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Abstract

This thesis describes the best–known and most used algorithms for simulation of

highway traffic. It describes pros and cons of each of the variety of methods and tries to

choose the best–suited one for proper implementation of traffic simulator in a highway

tunnel. The chosen method is developed into a suitable form and implemented by usage

of C# language for .NET platform. The developed programme, Traffic Simulator, has

user-friendly environment with possibility to model an arbitrary highway made of user–

blocks and simulate the behaviour of cars according to the chosen method, and, with

possibility of tunnel–ventilation and air–flow modeling in future.
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Anotace

Tato práce popisuje nejznáměǰśı a nejpouž́ıvaněǰśı algoritmy pro simulaci silničńı do-

pravy. Popisuje výhody a nevýhody každé z použitých metod a pokouš́ı se vybrat nej-

vhodněǰśı pro správnou implementaci ř́ızeńı dopravy v silničńım tunelu. Vybraná metoda

je rozvinutá do vhodné formy a implementovaná v jazyce C# platformy .NET. Vyvinu-

tý program, Trenažér Tunelu, má přátelské prostřed́ı s možnost́ı modelováńı libovolné

dálnice a do budoucna je připraven k rozš́ı̌reńı o modelováńı prouděńı vzduchu.
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Notations

Variable Description Unit

αf (t) Instantaneous acceleration of a following vehicle at time t ms−2

αl(t) Instantaneous acceleration of a lead vehicle at time t ms−2

δ Short, finite time period s−1

k Traffic stream density in vehicles per meter m−1

λ Proportionality factor −
q Flow in vehicles per hour h−1

t Time s

T Reaction time s

Ul Speed of a lead vehicle ms−1

Uf Speed of a following vehicle ms−1

ẍf (t) Instantaneous acceleration of a following vehicle at time t ms−2

ẍl(t) Instantaneous acceleration of a lead vehicle at time t ms−2

ẋf (t) Instantaneous speed of a following vehicle at time t ms−1

ẋl(t) Instantaneous speed of a lead vehicle at time t ms−1

xf (t) Instantaneous position of a following vehicle at time t m

xl(t) Instantaneous position of a lead vehicle at time t m

xi(t) Instantaneous position of a i-th vehicle at time t m

g(x, t) Generation (dissipation) rate of vehicles s−1

α Sensitivity coefficient descibing the intensity of interactions s−1

τ Interaction time lag s

k(x, t) Density of the i-th lane m−1

ki Equilibrium density of the i-th lane m−1
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Chapter 1

Introduction

1.1 State of the Art

The thesis gets to know with variety of traffic control and simulation approaches and

methods, from the classic (Rothery, R.W. and Rathi, A.K., 2002) to most up-to-

date methods (Ferkl, L., 2007), (Lee, H.K. et al., 2001) or (Knospe, W. et al., 2002).

Traffic flows and air pollution are linked together in many different ways. It must be said,

that most of the traffic simulations are not made for themselves, but for understanding

and decreasing air poluttion. The time dimension for traffic management and control

to reduce air pollution can range from short to medium to long; from days, to years,

to decades; from almost immediate reactions to incidents, to pre–emptive measures, to

long term strategies. For modelling and simulation is medium-term planning the most

ineteresting one, because the short–term is difficult to compute and verify and long–term

is difficult to reproduce. Taken these into account it is required to develop both the

transport and the complex air pollution simulator.

It is not a new idea to develop some kind of traffic simulator; there has already

been several trials to do so. Nevertheless all of those tried to implement the most complex

thus most demanding model. Most of them are able to simulate minutes, hours, or days

in maximum for high cost – the simulation takes days, weeks and in some cases months.

These approaches try to simulate vast and complex areas of city district with thousands of

cars and tens of streets. It means that there is no chance for real–time simulation although

on the other hand some of their results might be useful. Probably the best–known of the

above mentioned traffic simulators is SIMTRAP. It works typically with areas up to 200

km, which requires considerable computational resources. In most cases, typical end users

1



2 CHAPTER 1. INTRODUCTION

(e.g., transportation planners) do not have access to such high–performance computing

equipment.

1.2 Objectives of the Thesis

One of the main goals of the thesis is a developement of user-friendly and easy-to-use

programme which will be able to simulate traffic in real–time and thus provide a preview

of what will happen in some cases in the future by enabling simulation of days and weeks

in minutes or hours and still with satisfying accuracy. Therefore, the chosen method must

be simple enough to enable real–time simulation, but powerfull and accurate enough to

provide reliable and useful data. It must be taken into account that this programme

is primarily designed for highway tunnels, although it may be used for normal highway

traffic, however, not for complex city districts or cities themselves. This thesis should

prepare a simulator of traffic with ability to upgrade to complex traffic and air pollution

simulator.

1.3 Outline of the Thesis

• Chapter 1 – Introduction presents the topic and goals of the thesis.

• Chapter 2 – Traffic describes variety of options in traffic modelling and compares

them with each other. In this chapter the choice of the method best–suited for

implementation of Traffic Simulator is described.

• Chapter 3 – Implementation descibes thr discretization of the continuous

method chosen in the previous chapter. It also presents the algorithm used for

implementation of the Traffic Simulator.

• Chapter 4 – Conclusion makes a summary of the goals described in this thesis

and proposes future development of the Traffic Simulator.



Chapter 2

Traffic

2.1 Traffic Models

This chapter introduces various models that have been developed to describe traffic.

During the last century, four basic approaches of mathematical decomposition of the

traffic models were developed:

• Network model

• Macroscopic model 1

• Car-following model 2

• Continuum flow model

Basic versions of all of the above mentioned methods present a pure statistical

approach, which can be satisfactory while only static dependencies are needed as the

required data are measured in long-term runs. For more accurate model the traffic might

not be presented only statistically (Ferkl, L., 2007); it is inevitable to come up with dy-

namics. Network model theory is briefly mentioned in (Ferkl, L., 2007) or (Kutil, M.

et al., 2006), macroscopic and car-following models are described in a report published by

the Federal Highway Administration (FHWA), edited by Rathi (Williams, C.J., 2002,

chapter: Macroscopic model), (Rothery, R.W. and Rathi, A.K., 2002, chapter:

1There is a little discrepency in literature. Some authors (Rothery, R.W. and Rathi, A.K., 2002)

use term macroscopic flow model, others (Ferkl, L., 2007) just the macroscopic model
2The similar case as with above. Some authors use term car-following model (Rothery, R.W. and

Rathi, A.K., 2002) or (Brackstone, M. and McDonald, M., 2000), others use term microscopic

model (Ferkl, L., 2007)

3



4 CHAPTER 2. TRAFFIC

Car-following models) and continuum-flow model is described by Kuhne and Michalopou-

los (Kuhne, R. and Michalopoulos, P., 2002).

The network model uses Petri nets and it is convenient to use it for small scale

traffic scenarios. Macroscopic model was developed with rapid urban growth and the

demand for complex city traffic. The flow theory had to be extended to netwotk level.

The traffic system consists of the network topology (street width and configuration) and

the traffic control system (e.g., traffic signals, designation of one and two–way streets,

and lane configuration). Because of the purpose of these models, they are out of scope of

this thesis.

2.1.1 Car-Following Model

This approach was described in detail in (Rothery, R.W. and Rathi, A.K., 2002).

There are several subtasks involved in the overall driving task such as perception, decision

making, control and many others. This model was based upon one of these subtasks, the

ability of driver to follow the car before. This subtask was picked up for this model

with respect to its simplicity comparing to the other driving tasks and it has also been

succesfully described by mathematical models.

The main idea of this approach is to model every single vehicle. Car-following

model of a single lane assumes that each driver in following vehicle is an active and

predictable control element in the system. There has been introduced stimulus-response

equation that expresses the concept of driver’s response to given stimulus:

Response=λ Stimulus (2.1)

where λ is a proportinality factor which equates the stimulus function to the response

or control function, which of course can be composed of many factors: speed, relative

speed, acceleration, driver’s thresholds, etc. There is a time threshold (approximately

0.5 sec) (Rothery, R.W. and Rathi, A.K., 2002) for which a driver cannot evaluate

the information given to him. One approach is to assume that

σ(t) = δ(t− T ) (2.2)

where

δ(t− T ) = 0, for t 6= T (2.3)

δ(t− T ) = 1, for t = T (2.4)
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and ∫ 1

0

δ(t− T )dt = 1

where σ(t) is a weighting function which reflects driver’s estimation, evaluation, and

processing of earlier information (Chandler, F.E. et al., 1958), and δ(t) is time period.

In this case, Stimulus function becomes

Stimulus (t)=Ul(t− T )− Uf (t− T ) (2.5)

where Ul is speed of the lead vehicle of a platoon and Uf is speed of the following vehicle.

The driver is observing the Stimulus and determing a response that will be made some

time in the future. By delaying the response, the driver obtains an “advanced” informa-

tion.

The response function is taken as the acceleration of the following vehicle, because

driver has direct control of this quantity through accelerator and break pedals and also

because driver obtains direct feedback of this variable through inertial forces, i.e.,

Response (t)=af (t)=ẍf (t) (2.6)

where xi denotes the longitudinal position along the roadway of the i-th vehicle at time t.

Combining Equations (2.5) and (2.6), the stimulus-response equation becomes

ẍf (t) = λ [ẋl(t− T )− ẋf (t− T )] , (2.7)

or equivalently

ẍf (t + T ) = λ [ẋl(t)− ẋf (t)] . (2.8)

Equation (2.8) is an approximation of the stimulus-response equation of the car-

following model. A generalisation of the car-following model in a conventional control

theory block diagram is shown in Fig. 2.1.

Acceleration command

IntegratorTime Delay Gain

Lead Vehicle
Speed

Following Vehicle
Speed

Figure 2.1: Block Diagram of the Linear Car-Following Model.
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2.1.2 Continuum Flow Model

This model was developed as an analogy to fluid flow. Therefore there are often used

terms such as flow, concentration and speed.

The theory of fluid dynamics is based upon Euler equations of continuity (valid for

incompressible fluids). They correspond to Navier-Stokes equations with zero viscosity

and heat conduction terms (compressible fluids).

Definition 2.1 (Del Operator): In the three-dimensional Cartesian coordinate system

R3 with coordinates (x, y, z), del operator is defined as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

where (i,j,k) is the standard basis in R3.

Note: Del is a vector differential operator represented by the nabla (∇) symbol. Math-

ematically, del can be viewed as the derivative in multi-dimensional space. When used in

one dimension, it takes the form of the standard derivative of calculus. 2

Definition 2.2 (Divergence): Let x, y, z be a system of Cartesian coordinates on a

3-dimensional Euclidean space, and let i, j, k be the corresponding basis of unit vectors.

The divergence of a continuously differentiable vector field F = F1i+F2j+F3k is defined

to be the scalar-valued function:

divF = ∇F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

Note: In vector calculus, the divergence is an operator that measures a vector field’s

tendency to originate from or converge upon a given point. For instance, for a vector

field that denotes the velocity of air expanding as it is heated, the divergence of the

velocity field would have a positive value because the air is expanding. Conversely, if the

air is cooling and contracting, the divergence would be negative. 2

Theorem 2.1 (Euler equation of continuity–conservation of mass):

∂ρ

∂t
+∇(ρu) = 0.

Proof: Suppose we have a fluid with local density ρ(t, x, y, x) and local velocity u(t, x, y, z).

Consider a control volume V (not necessarily small, not necessarily rectangular) which

has boundary S. The total mass in this volume is

M =

∫

V

ρdV . (2.9)
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The rate–of–change of this mass is just

∂M

∂t
=

∫

V

∂ρ

∂t
dV . (2.10)

The only way such change can occur is by stuff matter flowing across the boundary, so

∂M

∂t
=

∫

S

ρudS. (2.11)

We can change the surface integral into a volume integral using Green’s3 theorem, to

obtain
∂M

∂t
= −

∫

V

∇(ρu)dV . (2.12)

Comparing Equation (2.10) with Equation (2.12) we can see that they are equal no matter

what volume V we choose, so the integrands must be pointwise equal. Therefore these

equations can be rewritten as

∂

∂t

∫

V

ρdV +

∫

V

∇(ρu)dV = 0. (2.13)

The expression above is valid for V , which is a control volume that remains fixed in space.

Because V is invariant in time, it is possible to swap the ∂
∂t

and
∫

V
dV operators. And as

the expression is valid for all domains, we can additionally drop the integral. This gives

us an expression for the local conservation of mass (the well-known Euler equation of

continuity):
∂ρ

∂t
+ (∇ρu) = 0, (2.14)

or equivalently as
∂ρ

∂t
+ div(ρu) = 0. (2.15)

By transforming Equation (2.15) from R3 to R we obtain

∂ρ

∂t
+

∂ρu

∂x
= 0. (2.16)

By re–denoting ρ as k, with

q = ku

and relationship between the mean speed u and the traffic density under equilibrium

conditions

u = ue(k), (2.17)

3The Green’s theorem is described on (Wikipedia, 2007) in detail.
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we obtain
∂q

∂x
+

∂k

∂t
= 0. (2.18)

Equation (2.18) expresses the law of conservation of a traffic stream and is known as the

conservation or continuity equation. If we consider that g 6= 0, that means there are some

sources or sinks of traffic, the equation takes more general form:

∂q

∂x
+

∂k

∂t
= g(t, x), (2.19)

where q is flow, k is concentration or density and g represents dissipation (sources and

sinks). Equation (2.19) is the final one used for a single–lane continuum-car model.

Station 1 Station 2

X

Source (+g) Sink (-g)Flow (q), Density (k)

Figure 2.2: Road Section used for Deriving the Conservation Equation

A simple continuum model for desrcibing the flow along two or more lanes can be

obtained considering conservation equation of each lane. However, it is more complicated

because we must consider the exchange of flow between lanes, which represents the gen-

eration or loss of cars in the lane under consideration. The exchange of vehicles between

two neighbouring lanes is proportional to the difference of the deviations of their densi-

ties from equilibrium values (Gazis, D.C. et al., 1963). These values are well–known

lane constants which can be obtained experimentally. Based on these considerations, the

following system descibes a flow on a two–lane highway:

∂q1

∂x
+

∂k1

∂t
= Q1

∂q2

∂x
+

∂k2

∂t
= Q2

where t and x are time and space coordinates, Qi(x, t) is the lane changing rate, qi is

the flow rate of the i-th lane, and ki is density of the i-th lane. From these assumptions



2.1. TRAFFIC MODELS 9

stated above

Q1 = α [(k2 − k1)− (k20 − k10)] (2.20)

Q2 = α [(k1 − k2)− (k10 − k20)] (2.21)

where α is a sensitivity coefficient describing the intensity of interraction, having units of

time−1. Since the system is conserved, it can be easily seen that Q1+Q2=0.

Equations (2.20) and (2.21) do not take into account generation or loss of cars

that will be introduced at slip lanes. Moreover, when densities k are equal, the changing

of the lanes will occur only if k10 6= k20. This formula has one defect – even at very low

densities, there will be lane changing, and this does not correspond to the real world.

This can be rectified by assuming that α is not a constant, but depends on the difference

in density between lanes. Time lag, sinks and sources included follow these equations:

∂q1

∂x
+

∂k1

∂t
= Q1 + g(x, t) (2.22)

∂q2

∂x
+

∂k2

∂t
= Q2 (2.23)

where g(x, t) is the generation rate in lane 1; at off-ramp ramps g is negative. Qi is lane

changing rate in i-th lane:

Q1 = α [k2(x, t− τ)− k1(x, t− τ)− (k20 − k10)]

Q2 = α [k1(x, t− τ)− k2(x, t− τ)− (k10 − k20)]

where τ is the interaction time lag [s]. In this formula, it is assumed that cars are generated

in or departed from line 1, because it is the right lane of the highway. Equations (2.22)

and (2.23) can be solved numerically by discretising in time and space (Kuhne, R. and

Michalopoulos, P., 2002) and of course generalised to an arbitrary number of lanes

into a general form (Ferkl, L., 2007):

∂k

∂t
+

∂kux

∂x
+

∂kuy

∂y
= g(x, y, t), (2.24)

where ux and uy are the x and y components of the speed vector.

2.1.3 Macroscopic Model

As many cities grew rapidly at the beginning of the 20th century, the important issue

of solving the traffic in a city and urban areas was introduced. There is no shortage
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of techniques to improve traffic flow (traffic signal timing optimization with elaborate

computer-based routines as well as simpler, manual, heuristic methods etc.), however,

the difficulty lies in evaluating the effectiveness of these techniques. A number of these

methods can effectively evaluate the performance of an individual intersection. But a

problem arises when these individual components, connected to form the traffic network,

are dealt with collectively (Williams, C.J., 2002). Microscopic analyses run into two

major difficulties when applied to a street network:

• Each street block or intersection are modelled individually. A proper accounting of

the interactions between contiguous network components leads to significant prob-

lems.

• Since the analysis is performed for each network component, it is difficult to sum-

marize the results in order to evaluate the overall network performance.

The first problem can be resolved by simulation, but the second one remains. The per-

formance of a traffic system is the response of that system to given travel demand levels.

This system consists of the network topology (street width and configuration) and the

traffic control system (e.g., traffic signals, designation of one- and two-way streets, and

lane configuration). All of the system measurements coming up from the traffic flow the-

ory provide three basic variables of traffic flow: speed, flow, and concentration4. These

three variables, appropriately defined, can also be used to describe traffic at the network

level. This description must be such that it can overcome the intractabilities of exist-

ing flow theories when network component interactions are taken into account. Most of

the recent approaches are just summations of effects at individual intersections. Travel

time models, general network models or two–fluid models for instance belong among the

best–known models.

2.1.3.1 Travel Time Models

Travel time contour maps provide information about the street network; contours of

equal travel time provide information on the average travel times and mean speeds over

the network. However, the information is limited because the travel times are related

to a single point, and the study can not be used in general and it would likely have

to be repeated for other locations. Furthermore, it is demanding to capture network

performance with one variable only (e.g., travel time or speed), as the network can be

4Some authors use term density.
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offering quite different levels of service at the same speed.

Several authors introduced models that can estimate average network travel time

or speed as a function of distance from the central business district of a city, CBD,

in opposite to travel time contour maps which consider only travel times away from a

specific point.

(Vaughan, R. et al., 1972) selected the general model forms providing the best

fit to the data from four English cities. They showed that traffic intensity I, defined as

the total distance travelled per unit area, tends to decrease with increasing distance from

the CBD as follows:

I = Ae−
√

r
a , (2.25)

where r is the distance from the CBD, and A and a are parameters. They showed that A

and a were unique for each of the cities, while A was also found to vary between peak and

off-peak periods. A similar relation was found between the fraction of the area, which is

a major road f , and the distance from the CBD,

f = Be−
√

r
b , (2.26)

where b and B are parameters for each town.

Several researches were based upon the idea mentioned above. Five different equa-

tions relating average speed v to the distance from the CBD r as a result of these re-

searches were introduced. City centres were defined as the point where the radial streets

intersected. Average speed for each route section was found by dividing the section length

by the actual travel time (kilometres/minute). Constants estimated for data are a, b, and

c. A power curve,

v = arb (2.27)

predicts a zero speed in the city centre, that means at r = 0.

Accordingly, (Branston, D.M., 1974) fitted a more general form,

v = c + arb, (2.28)

where c represents the speed at the city centre. There was also a form

v = a + br, (2.29)

suggested earlier, and strictly linear, up to some maximum speed at the city edge, which

was defined as the point where the average speed reached its maximum. A negative

exponential function

v = a− becr (2.30)
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asymptotically approaches some maximum average speed. The last function, suggested

by (Lyman, D.A. and Everall, P.F., 1970), also suggested a finite maximum average

speed at the city outskirts.

v =
1 + b2r2

a + cb2r2
, (2.31)

After several trials (Lyman, D.A. and Everall, P.F., 1970), two of above men-

tioned equations were left behind immediately:

• The linear model Equation (2.29) overestimated the average speed in the CBDs,

reflecting an inability to predict the rapid rise in average speed with increasing

distance from the city centre.

• The modified power curve, Equation (2.28), estimated negative speeds in the city

centres, and a zero speed for the aggregated data. The original aim of using this

model, to avoid the estimation of a zero journey speed in the city centre, was not

achieved.

All three remaining functions realistically predict a levelling–off of average speed at the

city outskirts, but only the Equation (2.31) indicates a levelling–off in the CBD. However,

the power curve, Equation (2.27), showed an overall better fit than the Lyman-Everall

model, and was preferred. Later the negative exponential function, Equation (2.30), was

also rejected because of its greater complexity in estimation. Truncating the power func-

tion at measured downtown speeds was suggested to overcome its drawback of estimating

zero speeds in the city centre.

2.1.3.2 General Network Models

A number of models incorporating performance measures other than speed have been

proposed. (Smeed, R.J., 1966) introduced model using network capacity N as the

number of vehicles per unit time that can enter the city. In general, N depends on

the general design of the road network, width of roads, type of intersection control,

distribution of destinations, and vehicle mix. The principle variables for towns with

similar networks, shapes, types of control, and vehicles are: A, the area of the town; f ,

the fraction of area devoted to roads; and c, the capacity, expressed in vehicles per unit

time per unit width of road. These are related as follows:

N = αfc
√

A, (2.32)
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where α is constant. Some models have defined specific parameters which intend to

quantify the quality of traffic service provided to the users in the network. Two principal

models are introduced in this section, the α–relationship, and the two–fluid theory of

town traffic.

Three principal variables for the α–relationship model were selected: I, the

traffic intensity (here defined as the distance traveled per unit area), R, the road density

(the length or area of roads per unit area), and v, the weighted space mean speed:

I = α
R

v
, (2.33)

where α is different for each city. Relative values of the variables were calculated by

finding the ratio between observed values of I and v/R for each sector and the average

value for the entire city.

The physical characteristics of the road network, such as street widths, intersection

density etc. were found to have a strong effect on the value of α for each zone in a city.

Thus, α may serve as a measure of the combined effects of the network characteristics

and traffic performance. However, (Buckley, D.G. and Wardrob, J.G., 1980) have

shown that α is strongly related to the space mean speed, and (Ardekani, S.A., 1984),

through the use of aerial photographs, has shown that α has a high positive correlation

with the network concentration.

Two–fluid theory comes up from (Prigogine, I. and Herman, R., 1971) kinetic

theory of traffic flow. It says that two distinct flow regimes can be shown – individual

and collective. Both of these are a function of the vehicle concentration. The basic idea

is that when the concentration rises so that the traffic is in the collective flow regime, the

flow pattern becomes independent of the will of individual drivers.

The kinetic theory deals with multi–lane traffic and therefore, the two–fluid theory

of town traffic was proposed as a description of traffic in the collective flow regime in an

urban street network. Vehicles in the traffic stream are divided into two classes:

• moving

• stopped

The stopped vehicles class includes vehicles stopped in the traffic stream, i.e., stopped

for traffic signals and stop signs, stopped for vehicles being loaded and unloaded which

are blocking a moving lane, stopped for normal congestion, etc., but excludes, and it is
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important, those out of the traffic stream (e.g., parked cars).

The two–fluid model provides a macroscopic measure of the quality of traffic service

in a street network which is independent of concentration. The model is based on two

assumptions:

• The average running speed in a street network is proportional to the fraction of

vehicles that are moving

• The fractional stop time of a test vehicle circulating in a network is equal to the

average fraction of the vehicles stopped during the same period.

The variables used in the two–fluid model represent network–wide averages taken over

a given period of time. The first assumption of the two–fluid theory relates the average

speed of the moving vehicles, Vr , to the fraction of moving vehicles, fr, in the following

manner:

Vr = Vmfn
r , (2.34)

where Vm and n are parameters. Vm is the average maximum running speed, and n ∈ R
is an indicator of the quality of traffic service in the network. The average speed, V , can

be defined as Vrfr , and combining with Equation (2.34) we obtain

V = Vmfn+1
r . (2.35)

Because fr+fs=1, where fs is fraction of vehicles stopped, Equation (2.35) can be rewrit-

ten as

V = Vm(1− fs)
n+1. (2.36)

This relation can be expressed not only in average speeds, but also in average travel times:

T =
1

V

Tr =
1

Vr

Tm =
1

Vm

,

where T represents the average travel time, Tr the running (moving) time, and Ts
5 the

5As the stop time per unit distance, Ts, increases for a single value of n, the total trip time also

increases. Because T = Tr + Ts , the total trip time must increase at least as fast as the stop time. If

n = 0, Tr is constant (2.40), and trip time would increase at the same rate as the stop time. If n > 0,

trip time increases at a faster rate than the stop time, meaning that running time is also increasing.
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stop time, all per unit distance. Tm
6 is the average minimum trip time per unit distance.

The second assumption of the two–fluid model relates the fraction of time (a test vehicle

circulating in a network is stopped) to the average fraction of vehicles stopped during the

same period

fs =
Ts

T
. (2.37)

This relation has been proven analytically and represents the ergodic principle embedded

in the model, i.e., the network conditions can be represented by a single vehicle appro-

priately sampling the network.

Equation (2.36) can be rewritten into the terms of travel time as

T = Tm(1− fs)
−(n+1). (2.38)

Together with (2.37)

T = Tm[1− Ts

T
]−(n+1). (2.39)

Considering T = Tr + Ts and isolating Tr.

Tr = T
1

n+1
m T

n
n+1 , (2.40)

The formal two-fluid model formulation, then, is

Ts = T − T
1

n+1
m T

n
n+1 . (2.41)

A number of field studies have indicated that urban street networks can be characterised

by the two model parameters, n and T .

Intuitively, n must be greater than zero, since the usual cause for increased stop time is congestion.

With congestion at high levels, vehicles when moving travel at a lower speed. In fact, field studies have

shown that n varies from 0.8 to 3.0, with a smaller value typically indicating better operating conditions

in the network. It means n is a measure of the resistance of the network to degraded operation with

increased demand. Higher values of n indicate networks that degrade faster as demand increases. Because

the two-fluid parameters reflect how the network responds to changes in demand, they must be measured

and evaluated in a network over the entire range of demand conditions (Williams, C.J., 2002).
6The parameter Tm is the average minimum trip time per unit distance, and it represents the trip

time that might be experienced by an individual vehicle alone in the network with no stops. Tm, then, is

a measure of the uncongested speed, and a higher value would indicate a lower speed. Tm has been found

to range from 2.4 to 4.8 minutes/kilometre, with smaller values typically representing better operating

conditions in the network.
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2.2 Extension of Traffic Models

It was already proved that continuum flow and car-following models are equivalent with

respect to car number and speed in a road section in one moment (Lee, H.K. et al., 2001).

Using the simple continuum model, a variety of simple traffic flow problems can

be reproduced analytically by the method of characteristics citeArticle:LIGHTILL and

numerically by finite differences (Kuhne, R. and Michalopoulos, P., 2002). However,

since the speed in this model is determined by the equilibrium speed–density relation-

ship (2.17), no fluctuation of speed around the equilibrium values is allowed, the model

does not faithfully describe nonequilibrium traffic flow dynamics. Therefore, from the the-

oretical point of view, the simple continuum model does not adequately describe traffic

flow dynamics. In order to overcome these shortcomings, a high-order continuum traffic

flow model that includes a dynamics equation in addition to the continuity equation was

introduced (Jiang, R. et al., 2001). The dynamics equation is derived from car-following

theory:
∂u

∂t
+ u

∂u

∂x
= − υ

kT

∂k

∂x
+

ue − u

T
, (2.42)

where T is the relaxation time, and υ = −0.5∂ue

∂k
is the anticipation coefficient. The

left-hand side of (2.42) represents the acceleration. The first term on the right-hand side

is so-called anticipation term, which is a respond to drivers’ reactions to traffic conditions

in front of them. The second term on the right-hand side represents a relaxation to

equilibrium, that is, the deviation from the equilibrium speed–density relationship. This

advanced model enables to descibe small disturbances in heavy traffic and also allow

fluctuations of speed around the equilibrium speed–density relationship. However, a

characteristic speed that is greater than the macroscopic flow speed always exists in

this model; it means that the future conditions of a traffic flow will be affected by the

traffic conditions behind the flow and this is strongly contradictory with the fundamental

principle of the traffic flow – vehicles are anisotropic and respond only to frontal stimuli.

Therefore a modified approach was chosen (Jiang, R. et al., 2001):

∂u

∂t
+ u

∂u

∂x
=

ue − u

T
+ co

∂u

∂x
. (2.43)

Comparing this model with Equation (2.42) and other high–orders models, one can see

that the density gradient is replaced by the speed gradient. This replacement in the

new model solves the characteristic speed problem that exists in the previous high-order

models and therefore enables satisfaction of the anisotropic property of traffic flow.
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Proof: (According to Jiang, R. et al., 2001) To show this, Equations (2.43) and (2.19)

can be rewritten as:
∂U

∂t
+ A

∂U

∂x
= E, (2.44)

where

U =

(
k

u

)
,

A =

(
u k

0 u− co

)
,

E =

(
g

(ue − u)/T

)
.

The eigenvalues, λ of the A matrix are found by setting

det|A− λI| = 0, (2.45)

where I is identity matrix. From (2.45)
∣∣∣∣∣
u− λ k

0 u− co − λ

∣∣∣∣∣ = 0,

thus λ1 = u, λ2 = u−co. These are the characteristic speeds for the new model expressed

by Equation (2.43). Since c0 ≥ 0, it follows that the characteristic speeds dx/dt are

always less than or equal to the macroscopic flow speed u.

2.3 Comparison of Models

Macroscopic model was developed due to rapid traffic growth in the developing cities.

It is purposly modelled for more complex environs such as streets, city districts, and cities

themselves and therefore it is obvious that for far more simple traffic flow, such as higway

or tunnels, it is improper and unnecessary.

The car-following model was originally developed to model the motion of vehicles

following each other on a single lane without overtaking. It is assumed that a driver

responds to the car in front of it through acceleration or deceleration. Therefore, the

dynamics of the following car is determined by the speed of the leading car and the fol-

lowing car itself, the distance between the two cars, the road conditions, the capability of
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the car, etc. The classic car-following theory is represented by Equation (2.8). There had

been introduced several advanced car-following models, but none had brought something

break–through. Most of them argued that there are two types of theories on regulations

of car-following. The first type is based on the assumption that the driver of each vehicle

seeks a safe following distance from its leading vehicle. The second type assumes that the

driver seeks a safe speed determined by the distance from the leading vehicle. According

to (Jiang, R. et al., 2001), in the real world exists a common driver behaviour that none

of the existing car-following models can explain. That is, when the distance between

two vehicles is shorter than the safe distance, the driver of the following vehicle may not

decelerate if the preceding vehicle travels faster than the following vehicle because the

headway between the two vehicles will become larger. Taking into account this fact a

modification of car-following model was introduced (Jiang, R. et al., 2001):

ẍf (t + T ) = κ(ẋl(t)− ẋf (t)) + λ(ẋl(t)− ẋf (t)), (2.46)

where κ is a reaction coefficient and λ is the sensitivity. This model considers the effects

of both the distance and the relative speed of two successive vehicles, theoretically it is

more realistic and exact than the previous ones.

As mentioned above, the macroscopic model is not suitable for tunnel traffic mod-

elling. It is very complex and demanding model, which takes into account variety of

factors. Many of them are not neccessary, some of them are even harm to use for simplier

traffic such as in highway tunnel. The continuum flow models are suitable and much

better for tunnels simulation, because drivers maintain a constant speed inside a tunnel

during normal operation. However, great disadvantage of continuum flow model is its

unability to simulate car accidents, represented by a sudden closure of one or more lanes,

at arbitrary positions. Therefore, from the practical point of view, the car-following

model seems to be the best choice for implementation.
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Model Pros Cons

Car-following Simple description Slow for large areas

Real–time Limited amount of vehicles

Simulates every vehicle

Incorporates vehicle dynamics

Continuum flow Simple description Unable to simulate accidents

Easy to extend No access to a single vehicle

Macroscopic Covers wide areas Too complex

High comptutational demands

Table 2.1: Comparison of traffic models.
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Chapter 3

Implementation

For the computer implementation, it is necessary to discretise continuous equations. This

chapter describes process of discretisation, choice of algorithm and implementation of the

chosen algorithm.

3.1 Discretisation of Car-Following Model

In Chapter 2, we chose the car-following model as the most suitable one for a highway

tunnel. For the computer implementation, it is necessary to discretise it, because Equa-

tion (2.8) is in its continuous form. This equation is a simple version of the car-following

model, well–suited for the purposes of simulation of traffic in a highway tunnel. The

effects of acceleration and deceleration of the vehicles are neglected, because vehicles typ-

ically maintain a constant speed in a tunnel. The proportinality factor λ is considered

linear. Therefore (2.8) may be discretised as follows:

• Because of linearity of λ, it is possible to integrate both sides of Equation (2.8).

After rewriting the coefficient f as i and l as i − 1 (the cars are counted from the

right side), Equation (2.8) looks like

ẋi(t + T ) = λ(xi−1(t)− xi(t)) (3.1)

• Thereafter Equation (3.1) is discretised and looks like

xi(t + T )− xi(t)

T
= λ(xi−1(t)− xi(t)) (3.2)

21
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and

xi(t + T ) = xi(t) + Tλ(xi−1(t)− xi(t)), (3.3)

respectively.

Taking into account the maximum construction speed of the vehicle, or a speed limit,

vmax, the Equation (3.1) may be rewritten as

xi(t + 1)− xi(t)

δx
= xi(t) + Tλ(xi−1(t)− xi(t)), if xi−1(t)− xi(t) < vmax

(3.4)

xi(t + 1)− xi(t)

δx
= xi(t) + vmax, if vmax < xi−1(t)− xi(t), (3.5)

or more compactly as

xi(t + 1)− xi(t)

δx
= min

((
vmax

δt

δx

)
,

(
0.5

(xi−1(t)− xi(t))− dcar

δx

))
(3.6)

where xi(t) is ith vehicle position at time t [m], vmax is a speed limit [ms−1], dcar is

vehicle lenght [m] δt is a discretisation of time [s], and δx is a discretisation of length [m].

Evaluating δt=1s and δx=1m, Equation (3.6) can be rewritten as follows:

xi(t + 1) = xi(t) + min ((vmax, (0.5(xi−1(t)− xi(t)− dcar)) . (3.7)

Equation (3.7) means that every single vehicle tries to follow preceding vehicle in an

interval of two seconds (Ferkl, L., 2007). If there is enough space between vehicles, the

following vehicle maintains the maximum speed – vmax.

3.2 Algorithms

There are several possible approaches to implement traffic algorithms. The most impor-

tant one is the car–motion algorithm, which includes car–motion itself a,nd the algorithm

of overtaking. The generally accepted form of the car–motion algorithm is as follows:
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For each vehicle, v:

CALL routine DriversMotivation to determine whether this driver is moti-

vated to change lanes; now

IF so, THEN CALL routine OvertakingLane to identify which

of neighbouring lanes are acceptable as potential target lanes.

IF the lane to the right is acceptable, THEN

CALL routine HasFreeSpace to determine whether a lane-

change is feasible, now.

Set flag if so.

ENDIF

IF the lane to the left is acceptable, THEN

CALL routine HasFreeSpace to determine whether a lane-

change is feasible, now.

Set flag, if so.

ENDIF

IF both lane-change flags are set (lane-

change is feasible in either direction), THEN

CALL routine ChooseBetterLane to determine more favorable target lane

ELSE IF

one lane-change flag is set, THEN

Identify that lane

ENDIF

IF a target lane exists, THEN

CALL routine ChangeTheLine to execute the lane-change.

Update lane-change statistics

ELSE

CALL routine CarFollowing to move vehicle within this lane.

Set vehicle’s process code to indicate vehi-

cle has been moved this time-step.

ENDIF

ELSE

CALL routine CarFollowoing to move vehicle within its current lane

Set vehicle’s process code.

ENDIF

The above algorithm is disclosed in Appendix C as a flow diagram.

3.3 Specific Features of the Traffic Simulator

The Traffic Simulator (TS) was developed with aim for maximum user’s convinience and

easy-to-use control e.g., drag-and-drop components etc. TS enables simulation in real–

time; it means hours and days can be simulated in minutes and hours. There are four

types of cars used for simulation – passenger with petrol engine, passenger with diesel

engine, vans and lorries. Each car has its own construction limits – construction speed and

other specifications unique for each vehicle such as length, width etc. The entire highway
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can be modelled from user blocks. A user can defined its length and other proporties

e.g. possibility of overtaking (left, right, both, none). The TS has automatic checking

of the correctness of composed highway; it means only continuous higways are allowed

etc. On the other hand, there is possibility to compose higway with slip road blocks; the

algorithm used in the TS, car-following, enables to simulate closure of one lane (arbitrary

number of lanes), or even closure of whole tunnel. The programme is written in such a

way that it enables implmentation of air flow simullation (air pollution) in the future in

order to become a competitive complex simulator of highway tunnels.



Chapter 4

Conclusion

The main goal of the thesis was a choice of a proper method for implementation of a sim-

ulator for highway and higway tunnel traffic. The choice had to take into account several

factors; possibility of acceleration and deceleration of vehicles, and multiple lanes being

the most important ones. The implementation of the chosen method should enable an

easy-to-use and user-friendly environment which led to programming of Traffic Simula-

tor. It is possible to simulate an arbitrary number of lanes; four types of vehicles, setting

several options (road length, car–flow for each lane, etc.,) with possibility to extend this

model into a future tunnel closure, lane closure, ventilation and emission monitoring, etc.

It should enable a complex simmulation of traffic either on a highway or in a highway

tunnel. Moreover, it will provide a strong tool for control management of tunnel to train

the tunnel operators even before the tunnel is built.

25
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Appendix A

Content of Accompanied CD

There is an accompanied CD-ROM with the thesis, and implemented Traffic Simulator

in MS Visual Studion 2005 C# .

• Folder 1 : Bachelor Thesis

• Folder 2 : Traffic Simulator
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Appendix B

Screenshots of the Traffic Simulator

Figure B.1: Simulation main window.

A user can model highway from arbitrary number of user blocks. There are for types

of blocks to choose from – overtaking allowed from right side, from left side, from both

sides and overtaking forbidden.
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Figure B.2: window for setting flows of car for each lane.

A user can define the number of cars generated per unit time (hour) for each lane.

Negative or zero values are not allowed. There are for types of cars to choose from –

passenger with petrol engine, passenger with diesel engine, vans and lorries.
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Figure B.3: Simulation in process.

The simulation itself can be paused and resumed. Figures above show two cases of

simulation – normal operation and closure of some of the lanes.
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Appendix C

Flow Diagram of the Traffic

Algorithm
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