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Abstract

Composite structures have been already widely applied in engineering.
Laminated composites using isotropic or anisotropic layers provide numerous
options for designing lightweight structural components, that have high static
stiffness and excellent impact resistance for automotive and aerospace products.
However, lightweight structures can be susceptible to external disturbances due
to the mass reduction and light damping in many cases. As a result, unwanted
vibrations and noise can easily occur on these structures. Smart structures
that use multifunctional materials as actuators/sensors spurred considerable
research, aiming at reducing the noise and vibrations. Macro-fiber composite
(MFC) piezoelectric transducers are an attractive choice in engineering because
of their flexibility, reliability, and high-performance comparing to other types of
transducers. Comprehensive design of composite structures with integrated MFC
transducers is essential for appropriate deploying control systems in noise and
vibrations control. Finite Element Modeling (FEM) methods are commonly used
for modeling piezoelectric systems such kind of model always needs to be reduced
for dynamic applications. For example, MFC transducers can be used in vibro-
acoustic systems for noise and vibrations control. Reducing the piezoelectric
vibro-acoustic system model can be challenging because the controller design
and real-time simulations require stable low-order models. Conventional model
order reduction techniques, such as the Krylov subspace projection and the
balanced truncation, project the system model into an equivalent vector space.
Many important physical parameters are not preserved by the reduced-order
model. As a result, it is also challenging to determine the optimal placement and
piezoelectric fibrous orientation of MFC transducers on a host structure with the
consideration of their mechanical influences. There is no practical approach yet
for these purposes in the literature. In this dissertation, laminated composite
plates with spatially distributed rectangular MFC transducers are studied.
Equivalent Substructure Modeling (ESM) approach is developed to generate
stable structure-preserving low-order system models of piezoelectric composite
structures. We proposed equivalent forces as a new solution to characterize the
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iv ABSTRACT

inverse piezoelectric effect of the integrated transducer. The corresponding direct
piezoelectric effect is also derived. The analytical piezoelectric couplings are
introduced into an equivalent substructuring process for modeling piezoelectric
systems. Experiments verified the validation of the ESM approach. Two
kinds of study cases are given to demonstrate the odds of the ESM approach
for evaluating the placement and piezoelectric fibrous orientation of a MFC
transducer on a non-homogeneous composite plate. The vibro-acoustic study
of composite plates with integrated MFC transducer is carried out. The
ESM approach is used to generate a low-order stable model, and validated by
experimental data. The piezoelectric reciprocal relations in a vibro-acoustic field
are defined. The work enables MFC transducers to expand their application in
vibro-acoustics.

Keywords: Macro-fiber composite, composite structures, stable low-order
modeling, structure-preserving, dynamic applications



Abstrakt

Kompozitní struktury byly již široce používány ve strojírenství. Laminované
kompozity používající izotropní nebo anizotropní vrstvy poskytují řadu možností
navrhování lehkých konstrukčních prvků, které mají vysokou statickou tuhost
a vynikající odolnost proti nárazům pro automobilový a letecký průmysl.
Lehké konstrukce však mohou být v mnoha případech náchylné k vnějším
poruchám způsobeným redukcí hmotnosti a lehkým tlumením. V důsledku
toho mohou na těchto strukturách snadno dojít k nechtěným vibracím a
šumu. Inteligentní struktury, které používají multifunkční materiály jako
akční členy / senzory, podnítily značný výzkum zaměřený na snížení hluku
a vibrací. Kombinované piezoelektrické měniče makro-vláken (MFC) jsou
atraktivní volbou ve strojírenství díky své flexibilitě, spolehlivosti a vysokému
výkonu v porovnání s jinými typy převodníků. Komplexní návrh kompozitních
konstrukcí s integrovanými převodníky MFC je nezbytný pro správné nasazení
řídicích systémů při řízení hluku a vibrací. Metody modelování konečných prvků
(FEM) se běžně používají pro modelování piezoelektrických systémů, protože
tento typ modelu je vždy nutné pro dynamické aplikace snížit. Například
měniče MFC mohou být použity ve vibroakustických systémech pro řízení hluku
a vibrací. Snížení piezoelektrického modelu vibro-akustického systému může
být náročné, protože návrh regulátoru a simulace v reálném čase vyžadují
stabilní modely s nízkým pořadím. Techniky konvenčního snižování pořadí
modelů, jako je Krylovova podprostorová projekce a vyvážené zkrácení, navrhují
systémový model do ekvivalentního vektorového prostoru. Mnoho důležitých
fyzických parametrů není zachováno modelem s redukovaným uspořádáním. V
důsledku toho je rovněž náročné stanovit optimální umístění a piezoelektrickou
vláknitou orientaci snímačů MFC na hostitelské struktuře s ohledem na
jejich mechanické vlivy. Pro tyto účely zatím v literatuře neexistuje žádný
praktický přístup. V této disertační práci jsou studovány vrstvené kompozitní
desky s prostorově rozloženými obdélníkovými MFC převodníky. Ekvivalentní
modelování substrukturálního modelu (ESM) je vyvinuta tak, aby generovala
stabilní strukturálně chránící systémové modely piezoelektrických kompozitních
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struktur. Navrhli jsme ekvivalentní síly jako nové řešení charakterizující inverzní
piezoelektrický efekt integrovaného převodníku. Rovněž je odvozen odpovídající
přímý piezoelektrický efekt. Analytické piezoelektrické spojky jsou zavedeny
do ekvivalentního substrukturního procesu pro modelování piezoelektrických
systémů. Pokusy ověřily validaci přístupu ESM. Dva druhy studijních případů
jsou uvedeny, aby prokázaly šanci přístupu ESM k vyhodnocení umístění a
piezoelektrické vláknité orientace snímače MFC na nehomogenní kompozitní
desce. Probíhá vibro-akustická studie kompozitních desek s integrovaným
převodníkem MFC. Přístup ESM se používá k vytvoření stabilního modelu
s nízkou objednávkou a ověřován experimentálními údaji. Jsou definovány
piezoelektrické vzájemné vztahy ve vibroakustickém poli. Práce umožňuje
převodníkům MFC rozšířit jejich aplikaci v oblasti vibroakustiky.

Klíčová slova: Makro-vláknové kompozity, kompozitní struktury, stabilní
modelování s nízkou objednávkou, strukturně chránící, dynamické aplikace



Beknopte samenvatting

Composietstructuren zijn al op grote schaal toegepast in engineering. Gelami-
neerde composieten met isotrope of anisotrope lagen bieden talloze opties voor
het ontwerpen van lichtgewicht structurele componenten, die een hoge statische
stijfheid en uitstekende slagvastheid hebben voor auto- en ruimtevaartproducten.
Lichtgewicht constructies kunnen echter gevoelig zijn voor externe verstoringen
als gevolg van de massareductie en lichtdemping in veel gevallen. Dientengevolge
kunnen ongewenste trillingen en ruis gemakkelijk optreden op deze structuren.
Slimme constructies die multifunctionele materialen gebruiken als actuatoren
/ sensoren, spoorden aanzienlijk onderzoek aan, gericht op het verminderen
van het lawaai en de trillingen. Macro-vezel composiet (MFC) piëzo-elektrische
transducers zijn een aantrekkelijke keuze in engineering vanwege hun flexibiliteit,
betrouwbaarheid en hoge prestaties in vergelijking met andere typen transducers.
Een uitgebreid ontwerp van composietstructuren met geïntegreerde MFC-
transducers is essentieel voor geschikte besturingssystemen voor bediening van
geluid en trillingen. Finite Element Modeling (FEM) -methoden worden vaak
gebruikt voor het modelleren van piëzo-elektrische systemen, dit soort modellen
moet altijd worden verlaagd voor dynamische toepassing. MFC-transducers
kunnen bijvoorbeeld worden gebruikt in vibro-akoestische systemen voor controle
van ruis en trillingen. Het reduceren van het piëzo-elektrische vibro-akoestische
systeemmodel kan een uitdaging zijn omdat het ontwerp van de controller en real-
time simulaties stabiele lage-orde modellen vereisen. Conventionele technieken
voor modelreductie, zoals de Krylov-subruimteprojectie en de gebalanceerde
truncatie, projecteren het systeemmodel in een equivalente vectorruimte. Veel
belangrijke fysieke parameters worden niet bewaard door het gereduceerde
bestelmodel. Dientengevolge is het ook een uitdaging om de optimale
plaatsing en piëzo-elektrische vezeloriëntatie van MFC-transducenten op een
gastheerstructuur te bepalen met inachtneming van hun mechanische invloeden.
Er is nog geen praktische benadering voor deze doeleinden in de literatuur.
In dit proefschrift worden gelamineerde composietplaten met ruimtelijk
verdeelde rechthoekige MFC-transducers bestudeerd. Equivalent Substructure
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Modeling (ESM) -aanpak is ontwikkeld om stabiele structuurbehoudende
systeemmodellen van lage orde van piëzo-elektrische composietstructuren te
genereren. We hebben equivalente krachten voorgesteld als een nieuwe oplossing
om het inverse piëzo-elektrische effect van de geïntegreerde transducer te
karakteriseren. Het overeenkomstige directe piëzo-elektrische effect wordt ook
afgeleid. De analytische piëzo-elektrische koppelingen worden geïntroduceerd in
een equivalent substructureringsproces voor het modelleren van piëzo-elektrische
systemen. Experimenten hebben de validatie van de ESM-aanpak geverifieerd.
Er worden twee soorten studiecasussen gegeven om de kansen van de ESM-
benadering aan te tonen voor het evalueren van de plaatsing en piëzo-elektrische
vezeloriëntatie van een MFC-transducer op een niet-homogene composietplaat.
De vibro-akoestische studie van composietplaten met geïntegreerde MFC-
transducer wordt uitgevoerd. De ESM-benadering wordt gebruikt om een
stabiel model van lage orde te genereren en gevalideerd door experimentele
gegevens. De piëzo-elektrische wederkerige relaties in een vibro-akoestisch veld
zijn gedefinieerd. Het werk stelt MFC-transducers in staat hun toepassing in
vibro-akoestiek uit te breiden.

Trefwoorden: Macro-vezel composiet, composiet structuren, stabiele modelle-
ring van lage orde, structuur-behoudende, dynamische toepassingen
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ēij : Generalized piezoelectric stress constants of MFC transducer

fxx,fyy,fzz: Equivalent forces in x, y and z directions

[g]: Piezoelectric constant matrix relating the applied stress to the
resultant electric field in a piezoelectric material

[h]: Piezoelectric constant matrix relating the applied strain to the
resultant electric field in a piezoelectric material

h
E
: Electrode distance

j: complex unit

mij : Equivalent bending moment

~n: Normal vector

p: Acoustic pressure

qi: Nodal displacement in FEM

xi



xii LIST OF SYMBOLS

[sE ]: Compliance matrix of piezoelectric material defined for a constant
electric field

[sD]: Compliance matrix of piezoelectric material defined for a constant
electric displacement

t: Time variable

ta: Thickness of adhesive layer

tf : Thickness of the active layer in MFC transducers

ts: Thickness of a plate

tp: Thickness of a MFC transducer

u: generalized displacement in FEM

u•: Displacement in x direction of a plate for •

v•: Displacement in y direction of a plate for •

w•: Displacement in z direction of a plate for •

ur: Remained Dofs in numerical models

ud: Removed Dofs in numerical models

wf : Finger width of the interdigitated electrodes on a MFC transducer

zp: Thickness-wise integration of MFC transducer on a host structure

zs: Thickness-wise position of MFC transducer on a host structure

A•ij : Membrane rigidity of a plate for •

B•ij : Membrane-bending coupling rigidity of a plate for •

Bb: Elemental interpolation function of bending strain field

Bbi : Nodal interpolation function of bending strain in FEM

Bei Nodal interpolation function of electromechanical coupling in FEM

Bm: Elemental interpolation function of membrane strain field

Bmi : Nodal interpolation function of membrane strain in FEM

C: Damping matrix

Cp Capacitance of a MFC transducer



LIST OF SYMBOLS xiii

Cr: Reduced-order damping matrix

{D}: Electrical displacment tensor

D∗, and D∗s : Equivalent mechanical constant matrix of a laminate
composite plate

D•ij : Bending rigidity components for •

{E}: Electric field tensor

Fa: Acoustic excitation

Fa: Amplitude of acoustic excitation

Fs: Mechanical excitation

Fs: Amplitude of mechanical excitation

Gij : Shear modulus

Gp: A generalized term

H: The Heaviside function

K•: Stiffness matrix for •

K̃: Stiffness matrix of a substructure

K: Low-order stiffness matrix of a substructure

Kc: Structural-acoustic stiffness coupling matrix

KAg: Augmented stiffness matrix

Kij Electromechanical coupling coefficient

L Inductance

L• Localization matrix for •

M•: Mass matrix for •

M̃ : Mass matrix of a substructure

M : Low-order mass matrix of a substructure

Mc: Structural-acoustic mass coupling matrix

M•xx, M•yy, M•xy: Bending moments in x, y and xy directions for •



xiv LIST OF SYMBOLS

N : Elemental interpolation function of displacement field

Ni: Nodal interpolation function of transverse displacement in FEM

N•: Resultant force for •.

[QE ]: Elastic matrix of a piezoelectric material defined for a constant
electric field

[QD]: Elastic matrix of a piezoelectric material defined for a constant
electric displacement

Q•ij : Elastic components of a composite layer in material coordinates for •

Q̄ij : Elastic components of a composite layer in structural coordinates

Qyz, Qzx: Transverse shear loads

Q̇: volume velocity source

Q: Amplitude of volume velocity source

R(•): Dynamic condensation transformation matrix for •

R: Resistance

{S}: Strain tensor

{T}: Stress tensor

T : Model order reduction transformation matrix

T ∗• : Kinetic energy for •

U∗• : Stored energy/potential energy for •

V : Voltage

Vin: Operational voltage

Vout: Generated voltage

W ∗: External work

Yij : Young’s modulus

Ze: Impedance of external electric circuit

Zs: Thickness-wise dimension of a plate

Zp: Thickness-wise dimension of a MFC transducer



LIST OF SYMBOLS xv

Z•: Elementary thickness-wise integration of mass matrix for • in FEM

α•: Equivalent force correction factor for •

α
P
: Direct piezoelectric effect correction factor

α
E
: Inverse piezoelectric effect correction factor of MFC-d33 transducers

for the operational electric field

βT : Free dielectric impermeability matirx at a constant stress

[ε•]: Dielectric constant matrix of a piezoelectric material for •

δ: The Dirac-delta function

εm• : Slope on a plate for •

κb•: Curvature on a plate for •

θ: Radial angle

νij : Poisson ratio

ξ: Critical damping ratio

λ, η Proportional damping coefficients

ρ•: Mass density for •

τij : Transverse shear loads

φ: Electric DOF

ω: Angular frequency

∆T ∗: Kinetic energy variation

∆W ∗: External work variation

∆U∗: Stored energy variation

∆x, ∆y: Spacing of finite difference interval in x and y directions

∆S: Strain variation

∆u: Variation of u

∆v: Variation of v

∆w: Variation of w



xvi LIST OF SYMBOLS

Γ•: Area for •

Θ: Electromechanical coupling matrix

Θ̃: Electromechanical coupling matrix on a substructure

Θ: Electromechanical coupling matrix on a low-order substructure

Lf : Mechanical force input localization matrix

Lu̇: Transverse velocity output localization matrix

ΛpxΛpy: Spatial distribution of a MFC transducer



Contents

Abstract iii

Abstrakt v

Beknopte samenvatting vii

List of Abbreviations ix

List of Symbols xi

Contents xvii

List of Figures xxiii

List of Tables xxxi

1 Introduction 1

1.1 Research context and motivation . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions and achievements . . . . . . . . . . . . . . . . . . 5

1.5 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . 6

xvii



xviii CONTENTS

2 State-of-the-art on dynamic modeling of MFC transducers 9

2.1 Piezoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Advances of piezoelectric transducers . . . . . . . . . . . . . . . 12

2.3 Application of piezoelectric transducers for noise and vibration
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Application of piezoelectric transducers for energy harvesting . 20

2.5 Nonlinearity of piezoelectric materials . . . . . . . . . . . . . . 23

2.6 Modeling of MFC transducers integrated into a thin host structure 26

2.6.1 Modeling hypothesis . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Material characterization of MFC transducers . . . . . . 29

2.6.3 Analytical modeling approaches . . . . . . . . . . . . . . 30

2.6.4 Numerical modeling approaches . . . . . . . . . . . . . . 32

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Basic concept of equivalent dynamic modeling 37

3.1 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Constitutive relations of laminated plate . . . . . . . . . 38

3.1.2 Piezoelectric constitutive relations of MFC transducers . . 41

3.1.3 Transverse shear forces . . . . . . . . . . . . . . . . . . . 45

3.2 Generalized Hamilton’s principle . . . . . . . . . . . . . . . . . 46

3.2.1 Potential energy and its variation . . . . . . . . . . . . . 47

3.2.2 Kinetic energy and its variation . . . . . . . . . . . . . . 49

3.2.3 Work due to external loads and its variation . . . . . . . 49

3.2.4 Governing equations and boundary constraints of the
transducer . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Inverse piezoelectric effect characterization using equivalent forces 52

3.3.1 Equivalent membrane forces . . . . . . . . . . . . . . . . 52

3.3.2 Equivalent bending forces . . . . . . . . . . . . . . . . . 53



CONTENTS xix

3.3.3 Accuracy analysis of the inverse piezoelectric coupling . 57

3.4 Assessments of different equivalent loads . . . . . . . . . . . . . 59

3.5 Direct piezoelectric effect characterization using electric boundary
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Equivalent dynamic modeling of MFC transducers integrated into
composite plates 65

4.1 Equivalent Force Modeling approach . . . . . . . . . . . . . . . 66

4.2 Equivalent Substructure Modeling approach . . . . . . . . . . . 70

4.3 Modeling sensitivity analysis . . . . . . . . . . . . . . . . . . . 72

4.3.1 Cantilever laminated plate with integrated MFC transducers 73

4.3.2 Sensitivity analysis on the size of MFC transducers . . . 74

4.3.3 Sensitivity analysis on the piezoelectric fibrous orientation
of MFC transducers . . . . . . . . . . . . . . . . . . . . 76

4.3.4 Verification of ESM approach . . . . . . . . . . . . . . . 78

4.4 Limitations of the proposed methods . . . . . . . . . . . . . . . . 81

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Structural dynamic validation of equivalent modeling approaches 83

5.1 Experimental testing of a laminated plate with integrated MFC
transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Laminated composite plate . . . . . . . . . . . . . . . . 84

5.1.2 MFC-d33 transducers . . . . . . . . . . . . . . . . . . . 85

5.1.3 Experimental analysis . . . . . . . . . . . . . . . . . . . 88

5.2 Equivalent modeling of composite plate with integrated MFC
transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Validations of EFM and ESM models . . . . . . . . . . . . . . . 93

5.3.1 Modal validation . . . . . . . . . . . . . . . . . . . . . . 93



xx CONTENTS

5.3.2 Dynamic response validation . . . . . . . . . . . . . . . 95

5.4 Piezoelectric reciprocal relation . . . . . . . . . . . . . . . . . . 103

5.5 Dynamic application of ESM approach . . . . . . . . . . . . . . 106

5.5.1 Energy harvesting . . . . . . . . . . . . . . . . . . . . . 106

5.5.2 Piezoelectric shunt damping . . . . . . . . . . . . . . . . 107

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Vibro-acoustic study on MFC transducers 115

6.1 Reciprocal relations of a piezoelectric vibro-acoustic system . . 116

6.2 Equivalent substructure modeling of the piezoelectric vibro-
acoustic system . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 FEM modeling in Comsol . . . . . . . . . . . . . . . . . 120

6.2.2 ESM approach . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Validation of ESM model . . . . . . . . . . . . . . . . . . . . . 125

6.3.1 Frequency response validations . . . . . . . . . . . . . . 127

6.3.2 Stability verification of ESM model . . . . . . . . . . . . 130

6.4 Reciprocal relations verification . . . . . . . . . . . . . . . . . . . 131

6.4.1 Verification in the frequency domain . . . . . . . . . . . . 131

6.4.2 Verification in the time domain . . . . . . . . . . . . . . 134

6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and Perspectives 137

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Perspectives of the research . . . . . . . . . . . . . . . . . . . . 139

8 Appendix 141

8.1 Finite difference coefficient . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Interpolation function of FOSD finite element method . . . . . 143



CONTENTS xxi

8.3 Static modeling robustness check of EFM approach . . . . . . . 145

8.4 Experimental equipment . . . . . . . . . . . . . . . . . . . . . . 147

8.5 Second-order forward-backward finite difference approximation 149

Bibliography 155

Curriculum Vitae 173

List of publications 175





List of Figures

1.1 Composition of a MFC transducer . . . . . . . . . . . . . . . . 2

1.2 Work modes of MFC transducers . . . . . . . . . . . . . . . . . 2

2.1 Polarization of piezoceramics . . . . . . . . . . . . . . . . . . . 10

2.2 Different piezoelectric effects on a piezoelectric element . . . . . . 11

2.3 Work principle of a thin piezoelectric transducer . . . . . . . . 13

2.4 Multilayer piezoelectric actuators (The red and blue dash-lines
represent the deformations of the actuators) . . . . . . . . . . . 13

2.5 Schematic representation of MFC-d31 . . . . . . . . . . . . . . 15

2.6 Schematic representation of MFC-d33 . . . . . . . . . . . . . . 15

2.7 Electric field distribution on a rectangular piezoelectric fiber of
an MFC-d33 transducer . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Schematic representation of MFC-d15 . . . . . . . . . . . . . . 16

2.9 Schematic representation of active vibration control . . . . . . 18

2.10 Schematic representation of piezoelectric shunted damping (The
electrical shunt circuits are connected to the electrodes of each
transducer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Schematic representation of piezoelectric energy harvesters (a)
Bimorph structure (b) Unimorph structure . . . . . . . . . . . . 21

2.12 Two modes of piezoelectric conversion of mechanical strain into
Electric field E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xxiii



xxiv LIST OF FIGURES

2.13 Maximum extractable electrical power comparison between a
linear and a nonlinear energy harvester . . . . . . . . . . . . . . 22

2.14 Displacement-voltage hysteresis in a typical piezoceramic actuator 24

2.15 Creep over time in a typical piezoceramic actuator . . . . . . . 24

2.16 Displacement field of a plate . . . . . . . . . . . . . . . . . . . . 27

2.17 Plane deformations on a MFC transducer . . . . . . . . . . . . 29

2.18 Equivalent loads of an anisotropic rectangular piezoelectric actuator 31

2.19 Piezoelectric structures . . . . . . . . . . . . . . . . . . . . . . . 32

2.20 Material-structural coordinates transformation . . . . . . . . . 33

2.21 Strain transfer mechanism through adhesive bond layer . . . . 34

3.1 Lay-up of a laminated composite plate with an integrated MFC
transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 In-plane behaviors of a plate due to membrane forces . . . . . . 40

3.3 Out-plane behaviors of a plate due to bending moments . . . . . 41

3.4 Work principle of MFC-d31 transducers . . . . . . . . . . . . . . 41

3.5 Work principle of MFC-d33 transducers . . . . . . . . . . . . . . 41

3.6 A rectangular orthotropic plate with integrated MFC transducers 46

3.7 The distribution of fzz in x/y direction via forward finite
difference approximation (∆s indicates either ∆x or ∆y.) . . . 56

3.8 The distribution of fzz in x/y direction via a forward-backward
finite difference approximation (∆s indicates either ∆x or ∆y.) 57

3.9 One-dimensional equivalent loads bending diagram of a rectan-
gular MFC transducer . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Bending diagram of piezoelectric transducer in x/y direction due
to the equivalent forces . . . . . . . . . . . . . . . . . . . . . . . 58

3.11 A composite plate with an integrated MFC transducer and an
external electrical circuit . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 The displacement of the mid-surface (left) and a normal on a
plate (middle-right) in FOSD theory . . . . . . . . . . . . . . . 66



LIST OF FIGURES xxv

4.2 Distribution of fxx on a rectangular transducer . . . . . . . . . 68

4.3 Distribution of fyy on a rectangular transducer . . . . . . . . . 68

4.4 Distribution of fzz on a rectangular transducer. The black, blue
and green arrows indicate the bending forces along x, y and xy
directions, respectively. . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Equivalent substructure concept . . . . . . . . . . . . . . . . . 70

4.6 A cantilever plate with integrated MFC transducers (The red
spot indicates the force input and velocity output location in
direct and inverse piezoelectric response analysis, respectively.) 73

4.7 Direct piezoelectric frequency responses of MFC-d31 for different
sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Inverse piezoelectric frequency responses of MFC-d31 for different
sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Piezoelectric fibrous orientations . . . . . . . . . . . . . . . . . 76

4.10 Direct piezoelectric frequency responses of MFC-d33 for different
piezoelectric fibrous orientations . . . . . . . . . . . . . . . . . 77

4.11 Inverse piezoelectric frequency responses of MFC-d33 for different
piezoelectric fibrous orientations . . . . . . . . . . . . . . . . . 77

4.12 A cantilever plate with integrated MFC transducers (The red
spots represent the master nodes of equivalent structural model.) 78

4.13 MFC-d31 direct piezoelectric frequency response of the cantilever
plate (θ = 0o) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 MFC-d31 inverse piezoelectric frequency response of the can-
tilever plate (θ = 0o) . . . . . . . . . . . . . . . . . . . . . . . . 79

4.15 MFC-d33 direct piezoelectric frequency response of the cantilever
plate (θ = 60o) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.16 MFC-d33 inverse piezoelectric frequency response of the can-
tilever plate (θ = 60o) . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 The composite plate with integrated MFC-d33 transducers used
for dynamic response validation . . . . . . . . . . . . . . . . . . 84

5.2 Microscopic images of a region on MFC transducer . . . . . . . 86



xxvi LIST OF FIGURES

5.3 The effective length of the used transducer for direct piezoelectric
effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 The effective width of the used transducer for direct piezoelectric
effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Reciprocity check between 01 and 02 on the plate . . . . . . . . 89

5.7 Reciprocity check between the two MFC transducers . . . . . . 90

5.8 Comparison of FRFs between 26 and 22: blue curve: voltage to
velocity FRF [(m/s)/V ] and red curve: force to voltage FRF [V/N ] 91

5.9 The master nodes of the low-order models on the studied plate
(Left side is the reduced-order EFM model and right side is the
ESM model.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 MAC correlation between experimental data and EFM model . 94

5.11 First 5 normalized mode shapes of the studied plate ((a)
experimental data, (b) EFM model and (c) ESM model) . . . . 95

5.12 Inverse piezoelectric frequency response validation between 00
and 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.13 Inverse piezoelectric frequency response validation between 00
and 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.14 Inverse piezoelectric frequency response validation between 26
and 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.15 Inverse piezoelectric frequency response validation between 26
and 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.16 Direct piezoelectric frequency response validation between 00
and 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.17 Direct piezoelectric frequency response validation between 00
and 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.18 Direct piezoelectric frequency response validation between 26
and 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.19 Direct piezoelectric frequency response validation between 26
and 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



LIST OF FIGURES xxvii

5.20 Mechanical influence of the MFC transducer to the inverse
piezoelectric frequency response between 00 and 74 in ESM
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.21 Mechanical influence of the MFC transducer to the direct
piezoelectric frequency response between 00 and 00 in ESM
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.22 Reciprocity validation between two MFC transducer (High
operational voltage) . . . . . . . . . . . . . . . . . . . . . . . . 102

5.23 Reciprocity validation between two MFC transducer (Low
operational voltage) . . . . . . . . . . . . . . . . . . . . . . . . 103

5.24 Estimated inverse piezoelectric frequency response between 26
and 22 by experimental data . . . . . . . . . . . . . . . . . . . 105

5.25 Estimated inverse piezoelectric frequency response between 26
and 22 by ESM model . . . . . . . . . . . . . . . . . . . . . . . 105

5.26 Force-to-voltage FRFs of the center MFC transducer for a set of
piezoelectric fibrous orientations (The gray curve is experimental
data.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.27 Force-to-voltage FRFs of the corner MFC transducer for a set of
piezoelectric fibrous orientations (The gray curve is experimental
data.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.28 Piezoelectric shunt damping system . . . . . . . . . . . . . . . . 108

5.29 Piezoelectric shunt damping on the composite plate: velocity
over force FRF between 74 and 00 . . . . . . . . . . . . . . . . 109

5.30 Real-time simulation of the R− L shunted damping . . . . . . 110

5.31 Dynamic behaviors of the plate in non-shunted and shunted cases 111

5.32 The placement candidates of the transducer at the center of the
plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.33 Performance of the negative capacitance shunt for different
transducers’ placements . . . . . . . . . . . . . . . . . . . . . . 113

6.1 The dimensions of KU Leuven soundbox (in mm) . . . . . . . 116

6.2 Lay-up of a laminated composite plate with integrated MFC
transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xxviii LIST OF FIGURES

6.3 Comsol cavity-shell model . . . . . . . . . . . . . . . . . . . . . 122

6.4 Distribution of the master nodes selected for ESM approach. Red
spots and blue spots indicate the master nodes of the plate and
the cavity, respectively. . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Experimental setup of the vibro-acoustic system . . . . . . . . 125

6.6 MAC correlation between ESM plate model and experimental data126

6.7 First eight vibro-acoustic modes of the cavity (normalized sound
pressure in the cavity) . . . . . . . . . . . . . . . . . . . . . . . 127

6.8 Frequency response validation of acceleration over force input
between locations 43 and 34 on the plate . . . . . . . . . . . . . 128

6.9 Frequency response validation of voltage output over force input
between locations 00 and 34 on the plate . . . . . . . . . . . . . 128

6.10 Frequency response validation of acceleration over acoustic
volume velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.11 Frequency response validation of voltage output over acoustic
volume velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.12 The poles (×) and zeros (◦) of the ESM model . . . . . . . . . 130

6.13 Reciprocal relation validation positions . . . . . . . . . . . . . . . 131

6.14 Structural reciprocal relation validation between the plate and
the integrated transducer . . . . . . . . . . . . . . . . . . . . . 132

6.15 Reciprocal relation validation between the plate and the
integrated transducer in vibro-acoustic field . . . . . . . . . . . 132

6.16 Reciprocal relation validation between the cavity and the
integrated transducer . . . . . . . . . . . . . . . . . . . . . . . . 133

6.17 Piezoelectric reciprocal relation validation in time domain . . . 134

6.18 Validation of the identified acoustic source by using the
piezoelectric vibro-acoustic reciprocal relation . . . . . . . . . . 135

8.1 Three node element . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Static modeling robustness check for the MFC-d31 transducers of
different size (Left) and for the MFC-d33 transducers of different
piezoelectric fibrous orientations (Right) . . . . . . . . . . . . 145



LIST OF FIGURES xxix

8.3 The power bandwidth versus voltage and load capacitance of the
voltage amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.4 Second-order EFM model inverse piezoelectric frequency response
validation between p00 and p74 . . . . . . . . . . . . . . . . . . 150

8.5 Second-order EFM model inverse piezoelectric frequency response
validation between p00 and p00 . . . . . . . . . . . . . . . . . . 150

8.6 Second-order EFM model inverse piezoelectric frequency response
validation between p26 and p22 . . . . . . . . . . . . . . . . . . . 151

8.7 Second-order EFM model inverse piezoelectric frequency response
validation between p26 and p26 . . . . . . . . . . . . . . . . . . . 151

8.8 Second-order EFM model direct piezoelectric frequency response
validation between p00 and p74 . . . . . . . . . . . . . . . . . . 152

8.9 Second-order EFM model direct piezoelectric frequency response
validation between p00 and p00 . . . . . . . . . . . . . . . . . . 152

8.10 Second-order EFM model direct piezoelectric frequency response
validation between p26 and p22 . . . . . . . . . . . . . . . . . . 153

8.11 Second-order EFM model direct piezoelectric frequency response
validation between p26 and p26 . . . . . . . . . . . . . . . . . . 153





List of Tables

4.1 Material properties of the used MFC transducers and composite
plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Coefficients of proportional damping . . . . . . . . . . . . . . . 74

5.1 Material properties of a single laminate . . . . . . . . . . . . . 84

5.2 Parameters of MFC M2814P1 . . . . . . . . . . . . . . . . . . . 85

5.3 Material properties of MFC M2814P1 . . . . . . . . . . . . . . 85

5.4 Natural frequencies convergence via number of elements . . . . . 91

5.5 Coefficients of proportional damping . . . . . . . . . . . . . . . 93

5.6 Natural frequencies validations of the EFM and ESM models . 94

5.7 Amplitude reduction of some modes for each placement (in [dB]) 112

6.1 Structure and material properties of the laminated composite
plate with integrated MFC-d33 transducers . . . . . . . . . . . 122

6.2 Proportional damping coefficients . . . . . . . . . . . . . . . . . 123

6.3 Validation of the first 8 natural frequencies of the equivalent plate126

6.4 Validation of the first eight natural frequencies of the piezoelectric
vibro-acoustic system . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Central finite difference coefficients . . . . . . . . . . . . . . . . . 141

8.2 Forward finite difference coefficients . . . . . . . . . . . . . . . . 141

xxxi



xxxii LIST OF TABLES

8.3 Backward finite difference coefficients . . . . . . . . . . . . . . . 142



Chapter 1

Introduction

1.1 Research context and motivation

Lightweight design benefits industrial products in many aspects such as energy
and emissions reductions, and decreases of manufacturing and maintenance
costs.[1] It has been increasingly applied to various industrial areas. Composite
is one of the most important material options for designing the structural
components due to its high stiffness-to-mass ratio. However, it could be
susceptible to disturbances because of the mass reduction and low-damping
in many cases. As a result, the noise and vibrations performance of these
structural components deteriorates [1–3].

The vibrations that occur on the lightweight structures can be very discomforting
and harmful in our daily lives. For example, the vibration of road vehicles
and passenger jets affect passengers’ comfort. Vibrations can also lead to
other issues such as fatigue failure and delamination of laminated composite
structures. The resonance phenomena in vibrations can even damage some
structural components. Besides, noise results from those vibrations, due to the
structural-acoustic interaction. It is typically an NVH problem that often needs
to be addressed by vibro-acoustic analysis in vehicle design.

Traditional measures by using visco-elastic or porous materials for reducing noise
and vibrations have reached certain limitations in lightweight design concept
[4]. For this reason, smart structures have arisen in many research tracks,
aiming at improving the structural performance without adding to much mass.
Multifunctional materials, such as piezoelectric materials and shape memory
alloys can be integrated into structural components as actuators/sensors for
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2 INTRODUCTION

the usage of some control units or signal processing systems [5]. Piezoelectric
transducers can be effectively used as actuators/sensors for noise and vibrations
control, energy harvesting, and structural health monitoring [6–12]. MFC
transducer is one of the most promising options. It consists of rectangular
piezoelectric fibers, which are embedded into an epoxy matrix, as shown in
Figure 1.1. Specially designed electrodes are integrated into the transducer in
order to properly drive the piezoelectric fibers.

Kapton

Electrode

Epoxy matrix

Piezoelectric
fiber

Kapton

Electrode

Figure 1.1: Composition of a MFC transducer [13]

The MFC transducer has many odds comparing to monolithic and multilayer
piezoelectric patches: on the one hand, the MFC transducer provides high-
flexibility, high-performance, and high reliable properties [14]; on the other hand,
it enhances the design of piezoelectric systems because the performance of the
transducer significantly relies on the piezoelectric fibrous orientation, which can
lead to different actuation/sensing effects. For example, MFC transducer has
different work modes as shown in Figure 1.2, when they are used as actuators.
Hence, comprehensive design of MFC transducers spatially distributed on
composite structures is necessary for ensuring the performance of the dynamic
control systems.

Expansion Bending Torsion

Host structure

Host structure

Host 
structure

MFC

MFC

MFC

Figure 1.2: Work modes of MFC transducers [15]
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1.2 Research objectives

Considerable research has been carried out for studying the dynamic behaviors
of different types of piezoelectric structures. Nevertheless, accurate and efficient
predicting the response of piezoelectric structures is still a challenging task,
even in the case of transducer-implemented beams and plates [4]. Currently,
the structural dynamics are derived from either the Hamilton’s principle or
the elastic equilibrium principle in analytical characterization. A closed-form
solution can be obtained to describe the performance of piezoelectric transducers
on a host structure. The closed-form solutions, named equivalent loads, are
commonly used to characterize the inverse piezoelectric effect. The direct
piezoelectric effect is widely characterized for sensing and energy harvesting.
However, the coupling between the two effects is often omitted in analyses.
Besides, the transducers introduce additional stiffness and mass effects to the
host structure, and they are difficult to be taken into account in analytical
solutions. The existing work studied piezoelectric layered structure with partially
covered electrodes, whose dynamics could be entirely different from the plate
with distributed transducers. Hence, the plates with distributed piezoelectric
transducers (monolithic or orthotropic) are not fully characterized yet by
analytical methods.

Numerical methods can be used for enduring the limitations of analytical
solutions, For instance, FEM method is widely used for piezoelectric modeling
[16–23]. The mechanical properties of the piezoelectric transducers on a host
structure can be properly handled, also, the piezoelectric coupling is simulated
through strain field. Thus, the piezoelectric couplings strongly rely to the
structural modeling. Thereby, the MFC transducers should be considered in
modeling from the beginning. Meanwhile, the large-scale FEM models need
to be reduced for dynamic applications. The usual model order reduction
techniques such as Krylov subspace projection [24] and balanced truncation
[25] project the system model into an equivalent vector space so that most of
the physical parameters are not preserved in the reduced-order model, which
leads to some challenges in designing advanced piezoelectric systems with MFC
transducers:

Firstly, it is difficult to evaluate the performance of MFC transducers in dynamic
application. There are methods in literature for determining the optimal
placement of piezoelectric actuators/sensors [26, 27]. However, the mechanical
influences of the transducers that could lead to significant changes in system
dynamics are not included in these methods. For MFC transducers, the changes
in piezoelectric fiber orientation will result in simultaneous changes in both the
material and piezoelectric properties. There is no effective approach yet for
determining the optimal properties of an MFC transducer on a non-homogeneous
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host structure in the literature.

Secondly, engineering applications often require intuitive validations such as
experiments. The eigensolutions of the system are not fully preserved in the
reduced order model. As a result, the Frequency Response Function (FRF)
is widely used for model validation, but modal validations are difficult to be
conveniently performed. And, the dynamic behaviors of the structural cannot
be intuitive evaluated.

Thirdly, MFC transducers can be integrated into multiphysics systems, such
as vibro-acoustic system. It would be challenging to reduce this kind of
piezoelectric vibro-acoustic systems when the stability is required for active
noise and vibrations control or real-time simulations. Moreover, the application
of piezoelectric transducers such as MFC, are still limited to sensors/actuators.
Potentials of piezoelectric transducers in vibro-acoustics need to be further
explored. Therefore, it is significant to develop an effective modeling approach
that enables the following capabilities for designing and modeling of advanced
piezoelectric systems:

1. generate low-order system models that could be directly used in dynamic
application;

2. conserve the structure of the system for design updating;

3. retain the modal parameters for experimental validations;

4. preserve the stability of the system for real-time simulations;

5. expand the application of MFC transducers towards vibro-acoustic fields.

1.3 Research approach

This dissertation focuses on the dynamic modeling of composite structures
with distributed MFC transducers, involving non-homogeneous composite host
materials, MFC transducers, and experimental testing. In the view of the
research objectives, the following research approach is defined:

1. An analytical characterization of anisotropic piezoelectric transducers,
which are integrated into laminated composite plates will be carried out
by using the generalized Hamilton’s principle. The assessment of the
existing solutions is considered. Then, a new characterization of the
inverse piezoelectric effect for anisotropic piezoelectric transducers can be
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proposed. Accordingly, the corresponding direct piezoelectric effect will
be determined by the electrical boundary conditions.

2. Based on the derived analytical solutions, a FEM-based semi-analytical
modeling approach can be developed in order to relax the dependency
between structural and piezoelectric modelings. More importantly, an
effective modeling approach should be developed in order to generate
low-order system models for the research objectives. The accuracy and
sensitivity analysis of the developed approach is required for evaluating
its performance and limitations.

3. The proposed modeling approach needs to be validated by experimental
data. Firstly, laminated composite plates with integrated rectangular MFC
transducers will be manufactured. Then, both the modal parameters and
the dynamic responses of the system will be experimentally determined
for the validations.

4. A vibro-acoustic study of a composite plate with integrated MFC
transducers is planed. The developed approach should be able to deal
with vibro-acoustic systems. Along with it, experimental validations need
to be performed. The features of MFC transducers in vibro-acoustics will
be investigated to explore the possibility for the usage of MFC transducers
in vibro-acoustics.

1.4 Contributions and achievements

The research approach has allowed us to achieve the following contributions:

Characterization of non-homogeneous laminated composite plates
with integrated MFC transducers

On the one hand, the generalized Hamilton’s principle is reviewed for
non-homogeneous anisotropic plates with spatially distributed anisotropic
rectangular piezoelectric transducers. The placement of the transducers is
expressed by spatial distributions on the plate so that the mechanical influences
of the transducer can be included in the analysis. The equivalent loads that
describe the inverse piezoelectric effect of the integrated transducer on the plate
are derived. Equivalent forces are proposed as a novel inverse piezoelectric
coupling. On the other hand, the direct piezoelectric effect of the transducer is
derived from the electric boundary conditions of piezoelectric systems, which
has the same coupling patterns as the equivalent force, hence, the reversibility
of piezoelectric effect is ensured.
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Development of an equivalent dynamic modeling approach

An equivalent dynamic modeling approach of laminated composite structures
with integrated MFC transducers is developed. The main objective of the
approach is to generate structure-preserving low-order system models for
dynamic applications. The piezoelectric-induced mechanical properties can
be included in system models. The composite plate, the MFC transducers and
other physical subcomponents in the system can be individually treated in the
modeling.

Experimental validation

Laminated composite plates with integrated MFC transducers are manufactured.
A modal testing of the studied plates is elaborately carried out. The frequency
responses of both the direct and inverse piezoelectric effects of the integrated
transducers are measured. By doing so, the proposed modeling approaches are
rigorously validated by the experimental data.

Vibro-acoustic study of MFC transducers integrated into composite
plates

The vibro-acoustic study of a laminated composite plate with spatially
distributed MFC transducers is carried out with the KU Leuven soundbox: (1)
the vibro-acoustic reciprocity is mathematically proved and extended to the
integrated MFC transducer; (2) the ESM approach is applied to vibro-acoustic
problems for generating stable structure-preserving low-order models; (3) the
piezoelectric vibro-acoustic reciprocal relations are verified by the low-order
model in both the frequency and time domains. The study provided a basic
understanding of the piezoelectric transducers’ application in vibro-acoustics.

1.5 Outline of the dissertation

Chapter 1 The present chapter describes the research context, motivation,
objectives, and research approach of the dissertation. The main contributions
and achievements of the dissertation are highlighted.

Chapter 2 The chapter briefly introduces piezoelectricity, and selectively
presents some well-known applications. The existing studies of MFC transducers
are elaborated. Regarding piezoelectric modeling, the modeling hypothesis are
first reviewed. Then, the material characterization of MFC transducers is
presented. Finally, a detailed review of the modeling of MFC transducers is
expounded.
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Chapter 3 The constitutive relations of both laminated composite plates and
MFC transducers are described. The generalized Hamilton’s principle of an
anisotropic plate with integrated anisotropic piezoelectric transducers is derived,
and then, the equivalent loads of the integrated transducer are obtained. The
assessments of different equivalent loads are expressed. A new characterization
of the inverse piezoelectric coupling is proposed in terms of forces and the
corresponding direct piezoelectric coupling is also derived. Finally, the accuracy
of the proposed equivalent forces is analyzed.

Chapter 4 An Equivalent Force Modeling (EFM) approach is presented. A
FEM method is adopted to model the structural dynamics of composite plates
with integrated MFC transducers. Then, the implementation of the proposed
piezoelectric couplings is described. After that, the ESM approach is presented
to generate structure-preserving low-order system models. Finally, the sensitivity
analysis of the proposed solution is carried out. Both the size and piezoelectric
fibrous orientation of MFC transducers are considered as sensitive parameters.

Chapter 5 The structural dynamic validation of the proposed modeling
methods is presented in this chapter. The tested subjects are presented in
the beginning. The modal testing methods are expressed in detail and some
interesting observations are illustrated. Then, both the EFM and ESM models
of the tested plate are presented. The two models are validated in detail by
the experimental data. Finally, two numerical study cases are given in order to
demonstrate the odds of the ESM approach.

Chapter 6 This chapter describes a vibro-acoustic study of a laminated
composite plate with integrated MFC transducers, which is conducted on
the KU Leuven soundbox. The vibro-acoustic reciprocity is reviewed, and then,
the piezoelectric vibro-acoustic reciprocal relation is derived. The modeling
of the vibro-acoustic system is presented in detail. The ESM approach is
used to generate a stable structure-preserving low-order model. Finally, the
piezoelectric reciprocal relation is verified in both frequency and time domains.
Simple acoustic source qualification study case is given to demonstrate the
application of the derived piezoelectric reciprocal relations.

Chapter 7 The overall conclusions of the dissertation are sketched and some
suggestions for future research and applications are given.





Chapter 2

State-of-the-art on dynamic
modeling of MFC transducers

This chapter presents the existing work in the literature which is related to this
dissertation’s research. A brief introduction of piezoelectricity is given, and
different modeling methods regarding to MFC transducers and their application
are emphatically reviewed in order to provide sufficient fundamentals for the
study.

2.1 Piezoelectricity

Piezoelectricity, a coupling between electric and mechanical fields, was discovered
by the Curie brothers in 1880 [28]. It is a reversible process including both the
direct and inverse piezoelectric effects. The direct piezoelectric effect is subject
to the internal electric charge which is generated by a mechanical input on a
piezoelectric material, and the inverse piezoelectric effect is that an operational
electric field which is applied to the material generates mechanical deformations
[29].

Many piezoelectric materials have been developed, and piezoceramics are the
most used in engineering application [30–33]. As shown in Figure 2.1, the
piezoceramics are naturally characterized by random piezoelectric oriented
grains so that the piezoelectric effect exhibits only after a polarization [34, 35].
During a poling process, the electric dipole in each grain can be reoriented to a
direction close to the direction of the applied electric field when the temperature

9
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is above the Curie point. But they are remained in the oriented direction
by reducing the temperature under the Curie point. This process leads to a
non-null external electric dipole moment which called remnant polarization.
Hence, the piezoelectric materials possess some remnant of deformation after
the polarization.

V-

V+

Poling 
voltage

P
oling direction

Before polarization  Poling by an electrical field After polarization

+

- +

-
+

-
P P P

Figure 2.1: Polarization of piezoceramics

Linear piezoelectric effect includes the linear electrical behavior of the material
and linear elastic deformation. The linear electrical behavior of the material is
expressed as follows [36]:

D = εE (2.1)

where, D and E are the electric displacement and electric field vectors,
respectively. The dielectric matrix is noted as ε. The linear elastic deformation
is described by the Hooke’s law [37]:

S = sET (2.2)

in which, T and S are the stress and strain vectors, respectively. The compliance
matrix of the material is SE under a constant electric field. The coupled
equations of the two effect in strain-charge form can be written as:

S = sET + dTE (2.3a)

D = dT + εTE (2.3b)

where, the piezoelectric effects are described by the piezoelectric strain constants
d [m/V ], and �T denotes the transposition of a matrix. The full piezoelectric
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constitutive equations are described as follows [38]:
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Figure 2.2: Different piezoelectric effects on a piezoelectric element

It is worthwhile to mention that the Vigot notation [39] is commonly
used in piezoelectric constitutive equations. The index [1, 2, 3, 4, 5, 6] are
corresponding to [xx, yy, zz, yz, xz, xy] in a Cartesian coordinate system,
respectively. Figure 2.2 shows all the piezoelectric effects in Equation (2.4). We
can observe that d31 is the piezoelectric coupling between the strain S1 and the
electric field E3, where the deformation direction and the poling direction of the
material are perpendicular with each other. A similar case can be found for the
piezoelectric coupling d32 too. However, d33 is the piezoelectric coupling between



12 STATE-OF-THE-ART ON DYNAMIC MODELING OF MFC TRANSDUCERS

the stain S3 and E3, in this case, the poling direction and the deformation
direction are in line with each other. The piezoelectric effects d15 and d25, which
are not related to the study in the dissertation, are the couplings between the
electric fields and transverse shear deformations. All the piezoelectric effects
are shown in Figure 2.2.

Equation (2.3a) and (2.3b) can be converted into different forms by using the
linear electric behavior in Equation (2.1) or the linear elastic deformation in
Equation (2.2) [29]. For example, By using Equation (2.2), the stress-charge
form can be obtained as follows:

T = QES − eTE (2.5a)

D = eS + εSTE (2.5b)

where, QE is the elasticity matrix of the material in a constant electric field
with QE = [sE ]−1. The relation between d and e is actually:

eT = QEdT . (2.6)

The full piezoelectric constitutive equations can be given as follows:
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=



QE11 QE12 QE13 0 0 0 0 0 −e31

QE21 QE22 QE23 0 0 0 0 0 −e32

QE31 QE32 QE33 0 0 0 0 0 −e33

0 0 0 QE44 0 0 0 −e25 0
0 0 0 0 QE55 0 −e15 0 0
0 0 0 0 0 QE66 0 0 0
0 0 0 0 e15 0 εS11 0 0
0 0 0 e25 0 0 0 εS22 0
e31 e32 e33 0 0 0 0 0 εS33
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(2.7)

The piezoelectric constants e are the coupling coefficients between stresses and
electrical field in the corresponding direction.

2.2 Advances of piezoelectric transducers

A simple piezoelectric transducer consists of a thin polarized piezo-patch with
a pair of electrodes on the top and bottom surface of the patch. The thin
piezo-patch can only have one work mode in the Figure 2.2 according to its
poling direction. Let’s take the d31/d32 work mode as an example. It can
only perform in-plane expansion/contraction when an operational voltage is
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applied to it. However, the piezo-patch can be easily integrated into a host
structure, as shown in Figure 2.3. When it functions as an actuator, the
asymmetric deformation in the thickness-wise of the structure results in both
the local contraction/extension and bending at the same time. Conversely, the
deformation of the piezo-patch will lead to a direct piezoelectric effect on the
transducer too.

 

In-plane Out-plane

Piezoelectric 
transducer

Figure 2.3: Work principle of a thin piezoelectric transducer

Based on the work mode of the thin piezo-patch, different piezoelectric actuators
have been designed to generate different performances, such as piezo-stack
actuators and piezo-benders, as shown in Figure 2.4. They consist of multilayer
piezoelectric patches with electrodes in each other. The small distance between
two neighboring electrodes can generate a large electric field with for a given
operational voltage. On the piezo-stack actuators, all the patches deform in
the same way under an operational voltage. Hence, they can generate large
actuation force/deformation. The piezo-bender in Figure 2.4is composed by
two piezoelectric layers. The difference in deformation between the two layers
leads to bending deformations.

0V 0 V
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V -
V P
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(a) piezo stack actuator (b) piezo shear actuator (c) piezo bender

Figure 2.4: Multilayer piezoelectric actuators (The red and blue dash-lines
represent the deformations of the actuators)
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All the mentioned piezoelectric transducers/actuators are made of monolithic
piezoelectric layers and their high stiffness affords a large actuation force and
a voltage-dependent actuation authority [40]. However, the limitations of
monolithic piezoelectric transducers are pronounced too [14, 41]. The brittle
nature makes them damage easily. Moreover, the high mass density and high
stiffness may severely modify the dynamics of lightweight, flexible host structures.
last but not the least, the limited mechanical flexibility makes them difficult to
adapt non-flat host structures too.

Composite piezoelectric transducers have greatly overcome these limitations.
The main idea of the composite transducers is to embed the piezoelectric fibers
into an epoxy matrix so that the hybrid transducers have high performance,
good flexibility, and high durability. Various advanced piezoelectric transducers
have already been commercialized, such as MFC and Active Fiber Composite
(AFC)[14, 41]. The MFC and AFC transducers share the same mechanism.
But the rectangular piezoelectric fibers of MFC transducers lead to a higher
fiber volume fraction than AFC, which uses the round piezoelectric fibers.
As a result, the performance of MFC transducers is almost 1.5 times larger
than AFC transducers. The experimental results also proved that the actuation
performance of MFC is better than many other piezoelectric actuators after more
than 90 million electrical cycles [14, 42]. Besides, the rectangular piezoelectric
fibers make MFC transducers easier and less expensive to manufacture than AFC
transducers. Hence, the MFC transducer is one of the most promising choices
for engineering application. There are different kinds of MFC transducers:
MFC-d31, MFC-d33 and MFC-d15, as shown in Figure 3.4-2.8. The MFC
transducers commonly have a rectangular geometry. And they usually consist
of five layers: two Kapton layers, two electrode layers, and one active layer. In
the following schematic representation figures from [43], the acrylic layers are
considered as an individual layer. Besides, it is worthwhile to notice that the
MFC transducers produced by the different manufacturer could have different
kinds of electrodes according to their production techniques.

The MFC-d31 transducer has a poling direction in the thickness-wise of the
transducer. A pair of continuous electrodes is used in the transducer in the
figure so that the electric field is uniform in the thickness-wise of the transducer.
Thereby, both the d31 and d32 effects in the X − Y plan can be used for the
sensing/actuation. When it is used as an actuator on a host structure, it can
generate both expansion/contraction and bending motions in both X and Y
directions.
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Figure 2.5: Schematic representation of MFC-d31 [43] ((X,Y, Z) represents the
material coordinates system and (x1, x2, x3) denote the structural coordinates
system)

The MFC-d33 transducer has a complex poling direction along with the
piezoelectric fiber according to the neighboring positive and negative electrodes
fingers. The d33 effect, which is usually much larger than d31 and d32
has a unidirectional sensing/actuation. It can generate a unidirectional
expansion/contraction and bending behaviors on a host structure when it works
as an actuator. The performance of the transducer increases with the distance
increasing between the adjacent electrode fingers, and a high operational voltage
is required to generate the necessary electric field. That is due to the fact that
the electrodes generate a non-uniform electric field, as shown in Figure 2.7. A
larger distance between the adjacent electrode fingers can reduce the dead zone
and generate a more uniform electric field in the piezoelectric fibers.

Figure 2.6: Schematic representation of MFC-d33 [43] ((X,Y, Z) represents the
material coordinates system and (x1, x2, x3) denote the structural coordinates
system)
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Figure 2.7: Electric field distribution on a rectangular piezoelectric fiber of
an MFC-d33 transducer [44]

The motivation for the development of MFC-d15 is to use the large d15 effect,
which directly couples to transverse shear strains [45]. As shown in the Figure 2.8,
the poling direction is along with the piezoelectric fibrous direction. A uniform
electric field is generated in the thickness-wise of the transducer by a pair
of continuous electrodes. The packaging of different components significantly
reduces the effective electromechanical coupling of this kind of transducer. A
possible reason is owing to the small thickness of the transducer. Nevertheless,
it can also be used in where the shear deformations could be problematic.
Besides, MFC-d15 transducer could also generate bending deformation through
its transverse shear deformations. Consequently, it can be placed close to the
boundary or embedded in the thickness-wise of a host structure to ensure its
performance.

Figure 2.8: Schematic representation of MFC-d15 [43] ((X,Y, Z) represents the
material coordinates system and (x1, x2, x3) denote the structural coordinates
system)
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Various piezoelectric transducers have been developed for industrial application.
We just reviewed some of them, which are widely used in engineering. Since the
multilayer piezoceramic transducers (piezo-stack-actuator, piezo-shear-actuator,
and piezo-bender) can generate complex deformations, advanced piezoelectric
devices are able to be developed such as the piezoelectric motor [46]. Regarding
to the MFC transducers, the effective properties of the MFC transducers should
be characterized for modeling and designing of systems with integrated MFC
transducers because they are laminated composites. The piezoelectric fibrous
orientation which is not presented in monolithic is a crucial parameter for
designing advanced piezoelectric systems. The changes in fibrous orientation
lead to the changes in material properties and piezoelectric effect. The MFC-d31
and MFC-d33 transducers are more suitable for reducing noise and vibrations
on flexible structures because they can directly generate large bending and
membrane efforts on a host structure. The MFC-d15 transducer has a much
more limited application, due to the low effective electromechanical coupling.

2.3 Application of piezoelectric transducers for
noise and vibration control

Piezoelectric transducers not only can generate large actuation forces but also
can interact with dynamic systems in a wide frequency range up to megahertz
[47]. A great achievement has been made in their application, for example,
smart aircraft [48, 49], modal testing of lightweight flexible structures [14]
and structural health monitoring [50, 51]. The most well-known application
is structural vibration control. Both active and passive control of structural
vibrations can be implemented by piezoelectric transducers. The active vibration
control actively applies mechanical inputs to counteract the vibrations on a
structure. The main components of an active control system are the plant,
actuator, sensors and controllers, as shown in Figure 2.9. The piezoelectric
transducers are used as actuators in the figure, They are possible to be used
as sensors too [52, 53]. Different types of control algorithms are designed
for reducing vibrations. LQG controller design is reported in [54, 55]. H∞
controllers are developed in [27, 56]. These are centralized controllers which may
create delay issues of control input computing. Hence, decentralized/distributed
controller are investigated in [56–58]. The nonlinear active vibration control
is studied in [59, 60]. The major advantage of active vibration control is
high damping performance without adding to much mass or reducing too
much stiffness, compared to the conventional vibration suppression measures.
However, active vibration control has power consumption, and a power amplifier
is commonly required to increase the control effort. Besides, the active vibration
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control is model-based, a stable, accurate low-order model is critical for the
high-performance controller design. The placement of the actuators/sensors
influences their controllability/observability so that the optimal placement of
the actuators/sensors should be identified [26, 27].

Power 
Amplifier Controller

External 
disturbance

Piezo transducer

Sensor

Plant

Figure 2.9: Schematic representation of active vibration control

The passive vibration control by using piezoelectric transducers is well-known
for piezoelectric shunted damping. Different from the active vibration control,
the piezoelectric transducers are used to convert mechanical energy to electric
energy in the piezoelectric shunted damping. The direct piezoelectric effect
caused by the motion of the host structure generates electrical energy. Then,
the inverse piezoelectric effect of the shunted transducer generates a force, which
counteracts the motion of the hot structure. Hence, an electrical network can be
designed to dissipate energy from the host structures, as shown in Figure 2.10.
Sensors, active control law design and power consumption are not required by
piezoelectric shunted damping but are necessary for active vibration control.
Nevertheless, it is essential to place the piezoelectric transducers at the optimal
locations on a host structure for ensuring a high electromechanical efficiency.
The piezoelectric shunt is not necessary model-based. However, it is vital
to understand the dynamics of the system for designing the electrical shunt
circuit. Wherefore, an accurate model of the system is preferred comparing to
carrying on experiments. Besides, if the model is stable and preferable low-order,
real-time simulations can be performed.
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Figure 2.10: Schematic representation of piezoelectric shunted damping (The
electrical shunt circuits are connected to the electrodes of each transducer)

In general, there are two types of piezoelectric shunted damping: inductance-
resistance (L−R) shunted damping and negative capacitance shunted damping.
The L − R shunted damping are investigated in [61–65]. The L − R circuit
together with the capacitance of the transducer Cp results in a second-order
electric dynamics. Its natural frequency matches the natural frequency of a
mode on the host structure. A damping effect can be led into the mode through
the resistance R. It is important to mention that an unrealistic large inductance
L can be required by a simple L−R circuit that connected to a piezoelectric
transducer in parallel. Therefore, complex electrical circuit typologies that
can perform optimal shunted damping with lower inductance are reported in
[66–69]. Furthermore, the L−R shunted damping solution is limited in a narrow
frequency bandwidth (on the natural frequency of a mode). An alternative is to
use multiple L−R shunt units to expand the frequency bandwidth, as shown
in Figure 2.10. However, the negative capacitance shunted damping can reduce
the structural vibration in a broadband frequency range. The effect caused
by the capacitance of the piezoelectric transducer can be eliminated by the
negative capacitance generated from an equivalent electrical circuit so that the
resistance in the circuit can effectively dissipate energy on the host structure in
a wide frequency bandwidth [65, 70–73].

Both the active and passive vibration controls can be used in structural-acoustic
interaction systems so that noise due to sound radiation and sound transmission
can also be attenuated. The active and passive vibration controls are effective
in the low-frequency range, while dissipative material such as visco-elastic
or porous materials, or are efficient for the high-frequency range. Noise and
vibrations suppression are elaborated in [6, 74]. Analytical modeling is carried
out, and both the sound radiation control and sound transmission control of the
piezoelectric layered plates are investigated. Large piezo-patches are distributed
overall the host structure in [6], and the actuators can be considered as an
additional layer overall the host structure. But piezoelectric materials generally
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have large mass density so that it is not recommended to use too many large
piezo-patches for noise and vibrations control of lightweight structures. It is
more attractive to place piezoelectric transducers on the optimal locations to
prevent the noise and vibrations. In [75, 76], active structural acoustic control
of rotating machinery is investigated. Special designed piezoelectric actuators
are integrated into the rotating machinery to stop the noise transmission path,
and the dynamics of the system is characterized for designing controllers. The
L−R shunted damping with small piezoelectric transducers is used in [77] for
reducing the sound pressure in an acoustic cavity. FEM model is generated and
reduced through a subspace projection technique so that the performance of
the damping solution can be efficiently evaluated.

Effective modeling of piezoelectric systems is essential for proper design and
deployment of dynamic control units in noise and vibrations control. A stable
low-order model is crucial for designing controller in active measures. An
efficient means to determine the dynamics of the system is also important to
design the electrical shunt circuits for passive control. Optimal actuators/sensors
placement should be determined in both cases. However, the influences and
changes in the properties of the actuators/sensors are not considered in the
optimal placement methods. The optimal piezoelectric fibrous orientation that
results in the optimal material and piezoelectric properties at a fixed position
on the structure allows for gaining a better actuation/sensing performance in
noise and vibrations control.

2.4 Application of piezoelectric transducers for
energy harvesting

Mechanical energy can be converted into electrical energy by piezoelectric,
electromagnetic, energy sinks and electrostatic transducers. Piezoelectric
materials are widely investigated for energy harvesting due to their high energy
density [78]. Primary study of piezoelectric energy harvesting is based on linear
beam and plate theories. The schematic representation of piezoelectric harvesters
is given in Figure 2.11. Piezoelectric bimorph and unimorph configurations are
adopted in most of studies. The electrical energy is extracted from the system
through the electrodes by using a power management circuit. The proof-mass
on the tip of the cantilever structure for either increasing the kinetic energy of
the system and/or adjusting the natural frequency of the system. d31 and d33
effects of the piezoelectric element are generally used for energy conversions,
and the corresponding work modes are given in Figure 2.12.



APPLICATION OF PIEZOELECTRIC TRANSDUCERS FOR ENERGY HARVESTING 21

Piezoelectric element

Electrodes
Proof mass

Piezoelectric element
Electrodes

Elastic layer
Proof mass

Figure 2.11: Schematic representation of piezoelectric energy harvesters (a)
Bimorph structure (b) Unimorph structure [79]

d31 mode d33 mode
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Figure 2.12: Two modes of piezoelectric conversion of mechanical strain into
Electric field E [79]

Analytical modeling and experimental validation of a piezo-patch on a clamped
plate are reported in [80]. The predicted results are quite obviously different
from the experimental data. The imperfect clamped boundary condition in the
experiment influences the validation. Neglecting the mechanical influences of the
piezo-patch to the host plate in the analytical solution also affects the predicted
results. MFC transducers are also used for vibration-based energy harvesting
on a cantilever beam in [81]. A prototype is developed, and a FEM model is
carried out. The experimental validation is limited up to 80Hz, and an obvious
mismatch can be observed on the natural frequency of the second structural
mode even though the prototype used simple Aluminum beams integrated
with small MFC transducers. Moreover, vibration-based piezoelectric energy
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harvesting using a circular piezoelectric wafer is presented in [82]. The perfect
structural boundary conditions in modeling is corrected in order to have an
excellent experimental validation. Hence, even in the case of a simple structure
such as piezoelectric transducer-integrated plates, it is still a challenging task
to accurate and efficient predict the responses of a real piezoelectric system.

Figure 2.13: Maximum extracted electrical power comparison between a linear
and a nonlinear energy harvester in [83]

Based on the simple piezoelectric energy harvesting mechanisms, essential
technology can be investigated for developing low-power, maintenance-free
electrical devices. Advanced piezoelectric energy harvesting systems have been
already developed in the past decade. Piezoelectric micro-electromechanical
system (MEMS) is one of the most attractive strategies for developing self-power
micro-systems [79]. Different kinds of MEMS have been already developed, and
the size of these devices varies from sub-micron to millimeter [84–86]. However,
several key factors should be emphasized here for designing piezoelectric
harvesters such as MEMS. Firstly, only a small portion of mechanical energy
can be harvested from a vibration source. The extracted power is inversely
proportional to the resonance frequency of the piezoelectric system [87]. As a
result, the low-frequency design is favorable to increase the extracted power.
Secondly, the impedance of the power management circuit should be the complex
conjugate of the vibration source impedance in order to maximize the power
extraction [88]. Thirdly, the output power of piezoelectric energy harvesting
systems is frequency dependent. The harvester will convert mechanical to
electrical energy more efficient when the frequency of the vibration source is
close to the fixed natural frequency of the device. Thereby, a nonlinear energy
harvester allows for maximizing the output power when external vibration source
has variable frequency [83, 89]. The nonlinearity may come from magnetic force
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or constrained mechanical structures such as the cases in [90–92]. The power
bandwidth of a nonlinear harvester is much larger than a linear harvester, as
the example shown in Figure 2.13.

MFC transducer is not a mainstream option for energy harvesting. We can
observe that the piezoelectric energy harvesters of small sizes are more attractive
for the power supply of micro-systems. It also can be very challenging and costly
to miniaturize the size of MFC transducers. Besides, there are proper methods
for integrating the piezoelectric material into MEMS [79]. Moreover, the
power density of MFC transducers should be small than monolithic piezoelectric
materials, due to the epoxy in the active layer of MFC transducers. Nevertheless,
MFC transducers can be used for large-scale piezoelectric harvesting systems
such as human motion energy harvesting [94] and energy harvesting from
vibrating structures [81, 95]. In these cases, it is critical to optimize the
placement and piezoelectric fibrous orientation of the MFC transducers for
increasing the extracted energy. The MFC-d31 and MFC-d33 transducers
are most widely used in these researches, and the MFC-d15 transducer is not
attractive which is due to the fact that current research on energy harvesting is
based on bending and membrane behaviors of thin piezoelectric structures.

2.5 Nonlinearity of piezoelectric materials

When polarized piezoelectric materials are driven by electrical inputs, their
nonlinearity is usually expressed by hysteresis and creep. Hysteresis is that
the output displacement of the material depends on both the currently applied
electric input and some values of the electrical input in the past, as shown
in Figure 2.14. It is more prominent in long operating ranges, and it can
be reduced by keeping the small amplitude of operating voltage. Creep is
caused by the remnant of polarization in piezoelectric materials. As shown in
Figure 2.15 When a constant voltage is applied to the transducer, its deformation
continuously changes over time, due to the response of remnant polarization.
Creep is more significant in slow and static application. For some input voltage
profiles, one can also observe the simultaneous influence of hysteresis and creep
on displacement responses [96].
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Figure 2.14: Displacement-voltage hysteresis in a typical piezoceramic actuator
[97]

Figure 2.15: Creep over time of a typical piezoceramic actuator [98]

The existence of hysteresis and creep limits the performance of piezoelectric
transducers so that it is highly desirable to compensate for them [99]. When a
linear system assumption/model is used in real application, a local feedback
loop can be designed for reducing their influences [12, 96, 100–102]. In this
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case, the piezoelectric devices can have a virtual linear performance or a linear
mapping between the input and output [103]. The hysteresis effect can be
described by various models such as the Jiles-Atherton model [104] and the
Maxwell model [105] based on physical principles; the Prandtl-Ishlinskii model
[12, 106], Dahl model [107] and Duhem model [108] based on mathematical
descriptions. The Duhem model has a smaller modeling error comparing to the
other hysteresis models because it includes both the electrical and mechanical
domains. Parameter identification using experimental data or optimization
techniques is required for making the model reflect the real system performance
better [99, 106], where linear time-invariant model [109, 110] and logarithmic
model [96, 111] can be introduced into the hysteresis model.

Nonlinear piezoelectric system modeling can also be performed. It has been
observed that the piezoelectric and dielectric coefficients depend on the applied
electric field [112, 113]. Then, it appears that the nonlinearity can be seen as
an electric field- or induced strain-dependence of the piezoelectric coupling
coefficients [114]. Nonlinear FEM methods are developed based on this
observation. The first FEM method to model nonlinear bending/twisting
responses under increasing applied electric field is based on strain concept
[115]. A nonlinear FEM approach is reported in [116]. Piezoelectric constitutive
relations are extended to include quadratic and cubic nonlinear terms. Modeling
of finite deformation piezoelectric material behavior coupling transient electrical
and mechanical fields is reported in [117]. A wavelet transformation induced
multi-time scaling algorithm is developed for enhancing the computational
efficiency of dynamic piezoelectric simulations. These work provide new
possibilities to predict the behaviors of piezoelectric structures better.

Hence, the nonlinearity imposes difficulty for the use of piezoelectric transducers
in applications. Two main approaches can be used to deal with them. The first
one is to create a local closed-loop on a linear system model to compensate for
them in practice. The second one is to generate nonlinear models directly. The
nonlinearity of piezoelectric transducers can benefits engineering applications
too. For example, a nonlinear skin is developed in [118] for vibration attenuation.
A piezoelectric transducer is used for introducing the nonlinearity to the system.
It is also used for nonlinear piezoelectric energy harvesting too in [119]. In this
dissertation, the nonlinearity of piezoelectric transducers is not investigated.
Effectively modeling of linear piezoelectric structures, which can be efficiently
used for designing advanced control algorithms for noise and vibrations control,
are carried out. However, it is important to mention that the nonlinearity of
piezoelectric transducers should be compensated for ensuring their performance
in practical application.
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2.6 Modeling of MFC transducers integrated into
a thin host structure

The above mentioned application require accurate system models for predicting
the dynamics of the system and designing control solutions. Hence,
comprehensive modeling of structures with integrated MFC transducers is
an important task. MFC-d31 and MFC-d33 transducers should be investigated
because they are much more suitable for noise and vibrations control. The
performance of these MFC transducers depends on both the piezoelectric
fibrous orientation and placement on host structures. A thin but stiff host
structure helps to improve the performance of the integrated MFC transducers
[120, 121] so that beams, plates, and shells are commonly investigated in the
mentioned application because the large deformation of host structures ensures
the performance of the integrated transducers. The following study analyzes
plate-type host structures with integrated MFC transducers because they are
one of the most used classes in engineering.

2.6.1 Modeling hypothesis

An inspection of the two-dimensional modeling hypothesis is essential for the
study of this dissertation. Plates are an important class of two-dimensional
structures. They are flat structures, and the thickness of plates ts is much
smaller than the other two dimensions (length a and width b). They can be
subdivided into three classes according to the ratio b/ts [122]:

1. Thick plates have a ratio b/ts 6 10. Therefore, a three-dimensional
mechanical assumption is necessary. All the components of stress, strain,
and displacement fields are involved in the analysis of this type of
structures.

2. Membranes have a ratio b/ts > 100. A membrane mainly sustains the
in-plane loads called membrane forces on its mid-surface so that they are
devoid of bending behaviors.

3. Thin plates have a b/ts ratio between 10 and 100. They form the most
extensive class. Depending on the ratio of maximum deflection of the
plate to its thickness w/ts, the contributions of flexural and membrane
forces may be different. Thereby, this category can be subdivided into
two groups:
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Stiff plates have a ratio w/ts 6 0.2. They sustain external loads
mostly by internal bending, twisting moments and shear forces. The
deformation of mid-surface and the membrane forces can be neglected.

Flexible plates have a ratio w/ts > 0.3. The plates’ deflection is
followed by a stretching of the mid-surface. Hence, a flexible plate behaves
like a combination of stiff plates and membranes. They carry external
loads by the combined action of bending moments, shear forces and
membrane forces.

It is mentioned in [122] that the above classification is conditional because the
reference of a plate to one or another group depends on the accuracy of analysis
and boundary conditions, etc. Restricted by the small strain variation of MFC
transducers, only thin plates are studied in this dissertation. Thereby, either
the Kirchhoff plate theory or the Mindlin-Reissner plate hypothesis and their
variations are applicable in the study. The displacement field of a plate is given
in Figure 2.16, in which, u, v and w are the translational components in x, y
and z directions, respectively. βx and βy are the rotational components in y
and x directions, respectively.
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Figure 2.16: Displacement field of a plate

The Kirchhoff plate theory assumes that the thickness of the plate is remained
during a deformation; the normal to the mid-surface remains straight and
perpendicular to the mid-surface after the deformation too [123]. Then, βx
and βy can be approximately expressed by the derivatives of the transverse
displacement w. As a result, the Kirchhoff plate hypothesis significantly
simplifies the strain-displacement relations. In the Mindlin-Reissner theory, the
normal to the mid-surface remains straight but it is not always necessary to
be perpendicular to the mid-surface of the plate [123]. The Mindlin-Reissner
hypothesis [123] considers the rotational components βx and βy as independent
variables in its strain-displacement relations. We can recognize that both of
them decouple in-plane and bending motions of the plates in a similar way



28 STATE-OF-THE-ART ON DYNAMIC MODELING OF MFC TRANSDUCERS

but with different physical variables for the bending behavior of the plate.
Significant potential by using the Kirchhoff theory in this study is to create
a straightforward coupling between the piezoelectric effect and the transverse
displacement of a host plate, which has not been characterized in the literature.

Furthermore, there is also a class of modified plate theory, called Refined Plate
Theories (RPT). It is like a combination of the Kirchhoff plate theory and
Mindlin-Reissner theory. Huffington (1963) [124] firstly proposed that the
deflection of a plate w can be split into two components: bending component
wb and shear component ws. Subsequently, the RPT is adopted in many studies
of composite structures and orthotropic plates [125–129]. Free vibrations of
an orthotropic plate have been studied by using the RPT in [128]. A detailed
check of the RPT is performed here to evaluate its potential for the modeling
of plates with integrated MFC transducers. The displacement field of a plate
that takes the high-order shear deformation into account in RPT is expressed
as follows: 

u(x, y, t) = −z ∂wb

∂x + ts[ 1
4
z
ts
− 5

3 ( zts )3]∂ws

∂x

v(x, y, t) = −z ∂wb

∂y + ts[ 1
4
z
ts
− 5

3 ( zts )3]∂ws

∂y

w(x, y, t) = wb(x, y, t) + ws(x, y, t)
(2.8)

where, u and v are the in-plane displacement components in x and y directions,
respectively. wb and ws are the bending and shear components of the transverse
displacement w. The strain field can be written as follows according to the
strain-displacement relations in [128]:
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4
z
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3 ( zts )3]∂ws
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(2.9)

The stresses can be obtained through the Hooke’s law [130]. Then, the bending
moments M and shear force tau can be described as follows by integrating the
stress components in the thickness-wise of the plate:

Mxx = −D11
∂2wb

∂x2 +D12
∂2wb

∂y2

Myy = −D22
∂2wb

∂y2 +D12
∂2wb

∂x2

Mxy = −2D66
∂2wb

∂x∂y

τyz = D55
∂ws

∂y

τzx = D44
∂ws

∂x .

(2.10)

Hence, we can observe from Equation (2.10) that the bending effect of the plate
only depends on wb. Also, the transverse shear forces depend on ws. RPT uses
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a similar way according to the Kirchhoff plate theory to describe the bending
effect on a plate. It uses a single variable ws to express the transverse shear
effect, which does not exist in the Kirchhoff plate theory. The transverse shear
effect is included in the rotational variables βx and βy in the Mindlin-Reissner
plate theory. Since the MFC-d31 and MFC-d33 transducers do not generate
transverse shear deformations on a plate, and the Kirchhoff plate theory is
sufficient to analytically investigate the piezoelectric coupling of the two types of
MFC transducers on a host plate. This is also consistent with it the observation
in [22]. However, the Mindlin-Reissner plate theory or RPT should be used
to model MFC-d15 transducer, which generates transverse shear deformations
on a host structure. It is also important to understand that a refined plate
theory certainly improves the accuracy on mechanical modeling of a plate with
integrated piezoelectric transducers.

2.6.2 Material characterization of MFC transducers

The modeling of structure integrated with MFC transducers could be
problematic if the necessary material information is not complete. MFC
transducers can be assumed to have transverse orthotropic mechanical properties,
due to their laminated constitution. Since the thickness of MFC patches is
small, the normal transverse strain is negligible. Hence, the mechanical property
of MFC transducers normally are characterized by 4 elastic constants: The
tensile Young’s modulus Y1 and Y2 in 1 and 2 directions on the transducer, the
shear modulus G12 Between 1 and 2 directions, and the Poisson’s ratio ν12 (a
ratio of transverse contraction strain in 2 to extension strain along 1 subject to
a load in 1). The corresponding deformations of these four elastic constants are
shown by (a), (b) and (c) in Figure 2.17.
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Figure 2.17: Plane deformations on a MFC transducer
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These four elastic constants govern the in-plane deformations and they are
suitable for the studies with Kirchhoff plate theory. However, this material
information, which is commonly provided by the transducer suppliers, are
not complete for the modeling by Mindline-Reissier plate theory. The shear
modulus in the thickness-wise of a transducer ((d) and (e) in Figure 2.17) are
not provided by the suppliers. Besides, the piezoelectric constants of the used
piezoelectric material cannot express the effective piezoelectric performance of
MFC transducers because of the epoxy in the active layer. Therefore, much
work is done to characterize the effective properties of MFC transducers in the
literature.

The material properties of MFC transducers were experimentally obtained
by Williams et al.(2004) in both linear elastic and nonlinear constitutive
behaviors [113]. The characterization of the linear elastic constants of MFC
transducers is reported by [131] in a linear elastic region. The work in [132]
investigated the nonlinear behaviors of MFC with monotonically increased
electric fields under various mechanical load/stress levels. Subsequently, both
the analytical mixing rule [133–135] and FEM techniques [136–138] based on
linear assumptions have been investigated to estimate the effective properties of
MFC (and AFC) transducers. Hagood et al.(1993) used mixing rule to estimate
the effective properties of AFC transducers [139]. Park et al.(2005) [140]
investigated the equivalent material properties of MFC by single crystal concept.
The mechanical properties are studied by using classical lamination theory,
and the piezoelectric strain constants are estimated through a uniform field
model. The micro-mechanical homogenization models based on the asymptotic
homogenization method is also reported in [20, 141]. A. Deraemaker et al.(2010)
[142, 143] estimated the effective material properties through uniform field
method with plane stress hypothesis based on the work in [134]. The asymptotic
expansion homogenization has also been employed in [20] to predict the effective
properties of MFC-d31 transducers. Recently, Li et al.(2016) [13] investigated
the equivalent elastic and piezoelectric constants of MFC transducers through
mixing rule and Mindlin-Reissner plate theory. Both the shear modulus and
the piezoelectric constants of MFC transducers, which are not available in the
datasheet, can be estimated. Therefore, the modeling of MFC transducers can
be improved by using these more comprehensive material properties. [144].

2.6.3 Analytical modeling approaches

The analytical study of piezoelectric transducers, more precisely, the study of
piezoelectric actuators are practical for modeling [9, 11, 74, 146]. It provides
closed-form solutions for characterizing piezoelectric actuators [74, 145, 147–
149]. MFC transducers can be considered as orthotropic actuators. The
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piezoelectric constitutive equations can be introduced into the elastic equilibrium
principle or the Hamilton’s principle [145, 147, 148]. Besides, the Green
functions have also been used for deriving the equivalent loads of orthotropic
transducers in [145]. The bending motions caused by piezoelectric actuators
on a plate are mainly characterized. They provide physical insights for the
application of the piezoelectric thin actuators on plate-type structures. Due to
the closed-form solutions, we can quantify the actuation performance of different
shapes/materials of piezoelectric actuators. However, the structures are greatly
simplified to piezoelectric unimorph plates. The influences of electrical dynamics
are also not included. The equivalent loads in the literature are commonly
formulated by a combination of bending moment and point forces for a transverse
orthotropic transducer, as shown in Figure 2.18. The bending motions caused
by a piezoelectric actuator on a plate is, thus, characterized but the membrane
effect and the coupling between bending and membrane effects on a laminated
structure are omitted. Therefore, the mentioned research only focuses on the
equivalent load to express the inverse piezoelectric effect, rather than fully
characterizing a piezoelectric laminated structure.

Figure 2.18: Equivalent loads of an anisotropic rectangular piezoelectric
actuator [145] (The point forces P generate twisting effect on the actuator)

The early system-level studies of piezoelectric laminated beams are carried out
in [150, 151]. Later on, Lee(1990) incorporated the piezoelectric effect into the
classic laminate plate theory with the partial electrode covered piezoelectric
layer and the reciprocity between distributed piezoelectric actuator and sensor
are implicitly clarified [152]: the distributed moment (caused by the inverse
piezoelectric effect) and its bending angle (generates direct piezoelectric effect)
are reciprocal. However, the electrical boundary conditions are not included
so that an explicit formulation is not defined in [152]. After that, similar work
has been done in [153–156] to further explain the linear electro-elastic coupling
of piezoelectric structures. However, it is important to notice that in the
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mentioned research, piezoelectric unimorph plates with distributed electrodes
as shown in Figure. 2.19 (a) are commonly studied. Since the mechanical
influences of the electrodes are negligible, piezoelectric unimorph plates are
assumed as continuous structures. Even plates with uniformly distributed large
piezo-patches are considered as continuous structures too in [6]. That is because
the mechanical influences of the transducer in case (b) in the figure are difficult
to be taken into account in analytical modeling. Even though the electro-elastic
coupling caused by the locally distributed electrode is obtained, the dynamics
of plates with piezoelectric layers is different from the case with distributed
transducers. The equivalent loads of a rectangular piezoelectric actuator that
obtained in [145, 147, 148, 152] are actually the same. They do not comply
with the elastic equilibrium principle, and the distribution of the piezoelectric
transducer on a host plate is not correctly taken into consideration in these
analyses.

(a) piezoelectric unimorph plate (b) plate with integrated transducer
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Figure 2.19: Piezoelectric structures

To fully characterize a laminated plate with distributed MFC transducers in
this dissertation, we introduce the spatial distributions of the transducers into
the Hamilton’s principle. Given that laminated plates will be studied, both the
bending and membrane effects should be taken into account in the analysis. As a
result, the mechanical influences of the transducer on the plate can be correctly
described in the system’s dynamics. The equivalent loads of the transducer
will be determined through the spatial distribution terms. The corresponding
direct piezoelectric coupling together with the electrical dynamics should also
be investigated. Then further dynamic features of the piezoelectric transducers
integrated into a host plate can be studied.

2.6.4 Numerical modeling approaches

In the past decades, numerical modeling approaches have been extensively
investigated to simulate piezoelectric structures. The numerical modeling path
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provided numerous possibilities: Early FEM formulation derived from the
classical laminated plate theory is reported in [16] for active vibration control
of composite plates with distributed piezoelectric sensors and actuators. The
mesh-free model of piezoelectric composite structures has been reported in [19].
The method demonstrated a higher convergence rate than standard First-Order-
Shear-Deformation (FOSD) FEM method. A shallow shell is presented in [17],
which deals with the piezoelectric induced bending and twisting deformation of
laminated composite structures. A rigorous multi-scale approach, based on the
asymptotic expansion homogenization method, has been developed in [141] to
analyze the behavior of laminated structures with integrated MFC sensors and
actuators.

FEM methods are certainly the most widely used approach in different research
tracks and application of piezoelectric transducers [11, 18, 21, 23, 157–160].
The piezoelectric effect is simulated through strain field so that the mechanical
and electric domains are strongly coupled together in FEM formulations. It
has been reported in [22] that the two-dimensional FEM models of MFC
transducers, based on the Kirchhoff or the Mindlin-Reissner assumptions,
agree well with both experimental results and 3D FEM models. Regarding
to the anisotropic transducers such as MFC transducers, a material-structural
coordinates transformation regarding MFC transducers is required in the
mentioned FEM methods, as shown in Figure 2.20. That is because the
properties of the transducers are defined in the material coordinates (1, 2), which
is different from the structural coordinates (x, y). Recently, this transformation
is taken into consideration in a FOSD-based FEM in [23].

12

x

y

Host plate
MFC

Figure 2.20: Material-structural coordinates transformation

In FEM methods, the discretizations of the electric field and the displacement
field are independent with each other [161, 162]. An accurate electric assumption
for the piezoelectric elements is essential for ensuring that both the mechanical
displacement and the electric potential field converge to the exact solutions.
Hybrid finite element methods have been developed to improve the discretization
of the electrical field [20, 162–165], but the modeling complexity is increased.
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The conventional assumption of the electric field distribution on the transducer
might be too strong to simulate the MFC transducers. For example, the effective
distribution of the electric field on an MFC-d33 transducer is shown in Figure 2.7.
A uniform electric field leads to an over-estimation of the performance of the
MFC-d33 transducer. A detailed description of the transducer in modeling
would be too complicated because of the multilayer constitution. An alternative
is to correct the uniform electric field assumption in modeling based on the
effective electric field distribution shape of MFC transducers [44, 166, 167].

The performance of a piezoelectric transducer on a host structure also highly
depends upon the quality of the adhesive bond layer, which transfers the
stress/strain between the transducer and the host plate, as shown in Figure 2.21.
Assuming that the stain in the thickness-wise of the transducer is linear, the
adhesive layer undergoes shear deformation when the transducer functions as
an actuator. At last, the deformation of the host plate is smaller than the
transducer. A similar situation can also be found when the transducer is used
as a sensor. This effect is called shear-lag effect and cannot be negligible in
experimental studies [150, 168–171]. However, the adhesive layer between the
host structure and transducer is commonly assumed to be perfect in numerical
simulations because of the lack of material information. The corrections of both
effects must be considered in the modeling in order to achieve an experimental
validation.

Host plate

MFCContraction
Expansion

Bond layer

z

x

Figure 2.21: Strain transfer mechanism through adhesive bond layer

Furthermore, an obvious drawback of FEM methods concerning dynamic
applications is that they generate large-scale models because a sufficiently
fine mesh is required to discrete both the host structure and the integrated
transducers. For plate-type structures, it is possible that the host structure
and the integrated transducers share the same mesh to avoid the mesh coupling
between them. As a result, the material properties of the transducers should be
homogenized together with the host structure at the location of the transducers,
and the adhesive layer is neglected in most of cases. Thus, the size of the
model is mainly determined by the mesh of the host structure. A model order
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reduction needs to be performed on the FEM models for reducing computational
time in dynamic application.

To sum up, MFC transducers must be simultaneously modeled together with host
structures in FEM methods so that the bending coupling between them can be
formed. The piezoelectric coupling matrix depends on both the placement and
the properties of these transducers, and the structural model is also influenced
by them too. For example, the piezoelectric fibrous orientation leads to changes
in both of them. Thus, it is challenging to efficiently evaluate the influences of
these parameters directly in dynamic application, where a reduced-order model
is always required. The conventional model order reduction techniques, often
used for designing control solutions such as Krylov subspace projection [24] and
balanced truncation [25], transform the original model into an equivalent vector
space, so that these useful physical parameters are not accessible anymore after
the reduction.

A semi-analytical modeling approach based on the substructuring concept would
efficiently evaluate the performance of MFC transducers in dynamic application.
We can divide the system into subcomponents including the MFC transducers,
and the size of each subcomponent can be efficiently reduced. The dynamics of
the overall system is obtained by assembling the reduced-order models of all the
subcomponents. The closed-form analytical solutions can be used to express the
direct and inverse piezoelectric couplings. This concept retains the structure
of full order system models so that each subcomponent can be easily updated
including the placement and the properties of MFC transducers. Moreover, it is
also essential to ensure the stability of the reduced-order model, for designing
active control algorithms and performing real-time simulations.

2.7 Concluding remarks

In this chapter, firstly we introduced the piezoelectricity and reviewed different
plate hypotheses for modeling two-dimensional piezoelectric structures. And we
found that the Kirchhoff plate theory is sufficient to analyze and characterize
the integrated piezoelectric transducers on a host plate. Then, both the noise
and vibrations control, and energy harvesting application using piezoelectric
materials are reviewed. An effective modeling approach of piezoelectric systems
is very important for both of them. Stable low-order system models are essential
for designing a controller and performing real-time simulations. When MFC
transducers are used in above mentioned application, not only their placement
but also their piezoelectric fibrous orientation on a host structure are crucial
to optimize. However, there is no efficient way to evaluate the performance of
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MFC transducers with different piezoelectric fibrous orientation and placements
in the literature.

A semi-analytical modeling approach based-on substructuring concept would
be able to generate stable structure-preserving low-order models. Analytical
piezoelectric couplings should combine with an equivalent substructuring process.
Therefore, the analytical modeling of piezoelectric structures is reviewed in
detail. The piezoelectric layered plates with a partially covered electrode are
widely studied in the literature. The dynamics of such kind of structure can be
entirely different from plates with distributed piezoelectric transducers because
the mechanical influences of the transducers, which may significantly change the
structural dynamics, cannot be properly taken into account. Meanwhile, the
analytical solutions are not fully implying with the elastic equilibrium principle.
Furthermore, The piezoelectric reciprocal relation is reported in the literature,
but an explicit formulation is not defined yet.

The numerical modeling approaches, such as the FEM method, are suitable
to solve the multiphysics problems, including the mechanical influences of
piezoelectric transducers. However, piezoelectric transducers should be modeled
together with the host structure in order to formulate the bending coupling. The
apparent drawback of the FEM method is that it generates large-scale models
so that model order reduction is always required by dynamic application. Most
of the important physical parameters, such as the placement and piezoelectric
properties of MFC transducers, are not preserved in the reduced-order model
due to the model order reduction. It is required to revise the full order model
to optimize the placement and properties of MFC transducers for the desired
performance in dynamic application. Therefore, the primary objective of this
dissertation is to develop a novel framework for the modeling of MFC transducers
in order to improve the mentioned deficiencies in the literature.



Chapter 3

Basic concept of equivalent
dynamic modeling of MFC
transducers

This chapter presents the analytical characterization of the MFC transducers
integrated into a laminated composite plate. Both the inverse and direct
piezoelectric effects of the MFC transducers are studied. We used a generalized
two-dimensional piezoelectric constitutive formulation for characterizing both
the MFC-d33 and MFC-d31 transducers in the same analysis. The dynamics of
an anisotropic plate with an integrated MFC transducer is analyzed by using the
generalized Hamilton’s principle. The equivalent loads that express the inverse
piezoelectric effect of the integrated transducer are obtained. The equivalent
force of the MFC transducer is derived, and its accuracy is analyzed through
a total bending effort balance. The corresponding direct piezoelectric effect is
characterized by the electric boundary conditions of the piezoelectric system.

37
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3.1 Constitutive relations

3.1.1 Constitutive relations of laminated plate
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Figure 3.1: Lay-up of a laminated composite plate with an integrated MFC
transducer

The lay-up of a laminated composite plate with an MFC transducer is shown in
Figure 3.1. All the layers are orthotropic. The plane-stress is assumed because
the thickness of the plate is small compared to the in-plane dimensions of the
plate. Hooke’s law is used to express the constitutive equations of the kth layer
in the laminated composite plate in material coordinates (1, 2) [130]:
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(3.1)

where
Q11 = Y1

1− ν12ν21
, Q12 = ν12Y1

1− ν12ν21
, Q22 = Y2

1− ν12ν21
,

Q21 = Q12, Q66 = G12, Q55 = G13, Q44 = G23

(3.2)

in which Y1 and Y2 are Young’s modulus in the material coordinates, respectively.
Gij are the shear modulus. ν12 and ν21 are the Poisson’s ratios. The stress
components of each layer of the laminated plate need to be transformed into
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the global coordinates (x, y) according to the following relations [130]:
Txx
Tyy
Txy
Txz
Tyz
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where s and c indicate sin θ and cos θ, respectively. θ is the angle between
the material and structural coordinates, as shown in Figure 3.1. Hence, R
is the material-structural coordinates transformation matrix. Therefore, the
constitutive equations of kth layer can be rewritten as follows in the structural
coordinates:

Txx
Tyy
Txy
Txz
Tyz



(k)

=


Q̄11 Q̄12 Q̄16 0 0
Q̄21 Q̄22 Q̄26 0 0
Q̄61 Q̄62 Q̄66 0 0

0 0 0 Q̄55 Q̄54
0 0 0 Q̄45 Q̄44


(k)

Sxx
Syy
Sxy
Sxz
Syz



(k)

(3.4)

where Q̄ij are the transformed elastic constants of the kth layer. According to
the Kirchoff plate theory, the strain-displacement relation can be expressed as
follows [172]: 

S
(k)
xx = εxx + zκxx

S
(k)
yy = εyy + zκyy

S
(k)
xy = εxy + zκxy

(3.5)
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in which, u0, v0 and w0 are the displacement components on the mid-surface of
the plate. The stress components of the composite plate can be expressed as
follows by substituting Equation (3.5) into Equation (3.4):

T
(k)
xx = Q̄

(k)
11 (εxx + zκxx) + Q̄

(k)
12 (εyy + zκyy) + 2Q̄(k)

16 (εxy + 2zκxy)
T

(k)
yy = Q̄

(k)
21 (εxx + zκxx) + Q̄

(k)
22 (εyy + zκyy) + 2Q̄(k)

26 (εxy + 2zκxy)
T

(k)
xy = Q̄

(k)
16 (εxx + zκxx) + Q̄

(k)
26 (εyy + zκyy) + 2Q̄(k)

66 (εxy + 2zκxy)
(3.7)
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Then, the internal membrane forces, bending moments on each layer that
resulted from the stress can be deduced as follows [172]:

Nxx
Nyy
Nxy
Mxx

Myy

Mxy



(k)

=


A11 A12 A16 B11 B12 B16
A21 A22 A26 B21 B22 B26
A61 A62 A66 B61 B62 B66
B11 B12 B16 D11 D12 D16
B21 B22 B26 D21 D22 D26
B61 B62 B66 D61 D62 D66



(k)

εxx
εyy
εxy
κxx
κyy
κxy



(k)

(3.8)

where A(k)
ij , B

(k)
ij , D

(k)
ij are the extensional stiffness, membrane-bending coupling

stiffness and bending stiffness of kth layer, respectively.

(A(k)
ij , B

(k)
ij , D

(k)
ij ) =

zk∫
zk−1

(1, z, z2)Q̄(k)
ij dz (3.9)

Hence, the mechanical properties of the homogenized laminated composite plate
can be characterized as follows[21]:

(Asij , Bsij , Ds
ij) =

n∑
k=1

(A(k)
ij , B

(k)
ij , D

(k)
ij ). (3.10)

Bsij is null for a symmetrical lay-up. Hence, the stress and bending moment
resultants of the homogenized plate are characterized as follows

Ns
xx

Ns
yy

Ns
xy

Ms
xx

Ms
yy

Ms
xy


=


As11 As12 As16 Bs11 Bs12 Bs16
As21 As22 As26 Bs21 Bs22 Bs26
As61 As62 As66 Bs61 Bs62 Bs66
Bs11 Bs12 Bs16 Ds

11 Ds
12 Ds

16
Bs21 Bs22 Bs26 Ds

21 Ds
22 Ds

26
Bs61 Bs62 Bs66 Ds

61 Ds
62 Ds

66





εxx
εyy
εxy
κxx
κyy
κxy


. (3.11)

The corresponding in-plane and out-plane behaviors of the plate are shown in
Figures 3.2 and 3.3.
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Figure 3.2: In-plane behaviors of a plate due to membrane forces
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Figure 3.3: Out-plane behaviors of a plate due to bending moments

3.1.2 Piezoelectric constitutive relations of MFC transducers

Electrode-IDE

Piezolelctric fiber

hE

Metal layer
2

1

z

Figure 3.4: Work principle of MFC-d31 transducers [15] (The white arrows
represent the operational electric field and the black arrows indicate the
deformation of the transducer.)

Electrode-IDE

Piezolelctric fiber

hE

2

1

z

Figure 3.5: Work principle of MFC-d33 transducers [15] (The white arrows
represent the operational electric field and the black arrows indicate the
deformation of the transducer.)

The compositions of MFC-d31 and MFC-d33 transducers are shown in
Figures 3.4 and 3.5. The MFC-d31 transducer uses the e31 and e32 effects that
perform comparable performances in both x and y directions. The operational
electric field is applied to the thickness-wise direction of the transducer so that
the electrode distance hE of the MFC-d31 equals the thickness of the transducer



42 BASIC CONCEPT OF EQUIVALENT DYNAMIC MODELING

tp. The metal layer allows the electric field to distribute on the piezoelectric
fibers uniformly. In contrast, the electric field distributes in the longitudinal
direction of the piezoelectric fibers on an MFC-d33 transducer. This is due
to the electrodes of MFC-d33, which allows it to take advantage of the large
e33 effect. And the electrode distance is the distance between two electrodes’
fingers as shown in Figure 3.5.

The two-dimensional piezoelectric constitutive equations of the MFC-d31 and
MFC-d33 transducers are given as Equation (3.12) and Equation (3.13) according
to Equation (2.7) under the in-plane stress hypothesis [143]:

T1
T2
T6
T5
T4
D3


=


QE11 QE12 0 0 0 −e31
QE21 QE22 0 0 0 −e32

0 0 QE66 0 0 −e36
0 0 0 QE55 0 0
0 0 0 0 QE44 0
e31 e32 e36 0 0 εs33





S1
S2
S6
S5
S4
E3


(3.12)

where
QE11 = Y E1

1− ν12ν21
, QE12 = ν12Y

E
1

1− ν12ν21
, QE22 = Y E2

1− ν12ν21
,

QE21 = QE12, Q
E
66 = GE12, Q

E
55 = GE13, Q

E
44 = GE23.

Y E1 and Y E2 are the Young’s modulus in the 1 and 2 directions of the MFC-d31
transducer, respectively. GE12 is the shear modulus in the (1, 2) coordinates. ν12
and ν21 indicate the Poisson’s ratios.



T1
T2
T6
T5
T4
D1


=


QE11 QE12 0 0 0 −e33
QE21 QE22 0 0 0 −e32

0 0 QE66 0 0 −e16
0 0 0 QE55 0 0
0 0 0 0 QE44 0
e33 e32 e16 0 0 εs11





S1
S2
S6
S5
S4
E1


(3.13)

with
QE11 = Y E3

1− ν32ν23
, QE12 = ν32Y

E
3

1− ν32ν23
, QE22 = Y E2

1− ν12ν21
,

QE21 = QE12, Q
E
66 = GE32, Q

E
55 = GE31, Q

E
44 = GE21

Y E3 and Y E2 are the Young’s modulus in the 1 and 2 directions, respectively.
GE32 is the shear modulus in (1, 2) plan and ν32 and ν23 indicate the Poisson’s
ratios.
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The operational electric field applies to z direction on an MFC-d31 transducer
but it applies to x direction on an MFC-d33 transducer. The distributions of the
electric field are also different. As mentioned in chapter 2, a uniform field model
is adopted here to simulate the electric field. The effective electric field applied
to the piezoelectric fibers can be corrected according to its distribution [44, 167]
for an MFC-d33 transducer. Wherefore, the different function mechanisms of
the two types of transducer yield different piezoelectric constitutive equations
in modeling. It is favorable to use a generalized formulation valid for both
types of transducers for the convenience of the following analysis. The electrode
of MFC-d33 transducer is converted into an MFC-d31 form in this analysis.
The only prerequisite is that the transformation must guarantee that both the
piezoelectric and electrical properties of the MFC-d33 remain unchanged [81].
Finally, The conversation is given as follows:

d∗31
V
tp

= d33
V
hE

d∗32
V
tp

= d32
V
hE

d∗36
V
tp

= d36
V
hE

⇔


e∗31

V
tp

= e33
V
hE

e∗32
V
tp

= e32
V
hE

e∗36
V
tp

= e36
V
hE

(3.14)

where hE is the electrodes distance of the MFC-d33 transducer. The thickness
of the active layer tp equals the electrodes distance of the equivalent MFC-
d31 model. The dielectric constant also needs to be converted to retain the
capacitance of the MFC-d33 transducers. Then, Equation (3.12) is also available
to describe the converted MFC-d33 model. Therefore, the MFC-d33 transducer
can be considered as a special case of MFC-d31 transducer. Finally, a generalized
formulation for both the MFC-d31 and MFC-d33 transducers is written as
follows: 

T1
T2
T6
T5
T4
D


=


QE11 QE12 0 0 0 −e∗31
QE21 QE22 0 0 0 −e∗32

0 0 QE66 0 0 −e∗36
0 0 0 QE55 0 0
0 0 0 0 QE44 0
e∗31 e∗32 e∗36 0 0 εs





S1
S2
S6
S5
S4
E


(3.15)

where e∗31 denotes e31 or e∗31 for MFC-d31 or MFC-d33 transducers, respectively;
e∗32 indicates e32 or e∗32 for MFC-d31 or MFC-d33 transducers, respectively; and
e∗36 expresses e∗36 or e∗36 for MFC-d31 or MFC-d33 transducers, respectively.

When MFC transducers are integrated into a host structure as shown in
Figure 3.1, both the material and piezoelectric properties should be transformed
into the global coordinates too. The corresponding piezoelectric constitutive
equations are given in Equations (3.16a) and (3.16b) [23]:

{T} = [R]T [QE ][R] {S} − [R]T [e∗] {E} (3.16a)
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{D} = [e∗]T [R] {S} − [εs] {E} (3.16b)

where [R] can be obtained from Equation (3.3). The stress in Equation (3.15)
can be rewritten as follows in the structural coordinates:

Txx
Tyy
Txy
Txz
Tyz
D

︸ ︷︷ ︸
T̃p

=


Q̄E11 Q̄E12 Q̄E16 0 0 −ē∗31
Q̄E21 Q̄E22 Q̄E26 0 0 −ē∗32
Q̄E61 Q̄E62 Q̄E66 0 0 −ē∗36

0 0 0 Q̄E55 Q̄E54 0
0 0 0 Q̄E45 Q̄E44 0
ē∗31 ē∗32 ē∗36 0 0 εs


︸ ︷︷ ︸

Q̃p



Sxx
Syy
Sxy
Sxz
Syz
E

︸ ︷︷ ︸
S̃p

(3.17)

where T̃p, S̃p and Q̃p are the augmented stress vector, augmented strain vector
and augmented elastic matrix of MFC transducers, respectively. Using the same
strain-displacement relations in Equation (3.5), the stress components of the
MFC layer are given as follows:

T pxx=Q̄E11(εxx+κxx)+Q̄E12(εyy+κyy)+2Q̄E16(εxy+κxy)−ē∗31E

T pyy=Q̄E21(εxx+κxx)+Q̄E22(εyy+κyy)+2Q̄E26(εxy+κxy)−ē∗32E

T pxy=Q̄E16(εxx+κxx)+Q̄E26(εyy+κyy)+2Q̄E66(εxy+κxy)−ē∗36E

(3.18)

in which, the inverse piezoelectric effect is considered. Then, the piezoelectric
constitutive relations of the transducer are described as:

Np
xx

Np
yy

Np
xy

Mp
xx

Mp
yy

Mp
xy

D


=



AE11 AE12 AE16 BE11 BE12 BE16 −tpē∗31
AE21 AE22 AE26 BE21 BE22 BE26 −tpē∗32
AE61 AE62 AE66 BE61 BE62 BE66 −tpē∗36
BE11 BE12 BE16 DE

11 DE
12 DE

16 −zpē∗31
BE21 BE22 BE26 DE

21 DE
22 DE

26 −zpē∗32
BE61 BE62 BE66 DE

61 DE
62 DE

66 −zpē∗36
tpē
∗
31 tpē

∗
32 tpē

∗
36 zpē

∗
31 zpē

∗
32 zpē

∗
36 tpε

s





εxx
εyy
εxy
κxx
κyy
κxy
E


(3.19)

where, AEij , BEij and DE
ij are the components of the extensional stiffness,

membrane-bending coupling stiffness and bending stiffness of the transducer,
respectively. zp is the thickness-wise integration of the transducer from the
surface of the composite plate zs to zs + tp.

zs+tp∫
zs

zdz = tp(zs + tp)
2 . (3.20)

We can deduce the equivalent loads caused by the MFC transducer from
Equation (3.19) in line with the elastic equilibrium principle. They include both
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membrane forces and bending moments when the transducer functions as an
actuator. Regarding the bending effect, the equivalent loads from Equation (3.19)
only consist of bending moments, which is different from the one in Figure 2.18
(a combination of point forces and bending moments). Hence, the equivalent
loads of a piezoelectric actuator can be expressed in different forms. It is not
possible to find the relations between them by only using the elastic equilibrium
principle.

3.1.3 Transverse shear forces

The transverse shear forces are analyzed after the homogenization of the plate.
Assuming that the transverse stresses Txz and Tyz vanish on the surfaces
z = ±ts/2, the transverse forces τxz and τyz are determined by the equilibrium
equations of the homogenized plate [172]:

τ
(k)
xz =

n+1∑
k=1

(∂M
(k)
xx

∂x + ∂M(k)
xy

∂y )

τ
(k)
yz =

n+1∑
k=1

(∂M
(k)
xy

∂x + ∂M(k)
yy

∂y )
(3.21)

According to the strain-stress relations, Equation (3.21) can be rewritten as:

τxz =(B11
∂

∂x
+B16

∂

∂y
)εxx+(B12

∂

∂x
+B26

∂

∂y
)εyy+(B16

∂

∂x
+B66

∂

∂y
)εxy

+(D11
∂

∂x
+D16

∂

∂y
)κxx+(D12

∂

∂x
+D26

∂

∂y
)κyy+(D16

∂

∂x
+D66

∂

∂y
)κxy

τyz =(B21
∂

∂y
+B16

∂

∂x
)εxx+(B22

∂

∂y
+B26

∂

∂x
)εyy+(B26

∂

∂y
+B66

∂

∂x
)εxy

+(D21
∂

∂y
+D16

∂

∂x
)κxx+(D22

∂

∂y
+D26

∂

∂x
)κyy+(D26

∂

∂y
+D66

∂

∂x
)κxy

(3.22)

where
Bij = Bsij +BEij , Dij = Ds

ij +DE
ij .

In this case, the piezoelectric terms are vanished in Equation (3.22). That
should not be the case because both the piezoelectric constants and electric
field are independent of spatial variables.

In order to fully understand the equivalent load and overall structural dynamics
of the MFC transducers on the laminated plate, the spatial distribution of
the MFC transducer is introduced into the Hamilton principle in the following
analysis.
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3.2 Generalized Hamilton’s principle of an aniso-
tropic plate with integrated anisotropic trans-
ducers

A rectangular anisotropic plate with spatial distributed rectangular MFC
transducers is considered in the study, as shown in Figure 3.6. Only one
transducer is considered on the plate for convenience of analysis, but it is
possible to introduce more transducers of different sizes.

y

x
MFC transducers

Plate

-x

-y

Figure 3.6: A rectangular orthotropic plate with integrated MFC transducers

The spatial distribution of the rectangular MFC transducer size a× b can be
expressed by the Heaviside function H in its local coordinates (x̄, ȳ) [152]:

ΛpxΛpy = [H(x̄+ a

2 )−H(x̄− a

2 )]× [H(ȳ + b

2)−H(ȳ − b

2)]. (3.23)

The Heaviside function can be used to describe the spatial distribution
of transducers with different shapes so that the local-global coordinates
transformation between the transducer and the plate is usually not trivial.
In this analysis, as we assumed that the local coordinates (x̄, ȳ) on the MFC
transducer coincide with the global coordinates (x, y). The spatial distribution
of the MFC transducer can be rewritten as:

ΛpxΛpy = [H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]. (3.24)

According to the property of the Heaviside function [173], the following
generalized form retains:∫

Γp

GpdΓp =
∫

Γp

GpΛpxΛpydΓp =
∫

Γs

GpΛpxΛpydΓs (3.25)
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where Gp is a generalized term that contains the spatial variables x and y. Γp
and Γs are the surface dimensions of the host structure and MFC transducer,
respectively. The spatial distribution combines the dimensional integration of
the host structure and the transducer. Then, the kinetic and stored energies on
the plate can be described in a similar way to Equation (3.25).

3.2.1 Potential energy and its variation

The potential energy of the system consists of both the strain energy and the
electric energy. It can be expressed as follows:

U∗ = −1
2

∫
Γs

{ n∑
k=1

∫ zk

zk−1

ST [Q̄(k)
s ]TSdz+

∫ zs+tp

zs

(S̃Tp [Q̃p]T S̃p)ΛpxΛpydz
}
dΓs (3.26)

where [Q̄(k)
s ] and [Q̄∗p] are the stiffness of the kth layer in the plate and the

augmented stiffness of the MFC transducer, respectively. We can divide the
potential energy into two parts: U∗s and U∗p , representing the potential energies
in the host plate and the transducer respectively. The potential energy variation
of the host plate subject to virtual displacements can be written as:

∆U∗s = −1
2

∫
Γs

n∑
k=1

∫ zk

zk−1

ST [Q̄(k)
s ]T∆S dzdΓs. (3.27)

The constitutive relations in Equation (3.8) are adopted here to simplify the
notations in the following equation. Thereby, ∆U∗s can be rewritten as follows:

∆U∗s =−
∫

Γs

{
Ns
xx

∂∆u0

∂x
+Ns

yy

∂∆v0

∂y
+Ns

xy

(
∂∆u0

∂y
+ ∂∆v0

∂x

)
−Ms

xx

∂2∆w0

∂x2 −Ms
yy

∂2∆w0

∂y2 − 2Ms
xy

∂2∆w0

∂x∂y

}
dΓs.

(3.28)

The integration by parts is performed to obtain the virtual energy variations
regarding ∆u, ∆v and ∆w. Let the boundary conditions of host plate be either
free, simply supported or clamped; the boundary constraints terms from the
integration by parts are null. Then, Equation (3.28) can be rewritten as follows:

∆U∗s =−
∫

Γs

[
Ns
xx,x∆u0 +Ns

yy,y∆v0 +Ns
xy,y∆u0 +Ns

xy,x∆v0

−Ms
xx,xx∆w0 −Ms

yy,yy∆w0 − 2Ms
xy,xy∆w0

]
dΓs.

(3.29)



48 BASIC CONCEPT OF EQUIVALENT DYNAMIC MODELING

The potential energy of the transducer is given in the form of

U∗p = −1
2

∫
Γs

∫ zs+tp

zs

(S̃Tp [Q̃p]T S̃p)ΛpxΛpy dzdΓs. (3.30)

Its variation is simply given as

U∗p = −1
2

∫
Γs

∫ zs+tp

zs

(S̃Tp [Q̃p]T∆S̃p)ΛpxΛpy dzdΓs. (3.31)

Hence, the variation of the stored energy on the transducer is expressed as:

∆U∗p =
∫

Γs

{
Np
xx

∂∆u0

∂x
+Np

yy

∂∆v0

∂y
+Np

xy

(
∂∆u0

∂y
+ ∂∆v0

∂x

)
−Mp

xx

∂2∆w0

∂x2 −Mp
yy

∂2∆w0

∂y2 − 2Mp
xy

∂2∆w0

∂x∂y

}
ΛpxΛpydΓs.

(3.32)

The membrane forces and bending moments in Equation (3.32) are different from
Equation (3.28) because the piezoelectric terms are included. The integration
by parts is carried out here to obtain the variation of U∗p :

∆U∗p =
∫

Γs

[
Np
xx,x∆u0 +Np

yy,y∆v0 +Np
xy,y∆u0 +Np

xy,x∆v0 −Mp
xx,xx∆w0

−Mp
yy,yy∆w0 − 2Mp

xy,xy∆w0
]
ΛpxΛpydΓs

−
∫ b

2

− b
2

[
Np
xx∆u0

]x= a
2

x=− a
2

dy −
∫ a

2

− a
2

[
Np
yy∆v0

]y= b
2

y=− b
2

dx

−
∫ a

2

− a
2

[
Np
xy∆u0

]y= b
2

y=− b
2

dx−
∫ b

2

− b
2

[
Np
xy∆v0

]x= a
2

x=− a
2

dy (3.33)

+
∫ b

2

− b
2

[
Mp
xx

∂∆w0

∂x

]x= a
2

x=− a
2

dy −
∫ b

2

− b
2

[
Mp
xx,x∆w0

]y= a
2

y=− a
2

dy

+
∫ a

2

− a
2

[
Mp
yy

∂∆w0

∂y

]y= b
2

y=− b
2

dx−
∫ a

2

− a
2

[
Mp
yy,y∆w0

]y= b
2

y=− b
2

dx

+
∫ b

2

− b
2

[
Mp
xy

∂∆w0

∂y

]x= a
2

x=− a
2

dy −
[[
Mp
xy,xy∆w0

]y= b
2

y=− b
2

] b
2

− b
2

dx

+
∫ a

2

− a
2

[
Mp
xy

∂∆w0

∂x

]y= b
2

y=− b
2

dx−
[[
Mp
xy,xy∆w0

]y= b
2

y=− b
2

] b
2

− b
2

dx

The boundary constraints terms of the transducer are not null because there
are no clear boundary conditions for the transducer on the host plate.
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3.2.2 Kinetic energy and its variation

The kinetic energy T ∗ of the system can be written as:

T ∗ = 1
2

∫
Γs

[ ∫
Zs

ρs(u̇T u̇+ v̇T v̇ + ẇT ẇ) dz

+
∫
Zp

ρp(u̇T u̇+ v̇T v̇ + ẇT ẇ)ΛpxΛpy dz
]
dΓs

(3.34)

where ρs, ρp are the mass densities of the host structure and the transducer,
respectively. The displacement field is expressed as

u = u0 − z ∂w∂x
v = v0 − z ∂w∂y
w = w0.

(3.35)

Substituting Equation (3.35) into Equation (3.34) yields

T ∗ = 1
2

∫
Γs

[
tsρs(u̇0u̇0 + v̇0v̇0 + ẇ0ẇ0)

+tpρp(u̇0u̇0 + v̇0v̇0 + ẇ0ẇ0)ΛpxΛpy
]
dΓs.

(3.36)

The terms containing ∂w
∂x and ∂w

∂y are vanished because the rotations do not
contribute to the kinetic energy. Then, the variation of kinetic energy can be
easily obtained as follows:

∆T ∗ =
∫

Γs

[tsρs(u̇0∆u̇0 + v̇0∆v̇0 + ẇ0∆ẇ0)

+tpρp(u̇0∆u̇0 + v̇0∆v̇0 + ẇ0∆ẇ0)ΛpxΛpy]dΓs
=
∫

Γs

[tsρs(ü0∆u0 + v̈0∆v0 + ẅT∆w)

+tpρp(ü0∆u0 + v̈0∆v0 + ẅ0∆w0)ΛpxΛpy)dΓs.

(3.37)

3.2.3 Work due to external loads and its variation

Let’s have a look now the external work due to transverse loads and in-plane
loads. As a transverse pointed force f(t) excited at position (x0, y0) on the
structure can be a representative of external loads, the induced external work
can be written as:

W ∗ =
∫

Γs

f(t)w0δ(x− x0)δ(y − y0)dΓs (3.38)
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where δ is the Dirac delta-function. In a large deflection analysis, the work of
in-plane loads due to a deflection w is given as:

V ∗ =
∫

Γs

(
Nxxεxx +Nyyεyy +Nxyεxy

)
dΓs (3.39)

where Nxx, Nyy and Nxy are the pre-buckling loads applied to the mid-surface
of the host plate and εxx, εyy and εxy are the strains on the mid-surface due to
deflection w. Since small strain variation is considered in the present study, V ∗
can be neglected in the present analysis. Thus, the variation of the work due to
external transverse loads is simply as follows:

∆W ∗ =
∫

Γs

f(t)δ(x− x0)δ(y − y0)×∆w0dΓs (3.40)

3.2.4 Governing equations and boundary constraints of the
transducer

The generalized Hamilton’s principle for an electro-elastic body can be described
as [74]: ∫ t2

t1

[∆T ∗ + ∆U∗ + ∆W ∗]dt = 0. (3.41)

The variations of kinetic energy ∆T ∗, potential energy ∆U∗ and external
work ∆W ∗ can be substituted in Equation (3.41). Then, all the terms can
be regrouped according to the variations ∆u, ∆v and ∆w. As these three
variations can be arbitrary values, their factors should be null. Therefore, the
equations of motion of the overall structure can be obtained as follows:

∂Ns
xx

∂x
+
∂Ns

xy

∂y
+
(
∂Np

xx

∂x
+
∂Np

xy

∂y

)
ΛpxΛpy = tsρs

∂2u0

∂t2
+ tpρp

∂2u0

∂t2
ΛpxΛpy; (3.42a)

∂Ns
xy

∂x
+
∂Ns

yy

∂y
+
(
∂Np

xy

∂x
+
∂Np

yy

∂y

)
ΛpxΛpy = tsρs

∂2v0

∂t2
+ tpρp

∂2v0

∂t2
ΛpxΛpy; (3.42b)

∂2Ms
xx

∂x2 + 2
∂2Ms

xy

∂x∂y
+
∂2Ms

yy

∂y2 +
(
∂2Mp

xx

∂x2 + 2
∂2Mp

xy

∂x∂y
+
∂2Mp

yy

∂y2

)
ΛpxΛpy

= tsρs
∂2w0

∂t2
+ tpρp

∂2w0

∂t2
ΛpxΛpy − f.

(3.42c)

The generalized Hamilton’s principle has transformed the system into a weak
formulation. We can observe that the mechanical influences of the MFC
transducers are described by the spatial distributions in the above equations.
The inverse piezoelectric effect is included in the membrane forces Np

ij and
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bending moments Mp
ij (see Equation (3.19)). The inverse piezoelectric effect

can be deduced from Equations (3.42a) to (3.42c) so that the equivalent force
per unit area of the MFC transducer is given as follows:

Nxx = tpē
∗
31E

∂ΛpxΛpy
∂x

+ tpē
∗
36E

∂ΛpxΛpy
∂y

(3.43a)

Nyy = tpē
∗
32E

∂ΛpxΛpy
∂y

+ tpē
∗
36E

∂ΛpxΛpy
∂x

(3.43b)

Nzz = −zpē∗31E
∂2ΛpxΛpy
∂x2 − zpē∗32E

∂2ΛpxΛpy
∂y2 − 2zpē∗36E

∂2ΛpxΛpy
∂x∂y

. (3.43c)

We can observe again that the transducer generates both membrane and bending
behaviors by its inverse piezoelectric effect. The spatial distributions terms
determine the distribution of these equivalent loads. The boundary constraints
of the transducer from Equation (3.41) result in the equivalent moment and
equivalent transverse shear forces, respectively:

Mxx = D11
∂2w
∂x2 +D12

∂2w
∂y2 = −zpē∗31EΛpxΛpy

Myy = D22
∂2w
∂y2 +D12

∂2w
∂x2 = −zpē∗32EΛpxΛpy

Mxy = Myx = 2D66
∂2w
∂x∂y = −zpē∗36EΛpxΛpy

(3.44)



τxz = D11
∂3w

∂x3 + (D12 + 2D66) ∂3w

∂x∂y2

= −zpē∗31E
∂

∂x
(ΛpxΛpy)− zpē∗36E

∂

∂y
(ΛpxΛpy)

τyz = D22
∂3w

∂y3 + (D12 + 2D66) ∂3w

∂y∂x2

= −zpē∗32E
∂

∂y
(ΛpxΛpy)− zpē∗36E

∂

∂x
(ΛpxΛpy).

(3.45)

By introducing the spatial distribution of the MFC transducer, the equivalent
force per unit area, equivalent moments and transverse shear forces are
determined, respectively. These three kinds of loads agree with the elastic
equilibrium theory: The transverse shear loads are the first-order derivative of
the bending moments and the force Nzz is the second-order derivative of the
bending moments. The equivalent loads exist simultaneously and describe the
actuation of a piezoelectric actuator through different parameters.
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3.3 Inverse piezoelectric effect characterization us-
ing equivalent forces

The analysis in the previous section demonstrated that the transducer generates
both membrane and bending motions on a host plate. In this section, the
corresponding equivalent forces are going to be elaborated.

3.3.1 Equivalent membrane forces

We can observe from Equation (3.43) that both Nxx and Nyy are actually
the membrane forces, which are expressed in the same way but in different
directions. Let’s take Nxx as an example. Substituting ΛpxΛpy into Nxx yields:

Nxx =tpē∗31E
∂

∂x

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)

+tpē∗36E
∂

∂y

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
.

(3.46)

Since the Heaviside function is the integral of the Dirac delta-function,
Equation (3.46) can be rewritten as:

Nxx =tpē∗31E

(
[δ(x+ a

2 )− δ(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)

+tpē∗36E

(
[H(x+ a

2 )−H(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
) (3.47)

in which, δ is the Dirac delta function. Because E = −V/tp, the membrane
force in x direction on the host structure can be expressed as:

fxx =− V ē∗31

∫
Γs

(
[δ(x+ a

2 )− δ(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

− V ē∗36

∫
Γs

(
[H(x+ a

2 )−H(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
)
dΓs.

(3.48)

Similarly, the membrane force in y direction is given as follows:

fyy =− V ē∗32

∫
Γs

(
[H(x+ a

2 )−H(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
)
dΓs

− V ē∗36

∫
Γs

(
[δ(x+ a

2 )− δ(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs.

(3.49)
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3.3.2 Equivalent bending forces

The analysis here focuses on the transverse equivalent force Nzz. Substituting
the spatial distribution of Equation (3.24) into Equation (3.43), the equivalent
force Nzz for a rectangular MFC transducer is rewritten as follows:

fzz =
∫

Γs

{
− zpē∗31E

∂2

∂x2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)

− zpē∗32E
∂2

∂y2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)

− 2zpē∗36E
∂2

∂x∂y

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)}

dΓs.

(3.50)

The three terms in the above equation represent the transverse equivalent forces,
which distribute along x, y and xy directions, respectively. The distributional
derivation should be performed on the partial derivatives of the Heaviside
functions in (3.50):

1. Given a test function ϕ(x, y), which is smooth and derivable, then:∫
Γs

ϕ(x, y) ∂
2

∂x2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

=
∫ b

2

− b
2

∫ a
2

− a
2

ϕ(x, y)[δ
′
(x+ a

2 )− δ
′
(x− a

2 )]× [H(y + b

2)−H(y − b

2)]dxdy

=
∫ b

2

− b
2

(
∂ϕ(x, y)
∂x

∣∣∣∣
x= a

2

− ∂ϕ(x, y)
∂x

∣∣∣∣
x=− a

2

)
[H(y + b

2)−H(y − b

2)]dy.

(3.51)

As ϕ(x, y) can be considered as the deflection of the host plate, the
transverse equivalent force distributed along x direction is, thus, equivalent
to the bending moment Mxx in Equation (3.44). The partial derivative
of ϕ(x, y) can be approximated by the finite difference method, while,
the uniform spacing ∆x of finite difference interval in x direction is
adopted in the analysis. Applying the first-order forward finite difference
approximation to Equation (3.51) yields:∫

Γs

ϕ(x, y) ∂
2

∂x2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

=
∫ b

2

− b
2

(
1

∆x (ϕ(a2 + ∆x, y)− ϕ(a2 , y))− 1
∆x (ϕ(−a2 + ∆x, y)− ϕ(−a2 , y))

)
× [H(y + b

2)−H(y − b

2)]dy

(3.52)
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The sampling property of the Dirac delta-function given in Equation (3.53)
can be introduced to Equation (3.52).∫ c+ε

c−ε
ϕ(x, y)δ(x)dx = ϕ(c, y) (3.53)

where c is a constant and ε > 0. Then Equation (3.52) can be rewritten
as: ∫

Γs

ϕ(x, y) ∂
2

∂x2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

=
∫ b

2

− b
2

∫ a
2

− a
2

1
∆x [δ(x− a

2 −∆x)− δ(x− a

2 )− δ(x+ a

2 −∆x) + δ(x+ a

2 )]

× [H(y + b

2)−H(y − b

2)]ϕ(x, y)dxdy.

(3.54)

Finally,∫
Γs

∂2

∂x2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

=
∫

Γs

1
∆x [δ(x− a

2 −∆x)− δ(x− a

2 )− δ(x+ a

2 −∆x) + δ(x+ a

2 )]

× [H(y + b

2)−H(y − b

2)]dΓs.

(3.55)

2. The partial derivatives in y can be similarly treated:∫
Γs

∂2

∂y2

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

=
∫

Γs

1
∆y [δ(y − b

2 −∆y)− δ(y − b

2)− δ(y + b

2 −∆y) + δ(y + b

2)]

× [H(x+ a

2 )−H(x− a

2 )]dΓs.

(3.56)

3. In addition, the partial derivatives in xy direction can be given as:∫
Γs

∂2

∂x∂y

(
[H(x+ a

2 )−H(x− a

2 )]× [H(y + b

2)−H(y − b

2)]
)
dΓs

=
∫

Γs

[δ(x+ a

2 )− δ(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]dΓs.
(3.57)

It is worthwhile to mention that the point forces in Equation (3.57)
are actually consistent with the equivalent loads from [145, 148]. They
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generate the same twisting effect on the structure as the bending moments
Mxy andMyx in Equation (3.44). We can also conclude that the equivalent
loads derived in [145, 148] are combinations of the equivalent forces and
equivalent bending moments that are obtained from Equation (3.50).

Therefore, Equation (3.50) can be finally rewritten as follows:

fzz =
∫

Γs

{
− zpē∗31E

1
∆x [δ(x− a

2 −∆x)− δ(x− a

2 )− δ(x+ a

2 −∆x)

+ δ(x+ a

2 )]× [H(y + b

2)−H(y − b

2)]

− zpē∗32E
1

∆y [δ(y − b

2 −∆y)− δ(y − b

2)− δ(y + b

2 −∆y)

+ δ(y + b

2)]× [H(x+ a

2 )−H(x− a

2 )]

− 2zpē∗36E[δ(x+ a

2 )− δ(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
}
dΓs.

(3.58)

Supposing a uniform distribution of the electric field between the electrodes
E = −V/tp, Equation (3.58) is given as:

fzz =
∫

Γs

{
zpē
∗
31
V

tp

1
∆x [δ(x− a

2 −∆x)− δ(x− a

2 )− δ(x+ a

2 −∆x)

+ δ(x+ a

2 )]× [H(y + b

2)−H(y − b

2)]

+zpē∗32
V

tp

1
∆y [δ(y − b

2 −∆y)− δ(y − b

2)− δ(y + b

2 −∆y)

+ δ(y + b

2)]× [H(x+ a

2 )−H(x− a

2 )]

+2zpē∗36
V

tp
[δ(x+ a

2 )− δ(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
}
dΓs.

(3.59)
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Figure 3.7: The distribution of fzz in x/y direction via forward finite difference
approximation (∆s indicates either ∆x or ∆y.)

The distribution of fzz along x (or y) direction is shown in Figure 3.7. The
resultant of fzz is null, and this confirms that the piezoelectric actuators are
self-equilibrium [74]. However, We can observe from the figure that fzz is not
symmetrically applied to the MFC transducer because a first-order forward
finite difference is used here. As the right side derivative should be equal to the
left side one if the derivative exists at a certain point on a smooth function, the
backward finite difference approximation can be adopted at s2. Hence fzz can
be symmetrically applied on the transducer, as shown in Figure 3.8, but this
could lead to approximation error. This error is analyzed in the next section.
Finally, the equivalent force fzz is rewritten as follows:

fzz =
∫

Γs

{
zpē
∗
31
V

tp

1
∆x [δ(x− a

2 − δ(x−
a

2 + ∆x))− δ(x+ a

2 )

+ δ(x+ a

2 + ∆(x))]× [H(y + b

2)−H(y − b

2)]

zpē
∗
32
V

tp

1
∆y [δ(y − b

2)− δ(y − b

2 + ∆y)− δ(y + b

2 −∆y)

+ δ(y + b

2)]× [H(x+ a

2 )−H(x− a

2 )]

2zpē∗36
V

tp
[δ(x+ a

2 )− δ(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
}
dΓs.

(3.60)
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Figure 3.8: The distribution of fzz in x/y direction via a forward-backward
finite difference approximation (∆s indicates either ∆x or ∆y.)

A finite difference approximation can be central, forward or backward and
the coefficients of each type are given in the tables in Appendix 8.1. A first-
order forward finite difference approximation is used as a demonstration in
the analysis, but higher order approximations can be derived by following the
same approach. In fact, the finite difference approximation that used in the
bending forces provides many possibilities to describe the inverse piezoelectric
effect of the transducer. Let’s take the equivalent force fzz in Figure 3.8 as an
example, a spacing of 2∆s will result in a "three-point" bending distribution.
As we mentioned above, the used-finite difference approximation may lead to
unwanted error so that the accuracy of the equivalent forces needs to verify for
ensuring its reliability in modeling.

3.3.3 Accuracy analysis of the inverse piezoelectric coupling

The accuracy of the equivalent force fzz is analyzed through a bending diagram.
Let’s take the inverse piezoelectric effect in x direction in Figure 3.9 as an
example. The equivalent bending moments are a pair of opposite sign bending
moments assigned on the edges of the transducer. They generate a uniform
moment distribution in (a.3). The equivalent forces result in a similar shear
force and moment distribution when ∆x in (b) tends to zero. In contrast, the
equivalent forces form a three-point force bending configuration when ∆x equals
to the half-length of the transducer, as shown in (c). The "three-point" bending
configuration generates different shear force and moment distributions from the
pair of opposite sign bending moments. Different finite difference approximations
may severely influence the accuracy of the corresponding equivalent force. As
the equivalent bending moment and equivalent force should generate the same
bending motions on the plate, the total bending effort balance of the bending
moments is a reasonable reference for analyzing the accuracy of the proposed
equivalent forces.
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Figure 3.9: One-dimensional equivalent loads bending diagram of a rectangular
MFC transducer

The total bending effort balance implies that the integrals of moment distribution
caused by the three types of equivalent loads in Figure 3.9 are equal. Taking
the cases (a) and (b) in the Figure 3.9 as a demonstration, the integral of
the bending moment distribution equals to a ×m, in (a.3), where m is the
magnitude of the bending moment and a is the size of the transducer. In the case
of (b), the detailed notation for the bending moment distribution is given in
Figure 3.10. The maximum bending moment caused by f is equal to fds. Hence,
the integral of the bending moment distribution equals to fds(2a− 2ds)/2.

s

M

x2x1x-1x-2

 

f f f f

mmax

a
ds=Δx a-2ds ds=Δx

Figure 3.10: Bending diagram of piezoelectric transducer in x/y direction due
to the equivalent forces
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A coefficient αx can be introduced here to indicate the ratio of total bending
efforts between the equivalent bending moment and the equivalent forces along
x direction. Then, the following relation retains:

ma = αxfds(a+ (a− 2ds))/2

⇒ α = am

(a− ds)fds
(3.61)

As f is quantitatively equal to m according to Equations (3.44) and (3.60), αx
can be determined as follows:

⇒ αx = a

a− ds
. (3.62)

Hence, the accuracy of the two kinds of equivalent forces in Figure 3.9 can
be quantified by αx: αx = 4/3 for the configuration (b) and αx = 2 for the
concentrated equivalent force (c). αx 6= 1 implies that the adopted first-order
finite difference approximation in fzz is not accurate enough, but αx can be
used to correct the equivalent force. This analysis is also applicable to the
transverse equivalent force along y direction (named as αy). A higher order of
approximation can effectively improve the accuracy of the equivalent force. A
second-order finite difference approach is given in Appendix 8.5, can already
achieve accurate approximations. It is important to mention that this analysis is
based on the static bending effect. A significant modification on the distribution
of the equivalent forces may lead to inaccurate results in dynamic applications.

3.4 Assessments of different equivalent loads

Firstly, we derived the equivalent forces due to the inverse piezoelectric effect of
the integrated transducer. Both the equivalent membrane forces and equivalent
bending forces are obtained. The equivalent bending forces are flexible to be
assigned on the transducer because they are approximated solutions.

Secondly, we can observe form the above analysis that the spatial distribution
terms determine the distribution of the equivalent bending moments that apply
to the edges of the MFC transducer. Mxy and Myx generate the same twisting
effect on the transducer as the point forces in [145, 148]. The membrane
forces should also be considered in modeling to fully characterize the inverse
piezoelectric effect.

Thirdly, we also obtained the transverse shear loads caused by the inverse
piezoelectric effect of the studied transducer. We can find that the bending
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moments, the transverse shear forces and the equivalent forces comply with the
elastic equilibrium principle. Wherefore, the mechanical effect caused by the
inverse piezoelectric effect of the transducer can be properly characterized.

Fourthly, the equivalent loads in Figure 2.18 from [145, 148] can be considered
as a combination of the equivalent force and bending moments. We can obtain
the same equivalent loads for a rectangular MFC transducer before we apply
the finite difference approximations in the determination of fzz.

Finally, it is worthwhile to notice that all the equivalent loads can be used
to model MFC transducers. The most convenient option should be selected
according to the practical requirements in applications. The following study
focuses on the equivalent forces that have not been investigated in the literature.
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3.5 Direct piezoelectric effect characterization us-
ing electric boundary conditions

+

_

x

y

z

a

btp

ts

Ze

Figure 3.11: A composite plate with an integrated MFC transducer and an
external electrical circuit

Let’s consider the same rectangular MFC transducer, which is analyzed in
the previous section, as shown in Figure 3.11. An electric circuit connected
to the MFC transducer and the impedance of the electric circuit is Ze. The
direct piezoelectric effect of the transducer is expressed as follows according to
Equation (3.16b):

D = ē∗31S
p
xx + 2ē∗36S

p
xy + ē∗32S

p
yy + εSE. (3.63)

Then, the current flux in the electric circuit can be described as

d

dt

∫
Γ
D × ~ndΓ = V

Ze
(3.64)

where ~n is the outer normal vector on the electrodes of the transducer, D is the
electric displacement, V is voltage and A is the electrode surface. Substituting
Equation (3.63) into Equation (3.64) yields:

d

dt

∫
Γs

[(ē∗31S
p
xx + ē∗36S

p
xy + ē∗32S

p
yy)− εS V (t)

tp
]ΛpxΛpydΓs = V (t)

Ze
(3.65)

where tp is the electrodes distance in the generalized piezoelectric formulation.
ΛpxΛpy indicates that only the strains at the placement of the transducer
contributes to the piezoelectric effect on the plate. Assuming that small
strains occur on the MFC transducers, the strain-displacement relations in
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Equation (3.5) can be adopted, and Equation (3.65) is rewritten as:
d

dt

∫
Γs

[
ē∗31

(
∂u0

∂x
− z ∂

2w0

∂x2

)
+ ē∗36

(
∂u0

∂y
+ ∂v0

∂x
− 2z ∂

2w0

∂x∂y

)
+ē∗32

(
∂v0

∂y
− z ∂

2w0

∂x2

)
− εS V (t)

tp

]
ΛpxΛpydΓs = V (t)

Ze
.

(3.66)

Integrating Equation (3.66) in the thickness-wise of the transducer yields:
d

dt

∫
Γs

[(
ē∗31

∂u0

∂x
+ ē∗36

(∂u0

∂y
+ ∂v0

∂x

)
+ ē∗32

∂v0

∂y

)
− zp
tp

(
ē∗31

∂2w0

∂x2

+2ē∗36
∂2w0

∂x∂y
+ ē∗32

∂2w0

∂x2

)
− εS V (t)

tp

]
ΛpxΛpydΓs = V (t)

Ze
.

(3.67)

If the transducer is surface-bonded on a host structure, then zs = ts/2. It
appears in Equation (3.67) that only the strains on the middle surface of the
transducer contribute to the piezoelectric effect. The dielectric constant term
results in a capacitance effect as follows:∫

Γs

εS33
V

tp
ΛpxΛpydΓs = CpV. (3.68)

Substituting Equation (3.68) into Equation (3.67) yields:

CpV̇ + V

Ze
=
∫

Γs

[( (
ē∗31

∂u̇0

∂x
+ ē∗36

∂u̇0

∂y

)
︸ ︷︷ ︸

Ψu

+
(
ẽ∗36

∂v̇0

∂x
+ ē∗32

∂v̇0

∂y

)
︸ ︷︷ ︸

Ψv

)

− (zs + tp
2 )
(
ē∗31

∂2ẇ0

∂x2 + 2ē∗36
∂2ẇ0

∂x∂y
+ ē∗32

∂2ẇ0

∂x2

)
︸ ︷︷ ︸

Ψw

]
ΛpxΛpydΓs.

(3.69)

The terms on the right side of Equation (3.69) are regrouped into Ψu, Ψv

and Ψw with respect to u0, v0 and w0, respectively. Let’s first take Ψu as an
example. The integration by parts yields:

Ψu =
∫

Γs

(
ē∗31[δ(x+ a

2 )− δ(x− a

2 )]× [H(y + b

2)−H(y − b

2)]

+ ē∗36[H(x+ a

2 )−H(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
)
u̇0dΓs

(3.70)

where the spatial distribution of the transducer in Equation (3.24) is already
substituted. Similarly, Ψv can be deduced as:

Ψv =
∫

Γs

(
ē∗36[δ(x+ a

2 )− δ(x− a

2 )]× [H(y + b

2)−H(y − b

2)]

+ ē∗32[H(x+ a

2 )−H(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]
)
v̇0dΓs.

(3.71)



DIRECT PIEZOELECTRIC EFFECT CHARACTERIZATION USING ELECTRIC BOUNDARY CONDITIONS
63

Ψu and Ψv represent the direct piezoelectric effects caused by the in-plane
behaviors of the plate. Finally, Ψw is given as follows by introducing the spatial
distribution of the transducer in Equation (3.24):

Ψw =− zp
tp
ē∗31

∫
Γs

∂2ẇ0

∂x2 [H(x+ a

2 )−H(x− a

2 )]

× [H(y + b

2)−H(y − b

2)]dΓs

− zp
tp
ē∗32

∫
Γs

∂2ẇ0

∂y2 [H(x+ a

2 )−H(x− a

2 )]

× [H(y + b

2)−H(y − b

2)]dΓs

− zp
tp

2ē∗36

∫
Γs

∂2ẇ0

∂x∂y
[H(x+ a

2 )−H(x− a

2 )]

× [H(y + b

2)−H(y − b

2)]dΓs.

(3.72)

The partial derivative terms in Equation (3.72) are treated individually by the
integration by parts. Finally, Ψw is expressed as follows:

Ψw =− zp
tp

∫
Γs

{
ē∗31
∆x [δ(x− a

2 )− δ(x− a

2 + ∆x)

− δ(x+ a

2 −∆x) + δ(x+ a

2 )]× [H(y + b

2)−H(y − b

2)]ẇ

+ ē∗32
∆y [δ(y − b

2)− δ(y − b

2 + ∆y)− δ(y + b

2 −∆y)

+ δ(y + b

2)]× [H(x+ a

2 )−H(x− a

2 )]ẇ

+ 2ē∗36
[
δ(x− a

2 )δ(y − b

2)− δ(x+ a

2 )δ(y − b

2)

− δ(x− a

2 )δ(y + b

2) + δ(x+ a

2 )δ(y + b

2)
]}
ẇ0dΓs.

(3.73)

The direct piezoelectric coupling can be characterized by substituting Ψu, Ψv

and Ψw into Equation (3.69). We can find that the same coupling patterns as
the equivalent force are obtained but with a minus sign so that the reversibility
of the piezoelectric effect is ensured. As analyzed in the previous section, the
low-order finite difference approximation causes the error which is quantified by
coefficient α, should also be applicable to Equation (3.73) because of the linear
relation between bending moment and strain.
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3.6 Concluding remarks

This chapter describes the basic concept of equivalent dynamic modeling of
MFC transducers. We investigated laminated composite plates with integrated
rectangular MFC transducers. The piezoelectric constitutive equations of MFC-
d33 transducer are converted into the form of MFC-d31 transducer so that a
single analysis can analyze the two types of transducers at the same time. A
laminated plate with distributed rectangular MFC transducers is studied. On
the one hand, the generalized Hamilton’s principle is used to fully characterize
the inverse piezoelectric effect of the integrated MFC transducers. Different
forms of equivalent loads are obtained. Equivalent forces are novel closed-form
solutions for characterizing the inverse piezoelectric effect of rectangular MFC
transducers. And then, we assessed the equivalent loads. On the other hand,
the corresponding direct piezoelectric effect is characterized under the electrical
boundary conditions. As a result, the integrated MFC transducer can be fully
characterized on a non-homogeneous laminated composite plate. The obtained
results provide a basic understanding of the equivalent modeling approach of
MFC transducers in the next chapter.



Chapter 4

Equivalent dynamic modeling
of MFC transducers
integrated into composite
plates

First of all, This chapter describes the Equivalent Force Modeling (EFM) of
MFC transducers integrated into plate-type composite structures. A FOSD-
based FEM method is adopted to simulate the structural dynamics of the
system. The piezoelectric couplings from the previous chapter, which includes
both the direct and inverse piezoelectric effects, are used to model the integrated
MFC transducers. After that, the Equivalent Substructure Modeling (ESM)
approach based on a dynamic condensation technique is described to generate
structure-preserving low-order models of piezoelectric systems. Finally, a
modeling sensitivity analysis is carried out to verify the robustness of the
proposed methods. Both the size of the used piezoelectric transducers and their
piezoelectric fibrous orientation are considered as sensitive parameters.

65



66 EQUIVALENT DYNAMIC MODELING OF MFC TRANSDUCERS INTEGRATED INTO COMPOSITE
PLATES

4.1 Equivalent Force Modeling approach

According to the equation of motion in Equations (3.42a), (3.42b), and (3.42c)
in the previous chapter, the dynamics of a laminated composite plate with
integrated MFC transducers can be briefly given as follows in a weak formulation:∫

Γs

(εmAs∆εm + κbBs∆εm + εmBs∆κb + ∆κbDsκb)dΓs

+
∫

Γs

(εmAE∆εm + κbBE∆εm + εmBE∆κb + ∆κbDEκb)ΛpxΛpydΓs

+
∫

Γs

(ü0ρsts∆u0 + ü0ρptp∆u0ΛpxΛpy)dΓs +
∫

Γs

(v̈0ρsts∆v0 + v̈0ρptp∆v0ΛpxΛpy)dΓs

+
∫

Γs

(ẅ0ρsts∆w0 + ẅ0ρptp∆w0ΛpxΛpy)dΓs =
∫

Γs

fδ(x− x0)δ(y − y0)∆w0dΓs,

(4.1)

where εm and κb are the slopes and curvatures on the plate, respectively.

x
y

z

w

w w

βxβy

βy

βx

x xy y

z z

Figure 4.1: The displacement of the mid-surface (left) and a normal on a
plate (middle-right) in FOSD theory

As shown in Figure 4.1, the displacements of an arbitrary point on the plate
can be expressed as follows according to the FOSD theory [174]:

u(x, y, z) = u0 + zβx

v(x, y, z) = v0 + zβy

w(x, y, z) = w0
(4.2)



EQUIVALENT FORCE MODELING APPROACH 67

Then, the strain-displacement relations of the membrane and bending effects
are expressed as:

εm =



εmxx = ∂u0

∂x

εmyy = ∂v0

∂y

γmxy = ∂u0

∂y + ∂v0

∂x

γxz = βx + ∂w0

∂x

γyz = βx + ∂w0

∂x

κb =


εbxx = ∂βx

∂x

εbyy = ∂βy

∂y

γbxy = ∂βx

∂y + ∂βy

∂x

(4.3)

The transverse shear deformations γxz and γyz are included into εm for the
convenience of formulation. A generalized displacement vector, which includes
both the displacements and the rotations of the normals on the mid-surface,
can be defined as u = [u0, v0, w0, βx, βy]T . u can be approximated by the nodal
displacements ui via interpolation functions Ni:

u =
n∑
i=1

Niui (4.4)

Then the nodal membrane, bending and shear strains of laminated plates are
given as:

εm =
∑
i

Bmi ui, κ
b =

∑
i

Bbiui, (4.5)

with

Bmi =


Ni,x 0 0 0 0

0 Ni,y 0 0 0
Ni,y Ni,x 0 0 0

0 0 Ni,x Ni 0
0 0 Ni,y 0 Ni

 , Bbi =


0 0 0 Ni,x 0
0 0 0 0 Ni,y
0 0 0 Ni,y Ni,x
0 0 0 0 0
0 0 0 0 0

 (4.6)

Considering that Bm, Bb and N are the elemental interpolation functions
of membrane strain field, bending strain field and displacement field on a
discretized plate, which are given in Appendix 8.2, the global stiffness, and mass
matrix are obtained by assembling the elemental matrix in the following way:

K =
∫

Γs

(
BTmA

sBm +BTmB
sBb +BTb B

sBm +BTb D
sBb

)
dΓs

+
∫

Γs

(
BTmA

EBm +BTmB
EBb +BTb B

EBm +BTb D
EBb

)
ΛpxΛpydΓs;

(4.7)

M =
∫

Γs

ρsN
TZsNdAs +

∫
As

ρpN
TZpNΛpxΛpydΓs (4.8)
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in which,

Zs =


ts 0 0 0 0
0 ts 0 0 0
0 0 ts 0 0
0 0 0 t3s

12 0
0 0 0 0 t3s

12

 , Zp =


tp 0 0 0 0
0 tp 0 0 0
0 0 tp 0 0
0 0 0 t3p

12 0
0 0 0 0 t3p

12

 .

Zs and Zp are the thickness-wise integrations for the inertia of the plate and
the transducer, respectively.

When an MFC transducer is integrated into the plate, the spatial distribution
ΛpxΛpy of the integrated MFC transducer becomes an element selector. The
spatial distribution terms in the equivalent forces should be discretized by
following the mesh and nodes on the transducer. Thus, the analytical equivalent
forces that are given in the following discretized-form can be easily assigned to
the structural model as follows:

f = Θ̃Vin (4.9)

where Vin is the operational voltage of the transducer. Θ̃ =
[
Θuψ Θvψ Θwψ

]T
is defined by fxx, fyy and fzz in the previous chapter. The distributions of
fxx, fyy and fzz on a rectangular transducer are representatively shown in
Figures 4.2 to 4.4.

y

x

Figure 4.2: Distribution of fxx on a rectangular transducer

y

x

Figure 4.3: Distribution of fyy on a rectangular transducer
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y

x

Δx

Δy

Figure 4.4: Distribution of fzz on a rectangular transducer. The black, blue
and green arrows indicate the bending forces along x, y and xy directions,
respectively.

fxx and fyy are assigned to the u and v Dofs on the edges of the transducer
because they generate the membrane motions. fzz comprises three terms that
apply to w Dofs on the transducer. They are corresponding to the bending
motions along x, y and xy directions. It seems that the distribution of fzz is
quite complex but the three terms in fzz can be easily treated as line-forces
and point forces as long as the mesh is regular on the transducer. Hence, the
dynamics of the plate with an integrated transducer is given as follows:

Ku+Cu̇+Mü = Θ̃V (4.10)
In addition, the electrical dynamics of the piezoelectric system is expressed as
follows according to section 3.5 in the previous chapter:

CpV̇ + V

Ze
= −Θ̃T u̇ (4.11)

where −Θ̃T , which is actually defined by Ψu, Ψv and Ψw, is the transposition
of Θ̃ with a negative sign. The dynamics of the overall piezoelectric system
then can be expressed as:[

M 0
0 0

] [
ü

ψ̈

]
+
[
C 0
0 0

] [
u̇

ψ̇

]
+
[
K Θ̃
Θ̃T Cp

] [
u
ψ

]
=
[
Fs
Qq

]
(4.12)

where ψ is the electric Dofs of the transducer and Qq is electrical charge input
depends on Ze. Fs is the mechanical input exited on the plate. The following
transform can be used for eliminating the electric Dofs ψ:

ψ = −C−1
p Θ̃Tu+ C−1

p Qq (4.13)
Substituting (4.13) into (4.12) yields:

Mü+Cu̇+ (K + Θ̃C−1
p Θ̃T )︸ ︷︷ ︸

KAg

u = Fs + ΘVin (4.14)

where Θ̃C−1
p Θ̃T is called the piezoelectric induced stiffness matrix. KAg is the

augmented stiffness matrix.
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4.2 Equivalent Substructure Modeling approach

The EFM approach uses the FEM method for structural modeling and FEM
models are usually large-scale that is challenging the dynamic application. The
substructuring method is preferable to deal with large-scale structure because
the individual substructures can be analyzed independently, and the dynamics
of the overall system is obtained by assembling the substructures [175]. Hence,
it is more convenient to analyze and update the global system through the
substructuring concept [176, 177]. When some substructures are modified, the
rest substructures remain unchanged. Also, the substructuring concept can
combine with the model order reduction techniques in calculating the modal
parameters of the overall system [178, 179]. Therefore, the ESM approach,
proposed in this section, is based on the substructuring concept. The proposed
approach aims to generate structure-preserving low-order models of piezoelectric
systems. Both the structural complexity and the physical parameters such as
transducer placement and modal parameters of the system can be preserved in
the low-order system model.

Substructure
decomposition

CouplingS
S1

S2
Coupling

Se1

Se

2

Orignal system Equivalent system

Figure 4.5: Equivalent substructure concept

The idea of the equivalent substructures is to reduce the order of the model
of each substructure, while the complexity of the overall structure is always
retained after the assembling. A mechanical structure S can be divided into
substructures, as shown in Figure 4.5. The mechanical dynamics of each
substructure in free vibration is described as follows:

M̃ü+ K̃u = 0 (4.15)

where M̃ and K̃ are the mass and stiffness matrix of a substructure generated
by FEM methods. Equation (4.15) can be partitioned according to the retained
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Dofs on the master nodes subscribed r and deleted Dofs on servant nodes
subscribed as d:[

M̃rr M̃rd

M̃dr M̃dd

]{
ür
üd

}
+
[
K̃rr K̃rd

K̃dr K̃dd

]{
ur
ud

}
=
{

0
0

}
. (4.16)

The second row in Equation (4.16) leads to the following relation according to
the static condensation:

ud = R(0)ur (4.17)

where R(0) = −K̃−1
dd K̃dr. The reduced-order model of the substructure is

obtained by introducing Equation (4.17) into the first row in Equation (4.16).
A dynamic condensation is adopted here for partially including the mass effect
in the model order reduction transformation matrix. The new R(i) to replace
R(0) in Equation (4.17) is given as follows according to [180]:

R(i) = K̃−1
dd [(M̃dr + M̃ddR

(i−1))(M̃ (i−1)
s )−1K̃(i−1)

s − K̃dr] (4.18)

where M̃ (i−1)
s and K̃(i−1)

s are the reduced-order mass and stiffness matrix
of each substructure from i − 1 step (i = 1, 2, 3...). Therefore, a model order
reduction transformation matrix of the dynamic condensation is given as follows:

T =
[
I

R(i)

]
(4.19)

in which, I is an identity matrix. The reduced-order model of the substructure
is thus expressed as

Mü+Ku = 0. (4.20)

where M = T TM̃T and K = T T K̃T are the mass and stiffness matrix of the
equivalent substructure model. When an MFC transducer is integrated into a
substructure of the host plate, its equivalent substructure model can be easily
assembled with the equivalent substructure model of the plate. Meanwhile, the
piezoelectric couplings also need to be transformed to the equivalent substructure
model too. We can observe from the constitutive relations that the couplings
are applied to the plate that dominates the mechanical dynamics of the system.
Hence, the following transformation can be achieved:

Θ̂ = T T Θ̃ (4.21)

where T is the order reduction transformation matrix of the plate substructure
model. Θ̂ is the coupling applied on all the master nodes of the plate equivalent
substructure model. Now, a static condensation can be applied to Θ̂ in order
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to convert the coupling on certain desired Dofs of the equivalent substructure
model [181]:

Θ = T Ts Θ̂, Ts =
[

I

−KrdK
−1
dd

]
(4.22)

where K is partitioned by the desired degrees of freedoms subscripted r and
the rest of degrees of freedom subscripted d. Finally, the piezoelectric coupling
can be transformed to the equivalent substructure models as follows:

Θ = T Ts T
T Θ̃ (4.23)

It is worthwhile to mention that the mass and stiffness influence of the integrated
transducer can be included into M and K before generate Θ. Then, the
mechanical influences of the transducer can be partially taken into account.
When the transducer significantly influences the mechanical dynamics of the
system, it can be coupled to the corresponding host substructure in FEM before
generating the low-order substructure models. As a result, the transducer is
embedded into the plate substructure. Conclusively, the equivalent substructure
models can be easily assembled, and the dynamics of the overall system can be
expressed as:

Mü+Cu̇+Ku = Fs + ΘV (4.24a)

CpV̇ + V

Ze
+ ΘT u̇ = 0 (4.24b)

where M , C and K are the mass matrix, damping matrix and stiffness matrix
of the low-order structural model of the system. Θ is the assembled piezoelectric
coupling due to the integrated transducer. Equation (4.14) can be also deduced
from Equations (4.24a) and (4.24b). Furthermore, it is possible to use other
types of equivalent loads in the ESM approach as long as the corresponding
direct piezoelectric coupling is known.

4.3 Modeling sensitivity analysis

The reliability of the presented modeling approaches is critical to verify because
the used piezoelectric couplings are approximated solutions. They may be
very sensitive to the size of MFC transducers or the piezoelectric fibrous
orientation. Thereby, the modeling sensitivity analysis is carried out in this
section. The piezoelectric FEM approach in [23] is used as a validation reference.
The following analysis focuses on the dynamic validations. A static modeling
reliability check is given in Appendix 8.3. Furthermore, the mechanical influence
of the integrated MFC transducers is also evaluated in this analysis.
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4.3.1 Cantilever laminated plate with integrated MFC trans-
ducers

x

y

z

x
Laminated plate

MFC-d33

MFC-d31

84×56

56×28
28×14

A

Figure 4.6: A cantilever plate with integrated MFC transducers (The red
spot indicates the force input and velocity output location in direct and inverse
piezoelectric response analysis, respectively.)

The laminated cantilever plates with integrated MFC transducers in Figure 4.6
are simulated. One of each MFC-d33 and MFC-d31 transducers are glued on
the top and bottom surfaces of the plate with a distance of 7mm from the
clamped side. Three different sizes of transducers are used in the analysis:
84mm×56mmm, 56mm×28mmm and 28mm×14mmm. The thickness of the
transducers is 0.3mm. The size of the plate is 210mm× 70mmm. The lay-up
of the plate is [−60o 60o 0o]s, and the thickness of each layer is assumed to
be 0.15625mm, resulting in a total plate thickness of 0.9375mm. The material
properties of the composite laminates and the used MFC transducers are given
in Table 4.1. We can recognize that the thickness of the plate is in the same
order as the thickness of the integrated transducers. Hence, the integrated
transducers should be able to influence the dynamics of the overall system
significantly.
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MFC-d33 MFC-d31 composite laminate
ρp = 5440Kg/m3 ρp = 5440Kg/m3 ρs = 1510Kg/m3

Y3 = 29.4GPa Y1 = 30.2GPa Y1 = 110.15GPa
Y2 = 15.2GPa Y2 = 14.8GPa Y2 = 7.867GPa
G23 = 5.79GPa G12 = 4.13GPa G12 = 4.05GPa

d31 = −210× 10−12m/V d31 = −170× 10−12m/V ν12 = 0.32
d33 = 460× 10−12m/V d32 = −100× 10−12m/V
h

E
= 0.5× 10−3m h

E
= 0.18× 10−3m

Table 4.1: Material properties of the used MFC transducers and composite
plate

The overall structure is simulated by the FEM method. A uniform triangular
mesh of size 0.35mm × 0.35mm is used to mesh the plate, and the MFC
transducers use the same mesh. All the Dofs on the clamped boundary are
eliminated from the model. The size of the full FEM model is 6300 × 6300.
The FEM method in [23] is used for validation. In contrast, the piezoelectric
couplings are assigned to the corresponding translational Dofs in EFM approach
as shown in Figures 4.2 to 4.4. In the frequency response analysis, proportional
damping is adopted in the frequency response calculations, and the damping
coefficients are given in Table 4.2. Since the size of the FEM system is large, the
Second-Order-Rational-Arnoldi (SORA) technique from [24] is used for model
order reduction. All the reduced-order systems have a size of 30 × 30 in all
cases. In the direct piezoelectric frequency response predictions, a force input is
applied to location A on the plate, and a resistive load of R = 1, 000Ω is used
to generate voltage output from the transducer. In the inverse piezoelectric
frequency response predictions, a voltage input is applied to the transducer,
and the velocity at location A is measured.

λ[1/s] η[s]
value 3.8 1.8× 10−6

Table 4.2: Coefficients of proportional damping

4.3.2 Sensitivity analysis on the size of MFC transducers

The integrated MFC-d31 transducer is used in frequency response verification
in this case because it has similar piezoelectric effects in both x and y directions.
It should be more sensitive to the distribution of piezoelectric couplings. The
piezoelectric fibrous orientation is set as 0o. The electric dynamic effect, due
to the transducer, is considered in the frequency responses. As shown in



MODELING SENSITIVITY ANALYSIS 75

0
20

0
40

0
60

0
80

0
10

00

−
5005010
0

15
0

F
re

qu
en

cy
 [H

z]

V/N [dB]

 

 

F
E

M
 m

od
el

 w
ith

ou
t p

re
se

nc
e 

of
 M

F
C

s
E

F
M

 m
od

el
 w

ith
ou

t p
re

se
nc

e 
of

 M
F

C
s

F
E

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

E
F

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

0
20

0
40

0
60

0
80

0
10

00

−
202

F
re

qu
en

cy
 [H

z]

Phase [rad]

0
20

0
40

0
60

0
80

0
10

00

−
5005010
0

15
0

F
re

qu
en

cy
 [H

z]

V/N [dB]

 

 

F
E

M
 m

od
el

 w
ith

ou
t p

re
se

nc
e 

of
 M

F
C

s
E

F
M

 m
od

el
 w

ith
ou

t p
re

se
nc

e 
of

 M
F

C
s

F
E

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

E
F

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

0
20

0
40

0
60

0
80

0
10

00

−
202

F
re

qu
en

cy
 [H

z]

Phase [rad]

0
20

0
40

0
60

0
80

0
10

00

−
5005010
0

15
0

F
re

qu
en

cy
 [H

z]

V/N [dB]

 

 

F
E

M
 m

od
el

 w
ith

ou
t p

re
se

nc
e 

of
 M

F
C

s
E

F
M

 m
od

el
 w

ith
ou

t p
re

se
nc

e 
of

 M
F

C
s

F
E

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

E
F

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

0
20

0
40

0
60

0
80

0
10

00

−
202

F
re

qu
en

cy
 [H

z]

Phase [rad]

28
m
m
×

14
m
m

56
m
m
×

28
m
m

84
m
m
×

56
m
m

F
ig
ur
e
4.
7:

D
ire

ct
pi
ez
oe
le
ct
ric

fr
eq
ue

nc
y
re
sp
on

se
s
of

M
FC

-d
31

fo
r
di
ffe

re
nt

siz
es

0
20

0
40

0
60

0
80

0
10

00
−

15
0

−
10

0

−
5005010
0

F
re

qu
en

cy
 [H

z]

(m/s)/V [dB]

 

 

F
E

M
 m

od
el

 w
ith

ou
t p

re
se

nc
e 

of
 M

F
C

s
E

F
M

 m
od

el
 w

ith
ou

t p
re

se
nc

e 
of

 M
F

C
s

F
E

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

E
F

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

0
20

0
40

0
60

0
80

0
10

00

−
202

F
re

qu
en

cy
 [H

z]

Phase [rad]

0
20

0
40

0
60

0
80

0
10

00

−
10

0

−
5005010
0

F
re

qu
en

cy
 [H

z]

(m/s)/V [dB]
 

 

F
E

M
 m

od
el

 w
ith

ou
t p

re
se

nc
e 

of
 M

F
C

s
E

F
M

 m
od

el
 w

ith
ou

t p
re

se
nc

e 
of

 M
F

C
s

F
E

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

E
F

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

0
20

0
40

0
60

0
80

0
10

00

−
202

F
re

qu
en

cy
 [H

z]

Phase [rad]
0

20
0

40
0

60
0

80
0

10
00

−
10

0

−
5005010
0

F
re

qu
en

cy
 [H

z]

(m/s)/V [dB]

 

 

F
E

M
 m

od
el

 w
ith

ou
t p

re
se

nc
e 

of
 M

F
C

s
E

F
M

 m
od

el
 w

ith
ou

t p
re

se
nc

e 
of

 M
F

C
s

F
E

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

E
F

M
 m

od
el

 w
ith

 p
re

se
nc

e 
of

 M
F

C
s

0
20

0
40

0
60

0
80

0
10

00

−
202

F
re

qu
en

cy
 [H

z]

Phase [rad]

28
m
m
×

14
m
m

56
m
m
×

28
m
m

84
m
m
×

56
m
m

F
ig
ur
e
4.
8:

In
ve
rs
e
pi
ez
oe
le
ct
ric

fr
eq
ue

nc
y
re
sp
on

se
s
of

M
FC

-d
31

fo
r
di
ffe

re
nt

siz
es



76 EQUIVALENT DYNAMIC MODELING OF MFC TRANSDUCERS INTEGRATED INTO COMPOSITE
PLATES

Figures 4.7 and 4.8, the mechanical influences of the integrated transducers can
be significant to the dynamics of the overall system. Both the amplitude and
the natural frequencies of the modes shifted when the mechanical influences of
the transducers are not included in the modeling. Hence, it is crucial to include
the transducers in the structural modeling properly. The EFM modes agree
well with the FEM models in the considered frequency range 0Hz − 1, 000Hz.
The equivalent force is able to simulate the MFC transducers of different sizes
accurately. We can observe the piezoelectric reciprocal relation in the two
figures. However, the piezoelectric reciprocal relation does not entirely hold
without considering the electrical boundary conditions. The experimental data
in the next chapter will demonstrate that.

4.3.3 Sensitivity analysis on the piezoelectric fibrous orienta-
tion of MFC transducers

The clamped composite plate with MFC transducers of size 84mm × 56mm
is used to check the piezoelectric fiber orientation sensitivity. As shown in
Figure 4.9, three different piezoelectric fibrous orientations are checked: (i) −45o,
(ii) 0o and (iii) 60o. The integrated MFC-d33 transducer is used in the frequency
response calculations because its piezoelectric effects in x and y directions are
considerable dissimilar. This can result in a large sensitivity to the piezoelectric
fibrous orientation.

(i) (ii) (iii)

x

y

x

y

2

1

2

1
θ=-45oθ=0o

Piezoelectric 
fiber

x

y

2 1

θ=60o

Figure 4.9: Piezoelectric fibrous orientations

We can observe from Figures 4.10 and 4.11 that the mechanical influence of the
transducers become more significant for MFC-d33 transducers. That due to
the effect that the piezoelectric fibrous orientation can significantly change the
structural dynamics of the overall system. In the case of the fibrous orientation
θ = 60o, where the mechanical influences of the transducers are considered, the
anti-resonance at 630Hz slightly shifted. That might be due to the equivalent
forces that assigned to the translational degrees of freedoms. Apart from this, we
can conclude that the equivalent forces are reliable to simulate MFC transducer
with different piezoelectric fibrous orientations.
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4.3.4 Verification of ESM approach

We used thin and long MFC transducers in this verification in order to generate
a significant geometrical difference between x and y directions. The size of the
transducers is 168mm× 14mm, and the piezoelectric fiber orientation is 0o in
respect of x axis.

x

y

z

x
Laminated plate

MFC-d33

MFC-d31

168×14

A

Figure 4.12: A cantilever plate with integrated MFC transducers (The red
spots represent the master nodes of equivalent structural model.)

The ESM model is generated to verify its reliability. The plate and MFC
transducers are separately modeled by the FEM method. Then, the equivalent
model of each substructure is generated by the dynamic condensation technique.
The master nodes of the substructures are indicated as red spots in Figure 4.12.
The equivalent models can be easily assembled to formulate the equivalent
structural model. The piezoelectric couplings are assigned to the plate model,
after that, transformed into the equivalent structural model. It is shown in
Figures 4.13 and 4.14 that the EFM model always agrees well with the FEM
model. The ESM model has a good agreement with the FEM model up to
600Hz. The natural frequencies of the modes at a higher frequency range
shifted. Moreover, it is important to notice the used dynamic condensation
technique is more accurate for the low-mid frequency range [180] so that the
ESM approach only well maintains the dynamics of the system in the low-mid
frequency range. Better selection of the master nodes of both the transducer
and the plate could also help to improve the ESM model. Another validation
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Figure 4.13: MFC-d31 direct piezoelectric frequency response of the cantilever
plate (θ = 0o)
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Figure 4.14: MFC-d31 inverse piezoelectric frequency response of the cantilever
plate (θ = 0o)

for MFC-d33 transducer with a piezoelectric fibrous orientation of 60o is given
in Figures 4.15 and 4.16. Similar conclusions can be drawn.
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Figure 4.15: MFC-d33 direct piezoelectric frequency response of the cantilever
plate (θ = 60o)
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Figure 4.16: MFC-d33 inverse piezoelectric frequency response of the cantilever
plate (θ = 60o)



LIMITATIONS OF THE PROPOSED METHODS 81

4.4 Limitations of the proposed methods

A novel framework on the equivalent dynamic modeling of MFC transducers
integrated into composite plates is proposed. The proposed equivalent forces,
which is only valid for rectangular MFC transducers, is adopted in the proposed
methods. Both the EFM and ESM approach are only applicable to plate-type
structures. In the EFM approach, the equivalent forces can be assigned as line
forces on a transducer, and a mapped mesh is required. The EFM approach can
elaborately simulate piezoelectric systems, but it generates large-scale system
models. The ESM approach is developed to generate low-order system models
by using a substructuring concept, while the structure of the original model
is preserved. The ESM approach is mostly valid for low-mid frequency range
application due to the used dynamic condensation technique. Besides, both
methods do not take the damping matrix into account. The proportional
damping is the most convenient option to be adopted in simulations.

4.5 Concluding remarks

This chapter presents the equivalent dynamic modeling of MFC transducers.
Both the direct and inverse piezoelectric solutions obtained from the previous
chapter are used to simulate the inverse and direct piezoelectric effects of
MFC transducers which are integrated into a plate-type structure. The EFM
approach demonstrates the general modeling process by the derived equivalent
forces, while the ESM approach generates structure-preserving low-order models
that facilitate the design and modeling of advanced piezoelectric systems.
Both the two approaches are numerically validated by a piezoelectric FEM
method. Moreover, the mechanical influences of the transducers are essential
to piezoelectric system modeling. Besides, we checked the modeling reliability
of the EFM and ESM approaches for dynamic cases. Both the size and the
piezoelectric fibrous orientation of the MFC transducers are considered as
sensitive parameters. And both the EFM and ESM approaches are demonstrated
that they agree well with the piezoelectric FEM method in the literature.
Therefore, further researches of piezoelectric application can be performed with
the proposed modeling approaches.





Chapter 5

Structural dynamic validation
of equivalent modeling
approaches

This chapter presents the structural dynamic validation of the equivalent
modeling approaches. The experimental modal analysis of a laminated composite
plate with integrated MFC transducers is described. Then, both the EFM and
ESM models of the tested subject are presented. After that, both modal
parameter validations and frequency response validations of the numerical
models are carried out. We used the experimental measurements to validate
the predicted dynamic responses of the plate. Finally, two kinds of dynamic
application of the studied subject are numerically performed to demonstrate
the potential of the ESM approach.

5.1 Experimental testing of a laminated plate with
integrated MFC transducers

A laminated composite plate with integrated MFC-d33 transducers is
manufactured for the dynamic validation of the presented modeling approach.
As shown in Figure 5.1, two MFC transducers type M2814P1 (MFC-d33
transducers) from Smart Material Co. are surface-bonded on the plate with a
piezoelectric fibrous orientation of 0o. The first one is placed in the center of
the plate and the second one is located close to the border of the plate. A thin

83
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adhesive layer between the MFC transducers and the host structure is essential
for guaranteeing the high performance of the transducer. Hence, the bonding
process in [182] is used by the 3M DP460 epoxy-based adhesive [183].

22

74

00

26

01

02

03

Figure 5.1: The composite plate with integrated MFC-d33 transducers used
for dynamic response validation

5.1.1 Laminated composite plate

The studied plate is shown in Figure 5.1. The size of the plate is 503mm×400mm.
It consists of unidirectional fibrous composite material layers which are joined
by an epoxy matrix. Each layer has the same orthotropic material, as given
in Table 5.1. The plate has a symmetric lay-up [−45◦, 45◦, 0◦, 90◦]s, so that
it has quasi-isotropic properties: isotropic in-plane response and anisotropic
out-plane response. The thickness of each layer is 0.3125mm, resulting in a
plate thickness of 2.5mm.

density[Kg/m3] Y1[GPa] Y2[GPa] G12[GPa] ν12
laminate 1500 110.15 7.868 4.05 0.26

Table 5.1: Material properties of a single laminate
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5.1.2 MFC-d33 transducers

The parameters of the used transducer are given in Table 5.2 and the material
properties of the MFC-d33 transducers are given in Table 6.1. The piezoelectric
constants d33 and d32 are adopted from [113] for 250V peak to peak operating
voltage with 0V offset voltage, which is in accordance with the experiment.

MFC2814P1 value
active layer length [mm] 28
active layer width [mm] 14
active layer thickness [mm] 0.3
Capacitance [nF ] 1.15
free strain in ppm 1550
maximum operational positive voltage [V ] 1500
maximum operational negative voltage [V ] -500
operational bandwidth as actuator (low electric field) [kHz] up to 700
operational bandwidth as sensor [MHz] up to 1

Table 5.2: Parameters of MFC M2814P1 [15]

MFC2814P1 value
density [Kg/m3] 5440
Y1 [GPa] 27.142
Y2 [GPa] 14.8
ν12 0.2922
G12 [GPa] 4.1312
G13 [GPa] 5.385
G23 [GPa] 10.5
d33 [m/V ] 272
d32 [m/V ] −133

Table 5.3: Material properties of MFC M2814P1

The integrated transducers can be used as either actuators or sensors in
dynamic application. When the experimental results are used to validate the
numerical models, a mismatch between them may happen because of the perfect
assumptions in numerical models. Therefore, the corresponding corrections
should be taken into account in modeling to make the performance of numerical
models close to the experiment. In this study, both the assumptions of the
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electric field and the effect of the adhesive layer between the transducer and
the host plate need to be corrected.

Figure 5.2: Microscopic images of a region on MFC transducer [184] (Left:
reflected light image Right: transmitted light image)

A microscopic view of a region on M2814P1 transducer is shown in Figure 5.2.
The electrodes are perpendicularly located on the piezoelectric fibers. The
distance between electrodes is h

E
≈ 0.5mm and the width of each finger on

the electrodes is 2wf ≈ 0.08mm. The distribution of the operational electric
field has been shown in Figure 2.7. The effective operational electric field is
less intense than a uniform distributed electric field, which we assumed in our
analysis. The scaling factor α

E
that corrects this over-estimation is given as

follows by [167]:

α
E

=
[
1− tp

hE

(
1
2 + 2

π

)][
hE − wf
hE − tp

]
= 0.8948 (5.1)

where tp is the thickness of the active-layer of the used MFC-d33 transducers.

The shear deformation in the thickness-wise of the adhesive layer causes a
shear-lag effect. The correction factor α

P
is determined by the product of the

effective length and width fractions from [150, 168, 169]. The effective length
and width fractions of the used transducers are shown in Figures 5.3 and 5.4
according to different thicknesses of the adhesive layer ta. The effective length
and width fractions are obtained by integrating the areas under the curves in
Figures 5.3 and 5.4.
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Figure 5.3: The effective length of the used transducer for direct piezoelectric
effect
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Figure 5.4: The effective width of the used transducer for direct piezoelectric
effect
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Assuming that the adhesive layer between the composite plate and the MFC
transducer is ta = 15µm, the shear-lag effect correction factor is α

P
= 0.6808.

Finally, a correction factor α = αE × αP
is obtained for both the operational

electrical field and the shear-lag effect.

5.1.3 Experimental analysis

Figure 5.5: Experimental setup

Both impact testing and transducer actuation testing are carried out. The
overall experimental system is illustrated in Figure 5.5 and the specification of
the equipment is presented in Appendix 8.4. The plate is suspended by elastic
chords to mimic free-free boundary conditions.

The blue arrows illustrate the impact testing in the figure. A PCB-086E80
impact hammer is used to perform the impact on the plate. A Polytec OFV
055 Laser vibrometer is used to measure the transverse velocity response of
the plate. The transducers are also connected to SCADAS to measure the
voltage output caused by the impact. Since the transducers are fixed on the
plate, the laser beam needs to focus on a fixed location on the plate too. Then,
a roving hammer technique [185] is applied to measure the responses on the
plate, in which situation the reciprocity properties should be retained on the
test subject. SCADAS is used to acquire the force signal, velocity signal and
the voltage signals from the transducers and saved by TestLab. 14A. The
measured frequency bandwidth is 0− 2, 560Hz with a resolution of 0.3125Hz.
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The acquisition time is 3.2s to ensure that the motions on the plate can decay
very well after each impact execution. Then, a uniform window is applied
to the input channels. The trigger setting is performed for the force signal
measured from the impact hammer, and the H1 estimator is applied to provide a
better estimation of the anti-resonance [186]. We did five times linear averaging
on each impacted location because more than five times averaging did not
significantly improve the quality of the measured FRFs. Each impact is selected
by the coherence between the executions and the energy distribution in the
measured frequency bandwidth. The overloaded and double-impact executions
are rejected. Spectral testing is used for the transducer actuation testing, which
is indicated by red arrows in Figure 5.5. A zero-mean random signal is generated
from Test.Lab source control module and sent to the PiezoDirve TD250 amplifier
by SCADAS. PiezoDirve TD250 amplifies the input signal up to 250V , which
exceeds the input range of the SCADAS. As the linearity of the voltage amplifier
is assumed, the random signals directly connect to the used SCADAS and the
gain of the voltage amplifier is set as the sensitivity of the corresponding input
channel in the Test.Lab. The velocity FRFs are measured at the predefined
location by the Laser vibrometer. A hanning window is applied to all input
channels in the spectral testing to avoid the aliasing issue [187]. The measured
bandwidth is 0 − 4, 096Hz with a resolution of 0.5Hz. Twenty times linear
averaging is used for each measured location. The H1 FRF estimator is applied
to the measurements. The overloaded executions are rejected.

Figure 5.6: Reciprocity check between 01 and 02 on the plate

Before performing the tests, the reciprocity between different locations on the
plate has been checked to guarantee the assumption of a linear system. In
the impact testing, the velocity over force FRFs is measured. The reciprocity
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check has been executed between location 01, 02 and 03, as shown in Figure 5.1.
Figure 5.6 demonstrated that the reciprocity between 01, 02 retains on the
plate.

In the spectral testing, the operational voltage level has to be fixed to reduce the
influences of the hysteresis effect of the MFC transducers. Figure 5.7 illustrated
that the reciprocity between two MFC transducers retains quite well for a
given operational voltage level. The mismatches at 370Hz and 630Hz might be
caused by the small signal-to-noise ratio because the excitation of the transducer
to the plate is quite limited.

Figure 5.7: Reciprocity check between the two MFC transducers

Standard modal analysis techniques apply to the piezoelectric composite
plate because the typical principles of a linear system are observed. The
experimental modal analysis is carried out through the PolyMAX technique in
Test.Lab [188]. The impact testing can determine the modal parameters of the
piezoelectric composite plate and measured FRFs will be used to validate the
direct piezoelectric effect of numerical models. The force to voltage FRFs will
be used as validations of the inverse piezoelectric effect of the numerical models.

The reciprocity has been briefly reported in [152]. An interesting observation
from the experimental data is shown in Figure 5.8. The FRFs of voltage output
over force input and velocity output over voltage input is very close to each other.
There is a frequency dependent amplitude scaling between these two FRFs, as
shown in the figure. This relation might be useful in dynamic application.
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Figure 5.8: Comparison of FRFs between 26 and 22: blue curve: voltage to
velocity FRF [(m/s)/V ] and red curve: force to voltage FRF [V/N ]

5.2 Equivalent modeling of composite plate with
integrated MFC transducers

A FEM convergence analysis is carried out in order to figure out the optimal
element size. The plate is divided into n × m segments, and each one is
discretized by using two triangular elements. The following table shows the
predicted natural frequencies via different numbers of elements:

Mode Impact testing FEM 36× 28 FEM 72× 56 FEM 144× 116
freq.[Hz] freq.[Hz] error freq.[Hz] error freq.[Hz] error

1st 39.8 40.6 −2.0% 40.5 −1.8% 40.5 −1.8%
2nd 48.3 49.7 −2.8% 49.6 −2.7% 49.5 −2.5%
3rd 77 78.4 −1.8% 77.9 −1.2% 77.7 −0.9%
4th 109.2 110.8 −1.5% 110.1 −0.8% 109.8 −0.5%
5th 113.4 116.2 −2.5% 115.2 −1.4% 114.3 −0.8%
6th 150.9 152.9 −1.3% 151.0 −0.1% 150.0 0.6%
7th 196.3 200.7 −2.2% 198.2 −1.0% 197.2 −0.5%
8th 200.9 205.0 −2.0% 200.3 0.3% 201.0 −0.5%
9th 215.2 221.1 −2.7% 218.3 −1.4% 217.4 −1.0%
10th 259.2 268.9 −3.7% 262.7 −1.4% 261.1 −0.7%

Table 5.4: Natural frequencies convergence via number of elements
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The predicted natural frequencies converge to the experimental results along
with refining the elements. An element size 7mm× 7mm provided an accurate
prediction of the dynamics of the plate. There are 4, 307 nodes in total in this
case. Each node has 5 Dofs, including three translational and two rotational
Dofs. Finally, the size of the structural FEM model is 21535× 21535.

In the EFM approach, the structural model of the plate, including the presence
of the transducers, is modeled by the FEM method. The electromechanical
couplings, including both the direct and inverse piezoelectric effects, are assigned
to the corresponding nodes on the transducers. A model order reduction is
performed to EFM model in order to reduce the computing time of the frequency
responses on the plate. A minimum number of out-plane translational Dofs
for the proposed equivalent forces and some additional rotational Dofs on the
transducers are retained in the reduced-order model. The additional Dofs,
which are used to ensure the accuracy of the reduced-order model, are shown in
Figure 5.9 (a). The size of the reduced-order model is 329× 329.

x

y

MFC transducers

x

y

MFC transducers

Composite plate Composite plate

(a) (b)

Figure 5.9: The master nodes of the low-order models on the studied plate
(Left side is the reduced-order EFM model and right side is the ESM model.)

In the ESM approach, the plate with integrated transducers is subdivided into
substructures, as shown in Figure 5.9 (b). The transducers are also considered
as substructures. Each substructure is modeled by the FEM method. The
equivalent structural model of the transducer can be easily obtained by the
dynamic condensation technique. As the substructures of the plate are identical,
a single FEM model is sufficient for modeling all the nine components. A
specific set of master nodes on each plate substructure is selected. Two types of
master nodes can be recognized: The outer nodes (red spots) serve to couple
the adjacent substructures and the inner nodes (blue spots) can be used for
coupling the integrated transducers. Then, the placement of the transducer is
also preserved. The piezoelectric couplings are assigned to the corresponding
plate substructures. All the reduced-order models of the substructures can
easily be assembled. Finally, the size of the ESM model is 363 × 363. It is
worthwhile to mention that the size of the model depends on the substructure
decomposition, as well as the selected master nodes.
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In the dynamic response calculations of the plate, a proportional damping is
adopted for both models:

C = λM + ηK. (5.2)

As the proportional damping maintains the orthogonality properties of the
modes, the above equation can be rewritten in the modal coordinates:

ξi = 1
2ωi

λ+ ωi
2 η (5.3)

where ξi and ωi are the critical damping ratio and the natural frequency of ith
mode. The experimental critical damping ratio of the modes at 39.8Hz and
284.0Hz are 0.27% and 0.15%, respectively. Then, the corresponding λ and η
can easily be obtained according to Equation (5.3).

λ η
value 1.27 1.28× 10−6

Table 5.5: Coefficients of proportional damping

5.3 Validations of EFM and ESM models

5.3.1 Modal validation

The experimental modal validation is carried out in order to check the fidelity of
the EFM and ESM models. The natural frequencies for the first ten modes are
given in Table 5.6, where both the models agree well with the experimental data.
The ESM model is slightly less accurate than the EFM model for certain modes
because of the substructure concept may slightly impair the accuracy of the final
system models. The corresponding mode shapes of the EFM model are validated
using Modal Assurance Criterion (MAC) [189], as shown in Figure 5.10. It is
difficult to validate the mode shapes of the ESM model by MAC because the
selected master nodes did not match the measured locations on the plate in the
experiment. Nevertheless, Figure 5.11 shows that the ESM model well preserves
the mode shapes of the studied plate.
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Mode Impact test EFM model ESM model
freq.[Hz] freq.[Hz] error freq.[Hz] error

1st 39.8 40.6 −2.0% 41.6 4.5%
2nd 48.3 49.6 −2.7% 49.6 2.7%
3rd 77 77.7 −0.9% 76.6 −0.5%
4th 109.2 109.8 −0.5% 110.3 1.0%
5th 113.4 114.8 −1.3% 116.0 2.3%
6th 150.9 150.3 0.4% 149.3 −1.1%
7th 196.3 197.4 −0.5% 195.8 −0.3%
8th 200.9 199.3 −0.6% 199.0 −1.0%
9th 215.2 217.3 −1.0% 216.5 1.3%
10th 259.2 260.8 −0.6% 257.4 −0.7%

Table 5.6: Natural frequencies validations of the EFM and ESM models
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Figure 5.10: MAC correlation between experimental data and EFM model
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Figure 5.11: First 5 normalized mode shapes of the studied plate ((a)
experimental data, (b) EFM model and (c) ESM model)

5.3.2 Dynamic response validation

Both the collocated (measurement at the driving point) and non-collocated
(measurement not at the driving point) frequency response measurements are
used in this validation. The collocated measurement is more sensitive to the
static contributions of the unconsidered dynamics of the system. The frequency
response validations are limited to a frequency range of [20Hz−1, 000Hz]. Two
kinds of FRFs are considered: velocity output on the plate over voltage input
to the transducers (inverse piezoelectric effect) and voltage output from the
transducers over force input on the plate (direct piezoelectric effect). Hence, the
numerical models can be fully validated for both actuation and sensing of the
MFC transducers. The validated locations on the plate are given in Figure 5.1.
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Inverse piezoelectric effect validation
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Figure 5.12: Inverse piezoelectric frequency response validation between 00
and 74
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Figure 5.13: Inverse piezoelectric frequency response validation between 00
and 00
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The inverse piezoelectric frequency response validations are shown in Figures 5.12
to 5.15. Both the EFM and ESM models can well predict the dynamic responses
on the plate caused by the integrated transducers. Meanwhile, the structural
complexity of the system is well retained in the low-order models. We can
observe from the mode shapes in Figure 5.11 that the transducer placed at 00
has very low controllability for the 4th and 5th modes. Also, the observability
of the two modes at 74 is also very low. Thus, the measurement has a quite
large uncertainty around 110Hz in Figure 5.12. Meanwhile, the experimental
measurements are sensitive to external disturbances because of the free-free
boundary conditions. The laser vibrometers can easily catch the influences of
wind and other disturbances on the plate. The fluctuation of the measured
FRF in Figure 5.14 is a typical example.
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Figure 5.14: Inverse piezoelectric frequency response validation between 26
and 22
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Figure 5.15: Inverse piezoelectric frequency response validation between 26
and 26

Direct piezoelectric effect validation
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Figure 5.16: Direct piezoelectric frequency response validation between 00
and 74
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Figure 5.17: Direct piezoelectric frequency response validation between 00
and 00

The direct piezoelectric effect is validated by voltage over force FRFs. From
Figures 5.16 to 5.19, we can observe that the predicted FRFs agree well with
the experimental measurements too.

For the integrated MFC transducers, low controllability also actually means low
observability because the inverse piezoelectric effect is the reversible process of
the direct piezoelectric effect. Therefore, it is expected that there are amplitude
deviation around the 2nd, 4th and 5th modes in Figures 5.16 and 5.17. The
integrated transducer at 26 has better observability than the one at 00 so that
high-quality FRFs are measured. The numerical models predicted very good
results as shown in Figures 5.18 and 5.19.
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Figure 5.18: Direct piezoelectric frequency response validation between 26
and 22

10
2

10
3

−50

0

50

Frequency [Hz]

V
/N

 [d
B

]

 

 

Experiment
EFM model
ESM model

10
2

10
3

−2

0

2

Frequency [Hz]

P
ha

se
 [r

ad
]

Figure 5.19: Direct piezoelectric frequency response validation between 26
and 26
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Figure 5.20: Mechanical influence of the MFC transducer to the inverse
piezoelectric frequency response between 00 and 74 in ESM model
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Figure 5.21: Mechanical influence of the MFC transducer to the direct
piezoelectric frequency response between 00 and 00 in ESM model

A similar conclusion can be drawn for the ESM approach. However, the
variations of the zeros on the FRFs are less significant than the EFM approach.
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That is mostly due to the mechanical contribution of the transducer is weakened
by the dynamic condensation techniques when we generate the low-order
transducer model.

Reciprocity between two MFC transducers

The experimental data demonstrated that the reciprocity between two MFC
transducers retains. As both the inverse and direct piezoelectric couplings of
the integrated transducers are strain-based, the reciprocity between the two
transducers can be theoretically proven. However, we used the numerical models
to demonstrate the reciprocity in this section.
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Figure 5.22: Reciprocity validation between two MFC transducer (High
operational voltage)

Figure 5.22 shows the reciprocity between the two transducers. The experimental
reference is a voltage over voltage FRF between them. We can observe that the
modes of the host plate are well captured in the predicted FRFs by the ESM
models. However, there is a large amplitude deviation between the numerical
and experimental results. That is mainly due to the hysteresis effect of the
MFC transducers in the experimental measurements. The larger the operational
voltage on the MFC transducers, the stronger the hysteresis effect [101]. When
a high operational voltage drives one of the MFC transducers, the output
voltage from the other MFC transducer is also high. Then the hysteresis effect



PIEZOELECTRIC RECIPROCAL RELATION 103

gives a more significant influences on the measured FRFs. The hysteresis effect
can be mitigated by giving a lower excitation level according to the hysteresis
characteristics of the MFC transducer. Therefore, the predicted FRFs are closer
to the measurement obtained from a lower level operational voltage, as shown
in Figure 5.23.
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Figure 5.23: Reciprocity validation between two MFC transducer (Low
operational voltage)

5.4 Piezoelectric reciprocal relation

We observed in Figure 5.8 that the voltage over force FRFs (piezoelectric sensing)
is close to the velocity over voltage FRFs (piezoelectric actuating), but with
amplitude and phase scalings. Hence, there should be a relation between these
two kinds of FRFs. It is interesting to figure out this relation because it could be
useful for dynamics application. The dynamics of the plate with an integrated
MFC transducer can be described as follows in the frequency domain:

(K + jωC − ω2M)u = LfFs + ΘV (5.4a)

jωCpV + V

Ze
+ jωΘTu = 0 (5.4b)

where K, C and M are the stiffness, damping, and mass of the piezoelectric
structure, respectively. Lf is the localization matrix of a force Fs on the plate.
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Θ is the electromechanical coupling of the integrated transducer. Cp is the
capacitance of the transducer. When the transducer is used as an actuator, the
voltage V becomes an input. Hence, Equation (5.4b) needs to be rewritten as
follows according to the electric current balance:

jωCpV −
V

Ze
+ jωΘTu = 0 (5.5)

where the dynamics of Ze is included into Vin. Substituting Equation (5.5) into
Equation (5.4a) yields:

(K + C−1
p ΘΘT + jωC − ω2M)u = LfFs + ΘVin. (5.6)

Then, the velocity frequency response at a specific location Lu̇ caused by the
integrated transducer is given as

u̇

Vin
= jωLTu̇

1
K + C−1

p ΘΘT + jωC − ω2M
Θ. (5.7)

When the transducer is used as a sensor, the voltage output of the transducer
is expressed by Equation (5.4b):

Vout = − jω

jωCp+ 1
Ze

ΘTu. (5.8)

Then, the frequency response of Vout subjected to a mechanical input Fs at a
specific location Lf on the plate is given by substituting Equation (5.6) into
Equation (5.8), as follows:

Vout
Fs

= − jω

jωCp+ 1
R

ΘT 1
K + C−1

p ΘΘT + jωC − ω2M
Lf (5.9)

When Lu̇ = Lf , the following relation can be obtained from Equation (5.9) and
Equation (5.7)

Vout
F
≡ − 1

(jωCp + 1
Ze

)
u̇

Vin
(5.10)

Thereby, the force to voltage FRFs are similar to the voltage to velocity FRFs,
and the above relation can quantify the amplitude and phase scalings. There is
a frequency dependent scaling between Vout/F and jωu/Vin in Equation (5.10)
because the asymmetry of the electrical boundary conditions when the studied
transducer is used as an actuator or a sensor. It is important to mention that
it is assumed that the electrical dynamics do not significantly influence the
dynamics of the system. Then, the dynamics of the overall system is consistent
whenever the integrated transducer is used either as an actuator or as a sensor.
However, the reciprocal relations may be impaired if the asymmetrical electrical
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boundary conditions introduce influences significantly to the dynamics of the
system. Figure 5.24 and 5.25 demonstrated that Equation (5.10) retains.
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Figure 5.24: Estimated inverse piezoelectric frequency response between 26
and 22 by experimental data
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Figure 5.25: Estimated inverse piezoelectric frequency response between 26
and 22 by ESM model
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The transducers can be used for load identification problems because it is easy to
obtain u̇/Vin at a specific location on a structure with a piezoelectric transducer,
and Vout generated by an unknown excitation load F can be directly measured.

5.5 Dynamic application of ESM approach

The ESM approach can efficiently assess the performance of the used MFC
transducer in dynamic application. Two study cases are presented in this section
to demonstrate the potential of the ESM approach in dynamic application.

5.5.1 Energy harvesting

The direct piezoelectric effect is widely applied to energy harvesting application.
The performance of the MFC transducers is dominated by the piezoelectric
fibrous orientation when its placement and external electrical circuit are fixed.
It could be challenging to optimize the piezoelectric fibrous orientation because
it modifies both the mechanical dynamics and piezoelectric coupling of the
piezoelectric system. Especially, model order reduction is always required when
the system model is large-scale. The ESM approach can efficiently evaluate
the effect of the piezoelectric fibrous orientation on the electric output of the
transducer, and it can be useful in the design of advanced piezoelectric systems.
The voltage over force FRFs for a set of piezoelectric fibrous orientation on
the studied composite plate are shown in Figures 5.26 and 5.27. The input of
the FRFs is a concentrated force at location 74, and the output is the voltage
extracted by a resistive load R = 1MΩ connected to the transducers.

The simulated FRFs of θ = 0o agree well with the experimental data. We can
observe from the two figures that the performance of each transducer depends
on its piezoelectric fibrous orientation. The MFC transducer at the corner
of the composite plate captured more modes than the one in the middle at
low frequency. The peak voltages are usually the most important for energy
harvesting. We can observe from the two figures that the optimal fibrous
orientation of the middle transducer is in ±[0o 15o] by comparing the peak
values. The optimal fibrous orientation of the transducer at the corner of
the plate is the range of ±[45o 75o]. It is worthwhile to mention that it
is more difficult than the example to design the optimal piezoelectric fiber
orientation because the electric output of the transducers depends on the
placement of transducers, as well as the corresponding electrical system and
external disturbances. Nevertheless, the presented approach offers high flexibility
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that can be applied to the design and modeling of advanced energy harvesting
system.
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Figure 5.26: Force-to-voltage FRFs of the center MFC transducer for a set of
piezoelectric fibrous orientations (The gray curve is experimental data.)
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Figure 5.27: Force-to-voltage FRFs of the corner MFC transducer for a set of
piezoelectric fibrous orientations (The gray curve is experimental data.)

5.5.2 Piezoelectric shunt damping

A piezoelectric shunt damping study is used to demonstrate the ESM approach
can take the dynamics of electrical components into account. Figure 5.28 shows
a L−R piezoelectric shunt damping system.
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Figure 5.28: Piezoelectric shunt damping system

Since both the inductor L and resistor R are connected to the transducer in
parallel, Equation (5.4b) yields the following relation in the frequency domain:

V (jωCp + 1
R

+ 1
jωL

) + jωΘTu = 0 (5.11)

The electric dynamics have a resonant frequency ωe = 1
LCp

. As the piezoelectric
shunt damping is achieved by coupling the direct piezoelectric effect to the
inverse piezoelectric effect of the transducer, substituting (5.11) into (5.4a)
yields:

(K + jωC − ω2M + jωΘΘT

jωCp + 1
R + 1

jωL

)u = LfFs (5.12)

As u̇ is the transverse velocity output which is localized by Lu̇ on the plate,
the velocity over a force disturbance FRF can be given as:

u̇

Fs
= Lu̇

jω

K + jωC − ω2M + jωΘΘT

jωCp+ 1
R + 1

jωL

Lf (5.13)

When ωe is close to the natural frequency of a specific mode on the composite
plate, the electric dynamics will resonant together with the mode, and shunt
damping can be introduced to the mode of the composite plate by the electric
circuit. L depends on the targeted mode because Cp is fixed, while R is the
tuning parameter that dominates the damping performance. An individual
electric circuit connects to each transducer on the plate in Figure 5.28 in
order to finally damp two different modes of the plate. From Figures 5.26
and 5.27, we can observe that the transducer in the middle of the plate can
well capture the modes at 41Hz and the one at the corner can well observe
the modes at 283.5Hz. Therefore, the two modes are targeted by the two
transducers, respectively. The corresponding inductance L are 1221.1H and
269H, respectively. The resistances R are tuned as 1.3× 108Ω and 2.5× 107Ω
for the two modes according to engineering expertise.
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Figure 5.29: Piezoelectric shunt damping on the composite plate: velocity
over force FRF between 74 and 00

The velocity over force FRFs are shown in Figures 5.29. Although the used L and
R might be not the optimal setting, the piezoelectric shunt damping achieved
8.46dB and 12.56dB amplitude reductions on the modes at 41Hz and 283Hz,
respectively. The performance of the shunt damping is quite good considering
the limited size of the MFC transducer compared to the composite plate. All the
properties including the efficiency of the transducers and mechanical damping
of the composite plate are included in the model. The ESM model can simulate
the dynamic effects induced by both the inductance and resistance. Since the
low-order system is stable, a real-time simulation is given in Figure 5.30. A
swept sine force (0− 1000Hz) is used as a disturbance at position 74, and the
amplitude of the force is 1N . The performance of the piezoelectric shunted
damping can be evaluated in the time domain, as shown in the figure. We
can observe that the velocity amplitude of the plate is reduced, due to the
shunted damping. However, it is difficult to understand the behaviors of the
non-shunted and shunted plate from the figure. It is feasible to visualize the
dynamic behaviors of the plate by using the reduced-order model because it
remains in nodal coordinates. Figure 5.31 shows the behaviors of the plate at
two instantaneous of the real-time simulation. The reduced-amplitude is the
difference in displacements between the non-shunted and shunted plate. We can
observe the reduced-amplitude contains the mode shapes of the two targeted
modes.
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Figure 5.30: Real-time simulation of the R− L shunted damping

In the next step, we use the ESM approach to evaluate the optimal placement
of a transducer within its substructure. The ESM model is efficient because we
only need to update the reduced-order substructure model, on which we want to
place transducers. The transducer at the center of the plate is used as the study
case. As shown in Figure 5.32, nine placements are evaluated at the center of
the plate. A negative capacitance piezoelectric shunt controller is used in the
analysis. Different from L−R shunt damping, the negative capacitance shunt
damping performs damping to a broadband frequency range. Each transducer
is connected to an individual electrical circuit, by which, the capacitance effect
on the transducers is counteracted, and damping phenomena are introduced to
the plate due to resistive loads. The connected resistance to the transducers
are 2.98e8Ω (Center MFC) and 5.73e7Ω (Corner MFC), respectively.
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Figure 5.32: The placement candidates of the transducer at the center of the
plate

Mode MFC placements
1st 2nd 3rd 4th 5th 6th 7th 8th 9th

1st 10.28 11.04 9.93 11.04 11.14 11.55 8.86 8.12 10.88
2nd 4.17 3.04 9.00 1.66 3.28 3.56 3.22 1.07 0.01
5th 10.93 10.00 9.72 9.52 9.24 8.30 8.10 7.98 7.04
6th 6.56 4.86 6.69 7.37 5.87 3.95 7.09 8.45 0.38
10th 10.87 11.07 9.31 9.45 8.77 9.06 7.57 7.82 9.30
11th 11.75 11.60 10.98 10.70 10.29 9.74 9.13 9.07 8.27

Table 5.7: Amplitude reduction of some modes for each placement (in [dB])

Table 5.7 shows the performance of the negative capacitance shunt damping
for different transducers’ placements. A force input and velocity output FRF
between 22 and 26 is used to check the damping performance. The performance
of the negative capacitance shunted damping depends on the placement of
the transducers. We can observe that it is not recommended to use the 9th
placement in this study case. The best placements of the transducer are most
likely the 1st and 2nd. It is difficult to figure out the physical reason because
the structural dynamics and damping are changed by the influences of the
transducers in each case. Figure 5.33 shows the damping performance by using
the 1st placement. We only performed the simulation in the frequency domain,
but it is possible to do analysis in the time domain.
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Figure 5.33: Performance of the negative capacitance shunt for different
transducers’ placements

5.6 Concluding remarks

In this chapter, the equivalent modeling approaches are validated by the
experimental data. First of all, the dynamic testing of the composite plate with
integrated MFC-d33 transducers is presented in detail. Then, both the EFM and
ESM models of the tested plate are generated, and the two models well predict
the dynamics of the tested plates. After that, the mechanical contribution of the
MFC transducers in numerical models is evaluated, and the reciprocity between
two MFC transducers is also validated. The piezoelectric reciprocal relation
between direct and inverse piezoelectric FRFs is characterized. According to it,
the inverse piezoelectric frequency response can be determined by the direct
piezoelectric frequency response and vice versa.

Subsequently, two kinds of numerical study cases are given to present the
potential of the ESM approach. The piezoelectric energy harvesting case shows
that the piezoelectric fibrous orientation of the transducer can be efficiently
evaluated in both the frequency and time domain to achieve an optimal design
of the piezoelectric systems of MFC transducers. The piezoelectric shunted
damping case demonstrates that the induced mechanical properties caused by
electric components could be properly simulated. In consequence, the ESM
approach permits a convenient evaluation of the optimal placement of the
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integrated MFC transducers. Further application on the proposed modeling
approach can be investigated in future.



Chapter 6

Vibro-acoustic study on MFC
transducers

Vibro-acoustics is the interaction between a vibrating structure and a fluid, that
causes sound radiation. At the interface of the two components, the vibrating
structure imposes a normal velocity to the fluid particles, and the fluid generates
a sound pressure applied to the structure. The usage of piezoelectric transducers
in vibro-acoustics could offer many benefits to the vibro-acoustic techniques:
Piezoelectric transducers can be integrated into a structure as sublayers without
any rotating or moving parts. Hence, they do not generate unwanted noise
when they are used for structural excitation. They are also quite sensitive in a
large operational frequency bandwidth up to a few hundreds of kilohertz so that
they are suitable for acoustic measurements too. Hence, they instigated many
research tracks in acoustic and vibro-acoustic domains [190–196]. However,
the transducers are often used only as sensors or as actuators in most of the
mentioned studies, so that the reversibility of piezoelectric effect, which could
enable the switching between excitation and sensing, is not being explored yet.
The work in this chapter investigated this possibility of piezoelectric transducers
towards a vibro-acoustic field.

To demonstrate the dynamic properties of a piezoelectric transducer in vibro-
acoustic fields, a laminated composite plate, which is conducted to a sound
cavity is given as a study case. An MFC transducer [197] is integrated into
the plate either for sensing or for actuating. The vibro-acoustic reciprocity
is mathematically verified and extended to the integrated transducer. After
that, a stable structure-preserving low-order model is generated and validated
by experimental data. The vibro-acoustic reciprocal relations are verified by
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simulations in both the frequency and time domain.

6.1 Reciprocal relations of a piezoelectric vibro-
acoustic system

The piezoelectric vibro-acoustic system, being used in the study, consists of
a laminated composite plate with an integrated MFC transducer, which is
conducted to a soundbox, as shown in Figure 6.1. The soundbox, developed
by the noise and vibration research group at KU Leuven, is an acoustic cavity
of 0.83m3 with a rectangular window, to which a shell-like structure can be
clamped. The sketch and inner dimensions of the cavity are shown in Figure 6.1.
None of the inner walls is parallel to each other in order to have a decent modal
distribution in the low-frequency range and avoid coincident acoustic resonances
[198].

Rigid walls

Window

Laminated plate

MFC transducer

1150

984

853

787

820 (b)(a)

Figure 6.1: The dimensions of KU Leuven soundbox (in mm) [198]: (a) Sketch
of KU Leuven soundbox (b) inner dimensions of the cavity with the studied
plate

The size of the laminated composite plate is 297mm× 420mm. It consists of 8
unidirectional layers with a lay-up of [−45o 45o 90o 0o]s . The thickness of the
plate is 2.5mm. An M2814-P1 (28mm×14mm) transducer fabricated by Smart
Material Co. is surface-bonded to the plate. On the one hand, the integrated
transducers can generate a distributed mechanical input on the plate when it is
used as an actuator. On the other hand, the motion of the plate is also able to
generate electric output from the transducers. The dynamics of the composite
plate with integrated transducers is recalled as follows in the frequency domain:
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(Ks + jωCs − ω2Ms)u = Fs + ΘV (6.1a)

jωCpV + V

Ze
+ jωΘTu = 0 (6.1b)

where Ks, Cs and Ms are the stiffness, damping and mass of the plate,
respectively. When the electrical circuit provides an input V for operating
the transducer, Equation (6.1b) is rewritten as follows, according to the charge
flux:

jωCpV −
V

Ze
+ ΘT u̇ = 0 (6.2)

Substituting (6.2) into (6.1a) yields:

(Ks + C−1
p ΘTΘ︸ ︷︷ ︸

KAg

+jωCs − ω2Ms)u = ΘV + Fs. (6.3)

Hence, coupling the augmented structure to the acoustic domain in a classical
u− p formulation, the equations for the coupled vibro-acoustic system can be
written as follows:

(KAg + jωCs − ω2Ms)u+Kcp = Fs (6.4a)

(Ka + jωCa − ω2Ma)p− ω2Mcu = Fa. (6.4b)

where Ka, Ca and Ma are the stiffness, damping and mass of the cavity,
respectively. Kc and Mc are the structural-acoustic couplings with Mc =
−ρaKT

c . p is acoustic pressure in the cavity. Fs and Fa are the mechanical
and acoustic loads, respectively. A volume velocity monopole source in the
cavity is given as Fa = ρajωQ and Q is the amplitude of the monopole source.
Equation (6.4a) can be easily transformed as the following form:

(KAg + jωCs − ω2Ms)(jω)−1u̇+Kcp = Fs. (6.5)

Meanwhile, Equation (6.4b) is rewritten as

(Ka + jωCa − ω2Ma)p+ jωMcu̇ = ρajωQ (6.6)

where a volume velocity source is substituted as an acoustic excitation.
Equation (6.6) can be further simplified to the following expression:

− (Ka + jωCa − ω2Ma)(ρajω)−1p+KT
c u̇ = −Q. (6.7)
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Hence, a modified second order system can be obtained as follows from
Equation (6.5) and Equation (6.7):[

Hs

jω Kc

KT
c − Ha

jωρa

]{
u̇
p

}
=
{
Fs
−Q

}
(6.8)

in which, Hs = KAg + jωCs − ω2Ms and Ha = Ka + jωCa − ω2Ma are the
dynamics of the plate and the cavity, respectively. Hs and Ha are symmetrical
for each frequency ω. Without any assumption on the coupling matrix,
the system matrix is actually symmetrical. This mathematically confirms
the existence of vibro-acoustic reciprocity. In addition, a transformation of
Equation (6.8) can be performed as follows:[ Hs

ω2 −Kc

−KT
c

Ha

ρa

]{
ü
p

}
=
{
−Fs
jωQ

}
. (6.9)

Hence, the vibro-acoustic reciprocity can be expressed into different forms
according to Equation (6.8) and Equation (6.9). The reciprocity, which has
been mentioned in [199] can be deduced from Equation (6.9). An important
notation is that there is a scaling of jω between the structural response and the
acoustic excitation. Equation (6.9) can be also reformulated into (u− p) form,
where a scaling factor of ω2 on the acoustic excitation case will be required.

The vibro-acoustic reciprocity between a point A on the plate and a location B
in the acoustic field can be expressed as follows according to Equation (6.8):

p
B

F
A

= − u̇A

Q
B

. (6.10)

The frequency response of the sound pressure p
B
over the structural excitation

F
A
can be expressed as follows by using Equation (6.8) with Q = 0:

p
B

F
A

=
{

0
L

B

}T [ Hs

jω Kc

KT
c − Ha

jωρa

]−1{
L

A

0

}
(6.11)

where L
A

and L
B

are the input and output localization matrix of F
A

and
p

B
, respectively. Similarly, the frequency response of the velocity u̇

B
over the

amplitude of the volume velocity source Q
B
can be obtained from (6.8) with

Fs = 0:
u̇

A

Q
B

= −
{
L

A

0

}T [ Hs

jω Kc

KT
c − Ha

jωρa

]−1{
0
L

B

}
. (6.12)



RECIPROCAL RELATIONS OF A PIEZOELECTRIC VIBRO-ACOUSTIC SYSTEM 119

A matrix transformation, which aims to switch the input/output locations can
be performed as follows to either Equation (6.11) or Equation (6.12):

({
0
L

B

}T[ Hs

jω Kc

KT
c − Ha

jωρa

]−1{
L

A

0

})T
=
{
L

A

0

}T[ Hs

jω Kc

KT
c − Ha

jωρa

]−1{
0
L

B

}
.

(6.13)
We can find that the vibro-acoustic reciprocity should be valid for any possible
L

A
and L

B
. The piezoelectric coupling Θ of the integrated transducer, which

has a distributed interaction with the plate is also applicable. The actuated
plate subjected to an operational voltage Vin generates acoustic pressure p inside
the cavity. The transfer function between the voltage input Vin and acoustic
pressure p

B
at location B in the cavity can deduced from Equation (6.11):

p
B

Vin
=
{

0
L

B

}T [ Hs

jω Kc

KT
c − Ha

jωρa

]−1{
Θ
0

}
. (6.14)

In contrast, a volume velocity monopole source of amplitude Q at location
B in the cavity is able to generate a voltage output Vout on the transducer.
Introducing Equation (6.1b) into Equation (6.12) yields:

Vout
Q

B

= − 1
(jωCp + 1

Ze
)

{
Θ
0

}T [ Hs

jω Kc

KT
c − Ha

jωρa

]−1{
0
−L

B

}
. (6.15)

Similar to the piezoelectric reciprocal relation, there is a scaling between
Equation (6.14) and Equation (6.15) which is actually defined by the electrical
boundary conditions. The piezoelectric vibro-acoustic reciprocal relation can
be deduced from Equation (6.14) and Equation (6.15) as

Vout
Q

B

≡ 1
(jωCp + 1

Ze
)
p

B

Vin
. (6.16)

Furthermore, when the acoustic excitation is not present, Equation (6.8) can
be rewritten as: (

Hs

jω
+Kc

(
Ha

jωρa

)−1
KT
c

)
u̇ = Fs (6.17)

A force input at a specific location C, which can be the same location as A
on the plate generates an electric output from the transducer. The force over
voltage FRF is given as:

Vout
Fs

= −ΘT

(
Hs

jω
+Kc

(
Ha

jωρa

)−1
KT
c

)−1
L

C
(6.18)
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where L
C
defines the location of Fs on the plate. Meanwhile, a voltage input

on the transducer generates also velocity output on the plate, which can be
described as follows:

u̇
C

Vin
= − 1

(jωCp + 1
Ze

)
LT

C

(
Hs

jω
+Kc

(
Ha

jωρa

)−1
KT
c

)−1
Θ (6.19)

Thus, the following relation can be deduced by using Equation (6.18) and
Equation (6.19):

Vout
Fs

= − 1
(jωCp + 1

Ze
)
u̇

C

Vin
. (6.20)

The piezoelectric reciprocal relation in Equation (5.10) is deduced.

6.2 Equivalent substructure modeling of the piezo-
electric vibro-acoustic system

The modeling of the piezoelectric vibro-acoustic system is divided into two
phases: (i) the pure structural-acoustic interaction model of the studied system
is generated by the acoustic module of Comsol 5.3 [200]; (ii) the piezoelectric
effect of the integrated MFC transducer is coupled to the Comsol model by
using equivalent forces.

6.2.1 FEM modeling in Comsol

Given that the used Comsol solver does not support the modeling of
laminated structures in acoustic-shell interaction simulation, the equivalent
properties of the laminated composite plate should be determined by a material
homogenization approach with the FOSD theory.

x
Zk
Zk+1}

}

Laminated plate

MFC transducer

z

1
2

k

n
n+1

...
...

Figure 6.2: Lay-up of a laminated composite plate with integrated MFC
transducer
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The laminated composite plate consists of n orthotropic layers which are joint
by an epoxy matrix, as shown in Figure 6.2. The membrane, bending motions
and their coupling on the plate can be expressed as follows [172]:

Nxx
Nyy
Nxy
Mxx

Myy

Mxy


=


A11 A12 A16 B11 B12 B16
A21 A22 A26 B21 B22 B26
A61 A62 A66 B61 B62 B66
B11 B12 B16 D11 D12 D16
B21 B22 B26 D21 D22 D26
B61 B62 B66 D61 D62 D66





εxx
εyy
εxy
κxx
κyy
κxy


(6.21)

in which,

(Aij , Bij , Dij) =
n∑
k=1

∫ zk

zk−1

(1, z, z2)Q̄(k)
ij dz (i, j = 1, 2, 3). (6.22)

Three symmetrical submatrix can be obtained from Equation (6.21): A, B,
D, which are extensional stiffness, extensional-bending coupling stiffness and
bending stiffness, respectively. Q̄ is the elasticity of each layer in the structural
coordinates system. Assuming that there is a neutral surface in the thickness-
wise of the plate, on which the stress resultants N vanishes. The effective
bending stiffness of the laminated plate can be obtained from Equation (3.8) as
follows:

D∗ = D −BA−1B. (6.23)

The effect of the extensional-bending coupling on the plate is included in
Equation (6.23). For a symmetrical lay-up, the coupling matrix B is null. In
FOSD plate theory, the transverse shear components are expressed as follows:{

τxz
τyz

}
=
[
Ds

55 Ds
54

Ds
45 Ds

44

]{
βx
βy

}
(6.24)

with

Ds
ij =

n∑
k=1

∫ zk

zk−1

Q̄
(k)
ij dz, (i, j = 4, 5). (6.25)

Equation (6.23) includs the effect of the extensional-bending coupling on the
plate. For a symmetrical lay-up, the coupling matrix B is null. In FOSD plate
theory, the transverse shear components are expressed as follows:

Q̂∗ij = 12
t3s
D∗ij , (i, j = 1, 2, 3)

Q̂sij = 1
ts
Ds
ij , (i, j = 4, 5)

(6.26)
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where ts is the thickness of the plate. The mechanical properties of the
MFC transducers can also be included into the material homogenization as an
additional sublayer. It is important to notice that this material homogenization
only preserves the bending motion of the plate which predominates the structural-
acoustic interaction in this study.

The FEM model generated by Comsol is shown in Figure 6.3. The material
properties, which are used for material homogenization of the laminated
composite plate are given in Table 6.1. The speed of sound and the air
density are given as c = 343.12m/s ρa = 1.204kg/m3, respectively. Quadratic
Lagrange tetrahedral elements are used to discretize the cavity, and quadratic
shell elements are used to discretize the plate. The size of the FEM model is
45072× 45072.

Cavity

Plate

Figure 6.3: Comsol cavity-shell model

density[Kg/m3] c11[GPa] c22[GPa] G12[GPa] ν12 G13[GPa] G23[GPa] d33 d32
Composite layer 1500 110.15 7.868 4.05 0.26 − − − −

MFC 5440 27.142 14.8 4.1312 0.2922 5.385 10.5 272 −133

Table 6.1: Structure and material properties of the laminated composite plate
with integrated MFC-d33 transducers

Proportional damping is adopted here for dynamic response predictions. The
corresponding damping coefficients λ and η are listed in the Table 6.2. Those
two values are estimated from the critical damping ratios of two experimental
modes at 290Hz and 385Hz in the impact testing.
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λ [1/s] η [s]
value 6.4436 7.3093× 10−7

Table 6.2: Proportional damping coefficients

6.2.2 ESM approach

The ESM approach is adopted to create a suitable size model for simulations
in both the frequency and time domain. Before perform the ESM approach,
a transformation p = −ρaφ̇ between the sound pressure p and the velocity
potential φ is firstly applied to Equation (6.4a) and Equation (6.4b), in order
to guarantee the stability of the final system model [201]. The transformed
system is given as follows:{[

KAg 0
0 Ka

]
+jω

[
Cs −ρaKc

ρaKc Ca

]
−ω2

[
Ms 0
0 Ma

]}{
u
φ

}
=
{
Fs
−Fφ

}
. (6.27)

The structural-acoustic coupling is in the damping matrix. The stability of
the system is preserved because the coupled stiffness and damping matrix are
positive semi-definite and the coupled mass matrix is positive-definite.

In the ESM approach, the plate and the cavity are considered as two
subcomponents. The selected master nodes for dynamic condensation are
shown in Figure 6.4. Only 34 structural nodes are selected for the plate, and
only the transverse displacement Dofs are retained for the order reduction.
Meanwhile, 156 acoustic nodes are kept for the cavity. Hence, the size of the
final ESM model would be only 190, which is much smaller than the original
FEM model. Numerous acoustic master nodes are kept in the reduced-order
model because the modes of the cavity are desired to be presented in the modal
validations.
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Figure 6.4: Distribution of the master nodes selected for ESM approach. Red
spots and blue spots indicate the master nodes of the plate and the cavity,
respectively.

An order reduction basis R can be easily generated for each subcomponent by
dynamic condensation techniques. Then, the reduction transformations can be
formulated as:

u = Tsu
r, φ = Taφ

r (6.28)

Hence, the reduced-order system is given as{[
Kr
Ag 0
0 Kr

a

]
+jω

[
Cr
s −ρaKr

c

ρaK
r
c Cr

a

]
−ω2

[
M r

s 0
0 M r

a

]}{
ur

φr

}
=
{
F rs
−F rφ

}
(6.29)

with
Kr
Ag = T Ts KAgTs, K

r
a = T Ta KaTa

M r
s = T Ts MsTs, M

r
a = T Ta MaTa

Cr
s = T Ts CsTs, C

r
a = T Ta CaTa

Kr
c = T Ts KcTa, u

r = T Ts u, φ
r = T Ta φ.

F rs = T Ts Fs, F
r
φ = T Ta Fφ.

Similar as F rs , the piezoelectric coupling Θ of the integrated transducers is
converted to the desired nodes on the reduced-order system model. The structure
of Equation (6.27) is preserved in the reduced-order model. Therefore, the
reduced-order model is still stable. Since the reduced-order remains in the nodal
coordinates, it is possible to transform it back to the u− p form. Hence, the
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ESM model in u− p form can be deduced as follows:{[
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6.3 Validation of ESM model
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Figure 6.5: Experimental setup of the vibro-acoustic system

A dynamic analysis of the vibro-acoustic system is carried out to verify that the
equivalent plate model is a good representation of the real structure, as shown in
Figure 6.5. A PCB hammer is used to execute the impacts. Test.Lab 14A and
SCADAS mobile are used as data acquisition software and hardware, respectively.
The studied plate is clamped to the soundbox by an A3 size aluminum frame.
Thus, the dimension of the tested area is 297mm× 420mm. A measurement
grid of 5× 6 is used in the testing. An accelerometer is mounted at location
43. The transducer is directly connected to the input channel of SCADAS
mobile. Hence, a resistance of the input module on SCADAS (R = 106Ω) is
used to measure the voltage output of the integrated transducer. The structural
reciprocity on the plate is checked, and the roving hammer technique is used
in the experiment because the transducer is surface-bonded on the plate at
location 00. PolyMAX is used to carry out the experimental modal analysis
[188]. After that, a loudspeaker is used to perform the acoustic excitation in
order to identify the natural frequencies of the studied vibro-acoustic system.
The voltage output of the transducer is also measured in this case.

It is important to mention that the clamp frame of the soundbox is not rigid
enough compared to the perfect clamped boundary conditions in the numerical
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model. Hence, a model updating of the plate is required for the compensation.
In this validation, a dimensionless factor of 0.83 is applied to the stiffness of
the plate as a rough model updating due to the limitation of the used FEM
solver. The natural frequencies of the predicted modes are well-matched to the
experimental data, as shown in table 6.3. The errors in the table are relative
errors between the experimental data and the ESM model. The corresponding
mode shapes are evaluated using MAC as shown in Figure 6.6. The modal
parameters of the equivalent plate agree with the experimental data. The
natural frequency of the first mode predicted by the ESM model has the largest
error compared to other modes. That is mainly due to the used dynamic
condensation technique in ESM approach. The numerical mode shapes do
not perfectly match with the experimental data because the adopted model
updating does not compensate for the local boundary condition uncertainties
at the edges of the plate in the experiment.

mode 1st 2nd 3rd 4th 5th 6th 7th 8th
Experiment [Hz] 166 290.9 385.9 476.6 536.8 704.6 720.0 760.7

Comsol plate model [Hz] 171.8 295.3 394.9 476.0 538.5 704.6 722.5 755.5
ESM plate model [Hz] 173.6 295.8 395.2 476.2 538.4 704.9 722.7 755.6

Error 4.58% 1.68% 2.41% −0.08% 0.30% 0.04% 0.36% −0.67%

Table 6.3: Validation of the first 8 natural frequencies of the equivalent plate
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Figure 6.6: MAC correlation between ESM plate model and experimental
data
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We can observe from Table 6.4 that the ESM model well predicted the natural
frequencies of the vibro-acoustic system. The errors shown in the table are
the relative error between the ESM model and the experimental data. The
corresponding mode shapes, obtained from the ESM model, are given in
Figure 6.7. The second and eighth modes are dominated by the first and
second modes of the plate.

mode 1st 2nd 3rd 4th 5th 6th 7th 8th
Experiment [Hz] 150.3 169.6 187.7 216.3 243.9 265.6 285.4 294.2
Comsol [Hz] 150.7 171.0 187.3 214.8 243.1 265.0 285.7 292.2

ESM model [Hz] 151.4 173.0 188.2 215.6 243.7 265.3 285.7 293.4
Error 0.73% 2.00% 0.27% −0.32% −0.08% −0.11% −0.11% −0.20%

Table 6.4: Validation of the first eight natural frequencies of the piezoelectric
vibro-acoustic system

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 6.7: First eight vibro-acoustic modes of the cavity (normalized sound
pressure in the cavity)

6.3.1 Frequency response validations

The frequency response validations on the plate are given in Figures 6.8 and
6.9, respectively. The ESM model agrees well with the experimental data. The
amplitude deviations are mainly caused by the uncertainty of the boundary
conditions in the experiment. The dynamic responses at locations 43 and 00
are affected differently by the imperfect boundary conditions in the experiment.
Hence, the amplitude deviations occurred in different frequency bandwidths in
Figures 6.8 and 6.9.
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Figure 6.8: Frequency response validation of acceleration over force input
between locations 43 and 34 on the plate
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Figure 6.9: Frequency response validation of voltage output over force input
between locations 00 and 34 on the plate

As the loudspeaker that used to perform the acoustic excitation is not calibrated,
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the ESM model is qualitatively verified in this case. Figure 6.10 shows the
frequency response validation of the acceleration output at location 43 over a
unit acoustic volume velocity input at the loudspeaker location. The amplitude
of the experimental data is manually shifted in order to have a clear comparison.
Figure 6.11 shows the FRF of an acoustic volume velocity over voltage output,
which is validated by the experimental data and the experimental data is shifted
by using the same scaling as in Figure 6.10. The numerical results agree well
with the experimental data up to 450Hz in both validations. The profiles of
the predicted FRFs deviate obviously from the experimental data at a higher
frequency range, and that is expected, due to the performance of the soundbox
[3]. The failure of the boundary conditions on the soundbox at higher frequency
range could be the main reason. Also, the excitation difference between the
loudspeaker in the experiment and the monopole source in the ESM model also
contributes to the amplitude deviation. Finally, the proportional damping used
in the ESM model cannot perfectly simulate the real damping in the experiment
too.
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Figure 6.10: Frequency response validation of acceleration over acoustic
volume velocity
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Figure 6.11: Frequency response validation of voltage output over acoustic
volume velocity

6.3.2 Stability verification of ESM model
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Figure 6.12: The poles (×) and zeros (◦) of the ESM model
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The ESM model is stable because all the poles of the coupled system are in the
negative semi-plane of the complex space, as shown in Figure 6.12. The order
reduction technique in the ESM approach only involves the mass and stiffness
matrix of each subsystem, which is positive definite and positive semi-definite,
respectively. The ESM model is stable if the original system is stable. A benefit
from the stability-preserving low-order model is thus the simulations in the time
domain.

6.4 Reciprocal relations verification

6.4.1 Verification in the frequency domain

The derived reciprocal relations are virtually verified by using the experimentally
validated ESM model because of the practical difficulties in the experiment. On
the one hand, it is hard to calibrate the sensitivity between the input voltage
and the volume velocity output of the loudspeaker. On the other hand, the
transducer, which integrated on the clamped composite plate is very sensitive to
the external noises in the acoustic excitation case, as shown in the experimental
data in 6.11. Hence, it is challenging to experimentally validate the derived
reciprocal relations on both the amplitude and phase of FRFs.
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Figure 6.13: Reciprocal relation validation positions

The reciprocal relation between the plate and the transducer is validated between
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A and C and the reciprocal relation between the cavity, and the transducer is
validated between A and B, as shown in Figure 6.13.
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Figure 6.14: Structural reciprocal relation validation between the plate and
the integrated transducer
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Figure 6.15: Reciprocal relation validation between the plate and the
integrated transducer in vibro-acoustic field
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The frequency response validations of Equation (6.20) are given in Figures 6.14
and 6.15. The gray curves in the figures are the FRFs of the voltage output
of the transducer caused by a force input at location C on the plate. The red
curves are the FRFs of the velocity output at location C on the plate subjected
to a voltage input on the transducer. The blue dash-lines are the estimated
voltage output over force input FRFs by using the Equation (6.20). Thus, the
reciprocal relation in Equation (6.20) is well retained on the plate, whenever
the acoustic part is included or not. The scaling in Equation (6.20) creates
shifts both on the amplitude and phase.

A voltage input to the transducer can generate a sound pressure in the cavity,
and a sound source in the cavity can also generate a voltage output from
the transducer. Figure 6.16 shows that Equation (6.16) retains between the
transducer and the cavity. The voltage output over the volume velocity FRF
can be estimated from FRF of voltage input on the transducer over the sound
pressure in the cavity by using the piezoelectric reciprocal relation, and vice
versa. The importance of Equation (6.16) is to demonstrate the relation between
piezoelectric sensing and actuation in a vibro-acoustic field.
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Figure 6.16: Reciprocal relation validation between the cavity and the
integrated transducer
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6.4.2 Verification in the time domain

Since the ESM model is stable, a real-time simulation is given to demonstrate
the piezoelectric reciprocal relation in the time domain. In the piezoelectric
excitation case, a damped sin wave signal is used as a voltage input to the
transducer. The sound pressure at location B is measured and used to generate
the acoustic signal in the time domain. When the transducer functions as
a sensor, the damped sin wave signal is used as a volume velocity source at
location B. The voltage output from the transducer is transformed in the time
domain. The two outputs are shown in Figure 6.17.
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Figure 6.17: Piezoelectric reciprocal relation validation in time domain

We can observe that the two signals agree very well, due to the piezoelectric
vibro-acoustic reciprocal relation. In fact, piezoelectric transducers can be used
in the application of load identification. It is also possible to develop invisible
loudspeakers and microphones by using the piezoelectric transducers. The
piezoelectric vibro-acoustic reciprocal relation is important to these applications
because it enables the switching between actuation and sensing. Figure 6.18
shows that the acoustic source at location B in the cavity can be identified
according to Equation (6.16). The FRF of sound pressure over voltage input
between location B and the transducer can be easily obtained, and the voltage
output from the transducer due to the excitation of an acoustic source at
location B can be easily measured too. Hence, this acoustic source can be
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quantified. Besides, it is important to mention that the location of the acoustic
source is known in this study case.
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Figure 6.18: Validation of the identified acoustic source by using the
piezoelectric vibro-acoustic reciprocal relation

6.5 Concluding remarks

This chapter investigates the dynamic features of piezoelectric transducers in
vibro-acoustic field. The vibro-acoustic reciprocity is reviewed and extended to
the piezoelectric transducer. A laminated composite plate with an integrated
transducer is tested by the KU Leuven soundbox which was given as a
demonstration. And the ESM approach is used to generate a stable structural-
preserving low-order model of the studied piezoelectric vibro-acoustic system.
After the validation of the ESM model by the experimental data, the derived
piezoelectric reciprocal relations are numerically validated in the frequency
domain. And a real-time simulation demonstrates the piezoelectric reciprocal
relation. Meanwhile, an acoustic source identification study by the piezoelectric
transducer is also given.

The work in this chapter provides a basic understanding regarding to
piezoelectric devices for vibro-acoustic application such as acoustic source
qualification. Further researches on the sensitivity characterization of
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piezoelectric transducers need to be carried out when the transducers are
used as actuators/sensors in vibro-acoustics.



Chapter 7

Conclusions and Perspectives

Smart composite structure with integrated MFC transducers is one of the
most promising solutions to reduce noise and vibrations of lightweight, flexible
structures. The placement and piezoelectric fibrous orientations of MFC
transducers on non-homogeneous composite structures are important for
ensuring their performance. This dissertation investigated the effective modeling
of MFC transducers integrated into composite plates, which allow us to efficient
assess the optimal performance of the integrated MFC transducers. This chapter
concludes the research of the dissertation and presents future research proposals.

7.1 Summary

In this dissertation, laminate composite plates with spatially distributed
rectangular MFC transducers are studied. Spatial distributions, which describe
the placement of the transducers are introduced into the generalized Hamilton’s
principle analysis for characterizing the equivalent loads of MFC transducers.
Equivalent forces are proposed as the new method to express the inverse
piezoelectric effect of the MFC transducers. Moreover, the corresponding
piezoelectric effect is derived through the electrical boundary conditions of
the system. The two couplings have the same coupling patterns so that the
reversibility of piezoelectricity is ensured. Given that a generalized formula of
piezoelectric constitutive equations is adopted in the analysis, both MFC-d31
and MFC-d33 transducers are characterized at the same time.

FEM-based semi-analytical modeling approaches (EFM approach and ESM
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approach) are proposed, and a rigorous modeling process is presented. The
EFM approach allows us to individually model the mechanical and piezoelectric
aspects of piezoelectric composite plates because closed-form piezoelectric
couplings are used. Based on the EFM approach, the ESM approach, which
can efficiently process the different subcomponents of a piezoelectric system
is developed. Being that, the size of the original system can be effectively
reduced on the substructure level. Besides, the reduced-order model remains the
physical parameters and the structure of the system. As a result, the placement
and piezoelectric fibrous orientation of an MFC transducer on a composite
plate can be efficiently evaluated for maximizing its performance. Furthermore,
the ESM approach also preserves the stability of the original system models.
That allows for designing advanced controller in noise and vibrations control
and realizing real-time simulations. The reliability of the proposed approaches
is verified by using cantilever plates with MFC transducers of different sizes
and piezoelectric fibrous orientations. Meanwhile, the mechanical influences
of the MFC transducers are also evaluated that they are not negligible if the
transducers are considerable stiff compared to the host structures.

Laminated composite plates are manufactured, and the MFC-d33 transducers
are surface-bonded to the plate through a vacuum-bagging process. Both the
impact testing and MFC actuation testing are elaborately carried out. The
linearity of the piezoelectric composite plate is verified, and the dynamics of
the composite plate is experimentally characterized. Both the EFM and ESM
models agree well with the experimental data. The reciprocity between two MFC
transducers is verified too. Finally, the piezoelectric reciprocal relation between
MFC transducers and host structures that can be used in dynamic application,
e.g., load identification is explicitly defined. Two types of study cases are given
to demonstrate the potentials of the ESM approach. The piezoelectric energy
harvesting one demonstrated that the piezoelectric fibrous orientation of the
MFC transducer could be efficiently designed. The piezoelectric shunt damping
cases performed a verification on the electrical dynamics modeling, and the
placement of the transducers can be effectively optimized. Hence, the ESM
approach not only can generate accurate low-order system models but also can
be used in the optimal design of piezoelectric systems.

The dynamic property of MFC transducers in vibro-acoustics is also studied with
the KU Leuven soundbox. Firstly, the vibro-acoustic reciprocity is reviewed, and
the reciprocal relation between piezoelectric and acoustic fields is characterized.
Then, the ESM approach is used to simulate the vibro-acoustic problem, and
experimental data is used to validate the numerical model. After that, We
proved that the ESM approach could also preserve the stability of vibro-acoustic
systems. Hence, a stable structure-preserved low-order model can be generated
at the end. The piezoelectric reciprocal relations are numerically verified both



PERSPECTIVES OF THE RESEARCH 139

in the frequency and time domain. Further studies of MFC transducers in a
vibro-acoustic field can be performed using the ESM approach.

7.2 Perspectives of the research

Many research directions can be extended to model and design advanced
piezoelectric composite structures. The following aspects are considered as the
most valuable parts for future work:

1. Generalized equivalent forces of piezoelectric transducers
The characterization of thin piezoelectric transducers in terms of force is
an important work for expanding piezoelectric transducers’ application.
A study on a non-flat shell host structure is attractive to extend the
limitations of the derived equivalent forces because the performance of
the transducers significantly depends on the host structures. Moreover,
the study in this dissertation is only valid for rectangular transducers.
Other interesting shapes, for example, circle and triangle are valuable to
investigate because they can generate special forces on a host structure
but they are not well characterized yet.

2. Nonlinear properties of MFC transducers together with com-
posite host structures:
The nonlinear properties of MFC transducers have not been included
in the presented study. Although the studied MFC transducers on the
composite plates gave high linear dynamic performance on the aspects of
piezoelectric actuation and sensing, the hysteresis may strongly reduce
the performance of the MFC transducers. Therefore, the nonlinear effects
of the MFC transducers need to be compensated for practical application.
In some cases, the host structure may also show nonlinear dynamics.
Therefore, the nonlinear characterization of the overall system is necessary
to guarantee the performance of the piezoelectric system.

3. Application of the piezoelectric reciprocal relations:
The piezoelectric reciprocal relation between MFC transducers and host
structures has been verified and extended into vibro-acoustic fields.
In some cases, only the direct or inverse piezoelectric coupling of the
transducer, which is integrated into mechanical structures, needs to be
characterized in practice. The piezoelectric reciprocal relations can apply
to many engineering application such as load identification for the MFC
transducers offer large operation bandwidth, high reliability as well as
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high robustness. In the acoustic domain, piezoelectric transducers can be
used in the application of load identification, model-based virtual sensing,
etc. It is also possible to develop invisible loudspeakers and microphones
with piezoelectric materials.



Chapter 8

Appendix

8.1 Finite difference coefficient

The following tables give the coefficient of finite difference to approximate a
derivative to an arbitrary order of accuracy.

Accuracy
order

-4 -3 -2 -1 0 1 2 3 4

2 −1/2 0 1/2
4 1/12 −2/3 0 2/3 −1/12
6 −1/60 3/20 −3/4 0 3/4 −3/20 1/60
8 1/280 −4/105 1/5 −4/5 0 4/5 −1/5 4/105 −1/280

Table 8.1: Central finite difference coefficients

Accuracy
order

0 1 2 3 4 5 6

1 −1 1
2 −3/2 2 −1/2
3 −11/6 3 −3/2 1/3
4 −25/12 4 −3 4/3 −1/4
5 −137/60 5 −5 10/3 −5/4 1/5
6 −49/20 6 −15/2 20/3 −15/4 6/5 −1/6

Table 8.2: Forward finite difference coefficients
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Accuracy
order

-6 -5 -4 -3 -2 -1 0

1 −1 1
2 1/2 −2 3/2
3 −1/3 3/2 −3 11/6
4 1/4 −4/3 3 −4 25/12
5 −1/5 5/4 −10/3 5 −5 137/60
6 1/6 −6/5 15/4 −20/3 15/2 −6 49/20

Table 8.3: Backward finite difference coefficients
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8.2 Interpolation function of FOSD finite element
method

A shear locking-free FEM formulation from [202] is used to model laminated
composite plate. The discretized displacement filed by triangular elements is
shown in Fig.8.1, whose elemental interpolation functions of displacement field
are given as:

N1 = 1− ξ − η, N2 = ξ, N3 = η (8.1)

Figure 8.1: Three node element [202]

The interpolation function of membrane strain field can be expressed as:

Bm = 1
detJ


b− c 0 0 0 0 c 0 0 0 0 −b 0 0 0 0

0 d− a 0 0 0 0 −d 0 0 0 0 a 0 0 0
d− a b− c 0 0 0 −d c 0 0 0 a −b 0 0 0

0 0 b− c detJ
2 0 0 0 c ac

2
bc
2 0 0 −b − bd2 − bc2

0 0 d− a 0 detJ
2 0 0 −d −ad2 − bd2 0 0 a ad

2
ac
2

 (8.2)

The interpolation function of bending strain field are thus:

Bb = 1
detJ


0 0 0 b− c 0 0 0 0 c 0 0 0 0 −b 0
0 0 0 0 d− a 0 0 0 0 −d 0 0 0 0 a
0 0 0 d− a b− c 0 0 0 −d c 0 0 0 a −b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 (8.3)
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In addition, the Jacobian matrix and its inverse are determined as:

J =
[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=
[
a b
d c

]
(8.4)

J−1 =
[
∂ξ
∂x

∂ξ
∂x

∂η
∂y

∂η
∂y

]
= 1
detJ

[
c −b
−d a

]
with detJ = ac− bd (8.5)
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8.3 Static modeling robustness check of EFM
approach

28mm× 14mm & 0o 84mm× 56mm & 60o

56mm× 28mm & 0o 84mm× 56mm & 0o

84mm× 56mm & 0o 84mm× 56mm & − 45o

Figure 8.2: Static modeling robustness check for the MFC-d31 transducers of
different size (Left) and for the MFC-d33 transducers of different piezoelectric
fibrous orientations (Right)
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The same cantilever plate in figure 4.6 is used in the static robustness
verifications. On the one hand, a virtual operational voltage of 400V is applied
to the MFC-d31 transducers, which are used to check the modeling sensitivity
regarding the sizes of the integrated MFC transducers. One the other hand, the
same operational voltage is applied to the MFC-d33 transducers which are used
to check the modeling sensitivity regarding the piezoelectric fibrous orientation.
We can observe that the equivalent forces can well predict the bending motion
due to the inverse piezoelectric effect of the integrated MFC transducers on the
plate.
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8.4 Experimental equipment

The equipment used in the dynamic response measurement of the composite
plate is listed below:

1. Data acquisition software: The Test.Lab (14A) from Siemens PLM
Software is used to perform the data acquisition and experimental modal
analysis. Both the impact testing and spectral testing can be performed.
The geometry of the test subject should be generated in the geometry
module according to the measured locations. Then, the channel ID,
measured quantity, sensitivity of each input channel should be set in
the channel setup module. It is worthwhile to mention that differential
channels are used to measure the output from the MFC transducer for it
is more immune to noise [203].
In an impact testing, the scope setting permits to define the measured
bandwidth and resolution. The trigger setting should be performed for
the force signal from the impact hammer. A force-exponential and an
exponential windows can be applied to the channels of impact force
and measurements, respectively. However, in a spectral testing, hanning
window should be applied to the all the channels. A signal can be generated
from Test.lab in the scope module that can be used to drive the excitation
device. The PolyMax modal analysis in Test.Lab can accurately estimate
the modal parameter of the tested subject in post processing [188].

2. Data acquisition hardware: A SCADAS mobile III is used as the data
acquisition hardware. It is equipped with VB8-II input modulus that
permits either the differential or signal-ended channel setting and they also
support voltage, ICP, DC and AC input signals. In addition, its 150dB
dynamic range allows for avoiding rang setting in the measurements.

3. Voltage amplifier for MFC transducers: A PiezoDrive T250 voltage
amplifier is used to drive the MFC transducers. It has 6 input-output
channels. Each input channel has an admissible range of ±10V . The
output gain of each output channel is 25. The maximum frequency periodic
signal is plotted versus the peak-to-peak voltage in Fig.8.3, the linearity
of the amplifier is ensured in a frequency bandwidth of 8.3KHz for a load
capacitance less that 3nF [204].



148 APPENDIX

Figure 8.3: The power bandwidth versus voltage and load capacitance of the
voltage amplifier [204]

4. Impact hammer: A PCB-086E80 hammer is used in the impact testing.
As the composite plate is lightweight and free-free boundary condition is
applied to the tested subject. The miniature hammer allows for avoiding
large rigid body motions of the plate which can severely influence the
measurements.

5. Laser vibrometer: A Polytec OFV 055 Laser vibrometer is used to
realize the non-contact measurement. This is essential for the modal
test of lightweight structures. Different velocity ranges setting provide
a flexibility to optimize the normal velocity measurement on the tested
subject.
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8.5 Second-order forward-backward finite differ-
ence approximation

An equivalent forces is also derived by using the second-order forward and
backward finite difference approximations. The in-plane inverse piezoelectric
couplings with respect to fxx and fyy remain unchanged compared to the first-
order approximations because they are independent from the finite different
approximations. The coupling with respect to fzz can be written as follows:

fzz =− ē∗31zp
∆x

V

tp

∫
Γs

[−3
2δ(x+ a

2 ) + 2δ(x+ a

2 −∆x)− 1
2δ(x+ a

2 − 2∆x)

− 1
2δ(x−

a

2 + 2∆x) + 2δ(x− a

2 + ∆x)− 3
2δ(x−

a

2 )]× [H(y + b

2)−H(y − b

2)]dΓs

− ē∗32zp
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[−3
2δ(y −

b

2) + 2δ(y + b

2 −∆y)− 1
2δ(y + b

2 − 2∆y)

− 1
2δ(y + b

2 + 2∆y) + 2δ(y + b

2 + ∆y))− 3
2δ(y −

b

2)]× [H(x+ a

2 )−H(x− a

2 )]dΓs

− 2ē∗36zp
V

tp

∫
Γs

[δ(x+ a

2 )− δ(x− a

2 )]× [δ(y + b

2)− δ(y − b

2)]dΓs

(8.6)
We can decompose (8.6) into three parts according to the coupling directions of x,
y and xy. Then, the accuracy of the electromechanical coupling can be analyzed
by the total bending effort balance in x and y directions. As we discretized the
transducer like a = 4∆x and b = 2∆y, a correction factor α = 0.98 ≈ 1 has
been obtained in x direction and α = 1 in y direction. Therefore, a second-order
finite approximation can preserve the total bending effort balance. The direct
piezoelectric coupling can be obtained from this inverse piezoelectric coupling.

The frequency response validations are given in the following figures. The
predicted FRFs agree well with the experimental measurements for both the
inverse and direct piezoelectric effects:
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1. Inverse piezoelectric coupling validation:
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Figure 8.4: Second-order EFM model inverse piezoelectric
frequency response validation between p00 and p74
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Figure 8.5: Second-order EFM model inverse piezoelectric
frequency response validation between p00 and p00
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Figure 8.6: Second-order EFM model inverse piezoelectric
frequency response validation between p26 and p22
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Figure 8.7: Second-order EFM model inverse piezoelectric
frequency response validation between p26 and p26
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2. Direct piezoelectric coupling validation:
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Figure 8.8: Second-order EFMmodel direct piezoelectric frequency
response validation between p00 and p74
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Figure 8.9: Second-order EFMmodel direct piezoelectric frequency
response validation between p00 and p00
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Figure 8.10: Second-order EFM model direct piezoelectric
frequency response validation between p26 and p22
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Figure 8.11: Second-order EFM model direct piezoelectric
frequency response validation between p26 and p26
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