

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

DIPLOMA THESIS ASSIGNMENT

Student: Alexander Schneider

Study programme: Cybernetics and Robotics
Specialisation: Systems and Control

Title of Diploma Thesis: Development of a Human Machine Interface and
Communication System with a future IO-Link Master Test Device

Guidelines:

1. Design and develop a user interface to a universal IO-Link test device which allows
parameterisation of the device in a full range of parameters defined by the IO-Link
specification.
2. Define a serial communication protocol between the device and the PC application.
3. Implement the protocol for both the device controller and the PC.
4. Design and implement the GUI for the PC application taking the usability aspects into
account.

Bibliography/Sources:

[1] http://www.io-link.com/en/
[2]http://w3.siemens.com/mcms/automation/en/industrial-communications/io-
link/pages/default.aspx
[3] Jens Fromm and Mike weber. Industrie 4.0. Kompetenzzentrum, Öffentliche IT, July 2014.
[4] IO-Link Consortium. IO-link communication - specification. January 2009.

Diploma Thesis Supervisor: Ing. Pavel Burget, Ph.D.

Valid until the summer semester 2016/2017

L.S.

prof. Ing. Michael Šebek, DrSc.
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, February 24, 2016

Declaration of Authorship

I, Alexander Schneider, declare that this thesis titled ”Development of a Human Machine
Interface and Communication System with a future IO-Link Master Test Device” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Place and Data:

”I will either find a way,
or make one.”

(Hannibal)

Development of a Human Machine Interface and

Communication System with a future

IO-Link Master Test Device

Alexander Schneider

10th of August, 2016

Abstract

Industry 4.0 represents a keyword for a novel technical revolution within smart factories
and the creation of an own peripheral intelligence for an improved supply chain. Germany
as one of the leading countries in industrial productions and embedded systems applies
new standards for the inversion of the production logic, i.e. replacing the centralized by
a decentralized fabrication. Instead of organizing the production by a main automation
system, an intelligent workpiece itself controls its making and acquaints the machines with
its manner of preparation. Therefore, new intelligent sensors and actuators are necessary
to continuously acquire the whereabouts and conditions of these products without the
intervention of humans. IO-Link is such a standard for intelligent devices which are easily
replaceable, capable of monitoring their own status and automatic gathering of specialized
operators, e.g. via the internet, in the case of warnings or failures. Such devices are
connected to an IO-Link Master which is itself linked to an upper automation system. In
order to investigate the Master components, a test device is proposed at Siemens s.r.o.
in Prague that simulates IO-Link peripheral devices and which has to be configured by a
user-friendly Human Machine Interface. Thus, an innovative PC application is developed
within the scope of the master thesis that allows parametrization in a broad range of
IO-Link and hardware specific features applying a state-of-the-art software pattern for
separating visual and functional code and the development of an autonomic test module
using a predefined script of XML functions. For the information exchange between the
PC and several test devices, an appropriate hybrid communication system and the related
protocols are invented for this specific purpose with the taken advantages of variable-
length quantities for a reduced packet overhead, implemented state machine patterns as
a maintenance-friendly design and both a module independent C++ implementation and
thread-safe integration avoiding transcription of the source code for the communication
participants that can be implemented in different programming languages. For the first
release, USB connection is exploited but the complete system is also characterized by a
layer-implemented approach according to the OSI Model to be executable on lower level
interfaces like S7-DOS.

Contents

List of Figures III

List of Tables VI

List of Abbreviations VII

I Introduction 1
1 Preamble . 1
2 Motivation . 2
3 Agile Processing for the Software Development 3
4 Thesis Structure . 3
5 Used Components . 4

II Basics 5
6 Communication . 5

6.1 OSI Model . 5
6.2 Communication Protocol . 7

6.2.1 AX.25 . 7
6.2.2 Modbus protocol . 8

6.3 Universal Serial Bus . 10
6.3.1 USB in a Nutshell . 10
6.3.2 Physical and Electrical Interface 12
6.3.3 USB Protocol . 15
6.3.4 USB Descriptors . 17
6.3.5 USB Class Devices and Drivers 20

7 IO-Link . 21
7.1 System Overview . 22
7.2 Physical and Electrical Interface . 24
7.3 Data Link Layer . 25
7.4 IO-Link Device Description and Integration into the Automation

System . 26

IIIDeveloped Communication System 28
8 Introduction . 28
9 Developed Communication Protocol . 29

9.1 Protocol Packet Fields . 30
9.1.1 Start of Packet . 30
9.1.2 Allocation Identifier . 31
9.1.3 Timestamp . 31
9.1.4 Packet Descriptor and Payload 31
9.1.5 CRC-16 . 32

I

Table of Contents

9.1.6 End of Packet . 32
9.2 Variable-Length Quantity Data Structure 33
9.3 Cyclic Redundancy Check . 37

10 Layers of the Communication System . 38
10.1 USB Communication Layer . 39

10.1.1 Communication Handler of the Device 41
10.1.2 Communication Handler of the HMI 42

10.2 Protocol Layer . 43
10.2.1 Message Decoder . 44
10.2.2 Message Encoder . 48

10.3 Message Router . 49
10.4 Presentation Layer . 51

10.4.1 IO-Link and Hardware Parameter Handler 51
10.4.2 Traces Parameter Handler 54

10.5 Application Layer . 54
11 Memory Occupancy . 55

IV Developed Human Machine Interface 57
12 Overview . 57
13 Integration of the Communication System 58
14 Design Pattern of the Human Machine Interface 60
15 General Appearance . 61
16 Developed and Implemented Tabs . 64

16.1 General Device Information . 64
16.2 Index Service Data Unit . 65
16.3 Data Storage . 67
16.4 Events . 68
16.5 Hardware and Simulation . 70
16.6 Editor . 72

16.6.1 Role of the Editor . 72
16.6.2 XML Parser . 74

V Closing Remarks 77

A Details of IO-Link Features 82

B CRC-16 Table Driven Implementation 85

C Class Diagrams of the Communication System 86

D Class Diagrams of the Human Machine Interface 91

E XML Representations used by the Editor and XML-Parser 99

F Editor during the Upload of a Simulation Script 105

G Extracted USB Files from STMicroelectronics 107

H Content of the appended CD 108

II

List of Figures

1.1 The four steps of industrial revolution, modified from [15] 1

2.1 The test rack at the Siemens IO-Link department in Prague, Czech Republic 2

6.1 SNA (System Network Architecture) and DEC NET compared to the OSI
model, translated and adapted from [21] 6

6.2 The AX.25 information frame construction 7

6.3 The Modbus RTU protocol . 9

6.4 The Modbus ASCII protocol . 9

6.5 The USB tiered star topology. Each hub is the center of a star that can
connect to peripherals or additional hubs 11

6.6 Cross section of a Full- and High-Speed cable (a) compared to a Low-Speed
USB cable (b). The cable colors are according to table 6.3 13

6.7 Different USB ports and connectors from [30] 13

6.8 Non-Return-to-Zero (NRZ) encoding of data without (a) and with bit stuff-
ing (b) . 14

6.9 The USB communication protocol with the frames and the related sub-
components, adapted from [30] . 15

6.10 Hierarchical Structure of the USB Descriptors 17

7.1 Exemplary facility architecture including IO-Link connections (orange lines)
from [10] . 22

7.2 Pin assignment of IO-Link Device from [10] 23

7.3 The different flags of the Port Qualifier Information from [20] 23

7.4 Pin assignment for port class A (a) and port class B (b) adapted from [10] 24

7.5 The physical layer of an IO-Link Device from [9] 25

7.6 Single-Drop Digital Communication Interface for small Sensors and Actua-
tors (SDCI) Universal Asynchronous Receiver Transmitter (UART) frame
format based on [9] . 25

7.7 Structure and services of the Device’s data link layer from [9] 26

7.8 Read I/O Device Description (IODD) via the Step7 PCT configuration tool
(a) and an exemplary integration into the fieldbus system with the Totally
Integrated Automation (TIA) portal (b) 27

8.1 A stack overflow . 29

9.1 The protocol sequence and the different subfields of a message 30

9.2 Messages on an exemplary USB transmission. (a) represents a message
which has been transmitted by the master (Most Significant Bit (MSB) =
”1”) to the device with ID 5 and (b) represents a message which has been
transmitted by the device with an ID of 5 31

9.3 CVLQ usage compared to using a byte describing the size of a following value
and the value itself. The raw implementation needs at least 2 bytes to be
transmitted while 1 byte is sufficient using a VLQ for small values 33

9.4 Converting a VLQ array to its original value 34

III

List of Figures

10.1 Overall structure of the different layers of the developed communication
system. Orange modules are special implementations used for the Human-
Machine Interface (HMI) . 38

10.2 Standalone power supply possibility using Pin9 connected to 5V from [36] . 40

10.3 HMI communication settings window with read ID, name and description
before changing parameters (a) during modification (b) and uploaded and
accepted changes (c) of the device’s Communication Handler parameters . 41

10.4 Startup sequence diagram of the HMI for scanning and detecting available
test device ports . 42

10.5 Class diagram of the packet and packet descriptor without showing the
provided functions . 43

10.6 The implemented Message Decoder for reading, interpreting and handling
each received byte from the Universal Serial Bus (USB) communication
layer. The solid blue path represents a complete message including a packet
payload while the orange track illustrates an error during reading of the
communication message . 47

10.7 Structure of the Message Encoder applying the state pattern with CMessage-

Router as the context, CEncoderStateIdle, CEncoderStateEncoding, CEn-
coderStateSending as the concrete state subclasses and IEncoderState

as the abstract state according to the pattern of [18] 48

10.8 The MessageEncoder state machine . 49

10.9 The Message Router state machine . 49

10.10The state machines of the IO-Link and Hardware Parameter Handler . . . 51

10.11Examples of the presentation layer protocol applied by the IO-Link and
Hardware Parameter Handlers . 52

10.12The final application layer class diagram of the communication system
with some defined functions, divided into a receiving and sending gateway
applying the strategy pattern. Due to the large amount of data, function
parameters are in general not shown. 54

11.1 ROM (a) and RAM (b) memory allocation in bytes used by the Commu-
nication System, read from the IAR Linker file ” gen.map” 55

11.2 The total memory occupancy including the IO-Link stack and external files
(labeled with ”Remaining”), read from the IAR Linker file ” gen.map” . . 56

13.1 Calling unmanaged C++ functions from .NET and calling C# .NET meth-
ods from unmanaged code . 58

14.1 Illustration of the Model-View-ViewModel Pattern 60

15.1 The start window of the designed and implemented graphical user interface 62

15.2 Several ribbon control tabs of the HMI for saving, loading and editing
related settings . 63

16.1 Accessing records (a) and the index space of the ISDU data objects (b),
adapted from [9] . 65

16.2 The implemented Index Service Data Unit (ISDU) tab for configuring and
creating related parameters . 66

16.3 The implemented Data Storage tab for configuring the IO-Link Data Stor-
age mechanism . 68

16.4 Structure of the StatusCode type 2, adapted from [9] 68

16.5 The implemented Event tab for testing Events 69

16.6 The implemented Hardware tab with the load chart using the Dynamic
Data Display (a) and the Simulation tab for general services (b) 71

IV

List of Figures

16.7 Appearance of the Editor tab showing a current command indicator on
the left, the locked Editor textfield, the application log showing past and
current commands and the possible insertable Extended Markup Language
(XML) functions . 72

16.8 Structure of the deserialized lookup table and finding a corresponding
LookUpTableEntry . 76

A.1 An overview of possible M-sequences with MC as the message control octet,
PD as process data, OD as on-request data and CKS as the CHECK/STAT
octet from [9] . 82

C.1 Class diagram of the Message Decoder . 86
C.2 Class diagram of the Message Decoder . 86
C.3 Class diagram of the Message Decoder . 87
C.4 Class diagram of the Message Router . 88
C.5 Class diagram of the Gateway . 88
C.6 Class diagram of the IO-Link Parameter Handler 89
C.7 Class diagram of the Hardware Parameter Handler 90
D.1 Main class diagram of the HMI . 91
D.2 Class diagram for communication handling 92
D.3 Class diagram for ISDU settings . 93
D.4 Class diagram of hardware and simulation related configuration 94
D.5 Class diagram of DataStorage related features 95
D.6 Class diagram for Event settings . 96
D.7 Class diagram for the Editor . 97
D.8 Class diagram of the XML Parser . 98
F.1 Screenshot of the Editor script simulation 105

V

List of Tables

6.1 Examples of the identified layer 3 protocol by the AX.25 Protocol Identifier,
extracted from [5] . 8

6.2 USB version history with corresponding maximum transfer rates and names 10
6.3 The pin numbers and colors for a USB standard connector 12
6.4 The different communication states depending on the D+ and D- states . . 14
6.5 Different Packet Identifier (PID)s representing the related packets 15
6.6 The USB Device Descriptor table based on [30] and [1] 18
6.7 The USB Configuration Descriptor table based on [30] and [1] 18
6.8 The USB Interface Descriptor table based on [30] and [1] 18
6.9 USB Endpoint Descriptor based on [30] and [1] 19
7.1 SDCI compatibility with IEC 61131-2 according to [9] 23
7.2 The meaning of each bit of the Port Qualifier Information, adapted from [20] 24
9.1 The different bytes and subbits of the Packet Descriptor 32
9.2 The defined Packet Identifiers . 32
10.1 The defined numbered and reachable states of the Message Decoder, de-

pending of the return value of the related function 46
10.2 The considered PIDs of the Message Router for a received packet. 50
16.1 The possible ISDU data types . 66
16.2 The Data Storage Index assignments, adapted from [9] 67
16.3 SOURCE Values . 69
16.4 MODE Values . 69
16.5 TYPE Values . 69
A.1 Direct Parameter page 1 and 2 from [9] . 83
A.2 Defined Event Codes for Devices from [9] 84
B.1 The calculated Cyclic Redundancy Check (CRC) Lookup table, read with

the watch function of the IAR Embedded Workbench 85
G.1 The required and extracted USB stack files from [34] for integration into

the Communication System . 107

VI

List of Abbreviations

AID Allocation Identifier
ASCII American Standard Code for

Information Interchange
CDC Communication Device Class
CLI Common Language

Infrastructure
CLR Common Language Runtime
COM Component Object Model
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CRLF Carriage Return - Line Feed
DFS Depth-First Search
DI/DO Digital Input/Digital Output
dll Dynamic Link Library
DPI Dots Per Inch
ENDP Endpoint
EOP End of Packet
FCTID Function Identifier
FIFO First In - First Out
GUI Graphical User Interface
HMI Human-Machine Interface
IDE Integrated Development

Environment
IL Intermediate Language
IODD I/O Device Description
ISDU Index Service Data Unit
ISO International Organization

for Standardization
JIT Just In Time
LRC Longitudinal Redundancy

Check
MCU Microcontroller Unit
MSB Most Significant Bit
MSIL Microsoft Intermediate

Language
MVVM Model-View-ViewModel
NRZ Non-Return-to-Zero

NYET No Response Yet
OTG On-the-Go
OSI Model Open Systems

Interconnection Model
PD Packet Descriptor
PID Packet Identifier
PLC Programmable Logic

Controller
RAM Random-Access Memory
ROM Read-Only Memory
SDCI Single-Drop Digital

Communication Interface for
small Sensors and Actuators

SE0 Single Ended Zero
SIO Standard Input and Output
SNA System Network Architecture
SOP Start of Packet
SOF Start of Frame
SPI Serial Peripheral Interface
TCP/IP Transmission Control

Protocol/Internet Protocol
TIA Totally Integrated

Automation
TS Timestamp
UART Universal Asynchronous

Receiver Transmitter
UDP User Datagram Protocol
USB Universal Serial Bus
VAL Value
VALID Value Identifier
VCP Virtual Communication Port
VLQ Variable-Length Quantity
WDK Windows Driver Kit
WPF Windows Presentation

Foundation
XML Extended Markup Language

VII

This page is intentionally left blank

Chapter I

Introduction

1 Preamble

The steady demand for more efficient and flexible industrial processes as well as opti-
mization of production cycles lead to the new vision of Industry 4.0 which is a German
terminology for a highly modern technique of manufacturing. According to figure 1.1,
three preliminary stages took place which were the mechanization via steam power, the
mass production with the use of electricity and finally, the usage of electronics and IT
for improved automation. Thus, Industry 4.0 is considered as the fourth industrial revo-
lution applying advanced and intelligent sensor/actuator techniques within an intelligent
networked factory [17].

The main focus lies on the optimization, i.e. optimizing the development, production,
logistics and services in order to meet the individual customer demands. Hence, Industry
4.0 aims for a standardization via open standards, management of complex systems,
operational safety, data privacy and IT security as well as resource-efficiency taking into
account humans, financial and raw materials for example [6]. Therefore, the new IO-
Link standard (IEC 61131-9) enables the usage of easy connection and communication
with smart sensors and actuators within a production cycle and highly contributes to the
success of Industry 4.0.

End of the 18th century Beginning of the 20th century Beginning of the 70s Today

C
o

m
p

le
xi

ty

Fourth industrial revolution
Based upon cyber-physical
systems

First programmable logic control-
ler, Medicon 084 | 1969

Third industrial revolution
Usage of electronics and IT for en-
hanced automation of the production

First assembly belt, slaughter-
houses of Cincinnati | 1970

Second industrial revolution
Mass production based upon
division of labor with the help

First weaving loom | 1784 of electricity

First industrial revolution
Mechanical production plants
with the help of steam- and
hydropower

Figure 1.1: The four steps of industrial revolution, modified from [15]

1

Chapter I Introduction

2 Motivation

Among others, Siemens also develops, produces and maintains so-called IO-Link Master
devices, e.g. the SIMATIC ET 200eco PN [33], which are used for integrating smart
sensors and actuators in a PROFINET/PROFIBUS network. Furthermore, such modules
are subject to tests for checking the correct behavior concerning operation without any
software bugs, hardware safety regulations, for example in case of shortcuts or wire breaks,
as well as a proper collaboration with connected IO-Link sensors and actuators. As
a consequence, a large spectrum of test scenarios has to be considered to satisfy the
customer’s needs. Figure 2.1 shows a test rack at the Siemens IO-Link department in
Prague which is equipped with several interconnected master devices, sensors, relays and
Simatic CPUs for testing.

Figure 2.1: The test rack at the Siemens IO-Link department in Prague, Czech Republic

Due to the need of an increased spectrum of possible test scenarios, avoiding such large
test racks and applying automatic test scripts, a new IO-Link test device was proposed at
the department and this device has to be configured via a HMI and by an implemented
communication system which are subjects of this master thesis.

2

Chapter I Introduction

3 Agile Processing for the Software Development

The thesis was developed as part of a project at Siemens s.r.o. in Prague which was con-
firmed by a higher organization level in Germany. According to Ludewig et al., a project
is a ”temporary activity that is characterized by having a start date, specific objectives and
constraints, established responsibilities, a budget and schedule, and a completion date. If
the objective of the project is to develop a software system, then it is sometimes called a
software development or software engineering project.” [25]

As a consequence, the confined lifecycle required a systematic diversity of different
tasks. While one project member was responsible for the electrical properties of the test
device, other members had the function of integrating the IO-Link specific functions for
the embedded system or inventing the PC application while others were responsible for
planning the process of development. On the other side, the project required collaboration
between the different members for cyclic design decisions during the development process.

Furthermore, planning and specifications as well as hardware/software architecture
designs and project tracking are the key words of software engineering. Instead of the
disadvantageous Code and Fix procedure or the waterfall model, just to mention a few
software paradigms and models, Extreme Programming has been used as an agile software
development process. This pattern is based on the following four pillars [25]:

1. Simplicity for better understanding of solutions

2. Feedback for achieved results as soon as possible

3. Communication between the project participants

4. Courage as a prerequisite for the above-mentioned values

Hence, short release cycles with weekly standup-meetings have taken place within
an integral team for planning, designing and improving the communication system and
the developed Human Machine Interface according to the needs of the future application
users.

4 Thesis Structure

The thesis is structured in three main chapters, starting with a general overview of tech-
nical communication in general with the well-known OSI Model and protocols for defining
agreements between communicating participants. With the explanation of two already
existing protocols, namely the AX.25 and Modbus, the importance of such system of
clear rules becomes more obviously. Since the communication system is based on USB, a
separate chapter deals with this standard in a nutshell followed by a discussion of IO-Link.

The next chapter handles the developed and implemented communication system used
by the microcontroller and the PC application. Here, the designed protocol with its packet
fields and the layers of the system for handling the protocol and internal data structures
are discussed in detail.

Finally, the conceived HMI as the interface between the integration engineer and the
IO-Link Master test device is covered by taking the usability aspect into account and -
if required - the explanation of specific SDCI features as the basis and reasons for the
related implemented test device configuration possibilities.

According to the IO-Link specification of reference [9], IO-Link related features and
nomenclatures are starting with an uppercase like the IO-Link Master, Device or the
Data Storage mechanism, just to mention a few examples. The same rule applies to

3

Chapter I Introduction

developed modules of the communication system and PC application, e.g. the Message
Decoder to focus the attention on particular components. Furthermore, one has to take
care when talking about master and device elements. For the communication system, the
PC application is labeled as a master due to the master/slave communication and the
test module as device while the IO-Link specification indicates a device as a sensor or
actuator connected to a master module.

5 Used Components

During the development of the Human Machine Interface and Communication System,
several software applications, programs and hardware components were used. The com-
munication system is mainly written in C++ with minor use of C and with the usage of
eclipse as a text editor and a Siemens internally configured IAR compiler for embedded
device programming. The hardware solution was a cost and resource efficient STM32F4
Microcontroller Unit (MCU) development board from STMicroelectronics N.V. as a hard-
ware basis for the IO-Link test device while the PC application is developed in C# with
the Integrated Development Environment (IDE) Microsoft Visual Studio 2015. For the in-
teraction between the integrated communication system and the PC program, C++/CLI
is applied.

Non-referenced and own pictures like class diagrams or state machines are created
with the visual modeling and design platform Enterprise Architect from Sparx Systems
while others are designed with the vector graphics editor Ipe or Microsoft Office solutions.
Diagrams 9.3, 11.1 and 11.2 are visualized with Microsoft Excel.

Finally, the thesis itself is written with the free text editor TeXnicCenter and MiKTeX
for Windows to prepare documents using the LATEXdocument markup language.

4

Chapter II

Basics

6 Communication

Communication represents an exchange of information between a source and a sink within
an interconnected network. If the source generates the data to be transmitted, a trans-
mitter converts the data into transmittable signals which will be sent over a transmitter
system carrying the data. On the receiver side, the signals are converted back into known
data for the concerned system. This requires the implementation and usage of well-defined
communication systems which participate to the technical communication.

One of the primary goals of the thesis is the development of a communication system
for the interaction between an IO-Link Master test device and the PC application. Here,
communication systems can be divided into end systems representing the message source
or sink and subsystems like protocol converters or transmission devices. General tasks
of communication systems are managing inputs, outputs, transmissions, exchanging and
storage of payload information between different endpoints [21]. Different subtasks of a
digital communication system can be accomplished by the use of modular layers within
the system enabling easy exchange of the different layers which lead to the famous Open
Systems Interconnection Model (OSI Model) as a reference standard for telecommunica-
tion and computing systems. Therefore, this chapter deals with the mentioned OSI Model
in a nutshell as well as with the basics of communication and with the purpose of pro-
tocols which are explained by the help of two example models. At the end, the USB
standard will be explained in detail since it represents the main interface between the PC
application and the test device.

6.1 OSI Model

As already mentioned in the introductory chapter, the OSI Model acts as a reference de-
veloped by the International Organization for Standardization (ISO) to split the behavior
of a communication system into seven layers [3]. Figure 6.1 illustrates two manufacturer-
specific models, namely the System Network Architecture (SNA) by IBM and the DEC
NET by Digital Equipment, compared to the OSI Model. All models have in common
that each specific communication task is encapsulated into given groups with an hierar-
chical structure. A major benefit of the OSI Model is that the layers can be exchanged or
modified without affecting the adjacent layers leading to the concept of ”Open Systems”
where specific tasks can be replaced by other products of manufacturers [21].

The first four layers are mainly responsible for the transportation of messages and
as a result, they are defined as transport oriented layers with transport protocols. The
functions of each submodule are very close to each other enabling a simple replacement.

5

Chapter II Basics

The remaining upper three layers are application oriented and use application protocols.
The master thesis proposes a reliable and simple communication protocol which is

in theory capable of being used by the lowest level of the system enabling an interface-
independent approach and also contains the implementation of the payload for application-
oriented tasks. Therefore, each particular layer of the OSI Model has to be summarized
as well as some specific tasks, services and functions.

Figure 6.1: SNA (System Network Architecture) and DEC NET compared to the OSI
model, translated and adapted from [21]

Layer 1: Physical Layer This lowest layer has the task of transmitting bits between
adjoining systems using the associated transmission medium. Its services are establishing,
maintaining and aborting of physical connections, handling layer related error messages
and enabling the physical bit-by-bit connection. Other functions of this module are for
example bit synchronization and line coding as well as error detection and error handling.
Layer 2: Data Link Layer The Data Link Layer ensures a safe data transmission of
hops between neighboring systems using services of the layer 1. Furthermore, it regulates
the data flow and forms the bit transmission layer by creating and synchronizing frames,
sequencing (maintaining a sequence of bits), error handling as well as splitting and merging
of messages (multiplexing) just to mention a few functions.
Layer 3: Network Layer It is responsible for the creation and maintaining net-
work connections for connection-oriented transmission and network routes (connectionless
transmission) between endpoints using ensured hops of the layer 2. It has several tasks
which overlap with the Data Link Layer, e.g. splitting and merging of ensured hops,
sequencing and optimizing the communication.
Layer 4: Transport Layer Transparent data transmission on network connections
or routes (based on layer 3) between end systems are ensured by this layer. It creates
and aborts end-to-end transport connections, handling errors, encrypting messages, as-
signs transport connections based upon critical parameters and priorities. Moreover, it
segments large data and avoids congestion of the data flow.

6

Chapter II Basics

Layer 5: Session Layer The Session Layer establishes and administrates sessions be-
tween instances of applications and handles layer related errors. It introduces checkpoints
where an interrupted session can be started again.
Layer 6: Presentation Layer This layer ensures consistent representations of informa-
tion for the instances of applications for proper communication between the end systems
during a session. Its main task is the exchange of information between the applications.
Also, data compression and encryption are part of this layer.
Layer 7: Application Layer The highest level of the OSI Model is the Application
Layer for the application procedure. It is the source and sink of a communication [21]
where a lot of functions can be represented, e.g. file transfer, safety mechanisms, syn-
chronization of the application processes, etc. It is the interface to the application and
provides data input and output.

6.2 Communication Protocol

Protocols in computer science are ”a set of rules or procedures for transmitting data
between electronic devices, such as computers. In order for computers to exchange infor-
mation, there must be a preexisting agreement as to how the information will be structured
and how each side will send and receive it” [14].

Following this definition from the Encyclopædia Britannica, each single layer of a
communication system has to use predefined protocols for a proper work. For the sake of
completeness, two protocols are discussed shortly which are the AX.25 used by amateur
radio and the Modbus-protocol developed for programmable logic controllers. Whenever
a new protocol is explained in the thesis, an illustration emphasizes both the structure
and the sizes of each field, usually in bytes, as in figure 6.2 and detailed descriptions of
single fields are explained.

6.2.1 AX.25

To ensure a Data Link Layer compatibility between stations especially for half- or full-
duplex amateur radio environments, the AX.25 protocol has been developed. According
to the specification [5], three general types of AX.25 frames can be distinguished where
the first one is depicted in figure 6.2:

1. Information frame (I frame)

2. Supervisory frame (S frame)

3. Unnumbered frame (U frame)

Like the developed communication protocol in chapter 9, fields consist of an elemental
number of bytes (8-bit octet) where the specific functions are summarized below.

Frame Frame Frame Frame Frame

Time

Flag Control Info FCS FlagAddress PID

[1] [1][14;28] [1;2] [1] [0...255] [2]

Figure 6.2: The AX.25 information frame construction

7

Chapter II Basics

Each AX.25 frame is delimited by a start and end Flag represented by a byte with the
hexadecimal value ”0x7E” (”01111110”). This field is unique since the AX.25 protocol
implementation uses bit stuffing such that this sequence is usually not appearing again
during transmission. The subsequent Address field represents the source and destination
of a frame which can be up to 28 bytes long followed by a one or two octets Control field
that defines the type of frame being transferred and which controls different attributes of
the Data Link Layer connection. The Protocol Identifier (here: PID) is only used by
information frames which sets the type of the Layer 3 protocol, if any, as can be seen in
table 6.1. The last two fields are the Information field that can be used for wrapping a
higher layer level protocol or other user data and the FCS field is a 16-bit Frame-Check
Sequence [5].

Hex Binary Layer 3 protocol type
0x01 00000001 ISO 8208/CCITT X.25 PLP
0x06 00000110 Compressed TCP/IP Packet Van Jacobson (RFC 1144)
0x07 00000111 Uncompressed TCP/IP Packet Van Jacobson (RFC 1144)
0x08 00001000 Segmentation Fragment
0xC3 11000011 TEXNET Datagram Protocol
0xC4 11000100 Link Quality Protocol
0xCA 11001010 Appletalk
0xCB 11001011 Appletalk ARP
0xCC 11001100 ARPA Internet Protocol
0xCD 11001101 ARPA Address Resolution Protocol
0xCE 11001110 FlexNet
0xCF 11001111 NET/ROM
0xF0 11110000 No Layer 3 Protocol

Table 6.1: Examples of the identified layer 3 protocol by the AX.25 Protocol Identifier,
extracted from [5]

6.2.2 Modbus protocol

With the development of programmable logic controllers in the early 70s, a new com-
munication protocol has been developed to ensure a stable communication between a
master device, e.g. a PC, and slaves, e.g. measurement and control systems. This pro-
tocol is called Modbus and is an application-layered protocol (Layer 7 according to the
OSI Model) which can be run on different types of buses and networks. Moreover, it is a
protocol based on request/reply which offers services defined by coded functions [31].

Several variants of the Modbus protocol exist depending on the used lower layer com-
munication stack. In the following, two examples are explained and illustrated in more
detail according to the Modbus protocol specification [29], specification [28] and the web-
site [31]:

• Modbus RTU is used for serial communication representing the data in binary format
and where the start and endpoints of a frame are determined by defined silent
periods of at least 3.5 character times. Hence, both the silent time depends on
the transmission speed and furthermore, one frame has to be sent continuously,
otherwise the receiver will discard the message. Figure 6.3 illustrates the Modbus
RTU protocol with a unique Address field addressing the related communication
participant within the network, a Function field to perform a specific behavior
and a Data field followed by 2 byte CRC-16 error detection. For example, if a
coil of a relay with a defined 16bit address shall be switched on, the function field

8

Chapter II Basics

value contains - according to a specific look-up table - ”0x05” while the data field
is represented by ”0xFF00”.

Frame Frame Frame Frame Frame

Time

Start Function Data CRC EndAddress

[Silence][1] [1] [n] [2][Silence]

Figure 6.3: The Modbus RTU protocol

• Modbus ASCII is also used for serial communication with the exception, that the
fields are ASCII coded making the protocol human readable with the drawback
of decreased data throughput compared to RTU. Instead of a waiting time of si-
lence, a colon (”:”) is defined to symbolize the start of a packet while a Carriage
Return - Line Feed (CRLF) specifies the end pattern of a Modbus ASCII frame.
Furthermore, Longitudinal Redundancy Check (LRC) rather than CRC error
detection is performed on the packet. This ASCII frame is shown in illustration 6.4.

Frame Frame Frame Frame Frame

Time

Start Function Data LRC EndAddress

[CRLF][2] [1] [n] [2][:]

Figure 6.4: The Modbus ASCII protocol

As already mentioned, more versions of Modbus exist which are for example the
Modbus TCP/IP for communication over Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) networks either with or without a checksum, or the Modbus over User
Datagram Protocol (UDP) removing the overhead required by TCP [23].

9

Chapter II Basics

6.3 Universal Serial Bus

The development of processors with steadily increasing performance, faster and larger
memory capabilities and growing bus clocks requires interfaces which are able to compete
with this progress. Outdated transmission media like parallel printer ports or the serial
RS-232 standard are not capable of high data rate transfer between miscellaneous devices
anymore and are replaced by more modern, faster and reliable specifications like the
Firewire (1394) or USB standard.

Since the first version of USB 1.0 in January 1996 [30], the technology has been
continuously extended and improved. Although USB 3.1 represents the latest version in
the history of this standard with a SuperSpeed+ USB clock rate up to 10 Gb/s [11], this
thesis only deals with USB 2.0 as the highest version since the used microcontroller for
the test device just supports Full-Speed at most [36].

Hence, this chapter starts with a short introduction of USB in general and the phys-
ical interface from both the electrical and mechanical point of view. Section 6.3.3 deals
with the standard protocol followed by transfer types with the concept of Pipes and End-
points. The last three chapters 6.3.4 - 6.3.5 discuss the concepts of USB descriptors,
possible classes of devices and finally the usage and development of USB drivers for a
given platform.

A more detailed information which goes beyond the scope of the thesis can be found
by the USB regulation organization, namely the USB Implementers Forum, Inc [40] and
reference [2].

6.3.1 USB in a Nutshell

USB offers a simple and user-friendly way of interaction between different devices because
of its plug-and-play compatibility, interface standardizations, reliability as well as low cost
and low power consumption, just to mention a few benefits. This makes the usage of USB
also attractive for measurement, configuration and control purposes of industrial devices
due to its open standard. In January 1996, Version 1.0 of the specification was released
and has been steadily improved since then regarding speed, effectiveness and reliability
till the state-of-the-art USB 3.1 specification. A short summary of the version history
including their related bus speeds is given in table 6.2.

Version Release date Name Bus rate
USB 1.0 January 1996 Low Speed, Full Speed 1.5 Mb/s, 12 Mb/s
USB 1.1 August 1998 Low Speed, Full Speed 1.5 Mb/s, 12 Mb/s
USB 2.0 April 2000 High-Speed 480 Mb/s
USB 3.0 November 2008 SuperSpeed 5 Gb/s
USB 3.1 July 2013 SuperSpeed+ 10 Gb/s

Table 6.2: USB version history with corresponding maximum transfer rates and names

Every USB system consists of a host and multiple peripheral devices which are con-
nected in a tiered star topology. As illustrated in figure 6.5, each star is a device that is
connected to another port on a hub while the number of points on each star can vary.
Linking several hubs in series, the topology is similar to a tier. The host itself contains
the root hub and the host controller which is a hardware chipset with the related soft-
ware driver for detection of connected devices, management of data flow between the
components, managing and providing power to the devices and bus activity monitoring
[30].

Since a host controller can only communicate with a single peripheral at a time, more
host controllers are often used and connected to the root hub which is the first interface

10

Chapter II Basics

layer of the USB system. Due to 27 used bits for the device address of the communication
protocol, 127 peripherals can be connected to a single host controller with the aid of hubs
[2].

Host Root Hub

HubPeripheral

Peripheral

Peripheral

Peripheral

PeripheralHub Hub

Peripheral Peripheral Peripheral

Figure 6.5: The USB tiered star topology. Each hub is the center of a star that can
connect to peripherals or additional hubs

External devices can be keyboards, audio devices, etc. which are identified by a given
address from the host. The communication between the host and peripheral is ensured
via pipes which are connection channels between a host and the addressable buffer, called
endpoint. Depending on the device, multiple endpoints are used where each point has
an associated pipe. While every device contains a bidirectional control pipe for control
transfers, it can optionally have unidirectional data pipes for interrupt transfer, bulk
transfer and isochronous transfer [30].

• The control transfer handles specific requests and configures the device. This is
especially done during the configuration phase.

• The interrupt transfer is used for interrupt triggering. As USB doesn’t support
hardware interrupts, polling with equidistant intervals is applied [1].

• The bulk transfer uses the data pipe for transmitting aperiodic large amount of
data without the need of real-time behavior.

• The isochronous transfer serves for data with a required guaranteed latency as
the main priority. Audio files are an example of isochronous transfer since they have
the need for a high continuity of the data stream. In this mode, error detection is
neglected for the benefit of time-stable connection [1].

During the first connection of a device with the host, an enumeration and configuration
process is initiated for exchanging information like reading the device descriptors and
the host assigns an address to the device while the device assigns an endpoint number
itself. Two separate files are connected to the enumeration and loading of device driver
processes, namely the .INF which contains the necessary information to install a device,
e.g. driver names, Windows registry information, and the .SYS file as the necessary driver
to communicate with the USB peripheral in an efficient manner.

11

Chapter II Basics

In accordance with [30], the sequence of enumeration is:

1. Connection with the host

2. Reset of the device and request of the device descriptor

3. Respond of the device to the request, setting the device address

4. Host requests the device descriptor using the previously assigned address

5. Host reads .INF file

6. .INF specifies the device driver

7. Host loads the .SYS driver for the device

8. Host applies the related configuration

Finally, the host controls the data streams on the bus and as a consequence, the devices
cannot transfer data without the host’s request. Hence, all commands are from the host’s
perspective which labels it as an ”upstream component” while devices are ”downstream”
components.

6.3.2 Physical and Electrical Interface

The standardization has also contributed to the success of USB. Table 6.3 lists the defined
pin numbers of the connectors and the related conductor colors to each wire. According
to figure 6.6, Full- and High-Speed devices only differ from low-speed devices in additional
shielding. The outermost party is an insulating jacket and for devices using higher speeds,
an outer shield with a copper braid and an inner shield made out of aluminum is used [30].
The inner shield and twisting of the data wires decrease electromagnetic interference with
the environment. Since Low-speed USB cables neither have the requirement of twisted
pairs for D+/D- nor additional shielding, the maximum length is limited to 3m while
the maximum restricted length for Full- and High-speed cables is 5m as a result of the
required signal propagation delay of 30ns [1].

Wire
Pin number

conductor color Operating Voltage
at the connector

VBus 1 red 4.40-5.25 V
D- 2 white 3.3 V
D+ 3 green 3.3 V

GND 4 black 0 V

Table 6.3: The pin numbers and colors for a USB standard connector

Another benefit of the USB standard is the possibility of bus powered devices instead
of self-powered modes with additional power supplies. During the configuration phase,
the device must not require a unit load which is according to the specification equal to
100mA. The device also tells the host about its needed power budget which is either
low-powered (100mA) or high-powered that can draw up to 500mA. Above this current
margin, the device needs an additional power supply [30].

Considering the possible connectors, a variety of ports can be used for USB. Hence,
the usage of different types at each end of a cable is to avoid loopback connections within a
USB topology. Furthermore, the power connector VBus and GND are always slightly longer
than the power connectors to supply the device first with power before a data connection

12

Chapter II Basics

Sheath

Twisted D+/D-
communication leads

Outer Shielding

Inner shielding

Power leads

(a)

Sheath

(Twisted) D+/D-
communication leads

Power leads

(b)

Figure 6.6: Cross section of a Full- and High-Speed cable (a) compared to a Low-Speed
USB cable (b). The cable colors are according to table 6.3

will be established. For the sake of completeness, illustration 6.7 shows several available
ports where an upstream connection almost always applies Type A and devices usually
Type B connectors. The additional Micro and Mini types initially have come up with
the development of USB On-the-Go (OTG) which enables a device to act as a USB host.
This is also the reason of a fifth pin for these applications to identify the host and the
device in OTG applications [30].

Figure 6.7: Different USB ports and connectors from [30]

USB works with a differential transmission using NRZ encoding using bit stuffing
across the twisted cables. Since all information sent over the connection is in a binary
format, no change in voltage level represents a logic ”1” and on the other side, a logic ”0”
is expressed by a voltage change. For synchronization purposes, bit stuffing is applied by
inserting a logic ”0” after the occurrence of seven consecutive ”1”s. The receiver of the
connection chain independently detects the stuffed bit and skips this overhead [30]. This
encoding scheme is shown in 6.8(a) with no bit stuffing and 6.8(b) with the presence of
an additional logic ”0” at the original position of the seventh ”1”.

13

Chapter II Basics

0 0 0 0 0 0 0 0 01 1 1 1 1 1

Idle

Idle

Data

to send

NRZI

(a)

0 0 1 01 1 1 0 1

Idle

Idle

Data

to send

NRZI

0 1 1 1 1 1

1 10 1 1 1 1 1 0 0 1 00 110

Stuffed bit

(b)

Figure 6.8: NRZ encoding of data without (a) and with bit stuffing (b)

Finally, one reason for the application of differential D+ and D- signals is the rejection
of common mode noise [30] but apart from that, the D+ and D- line is also used for
describing several specific states for the communication which are summarized in the
following table:

Bus State Token Description
Differential 1 D+ high, D- low Used for general data communication
Differential 0 D+ low, D- high Used for general data communication

Indicates a reset, disconnect
Single Ended Zero (SE0) D+ and D- low

or End of Packet
Single Ended One (SE1) D+ and D- high Should not occur

J-State: Differential 0 (Low-Speed)
Differential 1 (Full-Speed)
Differential 1 (High-Speed)

K-State: Differential 1 (Low-Speed)
Differential 0 (Full-Speed)
Differential 0 (High-Speed)

Resume State K-State Wakes up a device from its suspend state

Idle equals J-State
Condition occurring before and
after a packet is sent

Data lines switch from idle
Start of Packet (SOP)

to K-state
Indicating the start of a packet

End of Packet (EOP)
2 bit time of SE0, followed

Indicates the end of a packet
by a 1 bit time of J-State

Host requests a reset state
Reset SE0 for 10ms

of the connection

Keep Alive EOP every 1 ms (Low-Speed)
Used by Low-Speed devices to
prevent suspend mode

Table 6.4: The different communication states depending on the D+ and D- states

To ensure a robust data stream, low and full-speed devices use a Differential 1 by
pulling D+ above 2.8V with a 15kΩ resistor pulled to ground and D- is pulled below 0.3V
with a 1.5kΩ resistor to 3.6V and vice versa for the Differential 0 state. Furthermore,
a differential 1 is defined for the receiver if D+ is 200mV greater than D- and if D+ is
200mV less than D-, Differential 0 is recognized. The terms J- and K-states are used
in signifying the logic levels since the polarity of the signal is inverted depending on the
speed of the bus as defined in table 6.4 [24].

14

Chapter II Basics

6.3.3 USB Protocol

In contrast to outdated communication interfaces, USB is built of several layers of pro-
tocol. From the time perspective view, information transfer consists of a series of frames
where each frame itself is characterized by a Start of Frame (SOF) followed by a con-
catenation of transactions. Beyond that, each transaction packet includes a mandatory
Token packet describing the subsequent information, an optional data packet containing
the payload of the message, a status packet for recognizing correct transmission or the
previously mentioned SOF symbolizing a new frame.

Since bit stuffing is not enough for clock synchronization between the host and the
receiver, each Transaction must start with an SYNC field (8 bit for Low-Speed, 32 bit for
High-Speed devices). This enforced change of state at the beginning of each packet yields
a more reliable transmission of longer messages [1].

On the other side, each Transaction ends with an End of Packet (EOP) field repre-
sented by a Single Ended Zero (SE0) for 2 bit times with a subsequent J state for 1 bit
time. The structure of the USB protocol is shown in the following figure 6.9.

Frame Frame Frame Frame Frame

Time

SYNC Handshake EOPSYNC Data EOPSYNC Token EOP

SOF Transaction Transaction Transaction

Figure 6.9: The USB communication protocol with the frames and the related subcom-
ponents, adapted from [30]

Beside the SYNC and EOP fields, USB contains also the following fields:

• PID: Contains 8 bits with the first 4 bits used for the type identification and the
remaining 4 bits are used for error checking. The following table 6.5 gives examples
for a Token, Data and Handshake packet according to [24]:

Packet PID Value Identifier

Token

0001 OUT Token
1001 IN Token
0101 SOF Token
1101 SETUP Token
0011 DATA0
1011 DATA1
0111 DATA2

Data

1111 MDATA

Handshake

0010 ACK
1010 NACK
1110 STALL
0110 No Response Yet (NYET)

Table 6.5: Different PIDs representing the related packets

15

Chapter II Basics

• ADDR: 7 bit optional address field specifying the recipient of the message.

• Endpoint (ENDP): 4 bit optional endpoint address.

• DATA: Optional payload data in the range of 0 to 1023 bytes.

• CRC: Optional cyclic redundancy check performed on data. The size is 5 bit for
Token and 16 bit for Data packets.

As already mentioned, four types of packets are defined by the USB specification [30].

• The Token packets initiate the transaction and due to the host centric network, the
source of the packet is always the host component. As can be derived from table 6.5
above three types can be identified. While an IN Token marks requests from the host
to get data from the device, an OUT Token is the request of sending information
to the device. The SETUP Token precedes control transfers. The format of this
packet is always

--

| SYNC | PID | ADDR | ENDP | CRC | EOP |

--.

• Data packets follow the Token packets and can contain out of 1024 bytes of payload
data as a maximum, depend on the type of transfer (e.g. the maximum size for
low-speed devices is only 8 bytes) and have to conform the format with a 16 bit
CRC:

| SYNC | PID | DATA | CRC16 | EOP |

Moreover, all data has to be sent in multiple of bytes. This lead to one basic design
decision of the developed protocol in chapter 9.

• Handshake packets complete each transaction and only consists of an SYNC, PID
and EOP field:

| SYNC | PID | EOP |

Acknowledge (ACK), negative acknowledgment (NACK) and error indication (STALL)
sent by the device are available in all USB speed classes but the indication that the
device is not ready yet for another packet reception (NYET) is only provided for
high-speed devices.

• Not mentioned in table 6.5 are the four special packets according to [30]:

– PRE as a preamble where the host informs hubs that the next packet is low
speed

– SPLIT to symbolize a split transaction (only for high-speed devices)

– ERR as a response of the hub for a faulty transaction (only for high-speed
devices)

– PING for status review after reception of a NYET handshake (only for high-
speed devices)

16

Chapter II Basics

6.3.4 USB Descriptors

In order to correctly identify the device by the USB master, packet structures are neces-
sary which are data structures storing information about the related device. As described
earlier, the host has to know e.g. the required power budget of the device during the
enumeration process and requests the descriptors from the device. This contributes to
the plug-and-play properties of USB where devices are identified and configured correctly.
While each device has one and only one Device-Descriptor, it can have several Configura-
tion Descriptors - although only one configuration can be active at a time. Furthermore,
multiple Interface Descriptors can be available, based upon the definition of the USB de-
veloper. Hence, devices can provide several functions at the same time and subdevices can
be addressed by the appropriate driver [1]. As a result, also standard drivers provided by
the operating system are able to communicate with a device in a limited manner. Figure
6.10 clarifies the hierarchical structure of the USB descriptor usage.

Device Descriptor

Configuration
Descriptor

Configuration
Descriptor

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

optional String
Descriptor

optional String
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

optional String
Descriptor

Figure 6.10: Hierarchical Structure of the USB Descriptors

Moreover, the number of USB descriptor tables can vary, depending on the USB de-
vice. USB 2.0 has for example additional Device-Qualifier and Other-Speed-Configuration
Descriptors, and optional string descriptors are used for the representation in the system
information page of an operating system.

An important property is the Little-Endian format of the descriptors that the designer
has to keep in mind. Beyond that, many entries are 2 bytes long.

The most important descriptor is the Device Descriptor and its fields are given in table
6.6 where the blength is always 18 bytes. As can be seen, the host can retrieve important
information about the device such as the Vendor ID, Product information, and others,
just to mention a few examples.

Offset Field expression Size (byte) Description Example
0 bLength 1 Size of the descriptor (byte) 0x12
1 bDescriptorType 1 Descriptor type 0x01
2 bcdUSB(L) 1

USB specification version
0x10

3 bcdUSB(H) 1 0x01
4 bDeviceClass 1 Class code 0x01
5 bDeviceSubClass 1 Device subclass code 0xFF
6 bDeviceProtocoll 1 Device protocol 0xFF
7 bMaxPacketSize 1 Max packet size for Endpoint 0 0x40

17

Chapter II Basics

8 idVendor(L+H) 2 Vendor ID 0x47 + 0x05
10 idProduct (L+H) 2 Vendor ID of manufacturer 0x40 + 0x10
12 bcdDevice(L+H) 2 Release number of the device 0x12 + 0x02
14 iManufacturer 1 String index of manufacturer 0x00
15 iProduct 1 String Index of product 0x00
16 iSerialNumber 1 String index of serial number 0x00
17 bNumConfigurations 1 Number of supported configurations 0x00

Table 6.6: The USB Device Descriptor table based on [30] and [1]

The configuration descriptor (see table 6.7) is always 9 bytes long and contains e.g.
the number of interfaces, the property of being bus powered or not and its configuration
number (byte 5) which has to be unique for each configuration table in order to distinguish
different configurations by the host.

Offset Field expression Size (byte) Description Example
0 bLength 1 Size of the descriptor (byte) 0x09
1 bDescriptorType 1 type = Configuration 0x02
2 wTotalLength(L) 1 Total length including 0xC2
2 wTotalLength(H) 1 interface and endpoint desciptors 0x00
4 bNumInterfaces 1 Related number of interfaces 0x01
5 bConfigurationValue 1 Configuration number 0x02
6 iConfiguration 1 String index for the configuration 0x00

7 bmAttributes 1
Bit7: Reserved (1)

0x80Bit6: Self powered
Bit5: Remote wakeup

8 bMaxPower 1 Current demand in 2mA steps 0x30

Table 6.7: The USB Configuration Descriptor table based on [30] and [1]

Another defined descriptor type is the Interface Descriptor which is sent together with
the Configuration Descriptor for defining a specific interface within a configuration. To
exploit the USB bandwidth more efficiently, a special field is used to set up the alternate
settings. E.g. if the device is in standby mode, the used bandwidth equals 0 bytes, but
if data has to be transmitted, the value can be changed to 1 to support an isochronous
bandwidth of 5 Mbit/s, depending on the settings of the related set of Endpoint descriptors
[1].

Offset Field expression Size (byte) Description Example
0 bLength 1 Size of the descriptor (byte) 0x09
1 bDescriptorType 1 type = Interface 0x04
2 bInterfaceNumber(L) 1 Zero based interface number 0x00
3 bAlternateSetting 1 Alternate setting value 0x00
4 bNumEndpoints 1 Number of related Endpoints w/o EP0 0x01
5 bInterfaceClass 1 Interface class code 0xFF
6 bInterfaceSubClass 1 Interface SubClass code 0xFF
7 bInterfaceProtocol 1 Protocol code 0xFF
8 iInterface 1 String index for the interface 0x00

Table 6.8: The USB Interface Descriptor table based on [30] and [1]

As already mentioned, each endpoint contains its own Endpoint Descriptor with the
exception of the EP0 descriptors because it is sufficiently described and configured in
the Device descriptor. Since an Endpoint descriptor will be automatically sent with the
related Configuration descriptor, the host cannot ask explicitly for a specific Endpoint

18

Chapter II Basics

description table. According to table 6.9, this descriptor informs the host about the
necessary endpoint direction, transfer type, and the maximum packet size. With the
introduction of USB 2.0, the descriptor was also extended with a polling interval bInterval
for interrupt and isochronous transfer. The interpretation of the field depends on the used
USB speed class and transfer type. For example in the case of full-speed 2.0 devices, the
polling interval in ms is calculated according to

t = 2bInterval−1 [ms] (6.1)

with bInterval = 1...16 yielding a range from 1 ms to 32.768 seconds [2].

But in the case of Bulk of Control-Transfer on the other side, the polling interval is
ignored, but the field is then used to symbolize the maximum allowed NAK packets within
a micro frame (0 to 255).

Offset Field expression Size (byte) Description Example
0 bLength 1 Size of the descriptor (byte) 0x07
1 bDescriptorType 1 type = Endpoint 0x05

2 bEndpointAddress 1

Bit 3..0: Endpoint Number 1000
Bit 6..4: Reserved 000
Bit 7: Endpoint Direction

- OUT Endpoint 0
- IN Endpoint 1

Bit 1..0: Transfer Type
-Control 00
-Isochronous 01
-Bulk 10
-Interrupt 11

Bit 3..2: Synchronization Type
-No Synchronization 00
-Asynchronous 01
-Adaptive 10
-Synchronous 11

Bit 5..4: Usage Type
-Data endpoint 00
-Feedback Endpoint 01
-Implicit feedback data endpoint 10
-Reserved 11

3 bmAttributes 1

4 2 wMaxPacketSize
Bit 10..0: Depth of the FIFO 1000000000
Bit 12..11: Number of transactions

01
per microframe

6 bInterval 1 Polling Interval, see 6.1 0x0A

Table 6.9: USB Endpoint Descriptor based on [30] and [1]

Beside the previously mentioned descriptors, the USB specification defines several
other tables. For the sake of completeness, these are for example String descriptors to
represent user readable information about the device like the device name, manufacturer,
serial number, etc. and can be obtained for example via the device manager and the
properties of a given USB device. Other descriptors are report descriptors as an extended
set of information, Device Qualifier Descriptors telling the host about supported speed
properties of a device or the Microsoft Operating System Descriptor representing special
icons, registry settings of a device, help files, just to mention a few samples.

19

Chapter II Basics

6.3.5 USB Class Devices and Drivers

As mentioned in table 6.6 of the Device Descriptor chapter, the fourth byte identifies the
type of the USB class. Interfaces and devices with almost the same properties can be
combined by theses classes which have the benefit that the equipment can be addressed
with the same universal class drivers which enable cross-platform support for various
operating systems. The most common classes are for example the

• Communication and Communication Device Class (CDC) Control with class code
”0x02”,

• Human Interface Device (HID) with class code ”0x03”,

• Mass Storage Device (MSD) with class code ”0x08”,

• and Vendor Specific classes with class code ”0xFF”.

As the name already implies, vendor specific classes are customized classes conforming
the USB specification which are developed by the designer to perform a particular task.
Furthermore, these classes require WinUSB, CYUSB or another vendor specific driver but
using WinUSB as a Windows driver doesn’t have to pass through the Windows Hardware
Quality Labs (WHQL) tests to get an approved driver [30].

Ultimately, a well implemented and configured driver is necessary for a proper commu-
nication between the PC and its peripherals. To develop Windows drivers, the Windows
Driver Kit (WDK) can be used as an integrated tool in the Microsoft Visual Studio envi-
ronment [27]. Before a communication is established and the application receives a signal,
the information is passed through different driver layers, e.g. a Host-driver, hub-driver,
and a vendor specific driver. These application specific drivers require a detailed knowl-
edge and experience in programming and cannot be covered in detail. While windows
driver models have the .sys file extension, generic drivers use different Inf-files during the
enumeration process when the device is connected to the bus. The correctly chosen .inf
file contains the several information like the Vendor-ID, Product-ID and settings about
the configuration of the device to load the suitable driver [1].

In this chapter, the OSI Model, as well as the meaning and usage of communication
protocols has been described by the help of two independent protocols, operating on dif-
ferent layers and used in different applications which are related to space communication,
respectively industrial automation. Furthermore, the next chapter dealt with USB in
more detail since it represents the main interface for digital communication between the
IO-Link test device and the Human Machine Interface. Although IO-Link is a commu-
nication system, too, a separate chapter will cover this relatively new state of the art
standard for industrial automation contributing to Industry 4.0.

20

Chapter II Basics

7 IO-Link

The steady progress and need for more efficient production cycles require the develop-
ment of improved sensor and actuator technology within a modern manufacturing facility.
Nowadays, microprocessors and other electronic components are getting more powerful,
cheaper and compact enabling the enhancement of normal passive analog/digital sensors
up to intelligent devices actively communicating with higher levels in a production net-
work. Therefore, a new communication system with the trade name IO-Link has been
standardized by the norm IEC 61131-9 under the term Single-Drop Digital Communi-
cation Interface for small Sensors and Actuators (SDCI). This norm defines electrical
connections and the digital communication protocol for data exchange between IO-Link
Devices and the automation system.

This new IO-technology has several advantages according to [10]:

• Open standard such that all Devices are assimilable in current fieldbus systems,
such as PROFINET.

• Tool supported parameter settings and centralized data storage for fast startup
operations.

• Simple and standardized connectors reducing the variety of interfaces.

• Continuous communication between sensors and actuators with the control system,
e.g. access to process and diagnostic data.

• Improved diagnostic data reducing the effort for error searching and an improved
maintenance.

• Dynamic modification of Device parameters foreshortening standstill periods during
a product change leading to an improved product diversity.

• Automatic parametrization during a replacement of a Device in a running process
avoiding standstill times and erroneous settings.

• Consistent identification of Devices.

Although the driving force of improved production cycles is the digitization to ensure
the advantages mentioned above, IO-Link also maintains backward compatibility with the
DI/DO signals to allow full integration in existing production cycles.

Based mainly on the IO-Link specification [9], the chapter gives a short overview of the
IO-Link technology, followed by physical and electrical properties and the data link layer
as well as the Device description for identifying connected sensors and actuators. Finally,
a short example of integrating IO-Link Masters and Devices into an automation system
will be given. A too detailed field of attention of the lowest layer procedures is disregarded
since the integration of an existing IO-Link stack was done by another student’s work.
Furthermore, more detailed characteristics about the standard will only be given during
the chapters of the developed PC application showing the occasion for each implemented
tab to configure the test device in a broad range according to the IO-Link specification
in reference [9].

21

Chapter II Basics

7.1 System Overview

IO-Link provides the communication up to the lowest level of an automation hierarchy and
covers a broad range of different sensors and actuators. Here, process data, configuration,
and diagnostic transmissions are done via a simple three, respectively five, non-shielded
wire connection. Unlike PROFINET, IO-Link is a point-to-point connection between the
Devices and an IO-Link Master, which provides one or several IO-Link Device ports and is
itself connected to an upper layer bus system. Hence, IO-Link enables an easy integration
in already existing field bus systems like PROFINET, too. An example of the system
architecture is illustrated in figure 7.1. The IO-Link Device provides access to process
data and variables for Device identification and other purposes. Here, all variables are
addressed by indexes and the elements of structured variables, e.g. records can be accessed
by their related subindices.

Figure 7.1: Exemplary facility architecture including IO-Link connections (orange lines)
from [10]

Another role of the Master is detection, identification, and managing of Devices con-
nected to its ports where the Devices are associated by their corresponding IODD which
are provided by the related manufacturers.

SDCI uses 24V levels since this voltage is standardized for digital input and output
interfaces according to IEC 61131-2 in a point-to-point connection. Nowadays, a couple of
devices are already based on microcontrollers with existing UART interfaces. Therefore,
such devices can be easily extended by additional hardware and software for protocol im-
plementation to support communication according to the IO-Link standard [9]. Moreover,
the usage of 24V level makes the IO-Link protocol very robust with respect to electro-
magnetic interferences without the need of shielding. During communication, the serial
bi-directional peer-to-peer communication protocol is repeated twice if a communication
failure occurred and will be aborted after the second repetition. This failure will then be
sent to the higher layer regulation system.

22

Chapter II Basics

IO-Link System Description6

Engineering

The engineering of the IO-Link system is
performed in parallel with the engineering
of the overall automation system and can
be embedded in and meshed with this
engineering.

2 .2 IO-Link interface

IO-Link is a serial, bi-directional point-to-point
connection for signal transmission and energy
supply under any networks, fi eldbuses, or
backplane buses.

Connection technology in IP65/67

For the connection technology in IP65/67, one
possibility that has been defi ned is an M12
plug connector, in which sensors usually have
a 4-pin plug and actuators a 5-pin plug. IO-Link
masters generally have a 5-pin M12 socket.

The pin assignment is specified according to
IEC 60974-5-2 as follows:

• Pin 1: 24 V
• Pin 3: 0 V
• Pin 4: Switching and communication line

(C/Q)

These 3 pins are used for the IO-Link commu-
nication as well as for supplying a maximum of
200 mA to the device (see Figure 3).

Port types in IP65/67

The specifi cation distinguishes two types of
ports for the IO-Link master:

Port Class A (Type A)

In this type, the functions of pins 2 and
5 are not specifi ed. The manufacturer
defi nes these functions. Pin 2 is usually
assigned with an additional digital
channel.

Figure 4: Pin assignment Port Class A

Port Class B (Type B)

This type provides additional supply
voltage and is suitable for the
connection of devices that have an

Figure 2: IO-Link point-to-point connection
Figure 3: Pin assignment of IO-Link device

1

3
5

4

L+

L–

C/Q
IO-Link

SIO

2

Figure 7.2: Pin assignment of IO-Link De-
vice from [10]

Pin Signal Definition
1 L+ 24V

Not connected,
2 I/Q

DI or DO
3 L- 0V

Q ”Switching signal”
DI (SIO)
”Coded switching”

4
C

(COM1, COM2, COM3)

Table 7.1: SDCI compatibility with IEC
61131-2 according to [9]

The pin assignments and SDCI compatibility with IEC 61131-2 are shown in figure
7.2 and table 7.1. As can be seen in the table 7.1, a Master also supports digital input
and each port of the Master device can be configured as one of the following operating
modes:

• IO-Link-Mode: The port is registered for IO-Link configuration and communication.

• SIO-Mode: The port is operating in default input/output configuration:

– DI: The port of the Master behaves like a digital input, the Device like a binary
sensor.

– DQ: The port of the Master behaves like a digital output, the Device like a
binary actuator.

• Inactive: The port is not used.

To initialize a new communication, the IO-Link Master sends a predefined wake up
signal and waits for a response from a Device. It starts with the highest possible transfer
rate till the lowest one with the supported speeds

• COM1 = 4.8 kBaud,

• COM2 = 38.4 kBaud,

• COM3 = 230.4 KBaud,

where every Device only supports one of the above mentioned rates. If the Master receives
a response, communication parameters are exchanged between the devices and after that,
cyclic process data are transmitted which can be up to 32bytes long. Beside the process
data, there are also cyclic 8 bit value status information, called Port Qualifier Information,
implying a valid or invalid process data. The several flags and the meaning of each Port
Qualifier is illustrated in figure 7.3 and the related table 7.2. Furthermore, acyclic data
is supported which can be either Device information like diagnosis information or events,
e.g. error messages or warnings about a shortcut, etc. [20]

Figure 7.3: The different flags of the Port Qualifier Information from [20]

23

Chapter II Basics

Flag Status Meaning
DI (Pin 4) 0/1 Digital Input on Pin 4 was supported
DI (Pin 2) 0/1 DI on Pin 2 was supported
DA (Pin 2) 1 Device was detected
(Device available) 0 No Device available
DE (Pin 2) 1 Device has an error
(Device error) 0 Device is error free
PQ (Pin 2) 1 Data are valid
(Port Qualifier) 0 Data are invalid

Table 7.2: The meaning of each bit of the Port Qualifier Information, adapted from [20]

7.2 Physical and Electrical Interface

Usually, 3-wire connections of SDCI for the link between the IO-Link Master and sen-
sors/actuators are used which is based on IEC 60947-5-2 and where M12 connectors are
used. The pin assignment is according to the IO-Link interface specification [9]:

• Pin 1: L+ as 24V, power supply

• Pin 3: L- as 0V, ground line

• Pin 4: Switching (Q) or SDCI communication link (C)

Moreover, the mechanical coding of the M12 connector is illustrated in figure 7.4. Beside
the communication line, the two pins (1 and 3) provide a power supply with a maximum
current of 200mA. According to the specification, two ports are distinguished which is
a port class A where pin 2 and 5 are used according to the manufacturer, e.g. pin 2
as a digital input/output channel, or port class B where an additional supply voltage is
provided to the components via these pins for modules with a higher power budget.

1

2

3

45

L+

C/Q

L-

DI/DQ

(a)

1

2

3

45

L+

C/Q

L-

2L+

2M

(b)

Figure 7.4: Pin assignment for port class A (a) and port class B (b) adapted from [10]

Caused by the increased logic level and if the connection wire is non-shielded a maxi-
mum length between the Devices and the Master shall not exceed 20m, the overall loop
resistance must have a maximum of 6.0 Ω and a line capacity of at most 3.0 nF for a
transmission frequency < 1MHz to ensure functional reliability [9].

The physical layer as shown in 7.5 allows the Master to operate in the above-mentioned
three main modes inactive, ”switching signal”(DI/DO) or ”coded switching”(COMx).
If the port is switched to the inactive mode, the C/Q line shall be switched to high
impedance. In ”coded switching”, the communication layers are directly bypassed to
the physical layer enabling a direct processing of the signals in the application layer. A

24

Chapter II Basics

Device has the same operating modes but no inactive mode. During power startup or
established cable connection, the Device operates in Standard Input and Output (SIO)
mode to behave as a digital input which allows detection of wake-up current pulses (wake-
up request) coming from the Master. Usually, a software interrupt will then be triggered
forcing the Device to switch to the IO-Link mode [9].Version 1.1.2 – 40 – IO-Link Interface and System © IO-Link

System Management

PL-Transfer.ind PL-Transfer.reqPL-WakeUp.ind

SIO
DI / DO

PL-SetMode.req

Line handler
Device

DL-mode handler Message handler

Wake-up Switching signalCoded switching

Data Link Layer

Physical Layer

Mode switch

NC/
DI / DO

Option

Medium 650

Figure 12 – Physical layer (Device) 651

Subsequently, the services are specified that are provided by the PL to System Management 652
and to the Data Link Layer (see Figure 83 and Figure 94 for a complete overview of all the 653
services). Table 1 lists the assignments of Master and Device to their roles as initiator or 654
receiver for the individual PL services. 655

Table 1 – Service assignments of Master and Device 656

Service name Master Device

PL-SetMode R R

PL-WakeUp R I

PL-Transfer I / R R / I

Key (see 3.3.4)
I Initiator of service
R Receiver (Responder) of service

 657
5.2.2 PL services 658

5.2.2.1 PL_SetMode 659

The PL-SetMode service is used to setup the electrical characteristics and configurations of 660
the Physical Layer. The parameters of the service primitives are listed in Table 2. 661

Table 2 – PL_SetMode 662

Parameter name .req

Argument M

 TargetMode M

 663
Argument 664
The service-specific parameters of the service request are transmitted in the argument. 665

TargetMode 666
This parameter indicates the requested operation mode 667

Permitted values: 668
INACTIVE (C/Q line in high impedance), 669
DI (C/Q line in digital input mode), 670
DO (C/Q line in digital output mode), 671
COM1 (C/Q line in COM1 mode), 672
COM2 (C/Q line in COM2 mode), 673
COM3 (C/Q line in COM3 mode) 674
 675

Figure 7.5: The physical layer of an IO-Link Device from [9]

Ultimately, an ISO based UART frame is used with NRZ modulation and bit-by-bit
coding where a logic ”1” corresponds to a voltage difference of 0V between C/Q and L-
while a logic ”0” is represented by a difference of +24V between these lines. According
to figure 7.6, a transmitted UART frame bit sequence consists of 11 bit with a start bit
”0”, followed by a data octet of 8 bit, a parity bit and a stop bit expressed by ”1” [9].

Significance of
information bits

LSB MSB

0 1b0 b1 b2 b3 b4 b5 b6 b7 P

Start bit

Data octet
Parity bit

Stop bit

Figure 7.6: SDCI UART frame format based on [9]

7.3 Data Link Layer

Efficient transmission of messages between a Master and Device requires a well-known
format between the communication members. Thus, a Data Link Layer is implemented
on top of the physical layer which uses message sequence types (M-sequences) for different
data categories [9]. An M-sequence is composed of UART frames with separated sub
messages from the Master, followed by messages from the Device and are transmitted as
big endian sequences with the most significant octet first. A message sequence from the
Master is always starting with a control octet (”M-sequence control octet”, MC) with
a subsequent ”CHECK/TYPE”(CKT) octet and optional process data (PD) and/or on-
request data (OD). Finally, the last octet represents a ”CHECK/STAT” (CKS) byte [9].
An overview of the different message types is given in figure A.1 of appendix A.

25

Chapter II Basics

Device
DL-mode
handler Message

handler

DL_Mode

System
Manage-
ment

ApplicationLayer

On-requestData
handler

ProcessData
handler

DL-B
DL-A DL_Read

DL_Write

PhysicalLayer

PL_Transfer.ind PL_Transfer.req PL_WakeUp.ind PL_SetMode.req

Codedswitching Wake-up

SIO
DI/DO

Switchingsignal

Mode switch

Line
handler MHInfo

Figure 7.7: Structure and services of the Device’s data link layer from [9]

The data link module provides a set of services to the application layer as shown in
figure 7.7, e.g. exchanging process- or on-request data, functions for system management,
i.e. for controlling the state machines of the data link layer and queries for Device param-
eters. Furthermore, services of the physical layer are used like exchanging UART frames,
and the data link layer is responsible for error detection of messages. As can also be seen
in figure 7.7, the layer consists of the state machines process data handler, on request
data handler, message handler for the transmission of information and a data link mode
handler to manage the several modes like COMx, SIO and wake-up.

7.4 IO-Link Device Description and Integration into the Au-
tomation System

To parametrize correctly a sensor and actuator connected to the Master, a designated
data structure has to be defined. The organization of such data items is specified by the
IODD file which defines several functions of a connected Device such as

• properties of the communication,

• parameters of the Device with the range of the values and the default ones,

• data for identification, diagnostic and process properties,

• description of the Device,

• Device data,

• an illustration of the Device and

• a logo of the manufacturer [10].

26

Chapter II Basics

Finally, the integration of an IO-Link Master and connected Devices is ensured by
PC applications of the Master manufacturers. In figure 7.8 (b), the TIA-Portal with the
integrated ET 200eco PN IO-Link Master device is shown. Here, the SIMATIC S7-1500
CPU1513 was used to access and provide the PROFINET network and to configure the
system. This application also allows configuration of the ports of the Master device, as
already discussed in the previous chapters, as well as diagnostics and manipulation of the
overall system via watch and force tables, e.g. switching on the digital output of a related
port of the Master. Depending on the used SIMATIC CPU, more detailed diagnostics can
also be applied, for example tracing of byte information of each Port Qualifier information,
till a single bit like the Port Qualifier error bit.

(a)

(b)

Figure 7.8: Read IODD via the Step7 PCT configuration tool (a) and an exemplary
integration into the fieldbus system with the TIA portal (b)

27

Chapter III

Developed Communication System

8 Introduction

Similar to the OSI Model, USB consists of a function layer as the highest level to manage
functions of the different devices, a device layer managing the devices and the lowest
interface layer maintaining the physical data transmission [30]. Thus, each layer in the
developed communication system performs its specific tasks where the following issues
were considered:

• Similar functions are encapsulated in the same layer.

• Usually, every layer can only communicate with the adjacent layers.

• Keeping interaction between the different layers as low as possible.

• To ensure a proper working of the higher layer, the intermediary layer needs aid of
the lower layer.

• Although communication models are logical models describing functions and rela-
tionships and not software implementations [21], each subtask was defined such that
the layers could be independently implemented both hard- and software-oriented.

The mentioned approaches have the advantage that each implemented layer of the
communication system can be removed, modified or exchanged without affecting the be-
havior of the other subsystems. Another benefit is that the higher the layer the more
logical function of the system can be represented on an increased abstraction layer [21].
Therefore, a communication protocol has been developed which is build up on top of the
USB communication stack and which has properties to make it portable to other lower
level layer systems, e.g. S7DOS, to enable information exchange between the device and
the master over PROFINET.

Moreover, the developed protocol has to provide both application-oriented and trans-
port oriented functions to enable connections of several test devices over a secondary bus
system via a backplane connectors to allow correct routing of messages.

Taking into account the limited heap and stack size of the MCU, the large amount of
data like buffers or constants are created statically to avoid for example dynamic memory
allocation which can be done by preventing transient data objects, new/delete implemen-
tations and C++ exceptions. For desktop PCs, this design issue doesn’t state such a big
problem because of the much higher stack sizes. But considering embedded systems with
limited memory resources available, it becomes necessary to optimize the stack and heap
exploitation in such a restricted memory environment. Therefore, a reliable stack design

28

Chapter III Developed Communication System

has to be considered for each implemented module to avoid serious runtime errors when
executing code writes data to memory space where global and static variables are stored
as shown in figure 8.1. Dynamic memory allocation was in general not applied for the
whole communication system caused by the defined small size and its non-deterministic
memory allocation during runtime [37].

Heap

Stack

Global/static
variables

Stack overflow

Figure 8.1: A stack overflow

This chapter discusses the communication system starting with the developed and
implemented protocol and its related fields. At the end, the different layers are covered
concerning their usage and implementation.

9 Developed Communication Protocol

Well-defined formats for exchanging information between a client and the PC applica-
tion have to contribute to an improved software quality of the final IO-Link test device.
Therefore, each message follows exact rules intended to elicit a predefined behavior for
the related communication participant from a range of possible functions. This specific
behavior is triggered by the use of properly defined communication protocols which have
to be agreed by the involved communication members. For the success of the developed
communication protocol within the system, the object-oriented methodology is used for
the whole process since it makes an important contribution to reliable and maintenance-
friendly software systems [8].

Although the main priority of the communication system is the transfer of information
over USB, it also provides some layer independent behavior to operate on other commu-
nication interfaces in the future. Hence, the protocol also provides fields which enable
synchronization of messages for the physical layer as well as error detection mechanisms
in case of bit transmission failures and an allocation field of messages for mapping the
information to the appropriate subdevice.

At first, this chapter deals with the explanation of the different protocol packet fields
and continuous with the implemented Variable-Length Quantity (VLQ) data structure as
a special object for dynamically increasing packet fields based on the needs of the system
and the CRC-16 error detection mechanism which is implemented in a resource-efficient
manner.

29

Chapter III Developed Communication System

9.1 Protocol Packet Fields

As already mentioned, the main task of the protocol acts as the interface between the USB
protocol layer and the application layer. Its main task is the representation of binary code
for known commands of the communication system layers. These command representa-
tions can be translated e.g. by the Message Router of chapter 10.3 to handle the related
packet according to the given PID. The message sequence is shown in figure 9.1 where
each subfield is implemented as a single object with the exception of the payload. Since
the payload can consume up to 255 bytes which are not relevant information to the lower
level part of the communication system, only pointers with the related start/end indices
are referenced to the payload which are saved within the protocol packet data structure
to avoid a high amount of temporary memory usage passed through the different layers,
to increase the speed of method calls and data access as well as to prevent modification
of regions outside of the memory allocated by the payload.

Message

Time

TS

SOP AID Packet

Message Message Message Message

CRC-16 EOP

PD Payload

[2] [1] [2] [2]

[1...8] [1...10] [0...255]

[2...273]

Figure 9.1: The protocol sequence and the different subfields of a message

In the following, the different fields of the protocol are discussed as well as their usage
and meaning. Chapters 9.2 and 9.3 deal in more detail with the developed CVLQ data
structure and the CRC implementation.

9.1.1 Start of Packet

For physical layer protocols, a synchronization field with minimum autocorrelation be-
comes necessary in order to identify a Start of Packet (SOP) field on the receiver side.
Therefore, each message starts with a preamble consisting of a dotting sequence of al-
ternating ones and zeros of 9 bits to guarantee correct bit timing of the received data if
implemented on the physical layer according to the OSI Model. It is followed by the 7
bit Barker code with the bit pattern ”1110010” as a synchronization field to guarantee
minimum autocorrelation with the preamble and other noises. In this case, 16 bits are
used to enable a more robust communication at the cost of a higher packet overhead and
a decreasing throughput [32]. But using USB as the main communication interface, this
small overhead can be neglected compared to the high achievable data rate. Since the
protocol is not used as part of the physical layer transmission in this thesis, it just acts
as a marker that together with the EOP represents frame limiters to distinguish between
subsequent messages.

30

Chapter III Developed Communication System

9.1.2 Allocation Identifier

Caused by the future use of multiple test devices, which shall be connected with a main
IO-Link tester over other backplane connectors and bus systems, e.g. Serial Peripheral
Interface (SPI), a 1 byte allocation field is necessary for mapping the messages to the
given devices. Here, the MSB of the Allocation Identifier (AID) implies if the HMI is the
source of the message or not while the seven remaining bits express a unique addressed
device as a source/target of a message. An example is given in figure 9.2 where a message
is sent by the HMI to a device with identifier 5 and on the other side, a message is sent by
the device to the master. Device ID 0 indicates a broadcast of a message to all available
devices, e.g. if the clock of all devices shall be synchronized or if all testers shall accept
the same configuration. As a consequence, additional 126 devices can be connected via
a backplane bus to the main test device, which is connected to the PC over USB as the
main data bus system. This mainframe routes the messages to/from the secondary bus if
the packet is not addressed to itself.

Message

Time

SOP AID

Message Message Message Message

EOP SOP AID EOP
[2] [1] [2] [2] [2][1]

1 11 00000 110 0 0 0 0 0
(a) (b)

Figure 9.2: Messages on an exemplary USB transmission. (a) represents a message which
has been transmitted by the master (MSB = ”1”) to the device with ID 5 and (b) repre-
sents a message which has been transmitted by the device with an ID of 5

9.1.3 Timestamp

Allocation of messages with the related settings, error codes, etc. makes it necessary to
track and sort them in some defined chronological order. Therefore, a Timestamp (TS)
field is implemented as a timer counter since the startup of the device, respectively the
HMI. The timestamp is implemented as a CVLQ object of chapter 9.2 with a maximum
size of 9 bytes (representing an 8 byte uint 64t) and a resolution of ms which leads to a
test run of more than 264 − 1 ms without causing an integer overflow. This hypothetical
margin is large enough for long run tests which are usually only done over one weekend.

9.1.4 Packet Descriptor and Payload

The subsequent field represents the packet descriptor that defines the packet in general.
According to table 9.1, the first byte contains different sub bits with the MSB as a
true/false flag identifying an enabled segmentation used for large messages that had to
be split, a respond request flag if the sender wants an immediate response from the target
and a read/write bit implying a read or write request. Finally, the remaining 5 bits are
used as system specific identifiers which are defined according to the table 9.2 to correctly
map a message to the related submodule.

31

Chapter III Developed Communication System

Byte Bit Description Example

1

7 (MSB) Segmentation bit 1 as segmentation enabled
6 Respond request bit 1 as respond requested
5 Read/Write bit 1 as write request

4..0 Packet Identifier 0x05 as a Connect flag
2..9 Optional segmentation key 2
10 Optional byte as the size of the payload 2

Table 9.1: The different bytes and subbits of the Packet Descriptor

Reading traces of the device requires a large amount of data that has to be transmitted
over the bus. Often such payload exceeds the maximum allowed configured size of a
message and a segmentation operation has to be performed on the payload. Therefore,
an integrated segmentation key of true in the Packet Descriptor (PD) signifies an active
splitting of messages with an appended segmentation key after the packet descriptor byte.
This key is similar to the timestamp implemented as a CVLQ data structure with variable
byte length depending on the size of the key. A last conditional byte represents the size of
the payload which is used for error, communication, hardware, IO-Link and traces related
PIDs.

Bit Value Description Packet has payload
00001 1 Acknowledged no
00010 2 Error ID with the related error in the payload yes
00011 3 Communication specific information yes
00100 4 Reset ID restoring the default settings no
00101 5 Connect ID for establishing a communication no
00110 6 Time synchronization ID no
00111 7 Hardware related flag, e.g. controlling the LEDs yes
01000 8 IO-Link related flag, e.g. setting the device version yes
01001 9 Traces related flag in case of large amount of data yes

Table 9.2: The defined Packet Identifiers

Depending on the PID, a related payload and its size (1 byte) is attached to the
message after the packet descriptor byte, respectively the segmentation key, enabling a
maximum payload size of 255 octets. Since it depends on the application, the structure
of a given payload is described in the related submodule of chapter 10.

9.1.5 CRC-16

Ensuring a correct transmission of information over a communication interface, a CRC-
16 checksum field is appended to the message to allow error detection. For the sake of
brevity, this field is not discussed here in detail, but chapter 9.3 deals with an efficient
embedded implementation of the CRC algorithm.

9.1.6 End of Packet

The EOP ("1111000000001111") represents a stop flag of the message which is redundant
for this purpose since the PID, combined with the optional payload and defined size
doesn’t require a secondary limiter. During the implementation, it was more used for
debugging purposes but in the case of lower layer implementations, a stop flag always
becomes necessary since lower level modules are not taking care about internal data
representation. They do more examine bit patterns for their occurrence and determine
the start and end of a whole bitstream and use defined patterns for bit synchronization
purposes as described in the first chapter of the discussed protocol fields.

32

Chapter III Developed Communication System

9.2 Variable-Length Quantity Data Structure

As introduced in the previous chapter 9.1, timestamp, segmentation key and specific
payload parameters of a message are implemented as Variable-Length Quantities (VLQ)
for dynamically increasing the related field depending on the size of the transmitted
value. The same approach has for example been introduced and treated in [3] with the
development of flow bytes, but the implementation and application here is different to
ensure an efficient memory usage of the MCU for this specific task. Instead of using arrays
with unknown data sizes during compile time which could lead to memory overflow due
to the restricted heap size, only the basic data types uint8 t, uint16 t, uint32 t and
uint64 t are used for converting a given unsigned integer value into a CVLQ data structure
which will be automatically translated into a variable byte array with a maximum of nine
adjacent bytes that is processed to a precomputed length depending on the original value.
In order to determine a subsequent byte, the Most Significant Bit (MSB) of the predecessor
holds a flag that commands if another byte follows or not.

The whole payload itself is not declared as a CVLQ object since only as long as the value
is smaller than 249, the VLQ can cover more ranges with less use of transmitted packet
overhead as represented in figure 9.3. If a value exceeds this margin, an additional byte
for indicating the number of bytes followed yields similar and even improved exploitation
of the transmitted byte stream. Nevertheless, a CVLQ has to provide an array of nine bytes
to ensure the encoding of values with a maximum size of 264−1 since eight single bits are
reserved for the sign bits in case of values larger than 256. If a value is larger than this
margin, the least significant byte of a CVLQ array doesn’t require an additional flag such
that all 8 bits can be exploited to fulfill the range requirement of 264 − 1.

As already said, the idea of introducing markers to indicate successor bytes is also
used for single parameters within the payload and beside that gives an efficient basis
for transmitting ASCII code since such encoded bytes only occupy seven bits where the
unused bit is exploited as a successor flag similar to [3]. This concept is used when
transmitting string messages within the payload field which is employed as discussed in
chapter 10.

Figure 9.3: CVLQ usage compared to using a byte describing the size of a following value
and the value itself. The raw implementation needs at least 2 bytes to be transmitted
while 1 byte is sufficient using a VLQ for small values

33

Chapter III Developed Communication System

The CVLQ class provides several functions to convert a byte stream into a usable value
and vice versa to support its calling modules. The main functions are explained in the
following paragraphs by using pseudocodes since the insertion of the comprehensive C++
source code would have interrupted the text flow, but it is published by the appended
storage medium of the written thesis.

The first explained function is used for the insertion of a received byte from a sequential
stream of octets, e.g. from the Message Decoder, and works according to algorithm 1.
Here, one received byte is added to the current insertion position of the VLQ object’s
array. If the received byte’s MSB represents a logic ”1”, the function returns true to the
caller of the function to imply that a subsequent connected value will follow. On the other
hand, either if the maximum allowed size of the CVLQ is reached or if the MSB is ”0”, the
function returns false to indicate no additional successor.

Algorithm 1: Adding a received byte to the VLQ object’s array and return true if
a successor byte follows or not

Data: receivedByte
1 boolean nextByteFollows
2 if currentInsertionPosition < allowedSizeOfVLQ - 1 then
3 //Remove all bits except most significant bit
4 nextByteFollows = receivedByte & (0x80)

5 else
6 nextByteFollows = false
7 end if
8 VLQ[currentInsertionPoint] = receivedByte
9 currentInsertionPosition++

10 if false == nextByteFollows then
11 realSizeOfVLQ = currentInsertionPosition
12 end if
13 return nextByteFollows

After reading a stream of octets, the caller also might request the received value.
Therefore, the function in listing 2 converts the VLQ into an uint64 t data type and
returns the value which is more clarified in figure 9.4. Here, the VLQ array is copied
into a local array preventing the original one of being modified. The algorithm iterates
backward through the array since the most significant byte is stored in the lowest address
and it is the first transmitted octet in a communication stream. This avoids the usage
of a second loop which had to reverse the array at the end of the process. For each byte
of the copied array, the MSB determining a successor is removed. At the end, a logical
OR operation is performed on the calculated value of the previous step with the shifted
value of the current iteration point. Again, if a value larger than 256 is used and occupies
all nine positions, the least significant octet is shifted by eight due to the lack of required
redundancy for this byte. By default, all remaining entries are left shifted by seven bits
caused by the related MSB flags.

1 1 01 1 1 1 11 1 1 10 0 0 00 0 00 000

array[0] array[1] array[2]

01 1 1 1 11 1 1 10 0 0 00 0 00 0000 0

VLQ array

Local array

111
111

1110 0 0 0 0
0 0 0 0

0 0 0 0 0
1

1

1

<< 0 bit

<< 7 bit

<< 14 bit

(without sucessor bits)

OR

1110 0 0 01110 0 0 11110 0 0 0 0 Original Value

Figure 9.4: Converting a VLQ array to its original value

34

Chapter III Developed Communication System

Algorithm 2: Calculating and returning the real value based upon the VLQ object
Data: void

1 value = 0, internalCounter = 0, shiftPattern = 0
2 copy VLQ array to a local array
3 for i = realSizeOfVLQ - 1; i ≥ 0; i- - do
4 if i == maximumSizeOfVLQ - 1 then
5 //if all 9 bytes are used, the least significant byte represents a value of 8 bits
6 value | = (local array[i] << shiftPattern)
7 shiftPattern += 8

8 else
9 //Delete successor bit for each byte

10 local array[i] = local array[i] & (0x7F)
11 //Concatenate returning value with the new value at the given position
12 value | = (local array[i] << shiftPattern)
13 shiftPattern += 7

14 end if

15 end for
16 return value;

The last method provides a conversion of a given uint8 t, uint16 t, uint32 t,
uint64 t data type to a VLQ byte array such that other components don’t have to
take care about the encoding. According to the described algorithm 5, a second constant
array becomes necessary which holds the allowed maximum value that a CVLQ can rep-
resent before the amount of required bytes have to be increased. The working behavior
performs its task in the opposite way of the algorithm mentioned before by using bit
stuffing at the MSB of the current byte of the array and shifting the remaining part of
the value by seven bits such that theses bits are not considered anymore for the next
iteration. In the case of occupying all nine bits, bit stuffing is not applied for the least
significant byte while the octet itself is shifted by eight instead of seven bits.

Beside these mentioned functions, a CVLQ object offers additional static functions for
converting a VLQ to ASCII strings (see algorithm 3) and vice versa (algorithm 4) as well
as a function for copying the local array into a given buffer from the calling component.

Algorithm 3: Converting a VLQ to an ASCII string starting at the start index and
return the length of the possible string

Data: startIndex, *buffer, endIndex
1 counter = startIndex
2 nextByteFollows = true
3 while nextByteFollows and counter ≤ endIndex do
4 //Get MSB
5 nextByteFollows = buffer[counter] | (0x80)
6 //Remove MSB
7 buffer[counter] = buffer[counter] | (0x7F)
8 counter++

9 end while
10 return (counter - 1)

Algorithm 4: Converting an ASCII string to a VLQ array
Data: startIndex, *buffer, endIndex

1 counter = startIndex
2 while ounter < endIndex do
3 //Add logic ”1” at MSB
4 buffer[counter] = buffer[counter] | (0x80)
5 counter++

6 end while

35

Chapter III Developed Communication System

Algorithm 5: Creating the VLQ array using bit stuffing
Data: originalValue

1 boolean retVal = true, lastByteSet = false
2 tempValue = 0, sizeOfVLQ = 0
3 localValue = originalValue
4 //Representing the allowed maximum number, depending on number of bytes
5 maxValueArray[9] = { (0x00), (0x80), (0x4000), (0x200000), (0x10000000), (0x800000000),

(0x40000000000), (0x2000000000000), (0x100000000000000) }
6 for i = maximumSizeOfVLQ - 1; i ≥ 0; i do
7 if originalValue ≥ maxValueArray[i] then
8 //If it is last possible byte of the VLQ, insert a 0, otherwise a 1 at the MSB
9 if false == lastByteSet then

10 if i == maximumSizeOfVLQ - 1 then
11 //If all 9 bytes are used, no flag is applied at the least significant byte
12 tempValue = value

13 else
14 //Insert a ”0” for the MSB to imply no successor byte
15 tempValue = value & (0x7F)

16 end if
17 lastByteSet = true

18 else
19 //Insert a ”1” for the MSB to imply a successor byte
20 tempValue = value | (0x80)

21 end if
22 VLQ[i] = tempValue
23 if i == maximumSizeOfVLQ - 1 then
24 value = value << 8
25 else
26 value = value << 7
27 end if
28 sizeOfVLQ++

29 end if

30 end for
31 realSizeOfVLQ = sizeOfVLQ
32 return retVal

Finally as an example, the following hexadecimal stream represents received IO-Link
specific settings which are sent at 66367 ms and 2377889 ms since startup of the device
and caused by the long stream, only VLQ timestamps are shown that are highlighted in
blue, IO-Link PID with a write request in orange and the size of the payload in black.

Message created at 66367 ms since startup of the device
Hexadecimal: ... 0x84 0x86 0x3f 0x29 0x07 ...

Binary: ... 10000100 10000110 00111111 00101001 00000111 ...

Message created at 2377889 ms since startup of the device
Hexadecimal: ... 0x81 0x91 0x91 0x21 0x29 0x07 ...

Binary: ... 10000001 10010001 10010001 00100001 00101001 00000111 ...

36

Chapter III Developed Communication System

9.3 Cyclic Redundancy Check

Every communication channel posses more or less noisy characteristics which makes it
necessary for the receiver to detect or even correct corrupted messages. Comparing for
example simple parity bit error detections, CRCs are much more powerful since more
than only one faulty bit in a transmission can be recognized. CRC is generally based
on modulo-2 arithmetic where the transmitter calculates a checksum based upon the
original message and appending this additional information to the original one. In general,
the redundant information is a function of the message to be transmitted divided by a
generator polynomial which has to be the same for the receiver and transmitter.

Although USB provides CRC, e.g. in the case of bulk transfers, a separate checksum
algorithm is defined and implemented for the developed protocol to detect errors appearing
during communication transmissions if lower layers without strong checksum algorithms
are used.

Naive software implementations have the large drawback of a high amount of instruc-
tions being used for calculating remainders of a message for a given generator polynomial.
Therefore, the table-driven approach of [4] for high-speed processing of received packets
is deployed. It utilizes the fact, that ”for a given input remainder and generator poly-
nomial, the output remainder will always be the same”[4]. Hence, a precomputed lookup
table is calculated during initialization of a CRC16 object which will be only initialized
once during runtime and which is used by all instances of a CRC16 class for a memory
efficient process. A commonly selected Abramson-Code with Hamming distance of four
as the generator polynomial 0x011021 (”10001000000100001”) yields a good decision
which is also applied for example in X.25 [21]. Using 16 bits for the checksum ensures the
detection of 99.9984% (1 − 1

216
) of possible errors including one and two bit errors, odd

numbers of errors and burst errors with a maximum width of the checksum [4].
The table is calculated during initialization according to the algorithm 6 leading to the

unique precomputed list in appendix B, read from the MCU registers during debugging.

Algorithm 6: Initialization of the CRC-16 lookup table, based on [4]
Data: void

1 remainder
2 for dividend = 0; dividend < 256; dividend++ do
3 //Start with shifting dividend such that remainder is followed by zeros
4 remainder = dividend << 8
5 //Perform mod-2 division on each single bit
6 for bit = 0; bit < 8; bit++ do
7 if remainder & 0x8000 then
8 remainder = (remainder << 1) XOR generatorPolynomial
9 else

10 remainder = remainder << 1
11 end if

12 end for
13 CRCTable[dividend] = remainder

14 end for

Here, the top bit ("0x8000") controls what happens in the next iteration, either the
left-shifted remainder is XORed with the generator polynomial or not. Furthermore, the
variable generatorPolynomial is the truncated CCITT (”0x1021”) since the MSB is
always one [4]. The main advantage of this implementation is, that bit-level operation
is only applied during initialization which makes such an algorithm more efficient when
checking the remainder of a new message according to the lookup algorithm 7. Therefore,
the table-driven implementation has a linear computational performance of O(n) only
depending on the number of bytes n in a stream.

37

Chapter III Developed Communication System

Algorithm 7: Table driven calculation of the remainder of a message, based on [4]

Data: message[], endOfMessage
1 data = 0
2 remainder = 0
3 //Get the related precomputed data from the table and divide by this polynomial
4 for byte = 0; byte ≤ endOfMessage; byte++ do
5 data = message[byte] XOR (remainder << 8)
6 remainder = CRCTable[data] XOR (remainder << 8)

7 end for
8 return remainder

10 Layers of the Communication System

The main interface between the PC application and the test device is established by the
use of the USB connection which is already integrated within the used development board.
Furthermore, STM implemented libraries for USB communication provide services which
can be consumed by upper-level layers. In order to ensure an efficient and easy to extend
structure for the communication module, it is necessary to split the behavior of the system
into different submodules with the structure shown in figure 10.1. The first three lowest
layers are realized by single extracted and assimilated middleware components from the
STM USB OTG host and device library. In the case of the PC application, a Virtual
Communication Port (VCP) driver by STM is necessary, to establish a virtual COM port
for the application for an easy integration of the communication system into the HMI.

Communication Bridge

PC application

Physical Connection

IO-Link Test DeviceHuman Machine Interface

Message Router

USB Device Layer

USB Interface Layer

Message Decoder

Communication Handler

USB Function Layer

Message Encoder

IO-Link
Parameter
Handler

Hardware
Parameter
Handler

Traces
Parameter
Handler

Gateway

Test Device application

USB Device Layer

USB Interface Layer

USB Function Layer

Byte stream

Packets

Communication Handler

Communication Bridge

Message Router

IO-Link
Parameter
Handler

Hardware
Parameter
Handler

Traces
Parameter
Handler

Gateway

Message DecoderMessage Encoder

Figure 10.1: Overall structure of the different layers of the developed communication
system. Orange modules are special implementations used for the HMI

38

Chapter III Developed Communication System

Highlighted in orange are the PC related components which are different to the mod-
ules programmed for the test device. Both systems have in common the main handlers
of the communication system which are the Message Decoder for decoding a byte stream
into a usable packet format expressed by a CPacket object, a Message Encoder which
works in the opposite way by converting a packet into the byte array, a Message Router
for distributing packets to the related subsystem and the IO-Link, Hardware and Traces
Parameter Handler, each with a specific behavior for its received payload. At the end,
a gateway is implemented which provides specific functions to the applications. Not
shown in the figure of the communication layers are relevant data structures like the
CVLQ, CCRC16 or the packet data structures. All developed and implemented objects not
mentioned during these chapters are summarized as class diagrams in the appendix.

This work handles all the implemented submodules in detail, except the application
of the test device which is again covered by another student’s work. Moreover, all layers
are explained in a bottom-up manner starting with the USB communication including the
Communication Handler of the device and the PC, followed by the protocol layer with
the Message Decoder and Message Encoder in chapter 10.2. Afterwards, the Message
Router of chapter 10.3 for distributing the information within the subsystem as well as
the presentation and application layer are discussed in chapters 10.5 and 10.4.

10.1 USB Communication Layer

To enable a reliable and robust solution for communication between the new proposed
IO-Link test device and the HMI for controlling and maintenance of the component,
USB is chosen as the main communication interface since nowadays almost every PC
supports USB compared to the RS232 connection for example. Furthermore, the STM32
microprocessor family is already equipped with a USB peripheral avoiding the need for
additional hardware like a TTL-to-USB converter module. The full speed (12Mb/sec)
USB interface implements the physical and data transfer layer which is extended by the
USB CDC files, extracted from the USB software stack for the STM32 development board
that is provided by STMicroelectronics. It can be found either on the manufacturer
website [34] or downloaded with the manufacturer’s provided ”System Workbench for
STM32”. For the HMI, the VCP driver from STMicroelectronics has to be installed on
the PC, too, to create a Virtual Communication Port (VCP) when the USB connection is
established. After that, this virtual port - which looks like a normal serial port - can be
used by the developed user interface for configuring the IO-Link test device. Using these
stacks greatly improved the speed and flexibility of development rather than reinventing
the wheel. Therefore, this section gives a broad overview of the USB connection, its
features and based on this layer, the Communication Handlers both for the device and
the PC application. In general, the USB layer supports up to eight endpoints which
are configurable as control, interrupt, bulk or isochronous pipes with endpoint packet
buffers SRAM and a size of 512 bytes, shared with the CAN controller [39]. Moreover,
the USB protocol stack already includes lower level error handling, data flow control and
implements cyclic buffers such that these properties don’t have to be considered again for
the upper layer communication system.

The first release of the test device is only powered by the 24V supply of the IO-Link
Master but for a standalone working mode in the next release, i.e. if the board will neither
receive power from an IO-Link Master module, an external power supply nor from the
ST-Link programming/debugging interface, it is necessary to apply a physical connection
between the 5V pin and the pin PA9 of the board since it is directly connected to the 5V
source, provided by the USB connection as can be seen in the electrical layout of 10.2.

39

Chapter III Developed Communication System

Figure 10.2: Standalone power supply possibility using Pin9 connected to 5V from [36]

The STM32 OTG high-speed core is a dual-role device (DRD) controller that supports
peripheral functions and is configured as a peripheral-only controller, fully compliant with
the USB 2.0 specification. While the controller is also capable of being configured as host
mode with a supported OTG high-speed of 480 Mbps, full-speed (12 Mbps) and low-speed
(1.5 Mbps) transfers [35], the peripheral mode with full-speed communication is applied
for communication with the test device.

The board is enumerated as a CDC device with two bulk endpoints for data transfer
(IN and OUT) and one interrupt endpoint for communication control. Since the data
transfer from the device to the host is managed periodically depending on host requests
where the device itself determines the interval of packet demands, a circular buffer is used
for the storage of data sent by the devices. Defined by CDC IN FRAME INTERVAL in the
file ”usbd conf.h”, the buffer is checked for newly available data which is then send by
successive packets to the host through the data IN endpoint.

On the other side, the VCP bitrate has only a maximum of 115.2 Kbps while USB
interface enables much faster transmission of information than the output terminal (i.e.
HMI). Consequently, the host has to wait before sending new packets till the device has
finished its processing of received data. For transmission, the driver calls the lower layer
OUT transfer function and waits until this function is completed before new transfers are
done [35].

The CDC and lower level drivers from STMicroelectronics are used and integrated into
the communication system. Caused by the different usage of lower layer functions, the
Communication Handlers for the test device and the PC application are different in their
functional behavior, although they are providing some common features for upper layers
like providing information about the allocation IDs and the time since startup of the
related device. Therefore, these components are also implemented in different languages
which are mainly C++ for the test device or respectively C# for the HMI. In the follow-
ing, the master/slave communication with the handler for the HMI for monitoring and
establishing the logical connection and the component for the test device are discussed.

40

Chapter III Developed Communication System

10.1.1 Communication Handler of the Device

The Communication Handler of the device handles incoming data from the USB layer
and passes the byte-oriented stream to the upper-level Message Decoder of chapter 10.2.1
and vise versa, streams a byte array from the Message Encoder to the lower layer VCP.
As explained in chapter 6.3.1, the Communication Handler makes use of polling with
equidistant intervals which is done by cyclically calling the handler’s provided public
function HandleReceivedMessageFromUSB() from the main loop (or respectively thread
in the future if a real-time operating system is used) which itself exploits the provided lower
level function of the VCP layer VCP get char(&theByte) to check for a newly received
byte in the FIFO buffer and copies the accepted byte in the related memory address
of the passed parameter. This module also enables the future application of different
communication interfaces beside USB by extending the functionality in a simple manner.
Furthermore, it handles the time since startup of the device which can be synchronized
with the HMI and which is part of the communication protocol for the message time
allocation. Another necessity for distinguishing between several devices connected at
one USB port is that each Communication Handler of a peripheral provides a unique
identifier, name and a short description which can be altered by the HMI. The maximum
acceptable device ID is 126 since 0 represents a broadcast of messages and the length of
the name is restricted by 40, the device description by 200 characters. If one of the rules is
broken, the related new parameter is rejected by the device while valid ones are accepted
and applied. Since the implemented configuration window of USB communication is more
suitable to be explained in this chapter, figures 10.3 (a) to (c) show settings of the device’s
Communication Handler with the current and new future parameters which is connected
to the virtual serial port ”COM5”. In contrast to the handler of the HMI, the timer is
interrupt driven and the module is implemented in both C and C++.

(a) (b) (c)

Figure 10.3: HMI communication settings window with read ID, name and description be-
fore changing parameters (a) during modification (b) and uploaded and accepted changes
(c) of the device’s Communication Handler parameters

41

Chapter III Developed Communication System

10.1.2 Communication Handler of the HMI

The interaction between the PC and a component is based on master/slave communica-
tion where the HMI establishes the connection to the test device. Since every PC contains
several COM ports, a scan is performed during startup of the application where all avail-
able serial COM ports are investigated to show only ports with connected devices to the
user of the PC application since these USB based devices are also listed as regular serial
ports by the virtual COM port driver. Figure 10.4 illustrates an example of the HMI
system startup sequence where all current ports of the computer are checked for available
devices. For each port, a ”Connect” PID with broadcast allocation ID (0) is sent via
the port and the Communication Handler of the PC application waits for a maximum of
500ms for a possible acknowledged (”ACK”) response from the communication handling
state of the Message Router as discussed in the chapter 10.3. After this predefined time,
the handler either adds the current serial port to a list of available device ports if a valid
response is received or iterates to the next available port and repeats the scan process till
all possible serial ports are surveyed.

On the other hand, the user is also able to scan the ports manually if a device is
connected during runtime of the HMI as can be seen in figure 10.3. This process makes the
usage of the application more convenient to the actor since he doesn’t have to investigate
every single port on his own.

User
HMI

CommunicationHandler SerialPort
COM1

Test Device

SerialPort
COM5

{max 500ms}

{max 500ms}

Connected()

D isconnected()

D isconnected()

AvailableDevicePorts():
List of Device Ports

SendConnectPID()

AddAvailableDevicePort()

OpenPort()

ACK()

Initialize()

SendConnectPID()

OpenPort()

ShowPorts()

C losePort()

S tartup()

C losePort()

Connected()

ACKReceived()

ScanForAvailableSerialPorts()

Connect()

Figure 10.4: Startup sequence diagram of the HMI for scanning and detecting available
test device ports

42

Chapter III Developed Communication System

Another feature of the master Communication Handler is the reading of all available
devices at the current serial port as again expressed by figure 10.3 where a ”Commu-
nication” PID with broadcast ID is send and all connected devices respond with their
ID, name, and description which can be modified and uploaded again by the user. Here,
only changed components are uploaded to the related device with the unique ID. After
applying the settings, the CommunicationHandler of the HMI has to scan again all the
available devices to visualize the new applied settings to the user since the old settings
are not valid anymore.

A bug in the communication system, memory error, or other failures of the test device
can abort a communication without the knowledge of the user. Therefore, cyclic polling
can be activated as displayed again by the communication settings window of 10.3 such
that the master handler always sends a ”Connect” flag to the current device the operator
is working with. If the handler doesn’t receive a reply from the device within one second,
the session is aborted, the port will be closed and the operator will be notified by a pop-up
window. Moreover, enabled cyclic polling also allows the permanent update of the shown
time since start-up of the device in the communication settings ribbon.

Caused by the different timing constraints and since the handler also provides a counter
since startup in ms, two independent counters, and their related timers are programmed
such that the communication specific functions employ their own timer with an event
interrupt of 100ms or respectively 1ms for the time since startup which is implemented as
a Stopwatch object as part of the System.Diagnostics to ensure a precise measurement
of the time without being disturbed by the other actions of the handler and to ensure a
ms resolution which is not possible due to the limitations of a Systems.Timers.Timer

class.

10.2 Protocol Layer

As explained, the Communication Handler only passes serial byte streams without taking
care about it. In order to decode and encode the logical CPacket data structure (figure
10.5) as the logical element within the communication system, a protocol layer is necessary
to process the protocol of section 9. This logic end-to-end connection is the transport layer
for binding transport oriented, i.e. the byte stream, and the application-oriented layers,
i.e. the packet. Therefore, two state machines are developed and implemented which
are the Message Decoder as will be discussed in the following chapter and the Message
Encoder in the subsequent chapter. Their general task is to translate the byte stream
into usable data for the system and convert data back to a byte oriented array such that
it can be sent through the serial interface provided by the lower layer Communication
Handler module.

CPacket

- m_allocationIdentifier: CA llocationIdentifier
- m_endIndexOfPayload: uint32_t
- m_isReceived: bool
- m_maximumPIDValue: uint8_t = 32 {readOnly}
- m_packetDescriptor: CPacketDescriptor
- m_pPayload: uint8_t*
- m_sizeOfPayload: uint32_t
- m_startIndexOfPayload: uint32_t
- m_timeStamp: CVLQ

CPacketDescriptor

- m_communicationRespondRequest: bool
- m_hasPayload: bool
- m_isWriteRequest: bool
- m_packetIdentifier: uint8_t
- m_segmentationCounter: CVLQ
- m_segmentationEnabled: bool

-m_packetDescriptor

Figure 10.5: Class diagram of the packet and packet descriptor without showing the
provided functions

43

Chapter III Developed Communication System

10.2.1 Message Decoder

Since the Communication Handler receives single bytes from the local lower layer USB
buffer, several solutions were considered, implemented and compared in order to find a
suitable decoding algorithm for the received message. One approach was storing each
received byte from the lower communication system in a ring buffer, waiting till the
EOP sequence has been recognized and traversing backward the buffer until the SOP
has been detected to extract the related information according to the defined fields of
the communication message sequence from chapter 9. But this attempt yielded a large
drawback due to the resulted multitudinous and hard to extendable program code and
the waste of MCU performance since a large amount of data had to be processed at one
instant of time.

As a consequence, the finite state machine implementation approach is applied instead
since it yields a more improved performance both considering MCU memory resources and
the clear separation of code with the usage of a state transition and state entry tables.
Compared to the other implemented state machines in the subsequent chapters, transition
tables are used instead of applying the state pattern from [18] since the CRC error checking
mechanism needs knowledge of the whole received message which would have gratuitously
complicated the development process because the states usually run independently when
using the design pattern of [18]. Moreover, a frequent context switching of the different
states would have also slowed down the decoding performance of the state machine due
to the continuous recipience of single bytes.

In general, state machines offer a powerful design technique to describe the behavior
of the Message Decoder since they provide an unambiguous modeling of a given issue, are
easily extendable by additional states and can break complex problems into manageable
and more simple single states. Caused by the presence of several actions, the presentation
problem will be more complex and using transitions matrices or state transition diagrams,
the functionality of the machine is more difficult to express. This gave another reason
for using a state transition table for the decoder since it is the most versatile tool for
illustrating the whole state machine specification [41].

In contrast to switch statements, the implemented state machine defines valid and
invalid transitions between the different possible states during decoding and it is easier to
send specific data to a given state instead of implementing the state machine in a single
function. The implementation idea is based on reference [13], but it is heavily altered for
the given embedded design purpose avoiding the allocation of heap memory, allowing more
reachable states from a single one and returning predefined flags based on the received
byte and status of the process.

The usage of this handy design for solving complex engineering task breaks down the
whole code in a series of defined states. Each implemented state of the Message Decoder
can be reached by executing a specific inline function related to the current state. To
execute the given function, the public function Decode(const uint8 t receivedByte)

is called by the Communication Handler to generate an event, forcing the Message De-
coder, implemented as a singleton class, to handle the received byte and to awake the
StateEngine() method from the Message Decoder’s parent class CStateMachine. The
function is shown up in listing 10.1 and handles the state transitions from the state
transition map of listing 10.2 to perform lookups based on the current state to call the
appropriate function. If the function returns the flag NOT FINISHED, the state machine re-
mains in its current state since the protocol field hasn’t been read completely. Therefore,
the current state will be re-executed for the next received byte. This appears for example
during the extraction of the time stamp which can be composed of several bytes or for the
segmentation counter. On the other side, an ACCEPTED flag forces the engine to change

44

Chapter III Developed Communication System

its status to the new valid state and a REJECTED flag symbolizes an error returned by the
current state function, e.g. if the received CRC-16 value differs from the calculated one,
and performs the next possible behavior according to the implemented state transition
map of listing 10.2. This process continuous until a state function returns an ACCEPTED

flag or if the state enters the idle state. Here, ACCEPTED is the default return behavior
causing the state machine to stop its execution process and to reset all internal local class
members representing the protocol message member variables.

1 void CStateMachine : : StateEngine ()
2 {
3 u i n t 8 t subState = 0 ;
4 u i n t 8 t cu r r en tS ta t e = 0 ;

6 const CStateStruct ∗pStateFunctionMap = GetStateMap () ;

8 while (this−>m eventHandled != ACCEPTED)
9 {

10 cu r r en tS ta t e = GetTransitionMap (m act iveState , subState) ;
11 /∗
12 ∗ Cal l the r e l a t e d func t i on from the func t i on map .
13 ∗/
14 this−>m eventHandled = (this−>∗pStateFunctionMap [m receivedByte] .
15 m pStateFunc) (pDataTemp) ;

17 i f (this−>m eventHandled == ACCEPTED)
18 {
19 /∗
20 ∗ Apply the new s t a t e .
21 ∗/
22 SetState (cu r r en tS ta t e) ;
23 }
24 else i f (this−>m eventHandled == NOT FINISHED)
25 {
26 /∗
27 ∗ Remain in the cur rent s tate , but break the loop .
28 ∗/
29 this−>m eventHandled = ACCEPTED;
30 }
31 else
32 {
33 ++subState ;
34 i f (subState >= m maxSubStates − 1)
35 {
36 SetState (0) ;
37 this−>m eventHandled = ACCEPTED;
38 }
39 }
40 }
41 }

Listing 10.1: The StateEngine function for switching between different states, based
upon the function returns

1 const u i n t 8 t CMessageDecoder : : TransitionMap [] [MAX SUBSTATES] = {
2 { STATE SOP1 IDENTIFIED , STATE IDLE } ,
3 { STATE SOP2 IDENTIFIED , STATE SOP1 IDENTIFIED , STATE IDLE } ,
4 { STATE AID CHECKEDANDSET, STATE IDLE } ,
5 { STATE TS SET, STATE IDLE } ,
6 {STATE PD IDENTIFIED, STATE SOP1 IDENTIFIED , STATE IDLE } ,
7 { STATE SC SET, STATE LENGTH SET, STATE CRC CHECKED,

45

Chapter III Developed Communication System

8 STATE SOP1 IDENTIFIED , STATE IDLE } ,
9 {STATE LENGTH SET, STATE CRC CHECKED, STATE IDLE } ,

10 { STATE PL SET, STATE IDLE } ,
11 { STATE CRC CHECKED, STATE SOP1 IDENTIFIED , STATE IDLE } ,
12 { STATE EOP1 IDENTIFIED, STATE SOP1 IDENTIFIED , STATE IDLE } ,
13 { STATE EOP2 IDENTIFIED, STATE SOP1 IDENTIFIED , STATE IDLE } ,
14 { STATE SOP1 IDENTIFIED , STATE IDLE }
15 } ;

Listing 10.2: The defined state transition map representing the switching behavior
between between different states

As a result, solely one state can be active at a single instant of time and it is stored
by the local variable m activeState which is represented by an integer, only accepting
values according to table 10.1.

State numbering Reachable state Related state function
0 STATE IDLE Reset()
1 STATE SOP1 IDENTIFIED Identify StartOfPacket1()
2 STATE SOP2 IDENTIFIED Identify StartOfPacket2()
3 STATE AID CHECKEDANDSET CheckAndSet AllocationIdentifier()
4 STATE TS SET Set Timestamp()
5 STATE PD IDENTIFIED Identify PacketDescriptor()
6 STATE SC SET Set SegmentationCounter()
7 STATE LENGTH SET Set LengthOfPayload()
8 STATE PL SET Set Payload()
9 STATE CRC CHECKED Check CRC16()
10 STATE EOP1 IDENTIFIED Identify EndOfPacket1()
11 STATE EOP2 IDENTIFIED Identify EndOfPacket2()

Table 10.1: The defined numbered and reachable states of the Message Decoder, depend-
ing of the return value of the related function

As already said, the Message Decoder inherits from the CStateMachine class to obtain
the necessary working mechanisms of the state machine to support the state transitions.
The class diagrams of the Message Decoder and the CStateMachine are provided in
appendix C.

Last but not least, the complete state machine is illustrated in figure 10.6 where the
STATE IDLE 0 represents the initial and STATE EOP2 IDENTIFIED 11 the final state. The
solid blue path shows up a complete message including the payload of the message, e.g. if
IO-Link specific commands are transmitted. On the other side, the state machine can also
proceed a shorter path, e.g. in the absence of a payload if only a connect or synchronize
message is received. In the case of a receiving error, the orange route is performed to
check, if the non-received byte represents a SOP1 pattern instead, while the previous
information was a faulty transmission. Using USB, this behavior should normally not
appear due to error detection and correction mechanisms of the USB communication
layer but for lower layer interfaces not supporting such working principles this property
becomes necessary to reset the machine to its idle state.

Finally, the implemented byte oriented state machine pattern for the Message Decoder
enables the simple extension with more states, if the protocol might be changed in the
future. For this purpose, only new functions and states with the related transitions have
to be inserted in the modified tables and Message Decoder class.

46

Chapter III Developed Communication System

STATE_SOP1_IDENTIFIED_1

STATE_SOP2_IDENTIFIED_2

Initial

STATE_IDLE_0

STATE_TS_SET_4

STATE_PD_IDENTIFIED_5

STATE_LENGTH_SET_7

STATE_PL_SET_8

STATE_CRC_CHECKED_9

STATE_EOP1_IDENTIFIED_10

STATE_EOP2_IDENTIFIED_11

STATE_SC_SET_6

STATE_AID_CHECKEDANDSET_3

Final

NOT_FINISHED

ACCEPTED

DecodeData
/Set_LengthOfPayload (T7)

DecodeData
/Check_CRC16 (T10)

REJECTED
/Identify_SOP1 (T15)

ACCEPTED

ACCEPTED

REJECTED
/Identify_SOP1 (T18)

ACCEPTED

REJECTED
/Identify_SOP1 (T19)

DecodeData
/Set_SegmentationCounter (T6)

REJECTED
/Reset (T20)

DecodeData
/Identify_SOP2 (T2)

REJECTED
/Check_CRC16 (T11)

ACCEPTED

DecodeData
/Set_T imestamp (T4)

DecodeData
/Identify_SOP1 (T14)

DecodeData
/Identify_EndOfPacket1 (T12)

DecodeData
/Set_Payload (T9)

DecodeData
/CheckAndSet_A llocationIdentifier (T3)

NOT_FINISHED

DecodeData
/Identify_EndOfPacket2 (T13)

ACCEPTED

ACCEPTED

DecodeData
/Identify_PacketDescriptor (T5)

REJECTED
/Set_LengthOfPayload (T8)

NOT_FINISHED

ACCEPTED

DecodeData
/Identify_SOP1 (T1)

REJECTED
/Identify_SOP1 (T16)

ACCEPTED

REJECTED
/Identify_SOP1 (T17)

ACCEPTED

Figure 10.6: The implemented Message Decoder for reading, interpreting and handling
each received byte from the USB communication layer. The solid blue path represents a
complete message including a packet payload while the orange track illustrates an error
during reading of the communication message

47

Chapter III Developed Communication System

10.2.2 Message Encoder

Except the Message Decoder, all other state machines are implemented following the state
pattern of [18] since the amount of different states is much less compared to the decoder of
the previous chapter. This pattern allows the Message Encoder object to alter its behavior
if the internal state changes which can be the idle, encoding and sending state. Exploiting
the key idea of the state pattern to introduce the abstract class IMessageEncoderState,
several states can be represented by the Message Encoder that inherit from this interface
and implement state-specific behavior. The class CMessageEncoder maintains an instance
of the subclass for the current state with the state-specific behavior. The structure of
the Message Encoder applying the state pattern is shown below in 10.7 where three
subclasses perform their particular operation. Whenever a state changes, the Message
Encoder adjusts its instance of the subclass, too. The main benefit of this behavioral
pattern is, that no transition tables are necessary, it is easily extensible and each behavior
is encapsulated in its own class such that each state can be treated independently from
other statuses.

Furthermore, the following participants of the state pattern are specified [18]:

• Context (CMessageEncoder): Determines interface to clients and maintains an in-
stance of the current state.

• State (IEncoderState): Represents the interface for encapsulating the behavior.

• ConcreteState subclasses (CEncoderConcreteStateIdle, CEncoderConcreteState
Encoding, CEncoderConcreteStateSending): Implement state specific behavior.

CMessageEncoder

- m_pState: IEncoderState*

- CMessageEncoder()
+ Encode(CPacket*): void
+ GetInstance(): CMessageEncoder *
- ChangeState(IEncoderState*): void
+ Reset(): void

IEncoderState

+ Encode(CMessageEncoder*, CPacket*): void
ChangeState(CMessageEncoder*, IEncoderState*): void
+ Reset(CMessageEncoder*): void
+ Send(CMessageEncoder*, uint8_t*, uint16_t): void

CEncoderConcreteStateIdle

- CEncoderConcreteStateIdle()
+ Encode(CMessageEncoder*, CPacket*): void
+ GetInstance(): CEncoderConcreteStateIdle *

CEncoderConcreteStateEncoding

- m_crc16: CCRC16
- m_pMessage: uint8_t ([275])

- CEncoderConcreteStateEncoding()
+ Encode(CMessageEncoder*, CPacket*): void
+ GetInstance(): CEncoderConcreteStateEncoding *

CEncoderConcreteStateSending

- CEncoderConcreteStateSending()
+ GetInstance(): CEncoderConcreteStateSending *
+ Reset(CMessageEncoder*): void
+ Send(CMessageEncoder*, uint8_t*, uint16_t): void

-m_pState

Figure 10.7: Structure of the Message Encoder applying the state pattern with CMessage-

Router as the context, CEncoderStateIdle, CEncoderStateEncoding, CEncoderState-
Sending as the concrete state subclasses and IEncoderState as the abstract state ac-
cording to the pattern of [18]

The workflow of the Message Encoder is always the same which is illustrated by 10.8
where the idle state is the state of no operation of the encoder. If the component shall
encode a packet which was sent by the Message Router, the behavior will be changed
to the encoding state which is working in the reverse direction compared to the Message
Decoder workflow of 10.6, save that the encoder converts the packet into a byte stream
at once since all data is immediately available compared to the decoder. The encoding
state adds the packet limiters as well as calculates the CRC checksums and inserts the
translated data structures of the packet according to the communication protocol rules in
a byte array such that it can be extracted again by the Message Decoder of the receiver.

48

Chapter III Developed Communication System

After encoding, the Message Encoder goes to the sending state which sends a reference
of the filled array to the Communication Handler and automatically jumps to the idle state
again at the end.

Initial Final

STATE_IDLE_0

STATE_ENCODING_1 STATE_SENDING_2

Reset
/ChangeState(T3)

E ncode
/ChangeState (T1)

Send
/ChangeState(T2)

Figure 10.8: The MessageEncoder state machine

10.3 Message Router

In order to route and control the packet flow either received from the upper presentation
layer or from the lower protocol layer, the development of a Message Router becomes nec-
essary to control the separated logical communication between two devices, independent
of the transmission medium and topology. For the first time within the communication
path, a logical addressing is performed based on the allocation identifier of the related
packet for pathfinding of information between the sender and transmitter. Therefore,
the router acts as a process-to-process connection between the two endpoints which is
implemented by control and management of connections for the logical data exchange.

Initial Final

STATE_IDLE_0

STATE_ROUTING_1 STATE_COMMUNICATIONHANDLING_2

Route
/ChangeState(T1)

Reset
/ChangeState(T4)

HandleCommunicationSpecific
/ChangeState(T3)

Reset
/ChangeState(T2)

Figure 10.9: The Message Router state machine

Since several devices are planned to be connected via a backplane bus to the main
device which is directly communicating with the PC application over USB, the Message
Router has also the future task of distributing received packets to other submodules.
Figure 10.9 illustrates the Message Router state machine which consists of an idle state

49

Chapter III Developed Communication System

as the default status, a routing state where the packet is distributed to subcomponents
of the communication system and a state for handling communication specific functions.
Only packets received from the Message Decoder and for the current device, depending on
the allocation ID, are considered for being distributed within the communication system.
If a packet is internally created or received from a secondary device over the backplane
bus, a one bit flag marks this packet such that it will be directly routed to the Message
Encoder. Table 10.2 lists the different PIDs known by the router and the resulting task
if the packet is addressed to the current device.

PID Name PID Value Is Write Request Implementation

ACK 1 (disregarded)
The Message Router informs the Communi-
cation Handler about received ACK packet

Error 2 (disregarded) Write the Error to the console
Test device applies new communication

true
settings, respectively master shows settingsCommunication 3

false Device returns the information
Device restarts its internal counter

Reset 4 (disregarded)
since startup

Connect 5 (disregarded) Device replies with ACK packet
Device synchronizes its time since startup

true
with the received timestamp
Device responses with a synchronization
write request such that the other device

Synchronize 6
false

refreshes its counter
Packet will be send to

Hardware 7 (disregarded)
the Hardware parameter handler
Packet will be send to the

IO-Link 8 (disregarded)
IO-Link parameter handler
Packet will be send to the

Traces 9 (disregarded)
Traces parameter handler

Table 10.2: The considered PIDs of the Message Router for a received packet.

As can be seen, the Message Router directly interacts with the currently paired device
by sending defined packets as replies to the counterpart depending on the PID. Further-
more, it accesses functions of the Communication Handler to reset the time since startup
or to synchronize times. On the other hand, it also sets and returns the handler’s new
applied ID (in case of a write request, the new ID can be different to the allocation ID),
name and description if a ”Communication” packet with write, respectively read request
was received. Here, the information is hidden in the payload with the order

| ID | NAME | DESCRIPTION |

where the seven bit coding of American Standard Code for Information Interchange
(ASCII) has been exploited. While the ID is always one byte long, the router is not
knowing the length of the name and description except one would have been implemented
static fields with predefined length or two additional bytes, only used for declaring the
length of each string field. But to keep the packet overhead as small as possible, the
advantage of the Variable-Length Quantity (VLQ) principle introduced in chapter 9.2 is
taken where the MSB of each ASCII character (except the last char of each field) is stuffed
by a logic ”1” to express a subsequent concatenated character. As a consequence, the
router can simply extract the related fields, resets all of the MSBs for the received string
to ”0” and passes the information to the Communication Handler.

50

Chapter III Developed Communication System

10.4 Presentation Layer

If the router sends a packet to the presentation layer, it has to distinguish between the
three different PIDs which are packets for IO-Link, hardware, and traces related features.
Each module has the purpose to release the specific coded payload data in standard
formats for the application layer. Therefore, the presentation layer converts the received
information into given codexes to call the appropriate function of the final application
layer which is closely linked to the presentation layer itself.

Depicted in illustration 10.10, the IO-Link and Hardware Parameter Handler are im-
plemented again as separate state machines to ensure for each component up to 255
function calls with different internal data representation and to split the process logic
into independent modules, but featuring the same workflow as can be seen in the figure
by implementing an idle, sending, receiving and handling state. Caused by the same
working behavior and internal protocol, the IO-Link and Hardware Parameter Handlers
are merged and discussed in the common chapter 10.4.1. The traces related information
and working were not known at the end of the thesis submission date. Therefore, this
handler is not implemented yet but its future task is shortly mentioned in the last chapter
10.4.2.

Initial Final

STATE_IDLE_0

STATE_RECEIVING_1

STATE_HANDLING_2

STATE_SENDING_3

Receive
/ChangeState(T1)

Send
/ChangeState(T4)

Send
/ChangeState(T5)

Handle
/ChangeState(T2)

Reset
/ChangeState(T6)

Reset
/ChangeState(T3)

Figure 10.10: The state machines of the IO-Link and Hardware Parameter Handler

10.4.1 IO-Link and Hardware Parameter Handler

The IO-Link and Hardware Parameter Handlers expect pointers to the received payload
which is structured by its own presentation layer protocol. Influenced by Modbus RTU,
the protocol is binary coded to ensure an efficient average data transfer rate with the
drawback that it cannot be easily evaluated by humans compared to ASCII coded pro-
tocols. Nevertheless, the application layer and especially the Communication Bridge and
HMI, explained in chapter IV convert the binary data representation into human readable
information.

The general structure of the payload protocol is always similar to the following order

| FCTID | VALID | VALUE | VALID | VALUE | VALID | VALUE |... ,

51

Chapter III Developed Communication System

where every payload starts with a unique Function Identifier (FCTID) and depending
on a read/write request and the FCTID itself, a sequence of unique Value Identifiers
(VALID) with the related Values (VAL). As stated in the following listing, a function
map is used as the ideal way to call the related method by utilizing function pointers
stored in an array.

1 /∗
2 ∗ Function map f o r c a l l i n g the appropr ia te func t i on .
3 ∗ The func t i on map has to be in the same order as the
4 ∗ i n t e r n a l func t i on IDs !
5 ∗/
6 const CFunctionStruct FunctionMap [] = {
7 { reinterpret cast<IOLinkFunc>(&HandleDeviceConf igurat ion) } ,
8 { reinterpret cast<IOLinkFunc>(&HandleAddCompatible) } ,
9 . . .

10 { reinterpret cast<IOLinkFunc>(&HandleCreateSubindex) }
11 } ;

Listing 10.3: Excerpt from the IO-Link Parameter Handler function map

Depending on the called function and the information within the packet descriptor, a
payload can only consist of a size of 1 byte (Figure 10.11(c)), or it can contain several
value identifiers with the related values (write request, figure 10.11(a)) or without the
value fields (read request, figure 10.11(b)). If a packet is sent from the Message Router to
the parameter handler, the FCTID as the first byte of the payload is extracted, followed
by calling the associated function and separation of each value connected to its Value
Identifier (VALID) which is either a fixed size (CParameter implementation) or a variable
in size (CVLQ) data structure. The length and data structure of a value is ruled by
both participants of the communication. Furthermore, the order of the value identifiers
(connected with their values) can vary since the handlers algorithm in 8 only reviews the
IDs and checks, if another byte for the given value will follow or not, or if the end of
the payload is reached. After extracting the values, the function only picks its related
values for being transmitted to the application layer. As explained later in the chapter
of the developed HMI, this feature enables the transmission of single particular defined
parameters which are requested by the user to keep a payload as short as possible but
to avoid too many split messages on the other side which would have led to a higher
occupancy rate of the transmission medium.

Time

PayloadPDTS PayloadPDTSPayloadPDTS

Packet Packet PacketPacketPacket

FCTID VALID VAL VALID VAL FCTID VALID VALID

(a) (b) (c)

FCTID
[1] [1] [1;...] [1] [1;...] [1] [1] [1] [1]

Figure 10.11: Examples of the presentation layer protocol applied by the IO-Link and
Hardware Parameter Handlers

52

Chapter III Developed Communication System

The handlers do not only return packets in case of a read request but also if the packet’s
isRespondRequested flag is set to true for a write command to avoid the additional call
of a read request. In the case of requested responses or read commands, the handler
manipulates the received payload by stuffing the new applied values of the application
layer after the appropriate VALID. Afterwards, the new packet will be sent from the
handling state to the sending state where the packet descriptor is generated by adding the
new timestamp, read from the Communication Handler, setting the allocation identifier
and marking the current packet as an internally created one with the isReceived flag to
false such that the packet won’t be mirrored back from the Message Router. Finally,
the complete packet is sent to the Message Router which, as already explained, directly
routes the packet to the Message Encoder.

Algorithm 8: Converting the payload of a packet to the given data structures
Data: *packet

1 CIOLinkParameters parameters
2 startIndexOfPayload = packet− >GetStartIndexOfPayload()
3 //-1 since endindex is included in the payload
4 endIndexOfPayload = packet− >GetStartIndexOfPayload() + packet− >GetSizeOfPayload() - 1
5 continueReadingPayload = true
6 continueReadingValue = true
7 //keep in mind the offset since the first byte represents the functionID
8 counter = startIndexOfPayload + 1
9 while continueReadingPayload do

10 //get the valueID
11 if counter <= endIndexOfPayload then
12 continueReadingValue = true
13 valueID = packet− >GetPayloadPointer()[counter]
14 counter++

15 else
16 continueReadingPayload = false
17 continueReadingValue = false

18 end if
19 while continueReadingValue do
20 //Differ between the several values to choose the correct one and to determine
21 //the resulting size of the value
22 switch valueID do
23 case REVISIONID do
24 continueReadingValue = ReadAndSetParameter(&(parameters.RevisionID),

packet, counter)
25 end case
26 case BAUDRATE do
27 continueReadingValue = ReadAndSetParameter(&(parameters.Baudrate),

packet, counter)
28 end case
29 ...
30 otherwise do
31 continueReadingPayload = false
32 continueReadingValue = false

33 end case

34 end switch
35 if packet− >GetPacketDescriptor()− >IsWriteRequest() then
36 counter++
37 end if

38 end while

39 end while
40 return parameters

53

Chapter III Developed Communication System

10.4.2 Traces Parameter Handler

The final module will receive packets with an ID of ”9” to transmit and receive trace
information with important functions for the future like [16]

• SetTraceLevel(type, level) to configure the type of traces messages, e.g. protocol,
physical layer or process data of the IO-Link specific behavior,

• ResetTraceBuffer() to delete all messages from the trace buffer and

• ReadTraceBuffer(data) to transmit the whole content of the trace buffer.

Since the amount of trace data can easily extend the determined size of a payload
for the lower communication layers, segmentation has to be done by this handler to
exploit and calculate the segmentation key and setting the segmentation flag of the
CPacketDescriptor to true such that the counterpart of the sender can allocate and
merge the messages.

10.5 Application Layer

The final layer provides services for the application itself to act as a connection to the
lower layers of the communication system and where the data in- and output takes place.
To establish an easy to use way for the application layer gateway, the strategy pattern is
applied by defining two separate classes that encapsulate different gateway algorithms. As
shown in figure 10.12 with some defined listed functions, the CGatewayLibrary represents
a composition class accessible by clients and which has the responsibility of maintaining
and updating the gateway behavior between the presentation layer and the application.

IGateway

+ GetBaudrate(): uint8_t
+ GetDeviceParameter(): void
+ GetFrameType(): uint8_t
+ GetMinCycleTime(): uint8_t
+ GetRevisionID(): uint8_t
+ GetSerialNumber(): void
+ GetWakeResponseTime(): uint8_t
+ SetDeviceParameter(): void

CReceivingGateway

+ GetBaudrate(): uint8_t
+ GetDeviceParameter(): void
+ GetFrameT ype(): uint8_t
+ GetMinCycleTime(): uint8_t
+ GetRevisionID(): uint8_t
+ GetSerialNumber(): void
+ GetWakeResponseTime(): uint8_t
+ SetDeviceParameter(): void

CSendingGateway

- m_packet: CPacket
- m_payload: uint8_t ([255])

+ GetBaudrate(): uint8_t
+ GetDeviceParameter(): void
+ GetMinCycleTime(): uint8_t
+ GetRevisionID(): uint8_t
+ GetWakeResponseTime(): uint8_t
+ Send(): void
+ SetDeviceParameter(): void

CGatewayLibrary

- m_pGatewayBehavior: IGateway*

+ CGatewayLibrary(IGateway*)
+ GetBaudrate(): uint8_t
+ GetDeviceParameter(): void
+ GetFrameT ype(): uint8_t
+ GetMinCycleTime(): uint8_t
+ GetRevisionID(): uint8_t
+ GetSerialNumber(): void
+ GetWakeResponseTime(): uint8_t
+ SetDeviceParameter(): void

-m_pGatewayBehavior

Figure 10.12: The final application layer class diagram of the communication system
with some defined functions, divided into a receiving and sending gateway applying the
strategy pattern. Due to the large amount of data, function parameters are in general
not shown.

54

Chapter III Developed Communication System

Two different strategies are implemented for the system which are a CSendingGateway

and CReceivingGateway, inheriting from the abstract class IGateway. The CGatewayLib-
rary itself maintains a reference to the IGateway object and whenever a gateway func-
tion is called, the composition class forwards the information to the gateway behavior
defined by the caller. This pattern has the benefit, that the two related classes only
differ in their behavior with distinguished variants of algorithms. As an example, a
SetDeviceParameter(...) function on the transmitter side requests the library to use
sending behavior such that the internal payload will be filled and initialized according
to the payload protocol of the related handler and function. Afterwards, this gateway
calls the IO-Link Parameter Handler to send the packet to the Message Router, etc. On
the receiver side, the CGatewayLibrary implements receiving behavior, determined by
the IO-Link Parameter Handler such that the received parameters are applied by the
device’s application with the same SetDeviceParameter(...). As already mentioned
in the previous chapter, the handler can then also call methods like GetRevisionID(),
etc. to obtain the new applied settings which are transmitted back to the sender of the
original message.

This pattern greatly improves the program logic and avoids exposing complex, algorithm-
specific data structures as well as multiple conditional statements in its operations [18] and
the developer of the communication system can define required functions in the IGateway
class that have to be implemented by the programmer of the application, too.

11 Memory Occupancy

Ultimately, the occupied RAM and ROM sizes of the implemented Communication Sys-
tem are illustrated in the following pictures. As can be seen, the total needed ROM
memory of the system just allocates 23% of the total program where the remaining im-
plementation include other components which are not part of the thesis like IO-Link
and STM32 stack libraries. Compared to ROM, slightly more RAM is needed to ensure
an appropriate amount of memory which is necessary for the unknown information that
will be transmitted, respectively received. One reason for the small occupancy is the
usage of pointers for the payload information to avoid initialization and larger memory
requirements of the payload for each layer of the communication system which would have
required additional 255 bytes for each module.

Figure 11.1: ROM (a) and RAM (b) memory allocation in bytes used by the Communi-
cation System, read from the IAR Linker file ” gen.map”

55

Chapter III Developed Communication System

Figure 11.2: The total memory occupancy including the IO-Link stack and external files
(labeled with ”Remaining”), read from the IAR Linker file ” gen.map”

This chapter dealt with the different designed, developed and implemented layers of
the communication system, the protocol and with the applied software patterns for an
improved maintenance of the system. The IO-Link and Hardware Parameter Handlers, as
well as the communication system’s gateway are easily extensible by adding new functions
and value IDs to the related maps for future tasks. Furthermore, the memory usage of
the overall communication system is very low considering that the development board is
capable of providing RAM of up to 192kB and 1MB of flash storage. The final chapters
discuss the developed HMI for configuring the test device in a broad range of IO-Link
and hardware specific settings taking the usability aspect into account.

56

Chapter IV

Developed Human Machine Interface

12 Overview

The interaction of an operator and a computing device requires the development and
implementation of a PC application acting as the Human Machine Interface. Within the
scope of the master thesis, an interactive, reliable and easy to use application has been de-
veloped that guarantees the configuration and simulation of IO-Link specific tasks as well
as additional hard- and software functions for the test device. While the communication
system is developed in C and C++, the HMI is mainly written in Visual C#.

Influenced by Java and C++, Visual C# offers as a part of the .NET platform an effi-
cient way of implementing up-to-date software and has the benefit of the object-oriented
approach providing a consistent layer for application development purposes. Another ap-
proach of .NET is the replacement of the WinAPI-32 by classes of the .NET framework
enabling language-independent programming since all languages access the same library.
Furthermore, running .NET applications are in general comparable to Java’s virtual ma-
chine where during the lifetime of a program machine code is assembled. This so-called
Common Language Runtime (CLR) has the advantage, that designed programs can be
ported to different operation systems, like the Mono-Project where the .NET framework
has been successfully ported to the Linux system [22]. Two remaining profits are the
Garbage Collector, similar to Java, that recognizes non-used objects and cleans the re-
lated memory without the user’s intervention and the easy transfer of programs since no
registry entries have to be performed like in the case of COM-based software. As a con-
sequence, it is often sufficient enough to copy the related .exe or .dll data to the desired
directory. During the development time of a .NET program, the source code is compiled to
a CPU independent intermediate code - called Microsoft Intermediate Language (MSIL)-
code or shortly IL - with the .exe file extension for a self-launching application. For
starting the IL code, a Just In Time (JIT) compiler is used during the program lifecycle
for generating native code.

Since several information about the .NET framework can be found in the world wide
web, for example on the Microsoft Developer Network [26] or books like [22], this chapter
only deals with the developed PC application and explains detailed concepts of CLR and
.NET only if it is necessary like for the integration of the C++ communication system in
chapter 13. Furthermore, a short overview of the used Model-View-ViewModel (MVVM)
pattern will be explained as a modern basis for the implemented PC application. Finally,
the different designed and implemented Tabs with their behaviors like the XML parser in
section 16.6.2 are discussed.

57

Chapter IV Developed Human Machine Interface

13 Integration of the Communication System

As mentioned in the introductory chapter 12, the CLR is the environment where the
.NET application is executed. All code run by the CLR is denoted as managed code and
has the advantages of the services provided by CLR which are for example according to
[22]

• the Class Loader to load classes in the runtime environment,

• the Type Checker to prevent prohibited type conversions,

• the JITter, which converts MSIL code during runtime in native code,

• the Exception Manager,

• the Garbage Collector and

• the Debug Machine to debug the code during runtime.

But the developed communication system for the embedded component is written in
unmanaged code which cannot be integrated into the .NET application without any tran-
scriptions. In order to avoid the rewriting of the whole source code written in C++, a way
is found to assimilate the developed communication system into the .NET environment.
Not mentioned in the above enumeration is another powerful feature of CLR which is the
Platform Invocation Service. This tool enables and ensures communication between
different programmed components and is exploited for the interoperability of the HMI and
the communication system environment. As shown in 13.1, a Dynamic Link Library (dll)
is created for the communication system during compile time which provides several entry
points by exporting specific functions accessible by the managed environment. Listing 13.1
shows an example method for sending or writing marked device configuration parameters
which are converted and processed by the communication system. On the other side, C#
implementations import these entry points to call the functions, e.g. if the send button
is pressed. Here as an example, the representation of an array and a pointer between C#
and C++ is different and the command MarshalAs(UnmanagedType.LPArray) tells the
compiler, how this data is marshaled between managed and unmanaged memory.

Managed C# application

Unmanaged C++ communication system

Communication Bridge

DLL Exports

DLL Exports

DLL Imports
Not convenient

CommunicationSystem.dll

CommunicationBridge.lib

Figure 13.1: Calling unmanaged C++ functions from .NET and calling C# .NET methods
from unmanaged code

58

Chapter IV Developed Human Machine Interface

1 extern ”C” d e c l s p e c (d l l e x p o r t) void
2 Communication SetGet DeviceParameter (u i n t 6 4 t timestamp ,
3 bool i sWriteRequest ,
4 u i n t 8 t rev i s i onID , bool def inedRevis ionID ,
5 u i n t 8 t baudrate , bool def inedBaudrate ,
6 u i n t 8 t frameType , bool definedFrameType ,
7 u i n t 8 t ∗ serialNumber , u i n t 8 t lengthOfSerialNumber ,
8 bool def inedSer ia lNumber ,
9 . . . ,

10 u i n t 8 t deviceResponseTime , bool definedDeviceResponseTime ,
11 u i n t 8 t wakeResponseTime , bool definedWakeResponseTime ,
12 u i n t 8 t minCycleTime , bool definedMinCycleTime) ;

Listing 13.1: Exporting an unmanaged C++ function to make it accessible by other
environments

1 [Dl l Import (”CommunicationSystem . d l l ” , Cal l ingConvent ion =
Cal l ingConvent ion . Cdecl)]

2 pub l i c s t a t i c extern void Communication SetGet DeviceParameter (
3 UInt64 timestamp ,
4 bool isWriteRequest ,
5 byte rev i s i onID , bool de f inedRevis ionID ,
6 byte baudrate , bool def inedBaudrate ,
7 byte frameType , bool definedFrameType ,
8 [MarshalAs (UnmanagedType . LPArray)] byte [] serialNumber ,
9 byte lengthOfSerialNumber , bool def inedSer ia lNumber ,

10 . . . ,
11 byte deviceResponseTime , bool definedDeviceResponseTime ,
12 byte wakeResponseTime , bool definedWakeResponseTime ,
13 byte minCycleTime , bool definedMinCycleTime) ;

Listing 13.2: Counterpart to 13.1 where the unmanaged method can be called by the
C# .NET application

On the other side, acyclic and cyclic data can also be received by the communication
system which informs the .NET application about new data in a reliable and efficient
manner. To ensure this interoperability, a C++/CLI Communication Bridge is designed
and implemented which acts as a wrapper of the managed environment. Since C++/CLI
has both properties of C++ and the .NET environment, e.g. full use of pointer and the
automatic Garbage Collector, it transforms information from the unmanaged components
to suitable representations necessary for the HMI application as can be seen in figure
10.1. Therefore, each ViewModel of the related tab - as discussed later in the subsequent
chapters - provides a static thread safe reference to itself such that the Communication-

Bridge can access all public functions of the ViewModel which are available. Although the
bridge only seems to act as an intermediary layer between the gateway and the application
level of the HMI, it also provides functions between other components according to figure
10.1, e.g. in case the Message Router requests the addressed device ID or in case that the
Message Router sends an acknowledged identifier to the Communication Handler.

The main benefit of this integration idea is that the vast amount of source code doesn’t
has to be retyped in C#. Furthermore, a change of the communication system for the
embedded controller simply leads to copying the recently modified lines to the system’s dll
project on the PC side. A minor drawback is of course the additional coding effort which
has to be done for the Communication Bridge library and always keeping in mind that
the communication system needs to feature both master and slave behavior, depending on
the defined project preprocessor definition and allocation ID of the device. HMI behavior
is compiled by the preprocessor flag ”DLL HMI EXPORTS” to ensure that only relevant
code is considered by the compiler, decreasing the amount specific memory allocation.

59

Chapter IV Developed Human Machine Interface

14 Design Pattern of the Human Machine Interface

In 2006, Microsoft started the development of a new library for the .NET environment
designated as the Windows Presentation Foundation (WPF) to enable a powerful tool for
the development of future applications. Since the WinForm-API is not further enhanced
by Microsoft [22], the graphical user interface of the HMI is developed with this new
technique. WPF offers several advantages which are listed in the following enumeration:

• The user interface is described by an XML-based language to avoid the inconvenient
usage of a large amount of C# coding.

• Increased graphical performance due to the support of DirectX for using the Graph-
ical Processing Unit rather than the CPU.

• Vector based output for increased image scaling and fluent passages of graphical
representations.

• Multifarious scope for design.

• Automatic adjustment to the monitor resolution (DPI).

• Data binding possibilities as one of the most powerful properties of WPF.

Therefore, the many offered opportunities of the WPF, especially the possibility of
data binding, enables the separation of pure graphic designers only working with XML-
based coding (or Expression Blend or similar tool) and C# programmers who are devel-
oping the code behind of a software application.

Due to the big advantages of WPF, a state-of-the-art design pattern for the application
development is applied which is the MVVM pattern. This model enables the strict division
of graphical user interface design and the operating task of a system and is illustrated in
figure 14.1. Furthermore, this concept enables Graphical User Interface (GUI) designers
the implementation in pure XML without the knowledge of the C# code behind. As can
be seen in the figure, the pattern consists of a Model representing the data used for the
application, usually without an implemented logic, a View performing the user interface
without any code behind logic and the ViewModel as the intermediary layer between
the graphical representation and the data. Thus, each ViewModel provides the control
behavior and the logic of the program.

ViewModel Model

Presentation Logic Data Logic
User Interface Logic
+ Code behind

Commands

Notifications

BindingView

Figure 14.1: Illustration of the Model-View-ViewModel Pattern

The specific feature of this pattern is that the ViewModel usually doesn’t know any-
thing about the View and as a consequence, the View itself can be easily replaced by
another user interface. But in order to notify the View about a changed property in the
model, every ViewModel has to inherit from the ViewModelBase class which is depicted
on the next page by listing 14.1.

60

Chapter IV Developed Human Machine Interface

1 namespace Conf igurator . ViewModel
2 {
3 pub l i c ab s t r a c t c l a s s ViewModelBase : INoti fyPropertyChanged
4 {
5 pub l i c event PropertyChangedEventHandler PropertyChanged ;
6 // g e n e r i c method , t r i g g e r s event , saves new property value
7 // in the r e l a t e d f i e l d
8 protec ted void SetProperty<T>(r e f T storage , T value ,
9 [CallerMemberName] s t r i n g property = n u l l)

10 {
11 i f (Object . Equals (s torage , va lue)) re turn ;
12 s t o rage = value ;
13 i f (PropertyChanged != n u l l)
14 {
15 PropertyChanged (th i s , new PropertyChangedEventArgs (
16 property)) ;
17 }
18 }
19 }
20 }
Listing 14.1: Implementation of the INotifyPropertyChanged interface in order
to notify the data target about the changed data source, based on [22], with the
generic method SetProperty to generate an event and storing the new value in the
corresponding field

Whenever possible, the MVVM is thoroughly applied. But for example in the case of
the implemented command bindings, this design rule is ruptured avoiding a too compli-
cated design if only user interface logic would have been used. Another example is the
position of the cursor for the XML Editor since CaretIndex of a TextBox is not a Depen-
dency Property. To overcome this problem, one has to define an attached property on the
control via a separate class, define a property in the ViewModel and bind the attached
property to the one in the ViewModel. After that, an update of the control property in
the callback of the attached property changed event has to be performed according to
the new value received. Since this behavior would have made the problem more complex
without any reasonable usage, a simple event is registered instead.

15 General Appearance

In accordance to ISO 9241-210, ”User experience as is a person’s perceptions and responses
that result from the use or anticipated use of a product, system or service” [19]. To ensure
a positive feedback from the user of the application, a good usability has to be reached
such that [7]

• it is easy for users to get familiarized with (Learnability),

• users can quickly perform tasks (Efficiency),

• users can easily reestablish proficiency (Memorability) and

• the design is pleasant to use (Satisfaction).

Another quote which perfectly fits the intention of the HMI is, that ”Most people make
the mistake of thinking design is what it looks like. People think it’s this veneer - that
the designers are handed this box and told, ’Make it look good!’ That’s not what we think
design is. It’s not just what it looks like and feels like. Design is how it works. 1”.

1Steve Jobs, The New York Times, article from 30th of November, 2003

61

Chapter IV Developed Human Machine Interface

Therefore, a reliable, easy-to-use and understandable graphical user interface is one
of the most important priorities for the development of a PC application. Furthermore,
direct contact with a usability expert from Siemens s.r.o. in Brno, Czech Republic, was
established to get some usability hints which are1:

• Obtaining related information about the users.

• Adapting the whole development flow and all interactions according to the user
needs.

• Sketching the GUI screens and dialogs on paper for a quick and easy process and
consulting with the colleagues and users.

• Always let the colleagues and users test the app and consider their feedback during
development.

The last statement was ensured by uploading new GUI mockups and working applica-
tions to a central storage server system such that all colleagues had access to the newest
versions and were able to give feedback about the appearance and structural order.

The designed user interface allows Human-Machine Interaction with the developed
test device such that it can be configured in a large variety of IO-Link, hardware, and
traces related parameters. The complete user interface itself is structured in three main
subcomponents which are a ribbon-control element at the top of the panel, a centered main
window structured by different tabs and an expandable application logger as depicted in
the following screenshot 15.1 of the user interface.

Figure 15.1: The start window of the designed and implemented graphical user interface

1M. Minarik (Email from the 12th of April, 2016)

62

Chapter IV Developed Human Machine Interface

The upper ribbon-control is used since it is an integrated part of Microsoft Office
and as a consequence, users are quickly familiarized with this structure. It represents
basic functions which can be fast accessed like saving, loading and resetting specific de-
vice configurations, loading and saving XML commands for the Editor and clearing the
application logger in the ”Start” tab of the ribbon. It also provides connection specific
functions in the ”Connection” tab to configure the USB connection, connecting and dis-
connecting to the device, as well as either synchronizing the device with the PC or vice
versa with the related times since startup. Moreover, the ”SD card” tab allows loading of
traces and saving, respectively loading, device configuration scripts to the card. Finally,
the ”Device” tab handles updates of the device for the future use.

The main centered window contains all relevant tabs to work with detailed functions
of the test device. These are

• the General tab to upload and request general device configurations as well as
reading the device status,

• the Data Storage tab managing data storage specific functions,

• the ISDU tab,

• the Events tab creating and reading SDCI events,

• the Hardware tab managing loads of the 1L, 2L and CQ pins,

• the Simulation tab, e.g. for switching on LEDs or simulating errors,

• the Traces tab for setting and displaying trace information and

• the Editor tab to create and upload script control commands.

Each mentioned tab is discussed in the following chapters in accordance to the IO-Link
specification [9] and the feature specification of the test device [16].

Figure 15.2: Several ribbon control tabs of the HMI for saving, loading and editing related
settings

63

Chapter IV Developed Human Machine Interface

16 Developed and Implemented Tabs

These final chapters of the thesis deal with the implemented tabs and reason for developing
a specific control interface based upon IO-Link and hardware specific features. As already
explained, additional requirements and structures from the colleagues were taken into
account to ensure a proper usage of the system for all expected future tasks. The emphasis
is put on ”expected future tasks” since the test device hardware and complete functional
implementation was not available till the submission of the thesis and missing definitions
of encoded values were not determined at this time for the test device to make the full
code-behind implementation complete.

16.1 General Device Information

The first tab represents general parameter settings and basic status information about the
device which are separated by a ”Status” field for reading the port mode, states hardware
and firmware version and a ”Device Parameter” field for reading and uploading required
device features according to figure 15.1. Here, the user determines by check boxes which
current parameters he likes to request or want to replace by new parameters. Instead of
sending multiple single commands, all marked values are sent by to the communication
system directly to utilize the payload protocol such that all desired parameters are up/-
downloaded to/from the test device at once. Moreover, the user is able to load, save and
reset the current configuration by a defined XML data structure as listed in appendix E
to improve usability and convenience.

Most of these parameters are represented by a special data structure of the IO-Link
specification which is the Direct Parameter Page used for small sensors with a limited
number of parameters as well as limited resources. In general, SDCI offers the two Direct
Parameter pages 1 and 2 with a simplified access method to meet this requirement. While
the Direct Parameter Page 2 stores vendor specific information and provides read/write
access, Page 1 holds system and predefined parameters and controls providing only read
access to the Master application layer and which are comprised of the following categories:

• Communication control (Address 0x00 to 0x06) with the minimum cycle
time of the device’s port supported that can be set by the HMI as well as the frame
type according to figure A.1 of appendix A, the revision ID determining the IO-
Link protocol version for implementation of the device (either version 1.0 or 1.1)
and finally the Process Data Input length as the structure of Process Data from
the Device to Master and the Process Data Output length on the opposite. Both
Process Data can accept maximum lengths of 32 octets or less.

• Identification parameter (Address 0x07 to 0x0E) with a worldwide unique 2
byte vendor ID, a 3 byte unique device ID and a future 2 byte function ID which
will be defined in a later version of the IO-Link standard [9] but which is already
included for testing.

• Application control (Address 0x0F) as an optional system command, e.g. start
or stop uploading of parameters or reset the device.

Furthermore, the device response time can be set to configure the delay of the device’s
response as the duration between the end of the stop bit of a port’s last received UART
frame and the beginning of the start bit of the next UART frame being sent by the device
[9]. Finally, the wake response time can be defined to set the device’s response after the
wake-up pulse to add additional features of the device communication quality and to test
the IO-Link Masters with limited values of the IO-Link specification [16].

64

Chapter IV Developed Human Machine Interface

16.2 Index Service Data Unit

To configure the functionality of a device in a larger scale than the Direct Parameter Page
2, a special parameter set is usually provided by the component where each parameter is
accessed by the Master via an Index of the range 0 to 65535 with a predefined structure
and a Subindex (0 to 255) to access a record within the parameter set. The first two
indices are reserved for the Direct Parameter page 1 and 2 for device related parameters
which was explained in the previous chapter and which is shown in the appendix of A.

As shown in the following picture 16.1(a), each index contains up to 232 octets where
the Subindex determines the data item of the given record. The IODD determines the
organization of the data records within the parameters set to provide individual access
to complex parameters and commands for the several sensor and actuator technologies.
Figure 16.1(b) illustrates the general mapping of the ISDU data objects.

Direct Parameter
Page 1 + 2

0x00

0xFFFF

Octets

Octets

0232

0232

Subindex 0
− >entire record

71 10

16

(a)

Parameter via ISDU

Reserved

0x5000 ... 0xFFFF

Profile specific Index

0x4000 ... 0x4FFF

Extended Index

0x0100 ... 0x3FFF

Prefered Index
0x40 ... 0xFE

Profile specific parameter
0x30 ... 0x3F

Diagnosis
0x20 ... 0x2F

Identification
0x10 ... 0x1F

System
0x02 ... 0x0F

Predefined
parameters

Device
parameters

(b)

Figure 16.1: Accessing records (a) and the index space of the ISDU data objects (b),
adapted from [9]

In order to test this specific feature, an ISDU tab is designed and implemented to
configure the test device’s parameter set. According to figure 16.2, the window is separated
into 3 distinct parts where the user can read, write or create a given index (and subindex
if required). Here, the related data and data types can be read or set. On the bottom, a
tree grid similar structure is designed showing the created and read indices during a test.

65

Chapter IV Developed Human Machine Interface

Figure 16.2: The implemented ISDU tab for configuring and creating related parameters

Finally, the configurable IO-Link data types are listed in the following table 16.1
including their length and range/standard and a short description. Since the structuring
will be done on the device side, a detailed inspection is not necessary here, but the
interested user can refer to the IO-Link specification of reference [9].

Data Type Value range / standard Length Description
BooleanT TRUE/FALSE 1 bit or 1 octet Boolean variable
UIntegerT 0...2bitlength − 1 1,2,4 or 8 octets Unsigned number
IntegerT −2bitlength−1...2bitlength−1 − 1 1, 2, 4 or 8 octets Signed number

single precision (32bit)
Float32T IEEE Std 754-1985 4 octets

floating point

StringT
US-ASCII, ISO/IEC 646

Maximum of 232 octets Character string
UTF-8, ISO/IEC 10646

Ordered sequence of
OctetStringT 0x00 . . . 0xFF per octet 232 octets (fixed)

octets

TimeT
Octet 1 to 4, 0 ≤ i ≤ (232 − 1)

8 octets
Time in sec (octet 1...4)

Octet 5 to 8, 0 ≤ i ≤ (232 − 1) and (232 − 1) sec (5...8)
TimeSpanT -263 ≤ i ≤ (263 − 1) 8 octets Time difference in 1

232 sec

ArrayT - -
Array of data items
with the same type

Data items of
RecordT - -

different types

Table 16.1: The possible ISDU data types

66

Chapter IV Developed Human Machine Interface

16.3 Data Storage

An innovative feature of SDCI is the Data Storage mechanism enabling the IO-Link Master
to automatically reparameterize a device after its replacement. If the device involves Data
Storage implementation, a standardized set of information is provided which ensures a
consistent and contemporary buffering of the device’s parameters on upper levels like the
Master and - if supported - the individual adjacent fieldbus system like PLC programs
[9]. Changes of the Data Storage shall lead to a ”DS UPLOAD REQ” which forces
the status of the Device state machine to ”Data Storage Upload” till a command like
”DS UploadEnd” or ”DS DownloadEnd” is received.

Usually, the device shall only trigger a ”DS UPLOAD REQ” event in the case of a
valid parameter set but for testing purposes, the user itself can force this event within
the PC application to test the IO-Link Master. If this event is triggered, the Master
starts an upload sequence of the Data Storage Device information. Table 16.2 lists the
Index assignment of the Data Storage feature. Here, each port of the Master has to
handle a guaranteed amount of indices and used memory which is represented via the
”Data Storage Size” information of the Device with a limit of 2048 octets as a maximum.
Furthermore, the Device contains a reference to the Index List by the ”Index List” flag to
provide the required information for the replacement of devices. Usually, the ”Index List”
has to be the same for any Device ID to guarantee data integrity between the Device and
the Master [9]. The implemented tab 16.3 depicts the developed Data Storage mechanism
for testing the IO-Link Master. On the left, up to 70 List Index entries can be created
with the specific Index and Subindex or can be deleted on the other side. Moreover, the
list can be sorted either by the entry or the index. On the right, Data Storage related
settings according to elements of table 16.2 can be performed. Finally, the user can save
or load both the Data Storage settings and the Index List via the ribbon control window
where the save data structures are again shown in appendix E.

Index SubIndex
Parameter

Coding Data Type
Name

0x0003

0x01 DS Command

0x00: Reserved
0x01: DS UploadStart
0x02: DS UploadEnd
0x03: DS DownloadStart UIntegerT8
0x04: DS DownloadEnd (8bit)
0x05: DS DS Break
0x06 to 0xFF: DS Reserved
Bit 0: Reserved
Bit 1 and 2: State of Data Storage

00: Inactive
01: Upload
10: Download UIntegerT8
11: Data Storage locked (8bit)

Bit 3 to 6: Reserved
Bit 7: DS UPLOAD FLAG

1: DS UPLOAD REQ pending

0x02 State Property

0: no DS UPLOAD REQ

0x03 Data Storage Size
Number of octets storing the requi- UIntegerT32
red data for Device replacement (32bit)

UIntegerT32
0x04 Parameter Checksum CRC signature or Revision Counter

(32bit)

0x05 Index List
List of Parameters that shall be OctetStringT
saved, see implemented tab 16.3 (variable)

Table 16.2: The Data Storage Index assignments, adapted from [9]

67

Chapter IV Developed Human Machine Interface

Figure 16.3: The implemented Data Storage tab for configuring the IO-Link Data Storage
mechanism

16.4 Events

IO-Link Events provide diagnostics information to the Master to detect upcoming faults
of a Device, for example in case of overheating or power supply errors. If an Event occurs,
the Device Application Layer writes the Event to a special Event memory and triggers a
flag bit which is sent to the Master. Afterwards, the Master changes its state from the
ISDU state to the Event Handler state for reading the related status code of the Device.
Although two different status codes (StatusCode type 1 and type 2) have to be supported
by the Master, the implemented tab of figure 16.5 only supports the second one which
contains detailed information of the Event since the first one is only implemented by
legacy Devices which shall not be used according to the SDCI standard [9].

Bit 7 Bit 5Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

EventQualifier and EventCode 1

EventQualifier and EventCode 2

EventQualifier and EventCode 3

EventQualifier and EventCode 4

EventQualifier and EventCode 5

EventQualifier and EventCode 6

1

Active Events

Figure 16.4: Structure of the StatusCode type 2, adapted from [9]

68

Chapter IV Developed Human Machine Interface

Within the Event memory, up to six 1 byte EventQualifiers and their related 16 bit
EventCodes are provided beside the 1 byte StatusCode. On the previous page, figure 16.4
demonstrates the type 2 StatusCode where the first 5 bits indicate a link to activated
Events where a bit with value ”1” symbolizes valid formats of the corresponding Even-
tQualifier and the EventCode. A logical ”0” indicates an invalid one on the other side.
Bit 6 is used for old protocol versions to express invalid process data and which shall be
set to ”0”. Finally, the seventh bit is set to ”1” to mark a StatusCode of type 2 with
detailed Event information. The IO-Link specification defines fields for the EventQualifier
where three bits represent the INSTANCE of an Event as the particular source, one bit
defines the SOURCE (Device or Master, here it is always ”0” since the test component is a
Device), two bits the Event category (TYPE) and two bits the Event MODE. Permissible
values are listed in the following tables 16.3 to 16.5.

Value Definition
0 Unknown

1 to 3 Reserved
5 Application

5 to 7 Reserved

Table 16.3: SOURCE Values

Value Definition
0 Reserved
1 Event Single Shot
2 Event Disappears
3 Event Appears

Table 16.4: MODE Values

Value Definition
0 Reserved
1 Notification
2 Warning
3 Error

Table 16.5: TYPE Values

The Event tab 16.5 applies the above-mentioned Event properties with an exemplary
Event Queue where e.g. a Device temperature over-run (0x4210) shall be simulated or
a Warning with an over-run of the primary supply voltage (0x5110). More EventCodes
from the specification are listed in appendix A in table A.2. Beside the Event Queue,
current Events can be up- and downloaded to the test device, too.

Figure 16.5: The implemented Event tab for testing Events

69

Chapter IV Developed Human Machine Interface

16.5 Hardware and Simulation

Beside IO-Link specific tasks, the test device will also be equipped with additional hard-
ware components and will provide functions for manipulating the hardware related prop-
erties. Electrical engineers at Siemens have required a separate window only setting and
reading the load at the 1L+, 2L+ and C/Q pins. According to the feature specification
[16], the 1L+ and 2L+ shall be loaded in a range of [0A; 8A] with voltage up to 30V, con-
trolled by the MCU. The C/Q load [0; 1A] shall ensure the same voltage but with a load
of [0A; 1A]. Furthermore, each load circuit can be completely disabled. Beside setting the
loads, the application users also have required some kind of a chart to track the currents
in absolute time. Therefore, the Microsoft.Research.DynamicDataDisplay [12] is inte-
grated into the project which allows zooming, scrolling, printing and time tracking of the
related dynamically changing loads in a 2D plot to allow improved scientific visualization
of the specified data.

Figure 16.6(a) shows the prototype of the Hardware tab where the application user
can set and read marked loads as well as reading cyclically the particular loads. Since
this feature is not implemented on the test device side, the Dynamic Data Display only
shows internally generated dummy currents of the 1L+ and C/Q load with a help window
of the library.

Hardware and general Simulation specific tasks are closely related to each other.
Therefore, both the Hardware tab and the Simulation tab share the same Model and View-
Model such that the control of simulation services is also discussed within this chapter.
The designed Simulation tab is demonstrated by figure 16.6(b) which ensures parametriza-
tion of the test device during run time. The control itself is divided in four groups:

• Within the Data group, the input data (=test device output) can be simulated and
requested which will be send over IO-Link or as a digital input value. Moreover,
output information as the process data received from the IO-Link Master can be
sent to the HMI and a Data Loop can be enabled such that the test device mirrors
its received data back to the Master.

• The Error Simulation tests the Master by sending a defined number of corrupt
frames with wrong checksums. Finally, a specified number of frames shall be skipped
which will be send from the Device to the Master.

• In order to display user information, to display the configuration setup or to distin-
guish between various devices in the test rack, the Visual Interface reads/writes
a given text from/to the test device.

• According to the specification, the test device shall be equipped with four digital
input and output pins with 24V DC logic for synchronizing the test procedure with
other equipment, e.g. Programmable Logic Controller (PLC) or an oscilloscope.
While the input pin can be forced to wait a specific value, the test device output
pin shall be set to high or low. Ultimately, additional four user LEDs will be used
which can be triggered by the PC application directly or a future simulation script.

So far, the user of the application can directly manipulate current IO-Link and Hard-
ware related settings of the test device in a large range of possibilities. All tabs are split
into several connected groups which are separated by each other with highlighted borders
in order to focus the concentration on a given test task. To allow a higher test automation
process, the subsequent final chapter discusses the integration of the developed command
editor to ensure automatic upload and request of desired values and parameters to/from
the device.

70

Chapter IV Developed Human Machine Interface

(a)

(b)

Figure 16.6: The implemented Hardware tab with the load chart using the Dynamic Data
Display (a) and the Simulation tab for general services (b)

71

Chapter IV Developed Human Machine Interface

16.6 Editor

This final section deals with the developed and implemented Editor to ensure an improved
test automation. Instead of manually manipulating the previous properties of the device,
a designated test script format is conceived which is utilized by the ViewModel of the
Editor. The first chapter gives the general role and function of this tab and completes
with the implemented XML Parser for generating a list of commands send to the device.

16.6.1 Role of the Editor

To improve usability and providing comfort to the user, defined functions, their description
and a template is provided to the user by the additional window ”XML Functions”. By
double clicking the related function in the list, the corresponding template is directly
copied to the Editor window at the current cursor position such that the user only has to
insert the desired values. The XML functions are parsed to internally known commands
according to the next chapter in order to upload them either via USB to the device or to
an SD card for standalone test purposes in the future. Figure 16.7 shows an exemplary
screenshot of the Editor where known commands can be inserted, either manually or with
the help of the additional window. The picture is taken during a simulation run where
this progress is paused at a ”Wait” statement, highlighted by an implemented indicator on
the left side to show the current instruction of the ViewModel script automation process.

Figure 16.7: Appearance of the Editor tab showing a current command indicator on the
left, the locked Editor textfield, the application log showing past and current commands
and the possible insertable XML functions

72

Chapter IV Developed Human Machine Interface

During the simulation, the Editor is locked avoiding manipulation of the script due
to the high possible speed of script automation. For example in the case of a ”Wait”
statement for 100ms, no user is able to insert a command manually in the Editor that
fast during this time slot such that the parsing of the incomplete command might fail.

Nevertheless, the user can manipulate data during runtime of the script with the pre-
viously explained tabs. Both all ViewModel instances and the native Communication
System are implemented and embedded in a thread safe manner. Since the several View-
Models run asynchronously, access to different resources like the Communication System
has to be coordinated to avoid the unauthorized call of native methods. For example, if
a byte array is received by the Communication Handler and simultaneously, the Editor
likes to send a defined function over USB via the native code, too, the unmanaged sys-
tem can’t differentiate between the commands anymore that arrive from both the lower
and upper layers at the same time. This mixing of variables as well as the access to
the different classes will disturb the workflow of the system. Moreover, all implemented
classes of the Communication System are programmed as singletons without a thread safe
approach, since the embedded workflow is only interrupt-driven with an entered endless
loop handling non-time-critical tasks. To ensure the synchronized access to the Commu-
nication System for the PC application, the lock instruction ensures the organized code
execution of functions where the base class object CommunicationSystem is used as a
fake object which will be either locked or freed. Listing 16.1 demonstrates an example
of both the thread safe access to the related ViewModel and a function of the Com-
munication System where other objects have to call the multi-thread safe implemented
function MTSMessageDecoder Decode(byte receivedByte) which acts as a wrapper to
the private dll-imported function MessageDecoder Decode(byte receivedByte) of the
original system such that all attempts to call other native functions are blocked by the
.NET application during the decoding of received bytes.

1 p r i v a t e s t a t i c ob j e c t CommunicationSystem = new Object () ;
2 p r i v a t e s t a t i c CommunicationHandler m instance = n u l l ;
3 p r i v a t e s t a t i c readonly ob j e c t m padlock = new ob j e c t () ;

5 pub l i c s t a t i c CommunicationHandler Ins tance
6 {
7 get
8 {
9 l o ck (m padlock)

10 {
11 i f (m instance == n u l l)
12 {
13 m instance = new CommunicationHandler () ;
14 }
15 re turn m instance ;
16 }
17 }
18 }

20 pub l i c void MTSMessageDecoder Decode (byte rece ivedByte)
21 {
22 l o ck (CommunicationSystem)
23 {
24 MessageDecoder Decode (rece ivedByte) ;
25 }
26 }

Listing 16.1: Extract of the CommunicationHandler.cs class file to provide thread
safe execution and access to the Communication System

73

Chapter IV Developed Human Machine Interface

16.6.2 XML Parser

Ultimately, an XML Parser is constructed that ensures self-controlled uploading of device
settings for automated long-run tests without the need of a present test engineer, e.g. in
case of tests over a weekend. Thus, a format and data representation of XML commands
are determined which is listed in appendix E in listing E.4 and in the extract of 16.2 as
part of the ”XMLFunctions” file to provide beside the mentioned template and description
a tree like structure for each instruction in order to provide a unique data representation
for the parser.

1 <Edi to r L i s tEnt ry>
2 <Function>SetDeviceParameter ()</ Function>
3 <InputParameters>IOLinkVersion , [. . .] PDoutLength</ InputParameters>
4 <Template>&l t ; SetDeviceParameter IOLinkVersion=”” [. . .] PDoutLength=””

/> ;</Template>
5 <Desc r ip t i on>Setups the dev i ce IO−Link parameters [. . .]</ Desc r ip t i on>
6 < !−− For XML Parser −−>
7 <entry name = ” IOLinkRelated ” PID = ”8”>
8 <entry name = ” DeviceParameter ” FCTID = ”1”>
9 <entry name = ” IOLinkVersion ” VALID = ”1”/>

10 <entry name = ”Baudrate” VALID = ”2”/>
11 <entry name = ”VendorID” VALID = ”3” />
12 <entry name = ”DeviceID” VALID = ”4” />
13 <entry name = ”FunctionID” VALID = ”5” />
14 <entry name = ” SerialNumber ” VALID = ”6” />
15 <entry name = ”FrameType” VALID = ”7” />
16 <entry name = ”PDInLength” VALID = ”8” />
17 <entry name = ”PDOutLength” VALID = ”9” />
18 </ entry>
19 </ entry>
20 </ Ed i to r L i s tEnt ry>

Listing 16.2: Extract of the saved ”XMLFunctions.xml” file for the XML Parser and
function window

The coding of each identifier is according to the defined PIDs, FCTIDs and VALIDs
of the Communication System such that the stored binary commands can be easily stored
on an SD card and finally read by the embedded application.

To process the input file from the Editor, a conversion of the human readable XML-
functions is done by the algorithm 10. It first deserializes the file of E.4 into a list of
LookUpTableEntry objects representing the ID, name and a list of related children of
the current entry. Afterwards, the Editor XML function input is converted to a tree like
structure of the XML command syntax as CommandEntry objects holding the name, value
and the unique parent and children nodes where all functions and their related values are
finally extracted. For each declared function in the input script, the parser determines if
the corresponding function is a read request if it starts with ”Read” or ”Get”. Per default,
a write request is assumed by the parser. Then, it browses each LookUpTableEntry of
the list and searches for the corresponding function applying Depth-First Search (DFS)
as seen in figure 16.8 with the related algorithm 9. If the function does exist, the assigned
information are appended to a BinaryCommand object containing

• byte m packetID, string m packetIDString,

• bool m isWriteRequest, bool m isDefined,

• byte m functionID, string m functionIDString and

• List<Value> m values.

74

Chapter IV Developed Human Machine Interface

All declared values with their corresponding IDs to the given function are appended
in List<Value> m values. Finally, the binary command is added to a list of sequential
commands which is send to the Editor.

The time-controlled ViewModel of the Editor utilizes this list of commands to call
the related functions for configuration of the test device. Furthermore, two special script
control commands are defined to keep track of the simulation progress. While the ”Wait”
command forces the process to suspend its work for a defined time period, the ”Repeat”
statement can jump to either legacy or future instructions with a defined number of
executions when hit. A negative counter always forces the Editor to perform the concerned
”Repeat” task when processed.

Since the XML-Parser only checks for valid value, function and packet IDs, the test
run for uploading and requesting specific commands might be interrupted in case of wrong
values. But the Editor is developed for long run tests that progresses in the absence of
a human operator and hence, an automatically disappearing message will be highlighted
during run time in case of an undefined value to avoid an interruption of the script ex-
ecution. In such a case, the highlighted message is shown for five seconds to visualize
the operator directly an error and disappears after this defined period with writing the
error message to the application log. Finally, the m isDefined flag is set to false such
that the EditorViewModel doesn’t take this command into account for the next possible
execution anymore if the statement is declared in a loop. Appendix F with the related
log of the ApplicationLogViewModel gives an example if a "<Wait Time="1day"> is
defined but not known by the Editor since only waiting periods in ”ms”, ”sec”, and ”h”
are allowed. An excerpt of the log example with a corrupted time value is given in the
following with the highlighted unknown instruction.

----- Starting evaluating simulation script -----

At 00d:01h:32m:00s:582ms (Master Time), unable to find ’1day’, instruction ignored!

At 00d:01h:32m:02s:179ms (Master Time), waiting for approximately 1sec.

At 00d:01h:32m:02s:194ms (Device Time), received Device Hardware Load1L=’500’ mA.

At 00d:01h:32m:03s:249ms (Device Time), received Device Parameter: RevisionID=

’Version 1.1’ Baudrate= ’COM3’ FrameType=’TYPE 0’ .

[...]
At 00d:01h:34m:49s:104ms (Master Time), waiting for approximately 500ms.

At 00d:01h:34m:49s:765ms (Device Time), received Device Hardware Load1L=’2990’ mA.

----- Finished evaluating simulation script -----

Algorithm 9: Integrated recursive Depth-First Search (DFS) algorithm to look for
a specific string within the lookup table without taking care of capitalization

Data: List¡LookUpTableEntry¿ list, string name
1 foreach LookUpTableEntry entry in list do
2 //don’t care about capitalization
3 if entry.Name.ToLower().Equals(name.ToLower()) then
4 return entry
5 else if entry.Children != null then
6 LookUpTableEntry temp = DFS(entry.Children, name)
7 if temp != null then
8 return temp
9 end if

10 end foreach
11 return null

75

Chapter IV Developed Human Machine Interface

Algorithm 10: Converting the XML instructions to binary commands
Data: XMLFunctionsString

1 List<LookUpTableEntry> lookUpTable = Deserialize file ”XMLFunctions.xml”
2 List<BinaryCommand> binaryCommands = Create new List<BinaryCommand>()
3 CommandEntry xmlCommands = Deserialize XMLFunctionsString
4 List<CommandEntry> functions = Extract functions and related children from xmlCommands
5 foreach CommandEntry function in functions do
6 boolan isWriteRequest = Determine read or write request
7 LookUpTableEntry correspondingFunction = DFS(lookUpTable, function.Name)
8 if correspondingFunction exists then
9 byte correspondingPacketId = correspondingFunction.Parent.ID

10 string correspondingPacketString = correspondingFunction.Parent.Name
11 BinaryCommand command = new BinaryCommand(correspondingPacketId,

correspondingPacketString, correspondingFunction.ID, correspondingFunction.Name,
isWriteRequest)

12 command.AddPossibleValues(correspondingFunction.Children)
13 //Extract the value IDs, add values if available
14 foreach CommandEntry value in function.Children do
15 command.AddValueIDAndValue(correspondingValue.ID, value.Value)
16 end foreach
17 binaryCommands.Add(command)

18 end if

19 end foreach
20 return binaryCommands;

Name="IOLinkRelated"

ID=8

IDString="PID"

Children

Name="DeviceParameter"

ID = 1

IDString="FCTID"

Children

Name="IOLinkVersion"

ID=1

IDString="VALID"

Children

Name="PDOutLength"

ID=9

IDString="VALID"

Children

null null

Name="HardwareRelated"

ID=7

IDString="PID"

Children

Name="Load1L"

ID = 1

IDString="FCTID"

Children

Name="Current"

ID=19

IDString="VALID"

Children

null

Name="Time"

ID=30

IDString="VALID"

Children

null

Name="ScriptControl"

ID=0

IDString="PID"

Children

Name="Wait"

ID = 1

IDString="FCTID"

Children

start

1

2

3 4

5 6 7 8

9 10

11

12

13 14 15

16

17

Figure 16.8: Structure of the deserialized lookup table and finding a corresponding
LookUpTableEntry

76

Chapter V

Closing Remarks

Within the scope of this thesis, a hybrid Communication System and a Human Ma-
chine Interface have been developed for a new IO-Link Master test device. Different
programming languages, including C, C++, C++/CLI and C# have been used in order
to fulfill the task as well as considering embedded system limitations. Furthermore, a
new communication protocol with the application of Variable-Length Quantity (VLQ)
has been invented as well as an interactive user interface for configuring the device in
a large spectrum according to the IO-Link specification and hardware related features.
The dual behavior of the Communication System improves the ease of integration with
an additional Communication Bridge for the interaction between unmanaged and man-
aged code. Finally, the developed XML-Parser offers a great benefit for automated device
testing based on a given simulation script without the intervention of an operator during
runtime.

Test-driven development has ensured the fully working version of the developed system
with the absence of software bugs and errors proven the correct information exchange
between the device and the HMI as the main priority. The communication stack has been
integrated and merged with the IO-Link stack of the device and worked immediately
without any problems. This also highlights the simple and efficient integration of the
object-oriented system in an existing embedded configuration.

Although the development of a communication stack according to the OSI Model is
a sophisticated task [21] which leads to a high implementation effort, STMicroelectronics
already provided a library for USB communication avoiding the necessity of implement-
ing own lower level USB layers. The stack has been slightly adapted due to an occured
error during the initialization of a new USB connection. The allocated memory for the
USB descriptor was of size 50 instead of the required 64, defined in usbd conf.h (#define
USB MAX STR DESC SIZ 64) which lead to a wrong timer value that was directly allo-
cated after the USB descriptor in the physical memory using the Siemens IAR compiler.
Hence, every time a new USB connection was established, the descriptor string overwrote
the timer integer value leading to a wrong memory value. Beside the found problem of
corrupt memory allocation, only required headers and classes have been used which are
listed in appendix G.

Thread-safe access to the native Communication System from the PC application is
ensured by locking mechanisms of the .NET framework which was not necessary on the
embedded side due to its interrupt-driven and loop programmed working. This enables
both cyclic and acyclic receiving of data from the device to avoid information congestion
within the system. If a real time operating system is used for the microcontroller in the
future, access to the system has to be implemented in a thread-safe manner as well which
can be part of another work.

77

Chapter V Closing Remarks

Caused by the interdisciplinary application of embedded system programming, trans-
port layer protocol development, C++/CLI programming and HMI implementation tak-
ing the usability aspects into account, the whole development process can be further
divided into several specific tasks. One work for example can only deal with improving
the developed communication system to ensure connection of several test device in the
future over a secondary backplane bus and to implement the feature of traces which is
not implemented yet because of the unknown data representation at this time. Since the
MVVM pattern is applied, another task can be the improvement or even replacement of
the PC GUI to take only the large amount of usability concepts into account which are
for example in detailed covered by the used reference [38].

Last but not least, I especially like to thank Lukas Hamacek for the given opportunity
to work beside the thesis at Siemens s.r.o. to get familiar with IO-Link and to get involved
in a product development process. Of course I also like to thank my other colleagues,
namely Milos, Monica, Darja, Ondrej and Radek for supporting me during the work in
Prague.

Finally, I do very much appreciate the patience and support of my girlfriend for being
separated over a long duration and distance during my studies.

78

Bibliography

[1] Arnold, E. : Untersuchung der Implementierung und Programmierung von USB-
Schnittstellen für die Übertragung von Daten und die Steuerung von Messaufbauten.
2003

[2] Axelson, J. : USB Complete, Everything Your Need to Develop Custom USB
Peripherals. Lakeview Research LLC, 2005

[3] Bahr, J. : An Advanced Approach to Satellite Software and Communication Based
on SmartOS and Compass Protocol - Design, Implementation, and Test on the Pi-
cosatellite Platform UWE. 2016

[4] Barr, M. : CRC Series, Part3: CRC Implementation Code in C/C++. http:

//www.barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code, . –
Last Accessed: 26.05.2016

[5] Beech, W. A. ; Nielsen, D. E. ; Taylor, J. : AX.25 Link Access Protocol for
Amateur Packet Radio. 1998

[6] Bitkom e.V., V. e. ; e.V., Z. : Implementation Strategy Industrie 4.0, Report on
the results of the Industrie 4.0 Platform. (2016), Januaryl

[7] Center, S. C. T. . U.: Introduction to UX Theory. Presentation, 2015

[8] Commentz-Walter, B. : Entwicklungsmethodik für Kommunikationsprotokolle auf
Basis von Software Pattern. 2002

[9] Community, I.-L. : IO-Link Interface and System Specification. 2013

[10] Community, I.-L. : IO-Link System Description - Technology and Application. In:
c/o PROFIBUS Nutzerorganisation e.V. (PNO) (2016), February

[11] Company, H.-P. ; Corporation, I. u. a.: Universal Serial Bus 3.1 Specification.
July 2013

[12] Corporation, M. : Dynamic Data Display Overview. 2011

[13] Dobb’s, D. : State Machine Design in C++. http://www.drdobbs.com/cpp/

state-machine-design-in-c/184401236, . – Last accessed: 07.04.2016

[14] Encyclopäedia Britannica, I. : Protocol, Computer science. http://www.

britannica.com/technology/protocol-computer-science, . – Last accessed:
14.06.2016

[15] e.V., B. : Politische Handlungsempfehlungen, Industrie 4.0 – Deutschland als Vorre-
iter der digitalisierten Vernetzung von Produkten und Produktionsprozessen. (2015),
March

79

http://www.barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
http://www.barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
http://www.drdobbs.com/cpp/state-machine-design-in-c/184401236
http://www.drdobbs.com/cpp/state-machine-design-in-c/184401236
http://www.britannica.com/technology/protocol-computer-science
http://www.britannica.com/technology/protocol-computer-science

[16] Fenyk, M. ; Hamacek, L. : Feature Specification. (2016), January

[17] Fromm, J. ; weber, M. : Industrie 4.0. In: Kompetenzzentrum Öffentliche IT
(2014), July

[18] Gamma, E. ; Helm, R. u. a.: Design Patterns. Elements of Reusable Object-Oriented
Software. Prentice Hall, 1994

[19] ISO: International Organization for Standardization. https://www.iso.org, . –
Last Accessed: 28.06.2016

[20] Jürgen, M. : IO-Link on PROFINET. 2015. – Forschungsbericht

[21] Kaderali, F. : Digitale Kommunikationstechnik - Netze, Dienste, Informations-
theorie, Codierung, Übertragungstechnik, Vermittlungstechnik, Datenkommunikation,
ISDN. Kaderali, 2007

[22] Kühnel, A. : C# 6 mit Visual Studio 2015 - Das umfassende Handbuch. Rheinwerk
Verlag, GmbH, 2016

[23] Library, J. M.: Modbus/UDP. http://jamod.sourceforge.net/kb/modbus_udp.
html, . – Last accessed: 18.06.2016

[24] Logic, B. : USB in a Nutshell. http://www.beyondlogic.org/usbnutshell/

usb1.shtml, . – Last accessed: 29.04.2016

[25] Ludewig, J. ; Lichter, H. : Software Engineering - Grundlagen, Menschen,
Prozesse, Techniken. dpunkt.verlag GmbH, 2013

[26] Microsoft: Microsoft Developer Network. https://msdn.microsoft.com/de-de/
default.aspx, . – Last Accessed: 15.06.2016

[27] Microsoft: Windows Driver Kit (WDK). https://msdn.microsoft.com/en-us/
library/windows/hardware/ff557573%28v=vs.85%29.aspx, . – Last Accessed:
26.05.2016

[28] Modbus: MODBUS over Serial Line, Specification and Implementation Guide. 2006

[29] Modbus: MODBUS APPLICATION PROTOCOL SPECIFICATION. 2012

[30] Murphy, R. : USB 101: An Introduction To Universal Serial Bus 2.0. (2015),
September

[31] Organization, T. M.: Modbus. http://www.modbus.org/specs.php, . – Last
accessed: 17.06.2016

[32] Sheikh, A. U.: Wireless Communications: Theory and Techniques. Springer Science
+ Business Media, 2004

[33] Siemens: Master. http://w3.siemens.com/mcms/automation/de/

industrielle-kommunikation/io-link/master/seiten/default.aspx#

SIMATIC_20ET_20200eco_20PN, . – Last Accessed: 05.04.2016

[34] STMicroelectronics: STMicroelectronics. http://www.st.com/content/st_

com/en.html, . – Last accessed: 14.06.2016

80

https://www.iso.org
http://jamod.sourceforge.net/kb/modbus_udp.html
http://jamod.sourceforge.net/kb/modbus_udp.html
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.beyondlogic.org/usbnutshell/usb1.shtml
https://msdn.microsoft.com/de-de/default.aspx
https://msdn.microsoft.com/de-de/default.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff557573%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff557573%28v=vs.85%29.aspx
http://www.modbus.org/specs.php
http://w3.siemens.com/mcms/automation/de/industrielle-kommunikation/io-link/master/seiten/default.aspx#SIMATIC_20ET_20200eco_20PN
http://w3.siemens.com/mcms/automation/de/industrielle-kommunikation/io-link/master/seiten/default.aspx#SIMATIC_20ET_20200eco_20PN
http://w3.siemens.com/mcms/automation/de/industrielle-kommunikation/io-link/master/seiten/default.aspx#SIMATIC_20ET_20200eco_20PN
http://www.st.com/content/st_com/en.html
http://www.st.com/content/st_com/en.html

[35] STMicroelectronics: User manual, STM32F105xx, STM32F107xx, STM32F2xx
and STM32F4xx USB On-The-Go host and device library, 2012

[36] STMicroelectronics: User manual, Discovery kit for STM32F407/417 lines,
2014

[37] Systems, I. : IAR Mastering stack and heap for system re-
liability. https://www.iar.com/support/resources/articles/

mastering-stack-and-heap-for-system-reliability/, . – Last Accessed:
20.06.2016

[38] Tidwell, J. : Designing Interfaces, Second Edition. O’Reilly Media, Inc., 2010

[39] Trevor, M. : The Insider’s Guide To The STM32 ARM Based Microcontroller, An
Engineer’s Introduction To The STM32 Series. 2009

[40] USB Implementers Forum, I. : Universal Serial Bus. http://www.usb.org/

home, . – Last accessed: 13.04.2016

[41] Wagner, F. ; Schmuki, R. u. a.: Modeling Software with Finite State Machines, A
Practical Approach. Taylor & Francis Group, LLC, 2006

81

https://www.iar.com/support/resources/articles/mastering-stack-and-heap-for-system-reliability/
https://www.iar.com/support/resources/articles/mastering-stack-and-heap-for-system-reliability/
http://www.usb.org/home
http://www.usb.org/home

Appendix A

Details of IO-Link FeaturesIO-Link Interface and System © IO-Link – 81 – Version 1.1.2

MC CKT
OD

CKS

MC CKT
PD0 PD1 CKS

MC CKT
OD0 OD1 CKS

MC CKT
OD

PD CKS

MC CKT
OD

PD0 PD1 CKS

TYPE_0

TYPE_1_1

TYPE_1_2

TYPE_2_1

TYPE_2_2

MC CKT PD

CKS

MC CKT PD0 PD1 OD
CKS

TYPE_2_3

TYPE_2_4

TYPE_2_5

OD

MC CKT PD
OD

PD CKS

WR

RD

MC CKT
OD0 ODn CKS

TYPE_1_V

TYPE_2_6

MC CKT
OD0 ODm-1 PD0

TYPE_2_V

MC CKT PD0 PD1 OD
PD0 PD1 CKS

PD0 PDn-1

PDk-1 CKS 1577

Figure 37 – Overview of M-sequence types 1578

7.3.3.3 MasterCycleTime constraints 1579

Within state STARTUP and PREOPERATE a Device is able to communicate in an acyclic 1580
manner. In order to detect the disconnecting of Devices it is highly recommended for the 1581
Master to perform from this point on a periodic communication ("keep-alive message") via 1582
acyclic M-sequences through the data link layer. The minimum recovery times for acyclic 1583
communication specified in A.2.6 shall be considered. 1584

After these phases, cyclic Process Data communication can be started by the Master via the 1585
DL_SetMode (OPERATE) service. M-sequence types for the cyclic data exchange shall be 1586
used in this communication phase to exchange Process Data (PD) and On-request Data with 1587
a Device (see Table A.9 and Table A.10). 1588

The Master shall use for time tCYC the value indicated in the Device parameter 1589
"MasterCycleTime" (see Table B.1) with a relative tolerance of 0 % to +10 % (including jitter). 1590

In cases, where a Device has to be switched back to SIO mode after parameterization, the 1591
Master shall send a command "Fallback" (see Table B.2), which is followed by a confirmation 1592
from the Device. 1593

Figure A.1: An overview of possible M-sequences with MC as the message control octet,
PD as process data, OD as on-request data and CKS as the CHECK/STAT octet from
[9]

82

Appendix A Details of IO-Link Features

Address Parameter name Access Description
Direct Parameter page 1

0x00 Master-Command W
Master command to switch to operating states
(see NOTE 1)
Actual cycle duration used by the Master to
address the Device. Can be used as a parameter0x01 MasterCycle-Time R/W
to monitor Process Data transfer.

0x02 MinCycleTime R
Minimum cycle duration supported by a Device.
This is a performance feature of the Device and
depends on its technology and implementation.

M-sequence Information about implemented options related
0x03

Capability
R

to M-sequences and physical configuration

0x04 RevisionID R/W
ID of the used protocol version for implemen-
tation (shall be set to 0x11)
Number and structure of input data

0x05 ProcessDataIn R
(Process Data from Device to Master)

0x06 ProcessData-Out R
Number and structure of output data
(Process Data from Master to Device)

0x07 VendorID 1 (MSB) Unique vendor identification
0x08 VendorID 2 (LSB)

R
(see NOTE 2)

0x09
DeviceID 1

R/W

(Octet 2, MSB)

0x0A
DeviceID 2 Unique Device identification
(Octet 1) allocated by a vendor

0x0B
DeviceID 3
(Octet 0, LSB)

0x0C FunctionID 1 (MSB) Reserved (Engineering shall set both octets
0x0D FunctionID 2 (LSB)

R
to ”0x00”)

0x0E R reserved
Command interface for end user applications only

0x0F System-Command W
and Devices without ISDU support (see NOTE)

Direct Parameter page 2
0x10. . . 0x1F Vendor specific Optional Device specific parameters
NOTE 1 A read operation returns unspecified values
NOTE 2 VendorIDs are assigned by the IO-Link community

Table A.1: Direct Parameter page 1 and 2 from [9]

83

Appendix A Details of IO-Link Features

Event Codes Definition and recommended maintenance action Event Type
0x0000 No malfunction Notification
0x1000 General malfunction – unknown error Error
0x1001 to 0x17FF Reserved
0x1800 to 0x18FF Vendor specific
0x1900 to 0x3FFF Reserved
0x4000 Temperature fault – Overload Error
0x4001 to 0x420F Reserved
0x4210 Device temperature over-run – Clear source of heat Warning
0x4211 to 0x421F Reserved
0x4220 Device temperature under-run – Insulate Device Warning
0x4221 to 0x4FFF Reserved
0x5000 Device hardware fault – Device exchange Error
0x5001 to 0x500F Reserved
0x5010 Component malfunction – Repair or exchange Error
0x5011 Non volatile memory loss – Check batteries Error
0x5012 Batteries low – Exchange batteries Warning
0x5013 to 0x50FF Reserved
0x5100 General power supply fault – Check availability Error
0x5101 Fuse blown/open – Exchange fuse Error
0x5102 to 0x510F Reserved
0x5110 Primary supply voltage over-run – Check tolerance Warning
0x5111 Primary supply voltage under-run – Check tolerance Warning
0x5112 Secondary supply voltage fault (Port Class B) – Check tolerance Warning
0x5113 to 0x5FFF Reserved
0x6000 Device software fault - Check firmware revision Error
0x6001 to 0x631F Reserved
0x6320 Parameter error - Check data sheet and values Error
0x6321 Parameter missing - Check data sheet Error
0x6322 to 0x634F Reserved
0x6350 Parameter changed - Check configuration Error
0x6351 to 0x76FF Reserved
0x7700 Wire break of a subordinate device – Check installation Error
0x7701 to 0x770F Wire break of subordinate device 1 ...device 15 - Check installation Error
0x7710 Short circuit - Check installation Error
0x7711 Ground fault - Check installation Error
0x7712 to 0x8BFF Reserved
0x8C00 Technology specific application fault - Reset Device Error
0x8C01 Simulation active – Check operational mode Warning
0x8C02 to 0x8C0F Reserved
0x8C10 Process variable range over-run - Process Data uncertain Warning
0x8C11 to 0x8C1F Reserved
0x8C20 Measurement range over-run - Check application Error
0x8C21 to 0x8C2F Reserved
0x8C30 Process variable range under-run - Process Data uncertain Warning
0x8C31 to 0x8C3F Reserved
0x8C40 Maintenance required - Cleaning Notification
0x8C41 Maintenance required - Refill Notification
0x8C42 Maintenance required - Exchange wear and tear parts Notification
0x8C43 to 0x8C9F Reserved
0x8CA0 to 0x8DFF Vendor specific
0x8E00 to 0xAFFF Reserved
0xB000 to 0xBFFF Reserved for profiles
0xC000 to 0xFEFF Reserved
0xFF00 to 0xFFFF SDCI specific EventCodes

Table A.2: Defined Event Codes for Devices from [9]

84

Appendix B

CRC-16 Table Driven
Implementation

0x0000 0x8005 0x800f 0x000a 0x801b 0x001e 0x0014 0x8011
0x8033 0x0036 0x003c 0x8039 0x0028 0x802d 0x8027 0x0022
0x8063 0x0066 0x006c 0x8069 0x0078 0x807d 0x8077 0x0072
0x0050 0x8055 0x805f 0x005a 0x804b 0x004e 0x0044 0x8041
0x80c3 0x00c6 0x00cc 0x80c9 0x00d8 0x80dd 0x80d7 0x00d2
0x00f0 0x80f5 0x80ff 0x00fa 0x80eb 0x00ee 0x00e4 0x80e1
0x00a0 0x80a5 0x80af 0x00aa 0x80bb 0x00be 0x00b4 0x80b1
0x8093 0x0096 0x009c 0x8099 0x0088 0x808d 0x8087 0x0082
0x8183 0x0186 0x018c 0x8189 0x0198 0x819d 0x8197 0x0192
0x01b0 0x81b5 0x81bf 0x01ba 0x81ab 0x01ae 0x01a4 0x81a1
0x01e0 0x81e5 0x81ef 0x01ea 0x81fb 0x01fe 0x01f4 0x81f1
0x81d3 0x01d6 0x01dc 0x81d9 0x01c8 0x81cd 0x81c7 0x01c2
0x0140 0x8145 0x814f 0x014a 0x815b 0x015e 0x0154 0x8151
0x8173 0x0176 0x017c 0x8179 0x0168 0x816d 0x8167 0x0162
0x8123 0x0126 0x012c 0x8129 0x0138 0x813d 0x8137 0x0132
0x0110 0x8115 0x811f 0x011a 0x810b 0x010e 0x0104 0x8101
0x8303 0x0306 0x030c 0x8309 0x0318 0x831d 0x8317 0x0312
0x0330 0x8335 0x833f 0x033a 0x832b 0x032e 0x0324 0x8321
0x0360 0x8365 0x836f 0x036a 0x837b 0x037e 0x0374 0x8371
0x8353 0x0356 0x035c 0x8359 0x0348 0x834d 0x8347 0x0342
0x03c0 0x83c5 0x83cf 0x03ca 0x83db 0x03de 0x03d4 0x83d1
0x83f3 0x03f6 0x03fc 0x83f9 0x03e8 0x83ed 0x83e7 0x03e2
0x83a3 0x03a6 0x03ac 0x83a9 0x03b8 0x83bd 0x83b7 0x03b2
0x0390 0x8395 0x839f 0x039a 0x838b 0x038e 0x0384 0x8381
0x0280 0x8285 0x828f 0x028a 0x829b 0x029e 0x0294 0x8291
0x82b3 0x02b6 0x02bc 0x82b9 0x02a8 0x82ad 0x82a7 0x02a2
0x82e3 0x02e6 0x02ec 0x82e9 0x02f8 0x82fd 0x82f7 0x02f2
0x02d0 0x82d5 0x82df 0x02da 0x82cb 0x02ce 0x02c4 0x82c1
0x8243 0x0246 0x024c 0x8249 0x0258 0x825d 0x8257 0x0252
0x0270 0x8275 0x827f 0x027a 0x826b 0x026e 0x0264 0x8261
0x0220 0x8225 0x822f 0x022a 0x823b 0x023e 0x0234 0x8231
0x8213 0x0216 0x021c 0x8219 0x0208 0x820d 0x8207 0x0202

Table B.1: The calculated CRC Lookup table, read with the watch function of the IAR
Embedded Workbench

85

Appendix C

Class Diagrams of the
Communication System

CCommunicationHandler

- m _allocationIdentifie r: CAllocationIdentifier
- m _defau ltDescription: char ([200])
- m _defau ltLengthOfDescription: uint8_t
- m _defau ltlengthOfName: uint8_t
- m _defau ltName: char ([40])
- m _description: char ([200])
- m _lengthO fDescription: uint8_t
- m _lengthOfName: uint8_t
- m _m axAllowedAllocationID: uint8_t = 127 {readOnly}
- m _m axSizeOfDescription: uint8_t = 200 {readOnly}
- m _m axSizeOfName: uint8_t = 40 {readOnly}
- m _name: char ([40])
- m _pM essageDecoder: CMessageDecoder*

- CCom m unicationHandler()
+ GetDescrip tion(uint8_t*): uint8_t
+ GetDeviceID(): uint8_t {query}
+ GetInstance(): CCommunicationHandler *
+ GetNam e(uint8_t*): uint8_t
+ GetT im eSinceStartup(): uint64_t
+ HandleReceivedMessageFromUSB(): void
+ IsM asterDevice(): bool {query}
+ Reset(): void
+ SendM essageOverUSB(uint8_t*, uint8_t): void
+ SetDescrip tion(uint8_t*, uint8_t): bool
+ SetDeviceID(uint8_t): bool
+ SetNam e(u in t8_t*, uint8_t): bool
+ Synchron ize(uint64_t): void

Figure C.1: Class diagram of the Message Decoder

CMessageEncoder

- m_pState: IEncoderState*

- CMessageEncoder()
+ Encode(CPacket*): void
+ GetInstance(): CMessageEncoder *
- ChangeState(IEncoderState*): void
+ Reset(): void

IEncoderState

+ Encode(CMessageEncoder*, CPacket*): void
ChangeState(CMessageEncoder*, IEncoderState*): void
+ Reset(CMessageEncoder*): void
+ Send(CMessageEncoder*, uint8_t*, uint16_t): void

CEncoderConcreteStateIdle

- CEncoderConcreteStateIdle()
+ Encode(CMessageEncoder*, CPacket*): void
+ GetInstance(): CEncoderConcreteStateIdle *

CEncoderConcreteStateEncoding

- m_crc16: CCRC16
- m_pMessage: uint8_t ([275])

- CEncoderConcreteStateEncoding()
+ Encode(CMessageEncoder*, CPacket*): void
+ GetInstance(): CEncoderConcreteStateEncoding *

CEncoderConcreteStateSending

- CEncoderConcreteStateSending()
+ GetInstance(): CEncoderConcreteStateSending *
+ Reset(CMessageEncoder*): void
+ Send(CMessageEncoder*, uint8_t*, uint16_t): void

-m_pState

Figure C.2: Class diagram of the Message Decoder

86

Appendix C Class Diagrams of the Communication System

CAllocationIdentifier

- m_addressedDevice: uint8_t
- m_isMessageFromMaster: bool
- m_maxAllowedDeviceID: uint8_t = 127 {readOnly}

+ CAllocationIdentifier()
+ GetAddressedDevice(): uint8_t {query}
+ GetAllocationIdentifierByte(): uint8_t {query}
+ IsMessageFromMaster(bool): void
+ IsMessageFromMaster(): bool {query}
+ Reset(): void
+ SetAddressedDevice(uint8_t): bool
+ SetAllocationIdentifierByte(uint8_t): void

CCRC16

- m_alreadyInitialized: bool
- m_generatorPolynomial: uint16_t {readOnly}
- m_pCRCTable: uint16_t ([256])
- m_topBit: uint16_t {readOnly}
- m_width: uint8_t {readOnly}

+ CalculateCRC(uint8_t*, uint16_t): uint16_t
+ CCRC16()
- Initialize(): void

«Enumeration»
Errors

 NO_ERROR = 0
 SOP1_NOTRECOGNIZED
 SOP2_NOTRECOGNIZED
 PID_NOTRECOGNIZED
 WRONG_CRC
 EOP1_NOTRECOGNIZED
 EOP2_NOTRECOGNIZED
 FCTID_NOTRECOGNIZED
 WALID_NOTRECOGNIZED

CMessageDecoder

- m_allocationIdentifier: CAllocationIdentifier
- m_appearedError: uint8_t ([2])
- m_crc16: CCRC16
- m_crcByte: uint8_t
- m_currentIndex: uint16_t
- m_endIndexOfPayload: uint16_t
- m_lengthOfPayload: uint8_t
- m_oneErrorAlreadySend: bool
- m_packetDescriptor: CPacketDescriptor
- m_receivedPacket: CPacket
- m_receivingBuffer: uint8_t ([280])
- m_SegmentationCounter: CVLQ
- m_startIndexOfPayload: uint16_t
- m_timeStamp: CVLQ
- StateMap: CStateStruct ([]) {readOnly}
- TransitionMap: uint8_t ([][MAX_SUBSTATES]) {readOnly}

- CMessageDecoder()
+ Decode(uint8_t): void
+ GetInstance(): CMessageDecoder *
- Check_CRC16(uint8_t&): uint8_t
- CheckAndSet_AllocationIdentifier(uint8_t&): uint8_t
- Identify_EndOfPacket1(uint8_t&): uint8_t
- Identify_EndOfPacket2(uint8_t&): uint8_t
- Identify_PacketDescriptor(uint8_t&): uint8_t
- Identify_StartOfPacket1(uint8_t&): uint8_t
- Identify_StartOfPacket2(uint8_t&): uint8_t
- Idle(uint8_t&): uint8_t
- ResetAll(): void
- SendError(): void
- Set_LengthOfPayload(uint8_t&): uint8_t
- Set_Payload(uint8_t&): uint8_t
- Set_SegmentationCounter(uint8_t&): uint8_t
- Set_Timestamp(uint8_t&): uint8_t

«property get»
- GetStateMap(): CStateStruct *
- GetTransitionMap(uint8_t, uint8_t): uint8_t

«Enumeration»
m_STATES

 STATE_IDLE
 STATE_SOP1_IDENTIFIED
 STATE_SOP2_IDENTIFIED
 STATE_AID_CHECKEDANDSET
 STATE_TS_SET
 STATE_PD_IDENTIFIED
 STATE_SC_SET
 STATE_LENGTH_SET
 STATE_PL_SET
 STATE_CRC_CHECKED
 STATE_EOP1_IDENTIFIED
 STATE_EOP2_IDENTIFIED
 MAX_STATES

CPacket

- m_allocationIdentifier: CAllocationIdentifier
- m_endIndexOfPayload: uint32_t
- m_isReceived: bool
- m_maximumPIDValue: uint8_t = 32 {readOnly}
- m_packetDescriptor: CPacketDescriptor
- m_pPayload: uint8_t*
- m_sizeOfPayload: uint32_t
- m_startIndexOfPayload: uint32_t
- m_timeStamp: CVLQ

+ CPacket()
+ GetAllocationIdentifier(): CAllocationIdentifier *
+ GetPacketDescriptor(): CPacketDescriptor *
+ GetPayloadPointer(): uint8_t *
+ GetSizeOfPayload(): uint32_t {query}
+ GetStartIndexOfPayload(): uint8_t
+ GetTimeStamp(): CVLQ *
+ IsReceivedPacket(): bool {query}
+ IsReceivedPacket(bool): void
+ Reset(): void
+ SetPacket(CVLQ&, CAllocationIdentifier&, CPacketDescriptor&, uint32_t&, uint8_t*, uint32_t&, bool&): bool
+ SetPacketAsReceived(): void
+ SetPayload(uint32_t, uint8_t*, uint32_t): void

CPacketDescriptor

- m_communicationRespondRequest: bool
- m_hasPayload: bool
- m_isWriteRequest: bool
- m_packetIdentifier: uint8_t
- m_segmentationCounter: CVLQ
- m_segmentationEnabled: bool
- uint8_t: uint8_t = static_cast<uin... {readOnly}
- uint8_t: uint8_t = static_cast<uin... {readOnly}
- uint8_t: uint8_t = static_cast<uin... {readOnly}
- uint8_t: uint8_t = static_cast<uin... {readOnly}

+ CPacketDescriptor()
+ CPacketDescriptor(uint8_t, bool)
+ GetPacketDescriptorByte(): uint8_t {query}
+ GetPacketIdentifier(): uint8_t {query}
+ GetSegmentationCounter(): CVLQ *
+ HasPayload(): bool {query}
+ HasPayload(bool): void
+ IsResponseRequested(): bool {query}
+ IsSegmentationEnabled(): bool {query}
+ IsWriteRequest(): bool {query}
+ Reset(): void
+ SetPacketDescriptorByte(uint8_t): void
+ SetPacketIdentifier(uint8_t): void
+ SetReadRequest(): void
+ SetResponseRequested(bool): void
+ SetSegmentationCounter(CVLQ): void
+ SetSegmentationEnabled(): void
+ SetWriteRequest(): void

CPacketLimiter

- m_pattern: uint8_t

+ CPacketLimiter()
+ CPacketLimiter(uint8_t)
+ GetPattern(): uint8_t {query}
+ CheckPattern(uint8_t): bool {query}

CStateMachine

m_activeState: uint8_t
- m_eventHandled: uint8_t
- m_maxStates: uint8_t
- m_maxSubStates: uint8_t
- m_receivedByte: uint8_t

+ CStateMachine(uint8_t, uint8_t)
+ ~CStateMachine()
GenerateEvent(uint8_t): void
GetStateMap(): CStateStruct *
GetTransitionMap(uint8_t, uint8_t): uint8_t
SetState(uint8_t): void
- StateEngine(): void

«Enum eration»
m_FunctionReturns

 REJECTED
 ACCEPTED
 NOT_FINISHED

«struct»
CStateStruct

+ m _pStateFunc: StateFunc

CVLQ

- m_currentInsertionPoint: uint8_t
- m_maximumSizeOfVLQ: uint8_t = 9 {readOnly}
- m_realSizeOfVLQ: uint8_t
- m_VLQ: uint8_t ([9])
- uint8_t: uint8_t = static_cast<uin... {readOnly}

+ AddByte(uint8_t): bool
+ ConvertASCIIToVLQ(uint8_t, uint8_t*, uint8_t): uint16_t
+ ConvertVLQToASCII(uint8_t, uint8_t*, uint8_t): uint16_t
+ CVLQ()
+ GetValueFromVLQ(): uint64_t
+ Reset(): void
+ SetVLQFromValue(T): bool

«property get»
+ GetVLQ(uint8_t*): uint8_t

-m_timeStamp

«use»

-m_timeStamp

-m_packetDescriptor

-m_SegmentationCounter

-m_crc16

-m_allocationIdentifier
-m_receivedPacket

«use»

«use»

-m_segmentationCounter

-m_packetDescriptor

«use»

-S tateMap

-m_allocationIdentifier

Figure C.3: Class diagram of the Message Decoder

87

Appendix C Class Diagrams of the Communication System

CMessageRouter

- m_packet: CPacket
- m_payload: uint8_t ([256])
- m_pState: IRouterState*

- CMessageRouter()
+ ConnectToReceiver(): void
+ GetCommunicationParametersOfReceiver(): void
+ GetInstance(): CMessageRouter *
- ChangeState(IRouterState*): void
+ Reset(): void
+ ResetReceiver(): void
+ Route(CPacket*): void
+ SetCommunicationParametersOfReceiver(uint8_t, uint8_t*, uint8_t, uint8_t*, uint8_t): void
+ SynchronizeReceiver(): void
+ SynchronizeTransmitter(): void

IRouterState

+ HandleCommunicationSpecific(CMessageRouter*, CPacket*): void
ChangeState(CMessageRouter*, IRouterState*): void
+ Reset(CMessageRouter*): void
+ Route(CMessageRouter*, CPacket*): void
+ SendToApplication(CMessageRouter*, CPacket*): void
+ SendToEncoder(CMessageRouter*, CPacket*): void

CRouterConcreteStateIdle

- CRouterConcreteStateIdle()
+ GetInstance(): CRouterConcreteStateIdle *
+ Route(CMessageRouter*, CPacket*): void

CRouterConcreteStateRouting

- CRouterConcreteStateRouting()
+ GetInstance(): CRouterConcreteStateRouting *
+ HandleCommunicationSpecific(CMessageRouter*, CPacket*): void
+ Reset(CMessageRouter*): void
+ Route(CMessageRouter*, CPacket*): void
+ SendToApplication(CMessageRouter*, CPacket*): void
+ SendToEncoder(CMessageRouter*, CPacket*): void

CRouterConcreteStateCommunicationHandling

- CRouterConcreteStateCommunicationHandling()
- GetFunctionID(CPacket*): uint8_t
+ GetInstance(): CRouterConcreteStateCommunicationHandling *
+ HandleCommunicationSpecific(CMessageRouter*, CPacket*): void
+ Reset(CMessageRouter*): void
+ SendToEncoder(CMessageRouter*, CPacket*): void

-m_pState

Figure C.4: Class diagram of the Message Router

IGateway

+ DisableLoad1L(): void
+ DisableLoad2L(): void
+ DisableLoadCQ(): void
+ GetDeviceParameter(): void
+ GetLoad1L(): uint64_t
+ GetLoad2L(): uint64_t
+ GetLoadCQ(): uint64_t
+ ResetConfiguration(uint64_t): bool
+ SetDeviceParameter(): void
+ SetLoad1L(uint64_t, uint64_t): void
+ SetLoad2L(uint64_t, uint64_t): void
+ SetLoadCQ(uint64_t, uint64_t): void

CGateway

+ DisableLoad1L(): void
+ DisableLoad2L(): void
+ DisableLoadCQ(): void
+ GetDeviceParameter(): void
+ GetLoad1L(): uint64_t
+ GetLoad2L(): uint64_t
+ GetLoadCQ(): uint64_t
+ ResetConfiguration(uint64_t): bool
+ SetDeviceParameter(): void
+ SetLoad1L(uint64_t, uint64_t): void
+ SetLoad2L(uint64_t, uint64_t): void
+ SetLoadCQ(uint64_t, uint64_t): void

CSendingGateway

- m_packet: CPacket
- m_payload: uint8_t ([255])

+ DisableLoad1L(): void
+ DisableLoad2L(): void
+ DisableLoadCQ(): void
+ GetDeviceParameter(): void
+ GetLoad1L(): uint64_t
+ GetLoad2L(): uint64_t
+ GetLoadCQ(): uint64_t
+ ResetConfiguration(uint64_t): bool
+ SendHardwareParameters(bool, uint8_t): void
+ SendIOLinkParameters(bool, uint8_t): void
+ SetDeviceParameter(): void
+ SetLoad1L(uint64_t, uint64_t): void
+ SetLoad2L(uint64_t, uint64_t): void
+ SetLoadCQ(uint64_t, uint64_t): void

CGatewayLibrary

- m_pGatewayBehavior: IGateway*

+ CGatewayLibrary(IGateway*)
+ DisableLoad1L(): void
+ DisableLoad2L(): void
+ DisableLoadCQ(): void
+ GetDeviceParameter(): void
+ GetLoad1L(): uint64_t
+ GetLoad2L(): uint64_t
+ GetLoadCQ(): uint64_t
+ ResetConfiguration(uint64_t): bool
+ SetDeviceParameter(): void
+ SetLoad1L(uint64_t, uint64_t): void
+ SetLoad2L(uint64_t, uint64_t): void
+ SetLoadCQ(uint64_t, uint64_t): void

-m_pGatewayBehavior

Figure C.5: Class diagram of the Gateway

88

Appendix C Class Diagrams of the Communication System

CIOLinkParameterHandler

- m_pState: IIOLinkParameterHandlerState*

- CIOLinkParameterHandler()
+ GetInstance(): CIOLinkParameterHandler *
- ChangeState(IIOLinkParameterHandlerState*): void
+ Receive(CPacket*): void
+ Reset(): void
+ Send(CPacket*): void

IIOLinkParameterHandlerState

m_appearedError: uint8_t ([2])
m_submoduleID: uint8_t {readOnly}

+ Handle(CIOLinkParameterHandler*, CPacket*): void
ChangeState(CIOLinkParameterHandler*, IIOLinkParameterHandlerState*): void
+ Receive(CIOLinkParameterHandler*, CPacket*): void
+ Reset(CIOLinkParameterHandler*): void
+ Send(CIOLinkParameterHandler*, CPacket*): void
SendError(CIOLinkParameterHandler*, CPacket*): void

CIOLinkParameterHandlerStateIdle

- CIOLinkParameterHandlerStateIdle()
+ GetInstance(): CIOLinkParameterHandlerStateIdle *
+ Receive(CIOLinkParameterHandler*, CPacket*): void
+ Send(CIOLinkParameterHandler*, CPacket*): void

CIOLinkParameterHandlerStateReceiving

- CIOLinkParameterHandlerStateReceiving()
+ GetInstance(): CIOLinkParameterHandlerStateReceiving *
+ Receive(CIOLinkParameterHandler*, CPacket*): void
+ Reset(CIOLinkParameterHandler*): void

CIOLinkParameterHandlerStateHandling

- FunctionMap: CIOLinkFunctionStruct ([]) {readOnly}
- m_gateway: CGateway
- m_gatewayLibrary: CGatewayLibrary
- m_numberOfDefinedFunctions: uint8_t {readOnly}
- m_packet: CPacket
- m_payload: uint8_t ([256])

- CIOLinkParameterHandlerStateHandling()
- ConvertPacketToStruct(CPacket*): CIOLinkParameters
- GetFunctionID(CPacket*): uint8_t
+ GetInstance(): CIOLinkParameterHandlerStateHandling *
+ Handle(CIOLinkParameterHandler*, CPacket*): void
- HandleAddCompatible(CIOLinkParameterHandler*, CPacket*): void
- HandleCreateIndex(CIOLinkParameterHandler*, CPacket*): void
- HandleCreateSubindex(CIOLinkParameterHandler*, CPacket*): void
- HandleDataLoop(CIOLinkParameterHandler*, CPacket*): void
- HandleDeviceConfiguration(CIOLinkParameterHandler*, CPacket*): void
- HandleDeviceResponseTime(CIOLinkParameterHandler*, CPacket*): void
- HandleEvent(CIOLinkParameterHandler*, CPacket*): void
- HandleInputData(CIOLinkParameterHandler*, CPacket*): void
- HandleOutputData(CIOLinkParameterHandler*, CPacket*): void
- HandleParameter(CIOLinkParameterHandler*, CPacket*): void
- HandlePortMode(CIOLinkParameterHandler*, CPacket*): void
- HandlePortStatus(CIOLinkParameterHandler*, CPacket*): void
- HandleReset(CIOLinkParameterHandler*, CPacket*): void
- HandleResetConfiguration(CIOLinkParameterHandler*, CPacket*): void
- HandleWakeResponseTime(CIOLinkParameterHandler*, CPacket*): void
- ReadAndSetParameter(CParameter<T, numOfOctets>*, CPacket*, uint16_t): bool
+ Reset(CIOLinkParameterHandler*): void
+ Send(CIOLinkParameterHandler*, CPacket*): void

«property get»
- GetFunctionMap(): CIOLinkFunctionStruct *

«struct»
CIOLinkFunctionStruct

+ m_pFunction: IOLinkFunc

CIOLinkParameterHandlerStateSending

- CIOLinkParameterHandlerStateSending()
+ GetInstance(): CIOLinkParameterHandlerStateSending *
+ Reset(CIOLinkParameterHandler*): void
+ Send(CIOLinkParameterHandler*, CPacket*): void

«struct»
CIOLinkParameters

+ Baudrate: CParameter<uint8_t, 1>
+ DeviceID: CParameter<uint8_t, 3>
+ DeviceResponseTime: CParameter<uint8_t, 1>
+ FrameType: CParameter<uint8_t, 1>
+ FunctionID: CParameter<uint8_t, 2>
+ Index: CParameter<uint8_t, 2>
+ MinCycleTime: CParameter<uint8_t, 1>
+ PDinLength: CParameter<uint8_t, 1>
+ PDoutLength: CParameter<uint8_t, 1>
+ RevisionID: CParameter<uint8_t, 1>
+ SerialNumber: CParameter<uint8_t, 2>
+ SubIndex: CParameter<uint8_t, 1>
+ Type: CParameter<uint8_t, 1>
+ VendorID: CParameter<uint8_t, 2>
+ WakeResponseTime: CParameter<uint8_t, 1>

T : typename
numOfOctets : uint8_t

CParameter

- m_isDefined: bool
- m_numberOfOctets: uint8_t = numOfOctets {readOnly}
- m_position: uint8_t
- m_value: T ([numOfOctets])

+ AddValue(T): bool
+ CParameter()
+ GetValue(T*): uint8_t {query}
+ IsDefined(bool): void
+ IsDefined(): bool {query}

-m_pState

-FunctionMap

Figure C.6: Class diagram of the IO-Link Parameter Handler

89

Appendix C Class Diagrams of the Communication System

CHardwareParameterHandler

- m_pState: IHardwareParameterHandlerState*

+ GetInstance(): CHardwareParameterHandler *
- ChangeState(IHardwareParameterHandlerState*): void
- CHardwareParameterHandler()
+ Receive(CPacket*): void
+ Reset(): void
+ Send(CPacket*): void

IHardwareParameterHandlerState

m_appearedError: uint8_t ([2])
m_submoduleID: uint8_t {readOnly}

+ Handle(CHardwareParameterHandler*, CPacket*): void
ChangeState(CHardwareParameterHandler*, IHardwareParameterHandlerState*): void
+ Receive(CHardwareParameterHandler*, CPacket*): void
+ Reset(CHardwareParameterHandler*): void
+ Send(CHardwareParameterHandler*, CPacket*): void
SendError(CHardwareParameterHandler*, CPacket*): void

CHardwareParameterHandlerStateIdle

+ GetInstance(): CHardwareParameterHandlerStateIdle *
- CHardwareParameterHandlerStateIdle()
+ Receive(CHardwareParameterHandler*, CPacket*): void
+ Send(CHardwareParameterHandler*, CPacket*): void

CHardwareParameterHandlerStateReceiving

+ GetInstance(): CHardwareParameterHandlerStateReceiving *
- CHardwareParameterHandlerStateReceiving()
+ Receive(CHardwareParameterHandler*, CPacket*): void
+ Reset(CHardwareParameterHandler*): void

CHardwareParameterHandlerStateHandling

- FunctionMap: CHardwareFunctionStruct ([]) {readOnly}
- m_gateway: CGateway
- m_gatewayLibrary: CGatewayLibrary
- m_numberOfDefinedFunctions: uint8_t {readOnly}
- m_packet: CPacket
- m_payload: uint8_t ([256])

- ConvertPacketToStruct(CPacket*): CHardwareParameters
- GetFunctionID(CPacket*): uint8_t
+ GetInstance(): CHardwareParameterHandlerStateHandling *
+ Handle(CHardwareParameterHandler*, CPacket*): void
- HandleDisableLoad1L(CHardwareParameterHandler*, CPacket*): void
- HandleDisableLoad2L(CHardwareParameterHandler*, CPacket*): void
- HandleDisableLoadCQ(CHardwareParameterHandler*, CPacket*): void
- HandleLCD(CHardwareParameterHandler*, CPacket*): void
- HandleLCDClear(CHardwareParameterHandler*, CPacket*): void
- HandleLED(CHardwareParameterHandler*, CPacket*): void
- HandleLoad1L(CHardwareParameterHandler*, CPacket*): void
- HandleLoad2L(CHardwareParameterHandler*, CPacket*): void
- HandleLoadCQ(CHardwareParameterHandler*, CPacket*): void
- HandlePin(CHardwareParameterHandler*, CPacket*): void
- HandleWaitPin(CHardwareParameterHandler*, CPacket*): void
- CHardwareParameterHandlerStateHandling()
- ReadAndSetParameter(CParameter<T, numOfOctets>*, CPacket*, uint16_t): bool
+ Reset(CHardwareParameterHandler*): void
+ Send(CHardwareParameterHandler*, CPacket*): void

«property get»
- GetFunctionMap(): CHardwareFunctionStruct *

«struct»
CHardwareFunctionStruct

+ m_pFunction: HardwareFunc

CHardwareParameterHandlerStateSending

+ GetInstance(): CHardwareParameterHandlerStateSending *
- CHardwareParameterHandlerStateSending()
+ Reset(CHardwareParameterHandler*): void
+ Send(CHardwareParameterHandler*, CPacket*): void

T : typename
numOfOctets : uint8_t

CParameter

- m_isDefined: bool
- m_numberOfOctets: uint8_t = numOfOctets {readOnly}
- m_position: uint8_t
- m_value: T ([numOfOctets])

+ AddValue(T): bool
+ CParameter()
+ GetValue(T*): uint8_t {query}
+ IsDefined(bool): void
+ IsDefined(): bool {query}

«struct»
CHardwareParameters

+ Current: CVLQ
+ LED_num: CParameter<uint8_t, 1>
+ Pin_num: CParameter<uint8_t, 1>
+ Row: CParameter<uint8_t, 1>
+ Text: uint8_t ([80])
+ Value: CVLQCVLQ

- m_currentInsertionPoint: uint8_t
- m_maximumSizeOfVLQ: uint8_t = 9 {readOnly}
- m_realSizeOfVLQ: uint8_t
- m_VLQ: uint8_t ([9])
- uint8_t: uint8_t = static_cast<uin... {readOnly}

+ AddByte(uint8_t): bool
+ ConvertASCIIToVLQ(uint8_t, uint8_t*, uint8_t): uint16_t
+ ConvertVLQToASCII(uint8_t, uint8_t*, uint8_t): uint16_t
+ CVLQ()
+ GetValueFromVLQ(): uint64_t
+ Reset(): void
+ SetVLQFromValue(T): bool

«property get»
+ GetVLQ(uint8_t*): uint8_t

-m_pState

-FunctionMap

Figure C.7: Class diagram of the Hardware Parameter Handler

90

Appendix D

Class Diagrams of the Human
Machine Interface

RibbonW indow

MainWindow

- com m W indow: CommunicationSettingsWindow
- handler: Com municationHandler
- xm lFunctions: XMLFunctionsWindow

- Btn_About_Click(object, RoutedEventArgs): void
- Btn_Possib leXMLCommands_Click(object, RoutedEventArgs): void
- Btn_USBCom m unicationSettings_Click(object, RoutedEventArgs): void
- Close(ob ject, RoutedEventArgs): void
+ M ainW indow()
- M ainW indow_Clos ing(object, CancelEventArgs): void
- Ribbon_SelectionChanged(object, SelectionChangedEventArgs): void
- vm _Confirm Dele ting(object, CancelEventArgs): void

TextBoxBehaviour

- _associa tions: Dictionary<TextBox, Capture> = new Dictionary<... {readOnly}
+ Scro llOnTextChangedProperty: DependencyProperty = DependencyPrope... {readOnly}

+ GetScro llOnTextChanged(DependencyObject): bool
- OnScro llOnTextChanged(DependencyObject, DependencyPropertyChangedEventArgs): void
+ SetScro llOnTextChanged(DependencyObject, bool): void
- TextBoxLoaded(object, RoutedEventArgs): void
- TextBoxUnloaded(object, RoutedEventArgs): void

IDisposable

Capture

+ Capture(TextBox)
+ Dispose(): void
- OnTextBoxOnTextChanged(object, TextChangedEventArgs): void

«property»
- TextBox(): TextBox

Figure D.1: Main class diagram of the HMI

91

Appendix D Class Diagrams of the Human Machine Interface

Communication_ListEntryViewModel

- m _changed: string = string.Empty
- m _id : PInteger32
- m _in form ation: PString
- m _ListEntry: Comm_ListEntry
- m _name: PString

+ AcceptChanges(): void
+ Com m unication_L istEntryViewModel(Comm_ListEntry)
+ Equals(System.Object): bool
- In itia lizeFields(): void
- L is tEntry_PropertyChanged(object, PropertyChangedEventArgs): void
+ UndoChanges(): void

«property»
+ Changed(): string
+ ID(): PInteger32
+ In form ation(): PString
+ Nam e(): PString

CommunicationHandler

- Com m unicationSystem: object = new Object()
- m _addressedDeviceID: byte
- m _allAva ilab leSerialPorts: string ([])
- m _availab leDevicePorts: List<string>
- m _counter: int
- m _cyc licPolling: bool
- m _instance: CommunicationHandler = null
- m _isConnected: bool
- m _isCheckingForConnectivity: bool
- m _isM asterDevice: bool = true {readOnly}
- m _isResponseRequested: bool
- m _isScanningForDevices: bool
- m _padlock: object = new object() {readOnly}
- m _rece ivedACKConnectionFlag: bool
- m _secSinceStartupOfApplication: double
- m _seria lCom m unication: SerialPortCommunication
- m _ticker: int
- m _timeOut: int
- m _tim eOutDefault: int = 5 {readOnly}
- m _timer: Timer
- m _tim eResolution: UInt64 = 100 {readOnly}
- m _tim eSinceStartupDevice: string
- m _tim eSinceStartupDeviceMs: UInt64
- m _tim eSinceStartupMaster: string
- m _tim eSinceStartupMasterMs: UInt64
- m _tim eSinceStartupMasterOffsetMs: UInt64
- m _tim eSinceStartUpOfApplicationMs: Stopwatch
- m _usedCommunicationPort: byte
- m _watchForConnectionInterrupt: int = 10 {readOnly}

+ ACKReceived(byte): void
+ ApplyNewDeviceSettings(Communication_ListEntryViewModel[]): void
+ ClosePort(): bool
~ Com m unication_DisableLoad1L(): void
~ Com m unication_DisableLoad2L(): void
~ Com m unication_DisableLoadCQ(): void
~ Com m unication_ResetConfiguration(UInt64): void
+ Com m unication_SetGet_DeviceParameter(): void
~ Com m unication_SetGet_Load1L(UInt64, bool, UInt64): void
~ Com m unication_SetGet_Load2L(UInt64, bool, UInt64): void
~ Com m unication_SetGet_LoadCQ(UInt64, bool, UInt64): void
- Com m unicationHandler()
~ M essageDecoder_Decode(byte): void
~ M essageRouter_ConnectToReceiver(): void
~ M essageRouter_GetCom m unicationParametersOfReceiver(): void
~ M essageRouter_ResetReceiver(): void
~ M essageRouter_SetCommunicationParametersOfReceiver(byte, byte[], byte, byte[], byte): void
~ M essageRouter_SynchronizeReceiver(): void
~ M essageRouter_SynchronizeTransmitter(): void
+ M TSCom m unication_DisableLoad1L(): void
+ M TSCom m unication_DisableLoad2L(): void
+ M TSCom m unication_DisableLoadCQ(): void
+ M TSCom m unication_ResetConfiguration(UInt64): void
+ M TSCom m unication_SetGet_DeviceParameter(): void
+ M TSCom m unication_SetGet_Load1L(UInt64, bool, UInt64): void
+ M TSCom m unication_SetGet_Load2L(UInt64, bool, UInt64): void
+ M TSCom m unication_SetGet_LoadCQ(UInt64, bool, UInt64): void
+ M TSM essageDecoder_Decode(byte): void
+ M TSM essageRouter_ConnectToReceiver(): void
+ OpenPort(): bool
+ ReadDevicesAtCurrentPort(): void
+ ResetAndSynchronize(UInt64): void
+ ResetDevice(): void
+ ResetTimeOut(): void
+ ResetT im eSinceStartup(): void
+ ScanForAvailableDevicePorts(): void
+ SendM essage(byte[], UInt16): void
+ Synchron izeReceiver(): void
+ Synchron izeTransmitter(): void
- T ickEvent(object, ElapsedEventArgs): void
+ UseProfibus(): void
+ UseProfinet(): void
+ UseUSB(): void

«property»
+ AddressedDeviceID(): byte
+ CyclicPolling(): bool
+ Instance(): CommunicationHandler
+ IsConnected(): bool
+ IsM asterDevice(): bool
+ IsResponseRequested(): bool
- SecSinceStartupOfApplication(): double
+ Seria lPortCom m unication(): SerialPortCommunication
+ T im eOut(): int
+ T im eSinceStartupDevice(): string
+ T im eSinceStartupDeviceMs(): UInt64
+ T im eSinceStartupMaster(): string
+ T im eSinceStartupMasterMs(): UInt64

Comm_ListEntry

- m _ID: Int32
- m _in formation: string
- m _name: string

+ Com m _ListEntry()
+ Com m _ListEntry(Int32, string, string)

«property»
+ ID(): Int32
+ In form ation(): string
+ Nam e(): string

«enum eration»
CommunicationPort

 USB
 Profibus
 Profinet

W indow

CommunicationSettingsWindow

- instance: CommunicationSettingsWindow = null
- pad lock: ob ject = new object() {readOnly}

- CloseW indow(object, CancelEventArgs): void
+ Com m unicationSettingsWindow()
- lis tView_SelectionChanged(object, SelectionChangedEventArgs): void

«property»
+ Instance(): CommunicationSettingsWindow

CommunicationViewModel

- instance: CommunicationViewModel = null
- m _actua lPosition: string
- m _com m Handler: CommunicationHandler
- m _lis tEntriesL is t: M TObservableCollection<Communication_ListEntryViewModel>
- m _lis tEntriesView: ListCollectionView
- m _Lis tEntryDetails: string
- m _Lis tChanged: bool
- m _setFocus: bool
- m _sortByProperty: string = m_sortCriteria[0]
- m _sortCrite ria: string ([]) = { "ID" }
- pad lock: ob ject = new object() {readOnly}

- AcceptChanges(): void
+ AddNewListEntry(Int32, string, string): void
- Apply_Execute(object): void
+ ClearL is t(): void
+ Com m unicationViewModel()
- ConnectDisconnect_CanExecute(object): bool
- ConnectDisconnect_Execute(object): void
- m _lis tEntries_CurrentChanged(object, EventArgs): void
- ReadDevices_CanExecute(object): bool
- ReadDevices_Execute(object): void
- ResetDevice_Execute(object): void
- ScanPorts_CanExecute(object): bool
- ScanPorts_Execute(object): void
- Send_CanExecute(object): bool
- SyncDevice_Execute(object): void
- SyncMaster_Execute(object): void
- UpdateSorting(): void
- Use_CanExecute(object): bool
- UseProfibus_Execute(object): void
- UseProfinet_Execute(object): void
- UseUSB_Execute(object): void

«property»
+ Actua lPosition(): string
+ ApplyCommand(): ICommand
+ Com m _ListEntryDetails(): string
+ Com m _ListEntrysView(): ListCollectionView
+ Com m unicationHandler(): CommunicationHandler
+ ConnectDisconnectCommand(): ICommand
+ Instance(): CommunicationViewModel
+ L is tChanged(): bool
+ ReadDevicesCommand(): ICommand
+ ResetDeviceCommand(): ICommand
+ ScanPortsCommand(): ICommand
+ SetFocus(): bool
+ SortByProperty(): string
+ SortCrite ria (): string[]
+ SyncDeviceCommand(): ICommand
+ SyncM asterCommand(): ICommand
+ UseProfibusCommand(): ICommand
+ UseProfinetCommand(): ICommand
+ UseUSBCom m and(): ICommand

ObservableCollection

T

MTObservableCollection

OnCollectionChanged(NotifyCollectionChangedEventArgs): void

«event»
+ CollectionChanged(): NotifyCollectionChangedEventHandler

ICom parable

PInteger32

- m _currentValue: Int32
- m _hasChanged: bool
- m _orig ina lValue: Int32

+ AcceptChanges(): void
+ Com pareTo(object): Int32
+ Equals(System.Object): bool
+ PIn teger32(Int32)
+ UndoChanges(): void

«property»
+ HasChanged(): bool
+ Orig ina lValue(): Int32
+ Value(): Int32

ICom parable

PString

- m _currentValue: string
- m _hasChanged: bool
- m _orig ina lValue: string

+ AcceptChanges(): void
+ Com pareTo(object): int
+ Equals(System.Object): bool
+ PString(string)
+ UndoChanges(): void

«property»
+ HasChanged(): bool
+ Va lue(): string

SerialPortCommunication

- m _availab leSerialDevicePorts: string ([])
- m _selectedPortName: string
- port: SerialPort

+ ClosePort(): bool
+ OpenPort(): bool
- Rece ive(ob ject, System.IO.Ports.SerialDataReceivedEventArgs): void
+ SendM essage(byte[], UInt16): void
+ Seria lPortCommunication()
+ SetPortName(string): bool

«property»
+ Ava ilab leSeria lDevicePorts(): string[]
+ Ava ilab leSeria lPorts(): string[]
+ Port(): SerialPort
+ Se lectedPortName(): string

INotifyPropertyChanged

ViewModelBase

SetProperty(T*, T, string): void

«event»
+ PropertyChanged(): PropertyChangedEventHandler

-m_id

-m_ListEntry

< T ->Communication_ListEntryViewModel >

-m_listEntriesList

-m_communicationHandler

-m_serialCommunication

Figure D.2: Class diagram for communication handling

92

Appendix D Class Diagrams of the Human Machine Interface

DataItem

- m _coding: byte
- m _isSelected: bool
- m _stringRepresentation: string

+ ConvertHexStringToByteArray(): byte[]
+ Data Item()
+ DataItem(string, byte)
+ DataItem (string, byte, bool)

«property»
+ Coding(): byte
+ IsSelected(): bool
+ StringRepresentation(): string

ISDUItem

- m _content: string
- m _DataType_Selected: DataItem
- m _index: string
- m _ISDU_DataType_ArrayT: DataItem = new DataItem("A... {readOnly}
- m _ISDU_DataType_BooleanT: DataItem = new DataItem("B... {readOnly}
- m _ISDU_DataType_Float32T: DataItem = new DataItem("F... {readOnly}
- m _ISDU_DataType_IntegerT: DataItem = new DataItem("I... {readOnly}
- m _ISDU_DataType_OctetStringT: DataItem = new DataItem("O... {readOnly}
- m _ISDU_DataType_RecordT: DataItem = new DataItem("R... {readOnly}
- m _ISDU_DataType_Selected: DataItem
- m _ISDU_DataType_StringT: DataItem = new DataItem("S... {readOnly}
- m _ISDU_DataType_TimeSpanT: DataItem = new DataItem("T... {readOnly}
- m _ISDU_DataType_TimeT: DataItem = new DataItem("T... {readOnly}
- m _ISDU_DataType_UIntegerT: DataItem = new DataItem("U... {readOnly}
- m _ISDU_DataTypes: DataItem ([])
- m _subIndex: string

+ ISDUItem()

«property»
+ Content(): string
+ DataType_Selected(): DataItem
+ Index(): string
+ ISDU_DataType_Selected(): DataItem
+ ISDU_DataTypes(): DataItem[]
+ SubIndex(): string
+ SubItems(): ISDUItem[]

UserControl

ISDUTab

+ ISDUTab()

ISDUViewModel

- instance: ISDUViewModel = null
- m _com m unicationHandler: CommunicationHandler
- m _ISDUItemRead: ISDUItem
- m _ISDUItemWroteCreated: ISDUItem
- m_SubItems: ISDUItem ([]) = new ISDUItem[] ...
- pad lock: ob ject = new object() {readOnly}

+ ClearL is tO fCreatedIndices(): void
- Create ISDU_Execute(object): void
+ ISDUViewModel()
- ReadIndex_Execute(object): void
- Send_CanExecute(object): bool
- W rite ISDU_Execute(object): void

«property»
+ Create ISDU(): ICommand
+ Instance(): ISDUViewModel
+ ISDUItemRead(): ISDUItem
+ ISDUItem W roteCreated(): ISDUItem
+ ReadISDU(): ICommand
+ SubItems(): ISDUItem[]
+ W rite ISDU(): ICommand

INotifyPropertyChanged

ViewModelBase

SetProperty(T*, T, string): void

«event»
+ PropertyChanged(): PropertyChangedEventHandler

-m_ISDUItemRead

-m_SubItems

-m_ISDUItemWroteCreated

Figure D.3: Class diagram for ISDU settings

93

Appendix D Class Diagrams of the Human Machine Interface

UserControl

HardwareTab

- instance: HardwareTab = null
- pad lock: ob ject = new object() {readOnly}

+ HardwareTab()

«property»
+ DateAxis(): HorizontalDateTimeAxis
+ Instance(): HardwareTab
+ Plo tter(): ChartPlotter

ICom parable

PDataItem

- m _currentValue: DataItem
- m _hasChanged: bool
- m _orig ina lValue: DataItem

+ AcceptChanges(): void
+ Com pareTo(object): Int32
+ PDataItem(DataItem)
+ UndoChanges(): void

«property»
+ HasChanged(): bool
+ Va lue(): DataItem

Simulation

- m _CorruptFrames: DataItem
- m _DataLoopDisab led: DataItem = new DataItem("D... {readOnly}
- m _DataLoopEnabled: DataItem = new DataItem("D... {readOnly}
- m _DataLoopStatus_Selected: DataItem
- m _DataLoopStatuse: DataItem ([]) {readOnly}
- m _InputData: DataItem
- m _LCDRow1: PDataItem
- m _LCDRow2: PDataItem
- m _LEDs: PDataItem ([])
- m _Load1L: DataItem
- m _Load2L: DataItem
- m _LoadCQ: DataItem
- m _OutputData: DataItem
- m _OutputPins: PDataItem ([])
- m _SkipFrames: DataItem
- m _W aitInputPins: PDataItem ([])

+ Sim ula tion()

«property»
+ CorruptFrames(): DataItem
+ DataLoopStatus_Selected(): DataItem
+ DataLoopStatuse(): DataItem[]
+ InputData(): DataItem
+ LCDRow1(): PDataItem
+ LCDRow2(): PDataItem
+ LEDs(): PDataItem[]
+ Load1L(): DataItem
+ Load2L(): DataItem
+ LoadCQ(): DataItem
+ OutputData(): DataItem
+ OutputPins(): PDataItem[]
+ SkipFrames(): DataItem
+ W aitInputPins(): PDataItem[]

SimulationViewModel

- _m axCurrent: int
- _m inCurrent: int
- i: int = 0
- instance: SimulationViewModel = null
- m _allDataSelected: bool
- m _allErrorSim ulationsSelected: bool
- m _allLoadsSelected: bool
- m _com m unicationHandler: CommunicationHandler
+ m _currentPoin tCollectionCos: CurrentPointCollection
+ m _currentPoin tCollectionSin: CurrentPointCollection
- m _reading: bool
- m _Sim ula tionDesired: Simulation
- m _Sim ula tionReal: Simulation
- m _Start: string = "Start Reading"
- m _StartStopReadingMessage: string
- m _Stop: string = "Stop Reading"
- pad lock: ob ject = new object() {readOnly}
- updateCollectionTimer: DispatcherTimer

- ClearAllLEDsAndPins_Execute(object): void
- ClearLCD_Execute(object): void
- Disab leLoads_Execute(object): void
- EnableDisab leDataLoop_Execute(object): void
- LoadData_Execute(object): void
- LoadErrorSim ula tion_Execute(object): void
- LoadLEDsAndPins_Execute(object): void
- ReadData_Execute(object): void
- ReadErrorSim ula tion_Execute(object): void
- ReadLCD_Execute(object): void
- ReadLEDsAndPins_Execute(object): void
- Send_CanExecute(object): bool
+ Sim ula tionViewModel()
+ Start(): void
- StartStopReading_Execute(object): void
- updateCollectionTimer_Tick(object, EventArgs): void
- W riteLCD_Execute(object): void
- W riteLoads_Execute(object): void

«property»
+ AllDataSelected(): bool
+ AllErrorSim ula tionSelected(): bool
+ AllLoadsSelected(): bool
+ ClearAllLEDsAndPinsCommand(): ICommand
+ ClearLCDCom mand(): ICommand
+ Disab leLoadsCommand(): ICommand
+ EnableDisab leDataLoopCommand(): ICommand
+ Instance(): SimulationViewModel
+ LoadDataCommand(): ICommand
+ LoadErrorSim ulationCommand(): ICommand
+ LoadLEDsAndPinsCommand(): ICommand
+ M axCurrent(): int
+ M inCurrent(): int
+ ReadDataCom m and(): ICommand
+ ReadErrorSim ulationCommand(): ICommand
+ ReadLCDCom m and(): ICommand
+ ReadLEDsAndPinsCom m and(): ICommand
+ Sim ula tionDesired(): Simulation
+ Sim ula tionReal(): Simulation
+ StartStopCommand(): ICommand
+ StartStopReadingMessage(): string
+ W riteLCDCommand(): ICommand
+ W riteLoadsCommand(): ICommand

INotifyPropertyChanged

ViewModelBase

SetProperty(T*, T, string): void

«event»
+ PropertyChanged(): PropertyChangedEventHandler

-m_S imulationReal

-m_S imulationDesired

Figure D.4: Class diagram of hardware and simulation related configuration

94

Appendix D Class Diagrams of the Human Machine Interface

DataItem

- m_coding: byte

- m_isSelected: bool

- m_stringRepresentation: string

+ ConvertHexStringToByteArray(): byte[]

+ DataItem()

+ DataItem(string, byte)

+ DataItem(string, byte, bool)

«property»

+ Coding(): byte

+ IsSelected(): bool

+ StringRepresentation(): string

DataStorage

- m_DS_Break: DataItem = new DataItem("D... {readOnly}

- m_DS_Command_Selected: DataItem

- m_DS_Commands: DataItem ([]) {readOnly}

- m_DS_Download: DataItem = new DataItem("D... {readOnly}

- m_DS_DownloadEnd: DataItem = new DataItem("D... {readOnly}

- m_DS_DownloadStart: DataItem = new DataItem("D... {readOnly}

- m_DS_Enabled: bool

- m_DS_Inactive: DataItem = new DataItem("I... {readOnly}

- m_DS_Locked: DataItem = new DataItem("D... {readOnly}

- m_DS_NO_UPLOAD_REQ: DataItem = new DataItem("N... {readOnly}

- m_DS_Notice: string

- m_DS_Size: UInt32

- m_DS_State_Selected: DataItem

- m_DS_States: DataItem ([])

- m_DS_Upload: DataItem = new DataItem("U... {readOnly}

- m_DS_UPLOAD_REQ: DataItem = new DataItem("D... {readOnly}

- m_DS_UploadEnd: DataItem = new DataItem("D... {readOnly}

- m_DS_UploadFlag_Selected: DataItem

- m_DS_UploadFlags: DataItem ([])

- m_DS_UploadStart: DataItem = new DataItem("D... {readOnly}

+ DataStorage()

«property»

+ DS_Command_Selected(): DataItem

+ DS_Commands(): DataItem[]

+ DS_Enabled(): bool

+ DS_Notice(): string

+ DS_Size(): UInt32

+ DS_State_Selected(): DataItem

+ DS_States(): DataItem[]

+ DS_UploadFlag_Selected(): DataItem

+ DS_UploadFlags(): DataItem[]

DataStorage_ListEntry

- m_entry: Int32

- m_index: Int32

- m_subindex: Int32

«property»

+ Entry(): Int32

+ Index(): Int32

+ Subindex(): Int32

DataStorage_ListEntryViewModel

- m_entry: PInteger32

- m_changed: string = string.Empty

- m_index: PInteger32

- m_ListEntry: DataStorage_ListEntry

- m_subindex: PInteger32

+ AcceptChanges(): void

+ DataStorage_ListEntryViewModel(DataStorage_ListEntry)

- In itializeFields(): void

- ListEntry_PropertyChanged(object, PropertyChangedEventArgs): void

«property»

+ Entry(): PInteger32

+ Changed(): string

+ Index(): PInteger32

+ Subindex(): PInteger32

UserControl

DataStorageTab

- DS_VM: DataStorageViewModel

+ DataStorageTab()

- listView_SelectionChanged(object, SelectionChangedEventArgs): void

DataStorageViewModel

- m_actualPosition: string

- m_DataStorage: DataStorage

- m_defaultFile: string = "DataStorage_De... {readOnly}

- m_delete_DataStorageEntry_CommandBinding: CommandBinding

- m_DS_Active: string = "DataStorage Active" {readOnly}

- m_DS_Inactive: string = "DataStorage In... {readOnly}

- m_EnableDisable_DataStorage_CommandBinding: CommandBinding

- m_EnableDisableDSMessage: string

- m_file: string

- m_listEntriesList: ObservableCollection<DataStorage_ListEntryViewModel>

- m _ listEntriesView: ListCollectionView

- m_ListEntryDetails: string

- m_ListChanged: bool

- m_new_DataStorageEntry_CommandBinding: CommandBinding

- m_Open_DataStorage_CommandBinding: CommandBinding

- m_Reset_DataStorage_CommandBinding: CommandBinding

- m_Save_DataStorage_CommandBinding: CommandBinding

- m_SaveAs_DataStorage_CommandBinding: CommandBinding

- m_setFocus: bool

- m_sortByProperty: string = m_sortCriteria[0]

- m_sortCriteria: string ([]) = { "Entry", "Index" }

- AcceptChanges(): void

- Back_CanExecute(object): bool

+ CancelViewClosing(): void

- ClearAllEntries_CanExecute(object): bool

- ClearAllEntries_Execute(object): void

+ DataStorageViewModel()

- Delete_CanExecute(object, CanExecuteRoutedEventArgs): void

- Delete_Executed(object, ExecutedRoutedEventArgs): void

- EnableDisable_Datastorage_CanExecute(object, CanExecuteRoutedEventArgs): void

- EnableDisable_Datastorage_Executed(object, ExecutedRoutedEventArgs): void

- First_Execute(object): void

- Forward_CanExecute(object): bool

- Last_Execute(object): void

- LoadDataStorage(DataStorage*, string): void

- LoadDS_ListEntrys(ObservableCollection<DataStorage_ListEntryViewModel>*, string): void

- m_listEntries_CurrentChanged(object, EventArgs): void

- New_CanExecute(object, CanExecuteRoutedEventArgs): void

- New_Executed(object, ExecutedRoutedEventArgs): void

- Next_Execute(object): void

- Open_DataStorage_CanExecute(object, CanExecuteRoutedEventArgs): void

- Open_DataStorage_Executed(object, ExecutedRoutedEventArgs): void

- Previous_Execute(object): void

- ReadDataStorage_Execute(object): void

- Reset_DataStorage_CanExecute(object, CanExecuteRoutedEventArgs): void

- Reset_DataStorage_Executed(object, ExecutedRoutedEventArgs): void

- Save_CanExecute(object, CanExecuteRoutedEventArgs): void

- Save_DataStorage_Executed(object, ExecutedRoutedEventArgs): void

- SaveAs_DataStorage_Executed(object, ExecutedRoutedEventArgs): void

- SaveList_Executed(object, ExecutedRoutedEventArgs): void

- Send_CanExecute(object): bool

- SetDataStorage_Execute(object): void

- UpdateSorting(): void

«property»

+ ActualPosition(): string

+ ClearAllEntriesCommand(): ICommand

+ DataStorage(): DataStorage

+ Delete_DataStorageEntry_CommandBinding(): CommandBinding

+ DS_ListEntryDetails(): string

+ DS_ListEntrysView(): ListCollectionView

+ EnableDisable_DataStorage_CommandBinding(): CommandBinding

+ EnableDisableDSMessage(): string

+ FirstCommand(): ICommand

+ LastCommand(): ICommand

+ ListChanged(): bool

+ New_DataStorageEntry_CommandBinding(): CommandBinding

+ NextCommand(): ICommand

+ Open_DataStorage_CommandBinding(): CommandBinding

+ PreviousCommand(): ICommand

+ ReadDataSorageCommand(): ICommand

+ Reset_DataStorage_CommandBinding(): CommandBinding

+ Save_DataStorage_CommandBinding(): CommandBinding

+ SaveAs_DataStorage_CommandBinding(): CommandBinding

+ SetDataSorageCommand(): ICommand

+ SetFocus(): bool

+ SortByProperty(): string

+ SortCriteria(): string[]

IComparable

PDataItem

- m_currentValue: DataItem

- m_hasChanged: bool

- m_originalValue: DataItem

+ AcceptChanges(): void

+ CompareTo(object): Int32

+ PDataItem(DataItem)

+ UndoChanges(): void

«property»

+ HasChanged(): bool

+ Value(): DataItem

IComparable

PInteger32

- m_currentValue: Int32

- m_hasChanged: bool

- m_originalValue: Int32

+ AcceptChanges(): void

+ CompareTo(object): Int32

+ Equals(System.Object): bool

+ PInteger32(Int32)

+ UndoChanges(): void

«property»

+ HasChanged(): bool

+ OriginalValue(): Int32

+ Value(): Int32

INotifyPropertyChanged

ViewModelBase

SetProperty(T*, T, string): void

«event»

+ PropertyChanged(): PropertyChangedEventHandler

-m_currentValue

-m_index-m_subindex

-m_DataStorage

-m_originalValue

-m_entry

-m_ListEntry

Figure D.5: Class diagram of DataStorage related features

95

Appendix D Class Diagrams of the Human Machine Interface

Event

- m _entry: Int32
- m _Event_Appears: DataItem = new DataItem("E... {readOnly}
- m _Event_Code: DataItem
- m _Event_Disappears: DataItem = new DataItem("E... {readOnly}
- m _Event_Error: DataItem = new DataItem("E... {readOnly}
- m _Event_Instance_Application: DataItem = new DataItem("A... {readOnly}
- m _Event_Instance_Reserved1: DataItem = new DataItem("R... {readOnly}
- m _Event_Instance_Reserved2: DataItem = new DataItem("R... {readOnly}
- m _Event_Instance_Reserved3: DataItem = new DataItem("R... {readOnly}
- m _Event_Instance_Reserved5: DataItem = new DataItem("R... {readOnly}
- m _Event_Instance_Reserved6: DataItem = new DataItem("R... {readOnly}
- m _Event_Instance_Reserved7: DataItem = new DataItem("R... {readOnly}
- m _Event_Instance_Selected: DataItem
- m _Event_Instance_Unknown: DataItem = new DataItem("U... {readOnly}
- m _Event_Instances: DataItem ([])
- m _Event_Mode_Selected: DataItem
- m _Event_Modes: DataItem ([]) {readOnly}
- m _Event_Notification: DataItem = new DataItem("N... {readOnly}
- m _Event_SingleShot: DataItem = new DataItem("E... {readOnly}
- m _Event_Type_Selected: DataItem
- m _Event_Types: DataItem ([])
- m _Event_W arn ing: DataItem = new DataItem("W... {readOnly}

+ Event()

«property»
+ Entry(): Int32
+ Event_Code(): DataItem
+ Event_ Instance_Selected(): DataItem
+ Event_Instances(): DataItem[]
+ Event_Mode_Selected(): DataItem
+ Event_Modes(): DataItem[]
+ Event_Type_Selected(): DataItem
+ Event_Types(): DataItem[]

Event_ListEntryViewModel

- m _entry: PInteger32
- m _eventCode: PDataItem
- m _changed: string = string.Empty
- m _instance: PDataItem
- m _ListEntry: Event
- m _mode: PDataItem
- m _type: PDataItem

+ AcceptChanges(): void
+ Event_L istEntryViewModel(Event)
- In itia lizeFields(): void
- L is tEntry_PropertyChanged(object, PropertyChangedEventArgs): void

«property»
+ Event_Code(): PDataItem
+ Event_Entry(): PInteger32
+ Event_Instance(): PDataItem
+ Event_Mode(): PDataItem
+ Event_Type(): PDataItem
+ Changed(): string
+ L is tEntry(): Event

UserControl

EventTab

- Event_VM: EventViewModel

+ EventTab()
- lis tView_SelectionChanged(object, SelectionChangedEventArgs): void

EventViewModel

- m _actua lPosition: string
- m _dele teCom m andBinding: CommandBinding
- m _DirectEventDesired: Event
- m _DirectEventReal: Event
- m _lis tEntriesL is t: ObservableCollection<Event_ListEntryViewModel>
- m _lis tEntriesView: ListCollectionView
- m _Lis tEntryDetails: string
- m _Lis tChanged: bool
- m _newCom m andBinding: CommandBinding
- m _saveCom m andBinding: CommandBinding
- m _setFocus: bool
- m _sortByProperty: string = m_sortCriteria[0]
- m _sortCrite ria: string ([]) = { "Entry" }

- AcceptChanges(): void
- Dele te_CanExecute(object, CanExecuteRoutedEventArgs): void
- Dele te_Executed(object, ExecutedRoutedEventArgs): void
+ EventViewModel()
- m _lis tEntries_CurrentChanged(object, EventArgs): void
- New_CanExecute(object, CanExecuteRoutedEventArgs): void
- New_Executed(object, ExecutedRoutedEventArgs): void
- UpdateSorting(): void

«property»
+ Actua lPosition(): string
+ Dele teCom m andBinding(): CommandBinding
+ DirectEventDesired(): Event
+ DirectEventReal(): Event
+ Event_L is tEntryDetails(): string
+ Event_L is tEntrysView(): ListCollectionView
+ L is tChanged(): bool
+ NewCom m andBinding(): CommandBinding
+ SaveCom m andBinding(): CommandBinding
+ SetFocus(): bool
+ SortByProperty(): string
+ SortCrite ria (): string[]

ICom parable

PDataItem

- m _currentValue: DataItem
- m _hasChanged: bool
- m _originalValue: DataItem

+ AcceptChanges(): void
+ Com pareTo(object): Int32
+ PDataItem(DataItem)
+ UndoChanges(): void

«property»
+ HasChanged(): bool
+ Va lue(): DataItem

ICom parable

PInteger32

- m _currentValue: Int32
- m _hasChanged: bool
- m _orig ina lValue: Int32

+ AcceptChanges(): void
+ Com pareTo(object): Int32
+ Equals(System.Object): bool
+ PIn teger32(Int32)
+ UndoChanges(): void

«property»
+ HasChanged(): bool
+ Orig ina lValue(): Int32
+ Value(): Int32

INotifyPropertyChanged

ViewModelBase

SetProperty(T*, T, string): void

«event»
+ PropertyChanged(): PropertyChangedEventHandler

-m_DirectEventReal

-m_ListEntry

-m_DirectEventDesired

-m_entry

Figure D.6: Class diagram for Event settings

96

Appendix D Class Diagrams of the Human Machine Interface

Editor_ListEntry

- m _description: string
- m _function: string
- m _inputParameters: string
- m _tem plate: string

+ Editor_L istEntry()
+ Ed itor_L is tEntry(string, string, string, string)

«property»
+ Descrip tion(): string
+ Function(): string
+ InputParameters(): string
+ Tem plate(): string

Editor_ListEntryViewModel

- m _description: PString
- m _function: PString
- m _inputParameter: PString
- m _Lis tEntry: Editor_ListEntry
- m _template: PString

+ Editor_L is tEntryViewModel(Editor_ListEntry)
- in itia lizeF ields(): void

«property»
+ Descrip tion(): PString
+ Function(): PString
+ InputParameter(): PString
+ Tem plate(): PString

UserControl

EditorTab

- Ed itor_VM : EditorViewModel

+ Ed itorTab()
- XM LEditor_SelectionChanged(object, RoutedEventArgs): void

EditorViewModel

- _actua lPosition: string
- _L is tChanged: bool
- instance: EditorViewModel = null
- m _com m andPositionIndicator: string
- m _com m ands: List<BinaryCommand>
- m _com m unicationHandler: CommunicationHandler
- m _com m unicationHandlerLocked: bool
- m _currentCommandIndex: int
- m _CursorPosition: int
- m _defau ltF ile: string {readOnly}
- m _editorEnabled: bool
- m _file: string
- m _lis tEntriesL is t: ObservableCollection<Editor_ListEntryViewModel>
- m _lis tEntriesView: ListCollectionView
- m _Load_XM LFile_CommandBinding: CommandBinding
- m _runningSim ulationScript: bool
- m _Save_XM LFile_CommandBinding: CommandBinding
- m _setFocus: bool
- m _Sim ulationStatus: string
- m _sortByProperty: string = m_sortCriteria[0]
- m _sortCrite ria: string ([]) = { "Function" }
- m _StartStopSim ula tionStrings: string ([]) = { "Start Simula... {readOnly}
- m _startXM LFunctionWindow_CommandBinding: CommandBinding
- m _Text: string
- m _timer: Timer
- m _tim erResolutionMs: int = 50 {readOnly}
- m _waitingCounter: int
- m _XM LParser: XMLParser
- pad lock: ob ject = new object() {readOnly}
- W M_CLOSE: UInt32 = 0x0010

- AcceptChanges(): void
+ AddCommand(): void
+ EditorViewModel()
- F indW indowByCaption(IntPtr, string): IntPtr
- GetM asterTimeString(): string
- HandleCurrentCommand(): void
- HandleDeviceConfiguration(BinaryCommand): void
- HandleDisab leLoad1L(): void
- HandleDisab leLoad2L(): void
- HandleDisab leLoadCQ(): void
- HandleLoad1L(BinaryCommand): void
- HandleLoad2L(BinaryCommand): void
- HandleLoadCQ(BinaryCommand): void
- HandleResetConfiguration(BinaryCommand): void
- HandleScrip tCom m ands(BinaryCommand): void
- Load_XM LFile_CanExecute(object, CanExecuteRoutedEventArgs): void
- Load_XM LFile_Executed(object, ExecutedRoutedEventArgs): void
- LoadEditor_L is tEntrys(ObservableCollection<Editor_ListEntryViewModel>*): void
- m _lis tEntries_CurrentChanged(object, EventArgs): void
- PostM essage(IntPtr, UInt32, int, int): int
- Save_XM LFile_CanExecute(object, CanExecuteRoutedEventArgs): void
- Save_XM LFile_Executed(object, ExecutedRoutedEventArgs): void
+ ShowAutom aticClosingMessageBox(string): void
- StartSim ula tion_CanExecute(object): bool
- StartSim ula tion_Execute(object): void
- StartXM LFunctionWindowCanExecute(object, CanExecuteRoutedEventArgs): void
- StartXM LFunctionWindowExecuted(object, ExecutedRoutedEventArgs): void
- T ickEvent(object, ElapsedEventArgs): void
- UpdateSorting(): void

«property»
+ Actua lPosition(): string
+ Com m andPositionIndicator(): string
+ CurrentCom m andIndex(): int
+ CursorPosition(): int
+ Ed itor_L is tEntrysView(): ListCollectionView
+ Instance(): EditorViewModel
+ IsEditorEnabled(): bool
+ L is tChanged(): bool
+ Load_XM LFile_Com mandBinding(): CommandBinding
+ Save_XM LFile_CommandBinding(): CommandBinding
+ SetFocus(): bool
+ SortByProperty(): string
+ SortCrite ria (): string[]
+ StartSim ulationCommand(): ICommand
+ StartStopSim ulationString(): string
+ StartXM LFunctionW indow_CommandBinding(): CommandBinding
+ Text(): string

INotifyPropertyChanged

ViewModelBase

SetProperty(T*, T, string): void

«event»
+ PropertyChanged(): PropertyChangedEventHandler

W indow

XMLFunctionsWindow

- lis tView_M ouseDoubleClick(object, MouseButtonEventArgs): void
- lis tView_SelectionChanged(object, SelectionChangedEventArgs): void
+ XM LFunctionsWindow()

-m_ListEntry

Figure D.7: Class diagram for the Editor

97

Appendix D Class Diagrams of the Human Machine Interface

BinaryCommand

- m_functionID: byte
- m_functionIDString: string
- m_isDefined: bool
- m_isWriteRequest: bool
- m_packetID: byte
- m_packetIDString: string
- m_values: List<Value>

+ AddFunctionID(byte): void
+ AddPossibleValues(List<LookUpTableEntry>): void
+ AddValueIDAndValue(byte, byte[]): void
+ BinaryCommand(byte, string, byte, string, bool)
+ SetValueAsDefined(byte): void

«property»
+ FunctionID(): byte
+ FunctionIDString(): string
+ IsDefined(): bool
+ IsWriteRequest(): bool
+ PacketID(): byte
+ PacketIDString(): string
+ Values(): List<Value>

Value

- m_connectedValue: List<byte>
- m_isDefined: bool
- m_valueID: byte
- m_valueIDString: string

+ Value()
+ Value(byte, string)

«property»
+ ConectedValue(): List<byte>
+ IsDefined(): bool
+ ValueID(): byte
+ ValueIDString(): string

CommandEntry

+ CommandEntry()
+ CommandEntry(string)
+ CommandEntry(string, string)
+ CommandEntry(string, string, List<CommandEntry>)
+ CommandEntry(string, string, CommandEntry, List<CommandEntry>)
+ ToString(): string

«property»
+ Value(): string

T

Entry

+ AddChild(T): void
+ Entry()
+ ToString(): string

«property»
+ Children(): List<T>
+ Name(): string
+ Parent(): T

LookUpTableEntry

+ LookUpTableEntry(string, string, string)
+ LookUpTableEntry(string, byte)
+ LookUpTableEntry(string, string, List<LookUpTableEntry>)
+ ToString(): string

«property»
+ ID(): byte
+ IDString(): string

XMLParser

- m_lookUpTable: List<LookUpTableEntry>
- m_xmlNodeTag: string = "entry"
- m_xmlReader: XmlTextReader
- ReadRequest: string ([]) = { "Get", "Read" } {readOnly}
- WriteRequest: string ([]) = { "Set", "Write"} {readOnly}

- ClearLookUpTable(): void
+ ConvertXMLToBinaryCommand(string): List<BinaryCommand>
- DFS(List<LookUpTableEntry>, string): LookUpTableEntry
- GenerateStreamFromString(string): MemoryStream
- GetFunctions(CommandEntry): List<CommandEntry>
+ GetRawXML(string): string
- ReadXMLCommands(string): CommandEntry
- ReadXMLLookUpTable(string): List<LookUpTableEntry>
+ SaveRawXML(string, string): void
+ XMLParser()

-m_values

0 ..*

< T ->LookUpTableEntry >

< T ->CommandEntry >

-lookUpTable

0 ..*

Figure D.8: Class diagram of the XML Parser

98

Appendix E

XML Representations used by the
Editor and XML-Parser
1 <?xml version=” 1 .0 ”?>
2 <DeviceConf igurat ion xmlns :x s i=” h t tp : //www. w3 . org /2001/XMLSchema−i n s t anc e

” xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>
3 <DC Revis ionID Selected>
4 <Coding>10</Coding>
5 <St r ingRepre s enta t i on>Vers ion 1 .0</ St r ingRepre s enta t i on>
6 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
7 </ DC Revis ionID Selected>
8 <DC Baudrate Selected>
9 <Coding>1</Coding>

10 <St r ingRepre s enta t i on>COM1</ St r ingRepre s enta t i on>
11 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
12 </ DC Baudrate Selected>
13 <DC FrameType>
14 <Coding>0</Coding>
15 <St r ingRepre s enta t i on>0</ St r ingRepre s enta t i on>
16 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
17 </DC FrameType>
18 <DC SerialNumber>
19 <Coding>0</Coding>
20 <St r ingRepre s enta t i on>00 00</ St r ingRepre s enta t i on>
21 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
22 </DC SerialNumber>
23 <DC Notice>This i s a not i ce , f e e l f r e e to change i t accord ing to your

needs .</DC Notice>
24 <DC DeviceID>
25 <Coding>0</Coding>
26 <St r ingRepre s enta t i on>00 00 00</ St r ingRepre s enta t i on>
27 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
28 </DC DeviceID>
29 <DC VendorID>
30 <Coding>0</Coding>
31 <St r ingRepre s enta t i on>00 00</ St r ingRepre s enta t i on>
32 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
33 </DC VendorID>
34 <DC FunctionID>
35 <Coding>0</Coding>
36 <St r ingRepre s enta t i on>00 00</ St r ingRepre s enta t i on>
37 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
38 </DC FunctionID>
39 <DC PDOutLength>
40 <Coding>0</Coding>
41 <St r ingRepre s enta t i on>0</ St r ingRepre s enta t i on>
42 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
43 </DC PDOutLength>

99

Appendix E XML Representations used by the Editor and XML-Parser

44 <DC PDInLength>
45 <Coding>0</Coding>
46 <St r ingRepre s enta t i on>0</ St r ingRepre s enta t i on>
47 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
48 </DC PDInLength>
49 <DC DeviceResponseTime>
50 <Coding>0</Coding>
51 <St r ingRepre s enta t i on>0</ St r ingRepre s enta t i on>
52 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
53 </DC DeviceResponseTime>
54 <DC WakeResponseTime>
55 <Coding>0</Coding>
56 <St r ingRepre s enta t i on>1</ St r ingRepre s enta t i on>
57 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
58 </DC WakeResponseTime>
59 <DC MinCycleTime>
60 <Coding>0</Coding>
61 <St r ingRepre s enta t i on>0</ St r ingRepre s enta t i on>
62 <I s S e l e c t e d>t rue</ I s S e l e c t e d>
63 </DC MinCycleTime>
64 </ Dev iceConf igurat ion>

Listing E.1: Example of the saved Device Configuration XML file

1 <?xml version=” 1 .0 ”?>
2 <DataStorage xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>
3 <DS Enabled> f a l s e</DS Enabled>
4 <DS Command Selected>
5 <Coding>5</Coding>
6 <St r ingRepre s enta t i on>DS Break</ St r ingRepre s enta t i on>
7 <I s S e l e c t e d> f a l s e</ I s S e l e c t e d>
8 </DS Command Selected>
9 <DS State Se l e c t ed>

10 <Coding>1</Coding>
11 <St r ingRepre s enta t i on>Upload</ St r ingRepre s enta t i on>
12 <I s S e l e c t e d> f a l s e</ I s S e l e c t e d>
13 </ DS State Se l e c t ed>
14 <DS UploadFlag Selected>
15 <Coding>0</Coding>
16 <St r ingRepre s enta t i on>No DS UPLOAD REQ</ St r ingRepre s enta t i on>
17 <I s S e l e c t e d> f a l s e</ I s S e l e c t e d>
18 </ DS UploadFlag Selected>
19 <DS Notice>Here , DataStorage r e l a t e d s e t t i n g s are done . </ DS Notice>
20 <DS Size>50</ DS Size>
21 </ DataStorage>

Listing E.2: Example of the saved Data Storage Configuration XML file

1 <?xml version=” 1 .0 ”?>
2 <ArrayOfDataStorage ListEntry xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema

−i n s t anc e ” xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>
3 <DataStorage ListEntry>
4 <Entry>1</Entry>
5 <Index>3</ Index>
6 <Subindex>2</Subindex>
7 </ DataStorage ListEntry>
8 <DataStorage ListEntry>
9 <Entry>2</Entry>

10 <Index>3</ Index>
11 <Subindex>4</Subindex>

100

Appendix E XML Representations used by the Editor and XML-Parser

12 </ DataStorage ListEntry>
13 <DataStorage ListEntry>
14 <Entry>3</Entry>
15 <Index>4</ Index>
16 <Subindex>1</Subindex>
17 </ DataStorage ListEntry>
18 <DataStorage ListEntry>
19 <Entry>4</Entry>
20 <Index>6</ Index>
21 <Subindex>1</Subindex>
22 </ DataStorage ListEntry>
23 <DataStorage ListEntry>
24 <Entry>5</Entry>
25 <Index>16</ Index>
26 <Subindex>24</Subindex>
27 </ DataStorage ListEntry>
28 <DataStorage ListEntry>
29 <Entry>6</Entry>
30 <Index>28</ Index>
31 <Subindex>15</Subindex>
32 </ DataStorage ListEntry>
33 </ ArrayOfDataStorage ListEntry>

Listing E.3: Example of the saved Data Storage List Index XML file

1 <?xml version=” 1 .0 ”?>
2 <ArrayOfEditor ListEntry xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema−

i n s t anc e ” xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>
3 < !−−Conf igurat ion s e r v i c e s−−>
4 <Edi to r L i s tEnt ry>
5 <Function>SetDeviceParameter ()</ Function>
6 <InputParameters>IOLinkVersion , Baudrate , VendorID , DeviceID ,

SerialNumber FrameType , PDinLength , PDoutLength</ InputParameters>
7 <Template>&l t ; SetDeviceParameter IOLinkVersion=”” Baudrate=””

VendorID=”” DeviceID=”” SerialNumber=”” FrameType=”” PDinLength=””
PDoutLength=”” /> ;</Template>

8 <Desc r ip t i on>Setups the dev i ce IO−Link parameters and r e p l a c e the
prev ious paramete r i za t i on i n c l u d i n g the compatible de v i c e s .
Allowed Values have to be in accordance to the Dev iceConf igurat ion

tab .</ Desc r ip t i on>
9 < !−− For XML Parser −−>

10 <entry name = ” IOLinkRelated ” PID = ”8”>
11 <entry name = ” DeviceParameter ” FCTID = ”1”>
12 <entry name = ” IOLinkVersion ” VALID = ”1”/>
13 <entry name = ”Baudrate” VALID = ”2”/>
14 <entry name = ”VendorID” VALID = ”3” />
15 <entry name = ”DeviceID” VALID = ”4” />
16 <entry name = ”FunctionID” VALID = ”5” />
17 <entry name = ” SerialNumber ” VALID = ”6” />
18 <entry name = ”FrameType” VALID = ”7” />
19 <entry name = ”PDInLength” VALID = ”8” />
20 <entry name = ”PDOutLength” VALID = ”9” />
21 </ entry>
22 </ entry>
23 </ Ed i to r L i s tEnt ry>

25 <Edi to r L i s tEnt ry>
26 <Function>CreateIndex ()</ Function>
27 <InputParameters>index , type</ InputParameters>
28 <Template>&l t ; CreateIndex index=”” type=”” /> ;</Template>
29 <Desc r ip t i on>Creates an index in the dev i ce parameter s e t</

101

Appendix E XML Representations used by the Editor and XML-Parser

Desc r ip t i on>
30 < !−− For XML Parser −−>
31 <entry name = ” IOLinkRelated ” PID = ”8”>
32 <entry name = ” Index ” FCTID = ”3”>
33 <entry name = ” Index ” VALID = ”13”/>
34 <entry name = ”Type” VALID = ”15”/>
35 </ entry>
36 </ entry>
37 </ Ed i to r L i s tEnt ry>

39 <Edi to r L i s tEnt ry>
40 <Function>CreateSubIndex ()</ Function>
41 <InputParameters>index , subindex , type</ InputParameters>
42 <Template>&l t ; CreateSubIndex index=”” subindex=”” type=”” /> ;</

Template>
43 <Desc r ip t i on>Creates a subindex in the dev i ce parameter s e t</

Desc r ip t i on>
44 < !−− For XML Parser −−>
45 <entry name = ” IOLinkRelated ” PID = ”8”>
46 <entry name = ”SubIndex” FCTID = ”4”>
47 <entry name = ” Index ” VALID = ”13”/>
48 <entry name = ”SubIndex” VALID = ”14”/>
49 <entry name = ”Type” VALID = ”15”/>
50 </ entry>
51 </ entry>
52 </ Ed i to r L i s tEnt ry>

54 <Edi to r L i s tEnt ry>
55 <Function>ResetConf igurat ion ()</ Function>
56 <InputParameters>n u l l</ InputParameters>
57 <Template>&l t ; ResetConf igurat ion /> ;</Template>
58 <Desc r ip t i on>Reset the e x i s t i n g c o n f i g u r a t i o n to d e f a u l t values ,

d e l e t e a l l i n d i c e s</ Desc r ip t i on>
59 < !−− For XML Parser −−>
60 <entry name = ” IOLinkRelated ” PID = ”8”>
61 <entry name = ” ResetConf igurat ion ” FCTID = ”5” />
62 </ entry>
63 </ Ed i to r L i s tEnt ry>

65 <Edi to r L i s tEnt ry>
66 <Function>SetLoad1L ()</ Function>
67 <InputParameters>cur rent</ InputParameters>
68 <Template>&l t ; SetLoad1L cur rent=”” /> ;</Template>
69 <Desc r ip t i on>Enable the 1L+ load c i r u i t and s e t i t on the de f ined

cur rent</ Desc r ip t i on>
70 < !−− For XML Parser −−>
71 <entry name = ”HardwareRelated” PID = ”7”>
72 <entry name = ”Load1L” FCTID = ”1”>
73 <entry name = ” Current ” VALID = ”19”/>
74 </ entry>
75 </ entry>
76 </ Ed i to r L i s tEnt ry>

78 <Edi to r L i s tEnt ry>
79 <Function>DisableLoad1L ()</ Function>
80 <InputParameters>n u l l</ InputParameters>
81 <Template>&l t ; DisableLoad1L /> ;</Template>
82 <Desc r ip t i on>Disconnects the 1L+ load c i r c u i t</ Desc r ip t i on>
83 < !−− For XML Parser −−>
84 <entry name = ”HardwareRelated” PID = ”7”>

102

Appendix E XML Representations used by the Editor and XML-Parser

85 <entry name = ” DisableLoad1L ” FCTID = ”2” />
86 </ entry>
87 </ Ed i to r L i s tEnt ry>

89 <Edi to r L i s tEnt ry>
90 <Function>SetLoad2L ()</ Function>
91 <InputParameters>cur rent</ InputParameters>
92 <Template>&l t ; SetLoad2L cur rent=”” /> ;</Template>
93 <Desc r ip t i on>Enable the 2L+ load c i r u i t and s e t i t on the de f ined

cur rent</ Desc r ip t i on>
94 < !−− For XML Parser −−>
95 <entry name = ”HardwareRelated” PID = ”7”>
96 <entry name = ”Load2L” FCTID = ”3”>
97 <entry name = ” Current ” VALID = ”19”/>
98 </ entry>
99 </ entry>

100 </ Ed i to r L i s tEnt ry>

102 <Edi to r L i s tEnt ry>
103 <Function>DisableLoad2L ()</ Function>
104 <InputParameters>n u l l</ InputParameters>
105 <Template>&l t ; DisableLoad2L /> ;</Template>
106 <Desc r ip t i on>Disconnect the 2L+ load c i r c u i t</ Desc r ip t i on>
107 < !−− For XML Parser −−>
108 <entry name = ”HardwareRelated” PID = ”7”>
109 <entry name = ” DisableLoad2L ” FCTID = ”4” />
110 </ entry>
111 </ Ed i to r L i s tEnt ry>

113 <Edi to r L i s tEnt ry>
114 <Function>SetLoadCQ ()</ Function>
115 <InputParameters>cur rent</ InputParameters>
116 <Template>&l t ; SetLoadCQ current=”” /> ;</Template>
117 <Desc r ip t i on>Enable the C/Q load c i r u i t and s e t i t on the de f ined

cur rent</ Desc r ip t i on>
118 < !−− For XML Parser −−>
119 <entry name = ”HardwareRelated” PID = ”7”>
120 <entry name = ”LoadCQ” FCTID = ”5”>
121 <entry name = ” Current ” VALID = ”19”/>
122 </ entry>
123 </ entry>
124 </ Ed i to r L i s tEnt ry>

126 <Edi to r L i s tEnt ry>
127 <Function>DisableLoadCQ ()</ Function>
128 <InputParameters>n u l l</ InputParameters>
129 <Template>&l t ; DisableLoadCQ /> ;</Template>
130 <Desc r ip t i on>Disconnect the C/Q load c i r c u i t</ Desc r ip t i on>
131 < !−− For XML Parser −−>
132 <entry name = ”HardwareRelated” PID = ”7”>
133 <entry name = ”DisableLoadCQ” FCTID = ”6” />
134 </ entry>
135 </ Ed i to r L i s tEnt ry>

137 <Edi to r L i s tEnt ry>
138 <Function>SetDILoad ()</ Function>
139 <InputParameters>n u l l</ InputParameters>
140 <Template>&l t ; SetDILoad /> ;</Template>
141 <Desc r ip t i on>Connect the 1L+ vo l tage d i r e c t l y to the C/Q pin</

Desc r ip t i on>

103

Appendix E XML Representations used by the Editor and XML-Parser

142 </ Ed i to r L i s tEnt ry>

144 < !−− S c r i p t c o n t r o l commands −−>
145 <Edi to r L i s tEnt ry>
146 <Function>Wait ()</ Function>
147 <InputParameters>time</ InputParameters>
148 <Template>&l t ; Wait Time=”” /> ;</Template>
149 <Desc r ip t i on>Wait s p e c i f i e d time (1ms . . 1h) . Allowed appended time

i d e n t i f i e r s a r e : ms , sec , min , h</ Desc r ip t i on>
150 < !−− For XML Parser −−>
151 <entry name = ” Scr ip tCont ro l ” PID = ”0”>
152 <entry name = ”Wait” ID = ”0” >
153 <entry name = ”Time” VALID = ”0” />
154 </ entry>
155 </ entry>
156 </ Ed i to r L i s tEnt ry>

158 <Edi to r L i s tEnt ry>
159 <Function>Repeat ()</ Function>
160 <InputParameters>n u l l</ InputParameters>
161 <Template>&l t ; Repeat CommandIndex=”” Counter=””/> ;</Template>
162 <Desc r ip t i on>Repeat the s c r i p t from the r e l a t e d command index , e . g .

from the beg inning = 0 , and determine how o f t en the repeat
statement can be reached , e . g . −1 determines always , 1 only one
time be f o r e going to the next statement</ Desc r ip t i on>

163 < !−− For XML Parser −−>
164 <entry name = ” Scr ip tCont ro l ” PID = ”0”>
165 <entry name = ”Repeat” ID = ”0” >
166 <entry name = ”CommandIndex” VALID = ”0” />
167 <entry name = ”Counter” VALID = ”1” />
168 </ entry>
169 </ entry>
170 </ Ed i to r L i s tEnt ry>
171 </ ArrayOfEditor ListEntry>

Listing E.4: XML Representation of known functions for the XML Function Window
and the XML-Parser

104

Appendix F

Editor during the Upload of a
Simulation Script

Figure F.1: Screenshot of the Editor script simulation

105

Appendix F Editor during uploading of a Simulation Script

The corresponding log to the simulation of F.1 with a read request is:

----- Starting evaluating simulation script -----

At 00d:01h:32m:00s:582ms (Master Time), unable to find ’1day’, instruction ignored!

At 00d:01h:32m:02s:179ms (Master Time), waiting for approximately 1sec.

At 00d:01h:32m:02s:194ms (Device Time), received Device Hardware Load1L=’500’ mA.

At 00d:01h:32m:03s:249ms (Device Time), received Device Parameter: RevisionID=

’Version 1.1’ Baudrate= ’COM3’ FrameType=’TYPE 0’ .

At 00d:01h:32m:03s:373ms (Device Time), received Device Hardware Load2L=’123456’ mA.

At 00d:01h:32m:03s:435ms (Device Time), received Device Parameter: RevisionID=

’Version 1.0’ Baudrate= ’COM1’ FrameType=’TYPE 2 6’ .

At 00d:01h:32m:03s:481ms (Master Time), waiting for approximately 5sec.

At 00d:01h:32m:09s:739ms (Device Time), received Device Information: Existing

Configuration set to default Values.

At 00d:01h:32m:09s:863ms (Device Time), received Device Hardware Load1L=’3200’ mA.

At 00d:01h:32m:09s:925ms (Device Time), received Device Hardware LoadCQ=’203’ mA.

At 00d:01h:32m:09s:990ms (Device Time), received Device Hardware Load2L=’4565’ mA.

At 00d:01h:32m:10s:052ms (Device Time), received Device Parameter: RevisionID=

’Version 1.0’ Baudrate= ’COM1’ FrameType=’TYPE 0’ .

At 00d:01h:32m:10s:035ms (Master Time), waiting for approximately 1min.

At 00d:01h:33m:25s:002ms (Device Time), received Device Hardware Load1L=’0’ mA.

At 00d:01h:33m:25s:065ms (Device Time), received Device Hardware Load1L=’0’ mA.

At 00d:01h:33m:25s:038ms (Master Time), waiting for approximately 500ms.

At 00d:01h:33m:25s:750ms (Device Time), received Device Hardware Load1L=’2990’ mA.

At 00d:01h:33m:25s:723ms (Master Time), repeat from 0, 0 executions left.

At 00d:01h:33m:25s:939ms (Device Time), received Device Hardware Load1L=’500’ mA.

At 00d:01h:33m:25s:974ms (Master Time), waiting for approximately 1sec.

At 00d:01h:33m:27s:247ms (Device Time), received Device Parameter: RevisionID=

’Version 1.1’ Baudrate= ’COM3’ FrameType=’TYPE 0’ .

At 00d:01h:33m:27s:374ms (Device Time), received Device Hardware Load2L=’123456’ mA.

At 00d:01h:33m:27s:436ms (Device Time), received Device Parameter: RevisionID=

’Version 1.0’ Baudrate= ’COM1’ FrameType=’TYPE 2 6’ .

At 00d:01h:33m:27s:471ms (Master Time), waiting for approximately 5sec.

At 00d:01h:33m:33s:739ms (Device Time), received Device Information: Existing

Configuration set to default Values.

At 00d:01h:33m:33s:863ms (Device Time), received Device Hardware Load1L=’3200’ mA.

At 00d:01h:33m:33s:924ms (Device Time), received Device Hardware LoadCQ=’203’ mA.

At 00d:01h:33m:33s:989ms (Device Time), received Device Hardware Load2L=’4565’ mA.

At 00d:01h:33m:34s:051ms (Device Time), received Device Parameter: RevisionID=

’Version 1.0’ Baudrate= ’COM1’ FrameType=’TYPE 0’ .

At 00d:01h:33m:34s:085ms (Master Time), waiting for approximately 1min.

At 00d:01h:34m:49s:014ms (Device Time), received Device Hardware Load1L=’0’ mA.

At 00d:01h:34m:49s:080ms (Device Time), received Device Hardware Load1L=’0’ mA.

At 00d:01h:34m:49s:104ms (Master Time), waiting for approximately 500ms.

At 00d:01h:34m:49s:765ms (Device Time), received Device Hardware Load1L=’2990’ mA.

----- Finished evaluating simulation script -----

106

Appendix G

Extracted USB Files from
STMicroelectronics

inc src
usb bsp.h usb bsp.c
usb conf.h usb core.c
usb core.h usb dcd int.c

usb dcd int.h usb dcd.c
usb dcd.h usbd cdc core.c

usb defines.h usbd cdc vcp.c
usb regs.h usbd core.c

usbd cdc core.h usbd desc.c
usbd cdc vcp.h usbd ioreq.c

usbd conf.h usbd req.c
usbd core.h usbd usr.c
usbd def.h
usbd desc.h
usbd ioreq.h
usbd req.h
usbd usr.h

Table G.1: The required and extracted USB stack files from [34] for integration into the
Communication System

107

Appendix H

Content of the appended CD
• The Embedded Program contains the source code of the embedded Communica-

tion System, the USB stack, the Communication Handler of the test device as well
as the file ” gen.map” created by the IAR Linker.

• The HMI folder contains the source code and the working PC application which
can be started by the shortcut ”Configurator(Debug).exe”, respectively ”Configu-
rator(Release).exe”.

• MasterThesis.pdf represents the digitized master thesis.

• Class Diagrams contains enlarged diagrams of the developed systems.

108

	List of Figures
	List of Tables
	List of Abbreviations
	I Introduction
	1 Preamble
	2 Motivation
	3 Agile Processing for the Software Development
	4 Thesis Structure
	5 Used Components

	II Basics
	6 Communication
	6.1 OSI Model
	6.2 Communication Protocol
	6.2.1 AX.25
	6.2.2 Modbus protocol

	6.3 Universal Serial Bus
	6.3.1 USB in a Nutshell
	6.3.2 Physical and Electrical Interface
	6.3.3 USB Protocol
	6.3.4 USB Descriptors
	6.3.5 USB Class Devices and Drivers

	7 IO-Link
	7.1 System Overview
	7.2 Physical and Electrical Interface
	7.3 Data Link Layer
	7.4 IO-Link Device Description and Integration into the Automation System

	III Developed Communication System
	8 Introduction
	9 Developed Communication Protocol
	9.1 Protocol Packet Fields
	9.1.1 Start of Packet
	9.1.2 Allocation Identifier
	9.1.3 Timestamp
	9.1.4 Packet Descriptor and Payload
	9.1.5 CRC-16
	9.1.6 End of Packet

	9.2 Variable-Length Quantity Data Structure
	9.3 Cyclic Redundancy Check

	10 Layers of the Communication System
	10.1 USB Communication Layer
	10.1.1 Communication Handler of the Device
	10.1.2 Communication Handler of the HMI

	10.2 Protocol Layer
	10.2.1 Message Decoder
	10.2.2 Message Encoder

	10.3 Message Router
	10.4 Presentation Layer
	10.4.1 IO-Link and Hardware Parameter Handler
	10.4.2 Traces Parameter Handler

	10.5 Application Layer

	11 Memory Occupancy

	IV Developed Human Machine Interface
	12 Overview
	13 Integration of the Communication System
	14 Design Pattern of the Human Machine Interface
	15 General Appearance
	16 Developed and Implemented Tabs
	16.1 General Device Information
	16.2 Index Service Data Unit
	16.3 Data Storage
	16.4 Events
	16.5 Hardware and Simulation
	16.6 Editor
	16.6.1 Role of the Editor
	16.6.2 XML Parser

	V Closing Remarks
	A Details of IO-Link Features
	B CRC-16 Table Driven Implementation
	C Class Diagrams of the Communication System
	D Class Diagrams of the Human Machine Interface
	E XML Representations used by the Editor and XML-Parser
	F Editor during the Upload of a Simulation Script
	G Extracted USB Files from STMicroelectronics
	H Content of the appended CD

