
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Diploma thesis

Scheduling algorithm for the minimization of setup cost

Bc. Jan Dvořák

Supervisor: Ing. Roman Čapek

Study Programme: Computer engineering

Field of Study: Open Informatics

May 9, 2012

iv

v

Aknowledgements
My thanks go to all those who supported me during the work on this thesis and not just the
people who advised me, but also those who supported emotionally and mentally. Especially,
I would like to thank my supervisor Ing. Roman Čapek whose help was the most crucial
and appreciated and who always adviced me willingly.

vi

Abstract

This diploma thesis is dedicated to the scheduling problem that is motivated by real
manufacture processes. It is a scheduling with alternative process plans subject to the total
setup costs minimization, where setup times are sequent-dependent. The considered problem
further covers many nowadays and practical constraints such as non-unary resources, release
times and deadlines or generalized precedence relations known as time lags. This thesis also
includes very detailed review of related works. An exact mathematical model is described,
which can be used to solve small instances and a new heuristic algorithm is proposed to
solve large instances of the considered problem. The algorithm is then implemented using
programming language C# with an emphasis on efficiency and low computational demands.
In the end, the proposed algorithm is tested on the wide variety of instances with regard
to the time performance and the value of the objective function comparison with existing
algorithms and benchmarks.

Abstrakt

Tato diplomová práce je věnována rozvrhovacímu problému, který je motivován reálnou
výrobou. Jedná se o rozvrhování s alternativními výrobními postupy s cílem minimalizovat
náklady spojené s přestavbou strojů, které jsou navíc závislé na pořadí úloh v rozvrhu.
Daný problém dále zahrnuje mnohá praktická omezení jako jsou neunární zdroje, release
time a deadline, nebo zobecněné relace následností (time lags). Součástí této práce je i
detailní studie podobných problémů. Pro daný problém je uveden exaktní matematický
popis, pomocí kterého lze řešit jeho malé instance, a dále pak návrh nového heuristického
algoritmu pro řešení velkých instancí. Popsaný heuristický algoritmus je dále implementován
pomocí programovacího jazyka C# s cílem efektivně řešit velké instance a to v krátkém čase.
Tento algoritmus je otestován na široké paletě instancí, včetně porovnání s jinými algoritmy
a již existujícími benchmarky.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 4
1.3 Outline . 5

2 Related works 7
2.1 Resource constrained project scheduling problem 7
2.2 Alternative process plans . 9
2.3 Objective function . 10

2.3.1 Setup times in criterion . 11
2.3.2 Other problems with setup times . 11

3 Problem statement 13
3.1 Scheduling basics . 13
3.2 Problem complexity and solution approaches 15
3.3 General description . 16
3.4 Formal definition and classification . 17
3.5 Nested temporal networks with alternatives 19

3.5.1 Formal definition . 19
3.5.2 Alternative branching . 20
3.5.3 Parallel branching . 20
3.5.4 Temporal constraints . 21
3.5.5 Nested graphs . 21

4 Mixed integer linear programming model 23
4.1 MILP model . 24

4.1.1 Variables . 25
4.1.2 MILP model . 26

5 Heuristic algorithm 29
5.1 Overall algorithm description . 30

5.1.1 Initial solution . 30
5.1.2 Schedule improvement . 31

ix

x CONTENTS

5.2 Initial solution . 31
5.2.1 Propagation of release times and deadlines 33
5.2.2 Establishing branching selection priorities 34

5.2.2.1 Rating of branches . 35
5.2.2.2 Selection rules . 37

5.2.3 Establishment of the set of ready activities 38
5.2.4 Selection of activity from the set of ready activities 38
5.2.5 Scheduling of an activity . 39
5.2.6 Updating the set of ready activities . 40
5.2.7 Backtracking . 41

5.2.7.1 Backtracking rules . 41
5.2.7.2 Changing selection of activities 42
5.2.7.3 Change on resource . 42

5.3 Sliding windows . 44
5.3.1 Determination of the time window . 45

5.3.1.1 Left border . 46
5.3.1.2 Right border . 47

5.3.2 Ready activities . 47
5.3.3 Optimization of the time window . 47

5.3.3.1 Construction of the schedule 48
5.3.3.2 Selection from ready activities 49

5.3.4 Integrating the solution of the time window 50

6 Implementation 51
6.1 Data representation . 52

6.1.1 Input data representation . 52
6.1.1.1 Interfaces . 53
6.1.1.2 Classes . 54

6.1.2 Output data representation . 55
6.1.3 Algorithm data representation . 55

6.1.3.1 Activities . 56
6.1.3.2 Resources . 56
6.1.3.3 Milestones . 57

6.2 Implementation details . 58
6.2.1 Scheduling of activity . 58
6.2.2 Unscheduling of activity . 58
6.2.3 Scheduling on the resource . 59
6.2.4 Milestones . 59

6.2.4.1 Propagation of the last scheduled activities on the resource . 61
6.3 Sliding windows . 62

6.3.1 Data representation . 62
6.3.1.1 Bordering milestones . 63
6.3.1.2 Bordering activities . 63

6.3.2 Implementation details . 63
6.3.2.1 Duplication of activities and resources 64

CONTENTS xi

6.3.2.2 Ready activities . 64
6.3.2.3 Time window right border 65
6.3.2.4 Selection from ready activities 65

6.3.3 Optimization of the time window . 66
6.3.4 Merging of the time window with current solution 66
6.3.5 Completion of the algorithm . 67

7 Performance evaluation 69
7.1 Description of random instances . 69
7.2 Comparison with IRSA . 70

7.2.1 Results . 71
7.3 Description of data sets of Brucker and Thiele [12] 72
7.4 Comparison with algorithm of Focacci . 72

7.4.1 Results . 73
7.5 Large instances . 73
7.6 Configuration of the algorithm . 74

8 Conclusions 77
8.1 Summary . 78
8.2 Further improvements . 78

A Content of the included CD 87

xii CONTENTS

List of Figures

1.1 Manufacture process of ring-bound workbook 4

3.1 Nested temporal networks with alternatives - example 22

5.1 Propagation of release times and deadlines . 34
5.2 Establishment of selection priorities . 36
5.3 Change of alternatives example . 43
5.4 Change on resource example . 44
5.5 Time window and its properties . 46
5.6 Search tree of the time window for different steps of algorithm 48
5.7 Integration of the time window into the solution 50

6.1 Assignment of activities and neighboring activities on resource parts 56
6.2 Last scheduled activities at milestone . 57
6.3 Concatenation of milestones . 57
6.4 Free time intervals estimation and activity assignment 61
6.5 Rules to determine bordering activities of the time window 64

7.1 Computational time versus size of the instances 75

xiii

xiv LIST OF FIGURES

List of Tables

7.1 Configurations of the proposed algorithm . 71
7.2 Comparison with IRSA using configuration I 71
7.3 Comparison with IRSA using configuration II 72
7.4 Comparison with Focacci . 73
7.5 Large instances of the considered problem . 74

xv

xvi LIST OF TABLES

Chapter 1

Introduction

this thesis is dedicated to the problem of minimizing the total setup costs in manufacture

and others processes. The goal is to formulate the model of the problem and implement

an algorithm to solve the considered problem. An algorithm should be able to solve large

instances of the problem such that the schedules have desired property, i.e. with the minimal

total setup costs. In this thesis, total setup costs consist of all performed weighted setup

times. The considered problem can be classified as the resource constraint project scheduling

problem with alternative process plans and sequence-dependent setup times.

Scheduling can be seen as a discipline dealing with assigning activities to resources over

the time. The scheduling theory is crucial for each sector in which there is a need to create

a schedule by selecting, assigning or concatenating activities that are performed on some

kind of resources. Scheduling is an essential part of many real manufacturing processes and

services that we daily use and do not even apprehend it (from mobile phones, modern cars,

desktops, medicine to production management). Nowadays, scheduling plays more and more

important role. Ensuring the optimality or balance of manufacturing processes, services or

just order of activities can bring a significant cost reduction. This way, the companies

can reduce production costs, produce more goods or have higher profit. The goal of the

scheduling is to find a feasible solution of the given problem and moreover, the solution is

often required to have a desired property (e.g. the minimum possible duration).

1

2 CHAPTER 1. INTRODUCTION

The theory of scheduling is a part of combinatorial optimization which focuses primary

on discrete solution of problems. Combinatorial optimization is often applied in algorithm

theory, operational research, machine learning, artificial intelligence, etc. Combinatorial

optimization is therefore applied when we need discrete values, for example we need to

produce a chair, not only 90% of it. These demands makes finding the solution much more

difficult. Nevertheless, many real problems are in essence discrete or further indivisible.

Scheduling, or combinatorial optimization in general, is a continuously evolving disci-

pline. Over the years together with rapid technology growth, these disciplines experienced

a dramatic progress and became necessary in many very different sectors. Scheduling is not

used only for academic purposes, but it is being widely used in practice as well.

There are many approaches to solve scheduling problems, but not each approach is

suitable for all problems or does not cover other problems at all. Moreover, some problem

can be handled by more different approaches. Choosing the right approach is often not easy

and we must consider many variables. Further, we often have to make compromise between

quality of the solution and quantity of computational time necessary to create a desired

schedule. All these aspects strongly depend on the given problem and must be considered

before choosing the approach or algorithm.

1.1 Motivation

Using the scheduling theory, we can optimize manufacturing processes and thus reduce

processing or waiting time, storage requirements or increase number of products, etc. There

is a large amount of very different problems from many areas dealing with the scheduling and

this area is still growing. Without proper schedule, production lines, machines, people, etc.

might not be fully utilized, which can cause unnecessary loss. By modeling manufacturing

processes, we can even try more scenarios and choose the most suitable one, for example:

buy new machine, hire more people, change product priorities, etc. In real process, there is

often no place, time or money for such experiments. Moreover, even improvement of only

few percentages can change the company’s position in the market.

1.1. MOTIVATION 3

The problem considered in this thesis is motivated by the real application and up to

our knowledge there is not existing solution approach for such problem. Therefore, a new

approach and algorithm is given to solve the considered problem. Moreover, proposed

algorithm is designed for large instances of the problem. Some parts of proposed solution

are based on existing approaches, others are newly created.

The goal is to optimize manufacture process from the perspective of sequence-dependent

setup times, that are often ignored in other approaches even thought they can play an

important role. Setup times can cover time necessary to change tools, reconfigure machine

etc. Notice, that during this time period, no work on the resources (machines, etc.) is done,

which can cause the entire process flow to be ineffective. Minimizing the setup costs, the

machines are more utilized and therefore time and costs are saved. Such minimization can

significantly improve whole manufacturing process, especially in cases where these setup

times take considerable part of product processing time.

The main motivation of this research is the production in the printing company. In the

production, there is one universal paper cutting machine, one collating machine, four semi-

automatic perforating machines, two full-automatic perforating machines, two twin wire

presses and finally two machines, that combine both perforating and pressing functions.

Now, lets describe the production of a simple ring-bound workbook. First, we need to cut

papers and folder on the paper cutting machine. For different kind of paper (cardboard) we

must use different paper cutting knives. Not to waste time while changing knives, we can

cut papers for more workbooks at the same time. After all parts are cut, we must collate

folder and paper in the right order. Than, perforating is done. Perforating can be processed

on semi-automatic or full-automatic perforating machines. Finally, prepared workbook is

put in the press and all the sheets are bound together using twin-wire machine or manually.

Moreover, last two steps can be processed using single universal machine.

All the machines are shared among all the manufacturing processes that do not concern

only workbooks. Furthermore, automatic machines are often limited by the size of paper and

count of sheets, so using them is not always possible or they are used in other processes. With

the limited number of machines and need to reconfigure machines for each part of a product,

the processes can be ineffective and there might be significant losses. Moreover, the setup

4 CHAPTER 1. INTRODUCTION

times are sequence-dependent. Sequence-dependent setup times describe the differences in

time required to reconfigure or set machines depending on the order of operations. Proper

schedule can rapidly improve manufacturing process and reduce the losses. Figure 1.1 shows

simplified manufacturing process of the mentioned ring-bound workbook. The goal is to

choose only one of the process plans to complete the workbook.

paper cutting

folder cutting

collating perforating twin wire bound

full / semi automatic using press / manual

paper cutting

folder cutting

collating perforating & twin wire

Process plan 1:

Process plan 2:

Figure 1.1: Manufacture process of ring-bound workbook

1.2 Contribution

This thesis deals with minimizing the total setup costs in manufacture processes. Setup

costs are often neglected among other scheduling problems, that can end up with loss of

time and money. Furthermore, the problem considered in this thesis was not dealt before

and is based on real application.

The main contributions of this thesis are the mathematical formulation of the problem

and proposal of the new heuristic algorithm to solve the considered problem. The proposed

algorithm is designed to effectively and fast enough solve very large instances of the problem

that consist of 1000 activities.

The considered problem is very extensive, not only from the perspective of all constraints,

but also from the perspective of the objective function. The problem includes alternative

process plans, which meet nowadays processes and enable us to create more flexible models.

Furthermore, sequence-dependent setup times are considered in the objective function. Us-

1.3. OUTLINE 5

ing setup times, we can better utilize machines - we "sell" the machinery time. Nowadays,

setup times become to play more and more important role in real manufacture processes.

Moreover, many real constraints are considered to meet current production demands. Dead-

lines are used to model latest finish time of a product. Non-negative time lags can be used

to define precedence constraints or specify necessary time interval between two phases of

the manufacture process. Finally, non-unary resources are used to model situations with

more machines of the same kind. With more resources of the same kind, we can process

more similar operations in parallel and therefore increase throughput of the whole process.

Using the proposed algorithm we can significantly reduce process costs, particularly

in areas, where the production process was scheduled "by hand" or by less sophisticated

approaches. The considered problem is very complex and it can therefore cover many for

quality of the solution. Considering all the demands, we can produce more effective schedule

than by using less sophisticated approaches, where we have to omit some demands either

from the perspective of constraints or the solution quality.

1.3 Outline

This diploma thesis consists of eight chapters. The first chapter includes motivation,

introduction to the considered problem and contributions. Chapter 2 is dedicated to the de-

tailed review of related works, including solution approaches and techniques. Related works

are further categorized due to the view of similarity with the considered problem. Following

chapter deals with the problem statement from scheduling basics, over the general descrip-

tion, up to formal definition and classification. Chapter 4 is dedicated to the mathematical

model describing the considered problem using mixed integer linear programming notation

(MILP). Next chapter describes the proposed heuristic algorithm to solve large instances of

the problem in more detail. Chapter 6 then presents implementation details of the proposed

heuristic algorithm. Chapter 7 is dedicated to the performance evaluation. The proposed

algorithm is compared with existing approaches on both random and standard instances.

The last chapter presents a summary of this diploma thesis and future chalenges.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related works

This chapter is dedicated to the literature review. The problem considered in this thesis

can be classified as the resource constrained project scheduling problem (RCPSP) with

none-negative time lags and sequence-dependent setup times where activities are subject to

release times and deadlines. Furthermore, we also consider an extension of the RCPSP by

alternative process plans. The goal is to minimize the total setup costs. Since the problem

considered in this thesis is rather extensive, we will separate the literature review into more

parts. First, a review of the RCPSP will be given, then the related works for alternative

process plans will be stated. Finally, a review of problems with the total setup costs in the

criterion will be given and setup times will be discussed in general.

2.1 Resource constrained project scheduling problem

The RCPSP can be defined, according to Kadrou and M.Najid [24], as a set of activities

with a specific skill requirements that has to be processed on a particular work center with

limited capacity. Authors also presented an approach to estimate lower bound and a dom-

inance concept based heuristic to solve RCPSP with multiple execution modes. Blazewicz

et al. [8] dealt with wide range of scheduling problems in general. Authors also considered

RCPSP, categorized it’s extensions and showed a mathematical model for each extension.

7

8 CHAPTER 2. RELATED WORKS

Brucker et al. [9] proposed notation and classification for many problems from the RCPSP

area and presented a review with many different methods to solve RCPSP.

Another slightly different classification scheme for the RCPSP problems was published

by Herroelen et al. [23]. Neumann et al. [35] focused on project scheduling with temporal

constraints such as time lags, time windows, etc. Authors also proposed RCPSP formulation

for the problem with makespan minimization as a criterion.

Multi-mode resource constrained project scheduling problem (MRCPSP) is a generali-

zation of RCPSP. The main difference, compared to RCPSP, lays in the definition of more

execution modes for each activity. A mode is defined by an activity’s processing time and

resource demand. Neumann et al. [35] formulated a mathematical model and a general

algorithm scheme for the MRCPSP problem. Reyck and Herroelen [36] proposed a local

search based methodology for MRCPSP with generalized precedence constraints with ob-

jective to minimize the project duration. Authors discussed many solution strategies such

as a tabu search, local search, reducing search using preprocessing, etc. Salewski et al. [38]

focused on MRCPSP with mode identity constraints, release times and deadlines. Authors

proposed a mathematical model and parallel randomized solution heuristic. Van Peteghem

and Vanhoucke [41] dealt with MRCPSP and used resource scarceness characteristics. Au-

thors developed a scatter search algorithm (population-based meta-heuristic) to solve the

problem. Wang and Fang [43] proposed an estimation distribution algorithm heuristic for

MRCPSP with makespan minimization as a criterion. Deblaere et al. [14] proposed and

evaluated an exact scheduling procedure based on Branch & Bound algorithm and also

proposed a tabu search heuristic for MRCPSP with criterion to minimize project duration.

In this thesis, we also consider non-negative time lags that represent a generalization of

precedence constraints. Main advantage of the generalized precedence constraints lies in the

definition of minimal time interval between two activities. In case of classical precedence

constraint, this interval is always equal to activity’s processing time. Therefore, time lags

allow us to build more complex models of relations among activities.

Brucker and Knust [11] dealt with a single-machine scheduling problem considering pos-

itive finish-start time lags and release times and they proved an existence of the polynomial

time algorithm for the problem. Furthermore, authors presented reduction of many prob-

2.2. ALTERNATIVE PROCESS PLANS 9

lems (e.g. preemptive parallel machine problems to unit-time jobs and constant time lags).

For more general problem, with positive and negative time lags, release times and deadlines,

Brucker et al. [10] presented a Branch & Bound algorithm to minimize the makespan. Lom-

bardi and Milano [32] published an algorithm for problems with both positive and negative

time lags, release times and deadlines on non-unary resources where each activity uses a

part of resource capacity. The proposed algorithm is used to minimize makespan and it is

based on precedence constraint posting approach. Ballestín et al. [3] also dealt with RCPSP

problem with minimal and maximal time lags. Authors proposed an evolutionary algo-

rithm built on conglomerate-based crossover operator. The objective is the minimization of

makespan. Hamdi and Loukil [21] focused on permutation flowshop problem with minimal

and maximal time lags with minimization of makespan as a criterion. Authors stated a

mathematical formulation and proposed a genetic algorithm.

2.2 Alternative process plans

The formalism of alternative process plan is a generalization of multi-mode behavior of

activities in the MRCPSP problem. It allows us to model more than one way how to com-

plete projects, while not only resource demands, but also number of activities, precedence

relations, etc. can differ among alternative process plans.

Barták and Čepek [4], [5] defined a structure called Nested temporal network with alter-

natives (NTNA) to model alternative process plans. Authors also developed an algorithm

to recognize such structure. Generally, NTNA are an acyclic graph where nodes represent

activities and edges correspond temporal and branchings constraints. Branching constraint

can be of two types - parallel and alternative branching. Authors focused on the modeling

the problems with alternative process plans, but there is no scheduling algorithm for such

problems. Beck and Fox [6], [7] formulated a constraint-based representation of alterna-

tives, described and compared extensions of different heuristics for solving problem with

alternatives. Čapek et al. [42] dealt with RCPSP extended by alternative process plans and

sequence-dependent setup times. Authors presented an integer linear programming (ILP)

model for exact solution of small instances and a heuristic called iterative resource schedul-

ing with alternatives (IRSA) for larger ones. For the representation of alternative process

10 CHAPTER 2. RELATED WORKS

plans, authors used a Petri net model. Kis [25] proposed three algorithms for the jobshop

problem with processing alternatives. First, a tabu search heuristic, second, a genetic al-

gorithm with crossover operator only and finally, a randomize algorithm for comparison.

Leung et al. [30] focused on RCPSP with alternatives that is close to the jobshop problem.

Authors proposed an agent based ant colony optimization to minimize the makespan. For

the same problem, Li et al. [31] published an agent based evolutionary algorithm. Shao et al.

[39] presented an integration model of process planning and scheduling problems which are

carried out simultaneously. Authors developed a genetic algorithm to minimize the produc-

tion time. Choi and Choi [13] dealt with the jobshop problem considering release times and

sequence-dependent setup times. Authors’ solution is based on a local search with many

selection rules (e.g. earliest complete time first). A dispatching rule is used to estimate

upper bound.

2.3 Objective function

The objective function considered in this thesis is the minimization of the total setup

costs (TSC). The problem of scheduling with setup times, more precisely sequence-dependent

setup times, is a part of many real optimization problems and it has been investigated in sev-

eral studies. The term setup time denotes amount of time between two activities scheduled

consequently on the same resource needed to change tools, configuration, etc. Sequence-

dependency states different amount of time for each pair of activities. Total setup costs are

then equal to the sum of setup costs resulting from all performed setups. Allahverdi et al. [2]

dealt with setup times in general and published a survey in which many different problems

related to setup times are summarized. Authors also reported solution approaches in the

review and furthermore they proposed a notation for all of these problems. Yuan et al.

[45] published a study for a metal casting company concerning the minimization of total

setup costs in which authors demonstrate the importance of handling setup times by calcu-

lating company’s savings. Nevertheless the most of publications that consider setup times

(or sequence-dependent extension) do not include them into criterion function. Therefore,

this section is further divided into two parts - problems with setup times in criterion and

problems, where the setup times are considered only as a constraint.

2.3. OBJECTIVE FUNCTION 11

2.3.1 Setup times in criterion

Foccaci et al. [18] dealt with a problem similar to the problem considered in this thesis.

Authors proposed a two phase pareto heuristic for the problem with precedence constraints,

release times and deadlines. The criterion is to minimize the total setup costs and makespan.

In the first phase, makespan is minimized. In the second phase, the total setup costs are

minimized, while makespan is not allowed to get worst. Geoffrion and Graves [20] also

dealt with a problem similar to the problem considered in this thesis. Geoffrion and Graves

focused on the problem with both release times and deadlines while minimizing total setup

costs on parallel machines. Authors implemented quadratic assignment algorithm with

linear programming adjustment. Wang and Wand [44] focused on single machine earliness

tardiness problem with sequence-dependent setup times. Objective function consists of total

setup time, earliness and tardiness minimization. Authors proposed a heuristic for hybrid

genetic algorithm to find the solution. Mirabi [34] proposed hybrid simulated annealing

algorithm for single machine problem with sequence dependent setup times. The objective

function is given by the sum of setup costs, delay costs and holding costs.

2.3.2 Other problems with setup times

Finally, we state the problems where setup times play an important role as a constraint,

but they are not considered in the objective function. Akkiraju et al. [1] proposed an agent

based heuristic called asynchronous team architecture for multiple non-identical machines

scheduling problem with sequence-dependent setup times. The nature of their approach lies

in generating many initial solutions. These solutions are then further improved. Finally,

the best one is chosen. Authors’ objective is to minimize the total weighted tardiness and

earliness. Mika et al. [33] focused on multi - mode resource constrained scheduling problem

with sequence-dependent setup times. For this problem, authors proposed a tabu search

heuristic with minimization of the makespan as a criterion. Kopanos et al. [27] dealt with

planning in food industry. Authors proposed a mathematical model describing all the links

between activities in food processing plans with criterion to minimize the total costs that

includes inventory, operating, utilization costs, etc. Krüger and Schol [28] published a

heuristic solution framework for multi-project scheduling problem with sequence-dependent

12 CHAPTER 2. RELATED WORKS

transfer times. These times are applied when a resource is transferred from one project

to another. The objective is to minimize the project duration. Drießel and Moench [16]

developed a variable neighborhood search heuristic to minimize the total weighted tardiness

on parallel identical machines while considering precedence constraints and release times.

Gacias et al. [19] focused on similar problem as Drießel and Moench. Authors proposed

an exact Branch & Bound algorithm for small instances of the problem and a local search

heuristic for larger ones. Authors targeted the minimization of makespan and maximum

lateness. Lee and Pinedo [29] proposed a three phase heuristic based on apparent tardiness

cost with setups (ATCS) rule for problems on parallel identical machines. Authors’ objective

was to minimize the total weighted tardiness. Ruiz and Stützle [37] dealt with sequence-

dependent setup times flow shop problem with makespan and weighted tardiness objectives.

Authors developed an iterated greedy heuristic based on NEH heuristic. Tasgetiren et al.

[40] published an article concerning with single machine problem with sequence-dependent

setup times. Authors proposed a discrete differential algorithm to minimize total weighted

tardiness. This algorithm further uses referenced local search for insertions.

Chapter 3

Problem statement

With increasing importance of scheduling theory and its application in manufacturing

processes, controlling, etc., there are also more and more complex problems. Covering all de-

mands and constraints if often very difficult. Using algorithms to solve such problems brings

not only simplification of work to production management. Correctly designed algorithms

often give us much better results in much shorter time than using manpower.

In the following sections we will closely describe scheduling basics, its complexity and

present general description of the problem considered in this thesis. Further, formal defini-

tion and classification of the considered problem is given.

3.1 Scheduling basics

The scheduling problem is often specified by a set of activities, resources, constraints

and the objective function. Activity (operation, task) represents a real work that needs to

be done (assembly, calculation, transfer of information, etc.). Each activity is specified by

its processing time and can have other properties such as resource demands, that determine

which of resource types can process the activity, or release time and deadline, that specify

a time interval in which an activity can be processed, etc.

13

14 CHAPTER 3. PROBLEM STATEMENT

Resource can be understood as any device such as processor, machine, manpower, money,

energy, conduit etc. on which activities are performed (executed). Each resource is of

some type and can have non-unary capacity. This means, that more activities can be

processed simultaneously (in parallel) on the same resource. Assigning activities to the

resources therefore stands for consuming a part of resources capacity. Every scheduling

problem can include many different kinds of both activities and resources with a wide variety

of constraints. This possible diversity therefore determines the complexity of finding the

solutions for these problems.

There are many types of scheduling constraints that have to be fulfilled to obtain a

feasible schedule. Such constraints depend on each specific problem, but there are also some

general constraints, according to Blazewicz et al. [8]:

- each activity can be processed at most by one resource at a time

- each resource can process at most one activity at a time

- activities cannot be preempted

Furthermore, there are additional constrains used to describe more complex relations in

the schedule such as:

- precedence constraints

- setup times

Since nowadays scheduling problems are more and more extensive, we often need to relax

some of these constraints, for example:

- activity can be processed in parallel on more resources - multi-resource activities

- resources can process more activities at a time - non-unary capacities

In this thesis, some of general constraints are relaxed and other additional constraints

are used to describe the considered problem (see section 3.3 for more details).

3.2. PROBLEM COMPLEXITY AND SOLUTION APPROACHES 15

3.2 Problem complexity and solution approaches

The most of scheduling problems belong to theNP−hard class, meaning that these prob-

lems cannot be solved with polynomial time complexity. Only a small amount of scheduling

problems are optimally solvable in polynomial time. Since the computational time to find

an optimal solution can grow exponentially, or even worse, we often relax the demand on the

optimal solution and we are searching for the solution that is close to the optimal instead.

With this relaxation, problems can be solved using much less computational efforts. This is

a compromise between the quality of the solution and the time we are willing to spend in

finding such solution. Some of the algorithms, r - approximate ones, guarantee the maximal

deviation from the optimum, but often we cannot ensure such property.

There are many different approaches to solve scheduling problems. We can divide solu-

tion approaches into two main categories - exact algorithms and heuristics. Exact solutions

are commonly obtained by using an integer linear programming (ILP) approach, constraint

programming or by branching schemes. Although these methods ensure optimality of the

solution, they are used mainly for small instances of problems because of computational

requirements, which usually grow exponentially. Therefore, for larger instances, we often

use heuristic algorithms, which do not ensure optimality of the solution (or even finding of

the feasible solution), but the computational complexity of such algorithms is much lower.

Heuristic can be defined as an algorithm that uses some kind of estimation approach to

find a solution. This estimation approach is specific for each problem. For example, for the

problem considering the minimal project duration, we can choose activities with the small-

est release times first, etc. Heuristics are commonly used for larger instances of problems,

where finding an optimal solution would consume more time that we are willing to spare.

There are many different basic ideas behind heuristics, many of them are inspired by the

nature (genetic algorithms, ant colony algorithms, etc.). But not every approach is suitable

for each problem. Choosing the right approach can significantly determine the quality of its

outcome. We can say, that usually there is a common approach for a group of very similar

problems, for example, problems with setup times are often solved by heuristics based on

local search methods. We can use any of approaches, but often it might be for the best, if

we base our approach on the related works.

16 CHAPTER 3. PROBLEM STATEMENT

Since the problem considered in this thesis is a generalization of resource constrained

project scheduling problem (RCPSP) which belongs into NP−hard (proof was published by

Demeulemeester and Herroelen [15]), this problem belongs to this class as well. Therefore,

the ILP model for small instances and the heuristic algorithm for bigger instances of the

problem are proposed.

3.3 General description

In this thesis, we consider quite extensive problem that can be classified as a resource

constraint project scheduling problem (RCPSP) with alternative process plans, where re-

sources have non-unary capacities. The objective is the minimization of the total setup

costs (TSC). Relations between activities are described using precedence constraints and

non-negative time lags. This problem is further extended by sequence-dependent setup

times, release times and deadlines.

Nowadays, there are more and more demands to optimization processes. Some of these

demands also include parallel and alternative manufacture. Parallel processes are carried

out simultaneously, e.g. a factory has more that just one production line. But there is

also need to consider alternative manufacture. Typically, there are more than just one way

how to complete a product, for example, the product can be processed on one fully auto-

mated, universal machine or on more simpler machines operated by a worker. Therefore,

alternative process plans, which are used to describe such possibilities, are taken into con-

sideration. More and more often, time that is necessary to change tools, prepare stocks,

change configuration of machines, etc. is considered in production processes. This amount

of time is called setup time. In this thesis, setup times are sequence-dependent, meaning

that for each combination of activities this amount of time can differ. The total setup costs

minimization stands for finding such ordering of activities on resources, for which the sum

of all considered setup costs is minimized.

In the production (and other) processes, many activities cannot be executed in arbitrary

time, since for example material or other additional resource is not available at time zero.

Therefore, we consider release times of activities to model the earliest possible time from

3.4. FORMAL DEFINITION AND CLASSIFICATION 17

which an activity can be processed to model such demands. We also need to specify the

latest time in which the product must be finished. Deadline stands for the latest possible

completion time of an activity. Another typical restriction are precedence constraints that

allow us to model situations, where it is not possible to start an operation of a product,

till its previous phase is completed. Precedence constraints can be further extended to so

called time lags. Using time lags, more precisely start to start non-negative time lags, we

can specify the minimal necessary time interval between start times of two activities. By

this constraint, we can model situations where we can start another operation on the same

product before an actual operation is fully completed.

3.4 Formal definition and classification

In the following paragraphs, the detailed classification and description of the considered

problem is given. The problem can be defined using sets of activities, resources and con-

straints together with an optimality criterion. Let A = {1 . . . n} be a set of n activities.

Further, let AE = A ∪ {0, n + 1} be an extended set of activities, where activities 0 and

n+1 restrict the whole project. Activity 0 indicates the project’s start and activity n+1 its

end. To represent a set of m resource types we define R = {R1 . . .Rm}. Each resource type

Rq ∈ R has a capacity θq ≥ 1. Each activity i has following parameters: processing time

pi ≥ 0, release time ri ≥ 0, deadline d̃i ≥ 0 and the resource demand rqi > 0 for one resource

type Rq ∈ R. In this thesis, only mono-resource activities are considered, meaning that

each activity demands at most one type of resource. In other words, any activity cannot be

processed simultaneously on more than one resource type.

We consider sequence-dependent setup times stij ≥ 0 for all pairs of activities (i, j) ∈ A2.

The term setup time, or sequence-dependent setup time, stij denotes a minimal time between

completion time of activity i and start time of activity j while both activities i and j

share at least one resource part. Sequence-dependent setup times are therefore taken into

consideration if and only if both activities i and j are scheduled subsequently on the same

resource type and they share at least one unit of its resource capacity.

18 CHAPTER 3. PROBLEM STATEMENT

Non-negative start to start time lags lij for all (i, j) ∈ A2 are defined for all precedence

constrained activities. Such time lags denote a minimal amount of time between start times

of activities i and j. Compared to sequence-dependent setup times, time lags have no

resource restriction. Time lags allow us to model more complex relations between activities

than using classical precedence constraints only.

Alternative process plans are modeled using nested temporal networks with alternatives

(NTNA) presented by Barták and Čepek [4]. The goal of the scheduling with alternative

process plans lies in the selection exactly one of the process plans for each product and

assigning the selected activities to the resources in time. Each process plan consists of ac-

tivities and their temporal constraints. In this thesis, NTNA are used to describe alternative

process plans and time lags (see section 3.5 for more details).

The goal of the scheduling process is to find a feasible solution, if exists, with the best

possible value of the objective function. In our case, we select subset AS ⊆ A of all the

activities to be scheduled, according to the definition of alternative process plans, while

all the constraints are fulfilled and the total setup costs are minimized. To represent the

schedule, the following variables are used: si ∈ R+
0 , vi ∈ {0, 1}, fij ∈ {0, 1} and zivk ∈ {0, 1}.

Variable si denotes the start time of activity i ∈ A, vi determines whether activity i is

selected (vi = 1) or rejected (vi = 0). If activities i and j are scheduled subsequently on the

same resource type and they share at least one unit of its resource capacity, then fij = 1;

fij = 0 otherwise. Finally, if zivk = 1 then activity i is scheduled on the resource part v of

resource type k, meaning that activity consumes specific part of resource’s capacity, zivk = 0

otherwise.

The total setup costs consist of all performed weighted setup times. This means, that

only setup times of subsequently scheduled activities, which share a part of the same resource

capacity, are taken into consideration. These setup times are further multiplied by the

specific costs. The total setup costs are thus given by the sum of all applied weighted

setup times. With variables mentioned above, we can formulate the objective function as

TSC =
∑
fijstijcij for ∀(i, j) ∈ AS , where cij is the cost of setup time between activities i

and j.

The problem considered in this thesis can be classified using an extended notation pro-

3.5. NESTED TEMPORAL NETWORKS WITH ALTERNATIVES 19

posed by Brucker et al. [9] (3.1) or using an extended notation proposed by Herroelen et al.

[23] (3.2).

PS|nestedAlt, lminij , STSD, rj , d̃j |TSC (3.1)

m1|nestedAlt,min, STSD, rj , d̃j |TSC (3.2)

Both notations are extended by terms nestedAlt to denote alternative process plans,

according to Čapek et al. [42] and sequence-dependent setup times STSD and total setup

costs TSC according to Allahverdi et al. [2]. The term PS stands for the project scheduling,

m1 for m renewable resources, min and lminij for the minimal start to start time lags, rj for

release times and finally d̃j for deadlines.

3.5 Nested temporal networks with alternatives

To represent alternative process plans, the formalism of nested temporal networks with

alternatives (NTNA) is used in this thesis. NTNA presented by Barták and Čepek [4],

[5] form a special case of temporal networks with alternatives (TNA). Compared to TNA,

solving problems described by NTNA can significantly reduce computational demands. For

example the assignment problem for instances represented by TNA is NP problem. On the

contrary, the assignment problem for instances represented by NTNA are solvable in poly-

nomial time. An example of NTNA are depicted in Figure 3.1 and the following paragraphs

provide a description of the NTNA formalism.

3.5.1 Formal definition

NTNA are directed acyclic graph G = (V,E), where each node i ∈ V corresponds with

activity i ∈ AE and each edge e = (x, y) ∈ E represents one temporal constraint in the form

of non-negative start to start time lag (precedence constraints are specific case of time lags).

To represent parallel and alternative branchings, two labels are further defined for each

node i ∈ V : in label inLabeli and out label outLabeli. Those labels can take values

20 CHAPTER 3. PROBLEM STATEMENT

{PAR,ALT, ∅}. PAR stands for parallel branching, ALT for alternative branching and

finally, if there is no branching, θ is applied.

There are two possible kinds of branchings in nodes - input and output. Node i has

output branching (outLabeli 6= θ) if δ+(i) > 1, where δ+(i) is the out degree of node i.

This means, that node i has more than one direct successor. For such node i, there is the

corresponding node j which has input branching (inLabelj 6= θ) with δ−(j) > 1, where δ−(j)

is the in degree of node j. This means, that node j has more than one direct predecessor.

Then a sub-graph beginning with direct successor of node i and finishing with corresponding

direct predecessor of node j is called branch. Number of branches is thus equal to the output

(input) degree of node i (j), since in our approach δ+(i) = δ−(j). Such part of the graph,

that begins with node i and finishes with node j is called nested sub-graph.

In the following subsections more detailed description is given. For better clarity, an

example from the area of printing products used in introduction is transformed into NTNA

instance and is further used to demonstrate the problem.

3.5.2 Alternative branching

Alternative branching is used to describe more ways how to complete a part of a product.

Alternative branching begins with node i, whose outLabeli = ALT (see node 5 in Figure 3.1).

For each such node i there exists node j, whose inLabelj = ALT , such that activity j finishes

alternative branching (see node 13 in Figure 3.1). Activities i and j form a pair that denotes

nested sub-graph (alternative branching) with more alternative branches (see nodes 9 and

12 in Figure 3.1). Only one of those alternative branches has to be selected. Note, that

alternative branching can be nested in another alternative branching or in parallel branching.

3.5.3 Parallel branching

Parallel branching is used to describe situations, where more activities can be processed

simultaneously. Parallel branching begins with node i, whose outLabeli = PAR (see node 3

in Figure 3.1) and finishes with node j (see node 14 in Figure 3.1), whose inLabelj = PAR.

3.5. NESTED TEMPORAL NETWORKS WITH ALTERNATIVES 21

In case of nodes with parallel branching, all of branches between activities i and j have

to be selected or rejected together. Similarly as in case of alternative branchings, parallel

branchings can be nested one in another, etc.

3.5.4 Temporal constraints

Using NTNA, we can also describe temporal constraints. Non-negative start to start

time lags are represented by edges between nodes (see edge e8,13 in Figure 3.1). The time

interval specified by time lag lij determines the minimal and maximal difference between

start times of activities i and j. Since precedence constraints are specific case of time lags,

we can model them using NTNA as well. Time lags are not defined for each pair of activities

but for precedence constrained only, meaning that time lags are defined only for pairs of

activities with logical connections. In the context of this thesis, only lower bound of time

lag (see a in Figure 3.1) is specified. The upper bound (see b in Figure 3.1) is equal to ∞.

3.5.5 Nested graphs

Nested temporal networks with alternatives form a special case of TNA, where the graph

is composed from either parallel or alternative branchings. These branchings can be further

nested on in another. NTNA therefore consist of sub-graphs, where each sub-graph is a

parallel or alternative branching. Each sub-graph is delimited by its beginning and finishing

node. There is no interleaving among sub-graphs but the case that one sub-graph is nested

in another. The basic idea lies in a fact, that in real processes, some parts of a process

form a closed sub-parts that can be seen as one bigger processing step from the point of

view of the whole process. Barták and Čepek [4] proposed a polynomial-time algorithm

to recognize nested networks as well as a simple scheme how to construct such structures.

The construction of NTNA are based on replacing of an arbitrary node by either parallel or

alternative branching, or by a sequence of activities. Using such procedure, nested form is

kept in each step of the construction. An example of NTNA is depicted in Figure 3.1.

22 CHAPTER 3. PROBLEM STATEMENT

output alternative branching

input alternative branching

input parallel branching

output parallel branching

temporal constraint

nested sub-graph

3

14

1 2

876

ALT

0

 <a,b>

PAR

PAR

8,13
e

0: preparation

1: paper cutting

2: folder cutting

3: colatting

4, 5: start of workbooks processing

6: perforating on semi-automatic machine

7: perforating on full-automatic machine

8: perforating & twin wire

9: dummy activity

10: manual wire twinning

11: twin wire in press

12, 13: completion of workbook processing

14: end of manufacture process

PAR

4 5

 . . .

9
ALT

1110

12
ALT

ALT
13

 . . .

 . . .

Description:

Figure 3.1: Nested temporal networks with alternatives - example

Chapter 4

Mixed integer linear programming
model

Integer linear programming (ILP), as an specific case of MILP, is a mathematical tech-

nique commonly used, among others, to model and solve optimization problems. Using ILP,

we can model all the constraints and objective function as well. ILP is thus a very strong

modeling tool.

ILP is given by matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn. The goal is to

find vector x ∈ Zn which satisfies the inequality A · x ≤ b such that cT · x is maximal.

In general, the goal is to find such values of variables (vector x) that ensure fulfillment

of all constraints and the value of the objective function is maximal. Rows of the matrix

A represent all linear constraints and columns represent variables. Values in each row

therefore specify linear combination of the variables for each inequality. Vector b is the

vector of right sides of inequalities. This vector contains constants of inequalities. Vector

c specifies multiplicative constant for each variable of vector x. Values of vector c can be

understood as contributes of variables to the objective function. The higher the value, the

greater contribution. Each variable in vector x (solution of the problem) is further limited

by its lower bound (LB) and upper bound (UB) and must be of integer value.

Solutions of ILP models can be obtained by ILP solvers. There are both free / open

23

24 CHAPTER 4. MIXED INTEGER LINEAR PROGRAMMING MODEL

software solvers, for example Ip solve, GLPK or Coin-OR Cbc, and commercial solvers, for

example CPLEX,Mosek, Xpress or GUROBI. ILP solvers are based on branching algorithms

or cutting plane methods together with bounds estimations. Nowadays, when we can use

quality solvers and we possess great computational resources, we can solve ILP models with

more than a thousand variables.

The problem of solving the ILP belongs to the NPC class. This means that computa-

tional demands to solve the most of the ILP problems grow exponentially with increasing

number of variables. Therefore, ILP solvers are used only for small instances of problems.

Without the integrality restriction (linear programming), the problem becomes solvable in

polynomial time. However, by rounding the solution obtained by liner programming (LP)

we do not necessary gain optimal or even feasible solution. Therefore, LP can be used only

as upper and lower bound estimation method. The question is then why to model optimiza-

tion problem with integer linear programming which is difficult to evaluate and why not

use linear programming instead. The answer is quite simple. In manufacturing and other

processes dealing with optimization we cannot create 0.8 units of product using 3.2 units of

resource.

A hybrid approach that combines both LP and ILP is called mixed integer linear pro-

gramming (MILP). Using MILP we can model problems that consist not only of discrete

(decision) variables but also continuous variables. Relaxing requiriments of some variable

to be integers, ILP solver can found desired solution in shorter time. This approach is even

more useful when the integer value, as the only one possible, is ensured by context of other

variables or equations. In this thesis, MILP model is chosen to use such behavior without

lost of accuracy or feasibility.

4.1 MILP model

In this section, a mixed integer linear programming model is given. This model is further

used to find exact solutions of small instances using ILP solvers.

For the greater efficiency of the model, capacities of resources are cumulative in the

4.1. MILP MODEL 25

following model. Capacity of the resource Rq, using cumulative capacities, thus begins

on value given by sum of all predecing resources’ capacities. The resource’s cumulative

capacity ends on value given by the sum of the cumulative capacity’s beginning and its own

capacity. Using mathematical formula, the total cumulative capacity is given as follows:

θCq =
∑q
j=1 θi. Further, variable zivk is substituted by zil, where l =

∑v−1
q=1(θq)+k. And vice

versa conversion is v = arg min
(∑v

q=1 θq > l
)
and k = l −

∑v−1
q=1 θq.

4.1.1 Variables

fij =

 1 if setup time stij is considered in criterion

0 otherwise

zik =

 1 if activity i is assigned to cumulative capacity k

0 otherwise

xijk =

1 if both activities i and j are selected and both activities i and j are assigned

to capacity k and i is an arbitrary predecessor of j on a capacity k

0 otherwise

gijk =

1 if both activities i and j are selected and both activities i and j are assigned

to capacity k and i a direct predecessor of j on a capacity k

0 otherwise

yijk =

 1 if both activities i and j are assigned to capacity k

0 otherwise

vi =

 1 if activity i is selected

0 otherwise

si =start time of activity i

26 CHAPTER 4. MIXED INTEGER LINEAR PROGRAMMING MODEL

4.1.2 MILP model

min
∑
∀i∈A

∑
∀j∈A fij · stij · cij (4.1)

such that:

∑
∀i∈AE

vi ≥ 1 (4.2)

vi = vj ∀(i, j) ∈ E ∧ outLabeli 6= ALT ∧ inLabelj 6= ALT (4.3)

vi =
∑
∀j∈AE :(j,i)∈E vj ∀i ∈ AE : inLabeli = ALT (4.4)

vi =
∑
∀j∈AE :(i,j)∈E vj ∀i ∈ AE : outLabeli = ALT (4.5)

si + (1− vi) · UB ≥ ri ∀i ∈ A (4.6)

si ≤ d̃i − pi + (1− vi) · UB ∀i ∈ A (4.7)

sj − si + (2− vi − vj) · UB ≥ lij ∀(i, j) ∈ E (4.8)

sj + pj + stji ≤ si + UB · (xijk + 1− yijk) + UB · (2− vi − vj)

∀(i, j) ∈ A2 : i 6= j;∀k ∈ {1 . . .K} (4.9)

si + pi + stij ≤ sj + UB · (2− xijk − yijk) + UB · (2− vi − vj)

∀(i, j) ∈ A2 : i 6= j;∀k ∈ {1 . . .K} (4.10)

∑C+θq

k=C+1 zik = Rq
i · vi ∀i ∈ A;∀q ∈ {1 . . .m};C =

∑q−1
j=1 θj (4.11)

z0k = 1 ∀k ∈ {1 . . .K} (4.12)

4.1. MILP MODEL 27

zn+1 k = 1 ∀k ∈ {1 . . .K} (4.13)

yijk ≥ zik + zjk − 1 ∀(i, j) ∈ A2
E : i 6= j;∀k ∈ {1 . . .K} (4.14)

yijk ≤ zik ∀(i, j) ∈ A2
E : i 6= j;∀k ∈ {1 . . .K} (4.15)

xijk ≤ yijk ∀(i, j) ∈ A2
E : i 6= j;∀k ∈ {1 . . .K} (4.16)

∑n+1
j=1 gijk = zik ∀i ∈ A;∀k ∈ {1 . . .K} (4.17)

∑n
i=0 gijk = zjk ∀j ∈ A;∀k ∈ {1 . . .K} (4.18)

gijk ≤ xijk ∀(i, j) ∈ AE2;∀k ∈ {1 . . .K} (4.19)

fij · UB ≥
∑
∀k∈{1...K} gijk ∀(i, j) ∈ A2

E (4.20)

where: K =
∑m
q=1 θq

The objective function (4.1) consists of all performed weighted setup times and the goal

is to obtain the minimal possible value. Formula (4.2) forces schedule to have at least one

selected activity (empty schedule has no relevant significance). Equation (4.3) defines rules

for selection of activities in parallel branchings. Constraints (4.4) and (4.5) define rules for

selection of activities in alternative branchings. Start time of an activity is constrained by

release time and dealine - (4.6) and (4.7), both constraints are applied for selected activities

only. Non-negative start to start time lags are considered in (4.8). Constraints (4.9) and

(4.10) represent resource constraints, including sequence-dependent setup times. Constraint

(4.11) ensures that the number of resource units assigned to each activity is equal to its

demand. Constraints (4.12) and (4.13) are used to assign dummy activities 0 and n+ 1 to

each resource unit of each resource type. Inequalities (4.14) and (4.15) bound variable yijk
- if both activities are scheduled on the same resource unit, then yijk must have value 1,

28 CHAPTER 4. MIXED INTEGER LINEAR PROGRAMMING MODEL

0 otherwise. Formula (4.16) bounds variable xijk - if activities i and j are assigned to the

capacity k, they must be one after another. Equation (4.17) determines that each activity

has on each capacity only one direct successor. Similarly, equality (4.19) determines that

each activity has on each capacity only one direct predecessor. Constraint (4.19) prevents

cycles in the schedule. Finally, using (4.20) we determine whether setup time is to be taken

into consideration in the objective function - whether activities are scheduled subsequently

on the same resource and share at least one part of its capacity.

Chapter 5

Heuristic algorithm

This chapter is dedicated to the heuristic algorithm description and the ideas behind

the algorithm. Since the problem considered in this thesis is complex, an extensive research

was done and many solution approaches were taken into consideration. However, up to

our knowledge, there is no work dealing with the specific problem considered in this thesis.

Therefore, a new heuristic algorithm is proposed to solve the problem.

During the research, we found several interesting ideas in the related works. Some of

them are further modified and extended for the purpose of the proposed algorithm. All

the modifications are described in the following sections. The proposed algorithm combines

some of already known techniques and approaches with our new techniques and approaches

developed to achieve good efficiency for the solution of the considered problem.

The heuristic algorithm is designed for large instances of the problem. Moreover, the

model considers many real constraints to meet demands of the nowadays production. All

the considered constraints together with the objective function make the problem difficult

to solve. Therefore, the proposed heuristic algorithm should effectively evaluate more pos-

sibilities how to schedule given activities and choose correctly the best possible direction

in the process of finding the desired schedule while all the constraints are fulfilled and the

value of the objective function is minimized.

29

30 CHAPTER 5. HEURISTIC ALGORITHM

The input of the algorithm is an instance of the PS|nestedAlt, lminij , STSD, rj , d̃j |TSC

(or equivalently m1|nestedAlt,min, STSD, rj , d̃j |TSC) problem (see Section 3.4) defined by

the set of activities, set of resources, NTNA instance, matrix of setup times and matrix of

setup costs. The output of the algorithm is a schedule S determined by the selection of

activities (variable vi), start times (variable si) and their assignment to resources (variable

zivk). The goal is to minimize the total setup costs (TSC).

5.1 Overall algorithm description

The goal of the algorithm in general is to find the feasible solution with desired properties.

In our case, we search for the schedule with the minimal total setup costs and we must ensure,

that all the constraints are fulfilled. The proposed algorithm can be classified as a heuristic,

meaning that the algorithm does not ensure to find the optimal solution, even the feasible

one. Since this algorithm is designed for large instances of a very extensive problem, we

accept a solution that is close to the optimal one. The main emphasis is placed on the speed

of the algorithm. We want to find the solution of large instances in short time.

The proposed heuristic algorithm consists of two basic phases. First, an initial solution

is found (if possible) and second, such solution is further improved. Using this separation,

we can apply more different techniques to find a better schedule (e.g. a schedule with the

lower value of the objective function). Note, that in both phases we must ensure feasibility

of the solution by avoiding the violation of the constraints. The description of both phases

of the algorithm is given in the following paragraphs. However, if the first phase does not

return a feasible solution, the entire algorithm ends up with failure and the second phase is

thus not executed.

5.1.1 Initial solution

In the first phase of the algorithm we try to find any feasible solution. The main idea,

on which this phase is based, lies in multi-level priority selection of activities. This means

that there are many selection rules used in each sub-problem and its partial subproblems,

5.2. INITIAL SOLUTION 31

etc. Basically, the problem of finding the initial solution consists of many layers and each

layer has its own rules to select activities. Priority selection is therefore applied both to

determine, which activities will be scheduled (selection among alternative process plans,

etc.) and to actual placing of the activities into the schedule. Moreover, a backtracking

scheme is proposed to recover from partially unfeasible solution. All the details regarding

finding the initial solution are further described in Section 5.2.

5.1.2 Schedule improvement

The second phase of the algorithm is dedicated to further improve the initial feasible

solution. We will further refer to this part as Sliding windows. The inspiration of this

approach is based on publication of Foccaci et al. [18]. In the publication, authors proposed

an improvement technique based on the local optimization. Authors divided the whole

problem into small sub-problems, called time windows. Each sub-problem is then solved

independently on the others using limited branch and bound algorithm in order to optimize

the sum of the setup times. We further extend this technique to meet constraints considered

in this thesis and apply it on the considered problem.

5.2 Initial solution

In this section, we will describe the finding of the initial solution, i.e. the first phase of

the heuristic algorithm, in more detail. The solution must be feasible, meaning that even

the initial solution has to fulfill all the constraints. The first phase can be split into two

main parts: preparations and construction of the schedule. Each part and its sub-problems

are discussed in the following paragraphs.

At the beginning of the first phase we pre-process given data. Such preprocessing allows

us to generate the schedule more effectively later on. First, we propagate release times

and deadlines to estimate possible position of activities within the schedule more precisely.

Second, we establish selection priorities. This means, that we evaluate each alternative

branching to decide, which alternatives are better then the others. Finally, we set back-

32 CHAPTER 5. HEURISTIC ALGORITHM

tracking rules, that are used to to decide which type of action is applied after no activity

can be further scheduled.

After all preparations, the schedule is being constructed. Let Ready be a set of activities,

that can be scheduled at actual iteration step. An activity is pronounced as Ready, if it is

not yet scheduled and all its considered predecessor are already scheduled. First, we choose

activity i which is the most critical from the perspective of the actual schedule from the

Ready set. Second, we try to schedule it. If we are unsuccessful, backtracking scheme is

applied. Otherwise, we update the Ready set by adding ready successor of the just scheduled

activity. If node i is the beginning of the alternative branching, we add to the Ready set

only one of its successors using rules described further in text. Such process is called as an

expansion of the activity.

The entire process can be expressed using the following pseudo code:

Propagate release times

Propagate deadlines

Establish selection priorities

Set backtracking rules

Establish the Ready set

while Ready is not empty

activity = Select activity from Ready set

if activity is successfully scheduled

Expand activity

else

Apply backtracking rules

end if

end while

The following subsections deal with each mentioned sub-problem in more detail.

5.2. INITIAL SOLUTION 33

5.2.1 Propagation of release times and deadlines

Propagation of release times and deadlines enables us to calculate more accurate time

window, in which an activity can be scheduled. Propagated release time of activity i (r̂i)

depends on the propagated release times of activity’s predecessors and time-lags between

such predecessors and activity i. In case of only one predecessor j of activity i, the propa-

gated release time is equal to r̂i = max(ri, r̂j + lji). Notice, that time lags are non-negative

and define the minimal time interval between start times of two related activities. Setup

times cannot be considered, because they depend on specific assignment of activities on

resources. Similarly, propagated deadlines of activity i (d̂i) depends on activity’s succes-

sors propagated deadlines and time lags between activity i and its successors. Note, that

while propagating deadlines, we must also consider processing times of involved activities

(see Figure 5.1). In case of only one successor j of activity i, the propagated deadline is

calculated as d̂i = min(d̃j , d̂j − pj − lij + pi).

If some activity has more than one successor (predecessor), we must decide which prop-

agated value to use. There are two rules while estimating propagated release times and

deadlines. In case of alternative branching, we use an optimistic estimation, in case of

parallel branching a pessimistic estimation is used. When we calculate propagated release

time of activity i, we use a minimum of all propagated release times, considering also time

lags, given by activity’s predecessors, in case of alternative branching, i.e. min(r̂j + lji)

for all j ∈ predecessors(i). A maximum is considered in case of parallel branching, i.e.

max(r̂j + lji) for all j ∈ predecessors(i). Similarly, when we calculate propagated deadlines

we use as the value a maximum of all propagated deadlines given by activity’s successors

in case of alternative branching and a minimum in case of parallel branching. To estimate

such values, we must propagate release times and deadlines separately. Release times are

propagated from the first activity (0) and deadlines are propagated from the last activity

(n + 1). For effective propagation, a topological ordering of activities within NTNA graph

is used. Doing so, we are sure, that all activity’s predecessors (successors) were already

propagated and also, that all branchings are considered properly.

If we schedule activity outside this estimated time window, it will finally lead to unfea-

sible schedule. We cannot schedule activity at time before this time window because it’s

34 CHAPTER 5. HEURISTIC ALGORITHM

already scheduled predecessors will not allow us to do so. Similarly, we cannot finish an

activity after the end of the time window, because the successors of the activity will be

forced to start later which will at the end cause violation of some deadline constraint. Of

course, original release time or deadline of an activity can violate the estimated time window

as well.

Propagation therefore states upper and lower bound estimation of activity’s start time

and allows us hereby to quickly detect unfeasible schedules so we can recover sooner from

such situation and thus save valuable computational time.

An example of the entire process is depicted in Figure 5.1

10

8

6

7

3

4

ALT

0

PAR

release time / processing time / deadline

PAR

2

1

5

ALT

Description:

9

2/2/8

8/2/14

8/2/14

12/4/20

10/4/14
10/14

0/4/6
0/6

14/2/20
16/20

12/2/18
12/18

4/2/12
6/10

10/2/14
10/14

2/2/10
4/10 4/8

8/12

10/14

12/18

propagated release time / propagated deadline

Other propagated time:
Propagated relase times:

 3 -> 5: 12

 4 -> 5: 14

 5 -> 10: 14

 9 -> 10: 16

Propagate deadlines:

 2 -> 1: 8

 4 -> 1: 10

 1 -> 0: 8

 6 -> 0: 6

To simplify the figure, time lags are

 equal to processing times

Figure 5.1: Propagation of release times and deadlines

5.2.2 Establishing branching selection priorities

Since the problem considered in this thesis includes also alternative process plans, we

must evaluate each alternative branching to decide which branch is potentially better or

worse. In the following paragraphs, the method how to rate each branch in alternative

branching is described. While scheduling activities, better rated branches are chosen first.

5.2. INITIAL SOLUTION 35

In fact, we determine an ordering of branches for each alternative branching and then choose

the branches in such order.

The selection starts from the most nested alternative branching and ends in the top

most one. Doing so, we ensure that the nested alternative branchings are resolved before

the parent ones. After the selection establishment, the whole alternative branching is fur-

ther seen as just the best rated branch using rules mentioned bellow. This means, then

while establishing branching selection priority for an alternative branching, we have already

evaluated all nested alternative branchings and we include into the calculation only the best

evaluated branches, not the entire nested alternative branchings.

To facilitate the entire process we can use topological ordering. We start the establish-

ment by the activity (of course, we consider only activities in which the alternative branching

begins) with the highest topological number first. This will ensure that the most nested

alternative branchings (higher topological number) will be processed before the top most

ones (lesser topological number).

The entire priority establishment for an alternative branching consists of three phases.

First, we determine number of activities in each branch and the sum of costs of all involved

activities in order to calculate average cost. Second, we estimate the cost of each branch

(see 5.2.2.1 for more details). Finally, we compare calculated costs and we create ordering

of the branches from the best one to the worst one using rules described in section 5.2.2.2.

Moreover, alternative branches which lead to the unfeasible solution are directly rejected.

Detection of such branch is rather simpler thanks to the propagated release times and

deadlines. Any branch with at least one activity with negative cost is unschedulable (see

activity 8 the in branch beginning with branch candidate 6 in Figure 5.2).

5.2.2.1 Rating of branches

Let Ba = {B1...Bδ+(a)} be the set of all branches of the alternative branching that

begins in node a and ends in node b. Each branch Bj ∈ Ba consists of activities that

form a subgraph starting by some successor of activity a and ending by the corresponding

predecessor of activity b. See Figure 5.2, where B1 = {{2, 3}, 4}.

36 CHAPTER 5. HEURISTIC ALGORITHM

Figure 5.2: Establishment of selection priorities

To evaluate each branch, we first need to calculate so called cost of each activity in the

alternative branching. Therefore, let costi = propagated deadlinei − processing timei −

propagated release timei = d̂i−pi− r̂i be a cost of activity i. Cost of an activity determines

its flexibility within the schedule. The lower values correspond to activities that have a tight

time window and therefore they are more critical in the scheduling process. The higher values

correspond to activities that have a wide time window and they possess the larger flexibility

where to put them in the schedule.

An arithmetic average of all activities in the alternative branching determined by Ba
is then given as costa = average(costi), for all i ∈ Ba. The value of costa determines an

average flexibility of the activities in the alternative branching. To estimate the probability

of scheduling success for each branch with respect to temporal constraints, we have decided

to focus on the more critical activities, i.e. activities with the cost value lower than the

5.2. INITIAL SOLUTION 37

average cost of the alternative branching. Therefore, to calculate the cost the branchBj ∈ Ba
the following formula is used costBj =

∑
(costa − costi) for all i ∈ Bj : costi ≤ costa. Only

activities with costi ≤ costa are assumed for the calculation.

5.2.2.2 Selection rules

After all branches in alternative branchings are rated, we can determine their ordering

using the following set of hierarchical rules (if more alternative candidates has the same

evaluation, the order is determined by the next rule, etc.). Given rules were derived using

large instances of the problem and they represent a compromise for many different possible

situations.

1) minimal branch cost

2) minimal count of activities in branch

3) branch candidate with lower topological number

For the first rule we have already eliminated the most flexible activities (activities with

cost greater then average cost) in order to focus on the less flexible ones. We prefer a

branch, that has the lowest cost costBa . This way we choose the alternative branch that is

the closest from the average cost. The chosen branch has the highest probability of being

successfully scheduled since the activities in it are the most flexible ones. Notice, that the

establishment is done before building the schedule, so we do not consider assignment on the

resources or setup times.

The second rule prefers the alternative branch with lower count of activities. Notice, that

rule 1 ended up indecisively, so the branches are of the same cost. The rationale behind this

rule is to select lower amount of activities, so the number of scheduling/unscheduling steps

in the rest of the algorithm will be most likely lower than for branch with more activities.

In other words, we are trying to schedule less activities to save the computational time and

use it in another part of the algorithm.

38 CHAPTER 5. HEURISTIC ALGORITHM

The last rule is applied if previous two rules ended up indecisively. In that case, we

prefer branch, whose branch candidate has lesser topological number just to select a branch

in a deterministic way.

Notice, that while establishing priorities for alternative branching that begins by activity

0 in Figure 5.2, we do not consider rejected branch beginning with branch candidate 6.

Also, we do not consider activities in not selected branches in nested alternative branchings

(activities 4 and 11).

5.2.3 Establishment of the set of ready activities

Before the schedule construction is started, we must initialize the Ready set. Thanks to

the structure of the NTNA only activity 0 has to be added to the Ready set (i.e. the set of

ready activities). This activity is a root of the entire NTNA graph and is the only activity

which is ready in the first iteration of the process of the schedule construction.

5.2.4 Selection of activity from the set of ready activities

Set of ready activities always contains activities, that can be scheduled according to the

actual state of the schedule. At the beginning of the algorithm, ready set contains the first

activity 0. The set of ready activities is then updated after any change in the schedule (see

Sections 5.2.6 and 5.2.7 for more details).

After all preparations are done, we must choose one activity from the set of ready

activities in each interaction. Activity is ready, if all its considered predecessors are already

scheduled. Basically, we choose the activity, that is the most critical in the context of the

actual schedule. This means, that we do not choose activities that are very flexible at the

moment, but activity which is the least flexible instead, considering also influence on its

successors.

For each activity i ∈ Ready we calculate effects on its successor. Basically, we determine

how would activity i change possible start times of its successor if it is scheduled in this

5.2. INITIAL SOLUTION 39

iteration. The changes of possible start times are reflected in updated successors costs.

First, we estimate the earliest possible start time of each activity i considering all the

constraints including sequence-dependent setup times and resource availability. In general,

we evaluate the attempt to schedule activity i. Second, we calculate effects on successors

for each activity i in the following way. The effect on successor j of activity i is equal

to d̂j − pj − (si + lij). The evaluation of scheduling attempt for activity i is then equal

to the minimal value of effects over all selected successors. Finally, we choose activity i

with the minimal evaluation value. Doing so, we find activity, which is the least flexible

for the moment. Notice, that we calculate effect only on activity’s successors, not on all

the remaining activities. This is caused by propagated release times and deadlines. If any

successor violates its time window, we cannot further obtain a feasible solution. If successor

fits inside the window, we can still find a feasible solution.

5.2.5 Scheduling of an activity

While scheduling an activity, we must consider all the constraints, i.e. temporal, re-

source and selection constraints. Depending on the assignment on the resource we must

also consider the influence of sequence dependent setup times on the position of activities.

To schedule an activity properly, we must find the earliest possible start time within its

time window. Time window of activity i is determined by its propagated release time r̂i
and propagated deadline d̂i. Activity i cannot violate its time window and all constraints,

including time lags and sequence-dependent setup times, must be fulfilled. If no time slot

is found, scheduling of activity ends with failure and backtracking is applied.

The process of finding time slots on the resource is based on the serial generation scheme

proposed by Kolisch [26]. The main idea lies in selection only one activity i in each iteration

from the set of Ready activities. Selected activity i is then scheduled as soon as possible and

removed from the Ready set. Further, the Ready set is updated with respect to successors

of activity i. The selection from the Ready set is based on priorities.

To fasten the process of scheduling activity i, we created specific data representations.

The time axis of the resource is divided by so called milestones. Milestone is a time moment

40 CHAPTER 5. HEURISTIC ALGORITHM

in which there is any change on a resource. First, we locate the nearest milestone to the

desired start time, that is given by time lags and propagated release time. Second, we specify

the earliest possible start time by sequence-dependent setup times on each resource part.

Finally we estimate free time intervals on each resource part and try to find and intersection

of activity’s resource demands with free time intervals. This way we obtain assignment of

the activity on the resource (for more details see Chapter 6).

After an activity is scheduled, we must update the set of ready activities by exploring

successors of the activity. If the activity cannot be scheduled, backtracking rules are applied.

5.2.6 Updating the set of ready activities

After an activity i is scheduled, it is removed from the set of ready activities. Similarly

as in serial generation scheme (see Kolisch [26]) we must update the set of ready activities

by all activities which are released by activity i. Activity is released, if all its considered

predecessors are already scheduled.

Let S be a set of successors of activity i. Each activity in the set S is a candidate to be

added into set of ready activities. Each candidate is further tested if it fulfills all the rules

given bellow. If the candidate succeeds, it is added to the set of ready activities. There are

three possible situations regarding just scheduled activity i and each successor s ∈ S:

1) Activity i is the beginning of an alternative branching:

While scheduling alternative branchings, we must choose only one branch Bk from

all branches {B1...Bδ+(i)} in alternative branching that begins with activity i. In the

preparation phase of the proposed initial solution, we have already established selection

priorities for each alternative branching. The set of ready activities is thus updated

by a single activity (branch candidate). This candidate represents entire alternative

branch and is chosen using rules given in Section 5.2.3. When we are selecting from

alternative branches, we prefer the best rated one as first and the worst rated one as

last.

2) Activity s finishes a parallel branching:

5.2. INITIAL SOLUTION 41

If activity s that finishes parallel branching is in the Ready set, all the activities in

parallel branchings have to be already scheduled. In other words, activity s (that

is not scheduled) is added in to Ready set if and only if all of its predecessors p ∈

predecessors(p) are scheduled. We can imagine activity s as a barrier on which we

wait until all activities before this barrier are already scheduled. Then the barrier can

be released.

3) Otherwise:

This case covers both the beginning of parallel branching and simple precedence con-

straint. In both cases, all successors s of activity i are added into Ready set.

5.2.7 Backtracking

When scheduling of an activity ends with a failure, backtracking is applied. This tech-

nique is used to recover from such situation by discarding a part of the schedule. There are

two main backtracking schemes used in the first phase of the heuristic algorithm - change

of the selection of activities and change of the ordering on resource. To determine which

kind of backtracking will be applied, we use backtracking rules which are determined in the

preparation phase of the initial solution.

5.2.7.1 Backtracking rules

Backtracking rules are used to quickly decide which kind of backtracking to apply. The

decision is made upon a type of the nearest preceding node with output branching in the

NTNA structure. If such branching is alternative, we apply change of selection of activities,

otherwise we apply change of the ordering on a resource.

If backtracking from given activity fails, we must try backtracking from another activity

again. In case of alternative branching we can choose different branch than is actually

selected, otherwise we must choose one of predecessors and start backtracking over again.

When the backtracking is not further possible (we try to backtrack from the root activity

0), the entire heuristic algorithm ends with failure.

42 CHAPTER 5. HEURISTIC ALGORITHM

5.2.7.2 Changing selection of activities

If activity which cannot be scheduled is nested in an alternative branching, we find node

i, where the alternative branching begins and we select another alternative branch using

previously mentioned rules (see Section 5.2.2.2). Insomuch as there can be at most only

one selected branch in each alternative branching, we must unschedule the entire previously

chosen alternative branch. We must also update the set of ready activities to reflect actual

situation. First, all successors of all unscheduled activities within previously chosen alter-

native branch are removed from the Ready set. Second, the first activity in currently chosen

branch is added. The set of ready activities is now updated and we can continue in the main

loop of the algorithm.

After all branches for alternative branching are tried out and still the schedule is unfea-

sible, we perform backtracking from the node i, where the alternative branching begins. If

the activity corresponding with the opening node i is unscheduled in another iteration, the

actual state of selection of activities is cleared and when such activity i is scheduled again

and being expanded, we start choosing branch candidates from the best one over again.

One of possible situations is depicted in Figure 5.3: Activity 6 cannot be scheduled (for

example due to overfilled resource). Since activity 6 is nested in alternative branching, we

choose next branch candidate according to rules given in 5.2.2.2. In the preparation phase,

we established, that the next branch candidate is activity 9. Since there can be at most only

one selected alternative branch in each alternative branching, the whole branch beginning

with branch candidate 5, e.g. activities 5 and 6, has to be unscheduled. Then, the set of

ready activities has to be updated. First, we remove activity 6 from the Ready set. Second,

we add currently selected branch candidate (activity 9) to the set of ready activities.

5.2.7.3 Change on resource

Change on resource is applied, if the first branching preceding activity i in NTNA is

parallel. The main idea lies in reordering the assignment of activities on the resource. The

activity, whose scheduling ended with failure is tried to get scheduled earlier in order to

5.2. INITIAL SOLUTION 43

output alternative branching

input alternative branching

input parallel branching

output parallel branching1

975

ALT

PAR

PAR

2 4

8

11

6

ALT
10

3

For activity 4:

 1) Branch candidate 5

 2) Branch candidate 9

 3) Branch candidate 7

 currently selected alternative branch

 unschedulable activity

 branch to be changed on

 branch candidates

Established priorities selection:

Notes:

Figure 5.3: Change of alternatives example

fulfill all the temporal constraints.

First, we have to find the nearest activity inear that has lower start time on the resource

and is not preceding activity i in the context of NTNA instance. Activity inear and all of its

successors are then unscheduled. This way we free a part of the resource. While finding the

activity inear, we remember a set P of all activities between inear and i. The set P consists

of predecessors of activity i on the resource. Second, an activity i and all activities from P

are also unscheduled. Then, we can reschedule all activities from the set P and activity i

again. Notice, that after removing activity inear and all of its successors, activity i and its

predecessor in P can be scheduled earlier. Such shift of activity i is done in order to try to

fulfill the violated constraint. Afterwards, the algorithm continues by scheduling the next

activity from the Ready set.

If the schedule is still unfeasible, we try to backtrack once again from another activity.

44 CHAPTER 5. HEURISTIC ALGORITHM

A solution of the problem given in Figure 5.3 is depicted in Figure 5.4. While scheduling

activity 3, one constraint was violated (deadline restriction). In order to recover from this

situation, backtracking rules are applied. In this case it is change on resource. Activity 4 and

all its successors (i.e. activities 4 and 9) have to be unscheduled to free the resource. Then

activities 2 and 3 are re-scheduled. Then the algorithm continues as usual and activities 9

and 10 are scheduled.

resource 1

resource 2

1

9

4 2 3

10

resource 1

resource 2

1

9

42 3

10

Figure 5.4: Change on resource example

5.3 Sliding windows

Sliding windows is a technique based on the work of Foccaci et al. [18]. It is a heuristic

approach that utilizes a local optimization scheme. The main idea lies in the separation

current solution into independent time windows. Then we optimize each time window sep-

arately. This way we consider only a reduced set of all activities.

The goal of this phase is to optimize the given initial solution, in other words to reduce

the total setup costs (TSC). Thanks to the separation into smaller time windows, we can try

more combinations of assignment of activities to the resource parts. The current solution

within the time window (part of the current solution bounded by this window) is dropped

and new the solution with minimized TSC is found. If the new solution of the time window

is better then the original one, it is integrated into the current solution.

During this phase, we optimize one time window at a time. The alternative branchings

are fixed, i.e. we do not try to change alternatives, because it could affect more than just

the current time window. The term sliding means, that after time window is optimized,

we move to another time window, but these two windows overlap. The optimization of the

5.3. SLIDING WINDOWS 45

independent sliding windows can be run in parallel, but in this thesis, we decided not to

extend the algorithm for such functionality. The parallel extension can significantly reduce

the computational time, but the implementation of such behavior would be much more

complex and therefore it is not used in this thesis.

All the calculations are done over the current time window. In order to make the entire

algorithm flexible and mainly clear, we enhanced many methods used in initial solution to

consider also given time window. The main loop of this phase is described in the following

pseudo-code:

Determine the first time window

while not reached the end of the schedule

Determine activities for the time window

Determine set of ready activities

Optimize time window

if TSC was reduced

Integrate into solution

end if

Determine next time window

end while

5.3.1 Determination of the time window

Time window is specified by its borders and activities within. Notice, that time window

covers all the resources simultaneously. Time window also contains information about ready

activities and resources. Each border is exactly determined by the time in which it is placed.

For each border we remember bordering activities, i.e. the first activities before and after

the time window in order to calculate setup times. The bordering activities are fixed for

the current time window and cannot be rescheduled or shifted in any way. Further, for each

border of the time window we determine the milestone that is the closest one to the border,

but still outside the time window. These two milestones for each resource determine the

46 CHAPTER 5. HEURISTIC ALGORITHM

segment which is optimized from the view of the resource. The time window is illustrated

on Figure 5.5.

Figure 5.5: Time window and its properties

The size of the time window significantly affects the computation demands for the local

optimization. Since the solution within the time window is built from the scratch and many

combinations of the assignment of the activities are taken into consideration, we must choose

its size cautiously. The maximal size of the time window is given by two parameters:

1) Maximal number of the activities on any resource within the time window.

2) Maximal total number of the activities within the time window.

For the purpose of this thesis, those thresholds were estimated as 15 activities on the

resource and 40 activities within the time window. These two constants estimate a balance

between computational demands and quantity of assignment combinations.

5.3.1.1 Left border

Left border is a time moment where the time window begins. If there was no time

window before (we want to optimize the first one), 0 is chosen as the left border, i.e. the

5.3. SLIDING WINDOWS 47

beginning of the current solution. Otherwise we choose a time in the middle of the previous

time window from the perspective of assigned activities as the left border. In other words,

the time is in our case determined by the completion time of the 20th activity within the

time window.

5.3.1.2 Right border

Similar to left border, right border is the time moment where the time window ends.

Closing time of the time window is derived from its left border using rules described in section

5.3.1. After any of mentioned thresholds or the end of the current solution is reached, we

use the completion time of the last considered activity as the right border.

5.3.2 Ready activities

Each time window contains information about ready activities. The decision whether the

activity is ready or not is slightly modified when using time windows than it was in the initial

phase of the algorithm. Activity i within the time window is ready, if all its predecessors(i)

are outside the current time window, or are already scheduled in the current time window.

Notice, that in this phase activities outside the time window are already scheduled, so we

can focus only on predecessors of activity i which are within the time window.

5.3.3 Optimization of the time window

The solution in the current time window is dropped and the new solution is found

using different rules than in the initial phase. The optimization of the time window focuses

on reduction of the objective function, i.e. TSC. The optimization is based on limited

discrepancy search (LDS) presented by Harvey and Ginsberg [22]. This technique is similar

to Branch and Bound approach, but the total number of explored solutions is very limited.

Generally, the activity from the Ready set to be scheduled is chosen by the heuristic rule.

In case that the limited discrepancy search is used, there can be some decision points where

the heuristic rule is not followed. Such decision point is called discrepancy. The process of

48 CHAPTER 5. HEURISTIC ALGORITHM

finding the solution of the single time window is repeated several times, while the discrepancy

is used in different levels of the search tree. The search tree is determined by the sequence

in which the activities are scheduled. The best sequence of the activities (the best path in

the search tree) is than chosen as the result of the optimization of the time window.

5.3.3.1 Construction of the schedule

Thanks to the limited size of the time window, we can try out more combinations of

activities assignment. Using LDS technique we can explore more possibilities. Discrepancy

search significantly cuts the search tree so we do not evaluate all combinations of activities

assignment. Complete evaluation would cost a lot of computational time. This way we

evaluate only the path in the tree with the highest probability of TSC reduction.

Figure 5.6: Search tree of the time window for different steps of algorithm

In our case we use discrepancy in just one level h ∈ {0 . . . nTW } of the search tree, where

nTW is the number of activities within the time window. The level h = 0 corresponds to

the situation where the heuristic selection rule is followed in each step, i.e. discrepancy is

not actually used (see Figure 5.6). While using discrepancy in level h, we can use partial

solution up to the level h− 1 and reschedule only the rest of the activities. The process of

scheduling the activities is similar to the one described in the initial phase of the proposed

heuristic algorithm. Unlike the initial phase, no backtracking rules are applied and the rules

5.3. SLIDING WINDOWS 49

for selection of activities from the Ready set are different. The process of optimizing a single

time window from the view of search tree is depicted on Figure 5.6

The optimization process for the time window with discrepancy is described in the

following pseudo-code. Notice, that this method is repeated for each considered level h and

the sequence of activities, which led to the solution with the minimal value of the objective

function, is returned.

Unschedule part of the solution from level h

Determine ready activities

while Ready is not empty

activity = Select activity from Ready set

if activity is successfully scheduled

Update ready activities

else

Abort optimization of the time window

end if

end while

5.3.3.2 Selection from ready activities

The selection of activity from the Ready set is rather different than in initial phase of

the proposed algorithm. In the selection we must consider both sequence-dependent setup

times and temporal constraints (release times and deadlines). First, we evaluate a schedule

attempt of each activity i and determine the change of setup costs given by the actual

assignment. The entire process is similar to the one described in section 5.2.4 in initial

phase of the algorithm, but in this case, we focus on the change of the setup costs induced

by the activity assignment on the resource parts.

While evaluating schedule attempts of each activity, we also check its cost which is given

by formula d̃i − pi − si. If the cost of activity i is lower then given threshold, then activity

50 CHAPTER 5. HEURISTIC ALGORITHM

i is selected regardless all setup costs. Since the cost of activity i determines its flexibility,

we prefer such activity i over the others to avoid infeasibility caused by violating temporal

constraints.

If there is no activity whose cost is lower than given threshold in the Ready set, we make

a selection according to the induced setup costs. Each scheduling attempt is evaluated in

the terms of the total setup costs. We choose the activity whose effect was the lowest one,

i.e. activity which would increase the objective function at least. In case that activity has

more resource demands (i.e. consumes more parts of the resource) we use as the effect the

maximal induced setup costs over all assigned resource parts. This way we do not advantage

activities with lower resource demands.

5.3.4 Integrating the solution of the time window

After the time window is optimized, we must decide whether to integrate its solution

into the whole schedule. We integrate the time window if its solution improves the value of

the objective function. In general, the integration stands for updating activities assignment

(start times and assigned resource parts). An example of time window integration into the

solution is depicted on Figure 5.7.

Figure 5.7: Integration of the time window into the solution

Chapter 6

Implementation

In this chapter, we will discuss data representation and present some implementation

details to find the desired solution more effectively. Appropriate, even redundant data

representation, together with well thought implementation details can significantly reduce

the computational time necessary to find the solution. Thus, we can solve larger instances

of the considered problem in reasonable time.

For the implementation, programming language C# was chosen under Visual Studio

2010 environment. C# is modern and strongly object-oriented programming language that

enables us to use high level of code abstraction. Using pre-defined interfaces with desired

fields and methods we can use the algorithm even for instances of different problems then

the considered one. Also, the advantage of using such programming language is that we

can create clear and understandable code. The main disadvantage is the increase in compu-

tational complexity then using programming language like C or other low-level languages.

Other advantage of the Visual Studio 2010 environment is that it encapsulates many useful

tools for application development and without many difficult configuration we can create an

application connected to database, create server-client application, etc.

51

52 CHAPTER 6. IMPLEMENTATION

6.1 Data representation

Generally, the algorithm expects data on its input and returns transformed data on its

output after the input data are appropriately processed. Data representation must cover all

the information necessary to describe the given problem and its solution, which includes in

our case information about activities, resources, constraints, alternative process plans, etc.

Properly chosen data representation has great influence on both efficiency and asymptotic

complexity of the algorithm. Nowadays, when we posses great memory and cache, we can

afford to have even redundant data information. Doing so, we can significantly reduce the

computational time. But the redundancy must be well thought to be worth it.

The data representation used in the proposed heuristic algorithm can be divided into

three groups. First, an input data representation is used to carry out all the information

necessary for the algorithm to describe the problem to be solved. Second, an algorithm data

representation is given to solve the given problem effectively and is specifically designed for

the algorithm itself. Finally, an output data representation is used to describe the solution

of the problem given by the algorithm. Notice, that algorithm could also use the input data

representation to find the solution without using its own data representation, but it will not

be effective. Since the input data representation is designed to be general and to be used

fort other algorithms, any operations on such data representation would cause unnecessary

loss of time. These are the aspects that led us to use specific partially redundant inner data

representation in order to make the heuristic algorithm effective.

6.1.1 Input data representation

Input data representation is used to pass all necessary information about the problem

to the algorithm. Moreover, representation should be flexible enough to cover also related

problems or generalizations of the problem. This way the input data can be accepted by

more different algorithms so we can for example compare theirs solutions, efficiency, etc.

Since C# was chosen as the programming language, we use its abstractions to make the

input data representation as general as possible and reusable. The input data representation

6.1. DATA REPRESENTATION 53

is divided into two parts: interfaces and classes. Each part is described bellow in more detail.

6.1.1.1 Interfaces

Interface is an abstract data type used to define data entries (fields, methods, etc.). We

can imagine interface as a prescription. Interface itself do not posses any information, it is

used only to define some desired properties. If a class implements interface, it must define

all the data entries of such interface. Class implementing interface can also further add its

own fields, methods, etc. Interface can be thus used to define properties, that are common

to more classes and can be used for the exchange the data between them. Interface can

be used as a parameter of any method or function. In this case, only properties specified

by interface are accessible and the rest of the class implementing the interface is hidden.

So, if the algorithm expects a data structure implementing some interface, it uses only the

data fields specified in interface and does not consider the rest of the fields in the class.

Therefore an algorithm can accept more different data representations but all with some

common entries.

There are three interfaces used in the implementation of the heuristic algorithm: IAc-

tivity, IResource, IAlgorithm. Each interface is described in the following paragraphs.

Interface IActivity contains all the necessary information for the single activity, such

as: identifier, processing time, release time, deadline, resource, resource demands, etc. All

the classes implementing this interface are forced to have all of the specified fields. Doing

so, we ensure, that the algorithm has all the necessary information at its disposal. Notice,

that interface IActivity does not contain start time or information about assignment on the

resource. Such values are determined during the process of finding the solution and are a

part of the output of the algorithm. At the input of the algorithm such values are irrelevant.

Since the activities are assigned to the resources, we must also specify the resource.

Interface IResource defines identification, name and capacity of each single resource. Notice,

that interface IResource does not contain any data structures used while finding the solution.

Such properties are specified in classes implementing this interface, but they has no meaning

in general. Such structures are used only for the optimization purposes.

54 CHAPTER 6. IMPLEMENTATION

The last used interface IAlgorithm specifies all the expected outcomes of the algorithm.

If more algorithms return a result implementing such interface, we can easily compare out-

comes, choose the best one, etc. Interface IAlgorithm contains the value of the objective

function, generated schedule, the computational time and it specifies functions to set the

optimization problem, run the optimization and export the schedule into file. Specific in-

formation about activities and their assignment are given in the class implementing this

interface. Interface IAlgorithm is used to describe common properties of many algorithm

outcomes so we can compare them, but we do not say nothing about the solution method

itself.

6.1.1.2 Classes

There are altogether six classes to represent the entire input data. Each class carries

specific part of the whole problem.

Class Activity implements interface IActivity. Each instance of this class contains all the

information about a single activity for the algorithm.

Class Resource implements interface IResource and its instances carry out all the neces-

sary information about all the resources for the problem.

Class ChangeoverTimes keeps all the sequence-dependent setup times related informa-

tion. Note, that changeover times can be also called setup times. Since the activities are

mono-resource, meaning that each activity can be assigned only to one specific type of

resource, changeover times are defined separately for each resource.

To represent non-negative start to start time lags, an instance of the class TimeLags

is used. Note, that unlike the setup times, time lags constraint activities regardless the

resource assignment, so they must be defined as one large matrix.

Class NestedTemporalNetworkWithAlternatives contains definition of all the alternative

process plans using graph structure: precedences, in labels, out labels etc. This class further

adds useful methods to create topological ordering of activities and to find the nearest

opening (closing) activity of alternative branchings.

6.1. DATA REPRESENTATION 55

ClassOptimization problem encapsulates all the mentioned classes and it is therefore used

as an input data representation for the algorithm. This class further contains methods to

save the given problem to the text file, or to load an instance from specific text file. This class

also contains methods to determine and assign precedences (predecessor and successors) to

each activity. Also, this class implements function to assign alternative border information

(the nearest node with outLabel = ALT and the nearest node with inLabel = ALT), etc.

6.1.2 Output data representation

We expect the algorithm to return desired output data representation. In the case of the

proposed heuristic algorithm it is a schedule. It includes all the activities and their selection

and assignment to the resources. Schedule also carries information about its feasibility and

the value of the objective function.

Class Schedule contains all the information to describe the manufacture process. To do

so, we must know entire input data and further add parameters calculated by the algorithm.

For the given activities, we add previously mentioned start time and assignment on the

resource parts. Further, this class contains information about which activities were selected.

Notice, that not all activities have to be selected, because in case of alternative process plans

we choose only one branch for each alternative branching, so other activities in the remaining

branches in alternative branching are not scheduled.

Another output data representation is used to generate input data for the Interactive

Gantt Chart, which was developed at the Center of Applied Cybernetics at Czech Technical

University (see bachelor thesis by Dvořák [17] for more details). Using this tool we can

clearly see the graphical representation of the entire solution. Interactive Gantt Chart

displays all the information about activities, time lags, etc. and is very useful for debugging

or visual comparison of more schedules as well.

6.1.3 Algorithm data representation

As it was mentioned above, algorithm data representation is partially redundant, but it

significantly reduces computational demands. Unlike input and output data representation,

56 CHAPTER 6. IMPLEMENTATION

this representation is adapted for the needs of the proposed algorithm only. This way we

can optimize such data structures, so we can obtain the solution in shorter time. Some of

algorithm data representation are an extension of input data, others are created newly.

6.1.3.1 Activities

Class ActivityExtended implements interface IActivity and further adds information

about start time and activity assignment to the resource parts. Further, this class con-

tains information about predecessors and successors on resource parts. This is useful to

quickly find neighboring activities on the assigned parts of the resource. This information is

then used for example to determine setup times or while finding free time slots for activities.

Following Figure 6.1 shows an example of activities’ assignment and information about

neighboring activities on resource parts.

 rejected branch

Figure 6.1: Assignment of activities and neighboring activities on resource parts

6.1.3.2 Resources

Class ResourceExtended implements interface IResource and further adds information

about the first and the last activity at each resource part. Using an example depicted in

Figure 6.1, the first activity at part 0 is activity 2, the last activity at part 2 is activity 4,

etc.

Each resource also contains sorted list of all its milestones. Further details about mile-

stones and an example are given below. Milestones are used for optimization purposes,

primary to estimate free time slots for activities.

6.1. DATA REPRESENTATION 57

6.1.3.3 Milestones

Milestone represents a single moment in time, in which there is any change on the re-

source from the view of activities assignment. Basically, milestones represent time moments,

in which activities start or finish. Milestones are used to quickly find free time slot for the

actually scheduled activity.

Each milestone further contains information about assigned activities. Assigned activi-

ties are determined specifically for each resource part and represent bordering activities of

the milestone. Generally, the assigned activity is such activity on resource part, whose start

time is the closest to the time of the milestone, but do not exceed it. The rules used in the

process of identification of assigned activities to the milestone can be easily deduced from

see Figure 6.2.

resource 0

1

0

3
3

2

part 0

part 1

part 2

part 3

part 4 For "red" milestone:

 at part 0: activity 0

 at part 1: activity 2

 at part 2: activity 3

 at part 3: activity 3

 at part 4: none

 milestone
Notes:

Assigned activities:

Figure 6.2: Last scheduled activities at milestone

Figure 6.3: Concatenation of milestones

Milestones are kept in sorted list, where the Key is the time of the milestone and Value

58 CHAPTER 6. IMPLEMENTATION

is the milestone itself. Each milestone has also a reference to preceding and succeeding

milestone (see Figure 6.3). Using sorted list we can find the nearest milestone for the

activity’s desired start time. Using concatenation of milestones, we can move on time

points while finding free time slots in the process of scheduling the activities.

6.2 Implementation details

In this section, we will describe interesting implementation details of the proposed heuris-

tic algorithm in more detail. The focus is primary paid to improvements used to optimize

both the data representation and the proposed algorithm.

6.2.1 Scheduling of activity

While scheduling activity i, we must consider all the constraints - release times, deadlines,

non-negative start to start time lags, sequence dependent setup times, resource constraints

and activities selection. We try to find the earliest free time slots on the assigned resource

using resource milestones, where activity i fits, considering all the constraints. If no time

slot is found without violation of constraints, backtracking rules are applied. All necessary

steps of the activity scheduling are described in following sections.

Notice, that activities are extended by reference to neighboring activities on each resource

part (see Figure 6.1). Therefore, after activity is successfully scheduled, we set neighbor-

ing activities of activity i on each assigned capacity and we also redirect concatenation of

neighboring activities to reflect actual state.

6.2.2 Unscheduling of activity

While unscheduling activity i, we remove it from the resource. Similarly as while schedul-

ing the activity, we must update neighboring activities. We need to redirect predecessors on

resource parts of i to successors on resource parts of i and similarly in the opposite direction.

6.2. IMPLEMENTATION DETAILS 59

6.2.3 Scheduling on the resource

Activities can be assigned or removed from the resource parts. We cannot schedule or

unschedule only a part of an activity or its partial resource demand. Since we remember the

first and the last activity on each part of the resource, we must update them after any change

on the assignment of the activities. While scheduling an activity, we can simply compare

the first and the last activity on assigned parts with the one being just scheduled. While

unscheduling the activity, we can obtain the first and last activity from assigned activities

of appropriate milestone.

The whole process of assignment (scheduling and unscheduling of activities) is solved us-

ing milestones. Milestone is a data structure used for optimization purposes and is described

including its usage in the following paragraph.

6.2.4 Milestones

Since the milestones represent single time moments when there is a change in assign-

ment of the activities on the resource, milestones have to be updated after any change of

assignment of activities on the resource.

Note, that each milestone contains information about assigned activities from the view of

milestone time on each part of the resource. Therefore, after any change, assigned activities

have to be updated. The rules to estimate assigned activity can be clearly seen on Figure 6.2.

Although milestone is partially redundant data structure, it is useful when finding time

slots to assign activities. Process of finding time slots for activity i can be expressed as:

calculate time window of activity

milestone := locate nearest milestone

while milestone is not null

time intervals := estimate free time intervals

sort time intervals by start time

60 CHAPTER 6. IMPLEMENTATION

determine first start time

while exists next start time

try to put activity to the next start time

if activity fits to the time slot

return start time and assigned capacities

end if

determine next start time

end while

milestone := successor of the current milestone

end while

Calculation of time window 〈wsi , wei 〉 for activity i stands for estimating lower and upper

bound of time interval, in which activity can be scheduled fulfilling all temporal constraints.

Lower bound wsi = max(r̂i,max(sj + lji)), ∀j ∈ predecessors(i). Similarly upper bound

wei = min(d̂i,min(sj − lis + pi)),∀j ∈ successors(i). Only scheduled predecessors and

successors are considered for the calculation.

Location of the nearest milestone milestone stands for finding the last milestone, whose

time is lower or equal then the estimated lower bound of time interval for the activity.

Locating the nearest milestone is precipitated by the fact that all milestones are in the

sorted list. The constraint can be expressed as: milestone = last(m.T ime ≤ wsi) for all

m ∈ resource milestones.

Since milestones are linked together and contain information about the assigned activi-

ties, we can easily determine free time slots 〈fks , fke 〉 on each part k of the resource. We must

also include the influence of sequence-dependent setup times. Found intervals are further

sorted according to their start time (fks) for easier processing. Let lkm be the last scheduled

activity on the resource part k of milestone m and m′ be the succeeding milestone of m. The

value of lower bound is given as fks = clkm + stlkmi and the upper bound as fke = slk
m′
− stilk

m′
.

If there is no last scheduled activity on the resource part k, fks = wis. If milestone m has

no successor, the upper bound is equal to the upper bound of activity’s window (fke = wie).

6.2. IMPLEMENTATION DETAILS 61

Since we use the first and the last activities on the resource parts to prevent large prop-

agation of the assigned activities to the milestones (see 6.2.4.1 for more details), lkm′ can

be null. In this situation, we must decide, whether the assigned activity is null because of

preventing propagation, or there is no scheduled activity yet on the resource part. Decision

is made upon the last activity i that is the last on the resource part k (i = lastk). If activity

i exists and lkm′ is null, we use activity i for the calculation.

When we have all free time intervals, we must decide, whether the activity fits inside

them or not. In this step we seek the minimal possible start time of the activity provided

that the activity does not violate upper bound of its interval. We must find as many free

time intervals as is activity’s resource demand. The finding of such start time si can be

expressed as: si = min(t ∈ 〈fks , fke − pi〉) : s ≥ wis ∧ s+ pi ≤ wie for at least θi resource parts

k. Activity i is then assigned to such resource parts.

If there is no enough free space for activity i, we must move to another milestone and

repeat the entire process again. If no milestone is found or we move beyond estimated time

window, backtracking rules are applied. An example of finding free space on the resource

for a single activity is depicted on Figure 6.4.

resource 0

1

0

3
3

2

part 0

part 1

part 2

part 3

part 4 resource demand: 4

 nearest milestone

 other milestones

 time window of the activity

 setup times

 free time intervals

 assigned activity

Activity to be scheduled:

Notes:

45
5

5

5

Figure 6.4: Free time intervals estimation and activity assignment

6.2.4.1 Propagation of the last scheduled activities on the resource

After an activity is unscheduled, the milestone is disposed (i.e. deleted) if and only if

no activity starts or finishes in such time point. After both insertion and deletion of the

62 CHAPTER 6. IMPLEMENTATION

milestone, assigned activities to the milestones must be propagated for each affected resource

part so the milestones contain actual values.

The propagation starts at given milestone m and using concatenation of milestones, we

move to its successor m′. If there is no assigned activity on milestone m at resource part

k, we use the activity from the previous milestone m. The process continues on as long as

j = null or sj < si. This process is repeated for each affected resource part k which is given

by resource demand of just scheduled / unscheduled activity.

Such propagation can lead in the worst case scenario to situation, when we need to update

all the milestones. To prevent this behavior, we can use the last activities on the resource

parts. If assigned activity i to the milestone on the resource part k is simultaneously the last

activity on this part from the perspective of resource assignment, we clear the information

about assigned activity for current resource part k on such milestone. This way we can finish

propagation much earlier, because if we detect empty assigned activity while propagating, we

can stop the process on given resource part k. This can rapidly cut-off the entire propagation

time. Since the milestone can contain null value instead of assigned activity i if activity i

is the last one on the resource part, we must interpret the null value correctly. Throughout

the algorithm, must decide, whether null indicates no assigned activity or the last activity

on the resource part. Utilization of this optimization scheme can reduce the computational

time, but also brings more possible situations, we must handle within the algorithm.

6.3 Sliding windows

In the following paragraphs we will closely describe data representation and implemen-

tation details of the second phase of the proposed heuristic algorithm - the sliding windows.

Many methods used in initial phase were further extended to consider also time windows

while making the calculations. The remaining methods were implemented as new and they

will be discussed in more detail.

6.3.1 Data representation

Each time window is defined by its left and right border. Time window also contains

a deep copy of activities which are between its borders and deep copy of all the resources.

6.3. SLIDING WINDOWS 63

This way we can find different solution with no affect on the original data and apply the

result only when we decide to do so. The activities are stored in a dictionary in order

to quickly determine, whether any activity is inside the time window or not. Each time

window further contains a set of ready activities. Both borders of the time window consist

of bordering activities and milestones. Time window and its properties are depicted on

Figure 5.5.

6.3.1.1 Bordering milestones

After the left border of the time window is calculated, we find the closest milestone to its

time on each resource where found milestones are still outside the time window. Similarly,

we locate the closest milestones to the right border of the time window. All these milestones

determine the time segment on each resource where the optimization will be performed and

are also used to locate the bordering activities.

6.3.1.2 Bordering activities

After all bordering milestones for both borders are found, we determine bordering ac-

tivities for both borders of the time window. Bordering activities are fixed and cannot be

rescheduled in any way. We must find bordering activity for each part of each resource in

order to determine setup costs at time windows borders, etc. Let i be the assigned activity

on milestone m at resource part k. If the start time si of activity i is lower then the time of

the milestone m, we use activity i as the bordering activity on resource part k. Otherwise,

we use the predecessor of activity i on resource part k using concatenation of activities on

the resources. This way we ensure that we always select the activity which starts outside

the time window. Rules to determine bordering activities are depicted in Figure 6.5

6.3.2 Implementation details

In this section we will discuss interesting and important details regarding the time win-

dow optimization in more detail.

64 CHAPTER 6. IMPLEMENTATION

Description:
Borders of the the time window

Bordering activities

Activities within the time window

Bordering milestones

Figure 6.5: Rules to determine bordering activities of the time window

6.3.2.1 Duplication of activities and resources

Each time window contains duplicated version of all activities within the time window

and all resources. Using the duplicates we can simply find new solution of the time window

and still keep the original one intact. If the found solution has lower value of the objective

function, it is integrated into the original solution. In other words, we merge the original

solution with the optimized time window.

All auxiliary variables such as start time, assignment, etc. are cleared for the duplicated

of activities and resources. Each duplicated resource contains only the default resource

milestone at time 0. This way we must consider only bordering activities of the time window

without any other restrictions given by the current solution. Since all auxiliary variables

were cleared to default values before the solution of the time window is found, they do

not possess any information related to the initial solution. All the time window data are

self-sufficient. This fact enables us to simply the process of merging the time window into

the original solution.

6.3.2.2 Ready activities

Each time window has its own set (dictionary) of ready activities. These activities

need to be updated after any change inside the time window. The rules to recognize ready

activities within the time window were discussed in section 5.3.3.2. Note, that activities

6.3. SLIDING WINDOWS 65

inside the time window also interact with activities outside because of time lags and sequence

dependent setup times. Therefore, we must decide whether to use original activities from

current solution or their duplicates inside the time window. Having all the activities inside

the time window in dictionary makes the decision quite quick and simple.

6.3.2.3 Time window right border

Estimation of the closing time stands for finding a completion time of the activity which

was last added to the time window without overflowing the rules given in section 5.3.1.2.

Basically we locate the n-th activity on the single resource or the m-th activity considering

all the resources. In each step we find activity i considering all the resources which was

not added to the time window yet and has minimal completion time from all not-added

activities on the resource (more precisely we find these activities from the opening time of

the time window). Than we increment appropriate counters and repeat this procedure until

any of thresholds is overflowed.

6.3.2.4 Selection from ready activities

Selection of activities from Ready set is based on the serial generation scheme. In each

iteration of this phase we choose one activity from the Ready set and schedule it. The

process of the selection is analogous to the one in initial solution but with different selection

rules. First, schedule attempt of each activity from Ready set is evaluated. Second, an

appropriate activity is chosen using selection rules. The methods are the same as described

in the initial phase with a small difference: we only use dedicated delegate to evaluate the

schedule attempts with an emphasis on the setup costs. This way we can make the entire

procedures behave differently without rewriting its source code.

Unlike the initial phase, discrepancy is used in different levels of the search tree. If

discrepancy is not used the entire process of selecting activity from the Ready set continues

as usual with focus on the setup costs. In case we want to schedule hth activity (activity

in level h of the search tree) we use discrepancy. First, each schedule attempt is evaluated

and its result is stored. Second, all the results are sorted according to induced setup costs.

66 CHAPTER 6. IMPLEMENTATION

Finally, we choose activity at index
⌈
|Ready|

2

⌉
in the sorted results, i.e. in the middle.

6.3.3 Optimization of the time window

Optimization of the time window is done in more steps. In each step, schedule for the

time window is found in different way. In each step we use discrepancy for selecting an

activity from the Ready set in single level of the search tree (see 5.6 for illustration). This

way we explore more possibilities and finally choose the best one. If any activity cannot be

scheduled, entire step ends with failure, i.e. we do not apply any kind of backtracking rules.

Se try to schedule he same time window with discrepancy in different levels of the search

tree instead.

First, we find a solution of the time window without discrepancy. Moreover, we remember

the sequence of activities as they were scheduled. Then we incrementally change the level,

in which we use discrepancy within the search tree, which is given partially by the sequence

of scheduled activities. Let n be the number of activities in the time window, and h be

the level, in which we want to use discrepancy, while h is increasing from 0. Then in each

step we do not need to drop entire solution that was found in previous step. Note, that

in previous step, we used discrepancy the rule in level h − 1. So we need to unschedule

only activities in the sequence of scheduled activities from index h− 1 to index n. We can

keep partial solution from index 0 to index h − 2. This way we schedule in each step only

n− h+ 1 activities instead of all n activities. This modification reduces the computational

demands of this algorithm part. Notice, that after scheduling or unscheduling activities we

must change many parameters, propagate last assigned activities on milestones, etc. This

way we can avoid any unnecessary operations over the solution or the time window.

6.3.4 Merging of the time window with current solution

After the time window is optimized and its solution further improves the actual one,

we perform merge of time window with the current solution. Merging is rather extensive

operation. A part of the current solution is to be dropped and the found solution of the time

window is taken instead. Notice, that all activities and all milestones are linked together

6.3. SLIDING WINDOWS 67

using references. In this final step, we use all the information about borders of the time

window prepared before. Note, that not only assignment of the activities is changed, but

also the position and count of milestones can differ (see Figure 5.7 for illustration).

Merging of two parts of the solution should be also fast enough. Therefore, we do not

update and re-calculate parameters of all affected activities, milestones, etc. Instead we use

the fact, that all activities and milestones has references to its successors and predecessors.

This way we only replace references and concatenate objects around the time window borders

without modifying all the activities and resources, i.e. original objects are dropped and new

ones are used instead. Since we calculated all necessary information about activities and

milestones creating the borders of time window, we can now only concatenate left border of

the time window with the beginning of the time windows and similarly the end of the time

window with its right border. This step is made both for activities and resource milestones.

Then we need to propagate the last assigned activities around both the borders and update

the first and the last activities on the resource parts. Finally, we replace references of original

activities and milestones in current solution with the references from the time window. This

way we only work with few bordering activities and milestones instead of re-creating data

for the entire time window.

6.3.5 Completion of the algorithm

The entire process of the sliding windows optimization phase is applied to the current

solution more times. The specific count of sliding windows repetitions depends on the

algorithm configuration. After the first iteration of this phase the assignment of the activities

has changed so the objective function is reduced. This does not mean, that the given solution

cannot be further improved. Since the actual assignment is different than the one given by

initial phase of the algorithm, we can apply sliding windows again and potentially reduce the

value of the objective function even more. The entire proposed heuristic algorithm ends after

all the iterations of the sliding windows are evaluated. The current solution corresponds

to such assignment, which lead to the lowest value of the objective function during entire

algorithm evaluation.

68 CHAPTER 6. IMPLEMENTATION

Chapter 7

Performance evaluation

This chapter is dedicated to the performance evaluation of the heuristic algorithm pro-

posed in Chapter 5. First, the algorithm is evaluated on the randomly generated instances

and compared with IRSA algorithm proposed by Čapek et al. [42]. Second, we have used

the standard benchmarks of Brucker and Thiele [12] and he have compared our results

with the results given in article of Foccaci et al. [18]. Finally, various settings of the pro-

posed algorithm are discussed and tested on larger instances of the problem (500 and 1000

activities).

All the measurements were performed on notebook with the following hardware con-

figuration: Intel Pentium Dual Core 2.00GHz, 4GB DDR2 800MHz RAM under operating

system Windows 7 Professional, 64bit edition.

7.1 Description of random instances

Random instances are generated to compare the proposed algorithm with existing IRSA

algorithm. All random values has uniform probability distribution. This mean, that the

probability of getting each number within specified interval is always the same, i.e. 1
|interval| .

Since IRSA does not consider resources with non-unary capacities, all the instances

69

70 CHAPTER 7. PERFORMANCE EVALUATION

contain only unary resources and activities with resource demand equal to 1. In this part

of testing we do not consider the problem with its full complexity but only a specific sub-

problem.

There are three different sets of generated instances. First, the performance is generated

on so called loose instances, where finding a feasible solution is probably easy to find due to

the values of release times and deadlines. Second, middle instances are measured, where a

solution is more difficult then in case of loose instances. Finally, the performance is measured

on tight instances, where a feasible solution if probably difficult to find due to release times

and deadlines restriction. Each set further contains 100 instances for each of 20, 50, 100

and 200 activities. Totally 400 random instances for each set are therefore generated.

Instances are generated with following configuration: The number of activities is given

by the size of generated instance. Processing time of each activity pi ∈ 〈2, 20〉. Activities

has unary resource demands, i.e. rqi = 1. The values of release times and deadlines depends

on the type of instances we want to generate. For example, to generate middle instances

with 50 activities, the values lies in intervals ri ∈ 〈0, 300〉, d̃i ∈ 〈300, 600〉. and in intervals

ri ∈ 〈0, 1000〉, d̃i ∈ 〈500, 1800〉 to generate tight instances with 200 activities. The number

of resource types m lies in interval 〈1, 5〉. All the resources have capacity equal to 1, i.e they

are unary. Setup times stij lies in interval 〈5, 10〉, non-negative start to start time lags lij
in interval 〈0, 20〉. The instances are generated with following structure of the NTNA. If

node i begins parallel branching, the output degree δ+
i lies in interval 〈5, 10〉. Similarly, if

node i begins alternative branching, the output degree δ+
i lies in interval 〈2, 4〉. This way,

the Order strength of the NTNA does no exceed value 0.6 and the instances are therefore

not so simple to solve.

7.2 Comparison with IRSA

For the testing of the proposed algorithm, we have used two different configurations -

Configuration I and Configuration II. The specific values of both configurations are in Table

7.1. Values given in percentage determines the part of activities count in the entire instances.

ParameterMaximal size of the time window determines the number of activities for each time

7.2. COMPARISON WITH IRSA 71

parameter Configuration I Configuration II
Maximal size of the time window 33% 24%
Maximal depth of the search tree 2% 1.5%
Sliding windows repetitions 2 4

Table 7.1: Configurations of the proposed algorithm

window. Parameter Maximal depth of the search tree states how many times the disrepancy

is used within each time window. The number of repetitions of entire Sliding windows

phase is defined by parameter Sliding windows repetitions.

7.2.1 Results

Following Tables 7.2 and 7.3 show results obtained by our algorithm and the IRSA

algorithm over the random instances described in previous section. The IRSA algorithm

settings were budgetRatio = 6 and maxModifications = 4. Columns marked as feas.[%]

determine the percentage ratio of feasible solutions found by the algorithms. The values

in columns TSC specify an arithmetic average value of the objective function for instances

that were successfully solved by both algorithms. Columns time[ms] determine the average

computational time to solve a single instance regardless whether solution was found or not.

Finally, the last column impr.[%] states the improvement of proposed heuristic algorithm

over the IRSA algorithm in terms of TSC.

IRSA Proposed algorithm
n type feas. [%] TSC time [ms] feas. [%] TSC time [ms] impr. [%]
20 loose 100 102 141 100 76 1 25.50
50 loose 100 254 344 100 215 12 15.35
100 loose 100 494 1 002 100 427 77 13.56
200 loose 94 942 3 870 100 824 261 12.53
20 medium 62 77 257 69 79 1 -2.59
50 medium 58 226 842 60 221 8 2.10
100 medium 69 386 1 722 59 371 38 3.92
200 medium 72 707 5 293 62 662 159 6.37
20 tight 44 65 230 31 70 1 -7.69
50 tight 31 183 671 32 183 7 0.00
100 tight 26 302 1 529 33 295 26 2.30
200 tight 37 597 4 666 42 592 119 0.92

Table 7.2: Comparison with IRSA using configuration I

Comparison of the proposed algorithm with IRSA algorithm was measured using two

configurations. In both cases, the proposed algorithm gives better values of the objective

72 CHAPTER 7. PERFORMANCE EVALUATION

IRSA Proposed algorithm
n type feas. [%] TSC time [ms] feas. [%] TSC time [ms] impr. [%]
20 loose 100 102 141 100 75 1 26.47
50 loose 100 254 344 100 215 5 4.65
100 loose 100 494 1 002 100 427 89 13.56
200 loose 94 942 3 870 100 783 643 16.87
20 medium 62 77 257 69 79 1 -2.59
50 medium 58 226 842 60 220 14 2.65
100 medium 69 386 1 722 59 376 82 2.59
200 medium 72 707 5 293 62 643 280 9.05
20 tight 44 65 230 31 70 1 -7.69
50 tight 31 183 671 32 184 14 -0.54
100 tight 26 302 1 529 33 292 41 3.31
200 tight 37 597 4 666 42 592 205 0.92

Table 7.3: Comparison with IRSA using configuration II

function from a global perspective. Both algorithms solve the random instances with similar

percentage of found feasible solutions. The biggest difference between these two algorithm

is in computational demands. The proposed algorithm solves the instances in much shorter

time, sometimes even in 1
100 of the time it took IRSA to solve. The proposed heuristic

algorithm is very fast and effective, which meets our demands on the algorithm.

7.3 Description of data sets of Brucker and Thiele [12]

The proposed heuristic algorithm is also compared using the general Job shop instances

by Brucker and Thiele [12] with the results of Foccaci et al. [18]. General Job shop is

a very specific and much easier sub-problem of the problem considered in this thesis. The

performance is evaluated on problems with unary resources and no temporal constraints such

as release times, deadlines and time lags. General Job shop also does not cover alternative

process plans.

7.4 Comparison with algorithm of Focacci

Since we do not have possibility to run the algorithm proposed by Foccaci et al. [18], we

compare only values of the objective function, not the computational time. Following Table

7.4 shows the comparison of our algorithm with the one published by Foccaci et al. [18].

7.5. LARGE INSTANCES 73

Focacci Proposed algorithm
Set TSC Cmax TSC Cmax T SCimpr. [%]

t2-ps12 1 530 1 445 1 010 1 920 27.45
t2-ps13 1 430 1 658 1 330 2 172 7.00
t2-pss12 1 220 1 362 950 1 599 22.13
t2-pss13 1 140 1 522 1 150 1 610 -0.87

avg. 1 330 1 497 1 110 1 825 16,54

Table 7.4: Comparison with Focacci

7.4.1 Results

Compared with the algorithm described by Foccaci et al. [18], the proposed algorithm

improves the value of the total setup costs by 16% in average. The price for the better value

of the TSC is the higher value of the makespan (Cmax).

7.5 Large instances

The proposed heuristic algorithm is designed to handle large instances of the considered

problem, which is very complex. So far we have evaluated the performance over relatively

small instances and also without all the constraints considered in this thesis. In this sec-

tion, we focus on randomly generated large instances with 500 and 1000 activities with

full problem complexity, i.e. all the constraints such as non-negative start to start time

lags, sequence-dependent setup times and non-unary resources and activities with different

resource demands. The instances are generated such that the average Order strength is

0.6 and also the average Resource strength is equal to 0.6. The parameters of the random

instance generator are similar as described in section 7.1, but the resources are not unary.

Capacity of the resource θq; ∀q ∈ R lies in interval 〈1, 6〉 and resource demands rqi of activity

i;∀i ∈ AE lies in interval 〈1, 4〉.

Again, performance is measured for both mentioned configurations of the algorithm (see

Table 7.1. Up to our knowledge, there is no similar solved problem to the one considered in

this thesis and therefore we cannot compare the results with another approaches or solutions.

Following Table 7.5 shows the measured results for both considered configurations of the

algorithm. For comparison, measurement is taken also on smaller random instances.

74 CHAPTER 7. PERFORMANCE EVALUATION

Configuration I Configuration II
n TSC time [ms] TSC time [ms] T SCimpr. [%]
20 158 1 158 1 0.00
50 400 16 395 61 1.25
100 859 62 849 142 1.16
200 1 651 352 1 615 811 2.18
500 2 845 1 497 2 841 4 173 0.14
1000 7 794 14 912 7 841 25 800 -0.60

Table 7.5: Large instances of the considered problem

7.6 Configuration of the algorithm

Proper configuration of the algorithm has a great influence on its outcome. We may

satisfy with only feasible solution which is found in short time or to optimize it from the

view of the total setup costs. We can also affect the quality of the objective function in

many ways.

The first parameter which can significantly improve the objective function is the size of

the time window. The best results were measured for the time window with dynamic size

given by the size of a testing instance. The best ratio size of the time window
size of the instance was estimated

to the 0.33. The upper bound of the time window size was estimated to the 70 activities

(size of the time window = Max(size of the instance · 0.33, 70). For example, for the

instance consisting of 100 activities we optimize time windows with 33 activities within.

The second parameter determines the depth of the search tree used in the time windows.

The deeper the search tree is, the longer it takes to decide. Therefore, for deeper search

tree it is reasonable to increase the size of the time window (lesser count of sliding window

segments). While using discrepancy in the search tree we temporarily escape from the

local optimum in order to obtain possibly better combination of activities assignment to the

resources, which could lead to lesser value of the objective function of the entire time window.

Even for large instances, the results are not being significantly improved with growing levels

where the discrepancy rules were used. We estimate the ratio max discrepancy level
size of the instance to the

value of 0.02.

Finally, the number of repetitions of the entire sliding window procedure was consid-

ered. After the first run of the sliding window phase is done, activities might change their

7.6. CONFIGURATION OF THE ALGORITHM 75

assignment. In the next steps the value of the objective function can be further improved

by repeating entire procedure over again. Unlike the previously mentioned configuration

parameters, the number of repetitions affects the execution time at most. For smaller in-

stances we can afford to repeat the entire procedure even 10 times, but for larger instances

(200 activities and more) the computational demands grow very high.

The dependence of computational time on the size of the solved instance is depicted in

Figure 7.1. The graph shows results measured in Section 7.5. Notice, that optimal settings

described in preceding paragraphs (used as Configuration I) do not give much worse values

of the objective function than using settings described as Configuration II considering the

substantial difference in computational demands of both algorithm configurations.

Figure 7.1: Computational time versus size of the instances

76 CHAPTER 7. PERFORMANCE EVALUATION

Chapter 8

Conclusions

This thesis deals with very complex and extensive problem, that can be expressed as

PS|nestedAlt, lminij , STSD, rj , d̃j |TSC using Brucker et al. [9] notation or equivalently as

m1|nestedAlt,min, STSD, rj , d̃j |TSC using Herroelen et al. [23] notation. Up to our knowl-

edge, this problem was not dealt before.

The problem considered in this thesis covers many nowadays manufacture constraints

such as release times, deadlines, non-negative start to start time lags, sequence-dependent

setup times and non-unary resources (resources with capacities greater than one) and is

motivated by real manufacture process in the printing company. The goal is to minimize

the total setup costs (TSC).

First, an extensive research has been done in order to find related problems to the one

considered in this thesis. Second, MILP model was formulated. The proposed mathe-

matical model can be used to find exact solutions of the small instances of the considered

problem.

Next, we have developed a new heuristic algorithm to solve large instances of the con-

sidered problem. Since the problem is very complex and the instances are very large, the

algorithm should be effective and solve the entire problem in short time with satisfying value

of the objective function. This algorithm solves large instances consisting of 1000 activities

77

78 CHAPTER 8. CONCLUSIONS

in very short time. Feasible solution is found within 1 second and optimized one within 8

seconds using appropriate algorithm configuration.

Finally, we have compared the proposed heuristic algorithm with different ones using

both random generated and standard instances. The algorithm overperformed both com-

pared algorithms by Čapek et al. [42] and Foccaci et al. [18].

8.1 Summary

The new proposed heuristic algorithm is very fast and solves the instances with low

computational demands and still the value of the objective function of the found solution is

quality. Moreover, this algorithm exceeded both algorithm to which it was compared.

8.2 Further improvements

The proposed algorithm consists of two main phases - finding an initial solution and the

local optimization. The second phase is taken only if the feasible solution is found in the

first phase. Since the first phase is fast enough, it can be further strengthened to find more

feasible solutions in the set of all instances.

By extending the backtracking scheme we could find more feasible solutions within the

set of all instances. The backtracking scheme might be further improved for example by

dynamic priority selection rules.

The second phase of the proposed heuristic algorithm called Sliding windows is quite

scalable. With not so extensive modifications it can be designed to run in parallel. That

way we can optimize more disjoint time windows at the same time. Doing so, we could

repeat the entire procedure more times in order to obtain better value of the objective

function.

In the second phase, the alternatives are already fixed. We could change alternatives

8.2. FURTHER IMPROVEMENTS 79

within the found initial solution and then run the sliding windows algorithm part. This

way, different alternative plans can be evaluated even in the second phase of the proposed

algorithm.

80 CHAPTER 8. CONCLUSIONS

Bibliography

[1] Akkiraju, R., Keskinocak, P., Murthy, S., Wu, F., 2001. An agent-based approach for

scheduling multiple machines. Applied Intelligence 14, pp. 135–144.

[2] Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M. Y., 2008. A survey of scheduling

problems with setup times or costs. European Journal of Operational Research 187,

pp. 985–1032.

[3] Ballestín, F., Barrios, A., Valls, V., 2009. An evolutionary algorithm for the resource-

constrained project scheduling problem with minimum and maximum time lags. Journal

of Scheduling 14, pp. 391–406.

[4] Barták, R., Čepek, O., 2007. Temporal networks with alternatives: Complexity and

model. In: Proceedings of the Twentieth International Florida Artificial Intelligence

Research Society Conference (FLAIRS), Florida, USA. AAAI Press, pp. 641–646.

[5] Barták, R., Čepek, O., 2008. Nested temporal networks with alternatives: recognition

and tractability. In: Proceedings of the 2008 ACM Symposium on Applied Computing

(SAC), Ceara, Brazil. ACM, pp. 156–157.

[6] Beck, J. C., Fox, M. S., 1999. Scheduling alternative activities. In: Proceedings of

the sixteenth national conference on Artificial intelligence. American Association for

Artificial Intelligence (AAAI), pp. 680–687.

[7] Beck, J. C., Fox, M. S., 2000. Constraint-directed techniques for scheduling alternative

activities. Artificial Intelligence 121, pp. 211–250.

[8] Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., Weglarz, J., 1996. Scheduling

Computer and Manufacturing Processes. Springer-Verlag New York, Inc.

81

82 BIBLIOGRAPHY

[9] Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E., 1999. Resource-

constrained project scheduling: Notation, classification, models, and methods. Euro-

pean Journal of Operational Research 112, pp. 3–41.

[10] Brucker, P., Hilbig, T., Hurnik, J., 1999. A branch and bound algorithm for a single-

machine scheduling problem with positive and negative time-lags. Discrete Applied

Mathematics 94, pp. 77–79.

[11] Brucker, P., Knust, S., 1998. Complexity results for single-machine problems with pos-

itive finish-start time-lags. Computing 63, pp. 219–316.

[12] Brucker, P., Thiele, O., 1996. A branch and bound method for the general-shop problem

with sequence dependent setup-times. Operations Research Spektrum 18, pp. 145–161.

[13] Choi, I.-C., Choi, D.-S., 2002. A local search algorithm for jobshop scheduling problems

with alternative operations and sequence-dependent setups. Computers & Industrial

Engineering 42, pp. 43–58.

[14] Deblaere, F., Demeulemeester, E., Herroelen, W., 2011. Reactive scheduling in the

multi-mode rcpsp. Computers & Operations Research 38, pp. 63–75.

[15] Demeulemeester, E. L., Herroelen, W., 2002. Project scheduling: A research handbook.

Kluwer Academic Publishers.

[16] Drießel, R., Moench, L., 2009. Scheduling jobs on parallel machines with sequence-

dependent setup times, precedence constraints, and ready times using variable neigh-

borhood search. In: Proceedings of the International Conference on Computers & In-

dustrial Engineering. IEEE, pp. 273–278.

[17] Dvořák, J., 2010. Interaktivní ganttův diagram. Bachelor’s thesis, Czech Technical

University in Prague.

[18] Foccaci, F., Laborie, P., Nuijten, W., 2000. Solving scheduling problems with setup

times and alternative resources. In: Artificial Intelligence Planning Systems 2000 Pro-

ceedings (AIPS), pp. 1–10.

[19] Gacias, B., Artigues, C., Lopez, P., 2010. Parallel machines scheduling with precedence

constraints and setup times. Computers & Operations Research 37, pp. 2141–2152.

BIBLIOGRAPHY 83

[20] Geoffrion, A. M., Graves, G. W., 1976. Scheduling parallel production lines with

changeover costs: Practical application of a quadratic assignment/lp approach. Op-

erations Research 24, pp. 595–610.

[21] Hamdi, I., Loukil, T., 2011. Minimizing the makespan in the permutation flowshop

problem with minimal and maximal time lags. In: Proceedings of the International

Conference on Communications, Computing and Control Applications (CCCA). IEEE,

pp. 1–6.

[22] Harvey, W. D., Ginsberg, M. L., 1995. Limited discrepancy search. In: Proceedings

IJCAI 95.

[23] Herroelen, W., Demuelemeester, E., Reyck, B. D., 1997. A classification scheme for

project scheduling problems. Katholieke Universiteit Leuven, pp. 1–25.

[24] Kadrou, Y., M.Najid, N., 2006. A new heuristic to solve rcpsp with multiple execu-

tion modes and multi-skilled labor. In: Proceedings of the IMACS Multiconference on

Computational Engineering in Systems Applications (CESA). IEEE, pp. 1–8.

[25] Kis, T., 203. Job-shop scheduling with processing alternatives. European Journal of

Operational Research 151, pp. 307–322.

[26] Kolisch, R., 1996. Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European Journal of Operational Research 90, pp.

320–333.

[27] Kopanos, G. M., Puigjaner, L., Georgiadis, M. C., 2011. Resource-constrained produc-

tion planning in semicontinuous food industries. Computers and Chemical Engineering

35, pp. 1–16.

[28] Krüger, D., Schol, A., 2009. A heuristic solution framework for the resource constrained

(multi-)project scheduling problem with sequence-dependent transfer times. European

Journal of Operational Research 197, pp. 492–508.

[29] Lee, Y. H., Pinedo, M., 1997. Scheduling jobs on parallel machines with sequence-

dependent setup times. European Journal of Operational Research 100, pp. 464–474.

84 BIBLIOGRAPHY

[30] Leung, C., Wong, T., Maka, K., Fung, R., 2010. Integrated process planning and

scheduling by an agent-based ant colony optimization. Computers & Industrial Engi-

neering 59, pp. 166–180.

[31] Li, X., Zhang, C., Gao, L., Li, W., Shao, X., 2010. An agent-based approach for

integrated process planning and scheduling. Expert Systems with Applications 37, pp.

1256–1264.

[32] Lombardi, M., Milano, M., 2009. A precedence constraint posting approach for the

rcpsp with time lags and variable durations. Computer Science 5732/2009, pp. 569–

583.

[33] Mika, M., Waligóra, G., Wȩglarz, J., 2008. Tabu search for multi-mode resource-

constrained project scheduling with schedule-dependent setup times. European Journal

of Operational Research 187, pp. 1238–1250.

[34] Mirabi, M., 2010. A hybrid simulated annealing for the single-machine capacitated

lot-sizing and scheduling problem with sequence-dependent setup times and costs and

dynamic release of jobs. The International Journal of Advanced Manufacturing Tech-

nology 54, pp. 795–808.

[35] Neumann, K., Schwindt, C., Zimmermann, J., 2003. Project scheduling with time win-

dows and scarce resources. Springer-Verlag Berlin Heidelberg.

[36] Reyck, B. D., Herroelen, W., 1999. The multi-mode resource-constrained project

scheduling problem with generalized precedence relations. European Journal of Op-

erational Research 119, pp. 538–556.

[37] Ruiz, R., Stützle, T., 2008. An iterated greedy heuristic for the sequence dependent

setup times flowshop problem with makespan and weighted tardiness objectives. Euro-

pean Journal of Operational Research 187, pp. 1143–1159.

[38] Salewski, F., Schirmer, A., Drexl, A., 1997. Project scheduling under resource and mode

identity constraints: Model, complexity, methods, and application. European Journal

of Operational Research 102, pp. 88–110.

BIBLIOGRAPHY 85

[39] Shao, X., Li, X., Gao, L., Zhang, C., 2009. Integration of process planning and schedul-

ing - a modified genetic algorithm-based approach. Computers & Operations Research

36, pp. 2082–2096.

[40] Tasgetiren, M. F., Panb, Q.-K., Liang, Y.-C., 2009. A discrete differential evolution

algorithm for the single machine total weighted tardiness problem with sequence de-

pendent setup times. Computers & Operations Research 36, pp. 1900–1915.

[41] Van Peteghem, V., Vanhoucke, M., 2009. Using resource scarceness characteristics to

solve the multi-mode resource-constrained project scheduling problem. Tech. rep., Fac-

ulty of Economics and Business Administration (Ghent University).

[42] Čapek, R., Šůcha, P., Hanzálek, Z., 2012. Production scheduling with alternative pro-

cess plans. European Journal of Operational Research 217, pp. 300–311.

[43] Wang, L., Fang, C., 2012. An effective estimation of distribution algorithm for the

multi-mode resource-constrained project scheduling problem. Computers & Operations

Research 39, pp. 449–460.

[44] Wang, L., Wand, M., 1997. A hybrid algorithm for earliness-tardiness scheduling prob-

lem with sequence dependent setup time. In: Proceedings of the 36th Conference on

Decision & Control. IEEE, pp. 1219–1223.

[45] Yuan, X.-M., Khoo, H. H., Spedding, T. A., Bainbridge, I., Taplin, D. M. R., 2004.

Minimizing total setup cost for a metal casting company. Winter Simulation Conference,

pp. 1189–1194.

86 BIBLIOGRAPHY

Appendix A

Content of the included CD

+ Instances

|-- + Benchmarks

|-- + Random

+ Source code

. dvoraj42.pdf

. README.txt

Folder Instances contains all instances used in performace evaluation. Instances by

Brucker et al. [9] are placed in subfolder Benchmars. Subfolder Random contains loose,

middle and tight set of instances with size 20, 50, 100 and 200 activities. Further, this

folder contains large random instances of the considered problem.

Folder Source code contains source code of the algorithm in Microsoft Visual Studio

2011 project. Note, that some of the given files are authored by my supervisor Roman

Čapek, especially basic classes such as interfaces and solution representation. This way we

have common input data structures and we can thus use the same data for more different

algorithms in order to compare their efficiency, etc. All files are included with header which

states among others authorship.

87

	Introduction
	Motivation
	Contribution
	Outline

	Related works
	Resource constrained project scheduling problem
	Alternative process plans
	Objective function
	Setup times in criterion
	Other problems with setup times

	Problem statement
	Scheduling basics
	Problem complexity and solution approaches
	General description
	Formal definition and classification
	Nested temporal networks with alternatives
	Formal definition
	Alternative branching
	Parallel branching
	Temporal constraints
	Nested graphs

	Mixed integer linear programming model
	MILP model
	Variables
	MILP model

	Heuristic algorithm
	Overall algorithm description
	Initial solution
	Schedule improvement

	Initial solution
	Propagation of release times and deadlines
	Establishing branching selection priorities
	Rating of branches
	Selection rules

	Establishment of the set of ready activities
	Selection of activity from the set of ready activities
	Scheduling of an activity
	Updating the set of ready activities
	Backtracking
	Backtracking rules
	Changing selection of activities
	Change on resource

	Sliding windows
	Determination of the time window
	Left border
	Right border

	Ready activities
	Optimization of the time window
	Construction of the schedule
	Selection from ready activities

	Integrating the solution of the time window

	Implementation
	Data representation
	Input data representation
	Interfaces
	Classes

	Output data representation
	Algorithm data representation
	Activities
	Resources
	Milestones

	Implementation details
	Scheduling of activity
	Unscheduling of activity
	Scheduling on the resource
	Milestones
	Propagation of the last scheduled activities on the resource

	Sliding windows
	Data representation
	Bordering milestones
	Bordering activities

	Implementation details
	Duplication of activities and resources
	Ready activities
	Time window right border
	Selection from ready activities

	Optimization of the time window
	Merging of the time window with current solution
	Completion of the algorithm

	Performance evaluation
	Description of random instances
	Comparison with IRSA
	Results

	Description of data sets of Brucker04
	Comparison with algorithm of Focacci
	Results

	Large instances
	Configuration of the algorithm

	Conclusions
	Summary
	Further improvements

	Content of the included CD

