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Abstract
This work, we proposes, implements and
evaluates a novel way to train depth com-
pletion networks using map reconstruc-
tion error. A traditional way to train
depth completion networks with MSE was
also implemented, and both methods were
compared.

We have included a differentiable dense
SLAM module in our learning pipeline
and evaluated the model on the KITTI
dataset. We introduced depth completion
network to make input to SLAM more
dense in order to provide more correspon-
dences to work with.

Using the depth completion network,
we were able to obtain denser depth maps.
Training with the map reconstruction er-
ror yielded results similar to those of tra-
ditional methods. Denser data did not
increase SLAM localization accuracy, this
was mainly because the model introduced
too many outliers and made it difficult for
SLAM to work.

The code is publicly available at:
https://github.com/jachym-stanek/
supervised_depth_correction

Keywords: Machine learning, SLAM,
Depth completion, KITTI

Supervisor: MSc. Ruslan Agishev

Abstrakt
Tato práce navrhuje, implementuje a

vyhodnocuje nový způsob trénování sítí
pro doplňování hloubky pomocí chyby re-
konstrukce mapy. Byl také implementován
tradiční způsob trénování hloubkových do-
plňovacích sítí pomocí MSE a obě metody
byly porovnány.

Do učebního procesu jsme zahrnuli mo-
dul diferencovatelného hustého SLAMu a
model jsme vyhodnotili na datové sadě
KITTI. Implementovali jsme síť pro dopl-
ňování hloubky, aby byl vstup do SLAMu
hustší a poskytl tak více korespondencí,
se kterými lze pracovat.

Pomocí sítě pro doplňování hloubky
jsme byli schopni získat hustší hloubkové
mapy. Trénování s chybou rekonstrukce
mapy přineslo podobné výsledky jako tra-
diční metody. Hustší data nezvýšila přes-
nost lokalizace SLAM, a to hlavně proto,
že model vytvořil příliš mnoho odlehlých
hodnot a ztížil práci pro SLAM.

Klíčová slova: Strojové učení, SLAM,
Doplnění hloubky, KITTI

Překlad názvu: Strojové učení pro
robotickou exploraci
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Chapter 1
Introduction

Fully differentiable solutions for robotics and computer vision problems have
been gaining increasing attention lately. This is because they allow for efficient
fine-tuning of large and complex pipelines and provide robust solutions.
Some examples include an end-to-end differentiable pipeline for autonomous
driving [6], pose consistency loss [7], differentiable model predictive control
[8], PyTorch3D [9], and several versions of the differentiable Simultaneous
Localization and Mapping (SLAM) [10], [11].

The SLAM module is an essential part of robotic exploration pipelines,
it constructs map and provides poses from measurements. SLAM uses
correspondences between points, and these can be hard to obtain if there is a
low number of points to work with. Methods based on sparse data are not
very robust and can fail. This is why methods based on dense SLAM are
becoming more popular. Some examples of these include Kinect fusion [12],
RGB-D SLAM with volumetric fusion[13] or Point fusion [2]. These methods
create denser maps and are more robust.

This work tackles the question of whether an improvement in localization
accuracy can be achieved by introducing a machine learning model to improve
depth data. As dense SLAM methods should work better with a denser
input, we introduce a depth completion model that fills in the missing depth
measurements. For the purpose of learning the model, the entire pipeline
was made differentiable, this was achieved thanks to the aforementioned
differentiable SLAM module [11].

We trained the model in a novel way using the map reconstruction error
and the mean square error, which is a standard loss for depth completion
networks. We have used the KITTI dataset [5] which provides dense and
sparse data and also ground truth trajectories, and thus allowed us to employ
supervised training.
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1. Introduction .....................................
1.1 Outline

Chapter 2 introduces the basic concepts and theory on which this thesis is
built upon. Briefly describes the SLAM problem and some of its variants, as
well as the concepts of robotic exploration and depth completion.

Chapter 3 introduces the topic of dense vs. sparse depth inputs to SLAM
more in detail and describes the machine learning pipeline that was used.

Chapter 4 describes the setup of the performed experiment, the datasets,
and the scientific and engineering methods that were used in the said experi-
ment.

Chapter 5 provides a more in-depth summary of the experimental results
and presents numerical results of the evaluation metrics. We present results
for both training and testing of the model.

Chapter 6 discusses the results, their application and meaning.
Chapter 7 provides the final summary and concludes the work. Suggestions

for future work are also stated.

1.2 Related Work

1.2.1 Convolutional Neural Networks with Local Context
Masks

The thesis Convolutional Neural Networks with Local Context Masks [14]
proposes a new modified convolution operation with local context mask. The
results are evaluated on the KITTI dataset, and one of the investigated uses
is depth completion. This work is similar because it also delves into the
topic of deep learning for depth completion and uses the KITTI dataset for
evaluation. However, the SLAM problem is not a topic there.

1.2.2 Depth completion

Depth completion focuses on the task of creating dense depth maps from
sparse measurements by filling in the missing measurements. This area of
research has been rapidly developing over the past few years. New methods
have been created thanks to the advent of Deep convolutional neural networks
(DCNNs).

There are many different approaches to depth completion. Some examples
of solutions include: Adaptive Aggregation Network for Efficient Stereo
Matching [15] which replaces the commonly used 3D convolutions by a sparse
points based intra-scale cost aggregation method, or the Hierarchical Neural
Architecture Search for Deep Stereo Matching [16] which proposes end-to-end
hierarchical NAS framework for deep stereo matching .
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.................................... 1.2. Related Work

The machine learning model used in this thesis uses the structure proposed
in the Sparsity Invariant CNNs paper [4]. This thesis differs in how this
model is used and in what goal is aimed to be achieved. Compared to the
original paper, we do not only focus on the sole depth completion, but our
main goal is the improvement of SLAM performance. The authors of this
model tested it on the KITTI dataset [5], which is also used for the purposes
of this work.

It might not be immediately clear how the depth completion can be used
in real-world tasks, that is why we take this problem a step further. We
investigate how we can apply the learned models for SLAM tasks and we also
investigate different training methods (losses).

1.2.3 Differentiable SLAM

Differentiable SLAM methods allow machine learning networks to learn robust
solutions in challenging conditions because of their ability to optimize all
model components jointly for the end objective.

Figure (1.1) : Differentiable SLAM (provided by thesis supervisor)

Differentiable SLAM can be thought of as a function where the input is
a sequence of sensory data (RGBD images) and the output is a map and
camera trajectory (estimation of state M). Differentiable SLAM allows us to
see how small perturbations of input sensory data affect the change of state
estimate.

An example of a differentiable SLAM is SLAM-net [10]. This network
encodes a particle filter based SLAM algorithm in a differentiable computation
graph and learns task-oriented neural network components by backpropagating
through the particle filter algorithm.

Another approach is introduced in the gradSLAM: Dense SLAM meets Au-
tomatic Differentiation paper [11]. The authors of this paper created separate
differentiable versions of non-differentiable SLAM components. GradSLAM

3



1. Introduction .....................................
is a module suitable for dense SLAM and represents a crucial component of
the learning pipeline constructed for this work. The authors of gradSLAM
performed an experiment on the ICL-NUIM dataset [17], this work only used
ICL-NUIM for demo and testing and for the final version the KITTI dataset
was used.

4



Chapter 2
Theoretical background

2.1 Robotic Exploration

Robotic exploration is an area of robotics that has been rapidly developing
in the last decade. Both hardware and software tools have made great leaps
forward in their development, and this in turn enabled more sophisticated and
reliable methods to emerge. The most notable advances have been seen in a
closely related field of driverless vehicles, with some companies already testing
fully autonomous automobiles in live traffic [18]. Autonomous driving closely
relates to robotic exploration, as in both cases the agent (be that robot or
car) must make their own decisions, plan route’s trajectory, scan surrounding
terrain, and react accordingly to unpredictable situations (people not following
the rules of traffic, slippery surface, etc.). The differences lie in what are the
objectives: in robotic exploration, we want to map as much terrain as possible
as accurately as possible, while driverless vehicles want to get from point A
to point B as efficiently as possible. Robotic exploration can be useful, for
example, for exploring environments that are dangerous or inaccessible to
humans, such as caves filled with toxic fumes, collapsed buildings, or celestial
bodies. An example of this may be the DARPA Subterranean Challenge [19],
which focuses on the exploration of underground environments.

Robotic exploration involves one or more robots that explore and map the
environment. The goal of robotic exploration can be to explore and map as
much of the environment as possible, or it can be, for example, to find points
of interest (disaster survivals, toxic waste leaks, etc.). It is preferable that
the robot (or robots) performing the exploration task is well suited for the
given environment. It can be difficult to explore tight spaces with drones,
and a wheeled robot might find it difficult to scale down stairs.

In order to obtain a map of an environment, robots must be equipped with
the right tools. Robots are usually equipped with a LiDAR or a depth camera
to scan the surrounding environment and find distances of objects around
the robot. LiDAR is generally more suitable for outdoor environments, as it
suffers less from environmental conditions, such as the weather. On the other
hand, the depth camera provides more detailed measurements, making it the

5



2. Theoretical background ................................
preferred choice for indoor environments. An essential part of any exploration
pipeline is SLAM, because it provides robot’s location in an environment and
allows to build a map.

2.2 SLAM

According to the book "Probabilistic Robotics" [20], Simultaneous localization
and mapping (SLAM) is a process in which we construct a 3D map of an
unknown environment while simultaneously keeping track of the agent’s
position in the said environment. This process is sometimes also known
as Concurrent Mapping and Localization and poses as one of the most
fundamental problems in robotics and a key part of robotic exploration
solutions with applications such as navigation of commercial robots. The
main problem stems from the fact that the robot performing the exploration
does not have access to the map of its environment, nor does it possess
knowledge of its pose. Instead, it receives measurements from sensors (for
example, camera and lidar) and creates a map from these measurements.

There are two basic versions of the SLAM problem: online and global. Both
of these versions involve estimation of the map of the environment, however,
they differ in approaches to trajectory estimation. Online SLAM focuses only
on the momentary pose of the robot while global SLAM seeks to determine all
poses. Both of these SLAM problems are of significant importance, however
in this thesis we will focus on the global SLAM and localization accuracy of
the trajectory containing all poses.

There are several commonly used ways of representing environment maps,
each having its respective positives and negatives. The most basic way of
map representation is a 3D pointcloud, which is just a list of points with
each point containing x, y and z coordinates. This is a very accurate method,
however it is very memory inefficient. A surfel map is a collection of local
surface element (surfels). Each surfel is defined by a 3D point and a normal
vector. Surfel maps allow for point-to-plane measure (works better on planar
surfaces), however they require the surfel updating procedure. Another map
representation is the voxel grid. Voxels represent some value in a regular
grid. An example of a 2D voxel grid is the division of voxels into 3 categories:
occupied, unoccupied, and unknown. This can be a good mapping technique
for the exploration of unknown environments.

2.2.1 ICP-SLAM

When constructing a map, we come across the problem of creating correspon-
dences between subsequent pointclouds. These correspondences are needed to
create an accurate map and establish which points are new in a measurement
and which have already been observed. We also need to find out what the

6



....................................... 2.2. SLAM

transformation is between the already constructed map and current measure-
ment to accurately add the new points. Iterative Closest Point (ICP) in one
of the commonly used algorithms for matching pointclouds and a useful tool
for acquiring point correspondences. Using the ICP algorithm, we can create
a basic SLAM algorithm - ICP-SLAM.

This section provides a brief mathematical and algorithmic description of
the ICP algorithm based on the description in papers [21] and [22].

Figure (2.1) : Schematic of the pointcloud alignment in ICP [1]

Let Q be the current map, P the point cloud obtained from the current
measurement, the rotational matrix R and the translation vector t be the
correction of transformation induced by alignment of P with Q. The ICP
algorithm can be described in these steps:

Algorithm 1 ICP
1: Initialize R = I, t = 0
2: For each point pi ∈ P find closest point qi ∈ Q
3: Reject outliers by median threshold
4: Solve

R′, t′ = arg min
R′∈SO(3),t′∈R3

∑ ∥∥R′pi + t′ − qi

∥∥2
2

5: Update P and robot’s position:

pi := R′pi + t′ ∀i

R := R′R

t := R′t + t′

The ICP algorithm yields R and t from input global map (Q) and current
measurement (P).

7



2. Theoretical background ................................
Once we know how the ICP algorithm works, we can move on to ICP-

SLAM: Suppose that Q is the current map, P is the point cloud obtained
from the current measurement, R represents the rotation matrix, and t is
the translation vector, then ICP-SLAM can be described in these steps:

Algorithm 2 ICP-SLAM
1: Filter P by uniform sampling
2: Align lidar P with map Q by the last known transformation
3: R,t = ICP(P,Q)
4: Update map
5: Update robot’s position (R,t)

In this way, we get an algorithm that progressively constructs a global
map of the environment from measurements and simultaneously updates the
robot’s position.

2.2.2 Point Fusion

Point-based fusion (Point fusion for short) is another way of addressing the
SLAM problem. We mention it here because it is also implemented in the
gradSLAM package [11] and we provide description of this algorithm based
on the Point fusion paper [2] from which the implementation in gradSLAM is
derived.

In most mapping strategies, the number of map elements increases pro-
portionally to the exploration time. However, this is an undesirable feature.
Ideally, the map elements should instead increase proportionally to the vol-
ume of explored occupied space. Point fusion mapping techniques employ
this feature through the fusion of redundant observations of the same map
element into just one point. As a consequence, the recovered map has a
more manageable size, and this saves a lot of memory. Another feature is the
improvement in the quality of the reconstruction [11].

The point fusion SLAM algorithm has four basic steps: Depth map prepro-
cessing, camera pose estimation, depth map fusion, and dynamics estimation.
We can see the pipeline of this algorithm in the picture 2.2.

Figure (2.2) : Point fusion pipeline schematic [2]

During the depth map preprocessing, each input depth map is transformed

8



....................................... 2.2. SLAM

into a set of 3D points using the intrinsic parameters of the camera and stored
in a 2D vertex map.

Depth map fusion takes care of the single global model and fuses input
points into it, using a valid camera pose. The global model is simply a list
of 3D points with associated attributes (e.g. normals). If the corresponding
points are found, the most reliable point is merged with the new point estimate
using a weighted average. Otherwise, the new point estimate is added to the
global model as an unstable point. The global model is updated over time to
remove outliers to improve visibility and alleviate temporal constraints.

Camera pose estimation is done using the ICP algorithm. Dynamics esti-
mation keeps track of dynamic objects and updates their position accordingly.

2.2.3 Dense SLAM

Sparse SLAM suffers from a lack of robustness, as it can be harder to match
points with a lack of correspondences. Furthermore, sparse maps can make it
difficult to visually identify objects within the map. Opposed to sparse SLAM,
dense SLAM methods aim to use the entire camera image as measurements
in order to increase robustness and accuracy in estimation. In addition to
solving the SLAM problem, 3D reconstructions generated by a dense method
are open to a wider range of applications than sparse ones. [23]

The sequence of operations in dense SLAM systems could be summarized
as odometry estimation (frame-to-frame alignment), map building (model-to-
frame alignment/local optimization), and global optimization. [11]

Figure (2.3) : Dense RGBD SLAM schematic (provided by thesis supervisor)

In the picture 2.3 we can see a typical pipeline used in dense SLAM modules.
The operations involved are: raycasting, ICP alignment, surface reconstruc-
tion, and map fusion. These operations are inherently non-differentiable,

9



2. Theoretical background ................................
but in the gradSLAM module [11], which we used, these parts were made
differentiable.

Sensory measurements are first converted to vertex-normal map, which is
then converted into a local map, which is then aligned using the ICP and
raycasting with the global map. The aligned map is fused to update the
global map. Redundant measurements (measurements of the same point)
are removed during the fusion process. This process is repeated for each
new coming frame, making it a sequential process, which could be non-
differentiable.

Notice the yellow components in the system that are not differentiable.
We used a differentiable dense SLAM module ([11]) which makes these
blocks differentiable. The technique used for this was based on the idea of
computational graphs, and new versions of these components were introduced,
allowing them to act as functions.

We are focused on the dense SLAM tasks, as we would like to construct
more detailed maps, and also to test the hypothesis, whether dense RGB-D
sensor measurements help to improve frame alignment process (ICP).

2.3 Depth Completion

Depth completion is an area of research with a wide variety of applications,
mostly for navigation, be that of autonomous robots or self-driving automo-
biles. The core of depth completion lies in finding a way to obtain dense
depth data from sparse depth measurements. This is usually done using a
machine learning model. Approaches to training can vary from supervised or
semi-supervised to unsupervised losses.

The two most commonly used devices for obtaining depth measurements
are LiDAR and depth cameras. LiDARs are often used for mapping outdoor
environments, while depth cameras are more used for indoor, close-quarters
environments. Data obtained from these measurements might not be perfect,
the measuring devices could be imprecise or suffer from unfavorable external
conditions - e.g. LiDAR might not work well in foggy tunnels, and cameras
might get deceived by direct sunlight. More importantly for depth completion,
depth measurements are often sparse, meaning that a significant number of
pixels in depth image are lacking values. Depth completion networks aim
to reduce this sparsity and create dense depth images by predicting missing
values. DCNNs have proven quite good for this task.

Supervised approaches usually use some kind of loss based on the difference
between the ground truth depth image and the predicted depth image. One of
the most basic metrics used is the MSE. However, it is possible to use different
types of loss, in our case we proposed using the map reconstruction error.
Some depth completion methods use only the sparse depth measurement (e.g.
[4]), but it is also possible to use the RGB image ([24]).

10



.................................. 2.3. Depth Completion

Figure (2.4) : Example of depth completion with sparse depth and RGB image
[3]
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Chapter 3
Methodology

3.1 RGBD-SLAM with denser input

Depth data acquired from sensors is often imperfect, contains noise, and
missing values. These imprecisions can lead to the creation of inaccurate
maps and imperfections in localization within the environment. Furthermore,
sparse depth images contain a low amount of points which makes it difficult
for SLAM to find correct correspondences, this can also cause maps to be
less precise.

(a) : Map construction with ICP-SLAM
from sparse depth images

(b) : Map construction with ICP-SLAM
from dense depth images

Figure (3.1) : Comparison of maps constructed from sparse and dense images
with SLAM odometry

Figure C.6b shows the construction of the map in the ROS Rviz simulator
using the ICP-SLAM and the KITTI depth dataset. In the two pictures,
we can see comparison of the trajectory created by SLAM (green line) and
ground truth trajectory (red line). Even the SLAM trajectory from dense
images is diverging from ground truth (at the point shown in the picture,
the trajectory diverged by 0.9 meters). However, this divergence is relatively
small compared to SLAM trajectory created from sparse images. Despite the
divergence, the trajectory keeps on par with the ground truth trajectory. On
the other hand, the trajectory created from sparse depth images struggles to

13



3. Methodology.....................................
keep close to the ground truth trajectory and the poses keep getting more
clumped up. This results in a significantly larger error in localization accuracy
(at the point shown in the picture, the trajectory diverged by 22.2 meters).
From this we can deduce that with a lack of correspondences, SLAM fails to
work.

By introducing a learnable model that fills in missing depth measurements,
we may be able to circumvent this issue, obtain more accurate maps and
achieve improvements in localization accuracy. In particular, by improving
sparse measurements into denser maps, we might make it easier for the SLAM
algorithm to find correspondences by increasing the number of points to
work with. As we can clearly see from the pictures C.6a and C.6b, SLAM
should work better with denser maps. The depth map improvement could
be achieved by making the entire pipeline, including the SLAM module,
differentiable and using a model suitable for depth completion.

Most depth completion architectures use Mean Square Error (MSE) or
other, similar losses to penalize accuracy of depth completion. However, in
our case, it might be beneficial to use map reconstruction error as a loss,
since we want to primarily achieve improvement in this direction.

We have decided to use the KIITI dataset [5] to test our hypothesis as this
dataset contains accurate ground truth dense depth data and also contains
ground truth trajectory data, which are both needed for our experiments.

3.2 Description of the learning pipeline

Figure (3.2) : Scheme of the depth completion pipeline with chamfer loss
(provided by thesis supervisor)

In the picture 3.2 we can see a simplified scheme of the learning pipeline
that we used. When training the model, we only used the chamfer loss, the

14



............................... 3.3. Machine Learning Model

main reason being that the SLAM did not provide enough accurate pose data.
Another reason is that we were limited by equipment because the gradSLAM
module did not allow usage of other than the ground truth poses on the
computational server.

The pipeline takes as input a sparse depth image (D) and passes this image
through the depth completion model to create a predicted depth image D’.
Predicted depth image together with the RGB image serves as input to the
gradSLAM module. GradSLAM module then creates a map with ground
truth trajectory. This map is then compared to the ground truth map, which
is created also by the gradSLAM module, but using dense ground truth
depth instead of D’. For map comparison, we used the chamfer distance from
Pytorch3D (see 4.2.1) and then backpropagated the loss to update the model
weights.

Figure (3.3) : Scheme of the depth completion pipeline with MSE loss (provided
by thesis supervisor, edited)

A similar, simplified version of the pipeline was used when training with
the MSE loss. The simplified scheme can be seen in the picture 3.3. As
before, the input to the pipeline is the sparse depth image D, and this image
is passed through the depth completion model. The predicted depth image D’
is then compared with the dense depth image using the MSE loss (see 4.2.1).
This loss is then again backpropagated to update the model weights.

3.3 Machine Learning Model

This work uses the Sparsity invariant DCNN machine learning model taken
from the paper Sparsity Invariant CNNs [4]. This model was chosen because
it performs well in the depth completion task and also had publicly available
Pytorch implementation that was easy to add to an existing pipeline. Fur-
thermore, the authors of this model tested it on the KITTI dataset, which we
also decided to use for our work. Pytorch code of this model was taken from
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3. Methodology.....................................

Figure (3.4) : Schematic of the network architecture [4]

Figure (3.5) : Schematic of the sparse convolution [4]

[25]. The machine learning model was further modified to accommodate the
same tensor shape as that used by the gradSLAM module.

The schematic of the model architecture can be seen in the picture 3.4. The
input to the network is a sparse depth image (yellow) and a binary observation
mask (red). The input is passed through several sparse convolution layers
(dashed cubes) with decreasing kernel sizes from 11×11 to 3×3. The mask is
passed through max pooling (max pool) for each sparse convolution layer.

The schematic of the sparse convolution can be seen in the picture 3.5. ⊙
denotes elementwise multiplication, * convolution, 1/x inversion, and ’max
pool’ the max pool operation. The input feature can be single-channel or
multi-channel. The sparse convolution operation explicitly considers sparsity
by evaluating only observed pixels and normalizes the output appropriately.
This helps to deal with unobserved inputs.
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Chapter 4
Tools and Experiment Setup

4.1 Datasets and Data

4.1.1 ICL-NUIM

For the purpose of testing a demo version of the pipeline C.2 and testing the
functionality and gradient propagation, the ICL-NUIM dataset was used [17].
This dataset has a few advantages because it is generated artificially. There
are perfectly accurate trajectory poses, and the dataset was created as a
benchmark for SLAM accuracy; therefore, it contains data suitable for SLAM
and has an easy-to-work with structure. However, this dataset is probably
not suitable for depth completion tasks, as there is no sparse data. We also
need to address the issue of domain transfer when moving from simulated
data to real data. Fortunately, the KITTI dataset has properties that made
this transfer much easier.

4.1.2 KITTI

The main usability of SLAM tasks is in real-world environments such as
caves, buildings, or urban areas. Therefore, we need to use real-world data
for this research to be of any relevance. For this work, the KITTI dataset [5]
was chosen. Heavily engineered to work for specific robots and environment
systems KITTI allowed for easier transition to real data. Another advantages
of KITTI are that it is a commonly used computer vision benchmark, contains
a large amount of data, contains both depth and RGB images, and poses,
which are all needed as input to SLAM.

We used two parts of the KITTI benchmark: the KITTI depth and raw
data. KITTI depth contains more than 93 thousand samples that consist of
dense and raw depth images and are aligned with the raw data [26]. Parts of
the raw data that we use include RGB images, GPS data, and calibration
data (specific for each drive). The KITTI raw dataset is divided into 5 dates
(corresponding to the date the measurements were obtained), and each date
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4. Tools and Experiment Setup ..............................
is further divided into separate drives (e.g. drive_0001). KITTI depth is
divided into train and validation parts, where the validation part contains
manually selected and cropped images. We decided not to use the validation
data and only worked with the train data. The reason being that we would
either require separate version of the model for the cropped validation data
or we would need to crop training data in the same way the validation data
is cropped. The structure of the validation dataset is also different. We
manually divided the train drives into training, validation, and testing groups.
In the picture 4.1 we can see how the constructed maps look visualized with
Open3D. An example of a trajectory can be seen in the picture 4.2.

Figure (4.1) : Map created from dense depth frames of drive 10_03_0027_sync

The data was collected by driving a car (VW Passat station wagon) through
different urban areas. The car was equipped with four video cameras (two
color and two grayscale cameras), a rotating 3D laser scanner, and a combined
GPS/IMU inertial navigation system.

The recording platform used two sets of cameras - on set on the left side of
the car, the other on the right side, each side having a RGB and grayscale
camera. For simplicity, we only used the left camera in our experiments.

The picture 4.4 illustrates the dimensions and mounting positions of the
sensors (red) with respect to the body of the vehicle. Heights above the
ground are marked in green and measured with respect to the surface of
the road. Transformations between sensors are shown in blue. This figure
also helps us to create the correct transformation from GPS coordinates into
transformation matrices.

We used GPS data to create camera poses and then used these poses
as ground truth. Note that the GPS data is not 100 % accurate. For
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.................................. 4.1. Datasets and Data

Figure (4.2) : Position of the camera during the drive 10_03_0027_sync

example, the elevation measurement would sometimes jump by 0.5. We use
the ’synced’ data that contains post-processed, rectified and synchronized
video streams. In order to obtain the camera pose matrices, we have to
apply several transformations on the poses of GPS in the world frame. These
transformations can be seen in the picture 4.4.

Figure (4.3) : Recording platform [5]
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Figure (4.4) : Sensor setup [5]

4.2 Metrics

4.2.1 Loss Functions

Two loss functions were used: the chamfer distance and the mean square
error (MSE). Chamfer distance is a common metric for measuring the sim-
ilarity between two 3D point clouds. It is often used for its simplicity and
comprehensibility. Chamfer distance between two sets of points S1, S2 ⊆ R3

can be defined as [9]:

dCD(S1, S2) = |S1|−1 ∑
x∈S1

min
y∈S2

∥x − y∥2
2 + |S2|−1 ∑

y∈S2

min
x∈S1

∥x − y∥2
2

MSE measures the average square of per pixel differences. Let n be the
number of values in the ground truth depth image, yi be the pixel values of
the predicted image and ŷi be the pixel values of ground truth image, and i
be the coordinate of the pixel in the ground truth image, then MSE can be
compute as:

MSE = 1
n

n∑
i=1

(yi − ŷi)2

4.2.2 Validation Criteria

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are two of
the most common metrics used to measure performance of depth completion.
We decided to use these two metrics in this work as they have allowed us to
better compare our results with other work and they provide understandable
information about our depth completion performance.

We can easily compute these metrics from ground truth and predicted
images. Let n be the number of values in the ground truth depth image, yi be
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the pixel values of the predicted image and ŷi be the pixel values of ground
truth image, and i be the coordinate of the pixel in the ground truth image,
then the metrics can be computed as:

MAE = 1
n

n∑
i=1

|yi − ŷi|

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

Both MAE and RMSE express average model prediction error in units of
the variable of interest, in our case the metrics are expressed in millimeters,
meaning MAE (or RMSE) of 1000 corresponds to an average difference
between pixels of 1 meter. Both metrics can only take on positive numbers
and are indifferent to the direction of errors. They are negatively-oriented
scores, which means lower values are better, zero would correspond to no
difference between ground truth and prediction.

Taking the square root of the average squared errors has some interesting
implications for RMSE. Since the errors are squared before they are aver-
aged, the RMSE gives a relatively high weight to large errors. Therefore,
RMSE has the benefit of penalizing large errors more, and can be more
appropriate in some cases [27]. In our work, penalizing outliers is important
as points that are too far away can negatively influence point alignment
during map reconstruction. However we decided to use both metrics to have
more comprehensive evaluation.

4.2.3 Localization Accuracy

The poses of the robot are represented by transformation matrices which are
comprised of a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3.
Transformation matrix has the following form:

T =
[

R t
0 0 0 1

]

Localization accuracy is computed from two transformation matrices (be that
T1 and T2) transformation matrices and comprises of two parts - translation
distance and rotation angle. First we solve the delta transform between the
two matrices, the matrix X corresponds to the transformation that we need
to get from T1 to T2:

T1X = T2

Then from the delta transformation matrix X we compute translation distance
and angle of rotation. Translation distance is computed as the Frobenius
norm of difference of the two translation parts:

d = ∥tX∥2
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Rotation angle is computed as:

αx = acos((trace(RX) − 1)/2)

Finally the localization accuracy between two poses (L) is the sum of transla-
tion distance and rotaion angle:

L = d + αx

For two trajectories, both containing same amount of poses, we compute
localization accuracy for each two corresponding poses, sum these values
and divide by the number of poses in the trajectory. Localization accuracy
corresponds to mean distance and rotation angle between each corresponding
poses in the two trajectories.

4.3 Experiment setup

4.3.1 Model training

Several methods of training were proposed and implemented. The model
was trained with the chamfer distance as a loss (chamfer loss) and separately
with MSE as loss. We tried two approaches when training using the chamfer
loss. First we trained with a map constructed from multiple frame (due to
hardware requirement we were able to train with maps from a maximum of
8 frames) and then we trained with a map constructed only from a single
frame. The reason we decided to use also just a single frame was to reduce
the influence of dynamic objects. Another advantage was that this method
required less memory to compute reconstruction loss and other point cloud
operations. Two separate maps were constructed from corresponding images,
one from dense ground truth images and the other from predicted depth
images.

In order to introduce more diversity we used a different map in each
iteration, for example in first iteration the map would be constructed from
images 0-7 and in the second iteration it would be constructed from images
8-15. In order not to spend too much training time on the larger drives, the
maximum number of used frames per drive was limited to 200. Once training
on a drive finishes, we move to next one.

When training using the MSE loss, we tried two different approaches as well,
these differed in how the MSE was computed. First we computed MSE only
for pixels present in the sparse depth picture (we call this ’sparse masking’)
and second we tried computing MSE for pixels present in the dense depth
image (we call this ’dense masking’). By pixels present in an image we mean
pixels with value that in not NaN.

For all mentioned experiments we used the AdamW optimizer [28] with the
following parameters: Learning rate = 0.001, Weight decay = 0.01. Using
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this optimizer yielded better training results than SGD and Adam optimizers
(loss was decreasing more rapidly, we did not conduct many tests with the
other optimizers).

For both testing and training we used the Point fusion version of SLAM
from the gradSLAM package, the main reason for this was that this was
less memory intensive than using ICP-SLAM and thus we were able to use
more frames for map construction. However the localization accuracy with
ICP-SLAM was comparable to that of Point fusion.

Training was done 15 different drives with diverse landscapes and sizes.
Validation was done on different drives than the training process. For

validation we used the exact same loop as for training, however we did not
apply any backpropagation, only the forward pass. Four separate drives were
used for validation and the validation metrics were averaged.

4.3.2 Model testing

In the testing process we create maps using the depth images and poses
provided by the gradSLAM. We then compare the outputed trajectory to
the ground truth trajectory computed from KITTI GPS data and IMU data.
This is done for each of the depth image versions (sparse, dense, predicted).
For computing the MAE and RMSE metrics we use the whole drives, and
compare the predicted/sparse images to dense images.

The predicted depth images we first run through the model and saved,
then the loop was run without the model with the loaded predicted images.
We also did not compute chamfer distance and so we did not have to hold
on to constructed maps. These factors enabled the testing loop to be run on
significantly more frames than the training loop, localization accuracy results
presented in the next chapter we computed from the first 30 frames of each
drive.

Testing was carried out on five drives, different than training and validation.
These drives are from the ’road’ and ’city’ environments and contain diverse
surroundings.

4.4 Tools and Third Party Packages

4.4.1 Pytorch

The Pytorch library represents the backbone of the machine learning environ-
ment created for this work. It provides the data types used for the variables
that are passed through machine learning networks as well as implementation
of basic machine learning modules such as linear and convolutional layers.
Pytorch also takes care of forward and backward passes and tweaking the
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model weights when optimizing. We have chosen to work with Pytorch
because it is compatible with the gradSLAM package.

Pytorch was written to allow efficient computation and provide a Python-
friendly programming style consistent with other scientific libraries [29]. An
important feature is also the support of usage of GPUs through the CUDA
platform, which considerably speeds up computation.

4.4.2 CUDA

Compute Unified Device Architecture or CUDA is a parallel computing
platform developed by Nvidia that allows software to use certain types of
graphics processing units (GPUs) for general-purpose processing [30]. The
CUDA toolkit distributed by Nvidia [31] includes GPU-accelerated libraries,
debugging and optimization tools, a C/C++ compiler, and a runtime library
that allow users to build and deploy applications on major architectures
including x86, Arm and POWER.

Using computational power of GPUs allows neural network related compu-
tations (like backpropagation) to be performed at much higher speed. This
makes CUDA an indispensable tool for any machine learning process. Train-
ing machine learning models on GPUs can be several orders of magnitude
faster than training on CPU and for larger models it can be the only feasible
way of training them.

4.4.3 GradSLAM

In our pipeline, gradSLAM serves as the module that performs SLAM, making
it an essential part of the pipeline and allowing the entire pipeline to be
differentiable and to backpropagate the gradient through SLAM.

Gradslam is described by its authors [11] as a fully differentiable dense
SLAM system, with the central idea being the construction of a computational
graph that represents each operation in a dense SLAM system. The authors
make the module differentiable by proposing separate differentiable alterna-
tives to several non-differentiable components of traditional dense SLAM
systems, such as optimization, odometry estimation, raycasting, and map
fusion. This creates a pathway for the gradient flow from 3D map elements
to sensor observations (e.g., pixels). This package implements differentiable
variants of two dense SLAM systems that operate on voxels, surfels, and
pointclouds, respectively. These variants are ICP-SLAM and Point Fusion.

Central to our goal of realizing a fully differentiable SLAM system are
computational graphs, which underlie most gradient-based learning techniques.
We make the observations that, if an entire SLAM system can be decomposed
into elementary operations, all of which are differentiable, we could compose
these elementary operations to preserve differentiability. However, modern
dense SLAM systems are quite sophisticated, with several non-differentiable
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subsystems (optimizers, raycasting, surface mapping), that make such a
construct challenging.

4.4.4 Pytorch3D

Pytorch3D is a library that provides differentiable solutions for 3D data
related operations [9]. It is built, as the name might suggest, on the Pytorch
library and it is fully compatible with it. On top of that, all operations
implemented in Pytorch3D come with CUDA support.

Pytorch3D package was used to calculate the chamfer distance and differ-
entiable transformations between sensor poses on the GPU. For a detailed
explanation of what the chamfer distance is and how it is computed, see the
section describing loss for the training model 4.2.1. Localization accuracy
was computed with differentiable pose transformations and therefore could
be also used as a loss function.

4.4.5 ROS and Rviz

The Robot Operating System (ROS) is an open source software that defines
the tool, interfaces, and components for building robotic units [32]. ROS
allows programmers to connect actuators, sensors, and control units through
tools called topics and messages. Additionally, ROS can run on real robots
and also in simulators. We did not conduct any tests on real robots, however
ROS allowed us to run SLAM in simulator and better visually understand
how it performed. ROS also supports Python, which made it convenient for
us to use.

The Rviz simulator, which is based on ROS, was used for real-time sim-
ulation of the map construction process, allowing us to see how the map
was constructed and where the SLAM struggled or what the differences were
between sparse, dense, and predicted depth data. We also visualized the
ground truth and computed trajectories and computed localization accuracy
from them.
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Chapter 5
Results

To get a sense of what kind of experiments have been performed, please refer
to section 4.3. The explanation of the metrics presented in this chapter can
be found in subsections 4.2.1, 4.2.2 and 4.2.3.

5.1 Training results

Table 5.1 shows the best metrics achieved during the validation process. The
MSE value for loss with a sparse mask can seem a bit off compared to other
values. This happens because the values from which it was computed are not
the same as those of the other metrics that used a dense mask.

Performance of models trained with chamfer loss

Training method
Chamfer
distance

[m]
MSE [m] MAE

[mm]
RMSE
[mm]

Using map from single
frame 1.93 ✗ 471 1206

Using map from multiple
frames 4.78 ✗ 753 1476

Performance of models trained with MSE loss
Using a sparse mask loss ✗ 34.73 9030 10638
Using a dense mask loss ✗ 2.23 400 1316
Table (5.1) : Comparison of metrics for validation of a model trained with
chamfer loss and MSE loss (lower is better)

Graphs detailing the loss during training and validation can be seen in
the figure 5.1. From these images we can see that the map created from the
predicted data is denser than even the dense ground truth data. We can
better recognize objects like cars and the surfaces like road are much smoother.
However there are noticeable artifacts are lines of trailing points. Constructed
maps with different types of losses and depth completion examples can be
seen in the Appendix C.
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(a) : Map constructed from dense
ground truth data

(b) : Map constructed from sparse depth
data

(c) : Map constructed from data pre-
dicted data

Figure (5.1) : Comparison of maps constructed with ground truth poses

5.2 Testing results

The tests presented in table 5.2 were performed on the first 30 subsequent
samples of each drive. The values in the table are averages of the values
computed on these drives. Note that MAE and RMSE were computed only
for pixels present in the dense depth image, and the MSE sparse depth mask
loss uses only pixels present in the sparse depth image, thus these values do
seem off in the table. The MAE and RMSE metrics were not presented for
the dense depth images, since they served as the ground truth to compare
with.

We also add a table with results published by the authors of the model 5.3
for comparison with our results. Note that these results were obtained on the
KITTI depth selection, which contains the handpicked images for validation
and testing, so our validation and testing datasets are different. MAE and
RMSE presented in this table are computed in the same way as we did. We
achieved comparable results to the original work and moreover, we made a
step forward, by using the model for evaluation of SLAM.
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Performance of models trained with chamfer loss

Training method
Localization
accuracy

[-]

MAE
[mm]

RMSE
[mm]

Using map from single frame 10.36 561 1774
Using map from multiple

frames 10.34 621 1810

Performance of models trained with MSE loss
Using a sparse mask loss 10.31 10639 13182
Using a dense mask loss 10.29 536 1771

Performance without a model
Using sparse depth 9.447 14662 19524
Using dense depth 3.76 ✗ ✗

Table (5.2) : Comparison of metrics averaged across testing drives (lower is
better)

Mode MAE
[mm]

RMSE
[mm]

Validation 680 2010
Testing 540 1810

Table (5.3) : Comparison of metrics published by the model authors [4]
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Chapter 6
Discussion

The hypothesis presented in the section 3.1 was not confirmed as the local-
ization accuracy did not improve by introducing a depth completion model,
and it even got worse than when using sparse depth data. From the results
presented in the appendix C, we can see that the depth completion works,
and the completed images look like a denser version of the ground truth
depth images. However, when we construct a map from the predicted depth
images, it becomes clear that there is a large number of outliers present and
we can see ray-like structures. The model tries to finish the whole picture, and
sometimes it fills in the gaps between points with what could be considered
to be a far background. These artifacts are probably a feature of the model,
since they were introduced with every type of loss that we used.

It was realized that it is possible to use the chamfer distance as a novel
way of training depth completion networks. This is supported by the testing
results in table 5.2, where we can see that the model trained with chamfer
loss only got slightly worse metrics than the model trained with MSE loss,
and in the validation results (5.1), we were even able to get the RMSE lower
with chamfer loss.

From the results, it is clear that training using a chamfer loss with a map
constructed with only one frame allows us to obtain better metrics and lower
loss. However, we did not see any substantial improvement in localization
accuracy. The better performance of the single frame map might be because
the KITTI dataset contains a lot of dynamic objects (moving cars, cyclists,
etc.) and these cause the introduction of additional artifacts and noise for
the model.

The metrics we obtained with the used model are very close to the metrics
that the authors of the used model present in their paper [4]. This probably
means that the model was trained correctly and that there was no significant
error in the training loop, at least in the backpropagation.

The test values have differed for each drive. Reconstructing maps proved
especially difficult on drives with fewer features and open terrain (e.g. drive
09 26 0001) as these made it harder to acquire correct point correspondences.
Unfortunately, the GradSLAM package did not allow for other than ground
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6. Discussion ......................................
truth odometry to be used on the computational server, and it was not feasible
to run testing loop locally on more drives for all differently trained models
trained with different losses.
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Chapter 7
Conclusion

A depth completion network [4] was implemented and trained using map
reconstruction accuracy (chamfer distance). We used a pipeline that included
a differentiable dense SLAM module [11]. We trained four networks with two
losses, each loss with two variants. We were able to obtain denser depth data
and create more detailed maps.

The results showed that training with map reconstruction error is a viable
way of training depth completion networks, as the metrics were similar to
the original solution. We were able to improve the mapping part of SLAM
and create better maps. However, introducing the model did not yield any
improvement in localization accuracy. This was due to the fact that the
model created a large number of outliers.

7.1 Future work

The machine learning model used in this work introduced many outliers, and
this, in turn, probably negatively impacted the performance of SLAM. A large
number of artifacts or outlier points might make it difficult for SLAM to find
the correct correspondences, and thus the reconstructed map is not accurate.
These outlier points were present in all trained versions of the model, and
thus this might be a feature of the model architecture. A good direction to
focus future work would be to try a pipeline with a different model, perhaps
a model that uses as input not only depth but RGB images as well.

An interesting experiment to try would be also to introduce some kind of
pointcloud filtration method. We briefly tried hidden point filtration, but due
to not enough time remaining, we did not conduct any detailed experiments.
Another method to explore would be to use localization error to fine-tune a
model pre-trained with reconstruction error.
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Appendix B
Training and validation loss

Graphs in this may lack the training value for the 0th episode, as it was much
larger than the rest of the values and caused distortion in the graphs. The
validation value is computed only after the 0th training episode, so the value
is lower than that for the initialized model. Additionally, training loss can
sometimes seem to jump higher or lower. This occurred at times when a new
training sequence was introduced.

Figure (B.1) : Chamfer loss during training with a map constructed from a
single frame
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B. Training and validation loss ..............................

Figure (B.2) : Chamfer loss during training with a map constructed from a
single frame

Figure (B.3) : MSE during training with MSE loss with a sparse mask
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............................... B. Training and validation loss

Figure (B.4) : MSE during training with MSE loss with a dense mask
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Appendix C
Depth completion results

Figure (C.1) : Example of depth completion with a model trained with chamfer
distance

.
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C. Depth completion results ...............................

Figure (C.2) : Example of depth completion with a model trained with MSE
loss with a sparse mask

Figure (C.3) : Example of a map constructed from data predicted with a
model learned with MSE loss with a dense mask
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................................... C.1. Depth filtration

C.1 Depth filtration

We utilized two methods of depth filtration on the predicted depth data in
hopes, that we would reduce the number of outlier points. First we tried
removing point that lay too close or too far away from the camera (image
C.5). Second we tried using a bilateral filter [33] to average out depth values
with neighboring pixels (image C.4). . Both of these filtration methods did
not bring any improvement in localization accuracy that would be worth
mentioning. This leads to the conclusion that the depth completion model
does not provide reliable enough measurements that could be used for the
alignment process, even when using the mentioned filters.

Figure (C.4) : Depth filtration using openCV bilateral filter (filtered pointcloud
in on the right)

s
Figure (C.5) : Depth filtration by removing far laying points (filtered point-
cloud in on the right)

C.2 Demo version using perfect data

For the purposes of testing a demo version of the pipeline was used on the
ICL-NUIM dataset (see 4.1.1). This perfect artificial data did not allow for
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C. Depth completion results ...............................
obtaining real world applicable results, but was still useful in showing whether
gradients can get propagated. The general task of this demo version was to
find out whether it was possible to achieve convincing results on removing
noise from depth images using the chamfer distance between ground truth
and reconstructed pointclouds as a loss.

We have used a denoising convolutional neural network taken from the
paper Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for
Image Denoising [34]. Noisy images we constructed from ground truth images
with artificially added Gaussian noise. In the pipeline, we first constructed
a point cloud from the image that passed through the model and then a
second pointcloud from the ground truth image. We computed the chamfer
distance (loss) between these two pointclouds and backpropagated to update
the model weights.

The results showed that it is indeed possible to use the chamfer distance
computed from pointclouds constructed with the gradSLAM module for
learning. The gradients flowed through the pipeline and the model learned to
denoise depth images as we can see in figure C.6.

(a) : Depth image with added Gaussian
noise

(b) : Depth image after passing through
model

Figure (C.6) : Comparison of noisy and denoised images
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