Bachelor’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

MVP algorithm maodification using
polynomial paths

Jan Hadraba

Supervisor: doc. Ing. Tomas Hanis, Ph.D.
Field of study: Cybernetics and Robotics
January 2025

ii

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

Student's name: Hadraba Jan Personal ID number: 508457
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

\ Y,
[l. Bachelor’s thesis details

Bachelor’s thesis title in English:

MVP algorithm modification using polynomial paths

Bachelor’s thesis title in Czech:

Modifikace MVP algoritmu s vyuZzitim polynomidlnich trajektorii

Guidelines:

The goal of this thesis is to modify Minimum Violation Planning (MVP) algorithm using polynomial trajectories to expand
and reconnect tree nodes. The algorithm shall account also for over-actuated vehicles (namely, the crab walk scenario)
and lateral dynamics.

1. Get familiar with vehicle dynamic mathematical models and traction limits.

2. Get familiar with path planning algorithms. Prepare benchmark implementation.

3. Implement traction limits to planning algorithm.

4, Evaluate developed algorithm and compare computational cost and planning performance compared to the benchmark.
5. Verify implemented modification.

Bibliography / sources:

[1] Dieter Schramm, Manfred Hiller, Roberto Bardini — Vehicle Dynamics — Duisburg 2014

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive Quadrotor Flight in
Dense Indoor Environments.” In Robotics Research, edited by Masayuki Inaba and Peter Corke, 114:649—-66. Springer
Tracts in Advanced Robotics. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-28872-7_37.
[3] LaValle, Steven M.: Planning algorithms. Cambridge University Press, 2006.

[4] LaValle, Steven M., and James J. Kuffner Jr.: Rapidly-exploring random trees: Progress and prospects, (2000).

[5] Finney, Sarah, Leslie Kaelbling, and Tomas Lozano-Perez. “Predicting Partial Paths from Planning Problem Parameters,”’
n.d.

[6] Rajamani R. (2012) Mean Value Modeling of S| and Diesel Engines. In: Vehicle Dynamics and Control. Mechanical
Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1433-9_9

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tom&s Hani§, Ph.D. Department of Control Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 16.01.2024 Deadline for bachelor thesis submission: 07.01.2025

Assignment valid until:
by the end of summer semester 2024/2025

doc. Ing. Tomas Hanis§, Ph.D. doc. Ing. Zdenék Hurak, Ph.D. prof. Mgr. Petr Péata, Ph.D.

k Supervisor's signature Head of department’s signature Dean'’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

First, I would like to thank my supervisor
doc. Ing. Tom&s Hanis, Ph.D. for his
advice and patience while working on this
thesis.

A special thanks belong to my family
and friends who supported me not only
while working on this thesis, but also dur-
ing my studies in general.

Declaration

I hereby declare that this work is all my
own work and I have cited all sources I
have used in the bibliography.

Prague, January 7, 2025

Abstract

Path planning for autonomous vehicles
remains a central challenge in intelli-
gent transportation systems, requiring
algorithms that can efficiently generate
safe, smooth, and feasible paths in real
time. This thesis deals with implement-
ing modifications to an already existing
minimum-violation planning (MVP) al-
gorithm. This modification is based on
polynomial paths constructed under cur-
vature constraints considering the surface
friction coefficient. The developed algo-
rithm is compared to the already existing
algorithm and is then verified in several
different test case scenarios.

Keywords: MVP, RRT*, Polynomial
paths, Local planning, Autonomous
vehicles

Supervisor:
Ph.D.

doc. Ing. Tomas Hanis,

vi

Abstrakt

Planovani trajektorii pro autonomni vozi-
dla predstavuje klicocou vyzvu v oblasti
inteligentnich dopravnich systému, kde je
nutné zajistit generovani bezpecénych, ply-
nulych a proveditelnych trajektorii v re-
alném case. Tato prace se zabyva imple-
mentaci modifikace jiz existujictho (MVP)
algoritmu. Tato modifikace spociva v po-
uziti polynomidlnich trajektorii vytvare-
nych pod omezenim kfivosti s ohledem na
koeficient tfeni povrchu. Vyvinuty algo-
ritmus je porovnan s jiz existujicim algo-
ritmem a nésledné je ovéren v nékolika
ruznych testovacich pripadech.

Kli¢ova slova: MVP, RRT*,
Polynomialni trajektorie, Lokalni
planovani, Autonomni vozidla

Preklad nazvu: Modiftkace MVP
algoritmu s vyuzitim polynomialnich
trajektorii

Contents
1 Introduction 1
1.1 Motivation 1l
1.2 Thesis structure
2 State of the art 3
2.1 Path planning
2.2 Planning algorithms............

2.2.1 Sampling-based algorithms . . .

2.2.2 RRT and its variants 5

2.2.3 Minimum-violation planning . .

3 Implementation 9
3.1 Problem definition 9]
3.2 Vehicle model selection [9]

3.3 Algorithm design and
implementation.................

3.3.1 Modified steering method . ..

3.3.2 Modified sampling method . .

=

vii

4 Validation and comparison to

benchmark on testing scenarios 19
4.1 Computational efficiency.
4.2 Testing scenarios
4.2.1 Straight road
4.2.2 90 degree turn
4.2.3 Zigzag turn scenario

4.3 Planning with adhesion coefficient

constraints, 23
5 Conclusion 29
A Bibliography 31

Figures

2.1 Expansion of RRT algorithm. ...

6

3.1 Lateral force acting as centripetal

3.2 Example of configurations which
can be connected by only one of the
polynomials in a) and b) and a
configuration which can be connected

by both.
3.3 Configurations ¢s and ¢, in state
SPACE. ot 15|
3.4 Illustration of how does sampling
with RandomSample work.
4.1 Comparison of time needed to
create a tree of n nodes. 20)
4.2 Straight road scenario
4.3 Straight road scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................
4.4 Straight road scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................
4.5 Straight road scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................
4.6 90 degree turn scenario

viii

4.7 90 degree turn scenario, red dots -
nodes, blue lines - paths, white line -

the best path...................
4.8 90 degree turn scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................
4.9 90 degree turn scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................
4.10 Zigzag turn scenario
4.11 Zigzag turn scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................

4.12 Zigzag turn scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................

4.13 Zigzag turn scenario, red dots -
nodes, blue lines - paths, white line -
the best path...................

4.14 90 degree turn scenario with snow
(s = 0.4) in the corner.

4.15 90 degree turn scenario with snow
(s = 0.4) in the corner, red dots -
nodes, blue lines - paths, white line -
the best path...................

4.16 90 degree turn scenario with snow
(s = 0.4) in the corner.

Chapter 1

Introduction

The ever-advancing field of autonomous vehicles offers plenty of challenges
whether it is sensing of vehicle’s surroundings, motion control, decision-
making or path planning, to name a few. One of the most critical challenges
is efficient and safe path planning. Path planning relates to the process
by which an autonomous vehicle creates an optimal route from its current
location to a desired goal destination while avoiding obstacles and navigating
through complex environments. A complex and dynamic environment contains
unpredictable elements, such as moving objects (other vehicles, pedestrians,
animals), and varying weather conditions. Besides obstacle avoidance and
complex environments, many factors make path planning such a challenging
task. For example, high dimensionality, because not only position but also
vehicle dynamics, such as velocity and steering, must be taken into account.
Or smoothness and comfort of the resulting trajectory, since the path planning
algorithm should ensure that the generated trajectory respects vehicle motion
constraints and weather conditions are taken into account. Lastly, the time
complexity, because the algorithm should be able to work in real-time, which
places even greater demands on it.

. 1.1 Motivation

Among the various techniques developed for path planning, the use of ad-
vanced search algorithms like rapidly exploring random trees (RRT) has
gained significant attention due to their ability to generate feasible and
collision-free paths. This thesis aims to modify already existent local path

1. Introduction

planning algorithm developed by Marek Boha¢ [I], with a new steering func-
tion based on polynomials [2]. The steering function also takes into account
additional constraints, namely the adhesion (friction) coefficient p, and is sup-
ported with a new sampling method. The inclusion of the friction coefficient
means that methods for coefficient friction estimation from cameras might be
utilized [3]. The most considerable advantage of this new approach is com-
putational efficiency. Marek’s algorithm needs a set of possible trajectories,
which are precomputed with the use of input sampling and solving the initial
value problem (IVP). IVP is solved with the use of iterative methods like
Runge-Kutta on differential equations describing the motion of the vehicle.
In contrast to Marek’s approach, the computation of polynomial paths is
less demanding and therefore, could be used in real-time and provide a more
reactive planning, in the cost of the solution being a path and not a trajectory.
So this algorithm with polynomial paths needs a higher level path tracking
algorithm.

. 1.2 Thesis structure

First, in Chapter [2|, I introduce state of the art planning algorithms. Then in
Chapter 3| I define a goal of this thesis and describe an appropriate vehicle
model selected to fulfill the goal. Then in Section |3.3, I describe how the
existing algorithm is modified and what is missed out when using this approach.
Lastly, in Chapter |4/ I verify the performance of the designed algorithm and
compare it with Marek’s algorithm which is used as a benchmark.

Chapter 2

State of the art

B 21 Path planning

The problem of path planning for autonomous vehicles can be divided into
two categories, local and global. The main goal of global path planning is to
find an optimal, collision-free path from the vehicle’s initial position to its
goal using a map of the environment. The map can be created using prior
knowledge or simultaneous localization and mapping (SLAM) method. Global
planners operate at a higher scale and guide over longer distances. They
are effective in static or well-known environments but struggle to adapt to
unforeseen obstacles and dynamic changes in the environment due to the fact,
that they rely on predefined maps. In contrast, local path planning focuses
on the vehicle’s surroundings at any given moment. Modern autonomous
vehicles are equipped with a variety of sensors, such as radar, LIDAR, GPS
and cameras. Data from these sensors are then utilized to detect obstacles and
other changes in the environment, for example, a change in the driving surface,
and navigate safely through the environment. Local planners operate in real-
time during the vehicle’s motion, allowing it to adapt its path in response
to environmental changes and obstacles. That makes local path planning
essential for navigating dynamic or incompletely known environments [4].
This thesis focuses primarily on local path planning, as one of its objectives
is to incorporate the effect of different surface adhesion (friction) coefficients
on path generation.

2. State of the art

B 22 Planning algorithms

Path planning algorithms can be also divided into three main categories. In
the first category are graph-based algorithms such as Dijkstra’s and A* (and
its other variants). The second category of path planning algorithms are
algorithms that are based on sampling, RRT and probabilistic road map
(PRM), and the third category are optimization-based algorithms [5], [6].
There are many other planning algorithms, but these are the most commonly
used ones for autonomous vehicles [7].

The beginning of research and development of graph-based algorithms
dates back to the 1960s, with Dijkstra’s being first introduced in 1959 and
A* later in 1968 [8], [9]. These two algorithms require discretization of the
environment and don’t guarantee that the resulting path will be feasible [10].
A* can be seen as an extension of Dijkstra’s algorithm. It combines Dijsktra’s
precision with heuristic guidance, which results in much better performance
while still providing optimal solutions. That makes it a popular choice in
robotics, although only for problems with low dimensionality because with
an increasing number of dimensions, the performance starts to stagger.

Optimization-based techniques utilize mathematical optimization methods,
through defining an objective function such as minimizing travel time, fuel
consumption or a weighted combination of multiple objectives. Frequently em-
ployed methods are linear (LP) and nonlinear programming (NLP), dynamic
programming (DP) and model predictive control (MPC) [11].

Sampling-based methods are a class of path-planning algorithms widely used
in robotics and other associated fields due to their ability to efficiently explore
high-dimensional configuration spaces. These methods focus on generating
feasible paths by sampling points in the environment, rather than explicitly
constructing the entire configuration space. This makes them particularly
effective for real-time applications in dynamic and complex scenarios. Random
sampling allows the algorithms to avoid local minima and effectively navigate
around obstacles. It is also ensured that generated samples do not collide
with anything in the environment. This method was chosen in the original
algorithm, therefore it will be described further in the work [I].

4

2.2. Planning algorithms

B 2.2.1 Sampling-based algorithms

There are two mostly used sampling-based algorithms, one of them is RRT
and the other is PRM [12], [13]. With PRM, the algorithm first generates
random samples throughout the space. These samples then become nodes
in a graph and the algorithm may also use focused sampling strategies to
join disconnected components of the graph. Once the graph is constructed,
it can be reused to solve multiple different path planning queries within the
same environment. RRT also randomly samples the configuration space, but
in contrast to PRM, it grows a tree from a start configuration. The tree
expands towards random samples until a goal is reached. Those methods
are probabilistically complete, which means that they are guaranteed to find
a solution if one exists given time goes to infinity. Due to the fact, that
RRT creates paths between nodes during runtime and therefore can apply
kinematic constraints, it is chosen as the suitable algorithm.

B 2.2.2 RRT and its variants

RRT was developed as a way to search high-dimensional or complex configu-
ration spaces, such as those encountered in planning motions for robotic arms,
mobile robots or autonomous vehicles with differential constraints. The basic
idea of RRT is to grow the tree incrementally from an initial configuration
(or state) by repeatedly sampling random points in the configuration space
and expanding the existing tree towards these samples. Random sampling
ensures, that the tree reaches unexplored regions and all feasible parts are
covered over time. Pseudocode of RRT algorithm is described in Algorithm |1
based on [12]. Consider a path planning problem in an obstacle-free, con-
tinuous configuration space C which includes possible configurations of an
autonomous vehicle. It starts with an initial configuration g9 € C, and then
in each iteration, the Rand function selects a random sample over uniform
distribution from configuration space C. This sample ¢,qnq is passed to the
Nearest function, which looks for the nearest node of the tree 7 according to
a chosen distance metric. This metric can be either Euclidean distance or
some more specialized metric that is used for a specific scenario, for example,
weighted Euclidean distance. The nearest node ¢peqr is used in the New_ conf
function to find a new configuration ¢y, which is going to be added as a
new node to the tree 7. The New_ conf function should also check whether
the path from ¢neqr tO Gnew is collision-free. After that the gy is added as
a new vertex to the tree 7 and an edge between ¢neqr, qnew is created. A
graphical illustration of the algorithm is available in Figure 2.1

2. State of the art

Algorithm 1 RRT

Input: ¢ - initial configuration, N - number of vertices, € - incremental
distance, C - configuration space
Output: RRT graph 7 with N vertices
T .init(go)
while 7 .number_ of vertices() < N do
Grand + Rand(C)
Qnear < NeareSt(QTanda T)
Qnew < NeW_Conf(Qneam Grand; 5)
T .add_ vertex(gnew)
T-addfedge(Qneara Qnew)
end while
return T

Figure 2.1: Expansion of RRT algorithm.

Even though this algorithm is probabilistically complete and effective in
finding a feasible solution, it has one major issue when it comes to path
planning. Paths found by this original RRT algorithm are not guaranteed
to be optimal. Therefore asymptotically optimal version of this algorithm
was developed, the RRT* [14]. Being asymptotically optimal means, that if
the number of iterations approaches infinity, the probability that RRT* finds
an optimal solution goes to 1. This is a huge step forward when it comes to
autonomous vehicle path planning. In that case, optimal can mean minimal
time travel, minimal distance traveled or minimal energy consumption. The
optimality is accomplished mainly because of two modifications, choosing the
best parent node and rewiring. Choice of the best parent is used during the
selection of a new node @ney. Instead of simply connecting the ¢pe, to its
nearest neighbor (as in RRT), RRT* considers the neighborhood of existing
nodes around the gnew. Among these neighbors, it selects the node that offers
the lowest cost for the g,e. as a parent node. The cost can represent distance
traveled, time, energy, or other relevant metrics. By selecting the parent node
with the minimum cost path, RRT* improves the generated route. Then

6

2.2. Planning algorithms

comes the process of rewiring. After attaching gpe, to the best parent, RRT*
attempts to rewire the neighborhood. Particularly, for each neighbor gneq, in
the proximity of gne, with radius r, the algorithm checks if passing through
Qnew Would result in a lower cost path to gneqr. If SO, it rewires the parent of
Qnear tO Qnew. This step can systematically reduce the overall path cost in
the tree, leading to better solutions over time. Both of these procedures can
be seen in Algorithm |2,

Algorithm 2 RRT*

Input: ¢ - initial configuration, N - number of vertices, € - incremental
distance, C - configuration space
Output: RRT* graph 7 with N vertices
T .init(qo);
while 7 .number_of vertices() < N do
Grand < Rand(C);
Qnearest NeareSt(QTand> T)7
Qnew < Newfconf(Qnearesta Grand, E);
Qnear Near(Qnewa T)7
T .add_ vertex(qnew);
Qmin < Qnearest;
Cmin < COSt(Qnearest) + C(Line(Qnew; Qnear);
for Gnear € Qnear do
if COSt(Qnear) + C(Line<Qneara Qnew) < Cmin then
9min < Qnear;
Cmin < C(Line(Qneara Qnew>;
end if
end for
T'addfedge(Qmin ’ Qnew) ;
for Gnear € Qnear \ dmin do
if Cost(gnew) + c(Line(gnew, Gnear) < Cost(gneqr) then
Qparent < T-getfparent(Qnear);
T. remove_edge(Qparent s Anear) ;
T. addfedge(Qnew y Anear) ;
end if
end for
end while
return 7;

B 2.2.3 Minimum-violation planning

Now until this section, algorithms able to generate collision-free paths were
introduced. However, many real-world tasks require balancing multiple con-
straints that may not always be completely satisfiable, for example, temporal
logic, environmental specifications and dynamic obstacles. In these cases,

7

2. State of the art

it may be impossible to comply with all of the constraints simultaneously.
Minimum-violation planning (MVP) handles this challenge by allowing small
deviations from ideal constraints while prioritizing overall feasibility and
safety. Instead of treating the problem in a binary manner, feasible vs in-
feasible, MVP tries to find a path that violates constraints the least when
absolute fulfillment is not achievable [I5]. The concept of MVP merged with
RRT* is described in [16]. It combines the abilities of MVP to satisfy possible
constraints while still finding feasible solutions and the ability of RRT* to
effectively search in a complex environment and result in an MVP-RRT*
algorithm described in Algorithm |3 A new Steer function is added in con-
trast to Algorithm [2. The Steer function returns a path between two states
considering vehicle kinematics and constraints satisfaction if such a path
exists.

Algorithm 3 MVP-RRT*

Input: ¢ - initial configuration, N - number of states, K - Kripke structure
Output: Kripke structure K with IV states
K.init(go);
while K.count states() < N do
Gnew < Rand();
Qnear — Near(lC, Qnew);
Gmin < null;
min_ cost < oo ;
for Qnear € Qnear do
if Steer(¢near; Gnew) # 0 then
d COSt(Qnem‘) + C(Qneara Qnew);
if ¢ < min_cost then
dmin < Gnear;
min__cost < c;
end if
end if
end for
K.add__transition(gmin, Gnew, min.ost);
K.add_state(gnew);
for Qnear € Qnear \ {Qmm} do
if Steer(gnear; Gnew) # 0 then
d COSt(Qnew) + C(Qneun Qnear;
if ¢ <Cost(gneqr) then
Qparent < K-getfparent(Qnear);
K.remove _transition(gparent; near);
K.add__transition(gnew, near; ¢);
end if
end if
end for
end while
return K;

Chapter 3

Implementation

. 3.1 Problem definition

The aim of this work is to implement a local path planning algorithm that
utilizes polynomial paths under kinematic constraints caused by vehicle
motion and the environment (adhesion coefficient). Regarding polynomial
paths, several requirements had to be considered. Namely what degree of a
polynomial is required to have a smooth path, how to describe the polynomial
and how to apply curvature limitation on the path generation. And all that
while still maintaining effectiveness so that the algorithm can be ran real-time.

. 3.2 Vehicle model selection

To apply kinematic constraints defined by the vehicle, the vehicle needs to be
modeled somehow. The most suitable model for this matter is the kinematic
model. The kinematic model captures a mathematical description of the
vehicle’s motion without considering the forces that affect it. The model uses
a “bicycle” representation, effectively merging the left and right wheels into a
single wheel at the center of each axle. A key assumption is that the velocity
vectors of v and v, align with the orientation of the front and rear wheels,
respectively. This implies that there is no lateral slip at either wheel as the
vehicle moves. This assumption is reasonable at lower speeds, where the tires

9

3. Implementation

Figure 3.1: Lateral force acting as centripetal force.

generate only minimal lateral force.

The other variant of how the vehicles can be modeled is twin-track models,
but they are way too complex for this subject as they work with vehicle
dynamics. The kinematic model is suitable because it is relatively simple,
yet it captures all the information that is needed for the maximum curvature
constraint. That is, when the vehicle with mass m is driving on any circular
road with radius R with a constant speed V', the total lateral force generated
by all tires is

mV?
Fy, = 7

(3.1)

As demonstrated, the assumption about velocity vectors vg and v, remains
valid at lower speeds and smaller steering angles because lateral force grows
quadratically with speed and is inversely proportional to the vehicle’s turning
radius. However, at higher speeds and more aggressive maneuvers, the model
no longer provides an accurate representation. Nevertheless, it still provides
a reasonably good validation tool [I7], [I8]. Now, as stated in 3.1, this work
aims to create polynomial paths under the vehicle’s kinematic constraints
and adhesion coefficient. The lateral force Fy is acting as a centripetal force,
as seen in Figure 3.1, where CG is the center of gravity (c.g.), d¢ is the
front wheel’s steering angle and v is the velocity at vehicle’s center of gravity.
It was mentioned before that this force is caused by friction of the tires,
which means that the vehicle turns because of friction. Friction force can be

10

3.2. Vehicle model selection

described as
4

Ff:Ztheel,i:MFN7 (32)
i=1
where p is coefficient of friction (or adhesion coefficient) and Fly is normal
force in the c.g. of the vehicle. Now, if the car has to make the turn and not
slide off, the friction force Iy must be greater or equal, to the lateral force
F,. So now there is a relation between those two forces looking like this

F; > F, (3.3)
mV?

Assuming that the vehicle is driving on a flat road and all its mass is distributed
to the tires evenly, the normal force has a relation to the weight of the vehicle

Fn = Fy=myg, (3.5)

where m is mass of the vehicle and ¢ is gravitational acceleration with
approximate value of g = 9.81 ms™2.

Looking at this, the Equation |3.4| can be rewritten and simplified as

VZ
> 3.6
pmg = ==, (3.6)
V2
> 3.7
Hg 2 5 (3.7)

which takes out the mass of the vehicle from the equation. Before adding
curvature to the equation, it needs to be said, what curvature is. Curvature
K is a measure of how sharply a curve bends at a given point, so the larger
the curvature, the sharper the turn. Equivalently, it can be understood
as the reciprocal of the radius of the osculating circle—the circle that best
approximates the curve near this point. That yields this equation

K= —. (3.8)

Equation [3.8| allows curvature to be included in the constraints in Equation
3.7l Curvature can be then expressed as a function of u

Ky
and maximum curvature is limited by

Fomaz = %. (3.10)

11

3. Implementation

This will be employed to generate a path under curvature constraints using
a "surface mask" with estimated coefficients of friction of the road ahead
of the vehicle. As can be seen in Equation [3.10, the curvature is directly
proportional to the friction coefficient of a surface the vehicle is driving, The
lower the value of coefficient friction is, the lower the maximum curvature of
polynomial paths generated can be.

B 33 Algorithm design and implementation

Using the theoretical foundations from preceding chapters, path planning
algorithm modification is formulated in this section. From a computational
time perspective, path planning must be very time efficient, which in the case
of an RRT*-like algorithm means generating more samples and therefore a
finer solution due to the properties of probabilistic completeness and asymp-
totic optimality. Modified MVP-RRT* with polynomial paths is presented
in Algorithm [4. Only those methods specifically adapted for generating
polynomials are discussed in the subsequent sections. The others are already
greatly described in [1].

A goal bias has been added to Algorithm [4] in the selection of ¢,and to
help navigate the tree towards the goal by using the RandomSample method
(see Algorithm |6)) to extend the node that is closest to the goal.

B 3.3.1 Modified steering method

Steering functions used in most of the RRT algorithm modifications are simple
line segments. The downside is that the path provided by these algorithms
must be smoothed in postprocessing using splines, Bézier curves or some
other kind of optimization [19] for the sake of satisfying kinematic constraints.
In contrast, using polynomials in the process of connecting new nodes to the
tree provides a smooth path instantaneously, if the degree of polynomial is
chosen accordingly.

In the case of this thesis, the algorithm is developed to be used on an
autonomous vehicle platform. This means that the available state space
variables are position in = [m], position in y [m] and heading v [rad] € [—7,)
which is the angle that the direction of travel of the vehicle makes with the

12

3.3. Algorithm design and implementation

Algorithm 4 Modified MVP-RRT*

Input: g - initial configuration, IV - number of vertices, 7T - tree, pgoa - goal
bias, qgoar - goal configuration
Output: tree 7 with N nodes
T .init(qo);
while 7 .count_nodes() < N do
r <— RandomUniform(0, 1);
if r < pgour then
Qrand < Qgoal;
else
Qrand < Rand();
end if
Qnear Near(’T, Qrand);
Qparent < SeleCtNOde(Qnear);
dnew < RandomSample(gparent);
if PolySteer(gparent; gnew) # 0 then
cost < T .get_ cost(qparent) + (Qparent; Gnew);
T'addfedge(Qparenty Inew COSt);
T .add_node(gnew);
Qnear < Near(’T, Q’new);
for Gnear € Qnear \ Qparent do
ReWire(T7 new Qnear);
end for
end if
end while
return 7T;

x-axis. A possible look of some configuration ¢; is

¢ = (T4, Yi, Vi) (3.11)

Now the polynomial curve of a degree n can be either parametrized in a form
of

z(s) = ap + a5 + ags® + -+ - + a,s", (3.12)
y(s) = by + bys + bos® + - + by,s™, (3.13)
(3.14)

or it can be defined explicitly as y being a function of z or otherwise as x
being a function of y

y(x) = ag + a1z + agx® + - - - + apa™, (3.15)

or
z(y) = a0+ a1y + agy® + -+ + any". (3.16)

From now on, everything written about the polynomial in the form of y(x) is
valid for z(y) too. An explicit definition of a polynomial curve was chosen

13

3. Implementation

Yy
a) z(y) b) y(x)
¢) both

0

X

Figure 3.2: Example of configurations which can be connected by only one of
the polynomials in a) and b) and a configuration which can be connected by
both.

because compared to the parametric it is much easier to handle its derivatives
which are used to calculate the heading from the slope of the polynomial.
Both definitions z(y) and y(z) have to be considered because each segment
of the path has to be a graph of either function y(z) or x(y). Sometimes one
of the polynomials isn’t able to connect the two configurations, but the other
one solves it as seen in an example in Figure 3.2,

Because the RRT* algorithm uses rewiring, the polynomial must be able
to connect two configurations ¢; and g, with known headings. The lowest-
degree polynomial which can connect such configurations is the third-degree
polynomial

y(x) = ax® + bx? + cx + d. (3.17)

To get coefficients of a polynomial which connects two configurations ¢s and
qq, as seen on Figure 3.3, four linear equations with 4 variables emerge

ys = ars + ba? + cxs +d, (3.18)
Yg = a;rg + bx?] +cxy +d, (3.19)
tan(v,) =y (xs) = 3‘1373 + 2bxs + c, (3.20)
tan(vy) = o' (z4) = 3ax3 + 2bzy + c.. (3.21)

Equation 3.20 and 3.21| are different for z(y) due to the fact that its coordinate

14

3.3. Algorithm design and implementation

Yy
Yg e

Vs
(/75 PO

0 T T4

Figure 3.3: Configurations ¢, and ¢, in state space.

system has a left-handed orientation but is based on the same principle. The
slope a of a curve is given by its first derivative as well as a tangent function
of heading angle ¥

dy

a=- = tan(1)). (3.22)

In the case of x(y) m/2rad has to be either added or subtracted, before
calculating the slope of the curve from the heading angle.

While establishing a polynomial path between two nodes is a key step,
it is equally important to evaluate the curvature along the resulting path.
The formula for calculating the curvature of a two-dimensional parametrized
curve c(t) = (x(t), y(t)) is

o y// _ y/ 2"

Fom e (323)

R =

as described in [20]. Graphs of functions y(z) and x(y) are just special cases
of parametrized curve in the form

x=t, (3.24)
y=y(t), (3.25)

which is then used in Equation [3.23] With the first derivative of z being 1
and the second derivative of x being 0 the formula simplifies to

_ W 3.26
h= (1+ y2)32 (3.26)

15

3. Implementation

After clarifying how the polynomials are expressed and how to check
their curvature, it is appropriate to introduce the PolySteer method in
Algorithm |5l It requires two configurations as input and outputs a polynomial
path connecting them respecting maximum curvature constraint based on a
friction coefficient. First, it determines whether to use y(x) or x(y) expression
based on headings in gs¢qrt and ggoq configurations in the DetermineAxis
method. Thanks to the sampling function, one of the variations, either y(z)
or z(y), should be applicable almost every time.

After the correct polynomial representation is chosen, axis and both con-
figurations are passed to a GetCoefficients method. This function calculates
the coefficients of the polynomial by solving a system of four linear equations
with four variables (can be seen in Equations 3.18-3.21).

Following that, the GeneratePath method creates a sequence of configura-
tions from gstart t0 Ggoar- Additionally, it guarantees that the path’s maximum
curvature, as computed using Equation |3.26, stays below the threshold im-
posed by surface friction in Equation [3.10. It is worth mentioning, that the
velocity along the path is considered to be constant, but its value can be set
either manually, or it can be passed on as an optional input to the PolySteer
method and then used to recalculate maximum curvature accordingly.

Algorithm 5 PolySteer method used in Algorithm 4

Input: g4 - initial configuration, g4 - goal configuration, mask - surface
friction mask
Output: path P between gsiqrt and ggoar
axis < DetermineAxis(qstarts dgoal):
coef fs < GetCoefficients(gstart, ¢goal, A25);
P« GeneratePath(gstart; 4goal, TS, coef fs, mask);
return P;

B 3.3.2 Modified sampling method

With the intention of implementing polynomial paths to the original algorithm
not only the steering function must be modified, but it is also necessary to
implement a new sampling function, as the polynomial steering method needs
boundary points. Each segment of the path must begin at a specified initial
configuration and end at a specified goal configuration.

In the process of adding a new node, the initial configuration is given as
Qparent, DUt @new needs to be sampled, as can be seen in Algorithm 4. While
the sampling procedure must preserve randomness, it must also ensure that

16

3.3. Algorithm design and implementation

Yy
5/2
Emax
qpafent Emin
Yparent
0

T

Figure 3.4: Illustration of how does sampling with RandomSample work.

the random sample remains feasible using the polynomial steering function.
Generating samples that are not feasible from the randomly selected g,arent
means a huge drop-off in computational efficiency. Therefore additional
sampling method RandomSample is introduced in Algorithm [6]

It needs a configuration ¢ as an input and returns a new randomly sampled
configuration ¢pe,, which should be feasible. It is best explained with an
illustration in Figure [3.4] First, the heading from the parent is obtained
so that the initial direction of sampling is given. Then random distance ¢
from uniform distribution and random heading from normal distribution are
acquired to calculate the random sample configuration gyeq,, which is checked
if it lies in the bounds of configuration space. In the next step, the heading
of @new is retrieved from another normal distribution and assigned to g¢pew,
after that gpeq is returned.

17

3. Implementation

Algorithm 6 RandomSample method used in Algorithm |4

Input: gpurent - configuration for expansion
Output: ¢uew - new node to be added to the T
Tpparent <~ (Qparent)getfheading;
e < RandomUniform(emin, Emaz);
Ynew < RandomNormal(parent, 6);
Gnew < CreateSample(gparent, €, Ynew);
Ynew < RandomNormal (¢parent, 9/2);

(Gnew)-add__heading(¢pew)
return gpew;

18

Chapter 4

Validation and comparison to benchmark
on testing scenarios

The modified algorithm with polynomial paths and Marek’s original algorithm
are compared in Section and tested on scenarios adopted from [I] because
of the known and desired behavior of the benchmark. All scenarios are
conducted within a 4 m by 4 m square occupancy grid located directly in
front of the vehicle with = being from range [0, 4] and y from range [—2,2].
This area represents a variously classified surface with purple being drivable
and yellow being undesired for driving, e.g. grass or a sidewalk.

Then in Section 4.3, a comparison between surface masks with different
surface friction coefficient values is shown and compared with the case of
the coefficient value being constant y = 1 everywhere. The surface mask
containing information about the friction coefficient of a given surface can be
of any size and is mapped on the aforementioned area. It is worth mentioning,
that as discussed in Algorithm [5, velocity along the path is considered to be
constant and for this benchmark is set to V = 2ms~!. Goal biasing was also
utilized in 4/ and for this benchmark, it was set to a value of pyoq = 0.2.

B a1 Computational efficiency

Both algorithms were deployed on a laptop with a Ryzen 7 Pro 4750U processor
and 32 GB of RAM. The resulting comparison between Marek’s algorithm

19

4. Validation and comparison to benchmark on testing scenarios

Comparison of Algorithm Time Efficiency

—&— Poly Steer
—&— Original

0.8

o
3

o I o o
w s o (o2}
T T T T

Average Runtime (s)

o
N
T

0.1 -

O L L L L
0 500 1000 1500 2000 2500

Number of nodes of MVP-RRT*[-]

Figure 4.1: Comparison of time needed to create a tree of n nodes.

and the algorithm introduced in this thesis is shown in Figure In this
comparison, both algorithms were executed for 50 iterations each, generating
trees with 100, 200, 300, and up to 2500 nodes. Even though generating
polynomials should be computationally cheap, the result in Figure 4.1| speaks
against it. It looks like the curvature constraint affects the performance quite
heavily. During the creation of the RRT*s with over 2000 nodes, maximum
curvature is exceeded in more than 1 million cases. This is happening mostly
in the phase of rewiring in densely covered areas. In other areas, such as
small unmanned aircraft, the polynomial steering function had much worse
results, than the approach using optimization methods [2].

B a2 Testing scenarios

Based on the comparison in Section for this section, Marek’s algorithm
is creating a tree of 2500 nodes and the modified algorithm with polynomial
paths is creating a tree with 1500 nodes, as they have roughly the same time
requirements. This should put the modified algorithm at a disadvantage
because a feature of both these algorithms is that the more nodes an RRT* is
able to generate, the bigger the probability that the found solution is optimal.

There are three scenarios in which the growth of the tree and the generated
path will be compared. In each of these scenarios, the starting position is
at (0, 0) with zero heading. To take collisions into account, the underlying

20

y [m]

—2.0+ T T T T T T T 1
00 05 10 15 20 25 3.0 35 40
x [m]

(a) : Mask without dilation.

4.2. Testing scenarios

-2.0 T T T T T T T
00 05 10 15 20 25 30 35 40
x [m]

(b) : Mask with dilation.

Figure 4.2: Straight road scenario

y [m]
o
o

0 1 2 3 4
x [m]

(a) : 500 nodes, polynomial paths.

[1 2 3 4
x[m]

(b) : 500 nodes, Marek’s algorithm.

Figure 4.3: Straight road scenario, red dots - nodes, blue lines - paths, white

line - the best path

masks are dilated. The first scenario is a straight road, as seen in Figure [4.2
Even though it looks easy, the algorithms might struggle there, creating a
meandering path. The second scenario can be seen in Figure |4.6/ and it is a
90-degree turn. The last one is a zigzag turn shown in Figure |4.10al

B 4.2.1 Straight road

This scenario is the simplest one, it is a straight passage with the goal being
at (4, 0). However, keeping a straight line is a rather challenging task for
these algorithms which is seen right in the first phase of the tree growth in
Figure 4.3. Neither of them can maintain a straight line and both oscillate,
the second phase in Figure 4.4]is almost the same, but the resulting path in
Figure [4.5b| keeps a straight line when approaching the goal.

4. Validation and comparison to benchmark on testing scenarios

y [m]
o
°

s

3 1 2 3 4 : 0 1 2 3
x[m] x [m]

(a) : 1000 nodes, polynomial paths. (b) : 1000 nodes, Marek’s algorithm.

Figure 4.4: Straight road scenario, red dots - nodes, blue lines - paths, white
line - the best path

y [m]
o
o

0 1 2 3 4 0 1 2 3 4
x [m] x [m]

(a) : 1500 nodes, polynomial paths. (b) : 2500 nodes, Marek’s algorithm.

Figure 4.5: Straight road scenario, red dots - nodes, blue lines - paths, white
line - the best path

B 4.2.2 90 degree turn

This scenario tests the algorithms’ ability to make a 90-degree turn. The goal
is situated at point (2.4, -2) and the vehicle starts at (0, 0) with zero heading.
Looking at both trees in Figure 4.7, Figure [4.7a] is biasing more towards the
goal already in the early stages of the growth. However, both algorithms
improve the path in Figure 4.8/ and appear quite similar. Both algorithms
demonstrated the ability to make sharp turns.

22

4.3. Planning with adhesion coefficient constraints

y [m]

-2.0 -2.0 T T T T T
00 05 10 15 20 25 3.0 35 40 00 05 10 15 20 25 30 35 40
x [m] x [m]

(a) : Mask without dilation. (b) : Mask with dilation.

Figure 4.6: 90 degree turn scenario

y [m]

0 1 2 3 4
x [m]

(a) : 500 nodes, polynomial paths. (b) : 500 nodes, Marek’s algorithm.

Figure 4.7: 90 degree turn scenario, red dots - nodes, blue lines - paths, white
line - the best path

B 4.2.3 Zigzag turn scenario

In this scenario, the vehicle has to go around two consecutive corners. In
Figure |4.11] both of these algorithms go over an undesired surface, yet the
direction of growth looks promising. In the end, both manage to find a path
to goal and are able to come through and stay on the road.

B a3 Planning with adhesion coefficient constraints

This section will explore the effects of changes in friction between a surface
and a tire, which limit a vehicle’s ability to turn at a specific speed. Consider a
scenario where an autonomous vehicle is approaching a turn, but the presence

23

4. Validation and comparison to benchmark on testing scenarios

y [m]

x[m]

(a) : 1000 nodes, polynomial paths. (b) : 1000 nodes, Marek’s algorithm.

Figure 4.8: 90 degree turn scenario, red dots - nodes, blue lines - paths, white
line - the best path

y [m]

x [m]

(a) : 1500 nodes, polynomial paths. (b) : 2500 nodes, Marek’s algorithm.

Figure 4.9: 90 degree turn scenario, red dots - nodes, blue lines - paths, white
line - the best path

of snow requires the vehicle to respond accordingly and plan its motion. That
is where the polynomial steering function can be applied together with the
curvature constraint.

The mask with the snow is depicted in Figure 4.14 and the adhesion
coefficient of snow is us = 0.4. The road is assumed to be made of concrete
and dry concrete has an adhesion coefficient . = 0.8 [2I]. Growth of the tree
under constraints caused by snow with a lower adhesion coefficient than the
rest of the road can be seen in Figure [4.15 In Figure [4.15a] it is visible, that
the paths crossing the snowy area do not have large curvature, they are rather
straight. Then the tree grows more and finds a path with a relatively large
turning radius in Figure 4.15b. Now comparing the final path in Figure 4.16
to the path obtained with no snow in the way in Figure |4.9a; it has a larger
turning radius resulting in what seems like a much smoother path, than the
one generated for dry road. The drawback is, that the maximum curvature
restriction imposes even greater demands on the polynomial steering function

24

4.3. Planning with adhesion coefficient constraints

y [m]

—=2.0+ T T T T T T T -2.0 T T T T T T T
00 05 10 15 20 25 3.0 35 40 00 05 10 15 20 25 30 35 40
x [m] x [m]

(a) : Mask without dilation. (b) : Mask with dilation.

Figure 4.10: Zigzag turn scenario

y [m]
o
B

0 1 2 3 4 0 1 2 3 4
x [m] x [m]

(a) : 500 nodes, polynomial paths. (b) : 500 nodes, Marek’s algorithm.

Figure 4.11: Zigzag turn scenario, red dots - nodes, blue lines - paths, white
line - the best path

and sampling method respectively. Expressed in numbers, the average time
needed to construct a tree with 1500 nodes when the road is dry is 0.3 seconds.
However, once the adhesion coefficient decreases, the computational time
rises. In the case of snowy conditions with an adhesion coefficient of 0.4, the
computational time is about 0.45 seconds on average.

25

(a) : 1000 nodes, polynomial paths.

. Validation and comparison to benchmark on testing scenarios

0 1 2 3 4
x [m]

(b) : 1000 nodes, Marek’s algorithm.

Figure 4.12: Zigzag turn scenario, red dots - nodes, blue lines - paths, white

line - the best path

x[m]

(a) : 1500 nodes, polynomial paths.

x [m]

(b) : 2500 nodes, Marek’s algorithm.

Figure 4.13: Zigzag turn scenario, red dots - nodes, blue lines - paths, white

line - the best path

y [m]

00 05 1.0 15 20
x [m]

25 3.0 35 40

Figure 4.14: 90 degree turn scenario with snow (us = 0.4) in the corner.

26

4.3. Planning with adhesion coefficient constraints

y [m]

2
x[m] x [m]

(a) : 500 nodes, polynomial paths, snow (b) : 1000 nodes, polynomial paths, snow
on the road (us = 0.4). on the road (us = 0.4).

Figure 4.15: 90 degree turn scenario with snow (us = 0.4) in the corner, red
dots - nodes, blue lines - paths, white line - the best path

2.0

1.5

1.0 1

0.5 A

0.0 A

y [m]

-0.51

-1.01

-1.51

-2.0

x [m]

Figure 4.16: 90 degree turn scenario with snow (s = 0.4) in the corner.

27

28

Chapter 5

Conclusion

The goal of this thesis was to modify a path-planning algorithm for au-
tonomous vehicles with the use of polynomial paths. The vehicle kinematic
model was used to implement constraints to path generation while also
allowing to account for changes in the surface driven by the vehicle.

Despite the computational efficiency of generating polynomials connecting
two points, constraints imposed by both the vehicle itself and the driven
surface caused a massive drop-off in the proposed algorithm performance. As
a result of this, the developed algorithm was almost two times slower than its
benchmark during the creation of a tree with 1000 nodes. With the growing
number of nodes, the difference in performance of the compared algorithms
increased even more as with 2500 nodes the time needed was two and a half
times larger.

Because computational time was the limiting factor, trees generated in
the testing scenarios had roughly the same runtime of 0.3 seconds. That
resulted in a various number of nodes in each tree. Tree with polynomial
paths had only 1500 whereas the benchmark algorithm was able to generate
a tree with 2500 nodes. Despite the substantial difference in the tree size,
paths generated by both algorithms were of the same quality in the sense of
smoothness and the ability to reach the goal.

The proposed algorithm’s ability to consider a surface friction coefficient was
tested and led to promising results. A noticeable change in path generation
occurred whenever a segment of the road was covered by a surface with a lower
friction coefficient than the rest of the road. However, the curvature limitations

29

5. Conclusion
inflicted by the change in surface meant another rise in computational time.

For future work a sampling method that determines a region where it
samples by the friction coefficient might be introduced. This would possibly
help with generating fewer samples that are outside of a feasible region given
the curvature limitation.

30

Appendix A
Bibliography

M. Bohag, “Mission planning system for autonomous vehicle,” Master’s
thesis, Czech Technical University in Prague, 2022.

C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics Re-
search: The 16th International Symposium ISRR, pp. 649-666, Springer,
2016.

D. Vosahlik, J. Cech, T. Hanis, A. Konopisky, T. Rurtle, J. Svancar, and
T. Twardzik, “Self-supervised learning of camera-based drivable surface

friction,” in 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), pp. 2773-2780, IEEE, 2021.

T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic ap-
proaches in robot path planning: A survey,” Robotics and Autonomous
Systems, vol. 86, pp. 13—-28, 2016.

K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, “A survey of
path planning algorithms for mobile robots,” Vehicles, vol. 3, no. 3,
pp. 448468, 2021.

C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” in 2017 IEFEE
Intelligent Vehicles Symposium (IV), pp. 174-179, IEEE, 2017.

M. Reda, A. Onsy, A. Y. Haikal, and A. Ghanbari, “Path planning
algorithms in the autonomous driving system: A comprehensive review,”
Robotics and Autonomous Systems, vol. 174, p. 104630, 2024.

E. DIJKSTRA, “A note on two problems in connexion with graphs.,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

31

A. Bibliography

[9]

[14]

[15]

[16]

[18]

[19]

[20]
[21]

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEFE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

A. K. Guruji, H. Agarwal, and D. Parsediya, “Time-efficient a* algorithm
for robot path planning,” Procedia Technology, vol. 23, pp. 144-149, 2016.

P. Typaldos, M. Papageorgiou, and 1. Papamichail, “Optimization-
based path-planning for connected and non-connected automated vehi-
cles,” Transportation Research Part C: Emerging Technologies, vol. 134,
p. 103487, 2022.

S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEFE transactions on Robotics and Automation, vol. 12, no. 4,
pp- 566-580, 1996.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846-894, 2011.

L. I. R. Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli, and
D. Rus, “Incremental sampling-based algorithm for minimum-violation
motion planning,” in 52nd IEEE Conference on Decision and Control,
pp. 3217-3224, IEEE, 2013.

T. Wongpiromsarn, K. Slutsky, E. Frazzoli, and U. Topcu, “Minimum-
violation planning for autonomous systems: Theoretical and practical
considerations,” in 2021 American Control Conference (ACC), pp. 4866—
4872, IEEE, 2021.

R. Rajamani, Vehicle dynamics and control. Springer Science & Business
Media, 2011.

D. Schramm, M. Hiller, and R. Bardini, Vehicle Dynamics: Modeling
and Sitmulation. Springer Berlin Heidelberg, 2014.

A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C.
Peng, “Path smoothing techniques in robot navigation: State-of-the-art,
current and future challenges,” Sensors, vol. 18, no. 9, p. 3170, 2018.

E. Kreyszig, Differential geometry, vol. 11. Courier Corporation, 1991.

S. Evtukov and E. Golov, “Adhesion of car tires to the road surface
during reconstruction of road accidents,” in E3S Web of Conferences,
vol. 164, p. 03022, EDP Sciences, 2020.

32

	Introduction
	Motivation
	Thesis structure

	State of the art
	Path planning
	Planning algorithms
	Sampling-based algorithms
	RRT and its variants
	Minimum-violation planning

	Implementation
	Problem definition
	Vehicle model selection
	Algorithm design and implementation
	Modified steering method
	Modified sampling method

	Validation and comparison to benchmark on testing scenarios
	Computational efficiency
	Testing scenarios
	Straight road
	90 degree turn
	Zigzag turn scenario

	Planning with adhesion coefficient constraints

	Conclusion
	Bibliography

