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Abstract

Computer vision is a fast and widely developing branch of science. One of the problems
and tasks of computer vision is the determining of a particular object on the image and
its position in space. In this work, we propose our algorithm, which allows us to uniquely
determine the sphere in space. We concentrate on studying the theory, which directly relates
to the theme of this work and apply this theory in practice to obtain a solution.

As a result, we have a working algorithm that gives a satisfactory result on real data.
In the future, this algorithm can be used, for example, to calibrate the robot in such a way
that determining the position of the sphere will determine the position of the last joint of
robotic arm.

Keywords: computer vision, conic sections, quadrics, camera calibration
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Abstrakt

Po£íta£ové vid¥ní je rychle rozvijející se oblast v¥dy. Jedním z problem· a úkol· po£íta£ového
vid¥ní je detekce konkretního objektu na obrázku a ur£ení jeho polohy v prostoru. V této
práci navrhujeme algoritmus, který umoº¬uje jednozna£n¥ ur£it polohu sféry v prostoru.
Soust°e¤ujeme se na teorii, která se p°ímo vztahuje k tématu této práce, a pouºiváme ji v
praxi pro získání °e²ení.

Ve výsledku dostáváme funk£ní algoritmus, který dob°e funguje p°i zkou²ení na reálných
datech. V budoucnu tento algoritmus m·ºe být pouºit, nap°íklad, pro kalibraci robota, a to
tak, ºe ur£ení pozice sféry ur£í i pozici konce robotické ruky.

Klí£ová slova: po£íta£ové vid¥ní, kuºelose£ka, kvadrika, kalibrace kamery
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Chapter 1

Introduction

Computer vision is a fast and widely developing branch of science. In our time
it is closely related to arti�cial intelligence, namely, with the recognition and detection of
objects. Extracting information from 2d images of 3D objects is also one of the most common
branches of computer vision. It combines the solution of polynomial equations, linear algebra
and projective geometry.

In this work, we focused our attention on recreating a sphere on the basis of its image.
Our main task was to propose an algorithm that would allow unambiguous determination
of the position of the sphere in space. Similar problem has been solved by Zisserman and
Cross in [3]. They used two cameras to get stereo image and to determine the position of
the object, called quadric.

The motivation for this work was a group of researchers who are engaged in calibrating
the robot. They need to determine the position of the sphere in space, which is located on
the end of the robotic arm, in order to accurately determine the coordinates of the last joint
and to calibrate the robot.

This thesis can be divided to the following sections:

1. In the beginning we will conduct theoretical introduction in our problem, that is needed
for better understanding the problem and that we needed to suggest the solution.

2. Then, we will move on with the main part of this thesis, namely we will suggest a
solution to the given problem and discuss problems, that could show up.

3. After, we will test the solution on the real data and we will see the limitations of the
algorithm.

4. Finally, we will summarize this work.
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Chapter 2

Basic theory

In this chapter we will go through the theory, that we had to study to successfully
tackle the issue. Theory consists of basic knowledge in computer vision and geometry, such as
surfaces in 3D and di�erent conic sections. We also studied the interaction between surfaces
in 3D and its projections on the planes. Thus, we divide our theoretical introduction into
the following sections

1. Perspective camera model

2. Conic sections

3. Quadrics

4. Projection of the sphere onto the image plane

2.1 Perspective camera model

There exist many types of cameras. We will concentrate ourselves on the perspective
camera model, that maps points from 3D space onto the image plane. Basically, points on
the image plane are given by the intersection between the vector, connecting the camera
center with the point, and the image plane.

Chapters 6 and 7 in book [10] describe the basics of perspective camera model. In this
section we will brie�y summarize the main of these two chapters. We will use the notation
of [10] and [5].
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Let us consider following illustration 2.1

Figure 2.1: Coordinate systems of perspective camera [10].

Figure 2.1 shows the geometry of the perspective camera. We can see there the camera
center C, the image plane� and the point O, which is the origin for the main coordinate
system.

To solve the problems of computer vision, such as extracting information about 3D object
from 2D image, we will de�ne some handful coordinate systems.

First, we introduce the world coordinate system (O; � ), so we can express any point in
the space with its help. This coordinate system consists of the originO and orthonormal
basis � containing vectors d1; d2 and d3, so every point can be written as

X � = � 1d1 + � 2d2 + � 3d3 (2.1.1)

World coordinate system allows us to de�ne thecamera projection center C � .

4



Next we de�ne the image coordinate system (o; � ) of the image plane� . We use this
coordinate system to express the points on the image plane through its origino and two non-
orthogonal basis vectorsb1 and b2. So, any point on the image plane can be represented as
vector in basis �

u i � = ui b1 + vi b2 =
�
ui

vi

�
(2.1.2)

Finally, to associate the coordinates of points on the image with the camera center, we
introduce the camera coordinate system (C; � ). Its origin is always placed in the projection
center and its basis consists of basis� with added vector b3. We de�ne vector b3 as a
vector connecting origins of two coordinate systems� and � . Thus, it is more convenient
to write coordinates of the points in the image plane with respect to basis� , because the
third coordinate will always be equal to one. At this point, we can express above vectoru �

in basis � by simply adding one, i.e.

u i � =
�
u i �

1

�
(2.1.3)

Now let us take an arbitrary point X in the space. If we start drawing the line from
the camera centerC to point X , we will reach the image plane at the pointx. We de�ne
such point x as the projection of point X onto the image plane and we can represent it with
respect to � as

x � =

2

4
u
v
1

3

5 (2.1.4)

If we want to represent point X with respect to the camera coordinate system, we can
imagine, that point X in � can be obtained fromx as its multiple by some non-zero number
� . Thus, we can write

� x � = X � � C � (2.1.5)

Now, suppose that we have the matrixA , that converts any vector from space, given with
respect to the world coordinate system� , to the vector represented by the camera coordinate
system� . We can write this as

x � = Ax � (2.1.6)

The matrix A , as we will see later, contains theextrinsic and intrinsic parameters of
the camera. We will give the de�nition to these parameters a little bit later.
Using Equation 2.1.6 we can re-write Equation 2.1.5 as

� x � = A (X � � C � ) (2.1.7)

� x � = A
�
I j � C �

�
�
X �

1

�
(2.1.8)
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� x � = P �

�
X �

1

�
(2.1.9)

We just have introduced the 3 � 4 image projection matrix P � .
With help of Equation 2.1.9 we can describe the relationship between the point in the space
X � and the point on the image planeu � . If we know the value of � and matrix A , we can
obtain the coordinates of the point in space from Equation 2.1.7 as

X � = � A � 1x � + C � (2.1.10)

Now we will look closer to the matrix A . We de�ne it as

A =
1
f

KR (2.1.11)

where we introduce two new matricesK , R and parameter f , which is the focal length
and is de�ned as the distance between the camera center and the image plane.

We have already told, that the matrix A contains parameters of the camera. We have
mentioned extrinsic and intrinsic parameters of the camera. Matrix K determines the
intrinsic parameters, that are given by camera construction and do not change when moving
or rotating the camera. This matrix is given as follows

K =

2

4
k11 k12 k13

0 k22 k23

0 0 1

3

5 (2.1.12)

The elements of matrix K are de�ned as

k11 =
f

kb1k
(2.1.13)

k12 = �
f cos\ (b1; b2)

kb1ksin\ (b1; b2)
(2.1.14)

k22 =
f

kb2ksin\ (b1; b2)
(2.1.15)

Elementsk13 and k23 determine the coordinates of theprincipal point in � , that is given
as intersection between vectorc3 and the image plane.

Now we will look at the second matrix introduced in Equation 2.1.11. This is3 � 3
rotation matrix, that determines the extrinsic parameters of the camera, i.e. its orientation.
Matrix R and vector C � uniquely de�ne the position and orientation of the camera.

To continue, we will de�ne new orthogonal camera coordinate system(C; 
 ) with three
basis vectorsc1; c2 and c3. These three vectors are chosen in such way, that Span{c1; c2}
de�nes the plane parallel to the image plane� . Vector c3 is orthogonal to both c1 and c2

and thus is orthogonal to the image plane and has the length equals to the focal length.
The basis
 holds

c1 = k11b1 (2.1.16)

c2 = k12b1 + k22b2 (2.1.17)

6



c3 = k13b1 + k23b2 + 1b3 (2.1.18)

By using matricesK , R , A and focal length we can provide next vectors transformations
between coordinate systems

y � = Ky 
 (2.1.19)

y 
 =
1
f

Ry � (2.1.20)

y � = Ay � (2.1.21)

Inverse transformations could be obtained by applying matricesK � 1, R � 1 and A � 1.
Using above equations we can express given vector with respect to any of the coordinate

systems.
Using Equation 2.1.11 and Equation 2.1.8 we obtain

f � x � = KR
�
I j � C �

�
�
X �

1

�
(2.1.22)

f � x � = P
�
X �

1

�
(2.1.23)

where 3 � 3 matrix P is called the camera projection matrix .

2.2 Conic sections

Due to the perspective camera model all projections of the objects do not preserve
their actual size and in most cases may have di�erent form, than in the real world. For
example, if we project the circle, that does not lie on the plane, which is parallel to the
image plane and its center does not intersect with the ray given by vectorc3, then we will
obtain an ellipse. When increasing an angle between the image plane and the plane, where
circles lie, the di�erence between circle and ellipse would be more evident. Figure 2.2 clearly
demonstrates this.

Figure 2.2: (a) The images of circles are almost represented as circles. (b) The circles are
represented as ellipses [5].
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When working with the images of spheres in real life, we are also dealing with circles
and ellipses. By [4] conic section is the name given to the shapes that we obtain by taking
di�erent plane slices through a double cone. In our case the cone is produced by inscribed
sphere and a vertex placed in the camera projection center. In general, we may consider the
following conic sections

Figure 2.3: Di�erent conic sections [4].

We can see, that there are 6 types of conic sections. However, in the real life the plane
will never pass through the vertex, which follows from non-zero focal length. Also, we may
consider �nite image planes, which implies, that plane will never intersect given sphere. From
above words follows, that the only conic section, which can be obtained is ellipse. To suggest
the solution to our problem of reconstructing sphere in the space by given image we had to
study basics of conic sections.

By [4] any conic has an equation of the form

Ax 2 + Bxy + Cy2 + Fx + Gy + H = 0 (2.2.1)

where A, B , C, F , G and H are real numbers, and not all ofA, B and C are zero.
To work with conic sections in computer vision, we have to express them in the matrix form as

xT A 33x + JT x + H = 0 (2.2.2)

where matricesA 33 and J contain coe�cients A, B , C, F , G and the vector x represents
a point on the conic. These two matrices are given as

A 33 =
�

A B=2
B=2 C

�
(2.2.3)

J =
�
F
G

�
(2.2.4)
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Equation 2.2.2 is the equation of the conic in inhomogeneous coordinates [5]. We can use
this equation if we work only with � coordinate system of the perspective camera model. To
work with another coordinate systems, for example,� we should use homogeneous coordi-
nates.

So, we can re-write above equation as

X T qX = 0 (2.2.5)

where matrix q is the symmetric invertible (in case of ellipse, hyperbola and parabola) ma-
trix and can be written as

q =

2

4
A B=2 F=2

B=2 C G=2
F=2 G=2 H

3

5 (2.2.6)

We can see, that the upper left2 � 2 submatrix is the matrix A 33. The matrix A 33 is
very useful for us, because with its help we can determine if obtained conic section is a circle
or an ellipse. If coe�cients A and C are equal andB = 0 , then conic section is a circle.

We have de�ned conics through the points. Due to the duality we can represent the
same conic through lines. We call thisdual conic and it is also represented by3 � 3 matrix
q� [5]. For dual conics we can write

lT q� l = 0 (2.2.7)

where l is the tangent to a conic line. If matrix q� is not singular and is symmetric, then
q� = q� 1. Later we will use this to obtain the projection of the sphere onto the image plane.

2.3 Quadrics

Spheres are wide-used objects in computer vision [6][7][9]. If given sphere without any
markers on it, then such sphere does not have an orientation and thus is easier to describe.
Also in many cases it is easy to detect the apparent contour of the sphere on the image. To
work with spheres in computer vision, we would have to express them generally in matrix
form.

First, we will write general equation for quadric surface [1]. Such surface is the set of
points, that satisfy the equation

Ax 2 + By2 + Cz2 + 2Dxy + 2Eyz + 2Fxz + 2Gx + 2Hy + 2Jz + K = 0 (2.3.1)

The above equation can be represented in the matrix form by4 � 1 homogeneous vector
X , that represents a point on the quadric, and a4 � 4 matrix Q as

X T QX = 0 (2.3.2)

9



where matrix Q is

Q =

2

6
6
4

A D F G
D B E H
F E C J
G H J K

3

7
7
5 (2.3.3)

If we set A = B = C = � K = 1 and D = E = F = G = H = J = 0 , we get a unit
sphere with center placed at the origin.

The sphere in general case is represented by its centera and radius r . If we de�ne 
 as
aT a � r 2 [6], sphere equation in matrix form will be represented as

Q =

2

6
6
4

1 0 0 � a1

0 1 0 � a2

0 0 1 � a3

� a1 � a2 � a3 


3

7
7
5 =

�
I � a

� aT 


�
(2.3.4)

Obtained matrix Q will be used in the next section to construct a projection onto the image
plane.

2.4 Projection of a sphere into a perspective image

In this section we will use knowledge obtained in the previous two sections to obtain
conic section for a concrete given sphere.

Let us assume, that we are given the sphere

S � Q =
�

I � a
� aT 


�
(2.4.1)

and matricesK , R and a focal length. Thus, we can construct the camera projection matrix
P. Now we will write the equation for the dual conic q� [5][6] of conicq as

q� = PQ � PT (2.4.2)

where Q � is the dual quadric of Q.
By substituting q� = q� 1 and Q � = Q � 1 into Equation 2.4.2 we get

q� 1 = PQ � 1PT (2.4.3)

q = ( PQ � 1PT ) � 1 (2.4.4)

Equation 2.4.4 is the projection of quadricQ onto the image plane.

10



Chapter 3

Sphere reconstruction

In this chapter we will suggest a solution to the problem of sphere reconstruction from
the given image. Brie�y, our idea is that conic section and the camera center de�ne the
concrete cone and there is only one point, where center of the sphere can be placed so that
sphere would be inscribed in this cone.

When we want to recover the sphere from given conic section, we can obtain two cases:

1. Obtained conic section is an ellipse

2. Obtained conic section is a circle

3.1 Ellipse

Basically, we can divide our solution into the following steps:

1. Calculate eigenvectors and eigenvalues of the matrixA 33

2. Calculate the center and vertices of an ellipse

3. Find an angle � between two vectors connecting major vertices and calculate a point
M , where angle bisection and major axis intersect

4. Determine points X and Y where orthogonal to the major axis line passing throughM
intersects with ellipse.

5. Determine sphere's parameters by given radius and compute the distance between
sphere's center and the camera projection center

6. Using obtained direction and distance, calculate the actual position of the sphere

Now we will go through each item above and look closer at the suggested solution.

11



3.1.1 Eigenvectors and eigenvalues of A 33

First, we need to extract the matrix q, representing the conic section. In the real
scene we used "ellipse detection" for given photos and then more precisely found the contour
of an ellipse and used program for ellipse �tting [12].

Now assume we are given matrixq. We easily obtain matrix A 33 from q and then cal-
culate its eigenvectors and eigenvalues by the de�nition

A 33e = ve (3.1.1)

where e is the eigenvector corresponding to the eigenvaluev. Thus, we obtain two
eigenvectors corresponding to two di�erent eigenvalues, which implies that these vectors are
orthogonal [8]. By the principal axis theorem, the axes of an ellipse are orthogonal, so they
will be parallel to the eigenvectors of matrix A 33. Thus, by far we have two eigenvectorse1

and e2 and corresponding to them eigenvaluesv1 and v2.

3.1.2 Ellipse's vertices

Our next step is to calculate the coordinates of the ellipse's center and then obtain the
equations for the axes. We de�ne the center of an ellipse as a point, where major and minor
axes intersect. If we multiply �rst two columns of matrix q by vector x =

�
x y 1

� T
we

get two equations that give us one solution, which is our required center [2]. Thus, we will get

8
><

>:

Ax + ( B=2)y + D=2 = 0

(B=2)x + Cy + G=2 = 0

(3.1.2)

By solving it we obtain the point (xc; yc).
We have already seen, that the minor and major axes are parallel to two eigenvectors.

The eigenvector corresponding to the smaller eigenvalue will be parallel to the major axis,
and eigenvector corresponding to the larger eigenvalue will be parallel to the minor axis [2].
We need to �nd two points, where major axis crosses an ellipse. Thus, we again solve the
system of non-linear equations, which are

8
>><

>>:

xT qx = 0

y =
e2x � xce2 + yce1

e1

(3.1.3)

wherex is 3 � 1 vector representing homogeneous coordinates,q is the conic matrix and
(e1; e2) is the eigenvector corresponding to the smaller eigenvalue. Thus, we obtained two
points in the image coordinate system� , which can be represented in� as vectors

a =
�
a1 a2 1

� T
(3.1.4)

b =
�
b1 b2 1

� T
(3.1.5)
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3.1.3 Projection of the sphere's center

In the previous part we obtained two vectorsa and b and now we will calculate the
angle between them. We will use well known formula

cos� =
a � b

kak � kbk
(3.1.6)

Angle � will be used a little bit later.
The second part of this step is to calculate the coordinates of pointM and relevant

vector m, given by intersection between bisection-line and the major axis. From geometry
we know, that bisection will divide line into two parts that are proportional to the lengths
of surrounding lines. This is illustrated in Figure 3.1

Figure 3.1: Angle bisection.

jBD j
jBC j

=
jAD j
jAC j

(3.1.7)

With its help we can calculate vector m as

m =
kak

kak + kbk
a +

kbk
kak + kbk

b (3.1.8)

Now we will deviate from our train of thought a bit and image the process of obtaining an
ellipse as illustrated in Figure 3.2. Imagine, we have a cone and a plane
 , that intersects it,
is parallel to the cone's base. Now we choose an axis around which we will rotate the plane

 . Our chosen axisu is the line, that lies in the plane 
 and intersects with cone's height.
Also, we denote two points, whereu intersects with the cone, asX and Y . To achieve the
rotation, we use some rotation matrix R u(� ). By the de�nition of any rotation matrix we
have

Rv = v (3.1.9)

where v is vector that is parallel to the rotation axis. Equation 3.1.9 tells us, that after
rotation vector v will be unchanged. We have a little bit more di�cult situation, because
we do not rotate the conic section, but we want to rotate the plane
 , so we could get new
conic sections. In our case the only unchanged line in every obtained ellipse (and a circle,
which we had at the beginning) after application the rotation, is the line that coincides with
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axis u. Such line will maintain its length and orientation, unlike major and minor axes of
obtained ellipse.
This approval can be demonstrated in the following illustrations in Figure 3.2

Figure 3.2: Line lying on the rotation axis does not change the length [11].

We see, that lengthsX 0Y 0 and X 00Y 00are equal. Due to the fact, that cone is constructed
by given sphere and vertex in the camera center we can tell, that the cone's height will pass
through the sphere's center and if we take any two opposite rays, that have beginning in the
vertex and if these to rays and the cone's height form a plane, then the cone's height will be
the bisection of the angel between two rays. In the set of such pairs of rays only two rays
can easily determine an angle� . We can see in Figure 3.2, that such rays will pass through
major vertices of obtained conic section. From all of the above we can conclude, that some
multiple of the vector obtained in Equation 3.1.8 will pass through the sphere's center.

3.1.4 Rotation axis

From the above part we can see how useful are points, where orthogonal to the major
axis line, which also contains pointM , intersects with an ellipse. We have already obtained
the equation of the line, that is the major axis, by solving system of equations 3.1.3. We also
know, that this line was given by the point (xc; yc) and direction vector

�
e1 e2

� T
. The line,

that is orthogonal to the major vertex will have the direction vector equals to
�
� e2 e1

� T
.

If we assume, that the point M has coordinates(m1; m2), we can obtain the intersection
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between the line and conic by solving next system of non-linear equations

8
>><

>>:

xT qx = 0

y = �
e1x � e1m1 � e2m2

e2

(3.1.10)

The solution will give us two points X and Y , which, as we saw in Figure 3.2, correspond
to X 0 and Y 0 (same asX 00and Y 00). Now we will compute the length l of XY by very well
known formula

l =
p

(X 1 � Y1)2 + ( X 2 � Y2)2 (3.1.11)

We will use obtained length l in the next step.

3.1.5 Sphere's parameters

In this part of solution we need to switch to 2D to easily calculate the distance
between the camera center and the sphere's center.

If we build a plane, that passes through the cone's vertex and lineXY , we will get the
following cross section

Figure 3.3: 2D view of sphere's recovering problem.

The sphere inscribed in the cone is reduced to the circle inscribed in the triangle with
radius r . Our goal in this step is to calculate the distanceCS, which we de�ne asd. Fur-
ther, we de�ne the diameter of the visible contour of the sphere, that is circle with diameter
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EF = dc. The distance to the sphere's center will be a sum ofSL = n and CL = p. Both
lengths we can compute as

n = r sin
�
2

(3.1.12)

p =
kmkdc

l
(3.1.13)

where dc = 2 r cos
�
2

. Then the distance between the camera center and a sphere is given

by d = ( n + p). In the next step we will �nally determine the position of the sphere in the
space.

3.1.6 Recovering the position

The sphere's center is given by vectors, that has the direction and magnitude. We
have already obtained the direction of this vector in � . We need to normalize vectorm
and multiply it by distance d. Then we have to transform obtained vector into� coordinate
system. It could be done as follows

s� = A � 1 m
kmk

� d = f R � 1K � 1s� (3.1.14)

Now we have to add vectorC � to compute the actual sphere's center. Thus, we have

X s� = C � + s� (3.1.15)

where X s� is the vector, determining the position of the sphere.

3.2 Circle

The second case can be achieved only if the sphere's center lies alongc3 of 
 coordinate
system. Unlike �rst case, we do not have to calculate the direction, because it is already
given by c3. All we need to do is to calculate the distance from the camera center to the
sphere's center. Methods for circle detecting in the images return the circle's center and
its radius, so we can use Equations 3.1.12, 3.1.13, 3.1.14 and 3.1.15 to obtain the sphere's
center.

16




	Introduction
	Basic theory
	Perspective camera model
	Conic sections
	Quadrics
	Projection of a sphere into a perspective image

	Sphere reconstruction
	Ellipse
	Eigenvectors and eigenvalues of A33
	Ellipse's vertices
	Projection of the sphere's center
	Rotation axis
	Sphere's parameters
	Recovering the position

	Circle

	Real data
	Single sphere
	Distance 420 mm
	Distance 710 mm
	Distance 280 mm

	Two Spheres
	Distance 410 mm
	Distance 360 mm

	Changing the radius
	Relative position of the sphere

	Conclusion

