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Abstract

Accurate calibration is key for the perfor-
mance of every robot. Traditional cali-
bration procedures involve some form of
external measuring apparatus and become
impractical if the robot itself or the site
where it is deployed change frequently—
current trend in automation with shift
from mass to small batch production. At
the same time, advances in sensor tech-
nology make affordable but increasingly
accurate devices such as cameras, RGB-D,
and force/tactile sensors available, mak-
ing it possible to perform automated self-
contained calibration relying on redun-
dant information in these sensory streams.
In this work, we employ two industrial ma-
nipulators mounted on a common base,
with Force/Torque sensors at the tool and
additionally equip them with: (i) two
external cameras mounted on the robot
base, (ii) special end-effectors with fidu-
cial markers. Driving the robot to contact
(“self-touch”) configurations relying on
force feedback, we collect images from the
cameras as well as encoder readings. Us-
ing non-linear least squares optimization,
this dataset is then used to quantitatively
compare the performance of kinematic
calibration by employing different combi-
nations of intersecting kinematic chains—
either through self-observation (using the
cameras) or self-touch, where the physical
contact constraint is exploited.

Keywords: dual-arm robot,
self-calibration, kinematic chains,
machine perception, optimization

Supervisor: Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt

Přesná kalibrace je klíčový faktor určující
chování robotu. Tradiční kalibrační pro-
cedury zahrnují různé formy přídavných
měřicích zařízení a stávají se nepraktic-
kými, pokud se robot nebo prostředí ve
kterém je nasazen často mění. Současným
trendem v automatizaci je posun od vel-
kosériové k malosériové výrobě. Zároveň
se díky pokroku v měřicí technologii stá-
vají dostupnými pokročilé senzory, jako
například kamery, RGB-D a silové senzory.
Díky tomu je možné provádět automati-
zovanou sebekalibraci na základě redun-
dantní informace poskytované těmito sen-
zory. V této práci jsme využili dva průmys-
lové manipulátory upevněné na společné
základně se silovými senzory na koncovém
článku a vybavili je: (i) dvěma externími
fotoaparáty upevněnými na společné zá-
kladně manipulátorů, (ii) speciálními kon-
covými články s referenčními značkami.
Po uvedení robotu do kontaktních (“sebe-
dotykových”) pozic pomocí silové zpětné
vazby jsme sbírali data z obou fotoaparátů
a kloubových enkodérů robotu. Použitím
metod nelineární optimalizace nejmenších
čtverců jsme kvantitativně porovnali vý-
kony kinematické kalibrace při využití růz-
ných kombinací protínajících se kinematic-
kých řetězců — sebepozorování (pomocí
fotoaparátů) nebo sebedotyk, kde je vyu-
žito omezení dané fyzickým kontaktem.

Klíčová slova: dvouruký robot,
sebekalibrace, kinematické řetězce,
strojové vnímání, optimalizace

Překlad názvu: Automatická kalibrace
pomocí sebedotyku a sebepozorování u
dvojrukého průmyslového manipulátoru
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Chapter 1

Introduction

1.1 Motivation

Robots have widespread applications in industry. They are used not only for
manufacturing, but also for testing, sorting, packaging and many other tasks.
One of the main requirements for an industrial robot is precision. Robot
control is based on its kinematics, which requires accurate robot model to be
known, including joint offsets. The model provides a relation between the
joint configuration of the robot (displacements/rotations, rates, accelerations
of individual joints) and kinematic configuration of the robot (positions,
velocities, accelerations of individual links). The model may also include
dynamic properties, i.e. relation between joint forces or moments, forces
acting upon the robot links and change in momentum of the robot links. The
control of the robot is based on the model. In this work, we focus on the
kinematic parameters of the robot model.

Many sources of imprecision may cause a difference between the actual
dimensions of the robot and the specifications. Influences such as impreci-
sion of the manufacturing process, imprecision of the assembly or thermal
expansion of the robot links cause the actual dimensions to differ. Also
excessive stress during transport, deployment into production or using may
cause deformations and change the robot dimensions.

Calibration refers to a practice where the robot dimensions are obtained
using a set of measurements carried out on the particular robot. By having

1



1. Introduction .....................................
the kinematics work with calibrated dimensions, the precision of the robot is
increased. Commonly used methods of calibration depend on high-precision-
manufactured flat tables or very accurate sensors that are installed directly
on the robot or in the robot workspace. These methods are known to provide
desired results, but the time required to prepare the calibration may be rather
long, and the rent or purchase of the required sensors may be rather costly.

Modern robots equipped with multitude of sensors intended for perception
of their surroundings, for example “collaborative robots” that are intended to
work alongside humans, may be calibrated using only their built-in sensors,
saving time and financial resources. Furthermore, it becomes feasible to
repeat the calibration in periodic intervals to amount for robot dimensions
changing over time. This procedure is commonly known as self-calibration. In
this thesis we evaluate the use of self-touch and self-observation on a dual arm
manipulator using force sensors and photo cameras for robot self-calibration.

1.2 Calibration methods comparison

Kinematic calibration is a task of finding transformations between coordi-
nate systems of objects. A typical kinematic calibration task is finding the
transformations between neighboring links of a manipulator; other tasks
include extrinsic calibration of a sensor—a task of finding the pose of a
rigidly mounted sensor in the robot base reference frame. A similar concept
is hand-eye calibration—a task of finding a transformation between a sensor
mounted on a robot gripper and the gripper frame of reference.

Hollerbach et al. [1] consider kinematic calibration as a parameter estima-
tion problem with parametric function that represents robot model. They
recognize two distinct approaches to calibration: open-loop and closed-loop.
Open-loop calibration is characterized by measurements of robot end effector
in various poses, typically by some external metrology system. In contrary,
closed-loop calibration is characterized by introduction of one or more physical
constraints on end-effector position or orientation. Hollerbach et al. show
that the same formulation of error equation can be used for both open-loop
and closed-loop calibration problems. They propose Gauss-Newton algorithm
for solving the calibration task, with a note that this method requires a good
initial estimate of the parameters.

An interesting method of hand-eye calibration is shown by Kukelová, Heller
and Pajdla [2], where they obtain an exact solution of the problem using

2



.................................... 1.3. Previous work

Gröbner basis method over a minimal dataset and then use the result as an
initial estimate for optimization algorithm over a larger dataset. Thanks to
this the method is universally applicable (global), without the requirement of
initial parameters to be known.

Recently, with robot platforms becoming more complex and more sensorized,
it becomes necessary to calibrate several kinematic chains, but at the same
time, several sensors may be employed to estimate the pose of different parts
of the system. We may recognize pair-wise procedural (sequential) calibration,
where a series of calibrations is carried out with single kinematic chain or
sensor being calibrated at a time, and joint calibration, where all sensors or
kinematic chains are calibrated using unified error function and optimization.
Birbach et al. [3] evaluate the advantages of joint calibration on multiple
sensors (a pair of cameras, a Microsoft Kinect RGBD sensor and an inertial
measurement unit) on a humanoid robot. With this method, no external
measuring apparatus is needed; instead, internal sensors on the robot are used
for calibration. Birbach et al. formulate an error function as a weighted sum
of squares over the errors of individual sensors and use Levenberg-Marquardt
algorithm to optimize the intrinsic parameters of individual sensors and their
position with relation to the robot head. They claim that joint calibration is
more efficient than pair-wise procedural calibration, because in the case of
pair-wise procedural calibration, inconsistencies in the obtained calibration
results may occur, while joint calibration ensures consistent result.

Bennet et. al. [4] propose an algorithm for unified calibration of both the
manipulators and sensors. They used Levenberg-Marquardt algorithm to
solve a simulated optimization problem. Hersch et al. [5] show an interesting
method that allows autonomous learning of robot body schema with very
little prior information. The algorithm only knows the number of joints of
every kinematic chain and learns the full structure by self-observation and
proprioception (motor encoders) and in simulation also using tactile sensors.

1.3 Previous work

More closely related to this work, Roncone et al. [6] show the self-calibration
of a humanoid robot iCub based on tactile perception using artificial skin.
The robot uses a finger on one hand to touch a tactile skin on the other arm.
They consider the point of touch as a base frame and interpret the kinematic
chains from this point to torso and from torso to the touching finger as one
long kinematic chain. Their calibration optimizes error function, which is
the difference of the finger tip position from forward kinematics and the true

3



1. Introduction .....................................
touching position measured by tactile skin. Since the tactile skin provides
a measurement of the finger position, Roncone et al. consider their method
as open-loop calibration. Similarly, Li et al. [7] employed a dual KUKA arm
setup with a sensorized “finger” and a tactile array on the other manipulator.

The CloPeMa robot setup used in this work (see Ch. 2) has been previously
calibrated using two different methods: redundant parallel calibration and
measuring machine (RedCaM) by Beneš et. al. [8][9] and Leica laser tracker.
Petrík and Smutný [10] review the precision of these methods using linear
probe sensor. Based on a dataset of 43 different poses with touching end
effectors, they calculate the mean error as 0.67 (range 2.92) mm on CAD
model, 0.54 (range 2.55) mm on Leica based calibration and 2.45 (range 9.92)
mm on RedCaM based calibration.

Štěpánová and Hoffmann [11] provide a synthetic experiment with self-
calibration of a simulated robot based on a real humanoid robot, iCub.
The robot has a given point on each of its palms touching, thus closing
a kinematic loop, while also observing the points with both of its eyes,
providing measurements. The calibration problem is approached as an open-
loop calibration, considering the touching constraint as a measurement of
relative position of the two points that always reports zero displacement.
Štěpánová and Hoffmann evaluate the quality of parameters estimation using
joint calibration of multiple kinematic chains while utilizing either only
the contact information, only the cameras, or both—contact constraint and
cameras. Then they compare their results to a pair-wise sequential calibration.

1.4 Contribution

In contrast to [6], where only “self-touch” is employed, and Birbach et al. [3]
and many others that employ “self-observation”, this thesis aims to assess
the pros and cons of these approaches, thereby complementing the synthetic
experiments of [11], where self-touch and self-observation on a simulated
humanoid robot is used for self-calibration. For this purpose we modified a
two-arm robotic platform previously used for cloth folding and small object
sorting experiment. We developed and manufactured custom “self-touch end
effectors” with fiducial markers, configured the robotic platform to operate
with the end effectors and integrated two photo cameras into the system.
We also created a high-level Python library for self-touch using force sensors
to enable safe contact behavior and developed a graphical application for
planning and execution of complex motions.

4



.....................................1.4. Contribution

We developed a simple data collecting application and collected several
datasets on the robot. We created a parametric model of the robot using
Denavit-Hartenberg parameters in Matlab and an objective function for the
calibration Optimization Toolbox. In the process, we formulated a DH-only
description of the robot, without intermediate transformation methods used
previously to describe the mounting of the manipulators on the base.

We also collected two datasets containing 82 and 100 poses on the robot,
where every pose comprises a touching configuration. We tested the stability
of our calibration using perturbed initial state, compared calibrations of all
DH parameters and only joint offsets, and evaluated the difference between
two-step procedural and one-step joint calibrations. We also compared the
errors of our results to the errors of manufacture parameters and to the
laser-based calibration reviewed by Petrík and Smutný [10].

5
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Chapter 2

Setup overview

This project makes use of a platform created in the CloPeMa project (Clothes
Perception and Manipulation) [12] and further developed during the Ra-
dioRoSo project (Radioactive Waste Robotic Sorter) [13]. CloPeMa was a 3
year research project aiming at advancing the state of the art in autonomous
perception and manipulation of textiles [14]. The robot learned to manipulate,
perceive and fold a variety of textiles. The operating-software is based on
ROS and written in C++, Python and Java. The project concluded in 2015.

The robot (Fig. 2.1; [15]) developed in the CloPeMa project consists of two
industrial manipulators installed on top of a robotic turntable, a control unit,
a photo camera and two computers connected on a local network. The robot
has been setup with a variety of components, such as Xtion RGBD (RGB
+ depth) cameras, photo cameras, force sensors or photometric close-range
sensors. All the different parts of the robot system were integrated in and
operated with Robot Operating System (ROS).

In this work, we used a special end effector covered with a regular pattern
of visual markers to enable safe self-touch behavior and visual recognition of
the end effector position.

7



2. Setup overview ....................................

Figure 2.1: The turntable and manipulators assembly.

2.1 Hardware

2.1.1 Dual arm manipulator

The base of the unit is a Yaskawa R750 robotic turntable, which allows rotation
of the mounting adapter carrying two manipulators around the vertical axis.
On top of the turntable, there are two Yaskawa-Motoman MA1400 serial
manipulators equipped with legacy two-fingered grippers developed for cloth
folding and retooled for small cylindrical object grasping. Our self-touching
end effector is attached over the gripper, to better define the contact surfaces
and protect the fingers from excessive strain.

Both manipulators are equipped with ATI Industrial Automation Mini45
6-axis force/torque sensors, which are located between the last link of the

8



...................................... 2.1. Hardware

Figure 2.2: Setup of stereo cameras.

manipulator and the gripper. The sensors are connected to local network
via ATI NetBox. During the experiment, we only used the force data to
recognize contact at the end effector. The robot is powered and controlled
via Motoman DX100 control unit, which can communicate with ordinary PC
over LAN.

2.1.2 Cameras

Two Nikon D3100 cameras with Nikkor 18-55 AF-S DX VR lens were used
in the experiment. They were attached in a side-by-side configuration on
top of a vertical beam connected to the mounting adapter. The D3100 is
a DSLR photo camera with APS-C CMOS imaging sensor with 14.2 MPx
resolution (maximum image size 4608x3072 Px). The camera supports PTP
(Picture Transfer Protocol), which is used to download the pictures taken by
the cameras onto the PC. It is also equipped with 1/4-20 UNC thread, over
which both cameras are attached to the robot.

2.1.3 Custom end effector

We developed a simple end effector to facilitate safe self-touch actions and
visual self-observation. Two identical end effectors were attached to the tip
of each manipulator 2.4. The requirements were:

. convex shape, so that the effectors cannot grapple with each other. a shape with well defined contact surfaces, so that the contact point can
be derived without tactile sensing and under positional uncertainty

9



2. Setup overview ....................................
. sufficient amount of flat faces so that visual markers can be attached

onto it

We decided for a body of the shape of truncated icosahedron (like a soccer
ball) with spherical tiles in place of the pentagonal faces and with markers
glued onto the hexagonal faces. Each of the hexagonal faces has a square
grove with side of length 20 mm. The square is concentric with the face and
defines the position for the marker to be glued to. Every square has a unique
number that defines its position with relation to the center of the icosahedron.
The number is written next to the square grove. Figure 2.3 shows a colored
CAD model of the end effector.

Figure 2.3: Detail of the end effector, squares for marker attachment are colored
blue

Having 20 evenly spaced markers should ensure that at least 3 of them are
always seen by each camera and recognized by the program (unless the view
of the icosahedron is occluded by another part of the robot). The number
3 was chosen because 3 known points is a minimum number required to
unambiguously discern the position using one camera.

The icosahedron is attached over the gripper with means of a bracket
fastened to the gripper motor using four screws. A thin beam connects
the icosahedron to the bracket. The custom end effectors were made using
additive manufacturing (i.e. 3D print). We used two different materials to
compare their properties and the difference in quality of the print. The blue
icosahedron was made out of PLA, while the black one was made out of ABS
plastic.

Models based on our requirements and after consultations with Prof. Tomáš
Pajdla were supplied by Bc. Martin Hoffmann, who also carried out the
assembly of the end effectors and their attachment to the robot. The 3D
print was managed by Ing. Tomáš Báča.
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...................................... 2.1. Hardware

Figure 2.4: Custom end-effectors in contact.

Touching configurations

The center of the curvature of the tiles lies in the center of the icosahedron,
such that when the two end effectors come into contact with the spherical
tiles touching, the point of contact lies exactly halfway between the two
effector centers, up to a precision given by the manufacturing of the effectors.
For simplicity, in this thesis we only use the cases with two spherical tiles
touching.

Touching of a spherical tile and a flat face is also possible and provides
additional information regarding the flat face’s orientation. In this case, the
point of contact is the perpendicular projection of the center of the spherical
tile to the plane of the flat face. These configurations were not used in this
thesis, but might be used in future work.

The information obtained from the collision of two flat faces is not easy
to evaluate. The point of contact is located on the edge of one of the
faces, unless the faces are perfectly aligned, which cannot be easily assured.
Because the face doesn’t have a well defined outline, there is a complicated
dependence between the pose of the end effectors and the point of contact.
These configurations were not used and shall not be ever used with the current
end effector.
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2. Setup overview ....................................

Figure 2.5: Setup of the whole dual arm robot for the self-touch experiment:
real robot (left) and RViz visualisation of the robot (right).

Mechanical properties

Mechanical properties of the custom end effector are of concern. The end
effector shall be sufficiently rigid, so that its deformation under the force
applied during contact is significantly lower than the precision of the most
precise localization technique used, which in this case is camera tracking. To
this end, we reinforced the beam with a threaded rod.

At the same time, the end effector should not be completely rigid so that
in case of a program failure during contact, it will absorb the damage and
protect other parts of the manipulator from damage. It is desirable for the
end effector to break and not to deform, because a slight deformation may be
hard to discern and may cause inconsistency of robot parameters during the
collection of datasets. Damping properties of the end effector are marginally
important. Due to its shape and the fact that robot gearboxes cause a
fair amount of vibration, the end effector is prone to resonance along the
longitudinal axis.

The rigidity was observed to be acceptable. Several touches were performed
and no visible deformation was noticed. The force sensors reported peak force
of 5 Newtons during this test. Resonance was observed during phases of rapid
motion of the robot, but never during the touching approach. The robot was
programmed to stop for a few seconds before the touching approach to let
the resonance fade away, and then to move very slowly, so that the resonance
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does not build up again. As a result, little to no resonance was measured by
the force sensors during the touching approach. See figure 4.6 to see a typical
course of forces measured during the touching approach.

2.2 Software

The robot is controlled from either one of two personal computers connected to
the local network. The computers are running Ubuntu 16.04 with ROS Kinetic
1.12.7 and a set of ROS modules commonly named CloPeMaWorkspace (found
on [12]).

2.2.1 ROS

Robot Operating System (ROS)[16], is a widely used framework for robotic
software. ROS is meant to provide collaborative environment for development
of robotic projects. It is distributed via a system of packages.

Nodes are executables running under ROS. Nodes can publish to a Topic,
sending messages of predefined structure to other nodes which subscribe to
the same topic. Nodes may also request a service (act as a client) from other
nodes which provide the given service (act as a server). The client sends
a request message and waits until it receives a response message from the
server.

Actionlib

Actionlib [17] is an alternative to the services interface, which in addition
to the goal (request) and result (response), allows the client to monitor the
state of the server via status message, the state of its request being processed
through feedback messages, and preempt the request by sending a cancel
message. We used an Actionlib server for interfacing with the cameras.
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2. Setup overview ....................................
MoveIt!

MoveIt! [18] is an universal robotic software for motion planning, kinematics,
robot control and manipulation. MoveIt! works under ROS. It was integrated
within the robot software setup, works with the robot model and uses CloPeMa
workspace software to control the robot. The robot relies on motion planning
and kinematics carried out by MoveIt!

RViz

RViz [19] is a 3D visualization environment used with ROS. It allowed us
to inspect the robot’s collision model as we were developing it. It may also
show all the coordinate systems defined on the robot, which was desirable for
viewing the expected positions of visual markers on the end effector. RViz also
provides a drag-and-drop interface for posing the robot and motion planning.
This interface proved not flexible enough for our needs, so we eventually had
to develop our own application for that purpose.

CloPeMa Workspace

CloPeMa workspace includes ROS packages and settings developed for this
particular robot and is required for for the robot to work. The most im-
portant features are the “clopema_controller” package, which manages the
communication with the DX100 control unit, the “netft_rdt_driver” pack-
age, which contains the “force_driver” nodes that provide the force data,
and “clopema_kinematics”, which facilitates forward and inverse kinematics
used by MoveIt!. CloPeMa workspace adds support for all the sensors and
actuators used on the robot, e.g. gripper motors, gripper rubbing actuators,
force sensors, Xtion sensors, etc.

The full contents of the workspace and guide to its installation can be
found here: [20]
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2.2.2 OpenCV

OpenCV [21] stands for Open Source Computer Vision Library. It is a
widely used, open source multi-platform library based on C/C++ but also
usable with Python, Java and Matlab. OpenCV provides many ready-to-use
functions for image processing, recognition and tracking of objects, 3d vision
and photo camera calibration and many other uses.

We used OpenCV for visual markers detection and camera calibration.

2.2.3 GPhoto2

gPhoto2 [22] is an open-source set of applications for working with photo
cameras under UNIX systems. Its creators aim to provide functionality which
is typical for (proprietary) software bundled with the camera, but without
their compatibility restrictions to Windows or MacOS systems.

gPhoto2 consists of two main parts. The gPhoto2 command-line application
and the “libgphoto2” camera access and control library. We used gPhoto2
and libgphoto2 python binding to configure the cameras. Furthermore, our
“PhotoActionServer” under ROS is also based on libgphoto2, thus we also
used libgphoto2 during the experiment.
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Chapter 3

Materials and Methods

3.1 Robot setup description

3.1.1 Robot dimensions

Figure 3.1 shows the nominal dimensions of the MA1400 manipulator, from
which the parameters of the manipulator were obtained using Denavit-
Hartenberg (DH in what follows) convention.

Table 3.1 states the DH parameters of the MA1400 manipulator, table
3.2 states the DH parameters of the r750 turntable, table 3.3 then states
the transformations from the r750 flange to the mounting point of both
manipulators. The base reference frame is defined as the Z axis lying on the
rotation axis of the turntable, X axis in the direction towards the mounting
of manipulator 2 and Y axis making a right-hand coordinate system with X
and Z.

3.1.2 Robot control

The robot was controlled using MoveIt! under ROS (found in the subsection
2.2.1). We developed several control programs for the robot, all except

17



3. Materials and Methods ................................

Figure 3.1: Dimensions and workspace of the MA1400 manipulator—front and
top view, taken from [23]

a [m] d [m] α [rad] θ offset [rad]
0.15 0.45 −π/2 0
0.614 0 π −π/2
0.2 0 −π/2 0
0 -0.64 π/2 0

0.03 0 π/2 −π/2
0 0.2 0 0

Table 3.1: Nominal DH parameters of the MA1400, as stated by the manufacturer
in Figure 3.1

a [m] d [m] α [rad] θ offset [rad]
0 0.51 0 −π/2

Table 3.2: DH parameters of the r750 turntable link.

Manipulator 1 Manipulator 2
displacement [m] (X, Y, Z) 0, -0.25, 0.16 0, 0.25, 0.16
rotation [rad] (X, Y, Z) π/12, 0, 0 −π/12, 0, 0

Table 3.3: The mounting point of both manipulators in the r750 reference frame.
Rotation is given in Euler angles ordered with rotation around Z being closest
to the base frame.
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................................ 3.1. Robot setup description

Figure 3.2: ROS nodes running during the self-touch.

“calibrate_force_sensor” being applications with a GUI.

The programs have a specialized robot library that customizes the workflow
of underlying generic library to suit the task of force-sensor based touching.
The underlying library is “RobotCommander”, a CloPeMa workspace Python
library using “moveit_commander” to facilitate robot controls.

All program calls for forward kinematics, inverse kinematics, path planning,
current robot state, collisions in given pose and trajectory execution are sent
to MoveIt!’s “move_group”, which fulfills them using one of its modules or
delegates them to “clopema_commander”, which interfaces with the robot
control unit.

Move_group uses OMPL (Open Motion Planning Library) for planning
trajectory, employing sampling-based methods. Forward and inverse kine-
matics is done by “clopema_kinematics” module, a CloPeMa workspace
module that interfaces with move_group. Inverse kinematics is based on
an analytical solution of a “similar” manipulator, which serves as a starting
point for numerical optimization of the actual manipulator.

All the code used is organized in a Git repository [24]. Chapter 4 elaborates
the safe collision behavior using force feedback.
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3. Materials and Methods ................................
3.1.3 Dimensions of the end effector

The icosahedron, as described in Section 2.1.3, lies in the axis of the last joint.
The displacement of its center from the manipulator tip is 522.25 mm. The
reference frame of the end effector lies in the center of the end effector and is
rotated by π/20 radians around the Z axis with relation to the manipulator
tip reference frame.

Positions of the markers

There are 20 markers on each icosahedron. They are placed in an equidistant
pattern concentric with its faces. The rotations of the markers are of no
particular pattern and are not relevant in this task. Table 3.4 shows the list
of all markers with their positions in the icosahedron reference frame. Image
3.3 shows the centers of the markers on the icosahedron.

Face Number X [mm] Y [mm] Z [mm]
1 32 0 -41.89
2 9.89 30.435 -41.89
3 -25.89 18.81 -41.89
4 -25.89 -18.81 -41.89
5 9.89 -30.435 -41.89
6 51.78 0 -9.89
7 16 49.245 -9.89
8 -41.89 30.435 -9.89
9 -41.89 -30.435 -9.89
10 16 -49.245 -9.89
11 41.89 -30.435 9.89
12 41.89 30.435 9.89
13 -16 49.245 9.89
14 -51.78 0 9.89
15 -16 -49.245 9.89
16 25.89 -18.81 41.89
17 25.89 18.81 41.89
18 -9.89 30.435 41.89
19 -32 0 41.89
20 -9.89 -30.435 41.89

Table 3.4: The centers of the markers in the end effector reference frame
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................................ 3.1. Robot setup description

Figure 3.3: A selection of reference frames at the markers’ centers.

Modification of the robot model

It is vital to assure the collision model of the robot used with MoveIt! is an
accurate representation of the robot. The planner used by MoveIt! checks the
model for collisions during planning. If a certain feature of the robot reached
out of the area which the model claims as occupied, the planner could create
a trajectory that would lead the robot into collision with an obstacle or even
with a part of itself, which could cause damage to the manipulators.

We modified the robot model1 to add all the parts of the end effector. We
wrote a xacro file “selfcalib_sphere.urdf.xacro” that defines the end effector
as three distinct bodies: the Bracket, the Beam and the Icosahedron. It uses
the .stl model of the end effector as visual representation, but the collision
model is formed by three geometrical primitives: two boxes and a sphere.
Figure 3.4 shows the collision model.

Figure 3.4: Collision model of the end effector over visual model, Bracket is
blue, Beam is green and Icosahedron is red.

1 /clopema_testbed/clopema_description/robots/clopema_spheres.urdf
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3. Materials and Methods ................................
The dimensions of the collision primitives:. Bracket : 106× 91× 246 mm. Beam : 28× 28× 120 mm. Icosahedron : radius 60 mm

We also created coordinate frames in the center of each marker and each
spherical patch with Z axis perpendicular to the plane or to the sphere. This
simplifies the task of defining contact (self-touch) configurations, because we
no longer need to consider the geometry of the icosahedron. We only need to
ensure the Z axes — the normals of both spherical patches are anti-parallel
(pointed towards each other) during the touching approach.

We modified the top-level xarco file, “clopema_CVUT_spheres.urdf.xacro”,
to load the end effector and place it on both grippers of the robot model.
The file is compiled into “clopema_CVUT_spheres.urdf” by invoking the
included bash script “clopema_CVUT_spheres.urdf.xacro”.

3.1.4 Camera pose

Two Nikon D3100 photo cameras (see Section 2.1.2) were attached onto the
robot. The cameras are located on a vertical beam that is attached to the
r750 turntable, rotating the cameras together with the base of both MA1400
manipulators. Table 3.5 states the poses of both cameras.

Camera 1 Camera2
displacement [m] (X, Y, Z) -0.308, -0.2, 1.785 -0.308, 0.2, 1.785
rotation [rad] (X, Y, Z) -2.4419, 0.0615, -1.5191 -2.4419, -0.0615, -1.6225

Table 3.5: The reference frames of both cameras in the turntable reference
frame. Rotation is given in Euler angles ordered with rotation around Z being
closest to the base frame.

3.1.5 Conversion of transformations to DH parameters

For sake of simplicity, we decided to represent the mounting of the manipula-
tors described in Table 3.3 as another link in the DH parameters description
of both manipulators. We wrote a simple Matlab function that takes a
transformation matrix and calculates a set of two virtual links that reach to
the point where the input transformation would put the new reference frame,
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................................ 3.1. Robot setup description

Figure 3.5: Detail of the turntable as seen in RViz. The turntable reference
frame is denoted as “r750” and is located straight above the base frame.

Figure 3.6: Reference frames and their location on the robot.

also preserving the orientation. Figure 3.5 shows the reference frame of the
turntable and mounting of both manipulators. Table 3.6 shows the calculated
DH parameters.

Camera 1 Camera 2
a [m] d [m] α [rad] θ [rad] a [m] d [m] α [rad] θ [rad]
0.1602 1.3942 π/12 0 0.1602 1.3942 π/12 π

0 -0.5118 0 0 0 -0.5118 0 π

Table 3.6: The DH parameters linking the turntable with the base of both
cameras.

Since the parameters represent fixed joints and the previous joint, the
turntable, has zero α and a parameters, the θ offset and d of the turntable can
be directly added to the first virtual joint. If the previous joint did not have
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zero α and a parameters, the transformation would have to be redefined to
account for these α and a, so that they would be removed from the turntable
parameters and then the aforementioned approach could be applied.

As the second virtual joint has got zero α and a parameters and also
represents a fixed joint, it can be added to the first joint of the manipulator,
acting as its base link was elongated and rotated along the Z axis. We can
also add one more set of DH parameters to represent the transformation from
the manipulator tip to the end effector. In this case its formulation is trivial
since the end effector is only displaced and rotated along the tip’s Z axis.

Table 3.7 shows the complete DH parameter description of both arms
kinematic chains. Note that after merging with the transformation matrix,
the turntable joint is different for each manipulator. This needs to be so
because the rotation axes of the first joints of the manipulators are not
identical. Both joints, however, share the same joint coordinate (i.e. θ).

Manipulator 1 (right arm) Manipulator 2 (left arm)
a [m] d [m] α [rad] θ [rad] a [m] d [m] α [rad] θ [rad]

0 -0.2630 π/12 −π/2 0 -0.2630 π/12 π/2
0.15 1.4159 −π/2 0 0.15 1.4159 −π/2 π
0.614 0 π −π/2 0.614 0 π −π/2
0.2 0 −π/2 0 0.2 0 −π/2 0
0 -0.64 π/2 0 0 -0.64 π/2 0

0.03 0 π/2 −π/2 0.03 0 π/2 −π/2
0 0.2 0 0 0 0.2 0 0
0 0.52225 0 pi/20 0 0.52225 0 pi/20

Table 3.7: The complete DH parameter description of both arm kinematic chains

This operation can be viewed as finding the proper DH parameters describ-
ing the robot as whole and, in fact, geometric approach comes to the same
result.

Using the very same method, we converted the camera poses (see Table 3.5)
into DH parameters (see Table 3.8). The obtained DH parameters serve as
initial values for the calibration.

Camera 1 Camera 2
a [m] d [m] α [rad] θ [rad] a [m] d [m] α [rad] θ [rad]
0.1602 1.9042 -2.4396 -3.0171 0.1602 1.9042 2.4396 -0.1245

0 -0.5118 0 0.0953 0 -0.5118 0 3.0463

Table 3.8: The DH parameters of camera chains
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.............................. 3.2. Standard camera calibration

Figure 3.7: The calibration dot pattern used with legacy calibration method.
This is a zoomed detail for clarity, the whole pattern comprises of 30 times 30 of
the smaller dots, the three larger dots are around the middle of the pattern.

3.2 Standard camera calibration

For camera calibration, we used OpenCV. It provides functions for camera
intrinsic and extrinsic calibration, projection of points, removal of camera
distortion and 3D object reconstruction, as stated by the manual, which can
be found in Subsection 2.2.2

We used a calibration library developed during the CloPeMa experiment,
which relies on OpenCV for camera calibration but employs a closed-source
binary for dot pattern recognition and acquisition of the object and image
points. A specific dot pattern, Fig. 3.7, was used, which was not compatible
with “findCirclesGrid” provided by OpenCV [25].
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3.2.1 ArUco markers recognition

ArUco markers were used for pose estimation of the end effector. To detect
ArUco markers in the image from camera, we use OpenCV ArUco module.
Aruco markers, as stated by [26], are a kind of square-pixel binary fiducial
markers. They are used to unambiguously detect a marked object in the
image and discern its position and orientation with relation to the camera.
The library allows markers of various sizes and pixel counts to be used.

Individual markers are defined by a data structure called Dictionary. Every
marker known to the dictionary has a unique ID number assigned. OpenCV
ArUco module provides a set of predefined dictionaries and also allows more
dictionaries to be created automatically with m distinct markers on a n×
n pixel grid or manually by specifying every pixel of every marker to be
recognized. We used a predefined dictionary “DICT_ARUCO_ORIGINAL”
that contains 1024 distinct markers and provides a simple way to inspect the
ID by decoding the markers’ pixels. Table 3.9 shows how the ID is encoded
into the pixels, Figure 3.8 gives an example.

¬ 0x200 0x200 0x100 0x100 0x200 ⊕ 0x100
¬ 0x080 0x080 0x040 0x040 0x080 ⊕ 0x040
¬ 0x020 0x020 0x010 0x010 0x020 ⊕ 0x010
¬ 0x008 0x008 0x004 0x004 0x008 ⊕ 0x004
¬ 0x002 0x002 0x001 0x001 0x002 ⊕ 0x001

Table 3.9: The encoding of an ArUco marker

Figure 3.8: Example of an ArUco marker, the value can be decoded as 1×0x1 +
1×0x2 + 1×0x4 + 1×0x8 + 0×0x10 + 1×0x20 + 1×0x40 + 0×0x80 + 0×0x100
+ 0×0x200 = 0x6F = 111

We used distinct marker IDs for the right and for the left icosahedron. The
right one has IDs 101 to 120, the left one has IDs 201 to 220. The last two
digits of the ID match the number of the icosahedron face.
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.............................. 3.2. Standard camera calibration

3.2.2 Camera Model

The camera model used (Fig. 3.9, Eq. 3.1) is based on the pinhole camera
extended with radial and tangential distortion coefficients. We use this model
because it is supported by OpenCV [25].

Figure 3.9: Pinhole camera model, taken from [25], Copyright 2011-2014,
OpenCV Dev Team
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(3.1)

In this expression, X, Y and Z denote coordinates of a point in base

27



3. Materials and Methods ................................
reference frame, x, y and z denote coordinates of a point in the camera
reference frame (point P in Xc, Yc, Zc frame in Fig. 3.9), R and t are rotation
and translation defining a transformation from the calibration pattern frame
to the camera frame. K is a camera matrix and points x’ and y’ are relative
coordinates in the image plane, u and v are the image points.

A pure pinhole camera model would obtain u and v by multiplication of the
K matrix with a vector of [x′, y′, 1]. This extended model computes a radius
of the two points from the principal point (where the optical axis crosses
the image plane) and amounts for radial distortion with coefficients k1, k2,
k3 and tangential distortion with coefficients p1 and p2, producing distorted
coordinates x′′ and y′′. These are then transformed with K, resulting in u
and v. Note that r only appears in powers of r2, so it is not necessary to ever
calculate the square root. Table 3.10 shows what parameters are considered
intrinsic or extrinsic. Using camera calibration, we only calibrate intrinsic
parameters.

Intrinsic Extrinsic
fx, fy, gx, gy, k1, k2, k3, p1, p2, R, t

Table 3.10: Camera parameters classification.

3.2.3 Camera setup

Before the cameras could be calibrated, they had to be panned, tilted, zoomed
and focused onto the area where the end effector touching would occur. Also
the F-number had to be decided and set before calibration. The reason
for this is that altering the zoom, focus or F-number of the camera would
inevitably result in change of the camera intrinsic parameters.

We chose a point lying 1 meter in front of the robot base and 1 meter
above ground as the center of the touching area. To pan and tilt the cameras,
we placed an object into the center and altered the mounting of both cameras
to make the object appear also in the center of both camera images.

We decided to set the zoom in such a way that the cameras would take an
area about 0.6 meter on each side of the center. The reason for this is that
there is a roughly 1 m wide intersection of both manipulators’ workspace and
if the touch would occur on its boundary, parts of the icosahedron with 0.1
m diameter could appear up to 0.6 m from the center.

The focusing was done using the autofocus with lowest F-number supported
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.............................. 3.2. Standard camera calibration

by the camera. This created very low depth of field and increased the precision
of the autofocus. After the focusing was done, the lens was set to manual
focusing, so that the autofocus would not alter the intrinsic parameters of
the camera.

Finally, the F number was set to F/20 to increase the depth of field. We
compensated for less exposure by setting slower shutter speed, 0.5 s. Because
the robot comes to full stop before the picture is taken and resumes the
motion after the picture is taken, the shutter speed can be arbitrarily high
without causing motion blur.

Intrinsic calibration

Intrinsic calibration serves for estimation of the intrinsic parameters of the
camera. Intrinsic calibration generally consists of two phases: (1) creation of
a dataset and (2) optimization task with camera model over the dataset.

Creation of the dataset often involves capturing an object with known
structure, often a planar chessboard or dot grid pattern manufactured for
the purpose of calibration (other methods also exist, with multiple cameras
observing a single point, e.g. a laser pointer dot). Here, for clarity, we assume
a generic calibration pattern is used.

In every view, object points with known, unambiguous position on the
calibration pattern need to be recognized. Then, correspondences between
the object points and their two-dimensional projections, image points (pixels
in the image) are found. Finally, the correspondences are inserted into the
dataset.

The dataset should contain correspondences across multiple views, evenly
covering the camera’s field of view and containing the calibration pattern in
diverse poses with relation to the camera.

The optimization stands for estimation of the parameters of a camera model,
as well as the pose of the object in every view. We used “calibrateCamera”
function from OpenCV [25]. The function performs three main steps:..1. Initial estimation of the camera matrix
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3. Materials and Methods ..................................2. Initial estimation of the pose of the calibration pattern in every view..3. Global Levenberg-Marquardt optimization on the re-projection errors,
that is, the total sum of squared distances between the observed feature
points and the projected object points, computed using the current
estimates for camera parameters and the poses.

Parameter Camera 1 Camera 2
fx 5757 5744
fy 5765 5747
gx 1573 1614
gy 2279 2272
k1 -0.05426 -0.03299
k2 0.09294 -0.07279
k3 -0.1977 0.2432
p1 -0.001700 0.00002765
p2 0.001657 0.002601

Table 3.11: Intrinsic parameters of the cameras.

For the robot calibration, we assumed the intrinsic parameters of both
cameras are given and extrinsic parameters (poses of the cameras with relation
to the base coordinate frame) are among the parameters to be calibrated.

3.2.4 Camera integration

CloPeMa workspace includes support for one particular type of camera,
namely Nikon D5100. To enable use of any other camera, we had to fall back
to previous solution, a less known camera package called “iai_photo” [27],
which is itself a modified camera library from the “bosch_drivers” ROS stack
[28]. We extended it with the ability to select from multiple cameras connected
to the system using udev symlink. We also implemented an ActionLib action
server based on the extended iai_photo.

The cameras are connected to the PC over USB, using 10 m cable with
repeater. We added udev rule on the PC for each of the cameras. Table 3.12
shows the configuration used. We also configured a launch file that launches
iai_photo based ActionLib servers for both cameras while passing the proper
parameters for each camera. The stability of the camera servers was tested
and while not perfect, it was found sufficient to be used to collect the dataset.

The aforementioned stability issues seem to be caused by either one of
the cameras stopping to respond to PTP messages generated by libgphoto2.
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Setting Camera 1 Camera 2
Symlink name nikon_head_right nikon_head_left
Serial number 000006062188 000006061413
Vendor ID 04b0
Product ID 0427
Subsystem usb
Group plugdev
Mode 0660

Table 3.12: Udev rules for creating symlinks of the cameras.

The camera did not resume its function until restarted either by switch on
the device or by power outage. This was most likely a problem with the
communication protocol.

3.3 Multi-chain calibration

We consider the open-chain calibration as an optimization of an objective
function f(φ,D, ζ) over the vector

φ = {[a1, ..., aN ], [d1, ..., dN ], [α1, ..., αN ], [o1, ..., oN ]}, (3.2)

where i ∈ 1..N is an index identifying one particular link of the kinematic
chain, N is the number of all links across all kinematic chains of the robot
model, ai, di and αi are DH parameters of the link i, and oi is the offset of
θi, the last DH parameter. The D denotes the dataset

D = {[ξ1, ..., ξM ], [~z1, ..., ~zM ], [θ1,1, ..., θ1,N , θ2,1, ..., θM,N ]}, (3.3)

where j ∈ 1..M is an index identifying one particular dataset point, M is
the number of dataset points, ξj is information about how the measurement
was taken (where, with which sensor), ~zj is one particular measurement
vector and θj,i is the DH parameter of the link i in the configuration in
which the measurement ~zj was taken. The constant ζ defines all other
necessary parameters such as camera calibration, fixed transformations, fixed
DH parameters or other properties of the robot. The optimization task is the
problem of solving Eq. 3.4.

φ∗ = arg min
φ

f(φ,D, ζ) (3.4)
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where

f(φ,D, ζ) = ‖~g(φ,D, ζ)‖2 =
length~g∑
i=1

gi(φ,D, ζ)2

is the quadratic error.

3.3.1 Individual chain description

We consider the robot as four individual kinematic chains described by the
DH parameters derived in the previous section. All the kinematic chains
start in the base frame. The transformation from base to the first joint,
i.e. the turntable joint, is identity. The two longer chains end with the end
effectors—the end is in the center of each icosahedron. The two shorter
chains end with the cameras. All the chains have common rotation of the first
joint, but all other joints and parameters are separated. Note that since the
mounting of the two manipulators on the turntable is not identical, the first
4-tuple of DH parameters also isn’t the same, and we recognize two distinct
turntable links in the arm chains and two more turntable links in the camera
chains.

The manipulator has got 6 driven joints, denoted “S”, “L”, “U”,“R”, “B”
and “T” in the order from base to tip. Joint S connects the turntable with
link S of the robot, joint L connects link S with link L and so on.

We added one last link to each kinematic chain, which represents the
transformation to the end effector, denoted “icosahedron”, or to the camera
entrance pupil, denoted “camera”. This last link is not connected by an actual
joint and we consider its θ to be always zero, while it may still have non-zero
offset.

Our calibration can treat any single component of any single DH parameter
of any kinematic chain as fixed (∈ ζ) or as a parameter to be optimized (∈ φ).
In addition to that, we consider one more parameter for optimization and
that is the distance of icosahedron centers when they touch. Since the two
icosahedrons have identical shape, up to the precision of manufacture, this
parameter equals one diameter and so we call it the diameter and denote it q
(q may ∈ ζ or ∈ φ). Table 3.13 shows the names of individual links of the
four kinematic chains.
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Chain name Links
Right arm turntable1, S1, L1, U1, R1, B1, T1, icosahedron1
Left arm turntable2, S2, L2, U2, R2, B2, T2, icosahedron2

Right camera turntable3, camera1
Left camera turntable4, camera2

Table 3.13: Links in kinematic chains.

3.3.2 Forward kinematics

We use standard approach for DH parameters forward kinematics [29, pp.
76-83]. The transformation T i−1

i from link i to link i − 1 is described by
one set of DH parameters. It can be obtained as a product of four sub-
transformations representing individual parameters ai, di, αi, θi. Eq. 3.5
show the sub-transformations and the resulting transformation.

T iαi =


1 0 0 0
0 cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1

 , T iaiα =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

 ,

T idia =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 , T i−1
id =


cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

 ,
T i−1
i = T i−1

id · T idia · T iaiα · T iαi

=


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di
0 0 0 1



(3.5)

The transformation from the icosahedron center to the base frame is then
obtained as:

T baseicosahedron1 = T baseturntable1T
turntable1
S1 TS1

L1T
L1
U1T

U1
R1 T

R1
B1T

B1
T1 T

T1
icosahedron1

for the right arm and

T baseicosahedron2 = T baseturntable2T
turntable2
S2 TS2

L2T
L2
U2T

U2
R2 T

R2
B2T

B2
T2 T

T2
icosahedron2

for the left arm.
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The transformations from the cameras to the base frame are

T basecamera1 = T baseturntable3T
turntable3
camera1

for the right camera and

T basecamera2 = T baseturntable4T
turntable4
camera2

for the left camera.

Using T baseicosahedron1 or T baseicosahedron2, we transform a marker Mi from the
right or left icosahedron to the base frame:

T baseMi = T baseicosahedron1 · T icosahedron1
Mi

Positions of the markers in the icosahedron frame are stated in Table 3.4.

From these we can derive the T icosahedron1
Mi . Then we transform the marker

to the given camera frame using T camera1
base (inverse transformation of T basecamera1)

or T camera2
base :

T camera1
Mi = T camera1

base · T baseMi

Projection to camera frame

To obtain projected points we apply the calibrated camera model described
in Eq. 3.6. First, we have to obtain the points in the camera frame:

xcyc
zc

 = T camera1
Mi ·

xmym
zm

 , respectively
xcyc
zc

 = T camera2
Mi ·

xmym
zm


where [xm, ym, zm]T is a point in the frame of marker Mi and [xc, yc, zc]T is
the transformed point in the frame of the given camera.

Afterwards, we apply on this point the calibrated camera model to obtain
the projected point [u, v] in the 2D plane of the given camera:
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x′c = xc/zc

y′c = yc/zc

r =
√
x′2 + y′2

x′′c = x′c(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′
cy
′
c + p2(r2 + 2x′2c )

y′′c = y′c(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y′2c ) + 2p2x

′
cy
′
cuv

1

 = K

x′′cy′′c
1



(3.6)

where K, k1..k3 and p1..p2 are camera parameters obtained by camera
calibration described in 3.2.3.

3.3.3 Optimization problem formulation

We formulated the objective function as the error of computed marker pro-
jections across all markers captured by the cameras in all robot poses in the
dataset and the error of distances of touching end effectors:

~g(φ,D, ζ) =
[
~P (φ,D, ζ), 3000 · ~C(φ,D, ζ)]

]
, (3.7)

where ~P (φ,D, ζ) is a vector of length 2M containing errors of computed
marker projections in u and v (where M is a number of points in dataset D),
and ~C(φ,D, ζ) is a K-element vector of the error of distances of touching end
effectors. The φ is the parameter vector defined in Eq. 3.2, D denotes the
dataset defined in Eq. 3.3 and ζ contains all other necessary parameters.

The marker error is defined as

~P (φ,D, ζ) =
[
~p(φ,D1, ζ)− ~z(D1), ..., ~p(φ,DM , ζ)− ~z(DM )

]
where ~p(φ,Di, ζ) projects the marker given by the dataset point Di, where
i ∈ A, A = {1, ...,M} (M is a number of points in dataset D) into the camera
plane given by Di using forward kinematics and camera model, as stated in
the previous section. The dataset point includes information about which
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marker was detected, on which hand and using which camera. The ~z(Di)
obtains the actual position in the camera from the dataset point.

The distance error is defined as

~C(φ,D, ζ) = [c(φ,D1, ζ)− q(ζ), ..., c(φ,DK , ζ)− q(ζ)]

where the function c(φ,Di, ζ) computes the distance of the icosahedron centers
in the configuration given by the dataset point Di, where i ∈ B, B ⊂ A is
a subset of the dataset points where the pose of the robot is unique. We
assume all robot poses in B feature touching end effectors. The function q(ζ)
obtains the distance of the centers of touching icosahedrons from ζ.

In the Eq.3.7, we scaled up the distance error by the factor of 3000. The
reason for this is that the focal lengths of both cameras are approximately
6000 px. An object of length 1 m posed 1 m in front of the camera will
measure 6000 px in the image. The average distance of the markers on the
end effectors from the cameras is about 2 m during the experiment, so a 1
m displacement causes a roughly 3000 px displacement in the image. By
scaling the distance error, we converted the distance unit from meters to an
equivalent of pixels.

3.3.4 Non-linear least squares optimization

Our calibration pipeline was based on Matlab and Optimization Toolbox. The
calibration was done offline, based on a dataset collected during experiments
on the robot, therefore it didn’t need to be installed on the same computer
used for robot control. Considering the computational intensity of the task,
we chose a more powerful PC with Intel i7-6700K processor.

Optimization toolbox offers multitude of ready-to-use optimization func-
tions. We chose “lsqnonlin”function, which offers two algorithms to choose
from - Trust-Region-Reflective and Levenberg-Marquardt. We chose Levenberg-
Marquardt algorithm over Trust-Region-Reflective, because Birbach et al. [3]
and Bennet et. al. [4] use it in their works, furthermore, Hollerbach et al. [1]
propose Gauss-Newton algorithm, which is related to Levenberg-Marquardt
algorithm, for solving the calibration task.

General Levenberg-Marquardt algorithm requires the first derivative of the
objective function, the Jacobian, to be known. The “lsqnonlin” implementa-
tion allows the estimation of Jacobian using finite difference. This increases
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the computational intensity of the optimization, because multiple evaluations
of the objective function are required in each iteration. The reward for this
drawback is that “lsqnonlin” is universally applicable on functions that don’t
have Jacobian in analytical form or require complex calculus for it to be
obtained.

3.3.5 Line descent optimization algorithms

Levenberg-Marquardt algorithm is a numerical optimization method used
for solving non-linear least-squares problems. According to [30], it belongs
to the family of line descent algorithms. This family of algorithms finds a
free local minimum of the objective function f(~x) by iterative stepping from
initial value ~x0 in the direction ~v by the step size γ. Other algorithms in this
family are Gradient descent, Newton’s method, Gauss-Newton algorithm, etc.
The algorithms in general work by repeating the iteration steps:

. find the direction ~vk using f(~x), f ′(~x) or other supplied function. find the step size γk, e.g. using line search in the direction ~vk. update the value ~xk+1 = ~xk + γk · ~vk. check the accept condition, e.g. f(~xk+1) < f(~xk),. if not satisfied, revert to ~xk and modify ~vk or γk for the next step. check the stopping condition(s), e.g. number of iterations, size of f(~xk+1),
size of the step. if satisfied, end computation

Gradient descent

Gradient descent [30] uses the step direction opposite to the direction of the
gradient, i.e. Jacobian of the objective function in the point xk, and step
size is either constant, proportional to the gradient or determined by line
search for minimum value in the direction of the gradient. With step size
proportional to the gradient with a coefficient γ, the update step is given as

~xk+1 = ~xk − γf ′(~xk)T .
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Gradient descent is proven to be reliable, never diverges (f(~xk+1) is always
< f(~xk)), but it suffers from slow convergence on certain objective functions
as it nears the local minimum. In such case, a characteristic zig-zag pattern
in ~x iterations can be observed.

Newton’s optimization method

Newton’s optimization method [30] is a way to numerically solve a set of
nonlinear equations based on first-order Taylor polynomial approximation,
denoted with subscript T1. For the set of equations ~g(~x) ∈ Rm → Rn the
solution of ~g(~x) = ~0 is found by iteratively solving the problem

~gT1(~xk+1)
∣∣∣∣
~x=~xk

= ~g(~xk) + ~g ′(~xk)(~xk+1 − ~xk) = ~0,

where the solution can be formulated as

~xk+1 = ~xk − ~g ′(~xk)−1~g(~xk).

The algorithm iterates until ~xk−1−~xk < required precision. This method can
be used to minimize any nonlinear function f(~x) that has second derivation.
In such case we search for a stationary point of f(~x), i.e. a point where
f ′(~x) = ~0. If we substitute ~g(~xk) with f ′(~x) in the previous equation, we
obtain

f ′T1(~xk+1)
∣∣∣∣
~x=~xk

= f ′(~xk) + f ′′(~xk)(~xk+1 − ~xk) = ~0,

which gives the iteration step

~xk+1 = ~xk − f ′′(~xk)−1f ′(~xk).

Gauss-Newton algorithm

Gauss-Newton algorithm [30] is an employment of the Newton’s optimization
method on least-squares nonlinear functions. The algorithm is based on the
fact that when we substitute the ~g(~x) in the objective function f(~x) = ‖~g(~x)‖2
with first-order Taylor approximation, we obtain

‖~g(~x0) + ~g ′(~x0)(~x− ~x0)‖2 = ‖~g ′(~x0)~x− ~g ′(~x0)~x0 + ~g(~x0)‖2 = ‖A~x−~b‖2

where A = ~g ′(~x0) and ~b = ~g ′(~x0)~x0 − ~g(~x0).
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The optimal solution ~x ∗:

~x ∗ = arg min
~x

‖A~x−~b‖2

can be found using pseudo-inversion: ~x = A+~b = (ATA)−1AT~b. We obtain

~x = ~g ′(~x0)+(~g ′(~x0)~x0 − ~g(~x0)) = ~x0 − ~g ′(~x0)+~g(~x0).

Thus the iteration step is

~xk+1 = ~xk − ~g ′(~xk)+~g(~xk).

Both Newton’s method and Gauss-Newton algorithm are known to converge
rapidly when the ~x is close to the minimum. The advantage of Gauss-
Newton algorithm is that it doesn’t require the second derivation of f(~x),
i.e. the Hessian, which is needed in standard Newton’s method. The main
disadvantage is that the algorithm may not converge if the initial value ~x0 is
too far from the minimum.

Levenberg-Marquardt algorithm

Levenberg-Marquardt algorithm eliminates the disadvantages of Gradient
descent and Gauss-Newton algorithm by merging both approaches [30].

~xk+1 = ~xk − (~g ′(~xk)T~g ′(~xk)− λkI)−1~g ′(~xk)T~g(~xk)

With λk very high, the term (~g ′(~xk)T~g ′(~xk)− λkI)−1 approaches λ−1
k I and

the behavior of the algorithm becomes akin to Gradient descent.

~xk+1 = ~xk −
1
λk
~g ′(~xk)T~g((~xk))

With λk very low, the term (~g ′(~xk)T~g ′(~xk)−λkI)−1 approaches (~g ′(~xk)T~g ′(~xk))
and the behavior of the algorithm becomes akin to Gauss-Newton algorithm.

~xk+1 = ~xk − ~g ′(~xk)+~g(~xk).

Thus, the variable λ allows a choice between Gradient descent’s stability
and Gauss-Newton algorithm’s fast convergence on a continuous scale. Choice
of appropriate λ is carried out during each iteration of the algorithm. The
algorithm starts with ~x0 and λ0 supplied by the user or default values are
used. Then, the algorithm iterates over these steps:

. update the value ~xk+1 = ~xk − (~g ′(~xk)T~g ′(~xk)− λkI)−1~g ′(~xk)T~g(~xk)
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. check the accept condition f(~xk+1) < f(~xk). if satisfied, set λk+1 = λk

10. else revert ~xk+1 = ~xk and set λk+1 = 10λk. check the stopping conditions, e.g. number of iterations, size of the step,
first order optimality. if satisfied, end computation

By employing this form of regulation, the parameter λ is held just above the
boundary below which the algorithm becomes unstable. Thus the algorithm
maintains just enough Gradient descent’s stability while utilizing maximum
of Gauss-Newton algorithm’s convergence rate.

3.3.6 Evaluation

Before the optimization, we randomly divided the dataset to training and
testing data with a ratio of approximately 70 to 30. Training and testing
datasets contained distinct set of poses, this means that multiple observations
of markers in a given pose were all added to the same batch. The optimization
was based on the training data, the testing data was used to evaluate the
result. We used root-mean-square (RMS) error to compare the results from
multiple runs of the optimization. In addition to that, we used quiver plot to
show the individual errors of the objective function after optimization. We
also created a histogram of the errors to examine their distribution.

We calculated the RMS error of the marker positions (error over ~P (φ,D, ζ),
using formulation of optimization problem from Section 3.3.3) as√√√√ M∑
i=1

1
M

(p1(φ,Di, ζ)− z1(Di))2 + (p2(φ,Di, ζ)− z2(Di))2 =
√

1
M
‖~P (φ,D, ζ)‖2,

where M is a number of points in dataset D, φ is parameter vector and ζ de-
fines all other necessary parameters, ~p(φ,Di, ζ) =

[
p1(φ,Di, ζ), p2(φ,Di, ζ)

]
projects the marker given by the dataset pointDi, where i ∈ A, A = {1, ...,M}
into the camera plane given by Di using forward kinematics and camera model.
The ~z(Di) =

[
z1(Di), z2(Di)

]
obtains the actual position in the camera from

the dataset point, as was already described in Section 3.3.3.
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In a similar way, we calculated the RMS error of the distances (error over
~C(φ,D, ζ)) as√√√√ K∑

i=1

1
K

(c(φ,Di, ζ)− q(ζ))2 =
√

1
K
‖~C(φ,D, ζ)‖2,

where K is a number of poses, the function c(φ,Di, ζ) computes the distance
of the icosahedron centers in the configuration given by the dataset point Di,
where i ∈ B, B ⊂ A. The function q(ζ) obtains the distance of the centers of
touching icosahedrons from ζ, as was already described in Section 3.3.3.

We compare individual results of the optimization using a quadratic sum
of both values, √

1
M
‖~P (φ,D, ζ)‖2 + 1

K
‖3000 ~C(φ,D, ζ)‖2

This sum assumes the same weight of the marker positions and distances errors
regardless of the ratio of marker positions and robot poses (for explanation
of the constant coefficient 3000 see the end of Section 3.3.3).
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Chapter 4

Safe self-touch behavior

When using MoveIt! manipulation software, any collisions are avoided by
default, based on the robot collision model and a model of its surroundings.
This avoidance behavior restricts any two objects on the scene from getting
close enough to touch each other.

To enable collision of particular objects, one needs to specify a list of pairs
of objects that may collide with each other and pass the list to the planner.

At this point, operation of the robot without other means of collision
detection is potentially risky. Although there may seem to be a straight path
without collisions between the start and the desired position, the planner
may generate trajectory in which a collision occurs. The reason for this are
joint angle constraints, which may cause the planner to change the robot
configuration on the way.

A workaround for this problem exists. It is possible to plan a major part
of the trajectory with full collision avoidance, until the gripper gets to close
vicinity of the object, and then interpolate the final approach with collision
of the gripper enabled. The interpolation function ensures that its output is
only straight path or nothing.

However, to perform safe touching with the object, a force sensor on the
base of the gripper must be used during the final approach.
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4.1 Force sensor calibration

Precise self-touch behavior without excessive forces requires sufficiently sensi-
tive collision detection via measurement of the forces acting on the gripper.
The robot is equipped with 6-D force/torque sensors on the base of each
gripper. The total force acting on the sensor equals to a sum of the weight of
the gripper, inertial force of the gripper, and any external force originating
from a collision. In addition to that, the sensor has a significant offset, which
needs to be measured before the actual force can be obtained.

We employed a simple method to obtain the offset of the sensor. The
reported force was measured across multiple orientations of the gripper w.r.t.
the gravity vector. In every orientation, 1000 samples of the sensor output
were taken and arithmetic average was logged. Because the inertial force
in a static position is zero, in each position, only the weight of the gripper
and the offset are measured. By rotating the gripper, the direction of the
weight vector is changed while its magnitude stays the same and offsets in
individual dimensions remain constant. Therefore, the forces measured in 3D
in individual orientations shall all lie on a sphere with the center position
equal to the offset and radius equal to the weight of the gripper.

We found that in addition to significant offset, the sensor also suffers from
minor multiplicative error. All attempts to fit a sphere to the measured data
were met with systematic errors which resulted in the center tending to the
direction where the density of measured samples was highest. Consequently,
fitting of an ellipsoid was found necessary.

The position of the center of the ellipsoid equals the offset of the force
sensor. The semi-axes are equal to the weight of the gripper with small
multiplicative error. We claim the arithmetic average of the three semi-axes
as the "true" weight and the ratio of individual semi-axes to the average as
the multiplicative error.

Our calibration script can be found in the project’s GitLab repository [24].
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Figure 4.1: Example output of the calibration script, black dots are logged
forces, red wire frame represents a fitted ellipsoid.

4.1.1 Drift of the offset

After repeated runs of the calibration script, it was discovered that the
calculated offset varies by up to one newton between two executions of the
script. This variance is too big to be explained by sensor noise or vibrations.
Failure of the fitting algorithm was also rejected.

The calculated offset was eventually found dependent on the orientation of
the gripper before the calibration. The variance was confirmed to be caused
by offset drift.

This disabled our intended user case - the sensor would be calibrated once
and offset would be saved into a file, which would be loaded by the collision
detection program at every startup. Because of the drift, the offset needs to
be measured a certain time after every change of the gripper orientation and
then repeatedly in prolonging time intervals.

Since the full calibration requires a certain amount of samples in many
orientations to be taken and is relatively time-consuming, we decided for a
simpler calibration method, where 1000 samples are taken in the current ori-
entation before every touching motion. The method needs to be implemented
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within the collision detection program and by design cannot tell apart the
offset and weight of the gripper. The calibration is only valid until the gripper
changes its orientation, but due to the aforementioned issues, so does the
full calibration. We decided to use this simplified calibration in our collision
detection program.

4.2 Motion Strategy GUI

To carry out experiments, we had to develop a user interface, which would
allow the user to specify a complex motion "plan" with collision detections
and resolutions. Because the "plan" lies above the motion plan generated by
MoveIt!, we call it motion strategy.

4.2.1 Description of the interface

Figure 4.2: Screenshot of the GUI.

Motion strategy editor panel

The motion strategy GUI consists of four main areas. The large area on the
right is the motion strategy editor panel. The current motion strategy is
shown here.
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Action configuration

On the left of the main window is the action configuration. The configuration
is further divided to the Position section, which allows the user to specify
the position of the gripper, the Orientation section, which allows the user to
specify the orientation of the gripper, the Speed section, which allows the
user to specify the maximum rotation speed of the robot motors during the
action, and the Settings section with the following options:

.What is the point on the end effectors to be posed into the specified pose
(choice from a list)..Whether to use planning or interpolation..Whether to enable collisions, which relates to the collision of the two. icosahedrons only..Whether to use collision detection via force sensing..Whether the next action will terminate the motion strategy in case of
collision or whether the strategy should continue with the next action..Whether the position is given w.r.t. the previous position..Whether to skip the action when planning or interpolating cannot find
an acceptable path.

Motion strategy editor controls

Below the editor window, motion strategy editor controls are located. The
first row works in conjunction with the currently selected action in the editor
window. The second row works with the whole strategy, with exception of
"Insert home", which works with the currently selected action. The last line
controls dataset creation. Logging positions for the dataset is disabled at
default. The log can be saved by the "Save log" button or cleared with the
"Clear log" button. The "Current position" states how many positions have
been logged and at the same time allows the user to rewrite any number of
last-logged positions by reducing the number in the spin box.
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Robot controls

The last area is the robot controls area, located in the left bottom corner.
This allows to test the current action configuration, run the motion strategy,
return the robot to home position and stop the robot.

4.2.2 Program Structure

The application was written in Python 2.7. Several Python modules were used
for various purposes. The following table lists the most important modules
and their use:

. ActionLib: Interaction with the camera server. CV2 (OpenCV Python binding): Finding the markers in the image. NumPy: Math, especially matrix calculations. RobotCommander: Interaction with the robot, path planning, kinematics. Rospy: Interaction with ROS. Tkinter: Creation of the GUI

Motion Strategy application

The “motion_strategy.py” file contains the program that creates the GUI and
defines the objects that represent actions in the motion strategy. The motion
strategy itself is implemented as a linked list of actions. All modifications to
the motion strategy are recursive calls that are passed by each action to the
following actions until the desired action is found. All actions are able to add
themselves to the GUI component that presents the motion strategy to the
user and also remove themselves from the component.
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Robot library

The “robot_lib.py” file contains the robot top-level library. All calls to robot
controls are asynchronous, which means they initiate the trajectory execution
and do not wait for the robot to reach the end of the trajectory. During
initialization, the robot library launches a standalone thread that in periodic
time intervals checks whether the end of the trajectory has been reached
and if so, starts another action. As the action is run, it passes a reference
to the next action to the robot library. When the end of the trajectory is
reached, the robot library calls the next action using this reference, upon
which a reference to the next action of the called action is passed to the
library. This way the program iterates over the entire motion strategy, until
a “None” reference is returned. The same mechanism is used to schedule an
action to be run if a collision is detected.

The collision detection logic is carried out whenever the ROS subscriber
receives a message containing current force measurements from the force
sensor. If the last started action allowed collision detection, the raw value
is corrected for offset and then compared to a threshold. If the threshold is
exceeded, the robot is immediately stopped and the current position is logged,
marker positions are requested from the camera library and are logged too.
The offset is calculated by the method described in Subsection 4.1.1.

Camera library

The The “camera_lib.py” file contains the camera top-level library, which
allows images to be captured by both of the cameras and ArUco markers to
be detected in images. The library also counts the centers of the markers
from corner points and converts the array of marker coordinates into a string
for logging purposes.

Calculation of marker centers from corner points

OpenCV ArUco module provides the coordinates of all four corners of the
marker. In the dataset, we only log the position of the center of each marker.
The reason for this is that the rotation of the marker along the face normal is
chosen as what fits best. We don’t have the information required to reproject
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4. Safe self-touch behavior ................................
the corners of the marker, only the center, which is invariant to the rotation
along the face normal.

We assume that the center of any quadrilateral, i.e. the intersection of both
diagonals, under pinhole projection retains its position at the intersection of
both diagonals. For four corners ~p1 =

[
x1 y1

]
, ~p2 =

[
x1 y1

]
, ~p3 =

[
x1 y1

]
and ~p4 =

[
x1 y1

]
in clockwise order, the center is found as the intersection

of a line given by ~p1 and ~p3 and a line given by ~p2 and ~p4. The intersection
(x, y) can be found as

x = (x3y1 − x1y3)(x4 − x2)− (x4y2 − x2y4)(x3 − x1)
(x3 − x1)(y4 − y2)− (x4 − x2)(y3 − y1) ,

y = (x3y1 − x1y3)(y4 − y2)− (x4y2 − x2y4)(y3 − y1)
(x3 − x1)(y4 − y2)− (x4 − x2)(y3 − y1) .

This assumption about the intersection of diagonals does not stand after
the camera model described in chapter 3.2.2 is applied, however, the error
may be rather low. We tested the error arising from center being found on
distorted image using the corner points from real images captured by one of the
cameras. We undistorted the points by OpenCV function “undistortPoints”,
then found the centers of these undistorted markers and reapplied the camera
model. Finally we found the centers using the distorted corner points and
compared both results. The error was found to be in order of 10−2 px, which
is negligible considering that with our settings, OpenCV finds the corner
points with granularity of whole pixels.

4.3 Test of the collision detection

For reliable collision detection, it is essential to set an appropriate detection
threshold. Three various thresholds were tested on 7 different collision paths
with a weighted paper box lying freely on the table. Force and force difference
were logged during the experiment. Figure 4.3 shows absolute value of force
during the experiment. Zero value is reported when collision detection is
disabled. Figure 4.4 shows measured peak forces. Figure 4.5 shows a typical
course of force during collision.
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Figure 4.3: Force during the experiment.

4.3.1 Evaluation of the collision detection behavior

The course of the force exhibits a characteristic peak and settling behavior.
The height of the peak correlates with the chosen detection threshold.

There seems to be a wide range of acceptable detection thresholds that
aren’t prone to false positive detections and also don’t cause excessive force
load to the robot. The difference was found too noisy to be used for reliable
collision detection alongside the force.

Because of issues with slow response time, a very low approach speed had
to be used during the dataset collection to minimize the error caused by
late response to the collision. We recorded about 200 to 300 millisecond
delay from collision occurrence to robot stopping. To minimize the error,
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4. Safe self-touch behavior ................................

Figure 4.4: Peak forces on collisions.

Figure 4.5: Typical course of force during collision with a paper box.

we reduced the maximal angular rate of the joints during collision approach
to 0.01 radians, resulting in a displacement of 2 to 3 mm per axis and per
meter of rotation radius. We found that during collision approaches in the
direction of X axis and in the region where collisions occur during dataset
collection (0.6 to to 1.3 m in front of the robot, 0.5 m to either side and
heights 0.7 to 1 m as written in 5.2), only the first joint of the manipulator
(joint S, as denoted in Subsection 3.3.1) reaches the speed limit and other
joint speeds are substantially lower. Thus the maximum error is bound to√

1.32 + (0.5 + 0.25)2 · 0.01 .= 1.5 · 0.01 · 0.3 = 4.5 · 10−3 m, which is 4.5 mm.

Due to the reduced speed of the joints, less noise caused by vibrations
was perceived by the sensor and we could reduce the threshold to 0.8 N
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Figure 4.6: Typical course of force during touching of the icosahedrons, right
icosahedron approaches static left icosahedron, red = right, blue = left, touch
occurs at 0.25 s and robot comes to full stop at 0.55 s

without causing false positive detections. Figure 4.6 shows the course of
forces measured by both force sensors during approach and touching of the
icosahedrons. Compare to 4.5 to see the improvement in noise levels.
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Chapter 5

Datasets

5.1 Dataset Structure

We work with two different dataset structures. Original dataset form (Subsec-
tion 5.1.1) is the one produced by our dataset collection program, found in the
Section 5.3. Reformed dataset (Subsection 5.1.2) is loaded by the calibration
script. We provide a simple Matlab script to convert from Original dataset
form to Reformed dataset. It can be found in our GitLab repository [24].

5.1.1 Original Dataset Form

The dataset consists of the assumed pose of both icosahedron centers (from
forward kinematics), the joint configuration of the robot, the magnitude of
force measured by both force sensors during the contact, the names of saved
camera images and coordinates of the projections of every marker into each
of the cameras.

The projections are sorted from lowest to highest marker ID in the right
camera image, and again from lowest to highest marker ID in the left camera
image. If a marker was not found in the image, its coordinates are denoted
as (-10000, -10000). The structure of one line in the dataset is as follows.
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. Position of the right icosahedron: X, Y, Z [m].Orientation of the right icosahedron: W, X, Y, Z [quaternion]. Position of the left icosahedron: X, Y, Z [m].Orientation of the left icosahedron: W, X, Y, Z [quaternion]. Joint configuration of the robot: turntable, S1, L1, U1, R1, B1, T1, S2,

L2, U2, R2, B2, T2 [rad]. Peak force (magnitude) during collision on right arm [N]. Peak force (magnitude) during collision on left arm [N]. Name of the image file from right camera. Name of the image file from left camera. 40 × positions of the marker centers (IDs 101 to 120, 201 to 220) in the
right camera: u, v [px]. 40 × positions of the marker centers (IDs 101 to 120, 201 to 220) in the
left camera: u, v [px]

5.1.2 Reformed Dataset

For the optimization, we decided to reform the dataset so that one line would
relate to one data point. The reformed dataset contains only the markers
that were actually detected. It consists of a number uniquely defining the
robot pose, a face number of the detected marker, the number of the arm (1
for right or 2 for left), the number of the camera (1 for right or 2 for left), the
coordinates of the projected point and the current robot joint configuration.
The structure of one line in the dataset is as follows.

. Pose ID: monotonic integer. Face ID: 1 to 20. Arm number: 1 or 2. Camera number: 1 or 2. Position of the marker center in the camera: u, v [px]. Joint configuration of the robot: turntable, S1, L1, U1, R1, B1, T1, S2,
L2, U2, R2, B2, T2 [rad]
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5.2 Individual datasets

We collected 2 different datasets that have very similar structure. Both of
the datasets are collected based on a grid of positions, both use randomized
touch angles and contain approximately the same number of poses.

5.2.1 Dataset 1

Dataset 1 contains poses with randomly chosen spherical tiles touching under
randomized azimuth and with randomized rotation around the common
normal. Both of the angles are whole numbers of degrees between -30 and
30, sampled from discrete uniform distribution. The collisions were done in a
horizontal 5 × 5 grid in heights of 0.8 m and 1 m. The grid is 0.8 m long
and 0.8 m wide, with the center lying 0.95 m in front of the robot. In each
position, touching was done within two different orientations, with the point
on the grid lying approximately in the point of touch. Some of the poses
in the higher grid could not be reached and so they were skipped. Fig. 5.1
shows the positions of centers of both icosahedrons as they traversed the grid.

The dataset contains 82 poses and 1649 marker projections in total, which
makes circa 20 markers per pose. Out of the 1649 marker projections, 892
come from right camera and 757 from the left camera. The reason why
the left camera took lesser amount of markers in total seems to be the
asymmetric shape of the manipulators. See figure 3.1, additional cables are
guided through a gooseneck tubing on the left side of the L link, further
increasing the asymmetry.

In Fig. 5.2, projections of markers from both arms to right and left camera
are visualized. In Fig. 5.3 we show orientations of individual icosahedron
in all measured poses. In the figure, two different orientations of the icosa-
hedrons can be seen in each position on the grid. In Fig. 5.4 we visualize
the distributions of joint angles across measured poses. As can be seen, the
stimulation of joints R1 and R2 may be insufficient. Subtle over-learning of
the robot model might occur, that would not be apparent until the calibration
would be tested on a new dataset where joints R1 and R2 were sufficiently
stimulated.
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Figure 5.1: Locations of icosahedron centers in dataset 1. The end of each
arrow denotes a position of icosahedron center in individual poses (red - left arm,
blue - right arm). As can be seen, data were acquired in heights of 0.8 and 1
m.
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Figure 5.2: Projection of markers on icosahedron from right/left arm to right/left
camera.

5.2.2 Dataset 2

Just like in dataset 1, this dataset contains poses with randomly chosen
spherical tiles touching. All aspects of the dataset are the same except the
heights of the grids, which are 0.7 m and 0.9 m (see Fig. 5.5). In each position,
touching was done in two different orientations. Moving the grid lower helped
with reaching all the poses. Fig. 5.5 shows the positions of centers of both
icosahedrons as they traversed the grid.

The dataset contains 100 poses and 1774 marker projections in total, which
makes circa 18 markers per pose. Out of the 1774 marker projections, 961
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Figure 5.3: Orientations of individual icosahedron in all measured poses of
dataset 1.
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Figure 5.4: Distributions of joint angles across measured poses of dataset 1
(joints with number 1 correspond to right arm, joints with number 2 correspond
to left arm).

come from right camera and 813 from the left camera.

In Figures 5.2, 5.3 and 5.4, we show the projection of markers on icosa-
hedron from right/left arm to right/left camera, orientations of individual
icosahedrons in all measured poses of dataset 2 and distributions of joint
angles across measured poses of dataset 2, respectively.
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Figure 5.5: Locations of icosahedron centers in dataset 2. The end of each
arrow denotes a position of icosahedron center in individual poses (red - left arm,
blue - right arm). As can be seen, data were acquired in heights of 0.7 and 0.9
m.
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Figure 5.6: Projection of markers on icosahedron from right/left arm to right/left
camera.
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Figure 5.8: Distributions of joint angles across measured poses of dataset 2
(joints with number 1 correspond to right arm, joints with number 2 correspond
to left arm).

5.3 Two Hands Experiment applet

We created a simple GUI applet to collect the dataset. The robot will collect
the data over a grid defined by the given number of stops on X axis and on Y
axis. Two runs through this grid in two given heights (Z axis coordinates) will
be done. Finally, the robot will attempt to do several collisions in one node
of the grid. The number of collisions can be specified too. The execution
of the dataset collection can be paused and resumed any time, but the last
started action will come to end before the robot will stop.

The applet makes use of the robot library described in Subsection 4.2.2 and
the camera library described in Subsection 4.2.2. Unlike the Motion Strategy
application, Two Hands Experiment applet does not use the structure of
objects representing actions, instead, a simple state machine is used. The
robot library calls a function of the applet itself, whenever a current action is
completed. This function makes the state machine progress to the next state
and issue a new action to the robot library. Fig. 5.9 shows a screenshot of
the applet.
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Figure 5.9: Screenshot of the Two Hands Experiment applet
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Chapter 6

Experiments and Results

We carried out multiple sets of calibrations with different sets of parameters
to be calibrated to evaluate how the calibration copes with various sensors
being used. Each set represents one combination of cameras, arms and touch
information. In each set, we carried out 11 calibrations to evaluate the
stability of the calibration. Table 6.1 lists the combinations of cameras, arms
and touch information we used and their abbreviations.

Configuration Abbreviation
Left arm, left camera LaLc

Left arm, both cameras LaRcLc
Right arm, right camera RaRc
Right arm, both cameras RaRcLc
Both arms, right camera RaLaRc
Both arms, left camera RaLaLc

Both arms, left camera, touch RaLaLcTd
Both arms, both cameras, touch RaLaRcLcTd

Table 6.1: Configurations of the robot

Table 6.2 shows what parameters are being calibrated within kinematic
chains with given abbreviations. If the abbreviation is, for example, RaLaR-
cLcTd, then the parameters are under RaLa, Rc and Lc in the table. Icosa-
hedron radius is never calibrated. Camera parameters are always the same
set, regardless of the choice of all DH or only offsets.

Certain parameters had to be excluded from the calibration due to them
being badly conditioned or unobservable. For example, all the turntable
DH parameters, dS and θS are unobservable because the manipulators and
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6. Experiments and Results................................
Abbrev. only DH parameters

offset
Ra no aL1, αL1, oL1, aU1, dU1, αU1, oU1, aR1, dR1,

αR1, oR1, aB1, dB1, αB1, oB1, aT1, αT1, dico1, oico1
La no aL2, αL2, oL2, aU2, dU2, αU2, oU2, aR2, dR2,

αR2, oR2, aB2, dB2, αB2, oB2, aT2, αT2, dico2, oico2
RaLa no aS1, αS1, aL1, αL1, oL1, aU1, dU1, αU1, oU1, aR1,

dR1, αR1, oR1, aB1, dB1, αB1, oB1, aT1, αT1, dico1,
oico1, aturn2, αturn2, aS2, dS2, αS2, oS2, aL2, αL2,
oL2, aU2, dU2, αU2, oU2, aR2, dR2, αR2, oR2, aB2,

dB2, αB2, oB2, aT2, αT2, dico2, oico2
Ra yes oS1, oL1, oU1, oR1, oB1, oT1
La yes oS2, oL2, oU2, oR2, oB2, oT2

RaLa yes oS1, oL1, oU1, oR1, oB1, oT1, oL2, oU2, oR2, oB2, oT2
Rc yes/no aturn3, dturn3, αturn3, oturn3, dcam1, ocam1
Lc yes/no aturn4, dturn4, αturn4, oturn4, dcam2, ocam2

Table 6.2: DH parameters optimized within given kinematic chain, RaLa stands
for the case when both Ra and La are used.

the cameras are all attached to the top of the turntable. We only optimize
some of them when we need to lift the constraints on mutual position of the
manipulators. The badly conditioned parameters are typically near-parallel
rotation axes of the manipulator. By having one of the parameters fixed, we
improve the conditionality of the solution, but we lose a degree of freedom
of the model and the reduced set of optimization parameters may not be
sufficient to explain all phenomena observed on the dataset. The L and U
axes of the manipulators are stated as parallel by the manufacturer, so we
fix the dL parameter of each manipulator. The Z axis of the icosahedron is
also near-parallel to the Z axis of the T joint and the offset of the T joint
is badly observable because the θ of the icosahedron is a rotation almost in
the same plane, so we fix the dT and oT parameters of each manipulator.
Some parameters are also unnecessary, but we keep them for formal reasons.
These are acam and αcam. They are unnecessary because the position of each
camera has got 6 DoF and is fully determined by 6 DH parameters.

6.1 Calibration without perturbation

This calibration starts from nominal DH parameters and calibrates the
parameters of each involved kinematic chain. We carried out two sets of
calibration, all DH parameters and only offsets. Note that the kinematic
chain formulation in Table 6.2 applies here, so we did not truly calibrate
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............................ 6.1. Calibration without perturbation

every single DH parameter, just the greatest subset that doesn’t lead to
ill-conditioned optimization task.

As can be seen from Figures 6.1 and Table 6.4, attempts to calibrate one
arm using only the offsets result in increased touch distance error. Even if
both cameras are used, the touch distance error does not decrease for RaRcLc
chain. This may be caused by the position of the arm in one-arm calibration
being unobservable or badly conditioned, giving the optimization algorithm
freedom to choose one of many solutions in a case where the solution should
be unique. If two arms are used with one camera, the touch distance error
decreases, as the calibration is able to optimize the position of the arms
with relation to each other, even if the touch distance error is not used for
calibration.

From Figure 6.1 and Table 6.4, it can be concluded that RaRc and LaLc
are not symmetrical. This is no surprise as we noticed the asymmetry of the
dataset back in the Section 5.2. The left camera of the robot consistently sees
lower number of markers then the right camera. In Section 5.2, we suggested
that the left camera is partially occluded by the asymmetric left robot arm,
but we didn’t deal with this problem into much detail.

The excessive touch distance error does not seem to appear when all DH
parameters are calibrated, albeit the trend of decreasing touch distance
errors stands here too. The increased degree of freedom seems to allow the
RaLaRc chain to optimize the marker error for the cost of increasing touch
distance errors, but the touch information in RaLaRcTd helps to achieve
better optimization of touch distance errors while keeping the lowered marker
error. As expected, the training error is only very slightly lower than the
testing error in most of the cases, suggesting little to no over-fitting occurs
during optimization. The few cases where the testing error is lower than the
training error are most likely due to noise in the dataset and are statistically
insignificant, considering how little the difference is and how high the standard
deviations of the errors are.

In Table 6.3 we show average errors before calibration on training and
testing data for markers positions and distances. The data is very similar for
all kinematic chains since no perturbation was done and so we present the
mean and the standard deviation for all errors over 11 repetitions across all
the chains. Values for individual kinematic chains are shown in the appendix,
see Chapter A), Table A.1. Most of the chains with all DH parameters
optimized produce lower marker error but higher touch distance error than
the nominal DH parameters with only camera chains and end effector links
calibrated by our method (See Table 6.9).
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Figure 6.1: Errors after calibration of the offsets (left column) and all DH
parameters (right column) of individual kinematic chains. We show mean and
standard deviation (over 11 repetitions) of absolute errors of marker distances in
camera frame (in pixels) and icosahedrons distances (in mm) over train and test
dataset.

Absolute error Only offsets
mean (std) min max

Markers Train 1392 (5) 1342 1466
[px] Test 1391 (11) 1311 1473

Distances Train 5.73 (0.14) 5.369 6.039
[mm] Test 5.69 (0.29) 4.928 6.451

Table 6.3: Errors before calibration, mean value, standard deviation, minimum
and maximum over all kinematic chains over all repetitions.

In Fig 6.2 we compare the touch distance errors for individual chains
before and after calibration. If there was a perfect calibration over a dataset
with measurement errors of purely Gaussian characteristic, the histogram
of errors should form a Gaussian curve with its peak in zero. A look into
Fig 6.2 reveals that this approximately stands for chains RaLaRc, RaLaRcTd,
RaLaRcLc and RaLaRcLcTd. For RaLaRcLcTd the peak is narrowest, which
means the lowest error in touch distance. This is an expected outcome, since
RaLaRcLcTd comprises the most informed and least constrained calibration.
Results over multiple chains including errors of markers can be found in
appendix A.

We take the icosahedron diameter of 116 mm as a ground truth because it
was found that the optimization tries to compensate an error in Z coordinate
of the icosahedron position by altering the diameter of the icosahedron. This is
because all the touching tiles lie in one plane with relation to the icosahedron
and the error of their distance from the center may be explained either by
displacement of the icosahedron or by difference in its diameter.
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Figure 6.2: Comparison of error on distance between icosahedrons on both arms
before and after calibration when individual chains are calibrated.
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Figure 6.4: Comparison of error of marker positions in camera frame before and
after calibration for RaLaRcLc kinematic chain with touch (RaLaRcLcTd).

Figure 6.4 shows the marker projection errors before and after calibration
for the best kinematic chain - RaLaReLcTd. The error distributions for other
chains can be found in the appendix, see Fig. A.1- A.3. As can be seen from
the graphs, calibration always provides a substantial improvement since the
positions of both cameras were determined during the assembly using only
basic tools - ruler and protractor. For this reason, calibration improves the
marker projection errors by up to two orders of magnitude.

Comparison of marker positions errors after calibration for various kinematic
chains can be found in Fig. 6.5. The results are all very similar, regardless of
whether the touch distance was used. There is just a bit larger variance in
the optimization results in chains containing one camera, compared to chains
containing both cameras.
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Figure 6.5: Error of marker positions in camera frame (restricted to same
number of evaluated marker positions) after calibration for individual chains.

6.2 Calibration with perturbation

The parameters were perturbed before the calibration to assess the stability
of the calibration algorithm. The perturbations were drawn from an uni-
form distribution with symmetric ranges. We chose three distinct levels of
perturbation, slight, moderate and intense. Table 6.5 shows the ranges of
distributions used in each perturbation level.

In Table 6.6 we show absolute errors of markers positions and distances
between icosahedrons after calibration of DH parameters for multi-chain
calibration (RaLaRcLcTd chain - both arms, both eyes + touch). Results for
all evaluated chains are shown in appendix (see Table A.2 - A.4).

The errors in the calibrations of all DH parameters are lower than in the
calibrations of offsets only, and that stands even when the parameters are
perturbed. We can see some kinematic chains with moderate perturbation
reach the same minimum value as the kinematic chains with slight perturba-
tion, but the variance is much higher. For intense perturbation, the errors
stay large, because none of the chains with intense perturbation converged.

Evaluation of the calibration result over various perturbation of the pa-
rameters allows us to evaluate the ability of the calibration algorithm to
find the global optimum. Such behavior is not guaranteed with numerical
optimization methods. Our results show that under moderate perturbation
as defined in Table 6.5, the algorithm sometimes converges to the global
optimum. We haven’t recorded a single case of global optimum under intense
perturbation, as defined in Table 6.5.
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Figure 6.6: Errors after calibration of the offsets (left) and all DH parameters
(right) of individual kinematic chains. Results for 3 different values of initial
perturbation of nominal DH parameters (see Table 6.5) are compared. We show
mean and standard deviation (over 11 repetitions) of absolute errors of marker
distances in camera frame (in pixels) and icosahedrons distances (in mm) over
train and test dataset.
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Chain abbreviation Only offsets all DH

mean (std) min max mean (std) min max
RaRc

Markers Train 20.97 (0.92) 18.92 22.31 17.99 (0.81) 16.39 19.32
[px] Test 22.9 (1.9) 20.04 26.72 20.1 (1.7) 17.77 23.5

Distances Train 133.9 (5.3) 127.8 146.3 12.9 (1.6) 10.6 15.73
[mm] Test 132.7 (7.1) 120.7 145.2 13.2 (1.5) 10.28 15.36

RaRcLc
Markers Train 20.3 (0.79) 18.95 21.48 17.29 (0.5) 16.41 18.04

[px] Test 21.5 (1.8) 18.63 24.4 18.6 (1.2) 17.09 20.79
Distances Train 151.7 (7.2) 141 161.5 12.3 (1.8) 10.24 15.49

[mm] Test 152.1 (9.2) 138.7 165.9 12.1 (1.9) 9.646 14.85
LaLc

Markers Train 27.9 (1) 26.29 29.13 16.48 (0.69) 15.2 17.58
[px] Test 30.6 (2.5) 27.01 34.32 20.3 (3.9) 16.07 30.36

Distances Train 34.9 (6.1) 21.71 43.01 12.6 (3.1) 9.073 17.09
[mm] Test 35.3 (7.2) 19.77 45.33 12.4 (2.7) 9.172 16.1

LaRcLc
Markers Train 29.66 (0.76) 28.45 30.92 18.77 (0.5) 18.17 19.6

[px] Test 30.5 (1.7) 27.37 32.79 22.1 (2.5) 18.93 28.87
Distances Train 20.8 (9) 5.976 36.94 5.1 (1.9) 3.275 9.374

[mm] Test 20.4 (9) 6.558 35.81 5.3 (1.8) 2.948 8.547
RaLaRc

Markers Train 26.69 (0.79) 24.88 27.92 17.37 (0.36) 16.95 17.96
[px] Test 28.4 (1.8) 25.67 32.4 19.2 (1) 17.63 20.81

Distances Train 6.74 (0.22) 6.348 7.131 5.61 (0.84) 4.401 7.112
[mm] Test 7.14 (0.47) 6.427 8.062 6 (1.3) 4.427 8.647
RaLaRcTd

Markers Train 26.86 (0.86) 25.2 28.12 17.61 (0.5) 16.33 18.28
[px] Test 28.1 (1.9) 25.03 31.69 19 (1.4) 16.92 21.71

Distances Train 6.459 (0.091) 6.366 6.622 3.67 (0.21) 3.383 3.959
[mm] Test 6.64 (0.35) 6.09 7.171 4.11 (0.66) 3.277 5.31
RaLaRcLc

Markers Train 25.85 (0.82) 24.1 27.1 16.49 (0.61) 15.74 17.45
[px] Test 27 (1.9) 23.9 30.55 18.7 (1.8) 16.77 22

Distances Train 6.35 (0.12) 6.153 6.61 4.07 (0.17) 3.852 4.348
[mm] Test 6.55 (0.42) 6.128 7.709 4.6 (0.73) 3.577 5.638
RaLaRcLcTd

Markers Train 25.88 (0.62) 25 26.6 16.41 (0.45) 15.78 17.21
[px] Test 26.8 (1.4) 25.11 28.69 18 (1.2) 16.26 19.88

Distances Train 6.22 (0.26) 5.773 6.528 3.47 (0.15) 3.234 3.714
[mm] Test 6.43 (0.62) 5.494 7.156 3.66 (0.56) 2.607 4.579

Table 6.4: Absolute errors of markers positions and distances between icosahe-
drons evaluated on training and testing data after calibration of DH parameters
using individual kinematic chains. We show results for a case when only offsets
are calibrated (left) and when all DH parameters are calibrated (right). Results
are averaged over 11 runs (standard deviation is shown in parenthesis).
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Level Arm a, d, α Arm θ offset Camera a, d, α, θ
slight ± 0.01 m/rad ± 0.1 m/rad ± 0.05 m/rad

moderate ± 0.03 m/rad ± 0.3 m/rad ± 0.03 m/rad
intense ± 0.1 m/rad ± 1 m/rad ± 0.1 m/rad

Table 6.5: Ranges of distributions used in each perturbation level

Chain abbreviation Only offsets all DH
mean (std) min max mean (std) min max

RaLaRcLcTd slight perturbation slight perturbation
Markers Train 25.84 (0.72) 24.69 27.44 16.32 (0.55) 15.52 17.1

[px] Test 27 (1.6) 23.62 29.6 18.5 (1.2) 16.69 20.32
Distances Train 6.35 (0.15) 6.122 6.651 3.38 (0.11) 3.17 3.609

[mm] Test 6.42 (0.44) 5.765 7.1 4.2 (0.62) 3.316 5.454
RaLaRcLcTd moderate perturbation moderate perturbation

Markers Train 30 (15) 24.69 74.97 22 (17) 15.52 73.73
[px] Test 32 (16) 23.62 80.08 23 (17) 16.69 73.93

Distances Train 8.6 (7.6) 6.122 31.66 7 (12) 3.17 42.49
[mm] Test 8.7 (7.5) 5.765 31.3 6.3 (6.9) 3.316 27.17
RaLaRcLcTd intense perturbation intense perturbation

Markers Train 9e+16 (2.7e+17) 495.7 8.89e+17 4e+14 (1.3e+15) 98.2 4.256e+15
[px] Test 5e+20 (1.3e+21) 580.1 4.457e+21 2.5e+23 (7.8e+23) 101.3 2.601e+24

Distances Train 820 (810) 18.47 2490 1100 (1100) 15.42 2950
[mm] Test 840 (800) 13.77 2416 1200 (1100) 25.74 2890

Table 6.6: Absolute errors on training and testing data after multi-chain cal-
ibration of perturbed DH parameters (RaLaRcLcTd chain). We show results
for a case where only offsets are calibrated (left) and when all DH parameters
are calibrated (right). Results for 3 different values of initial perturbation of
nominal DH parameters (see Table 6.5) are compared. Results are averaged over
11 runs (standard deviation is shown in parenthesis).

71



6. Experiments and Results................................
6.3 Sequential calibration

In Table 6.7 we show absolute errors on testing and training datasets with
parameters calibrated using sequential calibration where first arm is calibrated
(starting from nominal DH parameters) using both cameras and then the
multi-chain calibration on both arms and cameras is performed. Table 6.8
presents our results for sequential calibration where 3 different levels of
parameters perturbation were applied to DH parameters to be calibrated (for
perturbation values see Table 6.5). In B, Table B.1, shows values for the case
where the right arm is calibrated first.

Figure 6.7: Errors after calibration of the offsets of individual kinematic chains
(sequential calibration). We show mean and standard deviation (over 11 repe-
titions) of absolute errors of marker distances in camera frame (in pixels) and
icosahedrons distances (in mm) over training and testing dataset.

As can be seen from Figure 6.7 and Table 6.7, best sequential calibration was
reached with the optimization of chain LaRcLc followed by the optimization of
RaLaRcLcTd with all DH parameters, which led to error of markers positions
18.1(1.6) and mean error of distances between icosahedrons 3.83(0.58) (for
the best calibration we achieved error of markers positions 14.5 and mean
error of distances between icosahedrons 2.92).
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Figure 6.8: Errors after calibration of the offsets (left) and all DH parameters
(right) of individual kinematic chains using sequential calibration. Results for 3
different values of initial perturbation of nominal DH parameters (see Table 6.5)
are compared. We show mean and standard deviation (over 11 repetitions) of
absolute errors of marker distances in camera frame (in pixels) and icosahedrons
distances (in mm) over train and test dataset.
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Chain abbreviation Only offsets all DH
mean (std) min max mean (std) min max

RaRcLc → RaLaRcLc
Markers Train 25.41 (0.98) 23.47 26.51 16.29 (0.47) 15.22 16.96

[px] Test 28 (2.4) 25.34 33.33 18.04 (1) 16.61 19.98
Distances Train 6.43 (0.14) 6.196 6.654 4.07 (0.2) 3.776 4.31

[mm] Test 6.44 (0.48) 5.734 7.397 3.96 (0.36) 3.368 4.523
RaRcLc → RaLaRcLcTd
Markers Train 25.89 (0.68) 24.73 26.93 16.43 (0.4) 15.63 17.09

[px] Test 26.8 (1.5) 24.38 28.95 18.1 (1.5) 16.27 21.67
Distances Train 6.25 (0.17) 5.976 6.584 3.47 (0.21) 3.111 3.842

[mm] Test 6.45 (0.49) 5.716 7.136 4.1 (1.1) 2.923 6.699
LaRcLc → RaLaRcLc
Markers Train 26.16 (0.68) 25.02 27.1 16.5 (0.53) 15.43 17.21

[px] Test 26.3 (1.7) 24.06 28.93 17.9 (1.2) 16.35 20.46
Distances Train 6.5 (0.21) 6.237 6.846 3.87 (0.24) 3.473 4.206

[mm] Test 6.33 (0.59) 5.405 7.262 4.49 (0.58) 3.4 5.29
LaRcLc → RaLaRcLcTd
Markers Train 25.86 (0.48) 25.27 26.65 16.42 (0.57) 15.52 17.72

[px] Test 26.9 (1.1) 25.1 28.51 18.1 (1.6) 14.5 20.36
Distances Train 6.35 (0.12) 6.098 6.509 3.49 (0.14) 3.252 3.681

[mm] Test 6.23 (0.33) 5.632 6.675 3.83 (0.58) 2.923 4.744

Table 6.7: Errors on training and testing data after sequential calibration of
perturbed DH parameters where first one hand is calibrated using both eyes
(LARcLc and RARcLc for left and right arm respectively) and then the gained
calibration is used to calibrate the second hand and end-effector parameters
using multi-chain calibration (RaLaRcLc and RaLaRcLc for calibration with
and without touch respectively). We show results for a case when only offsets
are calibrated (left) and when all DH parameters are calibrated (right). Results
are averaged over 11 runs (standard deviation is shown in parenthesis).
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Chain abbreviation Only offsets all DH parameters
mean (std) min max mean (std) min max

LaRcLc → RaLaRcLc slight perturbation slight perturbation
Markers Train 25.67 (0.59) 24.78 26.65 16.4 (0.38) 15.75 17.16

[px] Test 27.3 (1.3) 25.32 29.32 18.2 (1.1) 16.74 19.93
Distances Train 6.38 (0.15) 6.189 6.728 3.93 (0.27) 3.57 4.451

[mm] Test 6.51 (0.37) 5.772 7.148 4.6 (1.2) 3.263 7.094
LaRcLc → RaLaRcLc moderate perturbation moderate perturbation
Markers Train 25.67 (0.59) 24.78 26.65 120 (230) 16.11 607.7

[px] Test 27.3 (1.3) 25.32 29.32 400 (1100) 16.74 3443
Distances Train 6.38 (0.15) 6.189 6.728 330 (870) 3.57 2858

[mm] Test 6.51 (0.37) 5.772 7.148 270 (720) 3.263 2361
LaRcLc → RaLaRcLc intense perturbation intense perturbation
Markers Train 2e+18 (6.4e+18) 25.09 2.14e+19 3e+25 (1e+26) 58.61 3.326e+26

[px] Test 4e+22 (1.2e+23) 28.8 4.137e+23 2.6e+30 (8.5e+30) 62.01 2.806e+31
Distances Train 1300 (890) 6.268 2428 1e+07 (3.2e+07) 80.96 1.068e+08

[mm] Test 1330 (900) 6.21 2401 1e+07 (3.2e+07) 96.12 1.072e+08
LaRcLc → RaLaRcLcTd slight perturbation slight perturbation
Markers Train 26.01 (0.68) 25.17 26.97 16.37 (0.43) 15.41 16.92

[px] Test 26.6 (1.6) 24.24 28.44 19.6 (3.3) 16.76 27.53
Distances Train 6.33 (0.15) 6.107 6.618 3.44 (0.24) 3.116 3.788

[mm] Test 6.46 (0.54) 5.336 7.348 5.3 (1.5) 3.025 8.083
LaRcLc → RaLaRcLcTd moderate perturbation moderate perturbation
Markers Train 150 (310) 25.17 1029 44 (91) 15.41 317.3

[px] Test 160 (330) 24.24 1055 7e+04 (2.3e+05) 16.76 7.669e+05
Distances Train 46 (89) 6.107 238.3 17 (44) 3.116 149.6

[mm] Test 43 (82) 5.336 212.4 24 (61) 3.025 208.6
LaRcLc → RaLaRcLcTd intense perturbation intense perturbation
Markers Train 1.8e+17 (6.1e+17) 578 2.025e+18 4000 (1e+04) 91.83 3.54e+04

[px] Test 5e+20 (1.7e+21) 642 5.598e+21 1e+06 (2.6e+06) 114.2 8.575e+06
Distances Train 540 (560) 172.1 1960 2e+04 (6.2e+04) 69.05 2.055e+05

[mm] Test 560 (560) 200.7 1948 2e+04 (6.2e+04) 79.01 2.062e+05

Table 6.8: Errors on training and testing data after sequential calibration of
perturbed DH parameters where first left hand is calibrated using both eyes
(LARcLc) and then this calibration is used to calibrate the second hand and end-
effector parameters using multi-chain calibration (RaLaRcLcTd). We show results
for a case when only offsets are calibrated (left) and when all DH parameters
are calibrated (right). Results for 3 different values of initial perturbation of
nominal DH parameters (see Table 6.5) are compared. Results are averaged over
11 runs (standard deviation is shown in parenthesis).
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6.4 Comparison to nominal DH and previous
calibrations

We measured both marker projection and touch distance errors of the nominal
DH description of the robot and the previous calibration described in [10].
Since our measurement of the attachment of the cameras is the main cause
of marker projection error, we also list the result of calibration of the DH
chains of the cameras only, while keeping the DH parameters of the arms
unchanged. We list the results of our multi-chain and sequential calibration.
We selected the calibration which showed best performance on the test dataset
(see Table 6.4) and evaluated it on the distinct train and test dataset which
was used same for all compared methods. Therefore an error which is listed
in Table 6.9 is higher than the minimum value for errors listed in Table 6.4.
Table 6.9 shows the errors for all compared calibrations.

6.5 Summary

The best results overall were achieved for the RaLaRcLcTd chain with 18
(std 1.2) px error of marker position and 3.66 (std 0.56) mm error of distance
between the touching icosahedrons. Stability of our calibration using per-
turbed initial state was evaluated (see Table 6.6 and Figure 6.6). Furthermore
we compared joint calibration to sequential calibration when first one hand
is calibrated using cameras and this calibration is used as a starting point
for a multi-chain calibration – see Table 6.8. We found out that even our
best sequential calibration, LaRcLc followed by RaLaRcLcTd, did not bring
any improvement in performance compared to our best joint calibration,
RaLaRcLcTd. As a last step we compared our achieved results to previ-
ous calibrations and nominal calibration (see Table 6.9) where we took the
nominal DH parameters of the robot and additionally calibrated cameras
and end-effectors using our calibration. As can be seen, we achieved better
results then the nominal calibration for markers positions, but worse results
on distance, 18.3 px compared to 23.5 px and 3.80 mm compared to 1.72 mm,
respectively.

Our best joint calibration, RaLaRcLcTd, produces results comparable to
our best sequential calibration, LaRcLc followed by RaLaRcLcTd. This is
hardly surprising considering that both are essentially the same calibration—
only the latter is primed with the results of LaRcLc calibration. The joint
calibration comes out a little bit better, but that is well within the margin of
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Configuration Markers Distances
Nominal DH – Train 1395.3 5.56
Nominal DH – Test 1401.4 6.08

Nominal DH + cam. calib. – Train 25.8 5.56
Nominal DH + cam. calib. – Test 29.3 6.08

Nominal DH + cam. calib. + end eff. – Train 20.3 1.61
Nominal DH + cam. calib. + end eff. – Test 23.5 1.72

Previous calib. – Train 1400.8 6.69
Previous calib. – Test 1407.0 6.78

Previous calib. + cam. calib. - Train 26.1 6.69
Previous calib. + cam. calib. - Test 29.8 6.78

Previous calib. + cam. calib. + end eff. - Train 20.7 2.27
Previous calib. + cam. calib. + end eff. - Test 24.1 2.26

Best Multichain calib. no touch (RaLaRcLc) - Train 16.4 3.95
Best Multichain calib. no touch (RaLaRcLc) - Test 20.2 5.12
Best Multichain calib. touch (RaLaRcLcTd) - Train 16.3 3.43
Best Multichain calib. touch (RaLaRcLcTd) - Test 18.3 3.80

Best Seq. calib. no touch (LaRcLc → RaLaRcLc) - Train 19.4 7.83
Best Seq. calib. no touch (LaRcLc → RaLaRcLc) - Test 20.7 8.34
Best Seq. calib. touch (LaRcLc → RaLaRcLcTd) - Train 19.7 5.07
Best Seq. calib. touch (LaRcLc → RaLaRcLcTd) - Test 18.2 6.34

Table 6.9: Comparison of absolute error of markers position (Markers, in pixels)
and absolute error of distances between icosahedrons (Distances, mm) on a
subset of poses from a dataset for individual settings. Nominal parameters
denote parameters provided by a manufacturer Table 3.1, previous calibration is
calibration done in [10] with camera DH parameters determined by a measurement
during our attachment of the cameras. We performed an additional camera
calibrations on top of these calibrations using a hand eye calibration. End
effector calibration was provided from our multi-chain calibration. For multi-
chain calibration and sequential calibration, we selected the best calibration
found over 11 runs, based on performance on the testing dataset, and evaluated
it on the distinct train and test dataset which was retained for all compared
methods.

error. For RaLaRcLcTd, the marker position error is 18 (1.2) px and the error
on distances is 3.66 (0.56) mm on test dataset. For sequential calibration, we
achieved the best results for LaRcLc followed by RaLaRcLcTd, with error of
marker positions 18.1(1.6) px and error on distances 3.83 (0.58) mm (for full
results see Table 6.4 and Table 6.7 for multi-chain and sequential calibration
results respectively. Thus, we didn’t manage to improve upon the results of
joint calibration with sequential calibration.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

In order to perform self-calibration experiments, we modified a two-arm
robotic platform by adding: (i) custom self-touch end effectors with fiducial
markers (see Fig. 2.3), and (ii) two photo cameras (see Fig. 2.2). The
robotic platform was configured to operate with the new end effectors in a
safe self-collision (“self-touch”) mode relying on force/torque sensors. To
this end, a high-level Python library for self-touch using force sensors was
developed, which enables safe contact behavior together with a graphical
application for planning and execution of complex motion plans (see Section
4.2).

We carried out calibration of the robot using a joint dataset that we
collected on the robot. We evaluated the calibration of DH parameters
using individual kinematic chains starting from nominal DH parameters.
Best results were achieved with the least constrained and most informed
model available—that is, with all the kinematic chains intersecting and all
parameters subject to calibration. Stability of our calibration using perturbed
initial state was evaluated and found acceptable. Furthermore we compared
joint calibration to sequential calibration during which one arm of the robot
is first calibrated using cameras only; this calibration is then used as a
starting point for a multi-chain calibration. We found out that even our
best sequential calibration did not bring any improvement in performance
compared to our best joint calibration (when all parameters are subject to
optimization at once). As a last step, we compared the results achieved to
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previous calibrations and nominal (factory) calibration of the platform. Here
we took the nominal DH parameters of the robot and additionally calibrated
the newly added cameras and custom end-effectors using our calibration.
Our calibration achieved better results than the nominal calibration on the
markers positions, but worse results on the touch distance.

7.2 Discussion and Future work

We believe we didn’t do everything we could to improve on the result of
sequential calibration. The results could possibly be further improved if each
of the arms was first calibrated separately and then both arms calibrated
again jointly. Also, more repetitions of the optimization procedure might be
beneficial for obtaining a better result.

In the calibration of one arm and one or two cameras, the touch distance
error seems to grow because the task is not sufficiently constrained. We would
like to find a set of DH parameters that constrain the robot model so that
the touch distance error lowers.

In our robot model, we used traditional DH notation and we ran into some
issues with parallel neighboring rotational axes. We had to remove one of
the DH parameters from the optimization set, which constrained our model
and possibly contributed to the decreased performance of our calibration.
Hollerbach et al. [1] suggest to use the Hayati notation, which adds another
rotation β around the y axis to the DH parameters. With rotational joints,
one may choose whether to describe each revolute joint with a, d, α and θ
or a, α, β and θ parameters. Prismatic joints require all five parameters
but with a constraint, so that every link in Hayati notation has 4 degrees of
freedom, just like a link in DH notation.

The similarity of results with and without touch distances in Figures 6.1
and 6.7 suggests that the self-touch errors were not properly weighted in the
objective function. The weight coefficient of the touch distance error seems
to be too low, because the touch distance did not take enough influence on
the result.

It can be seen that the error counted on independent testing data (Table
6.9) is very different from the error listed in the Table 6.4, which suggests that
the training dataset may not sufficiently representative and the calibration
may be over-fitted on the marker positions and doesn’t sufficiently generalize
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for the touch distances of the icosahedrons. A bigger, more representative
dataset would be required and the objective function may put more weight
on the touch distances.

We also had a signigicantly lower amount of datapoints for the touch
distances than we had for the marker projections, because every touching
configuration provided about 20 marker projections but only one touch
distance. This should have been taken into account, for example by weighting
each of the datapoints with the reciprocal of their total count. The distance
error, unlike marker error, after optimization strongly depends on the set
of kinematic chains used for calibration, even among the chains that do use
touch distances in the objective function, as seen in Fig. 6.5. This may be
another clue that the distance error didn’t have enough weight in the objective
function.

In future work, a better dataset should be collected that better excites all
the joints, possibly employing autonomous search for self-touching poses. As
seen in the Histograms 5.4 and 5.8, the R1 and R2 joints were not sufficiently
excited in the current dataset. The results of the calibrations shall then be
checked against the nominal DH parameters. The largest differences would
appear on the poorly excited joints.

The distribution of errors in 3D space may be beneficial. We might be able
to tell in which poses the errors are largest. The overabundance of cameras
might hinder the calibration performance instead of aiding it.

As we have shown in Section 4.3.1, the response of our control program
may not fast enough to stop the robot in the contact configuration with
sufficient precision. Further slowing down the self-touching approach may
not bring the desired precision. We may need to develop a faster program in
a low-level programming language.
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Appendix A

Multichain calibration - additional results

A.1 Calibration without perturbation
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A. Multichain calibration - additional results ........................
Chain abbreviation Only offsets all DH

mean (std) min max mean (std) min max
RaRc

Markers Train 1379 (7.4) 1365 1393 1379 (7.4) 1365 1393
[px] Test 1380 (17) 1347 1411 1380 (17) 1347 1411

Distances Train 5.78 (0.11) 5.599 5.922 5.78 (0.11) 5.599 5.922
[mm] Test 5.59 (0.26) 5.229 5.998 5.59 (0.26) 5.229 5.998

RaRcLc
Markers Train 1407 (2.4) 1405 1413 1407 (1.6) 1405 1410

[px] Test 1408 (5.2) 1396 1414 1408 (3.7) 1402 1413
Distances Train 5.66 (0.13) 5.488 5.939 5.75 (0.16) 5.499 5.975

[mm] Test 5.86 (0.3) 5.186 6.23 5.64 (0.37) 5.089 6.208
LaLc

Markers Train 1457 (5.4) 1449 1466 1457 (5.4) 1449 1466
[px] Test 1456 (12) 1436 1473 1456 (12) 1436 1473

Distances Train 5.77 (0.1) 5.584 5.893 5.77 (0.1) 5.584 5.893
[mm] Test 5.72 (0.24) 5.434 6.142 5.72 (0.24) 5.434 6.142

LaRcLc
Markers Train 1383 (1.7) 1380 1385 1385 (2.9) 1382 1390

[px] Test 1390 (4.1) 1386 1397 1387 (6.4) 1376 1394
Distances Train 5.67 (0.17) 5.401 5.935 5.756 (0.094) 5.546 5.835

[mm] Test 5.77 (0.4) 5.13 6.352 5.58 (0.22) 5.391 6.056
RaLaRc

Markers Train 1357 (9.1) 1343 1375 1359 (3.7) 1354 1366
[px] Test 1351 (21) 1310 1382 1346 (9.3) 1326 1357

Distances Train 5.68 (0.12) 5.406 5.821 5.72 (0.13) 5.57 5.928
[mm] Test 5.82 (0.25) 5.488 6.381 5.71 (0.3) 5.222 6.051
RaLaRcTd

Markers Train 1357 (9.4) 1342 1373 1358 (7.2) 1345 1370
[px] Test 1349 (22) 1312 1383 1349 (16) 1321 1378

Distances Train 5.7 (0.13) 5.435 5.891 5.79 (0.13) 5.54 6.026
[mm] Test 5.75 (0.28) 5.315 6.324 5.56 (0.32) 4.961 6.114
RaLaRcLc

Markers Train 1398 (2.4) 1393 1401 1397 (2.3) 1394 1401
[px] Test 1395 (5.5) 1389 1407 1397 (5) 1389 1405

Distances Train 5.68 (0.11) 5.483 5.808 5.8 (0.11) 5.589 5.989
[mm] Test 5.81 (0.23) 5.52 6.229 5.54 (0.25) 5.06 6.011
RaLaRcLcTd

Markers Train 1398 (1.6) 1395 1401 1398 (2.6) 1394 1402
[px] Test 1395 (3.5) 1389 1401 1395 (6.1) 1386 1404

Distances Train 5.69 (0.23) 5.369 6.039 5.77 (0.12) 5.473 5.892
[mm] Test 5.77 (0.51) 4.923 6.451 5.59 (0.27) 5.313 6.249

Table A.1: Errors before calibration when only offsets are calibrated (left table)
and when all DH parameters are calibrated (right table)
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.... A.2. Visualisations of touch distances and markers errors in camera frame - no perturbation

A.2 Visualisations of touch distances and markers
errors in camera frame - no perturbation

Figure A.1: Visualisation of calibration results for RaRe chain (right arm and
right eye). We visualise calibration results of camera markers in right/left camera
(each arrow points from the estimated position by a model to the observed position
of the marker in camera), distribution of absolute errors of markers positions
and distribution of absolute error of distance position.

Figure A.2: Visualisation of calibration results for RaReLe chain (right arm
and both eyes). We visualise calibration results of camera markers in right/left
camera (each arrow points from the estimated position by a model to the observed
position of the marker in camera), distribution of absolute errors of markers
positions and distribution of absolute error of distance position.
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A. Multichain calibration - additional results ........................

(a) : RaLaRe chain without touch

(b) : RaLaRe chain with touch

Figure A.3: Visualisation of calibration results for RaLaRe chain (both arms
and right eyes). We visualise calibration results of camera markers in right/left
camera (each arrow points from the estimated position by a model to the observed
position of the marker in camera), distribution of absolute errors of markers
positions and distribution of absolute error of distance position. In subfigure A.3a
are visualised results without touch and in the subfigure A.3b are visualised
results for a case where we used also touch for calibration.
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.... A.2. Visualisations of touch distances and markers errors in camera frame - no perturbation

(a) : RaLaReLe chain without touch

(b) : RaLaReLe chain with touch

Figure A.4: Visualisation of calibration results for RaLaReLe chain (both arms
and both eyes). We visualise calibration results of camera markers in right/left
camera (each arrow points from the estimated position by a model to the observed
position of the marker in camera), distribution of absolute errors of markers
positions and distribution of absolute error of distance position. In subfigure ??
are visualised results without touch and in the subfigure A.4b are visualised
results for a case where we used also touch for calibration.
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A. Multichain calibration - additional results ........................
A.3 Calibration with perturbation

(a) : RaLaRe chain without touch - - mild
perturbation

(b) : RaLaRe chain with touch

(c) : RaLaRe chain with touch - stormy
perturbation

Figure A.5: Visualisation of calibration results for RaLaReLe chain (both arms
and both eyes) with 3 levels of initial perturbation of DH parameters.
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............................. A.3. Calibration with perturbation

Chain abbreviation Only offsets all DH
mean (std) min max mean (std) min max

RaRc slight perturbation slight perturbation
Markers Train 21.14 (0.68) 20.15 22.47 18.2 (1.1) 15.5 19.37

[px] Test 22.7 (1.7) 19.4 24.72 20.1 (2.5) 16.65 25.67
Distances Train 57 (25) 21.19 101.5 12.2 (1.5) 9.945 14.1

[mm] Test 58 (25) 21.95 101.8 12.8 (1.5) 9.872 15.57
RaRc moderate perturbation moderate perturbation

Markers Train 60 (110) 20.15 395.3 18.2 (1.1) 15.5 19.37
[px] Test 51 (93) 19.4 329.5 20.1 (2.5) 16.65 25.67

Distances Train 120 (240) 8.112 783.3 12.2 (1.5) 9.945 14.1
[mm] Test 120 (240) 7.205 801.9 12.8 (1.5) 9.872 15.57

RaRc intense perturbation
Markers Train 1e+17 (3.4e+17) 494.9 1.116e+18 170 (280) 18.15 971.8

[px] Test 7e+28 (2.2e+29) 511.6 7.172e+29 6e+05 (2e+06) 18.05 6.524e+06
Distances Train 1980 (690) 683.3 2925 2800 (6200) 9.945 1.87e+04

[mm] Test 1980 (690) 668.9 2929 2800 (6200) 10.52 1.891e+04
RaRcLc slight perturbation

Markers Train 20.31 (0.47) 19.31 20.85 17.2 (0.76) 16.12 18.6
[px] Test 21.5 (1.1) 20.06 23.53 18.9 (1.8) 15.74 21.41

Distances Train 131 (21) 101.6 169.3
[mm] Test 131 (20) 102.2 156.3

RaRcLc slight perturbation
Markers Train [px] Test Distances Train [mm] Test 11.7 (1.7) 9.369 15.42

RaRcLc moderate perturbation
Markers Train 20.31 (0.47) 19.31 20.85 17.2 (0.76) 16.12 18.6

[px] Test 21.5 (1.1) 20.06 23.53 18.9 (1.8) 15.74 21.41
Distances Train 180 (310) 11.06 1067 12.5 (2.1) 10.76 16.81

[mm] Test 180 (300) 13.69 1049 11.7 (1.7) 9.369 15.42
RaRcLc intense perturbation

Markers Train 1e+17 (2.9e+17) 496.4 9.704e+17 270 (260) 16.19 773.4
[px] Test 5e+22 (1e+23) 449.4 3.061e+23 1.3e+06 (4.3e+06) 21.41 1.441e+07

Distances Train 1570 (780) 481.6 2688 2.5e+04 (4.4e+04) 10.79 1.147e+05
[mm] Test 1570 (780) 523.1 2656 2.5e+04 (4.4e+04) 11.05 1.158e+05

LaLc slight perturbation
Markers Train 27.9 (0.8) 26.18 28.97 16.24 (0.59) 15.38 17.4

[px] Test 30.5 (1.8) 27.97 33.78 20.9 (2.4) 17.78 25
Distances Train 122 (29) 94.05 176.9 12.1 (3) 7.843 16.54

[mm] Test 121 (31) 92.8 175.6 12 (2.4) 8.63 15.87
LaLc moderate perturbation moderate perturbation

Markers Train 27.9 (0.8) 26.18 28.97 16.24 (0.59) 15.38 17.4
[px] Test 30.5 (1.8) 27.97 33.78 20.9 (2.4) 17.78 25

Distances Train 251 (92) 148.2 486.3 12.1 (3) 7.843 16.54
[mm] Test 249 (84) 139.4 452

Table A.2: Absolute errors on training and testing data after calibration of
perturbated DH parameters using multiple individual chains. We show results
for a case when only offsets are calibrated (left) and when all DH parameters
are calibrated (right). Results for 3 different values of initial perturbation of
nominal DH parameters (see Table 6.5) are compared. Results are averaged over
10 runs (standard deviation is shown in parenthesis).
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Chain abbreviation Only offsets all DH

mean (std) min max mean (std) min max
LaLc intense perturbation intense perturbation

Markers Train 500 (350) 27.62 955.7 190 (330) 15.59 893.5
[px] Test 550 (370) 27.97 995 390 (760) 18.63 2246

Distances Train 1510 (470) 901.7 2441 460 (910) 8.874 2664
[mm] Test 1510 (480) 920.3 2533 460 (910) 9.7 2661

LaRcLc slight perturbation slight perturbation
Markers Train 29.3 (1) 27.51 30.53 18.79 (0.4) 17.89 19.22

[px] Test 31.5 (2.3) 28 35.1 21.5 (0.97) 19.98 22.87
Distances Train 109 (24) 85.86 150.4 6 (2.1) 3.324 10.19

[mm] Test 108 (25) 72.15 148.4 6.2 (2) 3.161 9.529
LaRcLc moderate perturbation moderate perturbation

Markers Train 29.3 (1) 27.51 30.53 18.79 (0.4) 17.89 19.22
[px] Test 31.5 (2.3) 28 35.1 21.5 (0.97) 19.98 22.87

Distances Train 196 (90) 116.7 422.8 6 (2.1) 3.324 10.19
[mm] Test 193 (87) 119.3 420.2 6.2 (2) 3.161 9.529

LaRcLc intense perturbation intense perturbation
Markers Train 1.9e+15 (6.2e+15) 560.9 2.04e+16 2.9e+04 (9.5e+04) 18.88 3.149e+05

[px] Test 7e+15 (1.9e+16) 523.9 6.024e+16 2.5e+05 (8.1e+05) 20.37 2.691e+06
Distances Train 1700 (490) 1046 2331 1e+04 (2.2e+04) 3.324 7.6e+04

[mm] Test 1720 (490) 1050 2386 1e+04 (2.2e+04) 3.161 7.625e+04
RaLaRc slight perturbation slight perturbation

Markers Train 26.95 (0.73) 25.72 28.05 17.6 (0.65) 16.5 18.39
[px] Test 27.9 (1.7) 25.17 31 19.3 (1.8) 17.17 23.18

Distances Train 6.83 (0.13) 6.662 7.093 5.99 (0.88) 4.416 7.573
[mm] Test 6.93 (0.49) 6.266 7.781 7.5 (1.4) 5.361 9.53

RaLaRc moderate perturbation moderate perturbation
Markers Train 220 (310) 25.72 980.2 70 (120) 16.5 361.3

[px] Test 240 (330) 25.17 965.3 90 (160) 17.17 417.5
Distances Train 290 (440) 6.692 1195 2200 (6100) 5.115 2.023e+04

[mm] Test 280 (410) 6.266 1099 2300 (6500) 5.764 2.154e+04
RaLaRc intense perturbation intense perturbation

Markers Train 1.2e+20 (4e+20) 687.6 1.324e+21 8e+04 (2.5e+05) 239.1 8.383e+05
[px] Test 2e+21 (5.8e+21) 714.6 1.947e+22 5e+16 (1.5e+17) 296.5 4.966e+17

Distances Train 1550 (900) 58.63 3065 8e+06 (1.8e+07) 1676 5.866e+07
[mm] Test 1570 (920) 65.61 2998 8e+06 (1.8e+07) 1677 5.875e+07
RaLaRcTd slight perturbation slight perturbation

Markers Train 27.01 (0.61) 26.26 28.25 17.29 (0.65) 16.49 18.38
[px] Test 27.9 (1.5) 24.65 29.82 19.7 (1.8) 16.73 22.47

Distances Train 6.49 (0.19) 6.154 6.79 3.58 (0.27) 3.154 3.937
[mm] Test 6.69 (0.39) 5.961 7.401 4.33 (0.6) 3.592 5.311

Table A.3: Absolute errors on training and testing data after calibration of
perturbated DH parameters using multiple individual chains. We show results
for a case when only offsets are calibrated (left) and when all DH parameters
are calibrated (right). Results for 3 different values of initial perturbation of
nominal DH parameters (see Table 6.5) are compared. Results are averaged over
10 runs (standard deviation is shown in parenthesis).
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Chain abbreviation Only offsets all DH
mean (std) min max mean (std) min max

RaLaRcTd moderate perturbation moderate perturbation
Markers Train 190 (290) 26.26 960.9 31 (47) 16.49 174.1

[px] Test 200 (280) 26.32 823.7 35 (51) 16.73 190.5
Distances Train 62 (90) 6.154 210.6 12 (29) 3.154 98.51

[mm] Test 70 (100) 5.961 251.1 10 (19) 3.683 67.45
RaLaRcTd intense perturbation intense perturbation

Markers Train 1.2e+19 (3e+19) 437.8 9.429e+19 1.5e+11 (4.9e+11) 692.1 1.621e+12
[px] Test 7e+20 (1.7e+21) 456.2 5.635e+21 2e+21 (6.6e+21) 700.9 2.173e+22

Distances Train 980 (900) 178.3 2608 7e+06 (2e+07) 29.04 6.594e+07
[mm] Test 980 (860) 206.5 2455 7e+06 (2e+07) 34.93 6.601e+07
RaLaRcLc slight perturbation slight perturbation

Markers Train 25.67 (0.59) 24.78 26.65 16.4 (0.38) 15.75 17.16
[px] Test 27.3 (1.3) 25.32 29.32 18.2 (1.1) 16.74 19.93

Distances Train 6.38 (0.15) 6.189 6.728 3.93 (0.27) 3.57 4.451
[mm] Test 6.51 (0.37) 5.772 7.148 4.6 (1.2) 3.263 7.094
RaLaRcLc moderate perturbation moderate perturbation

Markers Train 280 (500) 24.78 1661 16.4 (0.38) 15.75 17.16
[px] Test 300 (500) 25.32 1599 18.2 (1.1) 16.74 19.93

Distances Train 240 (620) 6.189 2060 3.93 (0.27) 3.57 4.451
[mm] Test 260 (640) 6.318 2110 4.6 (1.2) 3.263 7.094
RaLaRcLc intense perturbation intense perturbation

Markers Train 1.9e+14 (5.1e+14) 1114 1.698e+15 1.8e+13 (6.1e+13) 273.4 2.019e+14
[px] Test 4e+19 (1.2e+20) 1095 3.928e+20 1e+26 (3.3e+26) 365.9 1.096e+27

Distances Train 1660 (660) 915.5 2921 1.6e+05 (3.6e+05) 850.3 9.733e+05
[mm] Test 1670 (660) 932 2923 1.6e+05 (3.6e+05) 882.8 9.686e+05
RaLaRcLcTd slight perturbation slight perturbation

Markers Train 25.84 (0.72) 24.69 27.44 16.32 (0.55) 15.52 17.1
[px] Test 27 (1.6) 23.62 29.6 18.5 (1.2) 16.69 20.32

Distances Train 6.35 (0.15) 6.122 6.651 3.38 (0.11) 3.17 3.609
[mm] Test 6.42 (0.44) 5.765 7.1 4.2 (0.62) 3.316 5.454
RaLaRcLcTd moderate perturbation moderate perturbation

Markers Train 30 (15) 24.69 74.97 22 (17) 15.52 73.73
[px] Test 32 (16) 23.62 80.08 23 (17) 16.69 73.93

Distances Train 8.6 (7.6) 6.122 31.66 7 (12) 3.17 42.49
[mm] Test 8.7 (7.5) 5.765 31.3 6.3 (6.9) 3.316 27.17
RaLaRcLcTd intense perturbation intense perturbation

Markers Train 9e+16 (2.7e+17) 495.7 8.89e+17 4e+14 (1.3e+15) 98.2 4.256e+15
[px] Test 5e+20 (1.3e+21) 580.1 4.457e+21 2.5e+23 (7.8e+23) 101.3 2.601e+24

Distances Train 820 (810) 18.47 2490 1100 (1100) 15.42 2950
[mm] Test 840 (800) 13.77 2416 1200 (1100) 25.74 2890

Table A.4: Absolute errors on training and testing data after calibration of
perturbated DH parameters using multiple individual chains. We show results
for a case when only offsets are calibrated (left) and when all DH parameters
are calibrated (right). Results for 3 different values of initial perturbation of
nominal DH parameters (see Table 6.5) are compared. Results are averaged over
10 runs (standard deviation is shown in parenthesis).
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B. Sequential calibration - additional results ........................

Chain abbreviation Only offsets all DH
mean (std) min max mean (std) min max

RaRcLc → RaLaRcLc slight perturbation slight perturbation
Markers Train 25.96 (0.74) 24.9 26.91 16.58 (0.41) 15.81 17.11

[px] Test 26.7 (1.8) 24.15 29.38 18.3 (1.9) 15.92 22.28
Distances Train 6.48 (0.18) 6.191 6.696 4.01 (0.25) 3.696 4.327

[mm] Test 6.43 (0.48) 5.531 6.957 4.6 (1) 3.274 6.905
RaRcLc → RaLaRcLc moderate perturbation moderate perturbation
Markers Train 120 (220) 24.9 728.5 34 (56) 16.12 203.5

[px] Test 120 (210) 24.15 690.8 36 (60) 15.92 215.6
Distances Train 140 (340) 6.191 1117 70 (220) 3.696 739.1

[mm] Test 130 (320) 5.531 1040 70 (230) 3.493 768.3
RaRcLc → RaLaRcLc intense perturbation intense perturbation
Markers Train 1.6e+04 (5e+04) 338.3 1.65e+05 1.9e+13 (5.5e+13) 186.7 1.836e+14

[px] Test 1.6e+04 (5e+04) 387.9 1.668e+05 5e+21 (1.5e+22) 199.7 5.053e+22
Distances Train 1130 (630) 424.8 2055 5e+06 (1.7e+07) 671.7 5.636e+07

[mm] Test 1130 (600) 486.8 2012 5e+06 (1.7e+07) 613.7 5.642e+07
RaRcLc → RaLaRcLcTd slight perturbation slight perturbation
Markers Train 25.92 (0.58) 25.11 26.87 16.23 (0.55) 14.85 16.89

[px] Test 26.8 (1.5) 24.22 28.96 18.7 (1.5) 16.72 22.55
Distances Train 6.27 (0.12) 6.04 6.472 3.4 (0.18) 3.157 3.716

[mm] Test 6.4 (0.44) 5.592 7.037 3.74 (0.61) 2.832 4.871
RaRcLc → RaLaRcLcTd moderate perturbation moderate perturbation
Markers Train 320 (520) 25.11 1450 41 (83) 15.87 291.9

[px] Test 330 (560) 24.22 1602 50 (110) 16.72 376.2
Distances Train 80 (140) 6.04 389.3 20 (55) 3.222 185.6

[mm] Test 90 (150) 5.592 448.7 22 (61) 2.832 207.1
RaRcLc → RaLaRcLcTd intense perturbation intense perturbation
Markers Train 4e+12 (1e+13) 1032 3.437e+13 2.8e+14 (6.6e+14) 176.5 2.025e+15

[px] Test 7e+20 (2.2e+21) 974.8 7.266e+21 2e+21 (6.6e+21) 797.4 2.203e+22
Distances Train 650 (690) 99.56 2116 4e+05 (1.2e+06) 0.1956 4.096e+06

[mm] Test 680 (690) 116.1 2152 4e+05 (1.2e+06) 0.5104 3.898e+06

Table B.1: Errors after sequential calibration where first right hand is calibrated
using both eyes (RARcLc) and then this calibration is used to calibrate the second
hand and end-effector parameters using multichain calibration (RaLaRcLcTd).
We show results for a case when only offsets are calibrated (left) and when all
DH parameters are calibrated (right). Results for 3 different values of initial
perturbation (see Table 6.5) are compared. Results are averaged over 10 runs
(standard deviation is shown in parenthesis).

98



MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420055Personal ID number:Puciow FrantišekStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Automatic self-calibration from self-observation and self-touch on a dual arm industrial manipulator

Master’s thesis title in Czech:

Automatická kalibrace pomocí 'sebedotyku' a sebepozorování u dvojrukéhoprůmyslovéhomanipulátoru

Guidelines:
1. Implement safe self-touch behavior in the dual arm Yaskawa Motoman setup (inverse kinematics plus force feedback
from six axes F/T sensors)
2. Installation of two external cameras forming a stereo rig, with viewpoint covering the robot workspace.
3. Data collection in self-touch configurations (joint angles, camera images, contact point detection).
4. Study state-of-the-art in kinematic calibration, focusing specifically on multiple kinematic chain problems.
5. Formalization of the calibration problem for different combinations of intersecting kinematic chains, its solving using
non-linear least squares methods, and assessing the benefits of individual problem formulations.

Bibliography / sources:
[1] Birbach, O.; Frese, U. & Bauml, B. (2015), 'Rapid calibration of a multi-sensorial humanoid´s upper body: An automatic
and self-contained approach', The International Journal of Robotics Research 34(4-5), 420--436.
[2] Hollerbach, J.; Khalil, W. & Gautier, M. (2016), Model identification, in B. Siciliano & O. Khatib, ed., 'Springer Handbook
of Robotics', Springer, , pp. 113--138.
[3] Joubair, A., & Bonev, I. A. (2015). Kinematic calibration of a six-axis serial robot using distance and sphere constraints.
The International Journal of Advanced Manufacturing Technology, 77(1-4), 515-523.
[4] Roncone, A.; Hoffmann, M.; Pattacini, U. & Metta, G. (2014), Automatic kinematic chain calibration using artificial skin:
self-touch in the iCub humanoid robot, in 'Robotics and Automation (ICRA), 2014 IEEE International Conference on', pp.
2305-2312.

Name and workplace of master’s thesis supervisor:

Mgr. Matěj Hoffmann, Ph.D., Vision for Robotics and Autonomous Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Mgr. Karla Štěpánová, Ph.D., Robotic Perception, CIIRC

Deadline for master's thesis submission: 08.06.2018Date of master’s thesis assignment: 16.01.2018

Assignment valid until: 30.09.2019

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Mgr. Matěj Hoffmann, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1



III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1


	Introduction
	Motivation
	Calibration methods comparison
	Previous work
	Contribution

	Setup overview
	Hardware
	Dual arm manipulator
	Cameras
	Custom end effector

	Software
	ROS
	OpenCV
	GPhoto2


	Materials and Methods
	Robot setup description
	Robot dimensions
	Robot control
	Dimensions of the end effector
	Camera pose
	Conversion of transformations to DH parameters

	Standard camera calibration
	ArUco markers recognition
	Camera Model
	Camera setup
	Camera integration

	Multi-chain calibration
	Individual chain description
	Forward kinematics
	Optimization problem formulation
	Non-linear least squares optimization
	Line descent optimization algorithms
	Evaluation


	Safe self-touch behavior
	Force sensor calibration
	Drift of the offset

	Motion Strategy GUI
	Description of the interface
	Program Structure

	Test of the collision detection
	Evaluation of the collision detection behavior


	Datasets
	Dataset Structure
	Original Dataset Form
	Reformed Dataset

	Individual datasets
	Dataset 1
	Dataset 2

	Two Hands Experiment applet

	Experiments and Results
	Calibration without perturbation
	Calibration with perturbation
	Sequential calibration
	Comparison to nominal DH and previous calibrations
	Summary

	Conclusion and Discussion
	Conclusion
	Discussion and Future work

	Bibliography
	Multichain calibration - additional results
	Calibration without perturbation
	Visualisations of touch distances and markers errors in camera frame - no perturbation
	Calibration with perturbation

	Sequential calibration - additional results
	Project Specification

