to infrastructure (V2I) communication device to alter
the size of the polygon in the direction of the EV, see Figure 1.3.

This particular method is significantly relevant to this thesis due to its
development in partnership with a Czech manufacturer of the necessary
infrastructure1, aiming for simple implementation on existing hardware and
subsequent testing in real traffic.

1.3 Objectives

This thesis introduces a new simulation-driven method of time-optimal traffic
signal preemption for emergency vehicle prioritisation at TLJs. This method
takes advantage of integrating modern technologies in traffic data collection,
which are currently being introduced.

: +5 s→

Figure 1.4: Time-optimal traffic signal preemption

The method, visualised in Figure 1.4, comes in the form of an algorithm
or procedure, which can compute the optimal time to start a traffic signal
preemption sequence when an EV approaches the intersection using real-
time data inputs and traffic simulations. Thanks to its design, it minimises
the impact EV has on surrounding traffic while still retaining the desired
properties of standard methods, namely minimal delay of the EV and its
maximum safety.

In order to ensure the best results possible, an appropriate car-following
model needs to be selected. The model is necessary to simulate the passage
of EVs forward in time accurately. This selection is made through the use of
model-fitting on data from real-world traffic.

An essential part of the algorithm is the cost function used to discriminate
among possible preemption times. The selection of cost functions in traffic
engineering is generally rarely an exact science, and thus, it is crucial to
explain the reasoning behind the cost function used in the algorithm.

Lastly, the proposed method will be validated in SUMO, a popular traffic
simulator where it will be compared to typical methods of preemption.
Additionally, the interpretation of the results will take place, followed by a
summary and overall conclusions.

1https://www.herman.cz/
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....................................... 1.4. Outline

1.4 Outline

This thesis divides into chapters based on their respective focus.
Chapter 1 includes the introduction to the problem, a brief overview of

existing methods, most notably the method by Obrusník et al., which is the
precursor to this work. Then, the thesis states the objectives of this work
and gives an outline of this thesis.

Chapter 2 investigates how accurate car-following models can be in simulating
traffic at intersections. The best model considered is selected for use throughout
the rest of the thesis.

Chapter 3 follows the conception of a time-optimal traffic light preemption
algorithm using real-time traffic data. It discusses its viability and offers
possible solutions to some of its insufficiencies.

Chapter 4 describes the validation of the proposed algorithm in SUMO, a
traffic simulator, and discusses the results.

Chapter 5 offers a summary of this thesis, includes interpretation of overall
results and offers suggestions for future research.

5
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Chapter 2
Car-following models

A car-following model is a system of differential equations describing the
behaviour of a vehicle in one-lane traffic. The engineering community has
developed various models, and their main idea is to mimic a driver following
another vehicle. The driver usually wants to go as fast as possible while not
taking unnecessary risks and following a desired distance from the leading
vehicle.

Car-following models are generally feedback-controlled systems. Where
a human driver would observe their surroundings and, based upon those
observations, would either press the gas paddle or the brake paddle and,
therefore, change the acceleration of the vehicle accordingly, in a car-following
model, this role falls upon the acceleration function, whose inputs are state
variables and various external inputs.

There exists a large number of car-following models with varying degree
of complexity. The more complex a model is, generally, the more aspects
of driving behaviour it can model. There always exists a trade-off between
accuracy and complexity when it comes to car-following models. Therefore,
we would like to use a model using enough parameters to be accurate but not
too many to be too challenging to fit measured trajectories of actual vehicles.

2.1 Car-following models at intersections

Out of the commonly used and acceptably simple models for traffic simulations,
i.e. Krauss[5], IDM[6] and Wiedemann[7], IDM has already been determined
to be the most accurate for simulating vehicles passing an intersection without
stopping at a red light[8].

Thus, we need to ask, can it also be used to simulate queue discharge
effectively? This efficiency is, unfortunately, entirely subjective and depends
on a specific goal. For this reason, the model is evaluated in terms of the
estimated time it takes the last vehicle in queue to reach a pre-defined speed
threshold.

Let us assume an EV approaches a TLJ, where several vehicles halt due to
a red light. The least disruptive scheme for a preemptive algorithm would
be to start the preemption signal at such a time that the EV smoothly joins
the departing vehicles, passes the intersection, and then the regular traffic

7



2. Car-following models .................................
plan resumes. There are several caveats to this approach. We do not want
to initialise the preemption too soon since it would lead to an unnecessary
traffic halt in intersecting directions. We also do not wish to start the queue
discharge too late, as that would delay the EV.

For these reasons, the most critical metric for evaluating the performance of
a car-following model, as it relates to queue discharge simulation, is the error
in time the last vehicle in the queue reaches the desired speed. If this error
is sufficiently small, then we can optimise over the preemption initialisation
time.

2.1.1 Intelligent Driver Model (IDM)

IDM is one of the most straightforward collision-free time-continuous models.
Nevertheless, its intuitive design and acceptable accuracy have made it
very a popular model for traffic simulations. Its best properties include
smooth transitions between driving modes and easily understandable physical
interpretation of its parameters. Its acceleration function is

v̇ = a

[
1−

(
v

v0

)δ
−
(
s∗ (v,∆v)

s

)2]
, (2.1)

with desired distance

s∗ (v,∆v) = s0 + max
(

0, vT + v∆v
2
√
ab

)
(2.2)

and desired speed v0, bumper-to-bumper distance to the leading vehicle
s0, speed relative to the leading vehicle ∆v, time headway T , comfortable
acceleration and deceleration a and b respectively. There is also an acceleration
exponent δ. It is, however, usually set to δ = 4. See Traffic Flow Dynamics[6]
for more detailed information on IDM.

Please note that there is a strong case for restricting the backwards motion
of vehicles for any car-following model used for queue discharge simulation.
If IDM parameters are imprecise so that during the first iteration of the
simulation s∗/s > 1 and v ≈ 0, the vehicle will start reversing, shortening
the bumper-to-bumper distance behind it and eventually causing all vehicles
behind it to reverse as well. This behaviour is far from desired, and thus one
can disable backwards motion in the model using

s∗

s
> 1 ∧ v ≤ 0 =⇒ v := 0, v̇ := max (0, v̇) (2.3)

after each step of the simulation. Additionally, restriction of reverse motion
has real-world justification as well. If a human driver stops unusually close
to a leading vehicle while stopping at a red light, they do not usually start
reversing to correct the spacing. They wait for the leading vehicle to accelerate,
and once the leading vehicle is sufficiently far away, they start to accelerate
as well.

Lastly, as seen in Figure 2.1, vehicles simulated using IDM never reach the
speed of their leading vehicles, always cautiously moving slightly slower than

8



.......................... 2.1. Car-following models at intersections

(a) : positions (b) : speeds

Figure 2.1: Queue discharge using IDM

their leaders. Luckily, there are a plethora of extensions to IDM to make it
more accurate.

2.1.2 Improved Intelligent Driver Model (IIDM)

IIDM is given in Traffic Flow Dynamics[6] as an example of methods used to
improve the accuracy of car-following models without adding new parameters.
Thankfully, IIDM enables all vehicles in a queue to reach saturation speed.
Which is, of course, achieved by altering the acceleration function. The
improved acceleration function is defined as

v̇ =



v ≤ v0 :


z ≥ 1 : a

(
1− z2

)
z < 1 : afree

(
1− z

2a
afree

)
∣∣∣∣∣∣∣

v > v0 :

z ≥ 1 : afree + a
(
1− z2

)
z < 1 : afree

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.4)

where

afree =


v ≤ v0 : a

[
1−

(
v

v0

)δ]

v > v0 : −b
[
1−

(
v0
v

)aδ
b

]
∣∣∣∣∣∣∣∣∣∣∣
, and z = s∗

s
. (2.5)

The parameters v0, s0, T, a, b, s, δ and the desired distance s∗ are defined
identically and serve the same purpose as in the case of IDM. Again, more
details can be gathered in Traffic Flow Dynamics.

Please note that in case v = v0 and z < 1, the acceleration function is
undefined. While in the real world, this condition is an unachievable edge
case, for the purposes of numerical simulation, it is necessary to define a

9



2. Car-following models .................................
special case

v̇ = lim
afree→0+

afree

(
1− z

2a
afree

)
= 0, v = v0 and z < 1, (2.6)

for the model, especially given the fact that computers evaluate expressions
inside-out. Without this addition to the definition, any vehicle further from
the leading vehicle than s0, which reaches its desired speed v0, would crash the
simulation. Even with this addition, it is still possible to achieve floating-point
errors since

lim
afree→0+

z
2a
afree =∞, v ≤ v0 and z < 1. (2.7)

Thus special care should be taken to handle these special cases.
Additionally, arguments and solutions for restricting backward motion are

identical to those of IDM.

(a) : positions (b) : speeds

Figure 2.2: Queue discharge using IIDM

As seen in Figure 2.2, vehicles simulated using IIDM can match the speed
of their leading vehicles. Furthermore, the error in the velocity profile of the
last vehicle in the queue is smallerr.

2.1.3 Linear Queue Discharge Model (LQDM)

While IIDM looks very promising, it is worth investigating whether a much
simpler model could be used to simulate the queue discharge since IIDM is
quite difficult to simulate numerically correctly. Its acceleration function is

v̇ =


t < tstart + Tdelay : 0

t ≥ tstart + Tdelay : a
(

1− v

v0

)∣∣∣∣∣∣∣ , (2.8)

where tstart is the time a leading vehicle starts accelerating, Tdelay is a time a
vehicle waits, after its leader starts accelerating, before starting accelerating
itself, a is maximum acceleration and v0 is desired speed.

10



...................................2.2. Parameter fitting

(a) : positions (b) : speeds

Figure 2.3: Queue discharge using LQDM

While this model does not meet the definition of a car-following model,
it can be pretty useful to simulate queue discharge after switching to green
light, as seen in Figure 2.3. It is, however, completely useless for other traffic
scenarios at intersections since it requires all vehicles at t = 0 to be almost
stationary. It is of little usage for simulations, where vehicles have non-zero
initial velocities. Also, estimating the values of the parameters ahead of the
queue discharge for individual vehicles might be very challenging.

2.2 Parameter fitting

2.2.1 Sequential fitting

All parameters of the models simulated in 2.1 have been fitted using lsqcurvefit
function in MATLAB[9]. Parameters pmodel of all vehicles in a given queue
have been fitted sequentially, i.e. first vehicle was fitted first and then the
second and so on. The function was used to minimise mean square error(MSE)
of simulated positions and speeds of a given vehicle.

p∗model = argmin MSE
([

xsim (pmodel)
vsim (pmodel)

]
,

[
xreal
vreal

])
, (2.9)

where ∗ denotes optimality.
While IDM and IIDM had better performance when all vehicles were fitted

simultaneously, it is more realistic to assume that the parameters of a leading
vehicle cannot be affected by the trajectory of the following vehicle. The goal
of fitting the parameters this way was to show how accurate these models can
be if all vehicles pass perfect estimates of their parameters to the simulation
before the queue discharge, i.e., how accurate the models can be given perfect
conditions.

11



2. Car-following models .................................

(a) : positions (b) : speeds

Figure 2.4: Boxchart of root mean square error of simulated vehicles

When using this parameter fitting method, optimal parameters were found
for each model for 112 vehicles in 35 different queues from different lanes of
two real-world TLJs. As seen in Figure 2.4, the smallest median fitting root
mean square(RMS) error for both positions and velocities has been achieved
by LQDM. Furthermore, IIDM has been found to generate more accurate
velocity profiles than IDM, which is the main idea behind IIDM.

As explained in 2, the most important metric is the velocity profile of the
last vehicle in a queue. The boxchart of RMS errors of velocity profiles of the
last vehicles in their respective queues is shown in Figure 2.5. The error in
time it takes a vehicle to reach saturation speed was not evaluated, as stated
in 2, since it is not guaranteed that a real vehicle reaches the saturation
speed, and thus, such metric would be meaningless. It is, however, strongly
related to the accuracy of the velocity profile. While it is not guaranteed that
minimising one minimises the other, minimising RMS error of the velocity
profiles keeps the time difference of reaching saturation speed sufficiently
small.

The LQDM fares best when it comes to velocity profiles of the last vehicles
of queues, IIDM shows better performance over IDM, in this regard.

2.2.2 Parameter averaging

While it is important to see how well a model can be used for a queue
discharge simulation, it can be argued that it is currently infeasible to expect
vehicles to pass their model parameters estimates to the TLJ controller using
vehicle to everything V2X communication. Therefore, it makes sense to ask,
how the models fare if model parameters of vehicles are estimated by the
infrastructure. A possible scenario for such a system would use a computer
vision system installed at the TLJ to gather data for individual lanes and
vehicle types, and from those, it could assign an estimate of model parameters
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...................................2.2. Parameter fitting

Figure 2.5: Boxchart of root mean square error of velocities of last vehicles in
their respective queues.

as soon as a vehicle enters the detection range.
Given the fact that the available dataset is too limited to consider vehicle

types, the same evaluation from 2.2.1 was repeated, only this time the
parameters of all vehicles passing the intersection using the same lane were
averaged, thus emulating an estimate from historical data. Velocity profiles of
queue discharge simulations of the same scenario as in 2, now using averaged
parameters, can be seen in Figure 2.6.

(a) : IDM (b) : IIDM (c) : LQDM

Figure 2.6: Velocity profiles of a queue with averaged parameters

It is clear that the velocity profiles in Figure 2.6 perform worse, when
the parameters are averaged, then using the optimal parameters for every
vehicle. However, the fit is skewed due to the fact, that my dataset does not
include information about the length of individual vehicles, which is the only
absolutely static car-following model parameter, which is not dependent on
the driver and would be easily accessible in the aforementioned hypothetical
scenario with computer vision systems estimating the parameters.

In the previous case, it did not matter that I did not have access to vehicle

13



2. Car-following models .................................

(a) : positions (b) : speeds

Figure 2.7: Boxchart of root mean square error of simulated vehicles with
averaged parameters

lengths, since the l + s0 = const for any optimal parameter fit, where l is the
length of the leading vehicle and s0 is the desired bumper-to-bumper distance
of the leading vehicle. However, with suboptimal parameters a new issue
arises. If a vehicle stops too close behind a too short a vehicle, it may lead to
the computed bumper-to-bumper distance s < 0. Which can be interpreted
as a collision and breaks the simulation.

To eliminate the possibility of having vehicles virtually colliding in the
first step of the simulation, I adjusted l = min (l, xleader − x− s0). This is a
completely naive solution to the problem. Surely, more nuanced solution can
be found. I do not believe it is necessary, however, since the unavailability
of vehicle lengths is not a very realistic condition, given the assumption of
having a modern position and velocity detection device at the TLJ or V2X
communication capability.

Given the aforementioned limitations the absolute values shown in Figure
2.7, need to be read with scepticism. On the other hand, the relative
performance of the investigated methods did not change, only the median
errors of velocities of IDM and LQDM have moved closer to the error of
IIDM, whose median RMS error has increased very little.

Curiously enough, as shown in Figure 2.8, the RMS erros of the last vehicles
in their respective queues have decreased for all the models investigated. This
result, again, has to be taken with a grain of salt, because I suspect the result
is skewed by the lack of vehicle length information.

2.3 Final thoughts on car-following model selection

Given the simulations I ran using IDM, I do not find it to be particularly
appealing for usage in queue discharge simulations. It does not simulate
sufficiently accurate velocity profiles for the vehicles at the end of a queue.

14



......................2.3. Final thoughts on car-following model selection

Figure 2.8: Boxchart of root mean square error of velocities of last vehicles in
their respective queues

And since our main goal is to eventually reach the end of a queue at a time
when all the cars have reached sufficiently high velocities, IDM should not
be used. IIDM, on the other hand does produce sufficiently accurate results
and unlike LQDM, whose results were in many cases even better, it can be
used to simulate all one lane traffic before a TLJ, whereas LQDM can only
be used to simulate the queue discharge with no initial velocities.

For these reasons I will use IIDM in the rest of the thesis for simulations
of queue discharge and preemption.

Finally, I want to point out how surprisingly simple and accurate LQDM
turned out to be. Even though, it might not be perfect for the use case of this
thesis, it was by far the most accurate in simulating the positions of vehicles
in any scenario I simulated.
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Chapter 3
Time optimal traffic signal preemption
algorithm

While queue discharge-based traffic signal preemption has been shown to
be effective, as stated by Obrusník et al.[4] in their conclusions, it would
be preferable to formulate the problem of finding the optimal preemption
time using clearly defined optimisation techniques. This is the focus of this
chapter.

3.1 Assumptions

Let us start with assuming unrealistically ideal conditions, specifically pertaining
to the data available to the traffic signal controller. Later, we will discuss how
various limitations of these assumptions can be tackled in terms of formulation
of the algorithm.

Therefore, let us assume an emergency vehicle sends a sign-in signal (This
can be thought of as a signal telling the controller to start the preemption time
computation) to the traffic light controller at time t = 0 s. We can simulate
its approach to, and crossing of the intersection given these conditions:..1. Knowledge of the velocities and positions of vehicles in the platoon ahead

of the EV and the EV itself...2. Knowledge of the model parameters for all such vehicles and the EV for
a selected car-following model...3. Knowledge of the default traffic light signal plan for the duration of
approach and passage of the emergency vehicle...4. Knowledge of the constraints of the traffic light signal plan (minimum
signal lengths etc.).

3.2 Simulation

Using the assumptions in 3.1 and a correct selection of a car-following model,
we can simulate the approach of the EV to the end of the vehicle platoon

17



3. Time optimal traffic signal preemption algorithm .....................
ahead. Figure 3.1 shows such simulation for the case of late preemption.
We can see how the EV stops at a red light, while this is very unrealistic,
since the EV would most surely overtake the vehicle ahead and cross the
intersection through a red light in the real world, we do not need to model
such behaviour, because both of these behaviours are undesirable from the
point of view of our problem. Since the preemtion eliminates the necessity to
run red lights by the EV, by disallowing overtaking and penalizing waiting,
our algorithm will deem late preemption times very costly.
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Figure 3.1: Simulation of an approach of an emergency vehicle using IIDM with
a signal plan with late preemption.

On the other hand, early preemption times, example of which is shown in
Figure 3.2, should also be avoided. In the example simulation, we can see
that the preemption had been initiated more than 30s before the EV entered
the intersection. Surely, some of this time would have been better used, if
traffic in intersecting directions was allowed and the preemption started when
the EV was much closer to the intersection.
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Figure 3.2: Simulation of an approach of an emergency vehicle using IIDM with
a preemption time tp = 0 (dotted line).

3.3 Cost function

Understandably, both of the two extreme cases for preemption times in 3.2
are undesirable, and the optimal time needs to exist somewhere in between
the two extremes. Another observation, however, can help with the initial
idea behind a way to design a preemption time cost function.

Suppose, the requested preemption time tp = 0, this will result in a traffic
light signal plan where the EV receives a green signal as soon as condition
4 allows it. Given this, no other traffic light signal plan can cause less
deceleration. Let us define

V ∗min = V 0
min = min (vemergency(t, tp = 0)) , (3.1)

which is the highest achievable minimum velocity of the emergency vehicle
for the duration of the simulation, i.e. @tp ≥ 0 : V tp

min > V ∗min, and

tmax
p = vdes,emergency

d0,emergency
, 1 (3.2)

1vdes,emergency denotes the desired speed of the EV and d0,emergency its initial distance
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3. Time optimal traffic signal preemption algorithm .....................
the upper limit of the interval upon which it is useful to search for

t∗p = max tp : V tp
min = V ∗min, tp ∈

[
0, tmax

p

]
, (3.3)

the latest preemption request signal time, which will not delay the emergency
vehicle compared to immediate preemption at earliest possible time.

Finally, let us define cost function

C(tp) = C1 + C2 = (1− γ)
(

1− tp
tmax
p

)
+ γ

(
1− V

tp
min
V ∗min

)
, 0 < γ � 1, (3.4)

where the parameter γ introduces a small slope to the regions where C2 is
constant, this enables reliable localization of t∗p, without the effect of floating
point errors in the evaluation of C2. We can see an example of a cost function
C(t) in Figure 3.3.
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Figure 3.3: Cost function computed for the scenario in Figure 3.1.

to the intersection in the context of the simulation
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...........................3.4. Time optimal preemption algorithm

3.4 Time optimal preemption algorithm

Let us define the algorithm for the optimal preemption time t∗p computation.
Let us assume it has access to all the necessary resources available. The
algorithm used to find t∗p can be seen in Algorithm 1.

Algorithm 1: Optimal preemption time t∗p
P (tp)← signal plan with preemption in effect at time t = tp
v(P (tp))← simulated velocity profile of the EV if preemption
sequence starts at tp
vdes ← desired speed of the EV
d0 ← initial distance of the EV
tleft ← initial time
tright = tmax

p = tleft + vdes
d0

max preemption time
εmin ← termination difference
V ∗min = min(v(P (0))
C(tp) = C(tp), v(P (tp)), tmax

p , V ∗min)← preemption time cost function
while |tright − tleft| ≥ εmin do

if C(tleft) < C(tright) then
tright = tright+tleft

2

else
tstep = tright−tleft

2
tleft = tright

tright = max
(
tright + tstep, t

max
p

)
Result: t∗p = tleft

The optimal preemption time t∗p is then given to the traffic light signal
plan controller to apply the signal plan P (tp). A simulation of an approach
of an EV using the optimal preemption time can be seen in Figure ??.

3.4.1 Notes on the algorithm output

It could be argued, it might be mode convenient to interpret the output in
terms of preemption distance. That is, reshaping the polygon within which an
EV would trigger the preemption. This, however, leads to the risk of rendering
the preemption impossible to trigger at the right time. If the EV enters this
computed region too late, it might be too late to trigger preemption in time.
Thus it is better to trigger the preemption based upon time duration since
EV sign-in. That is the advantage of having access to the default signal plan
and its limitations. We can incorporate them into the simulation.

It should be noted that the algorithm itself does not alter the signal plan,
it is only selecting one of the possible signal plans, the signal plan controller
feels comfortable with. This makes the method as a whole less intrusive to the
overall signal plan design. Where traffic engineers might feel uncomfortable
allowing a new algorithm to control the signal plans of an intersection, allowing

21



3. Time optimal traffic signal preemption algorithm .....................

400

200

0

200

400

x
[m

]

0 5 10 15 20 25 30
t [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

v
[m

s
1 ]

Figure 3.4: Simulation of an approach of an emergency vehicle using IIDM with
a preemption time t∗p.

an algorithm to choose from a set of signal plans with predefined constraints
should be well within their comfort zone.

3.4.2 Real-world adjustments

Let us discuss the adjustments we can make to the algorithm in order for
it to be applicable to real-world traffic. Specifically, we need to address the
unrealistically ideal assumption upon which the algorithm stands. It is not
my intention to invent new traffic infrastructure technology. I aim to give
examples of possible approaches, which would make the method introducible
to the real world traffic.

Firstly, the assumption 1 might seem too unrealistic at first. However,
there exist commercial solutions for traffic data collection using computer
vision (example being DataFromSky2) and there is also the future potential
of using V2X communication, for the purposes of each vehicle reporting the
data to the infrastructure.

2url: https://datafromsky.com/
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...........................3.4. Time optimal preemption algorithm

Secondly, same concepts could be used to satisfy assumption 2. However
to find car-following model parameters from the limited time a vehicle spends
in the range of the AI-powered detectors might be infeasible, thus I suggest
using estimation over vehicle types through fitting to aggregated historical
data. In the context of the V2X data collection route, each vehicle could be
equipped with its own parameter estimator and reporting its output to the
infrastructure.

Furthermore, assumptions 3 and 4 do not need any new technology introduced
to be met.

In case of the use of computer vision in data gathering, we need to address
the possibility of the detectors not having the range required to detect all
vehicles in front of the EV at the time of sign-in. A naive solution would be to
start the computation of the preemption after the EV enters the visual range
of the detectors. Alternatively, having good estimates on the current traffic
flow density of all the vehicle types would allow filling the area between the
EV and the end of the visual range of the detectors with “virtual” vehicles
and only then starting the algorithm.

Finally, there is no reason not to use the algorithm repeatedly (e.g. every
second) until t∗p with the intention to get more accurate result with each
evaluation. This approach is more computationally intensive but the nature
of the algorithm allows for strong parallelisation. Additionally, the fact that
the method as a whole is very technologically demanding, making use of
other computationally intensive technologies, makes the case for there being
sufficient computation power available. For the purposes of this thesis I call
this approach the recomputation method.
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Chapter 4
Validation in SUMO

4.1 Scenario

0 10m

Figure 4.1: Intersection scenario simulated in SUMO.

For the purposes of validating the preemption method proposed in Chapter
3, a scenario was created using the traffic simulator SUMO[10]. A snapshot
taken from its graphical user interface running the scenario can be seen in
Figure 4.1. In the snapshot, we can see blue passenger vehicles, yellow buses
and an emergency vehicle approaching the junction from the west. Take note
of the fact, that vehicles in front of the EV are in the process of forming
a virtual middle lane for the EV to pass through. The light blue stripes
represent lane area detectors, which are used to gather information about
vehicles approaching the intersection.

The map consists of the four roads, each stretching 1 km away from the
central intersection. Vehicles are randomly injected at the end of each road
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4. Validation in SUMO..................................
based on desired traffic flow density. Each of the incoming roads consist of
two lanes, the left of which is dedicated for left turning vehicles and the right
lane is dedicated for vehicles continuing straight and to the right. All the
outgoing lanes consist of a single lane each.

In SUMO, EVs are simulated as vehicles of a special emergency vehicle
class with a bluelight device. Such vehicles are able to either overtake other
vehicles through virtual middle lanes, or through the opposite direction
lane, depending on the lane change model used. Having both functionalities
simultaneously is not currently supported in SUMO. Of the two, I opted
to use the functionality with the formation of virtual middle lanes, since it
more closely resembles desired behaviour of other vehicles. Under the current
functionality, vehicles in range of the bluelight device move to the right edge
of their lane unless they occupy the leftmost lane, in which case, they move
to the left.

The vehicles in range of the bluelight device currently do not change their
speed in reaction to the presence of the EV nor have the ability to give right
of way to an EV running a red light when their traffic light signals green.
Thus an EV crossing a TLJ with no method of preemption can have little
to no effect on the surrounding traffic. One option to handle this would be
not to use a blue light device at all and make the EV wait like all the other
vehicles. This approach seems even more unrealistic though, and as such I
implemented the former one.

4.2 Implementation of traffic signal control in
SUMO using TraCI

SUMO itself has very limited options for the implementation of preemption
algorithms. Traffic lights can be programmed to dynamically change signal
plan phase durations within a predefined range based upon information
from induction loops and the occupation of lane area detectors. For more
sophisticated functionality one must use TraCI, a communication interface
enabling on-line communication with the SUMO simulation.

A TraCI instance is initialised within a Python script, it connects to a
SUMO simulation and allows for precise control of the behaviour of objects in
the simulation. There is a special class object defined by TraCI, namely
stepListener, which automatically runs a given code every simulation
step.Therefore, I created a child class of stepListener called Scheduler,
which functions as a central node of the traffic signal control for the intersection.
Scheduler facilitates communication among various other classes, each
systematically dedicated to a single subtask of traffic signal control. The
interaction among these individual parts can be best explained using the
schematic in Figure 4.2
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Figure 4.2: Schematic of the functionality of Scheduler and other classes.

4.2.1 Functionality of detector

Each of the eight lane area detectors in the simulation has an detector
instance assigned by scheduler. Since it is also a child of the stepListener
class, it is designed to keep tack of the vehicles in the range of the detector,
identify them, count them and request their positions and speeds from SUMO
through TraCI.

4.2.2 Functionality of Ambulance

Whenever Scheduler detects an EV an instance of Ambulance is assigned
to it. As a child of stepListener it requests position and speed of the EV
from SUMO through TraCI every simulation step.

4.2.3 Functionality of TrafficLight

The primary function of TrafficLight is to increment the traffic signal
plan on the intersection. Even though, this is normally handled natively by
SUMO, the limitations on the traffic light signal plan (minimum phase lengths,
insertion of yellow signal phase before preemption) made the automatic signal
phase incrementation by SUMO very inconvenient. It required many requests
on the current state of the signal plan to be made each simulation step, their
subsequent interpretation and transformation to a more usable format, and
then in the overwhelming majority of simulation steps, it was evaluated that
no action is needed to be issued back to SUMO trough TraCI. For these
reasons I have decided to keep track of the signal plan internally within the
class and increment the signal plan when necessary through TraCI.
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4. Validation in SUMO..................................
The next function of the class is to ensure preemption is active at the

requested time. Assume that at t = 0 s the desired premption time t∗p is
received. This means, the green phase of the preemption sequence must
start at the latest possible time tswitch ≤ t∗p. Given minimal signal lengths
lmin and the requirement for transition phases (yellow signal before red) of a
fixed length ltrans we can determine the earliest time tswitch using the simple
Algorithm 2. The preemption sequence needs to be initiated at time t if we
compute that tswitch (t+ ∆t) > t∗p. This requires TrafficLight to be able to
compute the signal plan into the immediate future.

Algorithm 2: Earliest guaranteed preemption time
p← default signal plan
t← initial time
∆t← time increment
tlast ← last signal phase increment time
ttrans = transition phase length
found=false
while not found do

phase = p (t)
if not phase.isTranisition then

if tlast + phase.minDuration ≤ t then
found =true

t := t+ ∆t
Result: tswitch = t+ ttrans

Lastly, TrafficLight has the capability to compute the signal plan including
the preemption sequence. This is simply done using the default plan up to
max (t) : tswitch (t) ≤ t∗p and then adding a transition state of length ltrans
and green state downstream of the EV and a red state everywhere else for
the rest of the desired signal sequence. Note, that a transition state does
not necessarily mean a yellow signal. A transition phase state is determined
according to the Table 4.1

to
green red

fr
om green green yellow

red red red

Table 4.1: Transition phase state table

4.2.4 Functionality of Estimator

For the purposes of the validation of the proposed algorithm, I have implemented
various methods of preemption corresponding to the following modes of
operation of Estimator...1. No preemption mode
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............... 4.2. Implementation of traffic signal control in SUMO using TraCI

In this mode of operation, TrafficLight only facilitates default traffic
signal plan...2. Polygon mode
Preemption is initialised at the earliest time possible after an EV sign-in.
Which means t∗p is always zero...3. Single computation mode
In the simulation step, when the Scheduler detects an EV sign-in, the
proposed algorithm is used to compute the optimal preemption time
t∗p. In order to do this Estimator requests signal plans with various
preemption times tp from TrafficLight. Since any supplied signal plan
is feasible and optimal for a given tp (meaning the preemption sequence
starts at the latest possible time), Estimator has a guarantee of a feasible
plan for simulations...4. Recomputation mode
The optimal preemption time t∗p is computed repeatedly for as long
as TrafficLight can guarantee, that preemption will be in effect at
the previously computed time, i.e., t < tswitch (tlast) . The frequency of
computation can be set to a desired value...5. Short range mode
In case the sign-in distance is greater than the range of the lane area
detectors, there can be virtual vehicles inserted between the EV and
the end of the range of the detectors. These make use of the traffic flow
density for each vehicle type used to inject vehicles into the simulation.
It takes the time to reach the detector range

tEV2DET = dEV − lDET
vEV

, (4.1)

where dEV is the distance of the EV to the detector, lDET is the range of
the detector and vEV is the speed of the EV.
Then, given the probability ptype that a vehicle of a given type enters
the simulation within a given second (which is known due to the fact,
that this information is used for injecting vehicles into the scenario),
we can compute the estimated number of vehicles of the given type
ntype = ceil (ptype ∗ tev2det) between the end of the detection range and
the EV, where ceil() equates to rounding up. This rounding is done
to minimise the chance of an optimistic estimate, which could lead to
unnecessarily delaying the EV. This is only due to a subjective preference
of delaying surrounding traffic over delaying the EV.
Lastly while alternating between vehicle types vehicles are placed between
the end of detector range and the EV, until there are ntype vehicles of
each vehicle type. Then they are equidistantly spread over this region
and are given initial velocities taken from linear interpolation of velocities
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4. Validation in SUMO..................................
of the EV and the furthest vehicle in detector range. The optimization
part of the proposed algorithm then includes these virtual vehicles.

It should be noted, that this estimation procedure is quite elementary
and there exist plethora of more sophisticated techniques. I used this
method mainly because the traffic flow density estimation is not the
focus of this thesis and also it seemed excessive to do otherwise, given
the fact, I already had the required values available.

4.3 Simulation experiments

To validate the proposed method I have run the scenario using various
settings. The values I gathered from each were average halt times of the
surrounding traffic and the EVs themselves as well. To be considered affected
by the passage of the EV a vehicle had to fulfil the condition of there being
such a time instance when the vehicle is on its way to the intersection and
simultaneously the EV has signed-in but not yet cleared the intersection. This
allows me to fairly compare different preemption methods, even though for
some methods, vehicles which are not affected by the EV fulfil this condition.

Each test consists of 30 simulations where in each the injection time of the
EV is incrmented by 3 s thus covering the whole 90 s of the default signal plan
length. The earliest injection of an EV happens at t = 300 s, to allow the
simulation to approach steady state. The set of 30 simulations is repeated
total of 30 times using a different seed for the pseudorandom number generator
uses to plan vehicle injection times. Thus getting a different distribution of
vehicles for each set. This totals to 900 individual simulations for each tested
setting. In all of the tests the EV enters from the west and leaves to the east.

For the purpose of the tests I defined the used traffic flow densities for the
vehicle types as shown in Table 4.2

vehicles per hour
LIGHT MODERATE HEAVY

passenger 1500 2250 3000
bus 60 75 90

Table 4.2: Definition of used traffic flow densities.

4.3.1 Preemption trigger distance for polygon method

To be able to compare the proposed method to the more traditional static
polygon approach, we need to find the optimal polygon size for all the used
traffic flow densities. In Table 4.3, we can see how the size of the polygon in
the direction of the approach of the EV ( trigger distance ) combined with
different traffic flow densities affects median minimum velocity to which an
EV is forced to slow down, this is analogous to V 0

min from equation 3.1. In the
table, the optimal values for individual traffic flow densities are highlighted.
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In the rest of the thesis, whenever a polygon method with a given traffic flow
density is used, the corresponding optimal trigger distance will be used.

veh/hour LIGHT MODERATE HEAVY
tr
ig
ge
r
di
st
an

ce
100 m 6.68 4.97 0.20
200 m 13.41 9.07 2.59
300 m 13.92 12.98 3.77
400 m 13.90 13.50 5.59
500 m 13.90 13.58 8.95
600 m 13.90 13.59 11.01
700 m 13.90 13.59 13.33
800 m 13.90 13.59 13.33

Table 4.3: Median values of the slowest speeds
[
ms−1] achieved by EVs.

4.3.2 Performance comparison between preemption methods

To compare the performance of individual methods I have used the MODERATE
traffic flow density setting and a sign-in distance of 400 m. Figure 4.3 shows
a box chart containing the halt times of an average vehicle influenced by the
passage of the EV.
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Figure 4.3: Average halt times of affected vehicles using different modes.

At first it may seem, that using no preemption has definitely the least
impact on the surrounding traffic. This result is, however, the least accurate
of all the methods, since SUMO does not currently support realistic behaviour
of vehicles in proximity to the EV as stated at the beginning of Chapter
4. The other methods minimize the interaction between the EV and other
vehicles and thus, this shortcoming of SUMO has a smaller impact on the
result in those cases. The median values from Figure 4.3 can be seen in Table
4.4.

While the impact of the EV on surrounding traffic can be inaccurately
simulated by SUMO, the opposite is not the case. Vehicles take time to form
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Figure 4.4: Minimum EV velocities Vmin.

method none polygon t∗p computation t∗p recomputation
time [s] 29.24 23.41 33.25 33.13

Table 4.4: median halt time of an average vehicle for different preemption
methods

a virtual middle lane and do not break the rules of traffic to move out of the
way. Thus, measuring the lowest speed Vmin, to which the EV is forced to
slow down, can be used to represent this influence.

Furthermore, since the main goal of premption is to shorten the response
times of EVs and make their passage safer, even if SUMO could simulate
the impact the EV has on an intersection more accurately, the impact an
intersection without preemption has on the EV cannot be justified, as seen
in Figure 4.4. We can see that without preemption the median slowdown is
very significant, while for all the investigated methods of preemption these
values are comparable.

4.3.3 Influence of sign-in distance

For this series of tests, I investigate the impact of the distance from which an
EV sends its sign-in signal to initiate the given preemption method. I compare
the proposed method with the static polygon approach. For the polygon the
preemption distance is set to its optimal one as per Table 4.2. The traffic
flow density setting used is MODERATE. The investigated distances are 200,
500 and 800 m. The results can be seen in Figures 4.5 and 4.6.

From the results it can be seen, that the proposed method should should
have a sign-in distance at least identical to the polygon-based method. Lower
distances do not give the algorithm enough flexibility to allow for optimal
preemption. As for longer distances, the single computation variation of the
proposed algorithm does lose its accuracy with the rising sign-in distance,
Therefore, if it were to be implemented in real world the sign in distance
would need to be adjusted to best perform on a given intersection.

The recomputation version of the algorithm does perform the best of all
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Figure 4.5: Effect of diffrent sign-in distances and preemption methods on the
minimum EV speed
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Figure 4.6: Effect of diffrent sign-in distances and preemption methods on the
average halt times

the investigated options and with higher sign-in distances it has more time to
reevaluate the optimal time of preemption. Thus, if it were to be implemented
in the real world, the sign-in distance should be set to the longest possible.

4.3.4 Influence of traffic flow density

This series of tests shows how the single computation and heavy computation
handle changing traffic flow density and if there is any need for manual
adjustment of the methods. The sign-in distance in all tests is set to 800 m.
As seen in Figures 4.7 and 4.8, there is little to no difference between the
average halt times, thus the recomputation only helps with lowering passage
times of the EVs when higher traffic flow densities are encountered.
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Figure 4.7: Comparison of the effect diffrent traffic flow densities have on the
minimum EV speed
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Figure 4.8: Comparison of the effect diffrent traffic flow densities have on the
average vehicle halt time

4.3.5 Viability of short detector ranges

In this last series of test I aim to show whether the proposed method can be
used in scenarios where the detector range is limited, but the sign-in distance
is greater. This could be interpreted as a situation where the data is collected
using computer vision with cameras placed around the intersection, but not
too far from it. This is the implementation most likely to be implemented
using current technologies and thus could be the first testable version of the
algorithm.

All tests have a sign-in distance of 400 m, the traffic flow density is set to
MODERATE and the range of the lane area detectors is limited to 100 m,
thus the algorithm needs to make virtual vehicles to fill the unobserved area
ahead of the EV. The results, labeled SHORT, are compared to the previous
results, labeled LONG, where the detector range was unlimited and the static
polygon generated results.

The Figures 4.9 and 4.10 show there is no decrement in the minimum speed
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Figure 4.9: Short detector range effect on the minimum EV speed.
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Figure 4.10: Short detector range effect on the average vehicle halt time.

EVs reach form the LONG variant and the impact on surrounding traffic
due to the passage of EVs does not increase significantly and still performs
better than the static polygon approach. It should be noted, however, that
the polygon happens to have the preemption distance fine-tuned to the traffic
flow density, and therefore, the result is likely closer to an adaptive polygon
implementation.

Given the fact, that the recomputation version of the algorithm has been
shown to perform best, when large sign-in distances are used. As a last
experiment I decided to repeat the previous tests with different values. The
results shown in Figures 4.11 and 4.12 show that the proposed method is in
this scenario comparable to a dynamic (400 m) polygon preemption method,
the static (800 m) polygon method fares significantly worse. The results show
that the median halt time of an average vehicle is still below that of any of
the polygon methods tested. The variance is quite large, however. I believe
this could be mitigated through better estimates on the number of vehicles
between the end of the detector range and the EV This estimate could be
entirely eliminated through the use of V2X communication. On the other
hand, it is quite difficult to argue for the communication not being used to
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Figure 4.11: Short detector range effect on the minimum EV speed with sign-in
at 800 m.
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Figure 4.12: Short detector range effect on the average vehicle halt time with
sign-in at 800 m.

give precise location and speed information.
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Chapter 5
Conclusion

In conclusion, this thesis focused on the development of new traffic light
preemption techniques for emergency vehicle prioritization at traffic light
junctions.

In Chapter 1, I have introduced the motivations behind traffic light
preemption, its advantages and its shortcomings. I have give a summary of
existing approaches and discussed their individual strengths and weaknesses.
Furthermore, I have given a short outline of this thesis.

In Chapter 2, I have investigated car-following models, explained how they
work and when they are useful. Next, I have done an analysis of the accuracy
of several car-following models at intersections, namely IDM and IIDM, I also
proposed a linear queue discharge model, which has shown to be surprisingly
accurate in simulating the positions of vehicles in a queue at a traffic light.

When it comes to IDM and IIDM, I showed that the commonly used IDM
is unnecessarily inaccurate in modelling velocities of vehicles going through
an intersection, and that its improved version is much better at this task. I
selected IIDM as the model for simulation of vehicle platoons going through
a traffic light controlled intersection for the remainder of my work.

In Chapter 3, I proposed a new time optimal traffic signal preemption
algorithm which utilizes the potential of modern traffic data gathering
technology. The method is built upon several assumptions, namely, knowing
accurate positions and speeds of vehicles, having good estimates on the car-
following model parameters of these vehicles, and having complete information
about the traffic signal phase plan, including alternative plans containing
preemption sequences, for the duration of passage of the emergency vehicle.

Furthermore, I have discussed how the aforementioned assumptions can
be satisfied in the real world and offered an adaptation of the method for
situations, where the range of vehicle localization devices is limited.

In Chapter 4, I used the traffic simulator SUMO to validate the developed
method. I have explained, how the simulation scenario was created and how
the method was implemented through a communication interface TraCI, using
Python programming language. Next I designed multiple tests to show the
performance of the method compared to the most widespread method of
traffic signal preemption, namely, lane area triggered preemption.

The results show that the developed method surpasses the traditional
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5. Conclusion......................................
approaches in every practical case except for complexity. Specifically, it
ensures the emergency vehicle passes the intersection with minimum delay
and maximum safety, while also minimizes the potential impact on surrounding
traffic. The method delays the preemption sequence initialization to the latest
possible instance, which still enables the emergency vehicle minimum delay.

The alternative method for cases where detection devices have limited
range, has also been verified, It, understandably, performs worse than the
unlimited method, but I haven’t been able to show it performing worse than
the commonly used approach. The overall performance was more significantly
influenced by various specific traffic conditions present in the scenario.

Lastly, I want to suggest a direction for future research. Given the fact,
that the alternative, limited, method is technologically more accessible, I
suggest to find a more advanced method for filling the dead zone between the
emergency vehicle and the end of the range of vehicle detectors with virtual
vehicles for the purposes of simulation.

On a similar note, the method could be, potentially, enriched with a lane
changing model. As it stands, the method does not simulate overtaking,
something emergency vehicles do quite often. Should the method have
the capability to accurately simulate the sometimes aggressive manoeuvres
emergency vehicles make, I suspect the resulting method could have major
impact on city traffic. The implementation, in that case, should not be done
as crudely as I demonstrated. And instead, should be implemented directly
into a popular traffic simulator, such as SUMO, which in turn would be used
to simulate real traffic for the purpose of evaluating the cost function of the
algorithm. Contributing to the SUMO project is something I wish I had time
to do simultaneously with the work described in this thesis.
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