
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Control Enegineering

Bachelor’s Thesis

Open Rapid Control Prototyping
and Real-Time Systems

Michal Lenc
michallenc@seznam.cz

May 2022
Supervisor: Ing. Pavel Píša, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492387Personal ID number:Lenc MichalStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Open Rapid Control Prototyping and Real-Time Systems

Bachelor’s thesis title in Czech:

Otevřený systém pro návrh řídicích aplikací reálného času

Guidelines:
The need to develop quickly and user friendly control systems is growing. Education and industry would gain from solutions
which allows complete introspection not only of generated code but even of complete tool-chain. Open, extensible and
freely accessible solution is win for education, industry and enthusiasts. Combination of NuttX RTOS and pysimCoder
project has potential to take this role for constrained MCU based systems and thanks to NuttX POSIX compatibility share
most of the tools and code with pysimCoder other targets as Linux and RTEMS.
1) Familiarize with pysimCoder project and NuttX operating system
2) Test and extend device support (ADC, DAC, PWM, encoders, etc.) and system and BSP level support (tick-less) of
NuttX supported MCUs used by industry partners (imxRT and SAM70) to extend their use for control applications and
number of supported pysimCoder blocks
3) Extend pysimCoder to allow runtime monitoring and tuning of of model parameters (all, or selectable subset, consider
silicon-heaven protocol)
and connection of signals in distributed control system
4) Prepare demonstration of achieved results on selected platforms and models (PMSM motor control, ball on beam)
5) Document achieved results with focus on use of pysimCoder in education

Bibliography / sources:
1) Bucher, R.: Python for Control Purposes,
http://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForContro
l.pdf
2) pysimCoder, GitHub https://github.com/robertobucher/pysimCoder
3) NuttX, GitHub https://github.com/apache/incubator-nuttx
4) NuttX, Documentation https://nuttx.apache.org/docs/latest/
5) Lenc, M.: Google Summer of Code 2021, NuttX Support for Rapid Control Applications Development with pysimCoder
https://summerofcode.withgoogle.com/projects/#4867567685992448

Name and workplace of bachelor’s thesis supervisor:

Ing. Pavel Píša, Ph.D. Department of Control Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________Date of bachelor’s thesis assignment: 19.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Pavel Píša, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to thank my supervisor
Pavel Píša for his mentorship on many
projects and for igniting my insterest in
computer science during his Computer
Architecture bachelor course.

I would also like to thank Roberto
Bucher for his mentorship during my
project of extending NuttX support for
pysimCoder and František Vacek and
his work group at Elektroline company
for giving me the opportunity to work
on their NuttX related projects.

Last but not least my acknowledge-
ments go to my family and friends for
their support in my activities.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague 20. 5. 2022

. .

v

Abstrakt / Abstract

Kombinace operačního systému reál-
ného času NuttX a nástroje pysimCoder
představuje otevřený systém pro návrh
řídících aplikací. Cílí primárně na menší
a levnější mikrokontroléry, například na
rodiny imxRT, STM32 nebo SAM E70.
Kombinace NuttXu a pysimCoderu
může být využívána jak ve školním pro-
střední tak i v průmyslových aplikacích.

Schopnost NuttXu a pysimCoderu
řídit aplikace v reálném čase byla otes-
tována na systémech jako jsou RCRC
systém druhého řádu nebo inverzní
kyvadlo, nicméně spousta funkcionalit
stále není naimplementována. To za-
hrnuje například podporu pro ladění
parametrů modelu v reálném čase či
podporu vektorových signálů.

Tato práce se zaměřuje na implemen-
taci podpory pro ladění parametrů mo-
delu v reálném čase s využitím průmys-
lem ověřené otevřené infrastruktury Si-
licon Heaven. Schopnost měnit parame-
try za běhu aplikace je demonstrována
na aplikacích řídicích systém v reálném
čase s cílem jednoduché reprodukce ve
školním prostředí.

Combination of RTOS NuttX and
software tool pysimCoder provides an
open source environment for control
application design targeting mostly
smaller and cheaper microcontrollers
like imxRT, STM32 or SAM E70 series.
The combinaton can be widely used
in educational and possibly even in
industrial environment.

Capabilities of NuttX and pysim-
Coder to produce a real time con-
trol system have been tested and
demostrated on systems like RCRC
plant or inverted pendulum control,
howewer the combination still misses
some features like runtime monitoring
and tunning of model parameters or
vector signals.

The thesis documents design and
development of an extension that allows
to monitor and change selected model
parameters at runtime. The open
source industry proven Silicon Heaven
communication infrastructure is used
for the remote methods invocation and
tree organized runtime system intro-
spection. The ability is demonstrated
on real time applications with focus
on easy reproduction in educational
environment.

vi

Contents /

1 Introduction 1

2 NuttX 3
2.1 Introduction 3
2.2 Source Code Organization 3

2.2.1 Arch 4
2.2.2 Boards 4
2.2.3 Drivers 4

2.3 Supported Platforms and MCUs . 5
2.4 NuttX Compilation 5

3 PysimCoder 6
3.1 Introduction 6
3.2 Block Editor 6
3.3 Source Code Organization 7

3.3.1 resources 7
3.3.2 CodeGen 8

3.4 Code Generation 9
3.4.1 General Description 9
3.4.2 Source Code Organization . 10

3.5 NuttX Integration 11
3.5.1 Supported Blocks 12

4 Target Hardware Selection 13
4.1 Introduction 13
4.2 imxRT1060 14
4.3 SAM E70 15

5 Drivers Implementation 17
5.1 Analog to Digital Converter . . 17

5.1.1 Driver Implementation . . 18
5.1.2 Application Usage 20

5.2 Pulse Width Modulation 21
5.2.1 Driver Implementation . . 21
5.2.2 Application Usage 23

6 Runtime Monitoring and
Tuning of Model Parameters 25

6.1 Introduction 25
6.2 Silicon Heaven Infrastructure . 25

6.2.1 ChainPack RPC 26
6.2.2 ChainPack RPC Usage . . 26

6.3 Changes to pysimCoder
Code Generation Process . . . 27

6.4 SHV Tree Structure 28
6.4.1 Supported Methods 28
6.4.2 Nodes’ Representation . . . 29

6.5 SHV Tree Implementation . . . 29
6.6 SHV Communication 31

6.7 Input/Output Blocks in
SHV Tree 33

6.8 SHV Settings in pysimCoder . 34
6.9 SHV Usage 34

7 Examples and Documentation 36
7.1 Introduction 36
7.2 RC Plant Control 36

7.2.1 Hardware Connection . . . 36
7.2.2 PysimCoder Application . . 37

7.3 PMSM Control 37
7.3.1 Hardware Connection . . . 37
7.3.2 PysimCoder Application . . 38

7.4 Documentation 38
8 Conclusion 39

A Source Code 41
A.1 PysimCoder 41
A.2 NuttX 41

B Glosary 42

References 43

vii

/ Figures

3.1 PysimCoder’s library and di-
agram window.7

3.2 PysimCoder: Code Genera-
tion Process . 10

3.3 PysimCoder: Menu Option 11
4.1 imxRT1060 MCU block dia-

gram . 14
4.2 Teensy 4.1 Base Board by

PiKRON . 15
4.3 SAM E70 MCU block dia-

gram . 15
5.1 Analog Front End Controller

Block Diagram 17
5.2 Pulse Width Modulated Sig-

nal . 21
6.1 Silion Heaven Spy GUI Ap-

plication . 35
7.1 RC Plant Electrical Connec-

tion . 36
7.2 RC Plant Block Diagram 37
7.3 PMSM Electrical Connection . . 37
7.4 PMSM Control Block Dia-

gram . 38

viii

Chapter 1
Introduction

Many systems for control application design, both proprietary and open source, can be
currently used for educational or professional purposes. While proprietary software like
Matlab/Simulink usually offers more functions and provides better stability, open source
alternatives, for example SciLab or ROS 2, have the advantage of being free and allowing
programmers to explore how the code is written. Usage of control application design
tools in education also requires the software to be compatible with affordable hardware.
The possibility to design application that can be run on cheap microcontrollers like
STM32, imxRT, ESP32 and many others would be a great support for education.

This possibility is partialy provided by software tool pysimCoder1 and a real time
operating system NuttX.2 PysimCoder, designed by Professor Roberto Bucher from
University of Applied Sciences and Arts of Southern Switzerland, is an open source
control application development tool that includes a block diagram editor which allows
the user to design a control application. A C code can be generated from this design,
can be flashed in an embedded system and used for a real time control.[1, chapter 7][2]

PysimCoder currently supports two POSIX compatible open source operating sys-
tems: Linux3 and NuttX. The latter is a real time open source operating system that
offers a wide support of smaller and cheaper microcontrollers.[3] PysimCoder also sup-
ports various target chips and boards including STM32H7, Raspberry Pi or SAMD21.
The support of NuttX in pysimCoder means the same block diagram designed by the
user can be compiled and run on any embedded board supported by NuttX without
the need for major changes in the application design. This offers the flexibility for
both industry and educational organizations and allows them to change their hardware
without investing into massive software changes.

While pysimCoder can already be used on many microcontrollers for simplier control
applications, it still lacks many functionalities offered by its proprietary alternatives.
One of the missing features, discussed and implemented in the frame of this thesis, is
the ability of runtime monitoring and tuning of model parameters. Basic monitoring
is currently supported via input and ouput blocks for UDP, TCP or communication
over serial port, but this aproach is not ideal for more complex systems with several in-
puts/outputs. It also does not allow the real time changes of block’s parameters which
can complicate controllers tuning and calibration or requires a complex workaround.
Current aproach requires the parameters to be changed in pysimCoder GUI, the appli-
cation to be compiled and flashed to the board again. The implemented solution allows
the programmer to tune model’s parameters, constants of PID controller for example,
directly at runtime without the need to reboot NuttX.

Silicon Heaven infrastructure4 was chosed to provide network communication, sup-
port for runtime monitoring and tuning of model parameters and model introspection.

1 https://github.com/robertobucher/pysimCoder
2 https://github.com/apache/incubator-nuttx
3 https://github.com/torvalds/linux
4 https://github.com/silicon-heaven

1

https://github.com/robertobucher/pysimCoder
https://github.com/apache/incubator-nuttx
https://github.com/torvalds/linux
https://github.com/silicon-heaven

1. Introduction .
The infrastructure implements a ChainPack, an open standard format for data serializa-
tion that aims to take the advantages from XML and JSON formats. Microcontrollers
from imxRT series and SAM E70 series were chosen as target hardware platforms for
project’s results demonstration.

The first chapter of the thesis introduces the reader to NuttX operating system
and discusses its source code and drivers organization. The theoretical part of the
thesis then continues with the text describing pysimCoder application. The reasons
behind selecting microcontrollers from imxRT series and SAM E70 as target hardware
platforms are described in chapter 4 and are followed by the implementation of selected
drivers to NuttX mainline. The sixth chapter introduces Silicon Heaven infrastructure
and discusses its implementation to pysimCoder. This is the key part of the thesis.
The thesis is completed by a short introduction of real time control examples.

2

Chapter 2
NuttX

This chapters describes NuttX real time operating system used in this thesis. The
reader is introduced to basic information regarding NuttX source code organization,
device driver’s system and compilation steps.

2.1 Introduction

NuttX is an open source real time operating system (RTOS) first introduced by Gregory
Nutt in 2007. It has come a long way since that and has been undergoing incubation at
The Apache Software Foundation since 2019. NuttX is written in C language and offers
a POSIX compatible environment.[4] This means the applications written in compilance
with POSIX standards (on GNU/Linux for example) can be run on NuttX as well with
minimal changes. Furthemore it implements ANSI standards and some further APIs
from Unix systems or some other real time operating systems like VxWorks.

As described in the docoumentation, NuttX is scalable from small 8 bits to modern
64 bits microcontrollers.[5] This is allowed by linking from static libraries and using
many source files that contain only small number of functions. The disadvantage of
this aproach is less clear source code but it allows the build system to link only those
functions desired by the user. According to a NuttX documentation, the final executable
can than be run for example on only 32 kB total memory (code and data) although
typical NuttX build usually requires about at least 64 kB memory.[5]

The desired functions like additional drivers (ADC, CAN, Ethernet), applications or
systems features (tickless mode) can be selected using Kconfig system which is taken
from Linux Kernel. The configuration system offers a great freedom in choosing which
features should be included in NuttX, on the other hand it sometimes lacks proper
documentation and thus sometimes it is not user friendly. Some of these configurations
also does not work well together and can result in build error.

2.2 Source Code Organization

The NuttX directory structure takes a lot of inspiration from Linux kernel.[6] The
most important folders from the perspective of this thesis are subdirectories arch/,
boards/ and drivers/. These subdirectories contain source code and header files for
supported architectures, microcontrollers, boards and drivers. The following sections
shortly describe each of those subdirectories. The goal is to provide basic understanding
regarding NuttX source code and driver’s organization. This knowledge is important
for the implementation of driver’s to NuttX mainline which is described in chapter 5.

The following sections discuss source code organization only from the device drivers’
point of view. NuttX core itself is not taken into account here as this goes beyond the
scope of the thesis.

3

2. NuttX .
2.2.1 Arch

The subdirectory arch/ contains folders include/ and src/ for each supported mi-
crocontroller.[6] Folder include/ includes basic microcontroller definitions like which
peripherals are supported, external interrupts or peripheral identificators. The more
important folder from the point of this thesis is src/ which includes all source files
for hardware specific implementation for supported drivers (also called lower half in
NuttX documentation).[7]

This is where NuttX varies from Linux. While Linux kernel usually implements
a single driver for all architectures and machines using the same IP core for given
peripheral, NuttX strictly implements those controllers for each microcontroller. This
difference can be shown with the following example.

Example: Let’s take a FlexCAN controller for the purpose of this example. Linux
has driver for this controller located in common file drivers/net/can/flexcan.c
while NuttX implements flexcan.c files in both arch/arm/src/imxrt/ and
arch/arm/src/s32k1xx/ MCUs subdirectories. Structures and functions from those
files are connected to the upper half part of the driver which provides a high-level
POSIX interface (write, read, etc.).

Every lower half part of the driver is usually divided into three separate files.
The consensus in NuttX community is to keep the names in format mcu_driver.c,
mcu_driver.h and hardware/mcu_driver.h.

Example: The names for ADC driver for imxRT MCU would be imxrt_adc.c,
imxrt_adc.h and hardware/imxrt_adc.h.

The first .c file contains source code for the driver and takes care of setting up
the peripheral and interface with driver’s upper half described later in this chapter.
The first header file usually defines just one function which can be accessed from board
level. This function takes care of initial setting of the driver and usually also returns the
driver instance so it can be registered by the upper half. The latter header file located
in hardware subfolder contains definitions of peripheral’s registers and bit fields.

2.2.2 Boards

The second subdirectory mentioned in this thesis is boards/. This includes all neces-
sary source files and header files for board level support such as booting process or parts
of the code that call functions from arch/ section that initialize drivers. Board spe-
cific implementation is not discussed in the thesis. However implemented drivers were
included in already exising board support packages, the initialization and compilation
of a specific board is desribed later in the thesis.

2.2.3 Drivers

The last section of the three mentioned is drivers/ which contains files for the
upper half parts of the drivers as named per NuttX documentation. The upper half
registers itself a device name (dev/adc0, dev/mcan0) via Virtual File System and
implements the high level interface such as read, write or open. The interface between
the upper half and lower half is mediated via callbacks to the lower half part of
the driver.[7]

4

. 2.3 Supported Platforms and MCUs

2.3 Supported Platforms and MCUs
This section contains a non exhaustive list of platforms and MCUs supported by NuttX.
Only platforms and MCUs interesting from the point of view of this thesis are mentioned
here, the complete list can be found in NuttX documentation or in NuttX source code.

The most extended support in NuttX is for ARM instruction set architecture (ISA)
nowadays used in most of the microcontrollers for embedded systems.[8] This includes
versions of STM32 chips, microcontrollers from imxRT series, LPC series or SAM se-
ries. Other architectures like Xtensa with support for microcontrollers designed by
Espressif company, widely known ISA x86 or open standard architecture RISC-V are
also supported but so far not as widely as ARM.

2.4 NuttX Compilation
The following steps are required to compile NuttX. The compilation steps are docu-
mented for Linux distribution Ubuntu (version 20.04 and newer) but this should be
the same for other Debian based Linux distributions. The compilation requires the
kconfig-frontend package to be installed on the system.1 Architecture specific toolchain
(e.g. arm-none-eabi-gcc for ARM targets) is also required. Compilation of NuttX on
Windows or Mac OS is also possible and is described in NuttX documentation.

git clone https://github.com/apache/incubator-nuttx.git nuttx
git clone https://github.com/apache/incubator-nuttx-apps.git apps
cd nuttx
./tools/configure.sh board:config
make

Where board represents the name of the board (also the name of the directory where
board’s files are located) and config represents the name for required configuration.
The configurations available for certain board can be found in NuttX documentation
for that board or by looking directly to the source code.

Example: The basic configuration with serial port console for Teensy 4.1 board would
be ./tools/configure.sh teensy-4.x:nsh-4.1. The configuration file can be found
in boards/arm/imxrt/teensy-4.x/configs/ directory.

The described steps compile NuttX executable nuttx.bin or hexadecimal source file
nuttx.hex based on the target hardware.

1 https://packages.ubuntu.com/focal/kconfig-frontends

5

https://packages.ubuntu.com/focal/kconfig-frontends

Chapter 3
PysimCoder

This chapter introduces a software tool pysimCoder and its block editor. The Linux and
NuttX compilation steps of a block diagram designed in pysimCoder are described in
following sections as well as pysimCoder code generation process. The understanding of
the code generation process is very useful as some changes were made in this area during
the Silicon Heaven infrastructure implementation. The source code organization is also
mentioned here. While it is not important for this thesis, its knowledge can provide
to be useful and helpful. It also becomes necessary for the implementation of future
blocks into pysimCoder.

3.1 Introduction
PysimCoder is an open source control application development tool designed by Profes-
sor Roberto Bucher from University of Applied Sciences and Arts of Southern Switzer-
land. The application consists of an extended python-control library and a graphical
block editor with a code generator.[1, chapter 7] As mentioned by Professor Bucher at
NuttX Online Workshop 2021, the extension of python-control library allows integra-
tion of control design and simulaton methods as full and reduced state space observer,
anti-windup mechanism and discrete linear quadratic regulator. These methods are
highly useful for the implementation of real time controllers.[2] PysimCoder can also
perform the simulation of designed block diagram.

The pysimCoder functionality for real time control was tested and demonstrated
by Professor Roberto Bucher on systems like second order RCRC plant or inverted
pendulum.[9][10] The system is also used at control theory courses at University of
Applied Sciences and Arts of Southern Switzerland.[2]

3.2 Block Editor
PysimCoder’s block diagram editor GUI is in many ways similar to popular Simulink
editor. The editor consists of two separate windows, diagram window and library.
Library window includes all available blocks separated to several libraries (Math, NuttX
and input for example). These blocks can be moved to diagram window using drag and
drop method.[1, chapter 7] Both windows are shown in Figure 3.1.

Most of the blocks have specific parameter options and can support various number
of inputs/outputs. The parameter settings is opened by double left click on the block
placed in a diagram window. This allows the user to set parameters like controller’s gain
constants, driver’s device name and so on. The selection of number of inputs/outputs
can be accessed via single right click on the block. The option for multiple inputs/out-
puts might not be supported for all blocks (NuttX encoder block offers only one output
for example).[11]

6

. 3.3 Source Code Organization

Figure 3.1. PysimCoder’s library (left) and diagram window (right) (Source: [11]).

The extensive manual with the steps required to create an own block diagram in
pysimCoder can be found in chapter 7 of Professor Bucher’s book Python for Control
Purposes.[1]

3.3 Source Code Organization
This section provides basic introduction of pysimCoder’s source code structure and
organization. The goal is to give a basic understanding that would allow the reader
to design and create own custom block without major obstacles. Basic organization of
folders taking care of code generation is also shortly mentioned but is fully introduced
in section 3.4. This focus mainly on code organization, code generation and block’s
lifecycle is described in section 3.4. It is recommended to remind this section once
again after reading the section 3.4 to get the complex picture.

PysimCoder has two blocks related folders in its structure, resources and CodeGen.
The first mentioned folder provides blocks’ declaration in JSON format and Python
part of the code while the latter contains Makefile templates and C parts of blocks’
code for supported targets. Both subdirectories are described in the following sections.

3.3.1 resources

The first declaration of the block is provided in resources/blocks/blocks/library
folder where library stands for actual library the block belongs to (i.e Math, NuttX,
etc.). This folder contains .xblk files in JSON format that provides declaration of
block’s inputs, outputs, parameters and so on. The list of required keys follows.

. lib – the name of the library the block belongs to. name – the name of the block. ip – number of inputs. op – number of outputs. stin – 1 if number of inputs can be set by user, 0 otherwise. stout – 1 if number of outputs can be set by user, 0 otherwise. icon – name of the icon located in resources/icons folder. params – name of block related Python function followed by the list of parameters. help – user help

7

3. PysimCoder .
Example: Lets take a look into an example of block definiton in JSON format. File

nuttx_PWM.xblk1 can be found in resources/blocks/blocks/NuttX folder with the
following definition.

{
"lib": "NuttX",
"name": "PWM",
"ip": 1,
"op": 0,
"stin": 1,
"stout": 0,
"icon": "PWM",
"params": "nuttx_PWMBlk|Port:'/dev/pwm2'|channels: [1]

|PWM freq [Hz]:1000|Umin [V]:0.0
|Umax [V]:100.0",

"help": "Help text"
}

The JSON file described above provides the link to Python function (nuttx_PWMBlk
in our example). These functions are located in resources/blocks/rcpBlk/library
where the library naming remains the same as in blocks/ directory. The following
example continues with PWM block for NuttX.

Example: The name of the file located in resources/blocks/rcpBlk/NuttX is
nuttx_PWMBlk.py. The simplified code can be seen below.

import numpy as np
from supsisim.RCPblk import RCPblk
from scipy import size

def nuttx_PWMBlk(pin, port, ch, freq, umin, umax):

blk = RCPblk('nuttx_PWM',pin,[],[0,0],1,[freq,umin,umax],ch,port)
return blk

The order of parameters passed to nuttx_PWMBlk is exactly the same as the order of
parameters in .xblk files. The order of parameters passed to RCPblk function can be
seen in toolbox/supsisim/src/RCPblk.py.2 It is necessary to pass the parameters in
the correct order as the placement in RCPblk functon defines the type of the parameter
(integer, double or string). It is also worth mentioning the first parameter of the function
is the name of the corresponding C function and the fifth parameter is the input to
output relation.

3.3.2 CodeGen
While resources directory contains files that defines the block, CodeGen located files
takes care of the actual execution of block’s functions. Once again, the example is used
to present the structure.

Example: We take a PWM block for NuttX RTOS once again. The corresponding file
1 https://github.com/robertobucher/pysimCoder/blob/master/resources/blocks/blocks/NuttX/

nuttx_PWM.xblk
2 https://github.com/robertobucher/pysimCoder/blob/master/toolbox/supsisim/src/RCPblk.py

8

https://github.com/robertobucher/pysimCoder/blob/master/resources/blocks/blocks/NuttX/nuttx_PWM.xblk
https://github.com/robertobucher/pysimCoder/blob/master/resources/blocks/blocks/NuttX/nuttx_PWM.xblk
https://github.com/robertobucher/pysimCoder/blob/master/toolbox/supsisim/src/RCPblk.py

. 3.4 Code Generation

nuttx_PWM.c3 is located in CodeGen/nuttx/devices/ folder, the largery simplified C
code follows.

static void init(python_block *block){}
static void inout(python_block *block){}
static void end(python_block *block){}

void nuttx_PWM(int flag, python_block *block)
{

if (flag == CG_OUT){ /* get input */
inout(block);

}
else if (flag == CG_END){ /* termination */

end(block);
}
else if (flag == CG_INIT){ /* initialisation */

init(block);
}

}

The enter function nuttx_PWM receives an integer flag and a pointer to the block struc-
ture. The corresponding function is called based on the receved flag. Function init is
called only once and as the function name would suggest it initalizes the driver. Flag
CG_OUT calls function inout that performs the required operation. In our example
it updates the PWM duty cycle based on the block input, but it could also read data
from ADC or generate some kind of an output (square, triangle, etc.). This function is
called repeatedly. Function end then takes care of stopping the output and closing the
driver. The definition of those functions is not listed here as it is block specific.

These sections desribed the organization of the pysimCoder blocks. The core of the
code generation can be found in toolbox directory. The principle of the process is
described in the following section.

3.4 Code Generation
This section provides the description of code generation process from designed block
diagram. It is divided into two subsections, general description regarding the process
and more practical point of view on source code organization.

3.4.1 General Description
Every block in pysimCoder can be described by a set of equations representing its
internal states and outputs.

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝑘) (1)

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝑘) (2)

Two equations listed above are well known as state space equations, however they
are execuded in an opposite order. System firstly updates block’s output, described by
equation (2) and then internal state per equation (1). Blocks would need to remember
3 https://github.com/robertobucher/pysimCoder/blob/master/CodeGen/nuttx/devices/nuttx_PW

M.c

9

https://github.com/robertobucher/pysimCoder/blob/master/CodeGen/nuttx/devices/nuttx_PWM.c
https://github.com/robertobucher/pysimCoder/blob/master/CodeGen/nuttx/devices/nuttx_PWM.c

3. PysimCoder .
theirs previous 𝑥𝑘 state if equation (1) would be executed first, this is not necessary if the
order is opposite. The first function is also not mandatory as some blocks do not have
an internal state. Apart from those two functions, each block also has an initialization
and a termination function. These functions are called throught corresponding flag:
CG_OUT, CG_STUPD, CG_INIT or CG_END.[2]

The code generation process takes a designed block diagram and an optional Python
script (used for implementation of the controller and variables definitions) and generates
a Python script tmp.py. This script translates the block diagram into C code from which
specific blocks functions are called. The diagram of this process can be seen in Figure
3.2.

Python script Block diagram

Code generation script (Python)

Generated C code

Figure 3.2. PysimCoder Code Generation Process (Inspired by: [2]).

The generated C code is subsequently compiled and linked with the block library and
main C file with the real time thread and creates an executable.[2] The code generation
process also needs to find the right execution sequence so the blocks are executed in the
correct order (as blocks’ inputs depending on other blocks’ outputs can not be executed
first).

3.4.2 Source Code Organization

As mentioned at the end of section 3.3, main source files for Code Generation are located
in toolbox directory. This directory contains two libraries, supsictrl and supsisim.
The first mentioned implements control methods as state space observer and others
mentioned in the introduction, the latter one brings the files related to code generation.

The function generateCCode in scene.py creates the tmp.py file mentioned in the
previous sections. The sample of the code from tmp.py can be seen below.

Const = constBlk([2], 3.2)
Gain = matmultBlk([2],[3], 1)
Print = printBlk([4,5,3,1])

blks = [Const,Gain,Print,]

fname = 'test'
os.chdir("./test_gen")
genCode(fname, 0.01, blks)
genMake(fname, 'rt.tmf', addObj = '')

10

. 3.5 NuttX Integration

import os
os.system("make")
os.chdir("..")

The first three lines of the code calls the block specific function that was introduced
to the readed in the previous section. This returns the block structure which is sub-
sequently passed to genCode function located in RCPgen.py in supsisim library. This
function takes care of C code generation, the third step shown in Figure 3.2. Then
corresponding Makefile is generated and required executable is created. Files scene.py
and RCPgen.py are the ones that were changed during Silicon Heaven implementation.
These changes are fully described in chapter 6.

3.5 NuttX Integration
This section provides the necessary steps to succesfully run pysimCoder on NuttX. The
compilation of NuttX remains the same as described in section 2.4 but requires some
additional configuration options. These options are described in NuttX documenta-
tion.[11] Once NuttX is compiled, following commands need to be run.

make export
cp nuttx-export-xx.x.x.zip /../pysimCoder/CodeGen/nuttx
cd /../pysimCoder/CodeGen/nuttx
unzip nuttx-export-xx.x.x.zip
mv nuttx-export-xx.x.x.zip nuttx-export
cd devices
make

Where xx.x.x in nuttx-export-xx.x.x.zip stands for the current version of NuttX.
Execution of make command in devices folder compiles the C files described in previous
section. Then pysimCoder can be run either via included script pysim-run.sh or via
application installed on Linux. The instalation process is described in pysimCoder
documentation, the steps required to succesfully create pysimCoder application for
NuttX are described in NuttX documentation.[11] The important setting is to select
a Template Makefile for the target. This can be done in the top menu by clicking
on Block settings icon which is highlighted in the red circle as described in NuttX
documentation.[11] The required Template Makefile for NuttX is nuttx.tmf.

Figure 3.3. PysimCoder Menu Option (Source: [11]).

The loadable executable can be generated by selecting Generate C-code icon high-
lighted in the green cirle. The executable is a standard NuttX with a terminal, file
system and selected applications plus an application called main. This is the designed
block diagram. The control application can be run from NuttX terminal simply by the
following command.

nsh> main

The application main can also be selected as an init function instead of nsh_main,
providing terminal support, in NuttX configuration. Another option is to modify ini-
tialization scripts inside NuttX system to run generated application automatically.

11

3. PysimCoder .
3.5.1 Supported Blocks

Apart from common blocks, usually from mathematic, input or output libary, pysim-
Coder implements NuttX specific blocks. These blocks provides an interface to device
driver peripherals such as ADC, PWM or DAC. This chapter provides the list of sup-
ported peripherals at the time of writing this thesis.

. ADC – Analog to Digital Converter. CAN – Controlled Area Network, with FD support. DAC – Digital to Analog Converter. ENC – Encoder. GPIO – support for both input and output pins. PWM – Pulse Width Modulation with multichannel support. serialOut – support for serial output

Some blocks from communication library as TCP and UDP respect POSIX standard
and they can be used with NuttX as well.

12

Chapter 4
Target Hardware Selection

Two microcontrollers, imxRT1060 and SAM E70, were selected as a target hardware
for the testing purposes of this thesis. This chapter discusses the reasons behind this
selection and introduces these MCUs to the reader. Two microcontrollers, imxRT1060
and SAM E70, both used in the thesis’s practical part, are discussed here.

4.1 Introduction

As mentioned in section 2.3, NuttX provides extended support for microcontrollers with
ARM instruction set architecture so the logical step is to use an ARM based MCU.
The alternative, interesting from educational point of view, would be the selection of
open architecture RISC-V based MCU, for example Espressif ESP32-C3. While the
open source status of the instruction set architecture is interesting and promising for
the future, the development of NuttX support for those chips is still ongoing and the
MCU designed by Espressif also does not provide many pin outputs. This resulted in
selection of ARM based microcontrollers.

Most of the ARM based microcontrollers provide support of peripherals such as ADC,
PWM, Encoder or Ethernet that are needed for the fulfilment of the thesis’s goals. This
means the decision of particular microcontrollers being based mostly on the faculty’s
and industry partners’ requirements.

The microcontroller from imxRT series, imxRT1060, was already used during my pre-
vious projects at the Department of Control Enegineering at the faculty and was tested
with pysimCoder on a real time control system. The open Base Board for Teensy 4.1,
board designed by Czech company PiKRON1 and using imxRT1060 MCU, provides
connections to required peripherals. That resulted in selecting it as the first target
hardware. Using the already tested and supported hardware brings the advantage of
not having to worry about NuttX support for peripherals as it was already implemented
during my previous projects (PWM driver, FlexCAN driver) and focus solely on pysim-
Coder part. However the thesis’s assignment reguired to extend device driver support
for target hardware and contribute to NuttX mainline.

The second target hardware was selected in cooperation with Czech company Elek-
troline a.s.2 The company’s goal is to build its new smaller IoT devices and systems
above NuttX RTOS. Their requirements include peripherals like ADC, Ethernet, En-
coder, SPI or CAN. SAM E70 MCU from Microchip Technology was found out to be
the best option, also regarding to current market situation during chip shortage, and
thus selected for the new boards designed by Elektroline. This MCU was also used to
contribute drivers extension during this thesis.

1 http://www.pikron.com/
2 https://www.elektroline.cz/

13

http://www.pikron.com/
https://www.elektroline.cz/

4. Target Hardware Selection .

4.2 imxRT1060

imxRT1060 family of microcontrollers is designed and manufactured by Dutch com-
pany NXP Semiconductors. The chips are based on ARM Cortex-M7 core running at
frequency 600 MHz and offer data and instruction cache memory of 32 KB size as well
as 512 kB of data and instruction tightly coupled memory. The supported peripherals
are CAN FD, ADC, PWM, Ethernet, dedicated Encoder driver, QSPI and SPI among
others. The MCU also supports crossbar switches that can route inputs to outputs
based on user’s requirements.[12]

Internal Memory

512 KB SRAM

128 KB ROM

Multimedia

Connectivity

eMMC 4.5 / SD 3.0 x2

8 x 8 Keypad

External Memory

I2C x4

UART x8

S/PDIF Tx / Rx

GPIO

SPI x4

ADC

System Control

Secure JTAG

PLL / OSC

RTC and Reset

Enhanced DMA

IOMUX

GP Timer x6

CPU Platform

Arm Cortex-M7

32 KB I-cache 32 KB D-cache

FPU

Dual-channel QuadSPI

External Memory Controller
8-bit / 16-bit SDRAM

Parallel NOR FLASH
NAND FLASH

PSRAM

MPU NVIC

512 KB TCM/OCRAM

FlexCAN x2 + FlexCAN (with

USB 2.0 OTG with PHY x2

10 / 100 ENET x2
with IEEE 1588

ADC x2 (16-Channel)

ACMP x4

8 / 16 / 24-bit Parallel CSI

24-bit Parallel LCD

Arm Cortex-M7

32 KB I-cache 32 KB D-cache

FPU MPU NVIC

512 KB TCM/OCRAM

PXP
2D Graphics Acceleration

Resize, CSC, Overlay, Rotation

Quadrature ENC x4

QuadTimer x4

FlexPWM x4

Watch Dog x4

Power Management

DCDC

LDO

Temp Monitor

Security

Ciphers and RNG Secure RTC eFuse HAB

I2S / SAI x3

Octal/Hyper Flash/RAM x2

FlexIO x2

HS_GPIO FlexIO

XBAR/AOI

Flexible Data-Rate supported)

20-Channel in total

Figure 4.1. imxRT1060 MCU block diagram (Source: [12]).

Teensy 4.1 Development Board manufactured by PJRC campeny can be used as
a target hardware.3 This board provides all peripheral pinouts, such as ADC, PWM
or Ethernet, needed for the thesis’s goals. The board however does not provide the
necessary interfaces for the drivers. This problem can be solved by Base Board for
Teensy 4.1 designed by Czech company PiKRON that provides the necessary interfaces
including PMSM or DC motor control peripherals.4 Morover, the design of the board
is open and fully fits into the thesis’s theme.

3 https://www.pjrc.com/store/teensy41.html
4 https://gitlab.com/pikron/projects/imxrt-devel/-/wikis/teensy_bb

14

https://www.pjrc.com/store/teensy41.html
https://gitlab.com/pikron/projects/imxrt-devel/-/wikis/teensy_bb

. 4.3 SAM E70

Figure 4.2. imxRT Teensy-4.1 Base Board by PiKRON.

All necessary peripherals for the purpose of this thesis were already implemeneted
by other users or during my previous projects (FlexCAN or PWM). Base Board for
Teensy 4.1 was also tested and its capability was demonstrated with a simple DC
motor position real time control.[13] Having runtime monitoring and tunning of model
parameters as primary goal and leaving NuttX as secondary, this brings the advantage
of having an already supported and tested peripherals as a backup if some problems
occur with another target hardware.

4.3 SAM E70
Microcontrollers from SAM E70 32 bit series are designed and manufactured by Amer-
ican company Microchip Technology. They use ARM Cortex-M7 core running at 300
MHz and can have up to 2048 KB of Flash memory based on selected version of the
microcontroller.[14] The MCUs from this series have data and instruction cache mem-
ory of 16 KB size. The peripherals offered on SAM E70 are CAN FD, ADC, PWM,
Ethernet MAC, UART, QSPI, SPI and USB host and device among others.

Figure 4.3. SAM E70 MCU block diagram (Source: [14]).

The number of supported peripherals varies by the used version of the chip. SAM
E70 microcontrollers are manufactured in 64 to 144 pin package options. The latter

15

4. Target Hardware Selection .
one offers full usage of supported peripherals while options with less pins do not offer
some funtions.[14] The package version interferes with the peripheral’s programming
very rarely and is not taken into account in further sections.

An evaluation kit SAM E70 Xplained from Microchip was used as a target board for
the peripherals tests and examples. The documentation and schematics for this board
can be found at company’s website.5

NuttX did not offer support for some key peripherals at the time of the thesis assign-
ment. The most important for real time control were ADC, also required by Elektroline
for their projects, and PWM. The support of QSPI in SPI mode was also absent and
required by Elektroline but this part is not mentioned in the following chapter since it
does not have a direct connection to real time control.

5 https://www.microchip.com/en-us/development-tool/ATSAME70-XPLD

16

https://www.microchip.com/en-us/development-tool/ATSAME70-XPLD

Chapter 5
Drivers Implementation

This chapter is focused on the first practical part of the thesis, the implementation of
selected periherals’ drivers. All following drivers are implemented for SAM E70 MCU
which was discussed in the previous chapter, however the implementation process would
be similar and sometimes even the exactly same for other targets. This chapter does
not try to provide a step by step manual or whole process of source code creation but
rather to introduce the most important steps and parts of driver creation for NuttX.
Some key code parts for the periherals’ drivers are listed here but a look into the source
code is recommended for the complete understandment of the driver’s functionality.

There were two major peripherals necessary for the ability of target’s real time con-
trol: Analog to Digital Converted or shortly ADC and Puls Width Modulation, PWM.
The implementation of these drivers is discussed in the following sections.

5.1 Analog to Digital Converter
Analog to Digital Converter (ADC) is a system that performs conversion of an analog
signal (e.g. electric voltage or current) to a digital signal. This digital signal is repre-
sented by a binary number of a finite number of bits[15, section 9.1, pg. 612] (up to
16 bits in case of SAM E70). Digital Design and Computer Architecture by Harris &
Harris can be recommended for further reading about the peripheral.[16]

AFE_ADTRG

VDDANA

VREFN

GND

Trigger
Selection

Timer
Counter

Channels

User
Interface

Interrupt
Controller

Analog Inputs
Multiplexed

with I/O lines

AFE Controller (AFEC)

AFE Analog Cell

CHx
10-bit
DA
Converter

AOFFx

AFEC Interrupt

en.

Analog
Mux
n/2->1

CHENx

Sample
and Hold

PGA0

Prog. Gain
Amplifier

Digital
Averaging
with OSR

GAINx

RES
AFE_AD0

AFE_AD1

AFE_ADn-1

AFE_AD(n/2-1)

AFE_AD(n/2)

S&H

+
-

S&H

+-

Analog
 Mux
 2->1

PIO
Extra
Funct.

Channel
Sequencer

PGA1

Analog
Mux
n/2->1

Peripheral Bridge

APB

DMA

System Bus

Peripheral Clock
PMC

Bus Clock

AOFFxVREFP

10-bit
DA
Converter

12-bit
AD
Converter

Figure 5.1. Analog Front End Controller Block Diagram (Source: [17, figure 52-1].)

Chips from SAM E70 series implement ADC under peripheral called Analog Front
End Controller (AFEC) in chip’s datasheet.[17, section 52] Apart from ADC, it inte-
grates a programmable gain amplifier for ADC inputs, two analog multiplexers and

17

5. Drivers Implementation .
digital to analog converter. This allows the MCU to perform analog to digital con-
version either of 12 lines or simuntaniously of two 6 lines. SAM E70 has 12 bit ADC
resolution by default but this can be extended to 16 bit by digital averaging.[17, section
52]

The following sections use both ADC and AFEC naming. AFEC is more common
when reffering to whole microcontroller’s controller while ADC refers to the device
driver.

AFEC can be triggered either by software trigger or by external hardware trigger (e.g.
PWM output, timer/counter) as can be seen in Figure 4.2. ADC sampling at higher
frequencies (for example 10 kHz) needed for proper real time control usually requires
Direct Memory Access transfers from AFEC peripheral to chip memory. Direct Memory
Access, abbreviated as DMA, provides a peripheral such as AFEC with a direct access
to main memory. As a result, the transfer of received data to the memory is not
executed by the processor but by the DMA. This allows the processor to execute other
tasks during that time and thus increases the system performance.[18]

This resulted in selecting timer/counter as ADC trigger and implementing DMA
support for the AFEC driver. The implementation of the driver is described in the
following section.

5.1.1 Driver Implementation
As discussed in chapter 2, source code for device drivers is located in arch/ subdirec-
tory. For SAM E70 MCU family, this would be arch/arm/src/samv7 subfolder. The
lower half part of the driver is divided into three separate files in NuttX, sam_afec.c,
sam_afec.h and hardware/sam_afec.h. This once again comes from the NuttX’s com-
munity consensus as mentioned in chapter 2.

The lower half part of ADC driver communicates with the upper half located in
drivers/ via adc_dev_s structure. This structure requires the lower half of the driver
to provide two fields, ad_ops and ad_priv. The first mentioned links architecture
specific operations to driver operations as setup or reset while the latter can provide
architecture specific logic as resolution or trigger selection. The following sample of the
code shows definition of these fields in SAM E70 AFEC driver.

static const struct adc_ops_s g_adcops =
{

.ao_bind = afec_bind,

.ao_reset = afec_reset,

.ao_setup = afec_setup,

.ao_shutdown = afec_shutdown,

.ao_rxint = afec_rxint,

.ao_ioctl = afec_ioctl,
};

#ifdef CONFIG_SAMV7_AFEC0
static struct samv7_dev_s g_adcpriv0 =
{

.irq = SAM_IRQ_AFEC0,

.pid = SAM_PID_AFEC0,

.intf = 0,

.initialized = 0,

.resolution = CONFIG_SAMV7_AFEC0_RES,

18

. 5.1 Analog to Digital Converter

#ifdef CONFIG_SAMV7_AFEC0_SWTRIG
.trigger = 0,

#else
.trigger = 1,
.timer_channel = CONFIG_SAMV7_AFEC0_TIOACHAN,
.frequency = CONFIG_SAMV7_AFEC0_TIOAFREQ,

#endif
.base = SAM_AFEC0_BASE,

};

static struct adc_dev_s g_adcdev0 =
{

.ad_ops = &g_adcops,

.ad_priv = &g_adcpriv0,
};

The initialization of the driver is done by the public function sam_afec_initialize
called from board level logic which returns the corresponding adc_dev_s struc-
ture. This structure is then registered as a device driver. Functions linked throught
adc_ops_s structure are then used to setup registers, interrupts, perform IOCTL
operations and other stuffs necessary for driver functionality. These functions are
called from the upper hals logic of the driver. The first method is afec_setup which
is called when the driver is opened for the first time. This function sets up interrupts,
trigger and enables and starts DMA if enabled.

The DMA is implemented with so called ping-pong buffers. This means two buffers
are used, DMA collects data to the first one while the data from the second one are
processed in another thread. Then the buffers switch and worker thread reads from the
first one while DMA collects to the second one. This ensures that data are collected by
DMA even when CPU needs to process the previously received data.

DMA calls callback function sam_afec_dmacallback each times it fills the buffer
with the required amount of data. This function sets up the worker thread in which
sam_afec_dmadone performs data read. The process of data read can be seen below.

for (i = 0; i < priv->nsamples; i++, buffer++)
{

/* Get the sample and the channel number */

chan = (int)((*buffer & AFEC_LCDR_CHANB_MASK) >>
AFEC_LCDR_CHANB_SHIFT);

sample = ((*buffer & AFEC_LCDR_LDATA_MASK) >>
AFEC_LCDR_LDATA_SHIFT);

if (priv->cb != NULL)
{
/* Give the sample data to the ADC upper half */

priv->cb->au_receive(dev, chan, sample);
}

}

19

5. Drivers Implementation .
The au_receive function saves the read data to local FIFO buffer in the upper half

section of the driver. User can get the data from this buffer from application level
using the POSIX call read(). There are two IOCTL calls implemented during my pre-
vious projects that helps with the buffer’s operations. ANIOC_RESET_FIFO clears
the FIFO buffer and ensures all read data are new, ANIOC_SAMPLES_ON_READ
returns the number of samples in the buffer.

The implementation without DMA is mostly similar but uses corresponding interrupt
that indicates there are data in Last Converted Data Register (AFEC_LCDR). The
code shown above would then read directly from this register instead of the DMA buffer.

The ADC can be set up by selecting following configuration options.

CONFIG_ANALOG=y
CONFIG_ADC=y
CONFIG_SAMV7_AFEC0=y
CONFIG_SAMV7_TC0=y
CONFIG_SAMV7_TC0_TIOA0=y

This configures basic ADC with timer/counter trigger sampling at 1 kHz. The sam-
pling frequency can be change by configuring CONFIG_SAMV7_AFEC0_TIOAFREQ and
the trigger can be change to software trigger called from application by selecting
CONFIG_SAMV7_AFEC0_SWTRIG. The channels are not selected in the configuration but
it has to be hard coded in board level section. Using DMA requires following setup,

CONFIG_SAMV7_XDMAC=y
CONFIG_SAMV7_AFEC_DMA=y
CONFIG_SAMV7_AFEC_DMASAMPLES=10

which configures DMA to wait for 10 samples for each channel and then transfer it to
memory. The whole source code of the driver is included in NuttX mainline.1

5.1.2 Application Usage
The AFEC or ADC peripheral can be accessed from application via standard POSIX
calls. The following code shows a simple application that opens the driver and reads
the sampled data from it. The code is simplified and for example does not check if
error occurs while opening the driver or while performing read operation. The proper
application should have these checks.

#include <nuttx/config.h>
#include <nuttx/analog/adc.h>
#include <nuttx/analog/ioctl.h>

struct adc_msg_s sample[conf_ch];
int readsize = conf_ch*sizeof(struct adc_msg_s);

int fd = open(block->str, O_RDONLY);

int nbytes = read(fd, sample, readsize);

The conf_ch variable provides the number of configured channels. IOCTL calls can
be used to get some further information from the driver, for example ANIOC_SAM-
PLES_ON_READ described in the previous section. The usage of the IOCTL call is
also simple and can be seen below.
1 https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/samv7/sam_afec.c

20

https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/samv7/sam_afec.c

. 5.2 Pulse Width Modulation

int ret = ioctl(fd, ANIOC_SAMPLES_ON_READ, 0);

5.2 Pulse Width Modulation
Microcontroller also needs some way to control the system. Pulse Width Modulation
(PWM) peripheral is used for this purpose. This peripheral generaters a periodic output
that is pulsed high for part of the period and low for the remainder. The part of the
period for which the pulse is high is called the duty cycle.[16, chapter 9.3.7, page 542.e35]
The example of PWM output can be seen in the Figure 5.2.

Scaled Clock

PWM 1 Output

pwmcmp1 = 3

pwmcmp0 = 5

Tcs

pulse width

period

Figure 5.2. Sample of Pulse Width Modulate Signal (Source: [16, figure e9.17]).

PWM can provide an analog output of designed value (voltage) and thus be used for
real time syste control. PWM can be also used for other purposes like trigger generator
for ADC and other peripherals but these options were not implemented during the the-
sis. Digital Design and Computer Architecture by Harris & Harris can be recommended
for further reading regarding PWM peripheral again.[16]

SAM E70 MCU implements two PWM peripherals, each with 4 indepenent channels
that can each control two complementary outputs. While the impelented peripheral
provides the option of DMA trasnfers of duty cycle updates,[17, section 21] this option
was not implemented to NuttX driver as it was not necessary for the funcionality
demonstration. However this might be a place for further work and extension of NuttX
support for SAM E70.

5.2.1 Driver Implementation
The logic behind files organization is the same as discussed in the previous section so
files sam_pwm.c, sam_pwm.h and hardware/sam_pwm.h were created. The usage of upper
and lower half structures is also largely similar to AFEC driver. The communication
between lower and upper half of the driver is done with pwm_lowerhalf_s structure.
This structure requires the first field to be a pointer to the PWM callback structure
pwm_ops_s, the following fields can be architecture specific.

The following sample of the code shows declaration of required structures in
sam_pwm.c PWM driver.

static const struct pwm_ops_s g_pwmops =
{

.setup = pwm_setup,

.shutdown = pwm_shutdown,

.start = pwm_start,

.stop = pwm_stop,

.ioctl = pwm_ioctl,
};

21

5. Drivers Implementation .
#ifdef CONFIG_SAMV7_PWM0

static struct sam_pwm_channel_s g_pwm0_channels[] =
{
#ifdef CONFIG_SAMV7_PWM0_CH0

{
.channel = 0,
.used = true,
.pin = GPIO_PWMC0_H0,

},
#endif
#ifdef CONFIG_SAMV7_PWM0_CH1

{
.channel = 1,
.used = true,
.pin = GPIO_PWMC0_H1,

},
#endif
...
};

static struct sam_pwm_s g_pwm0 =
{

.ops = &g_pwmops,

.channels = g_pwm0_channels,

.channels_num = 4,

.frequency = 0,

.base = SAM_PWM0_BASE,
};
#endif /* CONFIG_SAMV7_PWM0 */

From the code sample can be seen that sam_pwm_s structure is used as a pwm_low-
erhalf_s and contains a pointer to PWM operations and a several architecture specific
fields. The first initialization and registration of the device driver is done throught
public function sam_pwminitialize called from board level section. Similarly to AFEC
peripheral, this function returns pwm_lowerhalf_s and takes care of basic initialization
like enabling peripheral’s clock.

The first function called from the upper half of the driver, when the driver is first
opened, is pwm_setup. The functions provides configuration of peripheral registers
necessary for pulse generation, however it should not enable the output and generate
pulses. The pulse generation itself is done by function pwm_start. The PWM driver
has separate 16 bits wide registers for PWM period (SAMV7_PWM_CPRD) and
duty cycle (SAMV7_PWM_CDTYUPD) for each channel. However, the option of
independent frequency for each channel is currently not supported by NuttX logic and
only duty cycle can differ for each PWM channel.

The startup function pwm_setup first need to check whether the set frequency
matches with the required one and then can change the duty cycle if needed. Up-
date of frequency by writing to corresponding register is required if freqeuncy does not
match. The process of duty cycle update can be see in the code sample below.

period = pwm_getreg(priv, SAMV7_PWM_CPRDX + (shift * CHANNEL_OFFSET));

22

. 5.2 Pulse Width Modulation

/* Compute PWM width (count value to set PWM low) */

duty_pct = (duty / 65536.0) * 100;
width = (uint16_t)(((uint16_t)duty_pct * period) / 100);

/* Update duty cycle */

pwm_putreg(priv, SAMV7_PWM_CDTYUPDX + (shift * CHANNEL_OFFSET), width);

/* Enable output */

regval = CHID_SEL(1 << shift);
pwm_putreg(priv, SAMV7_PWM_ENA, regval);

The shift variable provides the correct channel offset based on the channel number
provided by upper half part of the driver. The code sample above runs in for loop for
every configured channel and updates its duty cycle by writing to the corresponding
register. Duty cycle update is propagated to control circuits after each period which
may result in some channels being updated while others not. This can be solved by
setting synchronous update of all channels by writing to the corresponding register as
listed below.

/* Set sychnronous outputs */

pwm_putreg(priv, SAMV7_PWM_SCUC, SCUC_UPDULOCK);

The PWM support can be set up by selecting following configuration option:

CONFIG_PWM=y
CONFIG_PWM_MULTICHAN=y
CONFIG_PWM_NCHANNELS=3

This is the common driver part configuration that sets PWM and enables multiple
channels support if required. The SAM E70 specific configuration can be seen below.

CONFIG_SAMV7_PWM0=y
CONFIG_SAMV7_PWM0_CH0=y
CONFIG_SAMV7_PWM0_CH1=y
CONFIG_SAMV7_PWM0_CH2=y

It is worth mentioning the difference between PWM and ADC channel selection. While
ADC reqeuires the user to select channels in board level section and thus edit NuttX
source code, PWM provides an option to set channels via configuration interface.

The source code of the described driver was accepted in NuttX mainline.2

5.2.2 Application Usage
The access from application level is also done via POSIX calls similarly to AFEC
peripheral. The following code shows a simplified example and once again should not
be seen as a complete application but rather as an introduction to the most important
parts of possible applications.

2 https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/samv7/sam_pwm.c

23

https://github.com/apache/incubator-nuttx/blob/master/arch/arm/src/samv7/sam_pwm.c

5. Drivers Implementation .
#include <nuttx/config.h>
#include <nuttx/timers/pwm.h>

struct pwm_info_s info;

/* Open the device */

int fd = open(driver_path, O_RDONLY);

info.frequency = frequency;

for (int i = 0;i < n_channels; i++)
{

info.channels[i].channel = channel_n;
info.channels[i].duty = channel_duty;

}

/* Set frequency and duty cycle and start the output */

int ret = ioctl(fd, PWMIOC_SETCHARACTERISTICS,
(unsigned long)((uintptr_t) &info));

ret = ioctl(fd, PWMIOC_START, 0);

The IOCTL call PWMIOC_SETCHARACTERISTICS can be also used to update
the duty cycle during the code running. The PWM logic in NuttX RTOS provides
several helps to operate with PWM from the application level. One of them are two
defined channels numbers, 0 and -1. The first one means the channel is not used and thus
is skipped when calling PWMIOC_SETCHARACTERISTICS or PWMIOC_START
and the latter indicates no following channels are used. This breaks the for loop in
which channels are set in pwm_start function and thus can save some computation
time.

24

Chapter 6
Runtime Monitoring and Tuning of Model
Parameters

The previous chapters introduced two systems used in this thesis, NuttX and pysim-
Coder, and described drivers implementation to NuttX. This chapter is focused on the
main goal of the thesis, the runtime monitoring and tuning of model parameters. Both
theoretical overview and implementation of Silicon Heaven infrastructure are discussed
in the following sections.

6.1 Introduction
The idea behind runtime monitoring and tuning of model parameters is to allow the
user to display and edit individual blocks’s parameters, inputs and outputs. Implemen-
tation of dedicated blocks for system inputs and outputs would subsequently allow the
connection of distributed systems. This basically divides the task into two subtasks: the
implementation of runtime monitoring and tuning of model parameters/inputs/outputs
and implementation of input and output dedicated blocks.

As already mentioned in chapter 1, Silicon Heaven communication infrastructure1 was
selecteded in order to support runtime monitoring and tuning of model parameters. The
infrastructure implements ChainPack, an open remote procedure call protocol (RPC)
for data serialization that combines the properties of Extensible Markup Language
(XML) and JavaScript Object Notation (JSON). The introduction of Silicon Heaven
follows up later in the chapter.

The practical part of the chapter, the implementation of the infrastructure itself,
takes a lot of knowledge from the theoretical part of the thesis, especially of chapter 3
describing pysimCoder’s code generation process.

6.2 Silicon Heaven Infrastructure

Silicon Heaven infrastructure (SHV) was developed at company Elektroline by Ing.
František Vacek and his team. It is used in company’s systems on technology control
tramway yards in Australia, Belgium and other countries around the Europe.[19] The
infrastructure provides core support for many programming languages including C,
C++, Python or Rust.

The infrastructure requires running a broker as a server. User applications as pysim-
Coder control application or GUI designed to interact with the broker are then regis-
tered to the broker as clients. Each client can have different rights and settings based
on a broker’s configuration.

1 https://github.com/silicon-heaven

25

https://github.com/silicon-heaven

6. Runtime Monitoring and Tuning of Model Parameters .
Apart from its main library, libshv implementing ChainPack RCP, the infrastructure

provides GUI tool shvspy2 and library shvapp3 with implemented applications including
shvbroker. Both svhspy and shvbroker are used in the implementation, their usage is
described later.

The following section describes the protocol itself, the ChainPack RPC.

6.2.1 ChainPack RPC
Every ChainPack RPC message consists of three fields: length, protocol and data,
respectively. The length field stores an unsigned integer of message length without the
length field itself, so the length of protocol field plus the length of data field. Protocol is
once again an unsigned integer defining data format (ChainPack RPC, Cpon or JSON).
Then data itself follows.[20]

+--------+----------+------+
| Length | Protocol | Data |
+--------+----------+------+

Data uses the following format. PackingSchema is uint8_t defining the type of data
(integer, double, string, map, Imap, MetaMap). The examples of packed data format
can be found on Silicon Heaven wiki.4 The work in this thesis mostly requires the usage
of Map, IMap and MetaMap based on the unified message format. Map is basically
a dictionary with string keys, IMap has integer keys and MetaMap can support both
strings and integers.

Every RPC message data part consinsts of <meta-data-part> and i{data-part}
where i represents the usage of IMap. The example of server request and client reply
taken from SHV wiki follows.[21]

<1:1,8:17,10:"hello">i{}

Where the data in cone brackets represents <meta-data-part>. Apart from 1:1,
declaring ChainPack RPC is used, message metadata also contains request ID (8:17,
where 8 is a tag for ID and 17 is ID itself) and requested method (10 is the tag, method’s
name is a string). Data part is empty in this case but the IMap still has to be included.
The client reply would be.

<1:1,8:17>i{2:{"nonce":"1429255113"}}

Client replies with the same ID in metadata and then sends the data itself. The
number 2 indicates request result follows, in this case it is a Map of some data with a
string key. The possible tag keys can be found on Silicon Heaven wiki page.5

6.2.2 ChainPack RPC Usage
Silicon Heaven infrastructure brings the support for ChainPack RPC in many pro-
gramming languages. The core functions are located in libshv library in libshvchain-
pack subdirectory. The files from this directory are the only ones necessary to support
the SHV communication. These files defines functions like cchainpack_pack_int or
cchainpack_pack_imap_begin that are used to pack ChainPack RPC message. This
message can then be send or received, for example over TCP.

2 https://github.com/silicon-heaven/shvspy
3 https://github.com/silicon-heaven/shvapp
4 https://github.com/silicon-heaven/libshv/wiki/ChainPack-RPC#chainpack
5 https://github.com/silicon-heaven/libshv/wiki/ChainPack-RPC#rpc

26

https://github.com/silicon-heaven/shvspy
https://github.com/silicon-heaven/shvapp
https://github.com/silicon-heaven/libshv/wiki/ChainPack-RPC#chainpack
https://github.com/silicon-heaven/libshv/wiki/ChainPack-RPC#rpc

. 6.3 Changes to pysimCoder Code Generation Process

6.3 Changes to pysimCoder Code Generation Process
Several, mostly minor, changes were required in pysimCoder code generation process in
order to get blocks and parameters names to C part of the code and to have a structure
that would contain all blocks used in the diagram and additional information about
them. Two structures python_block_name_entry and python_block_name_map were
added to pyblock.h file. This file also defines the main block structure python_block
that can access block’s parameters, inputs, outputs, dimensions and so on.

typedef struct {
const char * block_name; /* Name of the block */
int block_idx; /* Index in python_block structure */
int system_inputs; /* Block has system inputs */
int system_outputs; /* Block has system outputs */

} python_block_name_entry;

typedef struct {
const python_block_name_entry * blocks; /* Pointer to

* python_block_name_entry
* structure */

const python_block * block_structure; /* Pointer to python_block
* structure */

int blocks_count; /* Number of blocks */
} python_block_name_map;

The content of python_block_name_map is defined during code generation and the
structure is then passed as an argument to SHV tree initialization function. Integers
system_inputs and system_outputs defines whether block’s inputs/outputs are used
as system’s inputs/outputs. This is used for the implementation of dedicated input/out-
put blocks.

While getting the name of the block to C code was straightforward, parameters’
names were more difficult. Parameter’s name is accessable in function generateCCode
in scene.py (refer to section 3.4 for the reminder of pysimCoder code generation pro-
cess) but the type of the parameter is uknown at that moment. On the contrary, the
type is known in genCode function from RCPgen.py but the names are not available
here. Therefore it was necessary to know the parameter’s type already in early code
generation process in scene.py.

I chosed to add parameters’ types to xblk files so they could be accessed already in
scene.py. Taking the PWM block example from section 3.3.1, the updated key params
is:

"params": "nuttx_PWMBlk|Port:'/dev/pwm2'|channels: [1]:int
|PWM freq [Hz]:1000:double|Umin [V]:0.0:double
|Umax [V]:100.0:double"

Function generateCCode then process these parameters and their names and ensures
they are saved to python_block structure so they can be accessed from C code. The
function also ensures that the generation process does not crash when the type is not
defined.

The other option to get the parameter’s type is to generate some sort of metadata
from RCPblk function that creates the block. This function would generate information
regarding what parameters are used, which can be changed runtime and which can be

27

6. Runtime Monitoring and Tuning of Model Parameters .
just read only. This would require the RCPblk functions to be called from the editor
during block diagram creation. This aproach would be more benefitial to pysimCoder
from long term view, however the implementation would be more difficult and time
consuming. Therefore I decided to go with the first option. The metadata approach
can be left for some further work on the project.

6.4 SHV Tree Structure
PysimCoder’s blocks and their parameters, inputs and outputs are represented by items
in a dedicated tree. The tree’s format is following.

. project name. blocks. block 1. inputs. input1. input2. outputs. output1. output2. parameters. parameter1. parameter2. block 2.

6.4.1 Supported Methods

Every item needs to support at least two methods according to SHV standard. Those
are methods ls and dir. The first method returns the list of strings with the names of
node’s children. The list is empty if node does not have children. Method dir returns
the list of methods supported by the node. In any case those are two already mentioned
methods plus item specific methods.

Every parameter’s node also supports methods set, get and typeName. As the names
already suggest, first two methods send and receive the parameter value. Furthemore
typeName returns the type of the value. Currently it is only double as integer values
are not accessed by SHV but it can be enhanced in the future.

Integer values are often used for channel’s numbers (for ADC or PWM for example)
or other non-changable parameters like encoder resolution. They are also sometimes
used not as a single parameter but rather as an array of integer parameters. Correct
representation of integer parameters would most likely require metadata generation as
discussed at the end of section 6.3. Therefore only double parameters are currently
implemented in SHV tree.

Block’s inputs and outputs are read only and thus only support method get as well
as system dedicated outputs. System inputs support both get and set.

28

. 6.5 SHV Tree Implementation

6.4.2 Nodes’ Representation
Two data structures were selected for representation of tree’s items, AVL tree (called
GAVL in the library) and sorted array (called GSA). Open source uLAN Utilities
Library (ULUT)6 was used for the implementation of mentioned structures to pysim-
Coder’s code. This library by company PiKRON provides implementation of structures
and functions commonly used in C, among others AVL tree and sorted array.[22]

Usage of GAVL is prefered when the tree is allocated dynamically during application
start since GSA uses more memory reallocation for addition of new items to the array.
However GSA can be allocated statically during code generation and all items can be
constant. This allows the whole SHV tree to be saved to flash memory and do not
waste space in RAM. The implementation of SHV in pysimCoder supports all three
options: GAVL, GSA and static GSA.

6.5 SHV Tree Implementation
Previous section discussed the theoretical part of item’s representation in a SHV tree.
This part introduces the structures and parts of the code taking care of tree initial-
ization. The tree is consisted of shv_node_t items. The definition of the shv_node_t
structure can be seen below.

typedef struct shv_node {
const char *name; /* Node name */
gavl_node_t gavl_node; /* GAVL instance */
shv_dir_map_t *dir; /* Pointer to supported methods */
shv_node_list_t children; /* List of node children */

} shv_node_t;

GAVL instance is necessary when using AVL tree. It represents a node in a tree and
links left, right and parent node to it. Structure shv_dir_map_t is a GSA array of point-
ers to methods supported by the node. The final field is a structure shv_node_list_t
used as a list of children. The definition of the mentioned structure follows.

typedef struct shv_node_list {
int mode; /* Mode selection (GAV, GSA, static) */
union {

struct {
gavl_cust_root_field_t root; /* GAVL root */
int count; /* Number of root's chuldren */

} gavl;
struct {

gsa_array_field_t root; /* GSA root */
} gsa;

} list;
} shv_node_list_t;

This structure keeps the mode of the node (information what type of tree is used)
and GAVL or GSA related root structure. Note that both of those structures are
not pysimCoder related and can be used for any item in a tree. Accessing parame-
ters/inputs/outputs in SHV tree reqeuires one more structure. The structure is called
shv_node_typed_val_t.
6 https://gitlab.com/pikron/sw-base/ulut

29

https://gitlab.com/pikron/sw-base/ulut

6. Runtime Monitoring and Tuning of Model Parameters .
typedef struct shv_node_typed_val {

shv_node_t shv_node; /* Node instance */
void *val_ptr; /* Value */
char *type_name; /* Type of the value (int, double...) */

} shv_node_typed_val_t;

Node instance shv_node_t is passed to SHV tree while val_ptr and type_name vari-
ables store a pointer to parameter’s value and type name, respectively. This additional
structure is only required for parameters, inputs and outputs, other tree’s items like
blocks use only basic shv_node_t.

Apart from shv_com.c file implementing communication funtions and described
in the following section, the code is implemented in three files: shv_tree.c,
shv_methods.c and shv_pysim.c. All files are located in CodeGen/Common/shv
directory, header files can be found in include subdirectory. The code structure is
designed so that general tree functions (memory allocation, search, addition of new
node and so on) are located in shv_tree.c. This file is independend on higher level
files shv_methods.c and shv_pysim.c.

While general functions in shv_tree.c and shv_com.c could be used for other appli-
cations and not only for pysimCoder, the other two files implement pysimCoder related
functions. Supported methods are defined in shv_methods.c while shv_pysim.c pro-
vides an entry point and dynamic tree generation if selected.

shv_con_ctx_t *shv_tree_init(python_block_name_map * block_map,
const shv_node_t *static_root, int mode)

{
int ret;
const shv_node_t *root;

if ((mode & SHV_NLIST_MODE_STATIC) == 0)
{

/* Create tree root only if it should be allocated dynamically */

root = shv_tree_node_new(NULL, &shv_root_dir_map, mode);
if (root == NULL)
{
printf("ERROR: malloc() failed\n");
return;

}
shv_tree_create(block_map, (shv_node_t *)root, mode);

}
else

{
root = static_root;

}

/* Initialize SHV connection */

shv_con_ctx_t *ctx = shv_com_init((shv_node_t *)root);

return ctx;
}

30

. 6.6 SHV Communication

Function shv_tree_init, called from generated C file, is used as an entry point
for SHV related operation. This function calls shv_tree_create() to create a dy-
namic GAVL or GSA tree if required and follows up with calling shv_com_init()
from shv_com.c. The shv_tree_create() function goes throught all blocks and their
parameters/inputs/outputs if supported and adds them to the tree. This process is
skipped if SHV tree is generated statically. All tree’s nodes are defined in generated C
file in that case.

6.6 SHV Communication
Functions securing SHV communication are implemented in shv_com.c file. The entry
point is a function shv_init() that allocates the memory for the SHV container taking
care of data sends and receives, initializes TCP connection and performs client login to
the server. The login process is standardized and can be seen in SHV documentation.[21]

Data read function is run in a separate thread so SHV operations are executed
independently from main control functions. The context of the function can be seen
below.

static void *shv_process(void * p)
{

int num_events;
shv_con_ctx_t *shv_ctx = (shv_con_ctx_t *)p;

struct pollfd pfds[1];
pfds[0].fd = shv_ctx->stream_fd;
pfds[0].events = POLLIN;

while (1)
{

/* Set timemout to one half of shv_ctx->timeout (in ms) */

num_events = poll(pfds, 1, (shv_ctx->timeout * 1000) / 2);

if (num_events == 0)
{
/* Poll timeout, send ping */

shv_send_ping(shv_ctx);
}

else if (pfds[0].revents & POLLIN)
{
/* Event happened on our socket, process TCP input */

shv_process_input(shv_ctx);
}

}
}

It is necessary to check for client’s timeout set during login process. If server does
receive any activity from client for time longer than specified timeout than it aborts

31

6. Runtime Monitoring and Tuning of Model Parameters .
the connection. Function poll() takes care of determining whether it is required to
ping the server. If poll() ends up with a POLLIN event it indicates we can read data
from socket.

int shv_process_input(shv_con_ctx_t * shv_ctx)
{

int i;
int j;
char met[SHV_MET_MAX_LEN];
char path[SHV_PATH_MAX_LEN];
struct ccpcp_unpack_context *ctx = &shv_ctx->unpack_ctx;

i = read(shv_ctx->stream_fd, shv_ctx->shv_rd_data,
sizeof(shv_ctx->shv_rd_data));

if (i > 0)
{

ccpcp_unpack_context_init(ctx, shv_ctx->shv_rd_data, i,
shv_underrflow_handler, 0);

while (ctx->current < ctx->end)
{
/* Get method and path */

shv_unpack_head(shv_ctx, &j, met, path);

if (met[0] != '\0')
{
shv_node_process(shv_ctx, j, met, path);

}
}

}
return i;

}

Function shv_process_input() takes care of TCP read in a blocking mode. SHV
function ccpcp_unpack_context_init() initialize the ccpcp_unpack_context struc-
ture and fills it with received data. Function shv_underrflow_handler() takes care
of yet to be received data. This is used when received message is longer than defined
SHV message length (1024 bytes in this case) or not all data are read by initial read
because they are not delivered over TCP yet. Then function shv_unpack_head() is
called to unpack the metadata header part of the message and gets the information
about requested method and node location in the tree (i.e. path). Subsequently the
node is found in the tree and the method is called.

The file also implements functions shv_send_double(), shv_send_string() and
similar that are used to send a client reply to the server request. This is used when
server asks for the block’s parameter. The parameter is found in SHV tree, as described
in previous two sections, and double value is sent in reply formated as shown in section
6.2.1. The following code shows the definition of function shv_send_double(). The
creation of ChainPack content is done twice in a loop in order to get the correct lenght
of the message. This is something we do not know until we fill the content. Function
shv_overflow_handler then performs TCP write if shv_ctx->shv_send equals 1.

32

. 6.7 Input/Output Blocks in SHV Tree

void shv_send_double(shv_con_ctx_t *shv_ctx, int rid, double num)
{

ccpcp_pack_context_init(&shv_ctx->pack_ctx,shv_ctx->shv_data,
SHV_BUF_LEN,shv_overflow_handler);

for (shv_ctx->shv_send = 0; shv_ctx->shv_send < 2; shv_ctx->shv_send++)
{

if (shv_ctx->shv_send)
{
cchainpack_pack_uint_data(&shv_ctx->pack_ctx,

shv_ctx->shv_len);
}

shv_ctx->shv_len = 0;
cchainpack_pack_uint_data(&shv_ctx->pack_ctx, 1);

shv_pack_head(shv_ctx, rid);

cchainpack_pack_imap_begin(&shv_ctx->pack_ctx);
cchainpack_pack_int(&shv_ctx->pack_ctx, 2);
cchainpack_pack_double(&shv_ctx->pack_ctx, num);
cchainpack_pack_container_end(&shv_ctx->pack_ctx);
shv_overflow_handler(&shv_ctx->pack_ctx, 0);

}
}

Only TCP communication is currently supported but with further time investment
SHV could also support communication over serial port or CAN bus. This enhancement
can be implemented in some future projects.

6.7 Input/Output Blocks in SHV Tree
The changes to pysimCoder also introduce two SHV dedicated blocks: SHV Input
and SHV Output. These simple blocks without parameters and with option of multi-
ple inputs/outputs can be newly found in communication library in pysimCoder GUI.
Considering SHV tree, the previously introduced tree structure is expanded by nodes
inputs and outputs as follows.

. project name. blocks. inputs. input block 1. input 1. input 2. outputs. output block 1. output 1. output 2. ...

33

6. Runtime Monitoring and Tuning of Model Parameters .
Opposite to the parameters, individual input and output signals do not use their

own names as they do not have any. They use general naming system input0, input1
and so on. Inputs support both methods get and set while outputs only support get.
The support of inputs and outputs is only for those two dedicated blocks and can not
be used with other blocks from communication library. The addition of other blocks
does not make much sence since those blocks are used to generate some signal (Pulse
Generator, Step and so on) or receive/send data over TCP and UDP. Dedicated SHV
blocks do not intend to replace them but they can be used to connect multiple systems.

Source code for those blocks can be once again found in CodeGen/Common/shv direc-
tory under names shv_blk_output.c and shv_blk_input.c. The code structure is as
described in section 3.3.2, the block has an entry point function and functions init(),
inout() and end() called based on a received flag. Those functions are empty and do
not perform any operations since the only purpose of the block is to have selected input
or output. Their value is changed throught SHV method set and read with get.

6.8 SHV Settings in pysimCoder

This section presents compilation and configuration steps to succesfully use Silicon
Heaven infrastructure with pysimCoder. SHV support in pysimCoder is compatible
with POSIX compliant systems GNU/Linux and NuttX. The following command is
required to succesfully compile pysimCoder’s source code for NuttX target with Silicon
Heaven. Apart from that the compilation steps are identical to those listed in sections
2.4 and 3.3.2.

make SHV=1

The only change from standard compilation is an additional Makefile parameter
SHV=1. This parameter ensures the download of required libraries SHV and uLUT. It is
also necessary to select support for TCP communication in NuttX configuration before
the export is generated. The compilation for GNU/Linux is similar and also requires
additional parameter SHV=1.

Silicon Heaven options like server’s IP and port, user name and password, device
name or type of the tree can be selected in pysimCoder’s menu under SHV support
icon.

6.9 SHV Usage

Apart from ChainPack RPC, SHV infrastructure also offers additional applications
and tools as shvbroker and shvspy mentioned earlier in this chapter. This section shows
their usage with a pysimCoder application. Package Qt 5.137 at minimum is required to
succesfully compile shvbroker and shvapp. The latter also requires libqt5webkit5-dev
package.8

Shvbroker, included in shvapp repository, acts as a TCP server for a client (pysim-
Coder application, some GUI and so on). Following commands show its compilation
and usage.

7 https://doc.qt.io/archives/qt-5.13/index.html
8 https://packages.ubuntu.com/jammy/libqt5webkit5-dev

34

https://doc.qt.io/archives/qt-5.13/index.html
https://packages.ubuntu.com/jammy/libqt5webkit5-dev

. 6.9 SHV Usage

git clone https://github.com/silicon-heaven/shvapp.git
cd shvapp
git submodule update --init --recursive
qmake -r
make
cd bin
./shvbroker --config-dir ../shvbroker/etc/shv/shvbroker/ -v rpcmsg

Command -v rpcmsg is optional and enables printing SHV messages’ content to
terminal. Directory shvbroker/etc/shv/shvbroker contains configuration files with
information like server port, host name, accepted users and their passwords and so on.

Another mentioned application, shvspy, is a GUI tool for SHV tree administration.
It is connected as a client to shvbroker and allows the user to browse throught SHV
tree and call methods. The steps to run the application are following.

git clone https://github.com/silicon-heaven/shvspy
cd shvspy
git submodule update --init --recursive
qmake -r
make
cd bin
LD_LIBRARY_PATH=../lib/ ./shvspy -v rpcmsg

It is also possible to download shvspy as a build binary.9 The last command opens
a GUI application to which user can add a new server and connect to it. Application
designed with pysimCoder performs a mount to the directory selected in pysimCoder
SHV settings. Figure 6.1 shows shvspy GUI with an application connected to shvbroker
and mounted at test directory.

Figure 6.1. Silion Heaven Spy GUI application connected to shvbroker.

To summarize the presented tools, an application created with pysimCoder acts as a
client and communicates with a server. Server is represented by shvbroker application.
However we also want to interact with the SHV tree and control our model. Application
shvspy is used for this purpose. It is a GUI tool in which user can browse throught the
tree.

9 https://github.com/silicon-heaven/shvspy/actions

35

https://github.com/silicon-heaven/shvspy/actions

Chapter 7
Examples and Documentation

The penultimate chapter of the thesis introduces the reader with few examples of NuttX,
pysimCoder and Silicon Heaven infrastructure combination. Both target hardware mi-
crocontrollers, i.MX RT1060 and SAM E70 were used to demonstrate the functionality
on a different hardware.

7.1 Introduction
The goal of these examples is to provide an sible entry point for a potencial pysimCoder
users. Two examples were selected for this thesis, a simple RC Plant controlled by SAM
E70 based board SAM E70 Xplained and more complex control system, permanent
magnet synchronous motor (PMSM) control. This was done with Base Board for Teensy
4.1. The examples do not focus on control theory but rather on a practical usage.

7.2 RC Plant Control
RC Plant (resistor and capacitor) serves as an easily replicated example that can be
implemented in few minutes and is a good introduction to NuttX, pysimCoder and
Silicon Heaven. The example requires two electrical components, resistor and capacitor.
The goal is to control capacitor’s voltage based on a reference signal. Capacitor is
charged throught resistor with PWM output, the actual voltage value is read with
ADC. Apart from those two peripherals, support of TCP connection is required to
support Silicon Heaven.

7.2.1 Hardware Connection

As mentioned above, SAM E70 Xplained board was used for this example. The following
Figure shows electrical connection of board and RC Plant. Note that only used pins are
listed in the Figure. This example can also be easily replicated with any other board
supporting PWM, ADC and TCP.

Figure 7.1. Electrical connection of RC Plant and SAM E70 Xplained.

Elements 𝑅1 and 𝐶1 are the RC Plant. Additional resistor 𝑅2 can be used to dis-
charge the capacitor and serves as an external error which controller needs to regulate.
SAM E70 Xplained pin 3 is used as an ADC input, D7 is PWM output.

36

. 7.3 PMSM Control

7.2.2 PysimCoder Application
Figure 7.2 shows the block diagram connection in pysimCoder. Pulse Generator block
is set to generate a reference signal. The actual value, the capacitor voltage read with
ADC, is substracted from the reference and sent to PID controller. The controller’s
output is then routed to PWM block which generates the PWM based on a duty cycle
input.

Figure 7.2. RC Plant block diagram in pysimCoder.

Used pin and device driver’ name are selected in block’s setting which can be opened
by left double click on the block. The block diagram with the script providing the
compilation of source files can be found in Open Technologies Research Education and
Exchange Services (OTREES) GitLab repository.1

7.3 PMSM Control
The second example, control of permanent magnet synchronous motor, is a more com-
plex system requiring larger amount of peripherals. Apart from PWM required to drive
the motor, periherals like encoder and GPIO are needed. Current sensing with ADC
peripheral is requried for vector control (also called field oriented control and abbrevi-
ated as FOC) however this type of control is not used in this example. Simplier position
control based on a feedback from encoder is done instead. TCP support is of course
needed for SHV usage as well.

7.3.1 Hardware Connection

Figure 7.3. Electrical connection of PMSM and Teensy 4.1 Base Board.

1 https://gitlab.fel.cvut.cz/otrees/nuttx-demos/-/tree/master/platforms/same70/rc-control

37

https://gitlab.fel.cvut.cz/otrees/nuttx-demos/-/tree/master/platforms/same70/rc-control

7. Examples and Documentation .
Teensy 4.1 Base Board made by Czech company PiKRON was used as a target

hardware in this example. Hardware connection in Figure 7.3 is not much complex
since the board provides connectors for both encoder input and PWM output. The
situation is more complicated with Hall sensors’ outputs. The board does not provide
a suitable connector so they have to be connected manually to Teensy 4.1 board’s pins.

7.3.2 PysimCoder Application
Block diagram designed in pysimCoder from Figure 7.4 can be used to control PMSM
position based on an encoder input. Hall sensors are used to get an initial mechanical
angle. Once the encoder reaches its index the angle can be determined from the encoder
with better precision. The logic taking care of this process is implemented in a block
PMSM Align. The alignment of mechanical and electrical angle may differ for every
motor and needs to be measured and set before the control application is strted.

Blocks for inverse Park and inverse Clarke transformation are used to convert D (set
as 0), Q (drived by PID controller) and angle (calculated from Hall/encoder) signals to
three phased a, b, c vector that is used to set PWM duty cycle.

Figure 7.4. PMSM control block diagram in pysimCoder.

Please note this example can currently be used only with non mainline pysimCoder as
encoder block uses IOCTL commands to get the index position that are not supported
by NuttX mainline yet. These changes are not included in pysimCoder mainline for that
reason. The support of these IOCTLs is also only for imxRT MCUs. The block diagram
with the script providing the compilation of source files can be found in OTREES
GitLab repository2 as well.

7.4 Documentation
Documentation describing pysimCoder configuration with SHV can be found on pysim-
Coder’s wiki page.3 The documentation is written from user’s point of view and focuses
on the usage and configuration rather than on implementation and principles. The
reading of this thesis is recommended for a deeper understanding of the implementa-
tion process and code organization.

2 https://gitlab.fel.cvut.cz/otrees/nuttx-demos/ - /tree/master/platforms/imxrt/pmsm-
control
3 https://github.com/robertobucher/pysimCoder/wiki/Silicon-Heaven-Support

38

https://gitlab.fel.cvut.cz/otrees/nuttx-demos/-/tree/master/platforms/imxrt/pmsm-control
https://gitlab.fel.cvut.cz/otrees/nuttx-demos/-/tree/master/platforms/imxrt/pmsm-control
https://github.com/robertobucher/pysimCoder/wiki/Silicon-Heaven-Support

Chapter 8
Conclusion

My work done in scope of this thesis enhances the capabilities of an open source tool
pysimCoder which in some cases can be used as an alternative to proprietary software
like Matlab/Simulink. The pysimCoder integration with a real time operating system
NuttX brings the support for many affordable microcontrollers and boards.

Added support of Silicon Heaven infrastructure allows the runtime monitoring and
tuning of model parameters and the introspection of designed diagram. This capality
was tested and demonstrated on a real time control of RC Plant and PMSM. The
possibility to change parameters runtime for example allows the students to easily
experiment with a designed controller on a real hardware they can build and connect
in home conditions.

The common part of SHV support can also be used in other not pysimCoder related
projects as a standalone library. This is demonstraded by remote control of MicroZed
APO board’s RGB knobs used in Computer Architecture course at CTU FEE.1 Used
SHV communication interface is taken from my implementation to pysimCoder.

While I think all of the thesis’s goals were fulfiled, some parts may offer a further
involvement. This is a case of getting correct parameters’ names to pysimCoder’s
generated C code. Generation of block’s metadata during diagram creation would offer
additional possibilites like deciding what parameters can be changed runtime and what
can be just read only. Additon of integer parameters is also possible.

Contributions to both pysimCoder and NuttX were approved by systems’ maintainers
and added to the mainline. Both systems are fully open source and thus other students
and users around the world may benefit from the changes and follow up with their ideas
and contributions.

1 https://gitlab.fel.cvut.cz/b35apo/mz_apo-servo-knobs-shv

39

https://gitlab.fel.cvut.cz/b35apo/mz_apo-servo-knobs-shv

Appendix A
Source Code

This chapter lists my contributions to NuttX and pysimCoder source code done during
the work on this project. This includes the implementation of peripheral to NuttX
mainline, commits introducing the SHV support to pysimCoder and also some smaller
changes that were not directly SHV related but were necessary for succesful implemen-
tation. This includes addition of type names to .xblk file for example.

A.1 PysimCoder
The contributions to pysimCoder are listed in the following list.

. Option to get parameters names to C code,2. RCPgen: link Inputs and Outputs with Nodes statically,3. Added support for Silicon Heaven infrastructure to pysimCoder.4

A.2 NuttX
The following list shows the contributions that were accepted to NuttX mainline.

. samv7: add support for AFEC driver,5. SAMv7: Add DMA and TC support to AFEC (ADC) driver,6. SAMv7: Added support for PWM driver.7

2 https://github.com/robertobucher/pysimCoder/pull/40
3 https://github.com/robertobucher/pysimCoder/pull/42
4 https://github.com/robertobucher/pysimCoder/pull/48
5 https://github.com/apache/incubator-nuttx/pull/4795
6 https://github.com/apache/incubator-nuttx/pull/4901
7 https://github.com/apache/incubator-nuttx/pull/5471

41

https://github.com/robertobucher/pysimCoder/pull/40
https://github.com/robertobucher/pysimCoder/pull/42
https://github.com/robertobucher/pysimCoder/pull/48
https://github.com/apache/incubator-nuttx/pull/4795
https://github.com/apache/incubator-nuttx/pull/4901
https://github.com/apache/incubator-nuttx/pull/5471

Appendix B
Glosary

ADC . Analog to Digital Converter
ANSI . American National Standards Institute
API . Application Programming Interface
BSP . Board Support Package
CAN . Controller Area Network
CAN FD . Controller Area Network Flexible Data-Rate
CTU . Czech Technical University
DMA . Direct Memory Access
FEE . Faculty of Electrical Enegineering
FOC . Field Oriented Control
GAVL . Generated AVL Tree
GSA . Generated Sorted Array
GUI . Graphic User Interface
IOCTL . Input/Output Control
ISA . Instruction Set Architecture
LCD . Liquid-Crystal Display
MAC . Media Access Control Address
MCU . Microcontroller
PID . Proportional Integral Derivative Controller
PMSM . Permanent Magnet synchronous Motor
POSIX . Portable Operating System Interface
QSPI . Quad Serial Peripheral Interface
RGB . Red-Green-Blue
RPC . Remote Procedure Call Protocol
RTOS . Real Time Operating System
SHV . Silicon-Heaven Infrastructure
SPI . Serial Peripheral Interface
TCP . Transmission Control Protocol
UART . Universal Asynchronous Receiver-Transmitter
UDP . User Datagram Protocol
USB . Universal Serial Bus

42

References

[1] Bucher, Roberto. Python for control purposes. Available from https://robertob
ucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForControl.
pdf.

[2] Bucher, Roberto. Rapid Control Prototyping with pysimCoder and NuttX . Avail-
able from https://www.youtube.com/watch?v=y7NvFAp3OII.

[3] Carvalho de Assis, Alan. What is the NuttX RTOS and why should you care?
Available from https://www.embedded.com/what-is-the-nuttx-rtos-and-
why-should-you-care/.

[4] Zhang, Mingyang, Martin Timmerman, Luc Perneel, and Toon Goedemé.
Which Is the Best Real-Time Operating System for Drones? Evaluation of the
Real-Time Characteristics of NuttX and ChibiOS. In: 2021 International Confer-
ence on Unmanned Aircraft Systems (ICUAS). 2021. pp. 582-590. Available from
DOI 10.1109/ICUAS51884.2021.9476878.

[5] The Apache Foundation. About Apache NuttX . Available from http://nuttx.
incubator.apache.org/docs/latest/introduction/about.html.

[6] The Apache Foundation. Directory Structures. Available from http://nuttx.
incubator.apache.org/docs/latest/quickstart/organization.html.

[7] The Apache Foundation. Device Drivers. Available from https://nuttx.
apache.org/docs/latest/components/drivers/index.html.

[8] Güven, Yılmaz, Ercan Coşgun, Sıtkı Kocaoğlu, Harun Gezici, and Eray Yil-
mazlar. Understanding the Concept of Microcontroller Based Systems To Choose
The Best Hardware For Applications. Research Inventy: International Journal of
Engineering And Science. 12, 2017, Vol. 6, No. 9, pp. 38-44. ISSN 278-4721.

[9] Bucher, Roberto. pysimCoder - NUTTX - CAN - Control of the inverted pendu-
lum. Available from https://www.youtube.com/watch?v=iX_hfb6ZoR4.

[10] Bucher, Roberto. 004 Integration pysimCoder - NUTTX - Control application.
Available from https://www.youtube.com/watch?v=y7NvFAp3OII.

[11] The Apache Foundation. pysimCoder integration with NuttX . Available from
https://nuttx.apache.org/docs/latest/guides/pysimcoder.html.

[12] NXP Semiconductors. i.MX RT1060 Crossover MCU with Arm Cortex-M7
Core. Available from https://www.nxp.com/products/processors-and-microc
ontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-
crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060.

[13] Lenc, Michal. [2021] NuttX Support for Rapid Control Applications Development
with pysimCoder . Available from https://cwiki.apache.org/confluence/
display/NUTTX/%5B2021%5D+NuttX+Support+for+Rapid+Control+Applicatio
ns+Development+with+pysimCoder.

43

https://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForControl.pdf
https://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForControl.pdf
https://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForControl.pdf
https://www.youtube.com/watch?v=y7NvFAp3OII
https://www.embedded.com/what-is-the-nuttx-rtos-and-why-should-you-care/
https://www.embedded.com/what-is-the-nuttx-rtos-and-why-should-you-care/
http://dx.doi.org/10.1109/ICUAS51884.2021.9476878
http://nuttx.incubator.apache.org/docs/latest/introduction/about.html
http://nuttx.incubator.apache.org/docs/latest/introduction/about.html
http://nuttx.incubator.apache.org/docs/latest/quickstart/organization.html
http://nuttx.incubator.apache.org/docs/latest/quickstart/organization.html
https://nuttx.apache.org/docs/latest/components/drivers/index.html
https://nuttx.apache.org/docs/latest/components/drivers/index.html
https://www.youtube.com/watch?v=iX_hfb6ZoR4
https://www.youtube.com/watch?v=y7NvFAp3OII
https://nuttx.apache.org/docs/latest/guides/pysimcoder.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://cwiki.apache.org/confluence/display/NUTTX/%5B2021%5D+NuttX+Support+for+Rapid+Control+Applications+Development+with+pysimCoder
https://cwiki.apache.org/confluence/display/NUTTX/%5B2021%5D+NuttX+Support+for+Rapid+Control+Applications+Development+with+pysimCoder
https://cwiki.apache.org/confluence/display/NUTTX/%5B2021%5D+NuttX+Support+for+Rapid+Control+Applications+Development+with+pysimCoder

References .
[14] Microchip Technology Inc. SAM E MCUs. Available from https://www.

microchip.com/en-us/products/microcontrollers-and-microprocessors/
32-bit-mcus/sam-32-bit-mcus/sam-e.

[15] Northrop, Robert B.. Introduction to Instrumentation and Measurements. 2 ed.
Boca Raton: Taylor and Francis, 2005. ISBN 0-8493-3773-9.

[16] Harris, Sarah L., and David Harris. Digital Design and Computer Architecture.
RISC-V ed. Cambridge, MA 02139, USA: Morgan Kaufmann, 2021. ISBN 978-0-
12-820064-3.

[17] Microchip Technology Inc. SAM E70/S70/V70/V71 Family. Available from
https://www.microchip.com/content/dam/mchp/documents/MCU32/Pro
ductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-
DS60001527E.pdf.

[18] Ahmed, Altaf, Abdullah Aljumah, and M Ahmad. Design and Implementation of
a Direct Memory Access Controller for Embedded Applications. In: 2019. pp. 309.
Available from DOI 10.14716/ijtech.v10i2.795.

[19] Píša, Pavel. Ing. František Vacek. Available from https://cw.fel.cvut.cz/
b192/courses/b35apo/teacher/vacek/start.

[20] Vacek, František. SHV RPC (ChainPack RPC). Available from https://github.
com/silicon-heaven/libshv/wiki/ChainPack-RPC.

[21] Vacek, František. Login example. Available from https://github.com/silicon-
heaven/libshv/wiki/shv-login-example.

[22] Píša, Pavel. uLan Utilities Library (ULUT). Available from https://cmp.felk.
cvut.cz/~pisa/ulan/ulut.pdf.

44

https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e
https://www.microchip.com/content/dam/mchp/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf
https://www.microchip.com/content/dam/mchp/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf
https://www.microchip.com/content/dam/mchp/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf
http://dx.doi.org/10.14716/ijtech.v10i2.795
https://cw.fel.cvut.cz/b192/courses/b35apo/teacher/vacek/start
https://cw.fel.cvut.cz/b192/courses/b35apo/teacher/vacek/start
https://github.com/silicon-heaven/libshv/wiki/ChainPack-RPC
https://github.com/silicon-heaven/libshv/wiki/ChainPack-RPC
https://github.com/silicon-heaven/libshv/wiki/shv-login-example
https://github.com/silicon-heaven/libshv/wiki/shv-login-example
https://cmp.felk.cvut.cz/~pisa/ulan/ulut.pdf
https://cmp.felk.cvut.cz/~pisa/ulan/ulut.pdf

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	NuttX
	Introduction
	Source Code Organization
	Arch
	Boards
	Drivers

	Supported Platforms and MCUs
	NuttX Compilation

	PysimCoder
	Introduction
	Block Editor
	Source Code Organization
	resources
	CodeGen

	Code Generation
	General Description
	Source Code Organization

	NuttX Integration
	Supported Blocks

	Target Hardware Selection
	Introduction
	imxRT1060
	SAM E70

	Drivers Implementation
	Analog to Digital Converter
	Driver Implementation
	Application Usage

	Pulse Width Modulation
	Driver Implementation
	Application Usage

	Runtime Monitoring and Tuning of Model Parameters
	Introduction
	Silicon Heaven Infrastructure
	ChainPack RPC
	ChainPack RPC Usage

	Changes to pysimCoder Code Generation Process
	SHV Tree Structure
	Supported Methods
	Nodes' Representation

	SHV Tree Implementation
	SHV Communication
	Input/Output Blocks in SHV Tree
	SHV Settings in pysimCoder
	SHV Usage

	Examples and Documentation
	Introduction
	RC Plant Control
	Hardware Connection
	PysimCoder Application

	PMSM Control
	Hardware Connection
	PysimCoder Application

	Documentation

	Conclusion
	Source Code
	PysimCoder
	NuttX

	Glosary
	References

