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Dynamic system identification methods for fMRI

data processing

Ing. Jana Nováková

Czech Technical University in Prague, Prague, January 2013

Supervisor: Ing. Martin Hromč́ık, Ph.D.

The thesis deals with application of system identification methods for fMRI data

processing. The main goal of this thesis is to define the complex dynamic system

represented by brain areas within the context of the systems theory, and to cast

it as a task for system identification procedures. The system, as interpreted by

the systems theory, is a complex object consisting of interconnected subsystems

and components which transforms inputs into outputs and this transformation

can be characterized by a mathematical model, usually in the form of differential

equations. The key issue is to look for these models by identification methods and

to consider them as a certain alternatives for fMRI data processing to commonly

used statistical methods.

We focus especially to DCM procedure for detection of the brain intrinsic structure

and we review that from user’s point of view within Writer’s cramp study. Then

we propose application of modern multidimensional systems identification algo-

rithms of the subspace identification theory in the context of fMRI data analysis.

The methods originated in 1990s in the field of process control and identification

and yield robust linear model parameter estimates for systems with many inputs,

outputs and states. Our ultimate goal was to establish an alternative to the DCM

analysis procedure which would eliminate its main drawbacks, namely the need to

pre-define the models structure.
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Chapter 1

Introduction

1.1 Motivation

The main goal of the dissertation thesis is to formulate advanced concepts and

procedures/algorithms commonly used in process identification for fMRI research

field and to apply the system identification methods for fMRI data modeling. Hu-

man brain can be described as a system consisted of many subsystems representing

constituent brain areas which represents a dynamical system with characteristic

dynamics. By means of fMRI technique it is even possible to measure output

signals of this complex system so we know the input-output behavior of the sys-

tem and we suppose it is possible to use identification and estimation methods to

describe that by linear system with a certain accuracy. This approach could pro-

vide an important information about some crucial parameters of the brain system

and it could be a certain alternative to available statistical techniques which are

commonly used for fMRI data processing at present. The thesis reports on some

attempts to approach the problem of modeling of simple system including just

one brain area and looking for dynamics description of more complex system with

several brain areas. It also brings a comprehensive survey of related literature,

mainly out of the systems and control field.

The thesis was partly created in cooperation with Department of Neurology,

1st Faculty of Medicine, Charles University in Prague (professor Evžen Růžička,

1



2 CHAPTER 1. INTRODUCTION

Dr. Robert Jech).

Figure 1.1: Illustrative picture

1.2 Outline of thesis

The following second chapter gives the specific goals and objectives of the disser-

tation thesis. All of them are then discussed in further chapters.

The third and fourth chapters contain the basic information about fMRI tech-

nique and data processing by commonly used tool for Matlab called SPM toolbox

and they bring some details necessary to comprehension of the other chapters.

Next fifth chapter deals with the clinical study - Writer’s cramp study - com-

pleted in cooperation with Department of Neurology, 1st Faculty of Medicine,

Charles University in Prague. Our personal experience with SPM toolbox for

DCM procedure is discussed with real fMRI data giving some details, advantages

and drawbacks.

The sixth chapter deals with fMRI data modeling by system identification
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methods. It discusses the results of the modeling depending on fMRI data quality.

It also considers the subspace identification methods as an alternative to DCM

procedure for intrinsic structure detection.

In the seventh chapter, the results of the thesis are summed up and confronted

with the goals and objectives set. There are also summarized the scientific achieve-

ments of this thesis and outlines immediate opportunities for improvement and

further research.

Chapter 8 contains the publications of the authors, related directly to the

thesis, and other references used throughout the text.

1.3 State of the Art

A detailed overview and survey literature related to commonly used techniques for

fMRI data processing is in the first part of State-of-the-art. The next part brings

overview of modeling and estimation techniques used for process identification

which could be potentially useful as an alternative for fMRI data processing.

1.3.1 fMRI data processing field

fMRI is a special type of MRI technique for brain activity mapping. The basic

BOLD principle, monitoring changes in oxygenation of blood by BOLD signal

(Blood Oxygen Level Dependence), is known since 1990. The first successful study

with fMRI technique using was published by Jack W. Belliveau and col. in 1991

(Belliveau, J. W. and col., 1991).

In 1994 Karl Friston decided to develop a software for biomedical data pro-

cessing on basis of statistical analysis and he created the first version of Statis-

tical Parametric Mapping (SPM) toolbox with help from John Ashburner, Jon

Heather, Andrew Holmes and Jean-Baptiste Poline. It was defined especially for

data from Positron Emission Tomography (PET). Next improved versions, based

on the SPM’94, were extended for fMRI data, EEG data etc. The fundamental

principles and algorithms implemented in SPM toolbox for fMRI data processing

are summarized by Friston et al.(Friston, K. J. et al., 2007), briefly overview

was published by Smith (Smith, S. M., 2004). Bayesian estimation techniques
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also used in SPM toolbox are described in (Friston, K. J. et al., 2002) and

(Friston, K. J., 2002). The fundamental papers concerning fMRI data modeling

are also published by Friston and his colleagues and they are given in next sec-

tion. Here we also refer to some techniques for brain intrinsic structure detection.

The crucial point concerning this topic is work of Karl Friston (Friston, K. J.

et al., 2003) about Dynamic Casual Modeling (DCM).

1.3.2 Biophysical models

This category includes Balloon and Hemodynamic model which describe effect of

external input to result BOLD signal by input-state-output model with four state

variables, see below for details. Unknown parameters (means and variances of

their distributions) of these models are then estimated from measured data by

means of Bayesian scheme with iterative expectation maximization algorithm, see

(Friston, K. J., 2002) for details. This procedure is used in DCM as well.

1.3.2.1 Balloon and Hemodynamic model

Balloon model, demonstrated in (Buxton, R. B. and Frank, L. R., 1997) and

(Buxton, R. B. et al., 1998), is a nonlinear dynamical model with two state vari-

ables - blood volume v and deohyhemoglobin content q. It is an input-state-output

model, described by Equations 1.1 considering blood flow fin as an input signal

and BOLD signal y as an output (BOLD signal - ratio between oxyhemoglobin and

deoxyhemoglobin content). Increasing blood flow causes venous balloon inflating

and deohyhemoglobin is expelled faster. It means increasing BOLD signal. There

can be also clear small dip in BOLD signal caused by lack of oxyhemoglobin at

the beginning of the process. Then the blood flow peaks, however it relaxes slower

than deohyhemoglobin content, so we can observe small poststimulus undershoot

in BOLD signal. Balloon phenomenon can be described by following differential

state equations and output equation.
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v̇i =
1

τi

(
fin − v

1
α
i

)
q̇i =

1

τi

(
fin

E(fin, E0)

E0
− v

1
α
i

qi
vi

)
yi = V0

(
k1 (1− qi) + k2

(
1− qi

vi

)
+ k3 (1− vi)

)
E(fin, E0) = 1− (1− E0)

1
fin ,

(1.1)

where τi is time constant called Hemodynamic transit time, α is Grubb’s ex-

ponent and E0 is Resting oxygen extraction fraction. These parameters fall into

group of biophysical parameters whose mean and variance can be estimated by

Bayesian methods. So the Balloon model deals with the link between blood flow

and BOLD signal. However there exists Hemodynamic model which adds two

extra state variables and represents relationship between synaptic activity and

BOLD response.

The Hemodynamic model, see Equations 1.2 essentially combines the Balloon

model and linear model of cerebral blood flow iniciated by neuronal activity. It

includes two state variables s - vasodilatory signal and fin - blood flow, see differ-

ential equations below.

˙fin = s

ṡ = ϵu(t)− s

τs
− fin − 1

τf

(1.2)

u(t) is neuronal activity and ϵ, τs and τf are the unknown biophysical param-

eters determining dynamics of hemodynamic model. The estimation of these bio-

physical parameters is completed in (Buxton, R. B. et al., 1998), (Friston, K. J.

et al., 2000), (Friston, K. J., 2002) and (Friston, K. J. et al., 2003) and it is

also important part of DCM procedure. Simulink model including Hemodynamic

and Balloon part is depicted in Figure 1.2. Very interesting paper from estimation

and filtering point of view concerning biophysical parameters estimation was pub-

lished by Zhenghui Hu (Zhenghui, H. et al., 2009) in 2009. He used unscented

Kalman filter for nonlinear analysis of the BOLD signal.
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Figure 1.2: The nonlinear model of brain dymanics

1.3.3 Convolution models

The standard convolution model consider each voxel as linear time-invariant sys-

tem. Convolution of stimulus function with so-called HRF (Hemodynamic Re-

sponse Function) gives the predicted response which is part of GLM (General

Linear Model). These models are used in SPM toolbox in the 1st level analy-

sis, see chapter 4. Nice review about convolution models is in (Friston, K. J.

et al., 1994).

1.3.4 Brain structure detection

Some techniques, mainly statistical, are dedicated for brain structure detection.

They are often a follow-up to basic fMRI modeling procedures. Here we provide

just short overview.

Nowadays, inference about connectivity or coupling among brain areas, using

fMRI, usually rests upon some form of Dynamic Causal Modeling (DCM). DCM
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uses Bayesian techniques to identify the underlying neuronal system in terms of

coupling parameters. Crucially, one has to specify prior constraints on the sparsity

or form of the connections and then test different models (forms) of connectivity.

DCM is used to compare mathematical models with and without specific connec-

tions which entails fitting or inverting different models and then comparing their

evidence. It is a methodology which enumerates possible models first, and then

tests their validity using the conventional tools for testing statistic hypotheses

(Friston, K. J. et al., 2003). The details are mentioned in chapter 4.

In addition to DCM there exist other methods modeling effective connectivity

among brain areas. MAR (Multivariate autoregressive) models describe the re-

gional BOLD signal as a linear combination of past data vectors whose contribu-

tions are weighted by the parameter matrices, see (Harrison, L. M. et al., 2003).

The next methods are Granger causality mapping (Roebroeck, A. et al., 2005),

PPI (psychophysiological interactions) models (Friston, K. J. et al., 1997) and

ICA (Independent Component Analysis) (Calhoun, V. D. et al., 2003).

1.3.5 System identification methods

In this thesis we deals with using system identification methods for fMRI data

processing and we apply especially parametric identification methods. Very nice

overview of system identification methods and basic identification principles is

given in (Ljung, L., 1999). Some practical aspects of identification are described

in (Verhaegen, M. and Verdult, V., 2007). We decided to use subspace identi-

fication methods for modeling of fMRI data from more brain areas (MIMO system

identification) especially for their numerical stability and good quality results for

MIMO system identification. The first important starting point for our research

concerning subspace identification methods was book of Peter van Overschee and

Bart de Moor (Overschee, P. V. and Moor, B. D., 1996) from University

of Leuven who provided the important basic details and explained some princi-

ples of subspace identification. The other crucial works concerning application of

subspace identification methods were (Katayama, T., 2005), (Garnier, H. and

Liuping, W., 2008), (Faworeel, W. et al., 2000). Similarity transformation of

linear systems used for transformation of identified model to more suitable form
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is described in detail (Antsaklis, P. J. and Michel, A. N., 1997).



Chapter 2

Goals and objectives

Specific goals of this dissertation were set as follows:

1. Develop a comprehensive review of techniques and procedures used in the

fMRI area from the systems and process identification viewpoint. Focus

on the process of fMRI measurement, discuss the fMRI data structure and

present other issues concerning fMRI which could be helpful for the applica-

tion of systems identification procedures in this area.

2. Get familiar with the ”State of the Art” techniques used in fMRI data pro-

cessing, namely with Dynamic Causal Modeling (DCM). Verify them with

experimental data coming from a clinical study. Established partnership

with Department of Neurology, 1st Faculty of Medicine, Charles University

in Prague is supposed to be exploited. Discuss the results and identify ad-

vantages and drawbacks of the standard fMRI modeling techniques.

3. Develop alternatives to fMRI data processing procedures, namely to Dy-

namic Causal Modeling, based on process identification and estimation tech-

niques. Demonstrate them with simulated and experimental fMRI data.

9
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Chapter 3

fMRI overview

This chapter brings the overview of fundamental principles and characteristics of

fMRI which is a special type of MRI technique. It serves as a necessary background

for fMRI data processing and for better insight to next chapters.

3.1 Introduction

fMRI is one of several functional mapping methods (in addition to EEG - Elec-

troencephalography, MEG - Magnetoencephalography and PET - Positron Emis-

sion Tomography technique, see (Bailey, D. L. et al., 2005), (Hämäläinen, M.

et al., 1993) and (Cohen, D. and Halgren, E., 2004) for details) which no-

tice physiological changes related to brain activity. fMRI is able to detect brain

area activity resulting from cognitive, motoric or another stimulation and it can

give high quality visualization of brain functions. It therefore uses particularly

in neurophysiological research, within some neurosurgical intervention and also in

psychology (Smith, S. M., 2004). There are two fundamental principles of fMRI

measure - perfusion fMRI and more often used BOLD fMRI, first demonstrated by

Seiji Ogawa (Ogawa, S. et al., 1990). The perfusion fMRI provides an absolute

measure of blood flow whereas the second method BOLD fMRI (Blood Oxygen

Level Dependent) uses the ratio between oxygen and deoxygen blood. fMRI mea-

surement is then set of BOLD signals representing brain activity in some brain

11
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areas. A dimension of mapped brain area is defined by technical equipment. It is

however possible to declare that fMRI features excellent spatial resolution (down

to 1x1x1mm) but quite weak time resolution (in the order of seconds) which is suf-

ficient for functional brain mapping in neurophysiological research, unfortunately

it can be restricting for some techniques used in process identification.

3.2 MRI principle

MRI principles and specifications are described in (Geuns, R. J. et al., 1999),

(Hornak, J. P., 2008). Here we provide just short report of MRI principle.

The basic MRI principle is based on changes of magnetic property of hydrogen

atoms (especially protons and their spin characteristics) with significant magnetic

moment. In external magnetic field magnetic moments of atoms are in one of

two possible positions - parallel (low energy state) or anti-parallel (high energy

state) with the direction of external magnetic field. In addition to this aligning

all protons precess with some frequency called Larmor which is determined by

strength of magnetic field and gyromagnetic ratio (specified for each type of nu-

cleus). The result magnetization M0 (consider many protons in observed tissue)

Figure 3.1: External magnetic field - adopted from (Masaryk Univer-

sity Brno, 2012)

is oriented with external magnetic field (in z-axis direction) which means it is not

possible to measure that see Figure 3.1. So it is necessary to tip result magnetiza-

tion into XY plane where receiver coil can induced voltage corresponding result

magnetization. It can be reached by using RF pulses with the same frequency

as Larmor frequency which cause that individual spins begin to precess in phase.
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Some spins in lower energy state also absorb energy (it is possible thanks to equal-

ity of the Larmor frequency and frequency of RF pulses) and resonance of spins

comes up. Due to this phenomenon the technique is called magnetic resonance. It

induces changing value of magnetization vector in z-axis direction, see Figure 3.2.

Then result magnetization vector performs rotation in XY plane with Larmor

frequency and coil induces voltage as in Figure 3.3. With RF pulse finishing the

process called relaxation starts - it means nuclei spins return to original position

and magnetization vector tips back to Z plane. It is possible to define two time

relaxation constants T1 and T2. T1 is time when result magnetization Mz reaches

63% of original amplitude. T2 is defined as the time when Mxy falls to 37% of its

maximum value, see (Masaryk University Brno, 2012) for details.

Figure 3.2: The change of result magnetization due to RF pulse absorption -

adopted from (Masaryk University Brno, 2012)

Figure 3.3: Tipping of result magnetization vector due to RF pulse absorption

- adopted from (Masaryk University Brno, 2012)
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3.3 BOLD signal

fMRI is a special type of MRI measurement with external stimulation, for exam-

ple fingers motion, pictures projection, electrical stimulation etc. The most used

principle of fMRI measurement is BOLD which uses the fact that the oxygen is

transported by hemoglobin and therefore the ratio between oxygen and deoxygen

blood changing with on-off stimulation signal in active areas is measured. It is

based on different magnetic features of oxyhemoglobin (diamagnetic) with little

effect to magnetic field and deoxyhemoglobin (paramagnetic) which causes inho-

mogeneity in nearby magnetic field (Miyapuram, K. P., 2008).

So measured BOLD signals bring information about physiological changes in some

brain areas and we can observe so-called hemodynamic responses in BOLD sig-

nals measured in active areas. In an simplified way it is possible to describe the

basic phenomenon thus, see Figure 3.4. With brain (neural) activity, utilization

of oxygen is rapidly increased in active brain area (brain tissue) and it causes

initial very small negative undershoot (oxygen consumption is so large so ratio

oxygen/deoxygen decreases). Then blood flow is increased in active area which

causes increasing of oxyhemoglobin, inhomogeneities in magnetic fields and more

intensive BOLD signal. After neural activity (external input or stimuli) finishing,

blood flow and oxygen/deoxygen ratio decrease to original value. But the change

of blood flow is slower so we can also observe negative undershoot at the end of

signal.

3.4 fMRI measurement and data structure

This section brings some information related to some specific features and termi-

nology concerning fMRI BOLD measure and fMRI data structure.

Time repetition is interval between measured images. We can also call it as sam-

pling period. For each fMRI measurement it is necessary to design appropriate

input/stimuli signal, so-called fMRI experiment. The crucial point is anyway to

ensure different BOLD value (level) for active and passive part because of detec-

tion of hemodynamic response in set of measured BOLD signals. So for successful
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Figure 3.4: Characteristic shape of a hemodynamic response - adopted from

(of Mathematics and Statistics, 2012)

fMRI measurement the experiment design is very important part. Here is a certain

analogy with process identification where sufficient input/exciting signal guaran-

tees a good starting point for successful identification process. So there exist two

basic types of fMRI experiments:

• Epoch/Block design - Stimulation events are put into blocks which is ben-

eficial to obtain high intensity of BOLD signal for active segment. It is

useful for statistical analysis but it is not possible to detect accurate shape

of hemodynamic response, see Figure 3.5.

• Event design - It is able to ascertain the correct shape of hemodynamic

response by short stimulation events with sufficient distance for damping of

previous response, see Figure 3.6.

We can also classify the experiment design according to physiological brain

function. It is possible to study senzomotoric functions, emotion, memory, speech

action, visual and perception or cognitive functions.
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Figure 3.5: Block design - adopted from (Radiopaedia.org, 2012)

Figure 3.6: Event-related design - adopted from (Masaryk University Brno,

2012)

The result of fMRI measurement is fMRI data with special structure. fMRI

data set is sequence of images, so-called scans, corresponding with time axis. Each

scan maps brain activity in one time point and it is divided into several slices

which are usually characterized by good spatial resolution. Each slice is comprised

from voxels representing small brain area/tissue. All terms concerning fMRI data

structure are clarified in the Figure 3.7. In fact we consider each scan (image)

as a 3D matrix representing BOLD values measured in many brain areas and set
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Figure 3.7: fMRI data structure

of such matrices measured in different time points forms BOLD time series for

brain areas. Consequently the result of one fMRI experiment is time sequence of

three-dimensional matrices representing time progress of brain activity (it means

changes of BOLD signals in time) in particular brain areas. We can say that from

process identification point of view the problem of spatial localization and mod-

eling of a response to a specific stimulation (visual, acoustic, electrical) is cast as

an analysis of the response of a 3D array (cube) of dynamic systems with the goal

to localize those SISO systems that ”resemble” some model best.

3.5 fMRI features

We can state that fMRI is very useful technique of brain function imaging. It has

some advantages in comparison with EEG, MEG and PET. EEG and MEG have

relatively poor spatial localization and it is also necessary to use high number of

electrodes. PET technique is invasive imaging method and it presents radiation

load. To the contrary fMRI is noninvasive, with high spatial and satisfactory

temporal resolution and number of hospitals with adequate fMRI equipment is

increased. However we can say that fMRI technique has also some constraints

during fMRI data processing primarily. It also poses higher financial claims. Fur-

ther constraints are insufficient knowledge of functional brain organization which

can be very restricting for interpretation of results.
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Chapter 4

SPM toolbox

4.1 Introduction

The SPM toolbox is a noncommercial Matlab package implementing statistical

tools for neuroimaging data processing (fMRI, PET, EEG, MEG). SPM toolbox

is developed at the Department of Imaging Neuroscience, University College Lon-

don (SPM toolbox, 2012) in research group of Karl Friston, see Figure 4.1 with

logotypes of all toolbox versions. The main principle of SPM tool is creation

of continuous statistical processes to test hypotheses about regionally specific ef-

fects (Friston, K. J. et al., 1991). The most often used statistical analysis of

fMRI data is called voxel-by-voxel analysis because it is based on testing signal

of each scanned voxel (elementary capacity of scanned brain, see previous chapter

for details about data structure). This analysis usually compares measured BOLD

signal with experimental paradigm which is defined by fMRI experiment, see pre-

vious chapter - section 3.4, and predefined characteristic shape of hemodynamic

response. The result of the testing is a statistical map with marking of active

brain areas (represented by voxel or cluster of voxels).

One of the crucial applications of the SPM toolbox is the first level analysis

consisting in the detection of active brain areas for one patient. The second level

analysis, also covered by the SPM toolbox, is related to processing of fMRI data

across the whole patients group. Besides these functions, the toolbox offers tools

19
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Figure 4.1: SPM toolbox logotypes - adopted from (SPM toolbox, 2012)

for DCM analysis (intrinsic structure detection), such as the parameters estimation

routines, tools for comparison of resulting models, and a function for averaging

models across the whole patients group. In addition there are also implemented

some preprocessing procedures preparing correct data for next processing, see

Figure 4.2 with GUI of SPM8 characterizing all basic functions of the toolbox.

4.2 fMRI data processing steps

4.2.1 Preprocessing steps

The first level of fMRI data analysis is usually data preprocessing - preparation of

data for statistical analysis, especially reduction of artifacts and noise and normal-

ization for future comparison. Below described routines of temporal and spatial

processing are implemented in SPM toolbox. However, it is not necessary to use all

of them, it depends on following data processing, see (SPM toolbox manual, 2012)

and (Masaryk University Brno, 2012) for details.
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Figure 4.2: GUI of SPM8 toolbox - adopted from (SPM toolbox, 2012)

4.2.1.1 Temporal processing

• Slice timing - Each scan is usually acquired as a sequence of some slices

which however are not taken in the same time point. This routine shifts the

data (each voxel’s time series) as if whole scan was acquired at exactly the

same time. It is accomplished by a simple shift of the phase of the sines that

make up signal (SPM toolbox manual, 2012).

4.2.1.2 Spatial processing

• Realign - Each measurement is affected by patient’s undesirable artifacts

- spontaneous head motion (heartbeat, respiration). Realigning corrects

movement artifacts in time-series of images using least squares algorithm

and spatial transformation (translation and rotation), see Figure 4.3. One

scan is appointed as a reference to which the rest of scans are realigned.
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Figure 4.3: Realign procedure - created in SPM toolbox

• Normalize - Sometimes it is useful to compare results of some subjects mutu-

ally or to average images (signals) across subjects. This procedure transforms

all scans into standardized space defined by template images (for instance

commonly used Talairach standard space) and it uses the affine transforma-

tion and nonlinear deformation for that.

• Smooth - This routine is implemented for noise suppression by filtration of

high spatial frequencies using Gaussian kernel with specified width.

• BOLD intensity normalization - It normalizes BOLD time-series intensity

which can vary during individual acquisitions and it could cause incorrect

detection of active voxels.
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The preprocessing steps are very important for later statistical analysis and they

usually increase the statistical validity. However it is necessary to think over which

steps and parameters are suitable to apply.

4.2.2 First level analysis

After preprocessing steps the fMRI data is ready for statistical analysis. Brain

activity is mapped by so-called Statistical Parametric Mapping with detection of

voxels activated by stimulation. This procedure is called the first level analysis and

it is usually voxel-by-voxel principle. The methods of this one-dimensional analysis

include linear regression, t-tests, correlation, ANOVA technique etc. Almost all

of them require some model of assumed BOLD signal which can be created as

convolution of fMRI experimental design and predefined hemodynamic response

shape. All these statistical procedures are based on GLM - General Linear Model

- specifying conditions by design matrix corresponding with experimental design.

GLM expresses BOLD signal as a linear combination of explanatory variables X

and error term ϵ, see Equation 4.1, in fact it is linear regression - special case of

GLM. This can be considered in matrix form as

Y = Xβ + ϵ, (4.1)

where X is design matrix and β parameter to estimated. It can be solved by least

squares algorithm, see Equation 4.2.

β = (XTX)−1XTY (4.2)

The design matrix is constructed by convolution of temporal experimental

design and basis function defined by canonical hemodynamic response function

(HRF). The final result is a statistical map with localization of brain neural activ-

ity resulting from appropriate statistical inferences testing (t-statistic, z-statistic).

The Figure 4.4 presents one result of the first level analysis. In this case the

stimulation was left hand motion. The activated voxels are colorfully marked.

Details of the first level analysis are mentioned in (Boynton, G. et al., 1996)

(Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D.

and Frackowiak, R. S. J., 1995) (Friston, K. J., Holmes, A. P., Wors-
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ley, K. J., Poline, J. B., Frith, C. D. and Frackowiak, R. S. J., 1995).

Figure 4.4: The first level analysis result - active areas are marked - adopted

from Dr. Robert Jech, Department of Neurology, 1st Faculty of

Medicine, Charles University in Prague
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4.2.3 Second level analysis

By the second level analysis we can generalize our findings beyond subjects we

have studied. There exist statistical methods for combining results across the sub-

jects. The result is statistical map as well and it is valid for all patients from

investigated group. These methods include ”fixed-effects” and ”random-effects”

procedures (Holmes, A. and Friston, K., 1998). Fixed-effects allow inferences

to be made about the particular subject in the experiment, while random-effects

allows inferences to be made about the population. Random effects analysis is

considered more appropriate for fMRI research because it deals with making in-

ferences on the population.

4.3 DCM analysis

DCM (Dynamic Causal Modeling) is a statistical technique for detection of inter-

connections among selected brain areas (Friston, K. J. et al., 2003), (Kiebel, S. J.

et al., 2006), (Penny, W. D. et al., 2004), (Ethofer, T. et al., 2005). DCM as-

sumes a bilinear model in the form Equation 4.3 and the interconnections among

brain areas are qualitatively and quantitatively characterized by its parameters

(note the presence of so-called modulatory inputs that modulate interconnections

directly).

ẋ(t) = (A+

M∑
j=1

uj(t)B
j
m)x(t) +Bu(t)

y(t) = Cx(t) +Du(t),

(4.3)

whereA is effective connectivity matrix for interconnections among areas,Bj is

effective connectivity matrix encoding the changes in intrinsic connections induced

by jth modulatory input uj , and matrix B representing strength of extrinsic in-

puts leading directly to brain areas, see Figure 4.5. DCM procedure then combines

the bilinear neuronal model Equation 4.3 of interacting areas with the biophysical

model by Friston, based on principles of the Hemodynamic model and Balloon
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model, detailed mentioned in State-of-the-art, which describes how the unmea-

sured neuronal activity in a given brain area is transformed into the hemodynamic

responses measured by the fMRI. The input signal is generally a deterministic

on-off function representing stimulation process (stimuli such as finger movement

commands, projection of emotional pictures).

A1 A2

A3
external input

external input

modulatory input

Figure 4.5: Brain areas A1, A2, A3, intrinsic connections among them and

two types of input signals - a representative of a predefined model

The first two steps of DCM analysis are selection of several brain areas, de-

scribed by coordinates of voxel (volumetric pixel) cluster, and definition of infer-

ences (hypotheses) about the area interactions which will be confronted with real

fMRI data in the statistical hypothesis-testing manner. The hypotheses usually

result from clinical experience and empirical knowledge of a neurologist, trained

in functional brain organization. The necessity to rely on an expert in this step

can be regarded as a drawback of this method and full enumeration of all possible

interaction structures is combinatorially prohibitive. The final step - testing sta-

tistical hypotheses - can be computationally very demanding, it can easily take up

to a few days on a regular PC. DCM procedure advantages and drawbacks from

user’s point of view will be discussed in chapter concerning writer’s cramp study,

see chapter 5.

The DCM models are estimated using Bayesian estimators. The inferences about

connections are made using the posterior or conditional density (Friston, K. J.

et al., 2003). The DCM result is the likeliest model accompanied by strength

values of significant connections, see Figure 4.6.
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Figure 4.6: Result of DCM procedure - created in SPM toolbox
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4.4 SPM toolbox useful tips

4.4.1 Useful functions

I would like to mention two important functions of SPM toolbox which are able

to import fMRI data to Matlab workspace. By spm vol.m and spm read vols.m

we can obtain three-dimensional array characterizing one scan of brain - BOLD

values measured in same time point.

4.4.2 DCM data simulator

The additional part of SPM toolbox is DCM data simulator which generates the

fMRI DCM data according to our requirements. The simulator is started by means

of function named spm dcm create. The function is able to generates BOLD sig-

nals of selected brain areas with required parameters such as the signal-to-noise

ratio, the number of areas, interscan interval (TR, sampling period in principle),

number of scans (samples), number of conditions (stimuli inputs) and the vectors

of onsets and durations of input signals (block design features in fact). It is also

necessary to define the connectivity matrix A, the input matrix C and the modu-

latory matrix B, see previous section to bilinear form used for multiple area brain

system modeling.

However we have to carefully consider the data generation process because of dis-

crepancies between nonlinear model used in SPM toolbox simulator and nonlinear

models published in crucial papers concerning DCM (Stephan, K. E. et al., 2004)

(Friston, K. J., 2002) (Friston, K. J. et al., 2000). They differ slightly not only

in constants but also in differential equations describing hemodynamic response

process.
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Writer’s cramp study

This chapter summarizes the Writer’s cramp study - project of the Department of

Neurology, 1st Faculty of Medicine, Charles University in Prague. We participated

in the study by DCM analysis of fMRI data acquired during second phase of the

project - Advanced study. The final result of the project was joint paper published

in NeuroEndocrinology Letters (Havrankova, P. et al., 2010).

5.1 Introduction

The writer’s cramp is a common type of focal dystonia which manifests by invol-

untary spasm of the hand and forearm muscles (Havrankova, P. et al., 2010).

The conventional therapy is the botulotoxin medication, sometimes without clini-

cal effect unfortunately. The next alternative for some patients is an experimental

therapy by rTMS - repetitive Transcranial Magnetic Stimulation. rTMS applies

the sequence of magnetic pulses by coil focused on defined cortex area causing

symptoms suppression. Within the writer’s cramp study, we processed fMRI data

sets measured before and after rTMS therapy for comparison. We completed DCM

analysis as one part of an objective assessment of rTMS therapy effect.

29
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5.2 Materials and methods

12 patients (8 women and 4 men) with right hand writer’s cramp were included

in the study. The duration of their disorder was 2-11 years. Each patient under-

went two five-day blocks of rTMS, the first was real rTMS, the second was sham

(placebo) rTMS. The rTMS took 30 minutes every day. The fMRI measurement

was carried out before the therapy began (the first day) and after the therapy was

finished (the fifth day).

Figure 5.1: Magnetic coil location - adopted from Wikipedia

rTMS was done by 70-mm double coil connected to stimulator. One pulse

set contained 1800 pulses. The coil was focused on sulcus postcentralis, see Fig-

ure 5.1. fMRI procedure was related to the task with active movement of right

hand fingers. The patients were required to perform about ten movements during

6 minutes, each movement with 3 seconds duration. The movements were captured

by the video-fMRI monitoring (Jech, R. et al., 2008). As a result, two vectors

were obtained for each patients and they contained the onsets (start instants)

and durations of movements. The vectors served for fMRI analysis (the detection

of statistical significant areas with hemodynamic response) in SPM toolbox ver.5

(SPM toolbox, 2012). All related details on the fMRI procedure and fMRI analysis

are described in (Jech, R. et al., 2008).
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5.3 DCM

The main task of DCM analysis was to quantitatively approve an effect of the

rTMS therapy. All the patients passed clinical examination before and after the

therapy. The clinical examination consisted in a subjective assessment by a patient

himself, and objective assessments by raters, for instance evaluation of cribbing

of text for two minutes see Figure 5.2. The subjective and objective assessments

showed significant improvement of writer’s cramp symptoms for 9 patients who

finished the therapy. For detailed results concerning all assessment, in addition to

DCM analysis, see (Havrankova, P. et al., 2010).

The DCM analysis was called to confirm these results. 9 patients finished the

rTMS therapy and their fMRI data was put subject to the overall processing.

DCM analysis was created only for fMRI data related to real stimulation and

measured before and after the therapy. The data was processed separately and

then particular connections and their strength were compared. Next to the results

themselves, our goal was also to describe experience with the DCM tools of SPM

ver.5 for Matlab (SPM toolbox, 2012), based on a specific medical experiment data

processing.

Figure 5.2: The handwriting of patient 3 and patient 4 before rTMS (V1),

immediately after the last session of rTMS (V2), and one week

later (V3) - adopted from (Havrankova, P. et al., 2010)
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5.3.1 Models

Figure 5.3: Models for DCM procedure

The first step of DCM analysis was the definition of models which were con-

fronted with real data. The definition usually results from clinical experience and

from knowledge in functional brain organization. Originally, models which differed

in number of connections for data measured before and after the therapy were con-

sidered for these reasons. The reasoning behind was a presumption that rTMS

could have some influence on functional brain organization and more connections

could be detected for data measured after therapy. The problem here was however

that the results of DCM analysis for data measured before and data measured

after are not easily and directly comparable in this case. Since the DCM approach

is based on hypotheses testing, one must ensure the same structure - all connec-

tions considered - for both the ”before” and ”after” presumed models. Based on

this observation a new set of 11 models depicted in the Figure 5.3 was created.
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Table 5.1: Coordinate sets of brain areas

x y z

LS1a -44 -42 60

LS1b -32 -48 60

LS2 -46 -52 42

LSM1 -38 -30 58

RSM1 26 -36 64

SMA 4 -22 68

All the models featured equal number of areas for data measured before and after

the therapy and contained just extrinsic input namely into LS1, LSM1, and SMA

area - input representing right hand fingers movement and extrinsic input for coil

position (there was not any modulatory input).

5.3.2 Areas

The next stage of DCM analysis was selection of substantial brain areas. Also in

this case the clinical experience helps. But the other clue can be fMRI analysis

result with significant active areas detection.

Here were selected five brain areas with significant activity related to the re-

quired task (finger movement), based on the second level analysis as provided

by (SPM toolbox, 2012). In the case of LS1, stimulated directly by the rTMS coil,

the question was however whether to apply the same second level analysis result

for the coordinates estimation, or whether to define the coordinates explicitly as

the coil target. In terms of medical experience it seems more logical to consider

location of the coil as the stimulation area. The DCM results with this particu-

lar coordinate set also include more significant connections as well which proves

this assumption. The Table 5.1 summarizes all coordinate sets and the Figure 5.4

shows the second level analysis result as a tool for their definition.
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Figure 5.4: The second level analysis result - marked brain areas for whole

group of patients - created in SPM toolbox

5.3.3 ”Combinatorial explosion”

DCM analysis was created for 9 patients. It meant to get 198 models in total. This

number is however only for data measured before rTMS therapy. The result set
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doubles by DCM analysis for the data measured after rTMS therapy. The DCM

analysis of one model is rather time-consuming and the computation for the whole

set of models can easily take a few days. The problem could be solved much more

effectively in principle by using some alternative dynamic system identification

methods which would detect significant connections without the need to predefine

models structure. Such methods are unfortunately not available now in the neu-

roimaging community. We try to summarize the first results of the approach in

next chapter.

5.3.4 DCM drawbacks

DCM is undoubtedly an established and commonly used method for identification

of functional brain organization from fMRI data. DCM processing however can

have some drawbacks from the user’s point of view. They are discussed here and

based on our experience with fMRI data processing within writer’s cramp study.

The predefinition of models is a complication not only for a user who does not

have deep experience with fMRI, even educated experts have sometimes problems

to establish the most appropriate model structure. As a result, a tedious trial-

and-error loop must be performed to arrive at acceptable findings.

The DCM analysis of one model itself takes some time and the computation for a

complete set of models can take a few days easily. Sometimes there is a specific

additional uncertainty such as an alternative selection of a brain area coordinates

which leads to additional structures to be considered. In the case of analysis of a

therapy influence all these demands were doubled in principle (by data received

after the therapy and their processing). These troubles could be considerably re-

duced if an alternative identification procedure were used in place of DCM that

would automatically detect the internal structure of the most appropriate dynam-

ical model.
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5.4 Results

5.4.1 Individual assessment

The data set resulting from the medical experiment described in section 5.2 was

restricted for practical reasons in terms of number of patients (9 in total). Conse-

quently we will have some problems with statistical processing.

On the other hand, the DCM analysis results for particular patients can be quali-

tatively analyzed easily to reveal some basic rules appearing in all models for one

particular patient, or appearing across the whole patient group for one particular

model. In our case there was for instance the connection LS1a → LSM1 included

in majority of models. Interestingly, the strengths of this connection for a partic-

ular patient across the whole set of models were roughly equal. This observation

can serve as a kind of ”cross-check” when deducing about a particular connection

significance.

5.4.2 Statistical processing: T test

The individual assessment results were to be statistically processed. Selected sta-

tistical tests were applied to connection strength (for particular connections and

models, over all patients), comparing ”before” and ”after” numbers. The test was

supposed to prove or disprove the hypothesis that the strength of a given connec-

tion in a given model had changed significantly.

The one-tailed paired T test was called for first. However, severe difficulties were

issued, for two main reasons. First, there was the low number of patients in combi-

nation with measured data, corrupted by noise and other parasitic effects. Second,

the normal distribution assumption of involved data was also questionable. Mean-

ingful results were achieved only on high significance levels (say 20%). For typically

used significance level 5% the hypothesis cannot be confirmed unfortunately. Two

tables are related to this discussion. The Table 5.2 shows connection strength from

LS1a area to RSM1 area for the whole patient group. The T test result executed on

the one group of elements is in the Table 5.3. The fifth row determines one-tailed

probability of t statistic and this value overreaches the significance level (5%).
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Table 5.2: The strength of connection from LS1a to RSM1 across the whole

patient group

LS1a - RSM1 - before LS1a - RSM1 - after

-0.0164 -0.0350

-0.0026 0.2167

0.3951 0.0047

0.1519 0.0129

0.6320 0.6242

0.0642 -0.0539

0.0216 0.1821

0.2649 0.4547

0.2469 -0.0256

Table 5.3: T test result

Set 1 Set 2

Mean 0.1953 0.1533

Variance 0.0464 0.0587

t stat 0.5831

P (T ≤ t) (1) 0.2829

t critical (1) 1.8595



38 CHAPTER 5. WRITER’S CRAMP STUDY

Table 5.4: Significant connections across the whole patient group - LS1 is

location of the coil

connection t statistic probability

LS1a-SMA - model 2 0.0381

LS1a-RSM1 - model 6 0.0109

LS1a-LS2 - model 6 0.0109

LS1a-SMA - model6 0.0858

RSM1-LS1a - model 6 0.0663

LS2-LS1a - model 6 0.0284

5.4.3 Statistical processing: Non-parametric statistical tests

The drawbacks of the parametric T-test discussed above can be eliminated by

calling alternative non-parametric statistical tests. The Wilcoxon test and Sign

test were applied, leading to similar conclusions. Only Wilcoxon test results are

therefore discussed further.

The non-parametric tests show significant changes of six connections. The positive

result is that five connections of those six are in the (reciprocal) model number 6,

see section 5.4.4 for details. The non-parametric test results are summarized in

Table 5.4. Four connections appear as significant (probability of t-statistic smaller

than significance level 5% (three of them in model No. 6), two others are slightly

above.

5.4.4 Results: Model 6

According to the nonparametric statistical test, the model number 6 features most

significant changes in connection strengths over all involved patients. The model is

given in the Figure 5.5. The model has only reciprocal connections. For almost all

patients there is a remarkable reduction of strength of connections LS1 → RSM1,

LS1 → LS2, LS1 → SMA. This conclusion can be interpreted as a certain form

of functional reorganization due to the rTMS therapy.
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Figure 5.5: The model containing five significant connections

5.5 Conclusion

The chapter deals with DCM analysis of fMRI data measured on patients suffering

from writer’s cramp and subjected to an rTMS therapy. The main result is iden-

tification of a DCM model structure based on a non-parametric test performed on

a reduced measured data set. Practical experience with DCM tools of the SPM

toolbox is also discussed. The detailed description of the writer’s cramp study

from medical point of view and summary of all results (objective and subjective

assessment) are given in (Havrankova, P. et al., 2010).
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Chapter 6

System identification and

fMRI data processing

6.1 Introduction

The main goal of this section is to define the complex dynamic system represented

by brain areas within the context of the systems theory, and to cast it as a task

for system identification. The system, as interpreted by the systems theory, is

a complex object consisting of interconnected subsystems and components which

transforms inputs into outputs and this transformation can be characterized by a

mathematical model, usually in the form of differential equations. The input stimu-

lus signals that enter into the brain system reflect the particular fMRI neurological

experiment, and can be modeled as rectangular signals (on/off or active/inactive)

as they correspond to hand motion, pictures projection, electrical stimulation etc.

The measured outputs are BOLD signals which are usually visualized as volumetric

3D plots. They can also be viewed as rectangular for which at every time instance

the measured value assumes a shape of a 3-dimensional array (cube). Hence the

input-output behavior of the brain system can be measured experimentally. How-

ever the brain system is characterized by specific intrinsic structure comprised of

two different parts called neurodynamics and hemodynamics, see Figure 6.1. The

41
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input (stimulus) signals enter the faster dynamics (neurodynamics) representing

the intrinsic interconnections among brain areas. Neurodynamics could be mod-

eled by several first order systems, each corresponding to a given brain area and

their intrinsic connections as is done by DCM in fact (Friston, K. J. et al., 2003).

The neuronal response of every brain area is only observed in the fMRI data after

passing through the slower hemodynamics part, which can be modeled as a simple

system (filter) for each brain area separately. In contrast to the nonlinear balloon

model used within DCM, higher order hemodynamic linear filters (at least order

two) are necessary to capture the oscillatory behavior as shown in the next section

concerning subspace identification methods used for fMRI data fitting.

So the task of brain behavior modeling can be formulated as a system identifica-

tion problem. We can therefore apply classical black-box identification methods,

commonly used in diverse industries for example in (Gannot, S. and Moo-

nen, M., 2003), (Garnier, H. and Liuping, W., 2008), (Rice, J. K. and

Verhaegen, M., 2008), (Yao, Y. and Gao, F., 2008), (Ljung, L., 1999),

(Verhaegen, M. and Verdult, V., 2007), for fMRI data modeling and to ob-

serve if the fitting is sufficient. Further we can formulate more complex task of

detection of intrinsic structure which can lead to a certain alternative to DCM.

Neurodynamics Hemodynamics
Stimuli BOLD

Figure 6.1: Brain dynamics system structure - two types of dynamics, at first

faster dynamics, slower dynamics forms output BOLD signal in

each activated brain area

This part reports on early attempts to approach the problem of modeling of the

neural response of the human brain as a system identification and estimation task.

The parametric identification method and simulated fMRI data are used for the

hemodynamic response modeling. Our first steps are quite standard for control

community: assuming linearity (and justifying it), finding a model of the response

using some parametric identification techniques (ARX, OE, subspace methods...)

and testing agreement between this model and the input output data for whole

”cube of systems” - systems covering more brain areas.
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The next step is modeling of MIMO (multiple input multiple output) systems

including the intrinsic structure as DCM done that. Nowadays, inference about

connectivity or coupling among brain areas, using fMRI, usually rests upon some

form of Dynamic Causal Modeling (DCM). DCM uses Bayesian techniques to iden-

tify the underlying neuronal system in terms of coupling parameters. Crucially,

one has to specify prior constraints on the sparsity or form of the connections and

then test different models (forms) of connectivity. We work on a more efficient,

direct approach. DCM is used to compare mathematical models with and without

specific connections which entails fitting or inverting different models and then

comparing their evidence. It is a methodology which enumerates possible models

first, and then tests their validity using the conventional tools for testing statistic

hypotheses (Friston, K. J. et al., 2003). The identification can take a consider-

able amount of time, especially when one compares large numbers of models. The

main contribution of the part is to estimate the full connectivity of any DCM (un-

der linear and first order assumptions) in a way that is extremely efficient. This

may be especially useful in the context of DCM, because recent developments in

model comparison allow one to evaluate the evidence of reduced models (in which

some connections are omitted) given the estimates of a full model (Friston, K. J.

et al., 2010).

6.2 MIMO identification - fMRI data fitting

This section summarizes first results of subspace identification experiments for

fMRI simulated data. We focused on subspace N4SID identification methods im-

plemented in System Identification Toolbox for Matlab (version 2007b). Subspace

methods combine results of systems theory, geometry and numerical linear alge-

bra (Katayama, T., 2005) (Faworeel, W. et al., 2000). They seem suitable

for our task especially for their fine numerical reliability for MIMO system iden-

tification. In addition, they give rise to models in the state-space form directly.

The simulated data sets differ in the signal-to-noise ratio factor (SNR) and in

number of samples. Other parameters are the number of areas, interscan inter-

val, and the number of conditions, see (SPM toolbox, 2012) for details. The data

parameters are presented in the tables below for particular cases. Related tables
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Table 6.1: The simulated data parameters - case 1,2

SNR areas TR scans cond.

50 3 1.7 256 1

onsets 20 45 113 154 203 240

duration 3 4 3 3 2 3

show the vector of onsets and vector of duration (definition of inputs, stimula-

tion signal). The last piece of information for the SPM simulator is the matrix

A defining the strength of connections, and the input matrix C. The results

for particular parameters choices are the identified matrix A acquired from SPM

toolbox by DCM estimation and then the (linear dynamic) model of simulated

data acquired from the Identification Toolbox by help of subspace identification

method (Identification toolbox, 2012).

6.2.1 Case 1

This example tests the quality of identification for simulated data with ”good”

parameters, see BOLD signals in Figure 6.2. The data set has enough samples

and the signal-to-noise ratio is high, see Table 6.1. The input data is defined by

vectors and the matrix of connection strength as well as the input matrix are also

presented below in Equation 6.1.

A =


−1 0 0

1 −1 1

2 0 −1

 C =


1

0

0

 (6.1)

The DCM procedure gives fairly good results in terms of the identified matrix

A which corresponds to the simulation model’s A, see Equation 6.2 and 6.1 for

comparison. The identification toolbox also proves useful here and fits successfully

the simulated data by the identified linear model of order five, see Figure 6.3.

We also bring the transfer function of model identified by subspace identification
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Figure 6.2: The simulated data for three areas - case 1 - created in SPM

toolbox
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method in zero-pole-gain format, see Equation 6.3.

A =


−1 0 0

0.872 −1 1.0716

1.9955 0 −1

 (6.2)

0 50 100 150 200 250 300 350 400 450
−1

0

1

2

3

4

5

Time

Simulated fMRI data and model output for subsystem u1−>y1

 

 
measured data
model

Figure 6.3: The simulated data and model for case 1

Gu1y1 =
−0.52202(s− 1.631)(s+ 0.1145)(s2 + 0.6438s+ 1.364)

(s+ 0.1115)(s2 + 0.7257s+ 0.3925)(s2 + 0.8288s+ 0.7242)
(6.3)

6.2.2 Case 2

Simulated data with smaller signal-to-noise ratio equal to one are processed now.

Other parameters remain unchanged from the previous case. To compare the noise

effect for the cases 1 and 2 see Figures 6.2 and 6.4. The DCM procedure naturally

embodies worse results than in the previous case which is shown in the matrix A

again, see Equation 6.4. The system identification toolbox identifies the model

with order three and the identified output series is confronted with simulated data

in the Figure 6.5.



6.2. MIMO IDENTIFICATION - FMRI DATA FITTING 47

−10

−5

0

5

10

15
Region o1

−15

−10

−5

0

5

10

15
Region o2

0 50 100 150 200 250 300 350 400 450
−10

−5

0

5

10

15
Region o3

secs

Figure 6.4: The simulated data for three areas - case 2 - created in SPM

toolbox



48 CHAPTER 6. SYSTEM IDENTIFICATION AND FMRI

A =


−1 0 0

0.5057 −1 0.5106

0.9121 0 −1

 (6.4)

0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3

4

5

6

Time

Simulated fMRI data and model output for subsystem u1−>y1

 

 
measured data
model

Figure 6.5: The simulated data and model for case 2

Gu1y1 =
−0.54433(s− 1.527)(s+ 0.1644)

(s+ 0.1663)(s2 + 0.4181s+ 0.2268)
(6.5)

6.2.3 Case 3

A reduced 64-samples set was also generated by SPM simulator. The signal-to-

noise ratio is the same as in the case 1 (= 50). The vectors of onsets and durations

differ, see Table 6.2. The connectivity matrix is copied from the previous cases.

DCM estimation result matrix A is below, see Equation 6.6.

A =


−1 0 0

0.7566 −1 1.1719

1.91 0 −1

 (6.6)
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Table 6.2: The simulated data parameters - case 3

SNR areas TR scans cond.

50 3 1.7 64 1

onsets 5 12 29 39 60 60

duration 2 2 3 1 2 2
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Figure 6.7: The simulated data and model for case 3
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Gu1y1 =
−0.048375(s− 4.673)(s+ 0.1061)(s2 + 1.506s+ 2.401)

(s+ 0.1204)(s2 + 0.77s+ 0.244)(s2 + 0.4313s+ 0.5213)
(6.7)

6.2.4 Case 4

Figures 6.8 and 6.9 show simulated fMRI data and their fitting by model. DCM

result connectivity matrix and transfer function of model are

A =


−1 0 0

0.7294 −1 0.3973

0.6828 0 −1

 (6.8)

Gu1y1 =
−1.192(s+ 0.615)(s− 0.5842)

(s+ 0.82)(s2 + 0.2743s+ 0.2338)
(6.9)

6.2.5 Conclusion

The simulation experiments carried out for various combinations of important

parameters in the cases 1-4 prove applicability of subspace identification methods

for fitting simulated fMRI data by linear dynamic higher-order models, without

the necessity to pre-define the model structure. On basis of identified models we

can say that every output hemodynamics filter should be modeled as at least a

second order system with complex conjugate eigenvalues, reflecting the oscillatory

response as shown in continuous transfer functions. At this moment it is not

clear however how to interpret those dynamical models in terms of functional

brain organization unfortunately, the DCM is certainly considerably farther in

this regard. This issue will be therefore the direction of further research: how to

interpret the linear identified model parameters in, say, a DCM-like manner.

6.3 Intrinsic structure detection

The next idea behind our approach is to estimate the significance of interconnec-

tions among the brain areas (so called intrinsic structure) by identifying the cou-

pling among the states of an underlying linear state-space model. This is done by

finding the state matrices describing the dynamics of neuronal states through the
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Figure 6.9: The simulated data and model for case 4

measured hemodynamic responses, using conventional linear system identification

techniques, subspace identification methods here (N4SID especially). However,

these methods do not apply constraints on the form of the state matrix. We fi-

nesse this problem by modeling the data with a number of hidden states that is

greater than the number of observed brain areas. We then find a transformation of

the hidden states that conforms to the known expected block structure of the state

matrix appropriate for our problem. This transformation relies on the numerically

reliable Schur decomposition of the original state matrix and related eigen decom-

positions. We can then interpret the transformed states in terms of neuronal and

hemodynamic states. The transformed state matrix gives direct information on

couplings between particular neuronal states, and also defines the mapping from

neuronal to hemodynamic subsystems.

The subspace identification proves useful here and fits successfully the simulated

data by the identified linear model as is shown in previous section; just for the last

data set with smaller signal-to-noise ratio and number of samples the model is not

able to fit data sufficiently. We can summarize that subspace identification meth-

ods are a promising technique for hemodynamic response fitting. So we attempt
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to extend the identification procedure to the system including intrinsic structure

detection.

6.3.1 Identification procedure for brain system structure

Subspace identification methods return a linear state space model in form Equa-

tion 6.10. The matrix A represents the dynamics, B is related to the inputs and C

characterizes the outputs. The matrix D indicates direct connection from input to

output in general. Choosing the linear model Equation 6.10 instead of the bilinear

model used in DCM procedure (see chapter 4 for details) for brain area system

description is intentional, ignoring so-called modulatory inputs motivated by sim-

plicity. The hidden states x include certain transformation of all the neuronal

and hemodynamic states in our model. This means the number of hidden states

is much greater than the number of observations y (and that C is not a square

matrix).

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(6.10)

If we had the state space description in suitable form we could see intrinsic

connections among selected brain areas directly. Unfortunately matrices A, B

and C as a result of subspace methods are usually full and inappropriate to the

specific structure of the brain system. Apparently it is necessary to transform

the state space model into a realization reflecting separation of neurodynamics

and hemodynamics. Matrix D of identified state space description is zero because

there is no direct connection from input to output. One way to enforce this

structure into the state space realization is a similarity transformation with a

suitable transformation matrix T according to Equation 6.11.
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Anew = T−1AT

Bnew = T−1B

Cnew = CT

Dnew = D

(6.11)

These transformed matrices correspond to a transformation of variables in

the form x = Txnew, where xnew becomes our new desirable states that can

be interpreted directly as neuronal and hemodynamic ones. The next section

illustrates construction of the T matrix in a simple case which corresponds to the

special brain structure according to Figure 6.10.

6.3.2 First order hemodynamics filter case

Figure 6.10: The detailed structure of brain system - neurodynamics is mod-

eled by reciprocally connected first order systems. Each area has

also own hemodynamics represented by higher order system

We consider a system including one input (stimulus) signal, two brain areas and

two output (BOLD) signals, see Figure 6.10. The output filters for hemodynamics
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modeling are considered as first order systems only for this moment (note that it

does not fully correspond to orders necessary to model accurately hemodynamic

filters as identified in the previous section 6.2., so it is not possible to use SPM

toolbox as the data generator, and we use the generator according to system

matrices Equation 6.13 instead). The subspace identification methods yield the

full matrices A, B, and C, see Equation 6.12. The matrix D is zero (no direct

throughputs are present in the system considered).

A =


a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 B =


b1

b2

b3

b4

 C =

(
c1 c2 c3 c4

c5 c6 c7 c8

)

(6.12)

A =


e1 0 g1 0

0 e2 0 g2

0 0 e3 c12

0 0 c21 e4

 B =


0

0

1

1

 C =

(
1 0 0 0

0 1 0 0

)
(6.13)

However, the desired form is in Equation 6.13. This form reveals the specific

structure of the brain system with the neuronal dynamics affected directly by the

inputs and the hemodynamics projected immediately into the measured outputs.

Matrix A contains the eigenvalues e1, e2 and the gain coefficients g1, g2 defining

the hemodynamic SISO filters associated to a particular brain area. The lower

right submatrix represents the (much faster) neurodynamics. The coefficients c12

and c21 are the crucial parameters which determine the intrinsic neuronal inter-

connections between the two modeled brain areas. The matrix B represents the

structure of inputs and matrix C corresponds to the structure of outputs, in agree-

ment with Figure 6.10.

Now we describe the sequence of similarity transformations steps leading from the

full state-space model see Equation 6.12 to the structured form realization Equa-

tion 6.13 from which the coupling parameters c12 and c21 can be detected. We

consider a system with one input and two brain areas, each modeled by first or-

der dynamics and with corresponding two output BOLD signals. Each similarity
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transformation follows the conventional rule in Equation 6.11. The first step is

Schur decomposition applied to the identified dynamic matrix A. It yields zero

elements under the main diagonal on which the eigenvalues are displayed. These

are then ordered to separate the eigenvalues of hemodynamics (slow) and neuro-

dynamics (fast). The subsequent steps are devised to impact the remaining parts

of state space description and to preserve the effect of the previous transformation

steps. In this way, the eigenvectors of a selected submatrix of the new dynamic

matrix A are calculated and used for diagonalization of the submatrix representing

hemodynamics filters, and the null space of output matrix C is used for zeroing

its selected elements. We also use inverse submatrix for adjustment of parts con-

cerning gain coefficients of output (hemodynamic) filters. All steps are detailed

in a Matlab pseudocode-form see Figure 6.11, and are illustrated by a numerical

example in the case study in the next section.

>>[T1,A1] = schur(A)

>>[T2,A2] = ordschur(T1,A1,[1,2,3,4])

>>G2 = ss(T2\A*T2, T2\B, C*T2, 0);

>>[t1,aj1] = eig(G2.a(1:2,1:2));

>>C2 = G2.c*blkdiag(t1,eye(2));

>>T3 = T2*blkdiag(t1,eye(2))*[eye(4,2), null(C2)];

>>G3 = ss(T3\G2.a*T3, T3\G2.b, G2.c*T3, 0);

>>t2 = inv(G3.a(1:2,3:4));

>>T4 = [eye(2) zeros(2);zeros(2) t2];

>>G4 = ss(T4\G3.a*T4, T4\G3.b, G3.c*T4, 0);}

Figure 6.11: Matlab pseudo-code for similarity transformation

Note that the transformation matrix T1 resulting from the Schur decomposi-

tion is applied to identified dynamic matrix A and the Matlab function ordschur.m

is able to sort eigenvalues on the main diagonal, so we obtain new state space de-

scription G2 with dynamic matrix G2.a containing separated hemodynamic and

neurodynamic eigenvalues. The next transformation with the matrix T3 includes

null space of output matrix C2, and the eigenvectors of the hemodynamic part
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of matrix G2.a are used as well. The hemodynamic part of the dynamic matrix

G2.a is now diagonal due to appropriate eigenvectors application, the input matrix

G2.b is also modified (zeroing of values representing input to the hemodynamic

filters). The transformation also ensures zeroing of values representing output

from neurodynamic part in the matrix G2.c. We can see that there is no external

input into the hemodynamic filters, only from the neurodynamic part, and there

is no measured output from the neurodynamic part, which is desirable. The last

important transformation step is G3.a adjustment, and we namely want to impact

the submatrix related to the hemodynamic filters. So we apply transformation

matrix T4 including inverse of a submatrix of G3.a to diagonalize appropriate

submatrix. So the almost final result of these transformation steps is the dynamic

matrix G4.a with eigenvalues and gains of hemodynamic filters in the upper part,

and the submatrix concerning neurodynamics at the bottom which contains in-

terconnections between two areas on the next diagonal. Matrices G4.b and G4.c

are also modified according to the form in Equation 6.13 and they reflect brain

system structure (no external input into hemodynamic filters, no external output

from the neurodynamic part).

6.3.3 Case study

Data for the identification procedure were generated using the system Equa-

tion 6.14 with structure according to Figure 6.10.

A =


−1 0 1 0

0 −2 0 2

0 0 −10 0

0 0 5 −10

 B =


0

0

1

1

 C =

(
1 0 0 0

0 1 0 0

)

(6.14)

Matrices in Equation 6.15 illustrate the state space description of a system with

two areas modeled by first order systems, one input and two outputs, as identified

by a subspace identification method (Faworeel, W. et al., 1999)(Faworeel, W.

et al., 2000)(Katayama, T., 2005) implemented in the functions of System Iden-

tification Toolbox for Matlab (Identification toolbox, 2012).
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A =


−2.36 12.22 −7.52 −11.40

−4.91 −5.06 7.07 4.15

3.14 −0.13 −2.18 −3.02

−0.09 12.61 −8.61 −13.39

 B =


3.15

−1.22

0.38

3.44

 (6.15)

C =

(
−1.16 0.20 −0.27 1.16

−1.79 0.50 0.14 1.80

)

A =


−0.999 0 0.999 0

0 −2.001 0 2.001

0 0 −10.071 −0.021

0 0 4.988 −9.986

 B =


0

0

1.001

0.999

 (6.16)

C =

(
1 0 0 0

0 1 0 0

)
Particular similarity transformation steps described in 6.3.2 leading to state

space description in Equation 6.13 were applied. The final result reflecting the

desired structure is in Equation 6.16. We can also see in Figure 6.12 that step

response of transformed system is the very same as step response of the data gen-

erator. Therefore we did not change the input-output response of the originally

identified system by similarity transformation and we found one of the equiva-

lent state realization that reveal coupling structure between neurodynamics and

hemodynamics. Here the (4, 3) element of the matrix indicates the connection

between the two areas, that would be visualized in the DCM diagrams style as in

Figure 6.13.
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Chapter 7

Conclusion

The system identification methods for fMRI data processing were presented in this

thesis. First we completed a comprehensive overview of fMRI area from systems

identification viewpoint, it is possible to find it in State-of-the-art and chapter 3.

We also discussed SPM toolbox using from user’s point of view within Writer’s

cramp study - presented in chapter 5.

In this thesis we proposed to formulate the task of detection of brain areas struc-

ture within the well-established and mature framework of system identification as

a promising alternative to Dynamic Causal Modeling which is based on statistical

hypothesis-testing. The motivation for developing this alternative approach comes

from the need to reduce the computational burden so that the fMRI data can be

processed in real-time. We proposed a concrete computational procedure based

on the popular subspace identification techniques applied to the measured (sim-

ulated respectively) fMRI data combined with a similarity transformation which

enforces the structure into the problem (this structure accounts for the separa-

tion of dynamics into the neuronal and hemodynamic part). The procedure was

demonstrated by a simple simulation example in chapter 6.
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7.1 Main results

The goals of the thesis as prescribed in Chapter 2 were fulfilled in the following

manner.

• ”Goal 1” is fully addressed in the thesis. We provide a comprehensive review

of techniques and procedures commonly used in fMRI area especially from

systems identification point of view. We present elementary terminology of

fMRI area, basic principle of fMRI measurement and we also mention some

basic methods of fMRI data modeling, see State-of-the-art, chapters 3 and

4.

• ”Goal 2” has been fulfilled as well. We present commonly used tool for fMRI

processing called SPM toolbox in chapter 4. We also give a description of

Dynamic Causal Modeling technique for intrinsic structure detection and

discuss some advantages and drawbacks of that from user’s viewpoint within

cooperation with Department of Neurology, 1st Faculty of Medicine, Charles

University in Prague and project called Writer’s cramp study. We develop

joint paper ”Repetitive TMS of the somatosensory cortex improves writer’s

cramp and enhances cortical activity” published in Neuro Endocrinology

Letters (IF 1.621). The results and our experience with DCM implemented

in SPM toolbox are shown in chapter 5.

• Finally, ”Goal 3” as prescribed in chapter 2, has been developed in the thesis

too. We present subspace identification methods for fMRI data modeling and

consider them as certain alternative to DCM procedure, see chapter 6. We

show intrinsic structure detection on simplified case - paper ”Dynamic causal

modeling and subspace identification methods” is published in Biomedical

Signal Processing (IF 1.000).
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7.2 Suggestions for Future Research

The thesis raises some questions and problems that have not been answered yet.

7.2.1 Intrinsic structure detection

Surely the proposed and demonstrated method simplifies the problem a lot by

the assumption of a linear model: the bilinear terms in the neuronal dynamics

considered within the DCM framework are neglected here because modification

of subspace identification techniques for bilinear models does not appear to be

straightforward and is subject to further research.

The model of hemodynamics is also considered as an LTI model although cur-

rently some nonlinear models (such as the Balloon model) are used within the

fMRI community. In addition, the procedure is fully functional for first order

hemodynamic filters only. It was observed though that when using system iden-

tification techniques to some fMRI data generated by the SPM toolbox, every

output hemodynamics filter should be modeled as at least a second order system

with complex conjugate eigenvalues, reflecting the oscillatory response as shown

in section 6.2. The similarity transformations then become more complicated and

the procedure proposed in this thesis cannot handle it at this moment

7.2.2 ARX and OE models

One way to intrinsic structure detection could be also using other parametric

identification methods, ARX or OE models. Our idea is to identify model with

suitable order corresponding to number of brain areas and with adequate order of

output filters for hemodynamic response shaping. Then we would look for solution

of nonlinear equation system with joint neurodynamics parameters, see Figure 7.1.
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Figure 7.1: Other parametric methods using



Bibliography

Antsaklis, P. J. and Michel, A. N. (1997), Linear Systems, Birkhäuser,
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