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Abstract
In common TDoA-UWB networks the user device broadcasts a message, which is received
by the surrounding infrastructure. The gathered data is then used to determine the position
of the user. Therefore, the estimated position is immediately available to the infrastructure
only. For the purposes of navigation, it is necessary to deliver the estimates to the users as
soon as possible.

The thesis aims to develop a TDoA-UWB system, where users are able to estimate their
own positions. To achieve it, the infrastructure broadcasts messages and the user devices act
as passive listeners. Such approach faces a challenge related to the clock drift of the user
devices. A solution, which exploits the Extended Kalman filter and achieves low estimation
errors, is developed within the thesis.

The use of distributed computing for the self-estimation of the network infrastructure node
positions is investigated as well. The presented algorithms allow the network nodes to estimate
their positions based on the mutual distance measurements and several initial node positions.

Keywords
indoor positioning, navigation, position estimation, ultra wideband, time difference of arrival,
extended Kalman filter, passive tag, network adjustment, consensus subgradient

Abstrakt
V běžných TDoA-UWB sítích uživatelské zařízení vysílá zprávu, která je přijata okolní infra-
strukturou. Poloha zařízení je určena na základě shromážděných dat z této zprávy. Ihned po
dokončení odhadu polohy je výsledek znám pouze infrastruktuře. Avšak pro účely navigace
je nutné doručit odhad polohy co nejdříve i uživateli.

Tato práce se soustředí na vývoj TDoA-UWB systému, který umožňuje uživatelům odhad-
nout svou vlastní polohu. Toho je dosaženo použitím infrastruktury k vysílání zpráv a změ-
nou uživatelských zařízení na pasivní přijímače. Tento přístup však musí řešit problém spo-
jený s driftem interních hodin uživatelských zařízení. Navrhované řešení využívá rozšířeného
Kálmánova filtru a dosahuje nízkých chyb odhadu polohy.

Část práce se také zabývá využitím distribuovaných výpočtů pro samostatný odhad polohy
uzlů síťové infrastruktury. Diskutované algoritmy umožňují uzlům odhadnout vlastní polohy
pomocí naměřených vzájemných vzdáleností a několika počátečních poloh.

Klíčová slova
indoor lokalizace, navigace, odhad polohy, ultra wideband, time difference of arrival, rozšířený
Kálmánův filtr, pasivní tag, optimalizace sítě, consensus subgradient
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1 Introduction

When it comes to the localization of an entity, being that a car, pedestrian, goods or other
movable asset, the common first choice is any system from the Global Navigation Satellite
System (GNSS) group or their combination. The systems like the Global Positioning System
(GPS), GLONASS, BeiDou or the European Galileo are considered to be GNSS. The GNSS
offers relatively high accuracy of localization of the user devices, ranging from tens of centime-
ters to meters. However such precision is achievable in the outdoor environments only, where
the user device has an unobstructed view of the sky. In the urban or indoor environments the
localization precision quickly deteriorates and therefore a localization system that does not
utilize the satellites has to be used.

A number of alternative localization systems, suitable for GNSS-denied environments, al-
ready exists, achieving varying accuracy. For example positioning using Wi-Fi networks and
power measurements (RSSI) has typical accuracy of several meters [1].

Among the most promising alternative positioning systems are the ones using the Ultra
Wide Band (UWB) signals. The UWB signals are governed by the IEEE 802.15.4 standard [2]
and utilize spread spectrum with very wide bandwidth (e.g. 500 MHz) in order to achieve
a precise time measuring with resolution in tens of picoseconds [2].

In our previous works [3, 4] we have developed a UWB localization network, which uses
the Time Difference of Arrival (TDoA) localization principle for the data acquisition and the
actual position estimation.

It is common for the UWB-TDoA localization networks that the user device, so called tag,
periodically broadcasts a blink message. Such message is received by the surrounding anchors
and the tag’s position is determined based on the data related to that message. With this
Tag to Anchor (T2A) TDoA variant, the resulting position is available only at the computing
center and not to the user. The system developed in [3, 4] uses the same T2A messaging
scheme.

While the T2A-TDoA is great for the tracking of equipment or vehicles in the pursuit of
optimal transportation, it is not suitable for cases when there are many users and each user
needs his position immediately.

In this work we aim to develop the Anchor to Tag (A2T) TDoA localization system, which
makes the position estimates available to the users immediately after their computation and
also allows an infinite number of users to be positioned simultaneously. This is achieved by
reversing the direction of the messages, making the anchors periodically send localization
messages and the tags passive listeners.

As this work builds on [3, 4] we recapitulate those works in Chapters 1 and 2. In Chapter 1
we introduce the principles of the UWB communication and localization. Chapter 2 then
reminds the concepts and implementation of the T2A-TDoA together with the addition of
the Chained synchronization algorithm. Chapter 3 gives a proper introduction to the problem
of A2T-TDoA, what challenges are faced and finally the implementation of the A2T-TDoA
with the experimental results. The last Chapter 4 stands aside from the topic of the user
localization as it focuses on the problem of the UWB network installation and determination
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1 Introduction

of the anchor positions. The chapter provides a semi-automatic algorithm for anchor self-
positioning in larger networks.

This work also includes two appendices. Appendix A discusses the computation of the
Dilution of Precision (DOP) parameter and Appendix B presents the results of the previously
developed T2A-TDoA UWB network.

1.1 Ultra Wide Band localization system

In this section we provide a description of what an Ultra Wide Band (UWB) signal is and
from which devices the UWB localization network consists of. First we define a UWB sig-
nal and then introduce a specific device that uses the UWB signals for communication and
measurements.

1.1.1 Ultra Wide Band signals

An Ultra Wide Band signal can be described in a broad sense as a signal having the absolute
bandwidth larger than 500 MHz or the relative bandwidth of at least 20 % [5] (relative band-
width is a ratio of the absolute bandwidth and the center frequency). In the narrower sense,
we see ultra wide band signals as a group of signals that is defined by the IEEE 802.15.4 stan-
dard [2] where definition of both the physical layer and device communication (media access)
is provided. Our main interest is in the variant of UWB physical layer called High Rate Pulse
Repetition Frequency UWB physical layer (HRP UWB PHY) [2], so from this point forward
we simply use the short UWB term instead of HRP UWB PHY.

The standard [2] specifies 16 UWB channels (numbered from 0 to 15), grouped into 3 bands.
One channel in the sub-gigahertz band (from 250 MHz to 750 MHz), 4 channels in the lower
band (3.244 GHz to 4.742 GHz) and 11 channels in the high band (5.944 GHz to 10.234 GHz).
Most of the channels have 499.2 MHz bandwidth, nonetheless, channels 4, 7, 11 and 15 have
bandwidth wider than 1 GHz.

The standard was created with an intended use in wireless personal area networks (WPAN),
comprising of low-energy devices with low communication rates. Data within a network is
transmitted using a series of very short pulses (typically shorter than a nanosecond [5]),
meaning that there is not a carrier wave that carries the information as opposed to a typical
narrowband technologies such as GSM or Wi-Fi.

The usage of the impulses for the information transmission is the reason for the distinctive
property of the UWB, the very large bandwidth. The utilization of the impulses has several
advantages. One is the low power consumption as the UWB devices do not transmit energy
continuously during the transmission of a message, but rather in discrete impulses, which is
less power consuming. The second and probably main advantage of the UWB is again its
bandwidth. Not only that it enables bit rates up to 27.24 Mbps, according to [2], but it also
makes the UWB highly suitable for positioning.

Let us consider a simple measurement of time of arrival (ToA) of a message at the device’s
antenna. When using UWB signals we can achieve a measurement with a very low vari-
ance, especially in comparison with narrowband signals (under the assumption of sufficiently
high signal to noise ratio). The possibility of accurate measurement comes directly from the
Cramér-Rao lower bound (CRLB) for ToA measurements via UWB signals [5, 6]. This lower
bound determines the lowest theoretically achievable variance by an unbiased estimator of
a deterministic parameter.

2
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Figure 1.1: UWB pulse with pulse width 𝑇𝑝 = 0.8 ns

The analysis of the ToA measurement’s CRLB together with its derivation is done in [5, 6]
and here we will use the analysis result only√︁

𝜎2
𝑡 ≥ 1

2𝜋
√

SNR 𝛽
, (1.1)

where 𝑡 is the measured ToA, 𝜎2
𝑡 is its variance, SNR is signal to noise ratio and 𝛽 is the

effective bandwidth of the measuring signal (for its definition refer to [5]). The effective
bandwidth is difficult to estimate precisely as it varies for each signal and heavily depends
on the traveled environment. Nonetheless, it is often approximated by the 3 dB [6] signal
bandwidth (e.g. 500 MHz).

The impulses used in the communication often involve shapes of derivatives of the Gaussian
pulse, wavelet pulses and modified Hermite polynomials [5]. For its usage of impulses, the
UWB is also known as the Impulse Radio UWB or IR-UWB. In Figure 1.1 we can see an
example of a simple UWB pulse with pulse width of 0.8 ns.

The actual pulses used for communication are much more complex than the one in Fig-
ure 1.1. Nevertheless, it is useful for getting the notion of their appearance. The pulse width
of a UWB signal can be viewed as a parameter which affects the resulting bandwidth and
thus the CRLB. We can use the value of the pulse width to estimate the effective bandwidth
of a raised-cosine pulse [5, 6] and put it in the Equation (1.1) and then plot how the CRLB
changes with changing SNR.

In Figure 1.2 we can see the plotted CRLB of the ToA measurement variance for three
pulse widths. The right axis in Figure 1.2 shows the standard deviation of the time mea-
surement and the left axis the standard deviation of the range measurement (time standard
deviation multiplied by the propagation speed 𝑐). We can see that even for SNR equal to
10 dB the measurement standard deviation can already be lower than 10 cm, which makes the
measurements usable for the positioning even for low SNR. In practice we expect the SNR to
be higher than 20 dB, so the measurement standard deviation is reduced even further.

For communication the UWB uses the BPM-BPSK (Burst Position modulation, Binary
Phase Shift Keying) modulation, in which the smallest unit of transmitted information is
called a symbol [2].
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Figure 1.2: Cramér-Rao Lower Bound for selected pulse widths [6]

Figure 1.3: Structure of an UWB symbol [2]

Figure 1.3 shows the structure of a UWB symbol. Each symbol carries 2 bits of information
and each symbol is divided into 4 time intervals, 2 intervals called Possible Burst Position
and 2 Guard intervals. Only one UWB impulse (or impulse burst) can occur within a single
symbol in either of the two possible burst position intervals. This position encodes one bit of
the information while the second bit is determined by the phase of the burst.

During guard intervals no burst is allowed to be transmitted, which increases resistance to
the multipath effects. The reason is that if any burst is detected during a guard interval, it
cannot be a valid burst of the signal of interest and it must be either a reflection or originate
from a different transmitter. Such invalid burst can be ignored and does not interfere with
the ongoing communication.

Although having wide bandwidth brings desirable advantages it also brings certain disad-
vantages. The transmitted power of a UWB device is a subject of the regulations [2]. The
regulations also impose a maximal radiated power spectral density (PSD) or maximal con-
tinuous transmission. For example in the band from 3.4 GHz to 4.8 GHz (channels 1, 2, 3
and 4) the maximum mean PSD is −41.3 dBm/MHz. However if the UWB device is used by
emergency services, this limit is lifted up to −21.3 dBm/MHz [7, 8].

These limits reduce the maximal achievable range of the UWB signals. Also, the propaga-
tion through the walls and obstacles is poor due to the use of high frequencies.
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1.1 Ultra Wide Band localization system

On the other hand, the UWB signals are suitable for the indoor environments as the range
there is limited as well. This makes the UWB a great complement to the GNSS, whose indoor
performance is generally considered poor.

1.1.2 UWB network
In the previous section, we have introduced the UWB signals and their key properties. As
we have seen, a device implementing the IEEE 802.15.4 standard is able to precisely measure
the time of arrival of a UWB signal at the device’s antenna.

For the purposes of localization using UWB signals we have designed an UWB localization
network [3, 4], where the UWB communication is provided by the DW1000 chip developed by
the Decawave Ltd. company. This chip served as a base for the design of the network nodes
that form the network infrastructure and the user devices within the network. We will discuss
these devices later in this section, nonetheless, we will describe the DW1000 chip first.

The DW1000 transceiver chip implements the physical layer of the UWB communication
in compliance with the IEEE 802.15.4 standard [2]. The chip is able to measure the time of
reception (arrival) and transmission of the IR-UWB messages. Both of these measurements
are denoted simply as a message time-stamping (regardless of the message direction).

The time-stamping process relies on an on-chip PLL-based clock with the nominal frequency
of 63.8976 GHz1, as defined by the IEEE 802.15.4, providing us with approximately 15.65 ps or
4.7 mm resolution. The frequency is an integer multiple of the 38.4 MHz crystal oscillator or
external reference. However, the time-stamping process is not perfect and every measurement
has the standard deviation approximately equal2 to 150 ps (or 4.5 cm) [9]. The time-stamping
frequency is used to increment the internal counter, which can be viewed as a free running
clock associated with the specific device. According to the standard [2] the counter is only
32-bit wide, in which case the overflow event happens approximately every 67 ms. While this
interval is sufficiently long for positioning and time measurements, some manufacturers chose
to use a wider counter. In case of the DW1000 this counter features width of 40 bits, which
extends the overflow period to 17.2 s.

The infrastructure of a UWB network consists of the anchors, nodes with fixed and a priori
known position. The anchor device can be seen in Figure 1.4a. Apart from the DW1000 UWB
chip the anchor embeds two additional communication interfaces, the USB and the Ethernet
(with PoE). The PoE capability reduces the number of needed cable connections by utilizing
the unused data wires in the Ethernet cable for power delivery which makes the installation
and mounting more flexible. Anchor also has an embedded battery which can be charged
using any of the two available power sources (USB or PoE).

Tags are small, handheld devices meant to be the user devices and can be seen in Fig-
ure 1.4b. Position of such a device is not a priori known and is rather estimated using the
localization network. Tag is usually powered by a built-in battery so its power consumption
has to be as low as possible in order to maximize the operational time between recharges.
Unlike the anchor, the tag possesses only USB interface, which is used for configuration and
battery charging. The tag also uses the DW1000 chip for UWB communication.

Inside of the tags are also MEMS inertial sensors, whose outputs can be used for estimating
the device’s orientation. Especially orientation or movement detection can be useful for power

1For the sake of briefness we use the approximate value 64 GHz.
2The measurement standard deviation of 150 ps is valid for signals with high SNR. With lower SNR the

deviation increases.
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(a) Anchor (b) Tag

Figure 1.4: UWB localization devices

management, as the tag can adjust its position fix frequency depending on the nature and
velocity of its movement.

Both the tag and the anchor devices participate in data exchange within the network in
order to estimate the position of the tag. In previous works [3, 4] the used localization
principle was the TDoA in the variant, where the tags periodically send blink messages that
are received by the anchors. Based on the direction of the message transmission, we have
named this implementation as the Tag to Anchor TDoA (T2A-TDoA). Description and the
implementation of T2A-TDoA has been the main aim of our previous works [3] and we will
recapitulate this topic in Chapter 2.

In this work however we mainly focus on the other option called Anchor to Tag TDoA,
where the anchors transmit messages and tags receive them. This TDoA variant will be
described in Chapter 3.

It should be also noted that the hardware for both the anchor and tag has been developed
and manufactured in the cooperation of the company RCD Radiokomunikace3 and the De-
partment of Radio Engineering from the Faculty of Electrical Engineering on Czech Technical
University in Prague.

The UWB localization network also includes another node type. The Computation node
serves as a central data collection point of any data shared in the network. This node can be
any computer connected to the UWB network, preferably by an Ethernet connection. It is
mostly used in the T2A TDoA, where the anchors send data about the received blink messages
to this central node. The task of the node is to estimate the positions of the tags from the
received data and store them, eventually to provide them for visualization.

1.2 Suitable positioning principles
As we have emphasized in the previous sections, the UWB signals according to the Cramér-
Rao Lower Bound offer a great precision when used for time measuring or message time-
stamping [6]. These measurements can be used for the estimation of the user position.

Given the accurate time measurements the suitable localization principles are those that
involve ranges between the tags and anchors during the estimation. In the UWB localization
networks the two most used principles are the Time of Flight (ToF), implemented using the
Two Way Ranging (TWR) protocol, and the Time Difference of Arrival (TDoA).

3Based in Staré Hradiště, Czech Republic.
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1.2 Suitable positioning principles

Both TWR and TDoA principles incorporate distances, or more precisely the times of flight,
between the tag and anchors to estimate the tag’s position. Because of the free-running nature
of the device clocks (both the anchors and tags), there exists a bias between the time bases of
any two anchors. Moreover this bias is not constant and changes in time due to the instability
of the reference oscillator frequency.4 In our experiments we have also observed that the bias
change, or bias drift, is not constant either.

The bias evolution can be captured by the following non-linear model

𝑏𝑖(𝑡) = 𝑏𝑖0 +
ˆ 𝑡

0

(︂
�̇�𝑖(𝜏) +

ˆ 𝜏

0

[︁
�̈�𝑖(𝑠) d𝑠

]︁
d𝜏

)︂
, (1.2)

where 𝑏𝑖(𝑡) is the current bias between the time base of the anchor 𝑖 and reference time base,
𝑏𝑖0 is the initial value of bias, �̇�𝑖 is their mutual bias drift and �̈�𝑖 is their mutual bias drift
change rate. Note, that we are only interested in the relative bias between two chosen time
bases rather than an absolute time bias (w.r.t. UTC time, for instance).

In practice it is too difficult to determine the nonlinear model behind the bias dynamics
with the precision needed. It is much more feasible to get bias measurements in regular
intervals and, if needed, estimate the bias value between the measurements by a simplified
and discretized model. If we assume that the bias changes slowly over a short period of time,
then we can estimate the bias value between measurements with a discrete linear model

𝑏𝑖[𝑘 + 1] = 𝑏𝑖[𝑘] + �̇�𝑖[𝑘]𝑇𝑒 + 1
2 �̈�𝑖[𝑘]𝑇 2

𝑒 , (1.3)

where the 𝑇𝑒 is the time delay between the last measurement at time 𝑘 and the estimation.
Measurements conclude that for reasonably long intervals between consecutive timing events

(𝑇𝑒) this linear model does not induce big errors that would harm the position estimation
precision [10, 11].

The presence of bias in the measurements is an unwanted error source, which in the context
of distance measurements corrupts the measurements so that the resulting distances are either
too large or negative. For example if we have two oscillators, both having the bias drift in the
range ±20 ppm, then in the worst case their mutual bias drift is ±40 ppm. With each passed
millisecond the mutual bias will grow approximately by 40 ns which results in the ranging
error of at least 12 m if left uncompensated.

As both localization principles are challenged by the bias dynamics, both of them must have
the means to cope with it. Table 1.1 gives a quick comparison of the discussed localization
principles, the TWR, T2A-TDoA and A2T-TDoA. The following sections will discuss the
properties of those principles.

1.2.1 Two Way Ranging
The Two Way Ranging protocol is an implementation of the time of flight (ToF) principle.
Before we describe the TWR we will talk about a general ToF principle.

The time of flight principle estimates the user position using distances measured between
the tag and anchors. A single distance measurement restricts the set of possible tag positions
to a circle around the particular anchor. In the three dimensions that set is a sphere. In total,
three different measurements from three different anchors and specification of the half-space

4Typically, the oscillator frequency is mostly (but by far not exclusively) affected by device internal tem-
perature. Consequently, the drift change is commonly observed after device start-up.
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Figure 1.5: Time of Flight positioning principle

are needed to find an unambiguous three-dimensional solution for the tag position, which lies
in the intersection of the spheres. An example of ToF positioning with three anchors in two
dimensions is shown in Figure 1.5.

If the speed of signal propagation in the area is (almost) constant and known, then the
distance between the tag and anchor can be calculated from the transmission and reception
times of messages sent between the devices.

We may conclude that for each transmission 𝑡Tx and reception time 𝑡Rx of a message sent
between tag and anchor (regardless of the direction) the following holds

𝑡Rx = 𝑡Tx + 𝑑

𝑐
+ 𝑏 , (1.4)

where 𝑑 is the distance between tag and anchor, 𝑐 is the signal propagation speed in the
environment (assumed constant or with negligible variations) and 𝑏 is the bias of the time
bases of the two devices.

In situations where both the tag and the anchor have their time bases synchronized, then
the bias 𝑏 in Equation (1.4) is equal to zero. In such case it is sufficient to send only a single
message to get a distance measurement. Then the distance would be the difference of reception
and transmission times multiplied by the propagation speed.

Table 1.1: Comparison of selected localization principles
TWR T2A TDoA A2T TDoA

Clock synchronization None Anchors Anchors
Computational Anchor Low Low High
demands Tag Low Medium Medium
Tag power consumption Low Low High
Simultaneous users Tens Hundreds Unlimited

8
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(a) Single sided (b) Double sided

Figure 1.6: TWR messaging schemes

However, having both anchors and tags synchronized is not a suitable option. Mainly
because it raises the tag’s power usage (thus reducing battery life) and, more importantly,
because the actual distance between the devices must be known for a precise time base syn-
chronization. Of course, for mobile devices such as the tag the distance is not available prior
to its localization.

Consequently, the bias must be eliminated using a different approach. The Two Way
Ranging protocol uses a series of messages sent between the anchor and the tag to eliminate
bias and determine distance.

There exists a number of TWR versions that differ in terms of number of messages ex-
changed, duration of a single measurement, computational demands, accuracy and sensitivity
to bias drift [12]. We will mention three variants in total, the Single Sided TWR and the
Symmetric and Asymmetric variants of the Double Sided (SDS and ADS) TWR, where only
the latter two are of a practical use [12].

The error terms specific to the each of the TWR versions will be shown without a detailed
derivation, as the TWR is not the main focus of this work. The derivation is available in [12].

The simplest form of TWR is the Single Sided TWR, where only two messages are sent.
We will denote them as poll and response message. The message exchange is depicted in
Figure 1.6a.

The measurement is initiated by device A sending the poll message. Upon the poll reception,
B device sends response. For each message the transmission and reception times are stored
and combined into two delays, the round trip delay 𝑇TA on the A’s side and the reply delay
𝑇RB on the B’s side [12].

𝑇TA = 𝑡Rx,Resp − 𝑡Tx, Poll , 𝑇RB = 𝑡Tx,Resp − 𝑡Rx, Poll . (1.5)

Using these two delays we are able to eliminate the mutual time base bias and express the
measured5 time of flight 𝜏 as a bias-free difference of round trip delay and reply delay. We
get the distance by multiplying the 𝜏 with the speed of light 𝑐.

𝑑 = 𝑐 · 𝜏 = 𝑐 · 1
2(𝑇TA − 𝑇RB) (1.6)

However, the real UWB transceivers suffer from the clock drift (�̇�), which results in pro-
longing or shortening of the delays 𝑇TA and 𝑇RB according to the drift of device A or B,

5Variables with the ·̂ symbol above have the meaning of estimate/measurement of the real value affected
by the measurement errors (e.g. 𝑡 being the measurement of 𝑡).
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respectively. If we assume that the clock drift is constant during the message exchange we
can express the error resulting from the clock drift as (full derivation available in [12])

𝑑 − 𝑑 = 𝑐 · [𝛿𝑓𝑎𝜏 + 𝑇RB
2 (𝛿𝑓𝑎 − 𝛿𝑓𝑏)] , (1.7)

where 𝑑 is the true distance, 𝜏 is the time of flight and 𝛿𝑓𝑎 and 𝛿𝑓𝑏 are the clock drifts (relative
deviation from the nominal frequency) of A’s and B’s clock, respectively.

The UWB devices have the clock drift 𝛿𝑓 specified by the standard IEEE 802.15.4 [2] to be
within the range ±20 ppm. Using the expected values of the delays (𝜏 in tens of nanoseconds,
𝑇R in units or tens of milliseconds) and the worst case values for the clock drift the value of
the ranging error easily exceeds several meters [12]. For this reason the single sided TWR is
hardly usable for positioning.

The Symmetric Double Sided SDS-TWR reduces the error caused by the clock drifts by
adding a final message to the messaging scheme as can be seen in Figure 1.6b. This message
is sent by the device A after receiving the response message.

By adding an additional message we can calculate another round trip delay and reply delay.
The distance 𝑑 is then calculated as follows

𝑑 = 𝑐 · 𝜏 = 𝑐

4(𝑇TA − 𝑇RB + 𝑇TB − 𝑇RA) . (1.8)

The 𝑇TA and 𝑇RB are the same delays as in the Equation (1.6) and the 𝑇TB and 𝑇RA are the
round trip and reply delays associated with the response and final messages.

Following similar procedure of introducing the clock drifts into the distance equation the
ranging error has the following form [12]

𝑑 − 𝑑 = 𝑐

4[2𝜏(𝛿𝑓𝑎 + 𝛿𝑓𝑏) + (𝛿𝑓𝑎 − 𝛿𝑓𝑏) · (𝑇𝑅𝐵 − 𝑇𝑅𝐴)] . (1.9)

We can observe that the error does not depend on the absolute reply delays anymore. Instead
it is proportional to their difference. Consequently, the ranging error due to the bias drift is
mitigated if the reply delays are equal. In practice securing the equality of the reply delays
can be difficult due to the imperfections in message transmission timing. Using the typical
values for the variables in the Equation (1.9) we get that the clock drift error is reduced to
reasonable levels of several centimeters making the clock drift no longer a dominant error
source [12].

While SDS-TWR greatly reduces the error caused by the clock drift, it heavily depends on
the ability of the devices to keep the reply delays as similar as possible. Scheduling schemes
that take the symmetry requirement into account were already introduced [13]. However,
utilization of the Asymmetric Double Sided TWR removes the necessity of symmetric com-
munication.

The ADS-TWR is almost identical to the SDS-TWR up to the point where the distance
is calculated [12]. The range estimate is no longer a simple linear combination and takes the
following form:

𝑑 = 𝑐 · 𝜏 = 𝑇TA𝑇TB − 𝑇RA𝑇RB
𝑇TA + 𝑇RA + 𝑇TB + 𝑇RA

. (1.10)

It has been proven that the nonlinear nature the ADS-TWR does not cause any problems
and its performance in the terms of estimate variance is similar to the SDS-TWR [14].

The error for ADS-TWR is equal to

𝑑 − 𝑑 = 𝑐
𝛿𝑓𝑎 + 𝛿𝑓𝑏

2 𝜏. (1.11)
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In comparison, the error achieved by the ADS-TWR is same as the error for SDS-TWR
error when the reply delays are equal. However the ADS-TWR is totally independent of the
reply delays meaning the error due to clock drift is negligible under the assumption that it is
constant during the measurement [12].

As we have seen in this section, the SDS and ADS-TWR achieve superior performance
in terms of clock drift induced errors when compared to the Single Sided TWR. For the
ADS-TWR the error does not depend on the reply delay difference, unlike for the SDS vari-
ant. However the independence of the ADS error on the delays is bought by the increased
computational cost on the distance calculation (involves a division by a variable).

For summary, the TWR provides a method of measuring distances without a mutual clock
synchronization. Nonetheless, the necessity of bi-directional communication results in lower
achievable measurement frequency and higher power consumption.

1.2.2 Time Difference of Arrival

When using ToF or ToA principle, the position is estimated as the intersection of several circles
or spheres that were determined by the measured distance between the tag and each anchor.
Additionally, the ToA measurements also contain bias between the time base of the measuring
anchor and the reference time base, if the anchors are not synchronized. Before the estimation,
any bias present has to be removed from the measurements, for example by subtracting the
measurements in cases when the bias is equal for all of them. The resulting quantity is called
the Time Difference of Arrival (TDoA) and can be multiplied by the propagation speed to
obtain the difference of distances.

The Time Difference of Arrival principle uses the difference of two distances for the position
estimation, rather than the absolute distance. A single TDoA measurement ℎ𝑖,𝑗 is obtained
by subtracting two ToA measurements (related to the reception of the same tag message)
from two different anchors 𝑖 and 𝑗. For the difference of distances it holds

ℎ𝑖,𝑗 = 𝑑𝑖 − 𝑑𝑗 = ‖𝑟𝑖 − 𝑟‖ − ‖𝑟𝑗 − 𝑟‖ . (1.12)

In the equation above the vectors 𝑟𝑖 and 𝑟𝑗 are the position vectors of anchors 𝑖 and 𝑗,
respectively, and the 𝑟 is the position of the tag. The Equation (1.12) restricts the set of the
possible tag positions to a hyperbola (in two dimensions) with focal points at anchors 𝑖 and 𝑗.
For this reason the positioning systems using TDoA principle are sometimes referred to as
the hyperbolic positioning systems.

At least three independent TDoA measurements are required (four ToA measurements) to
get an unambiguous positioning solution in two dimensions. In three dimensions the minimal
measurement count is also three TDoAs measurements but only if the half-space is specified.
The estimation of the tag’s position is then graphically equivalent to the finding of the inter-
section point of all measured hyperbolae (two dimension) or hyperboloids (three dimensions).

The presented principles and solutions work well in three-dimensional positioning, never-
theless, for simplicity we will consider only the two-dimensional case with hyperbolae.

Figure 1.7 contains a plot of two hyperbolae and a localized tag at the point of their
intersection. The hyperbolae were determined by combining the measurements from anchors
1 and 3 and 2 and 3.

The TDoA in UWB networks exists in at least two variants that are the Tag to Anchor
(T2A) and Anchor to Tag (A2T). Even if both variants estimate position using similar tech-
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Figure 1.7: Time Difference of Arrival positioning principle

niques (intersection of hyperbolae), they are quite different. They mostly differ in the mes-
saging schemes and the processing of the measurements.

We start by discussing how the measurements are done and what are the pros and cons of
both methods. Next we will outline the measurement processing for both variants. For both
variants we assume that the time bases of the anchors are synchronized.

In the T2A-TDoA the tag broadcasts a blink message that is received by the anchors. The
anchors then send the measured times of arrival to the computation node for the position
estimation.

With the A2T-TDoA the roles switch as the anchors periodically broadcast localization
messages that are received by the tag. The tag is able to estimate its own position with the
received data, provided that the anchor positions are known.

From this short description we can see with the T2A-TDoA, tag has to transmit only a single
message to get enough data for estimation of its position. Also, there is no need for tag-anchor
synchronization as the estimation is done purely from the ToA measurements. This greatly
increases the battery life of the tag as the message transmission has far lower power usage
than the reception and that no demanding calculations on the tag’s side are required.

However, the positions have to be estimated at the computational node of the network,
making them unavailable to the users if they are not transmitted back to them. Also, while
the maximal number of simultaneously operational tags is much higher than with TWR, there
still exists the upper limit for the position fix frequency (which is in order of thousands) that
is determined by the air utilization, the amount of network control messages and by the speed
of calculations of the position estimates.

This limit is seemingly removed with the Anchor to Tag TDoA scheme, where the posi-
tion estimates are calculated by the users themselves. Using the reception times and known
transmission times, the tag is able to calculate TDoAs and estimate its own position. Con-
sequently, the system is able to support an arbitrary number of simultaneously active users,
i.e. the situation is remotely similar to the Global navigational satellite systems (GNSS), but
at the cost of increased tag’s power demands due to the frequent reception and calculations.
Moreover, A2T-TDoA has to deal with difficulties connected with the bias drift of the tag,
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1.2 Suitable positioning principles

which is solved non-trivially. The reason will reveal itself once we describe the differences of
how the TDoA variants process measurements.

If we express the distances 𝑑𝑖 using the times of arrival and transmission (see Equation (1.4))
and combine it with the Equation (1.12), we get the following expression

ℎ𝑖,𝑗 = 𝑐 · [(𝑡Rx,𝑖 − 𝑡Rx,𝑗) − (𝑡Tx,𝑖 − 𝑡Tx,𝑗) − (𝑏𝑖 − 𝑏𝑗)] , (1.13)

where the 𝑏𝑖 and 𝑏𝑗 are the clock biases of the tag time base to the time base of anchor 𝑖 and 𝑗,
respectively.

As we have stated in Section 1.2.1 the bias presence in the measurements renders the
measurements unusable for the positioning and therefore it has to be removed. Unlike the
TWR, the TDoA principle tries to remove the bias by synchronizing the time bases of the
anchors. The time synchronization of the anchors has to suffice as it is unfeasible to have tags
synchronized with anchors (as stated in the Section 1.2.1).

At this point we have to distinguish the T2A and A2T variants of the TDoA as the exact
form of the measurements ℎ𝑖,𝑗 differ for each variant.

Firstly we will discuss the Tag to Anchor measurements. In this case each tag broadcasts
a blink message to the surrounding anchors. Therefore each of the transmission times 𝑡Tx,𝑖 is
equal 𝑡Tx,𝑖 = 𝑡Tx,𝑗 for every 𝑖 and 𝑗 and in the measurement (1.13) they cancel out. The time
bases of the anchors are synchronized so there is no mutual bias between any two anchors.
Also the blink message is received almost simultaneously (with gaps long units of microseconds
at maximum) by the anchors, which means that the 𝑏𝑖 remains almost constant, because the
error caused by the bias drift remains negligible (approximately units of picoseconds). Thus
we can consider the tag biases 𝑏𝑖 equal and that in the measurements they cancel out as well.
From this we can see that for T2A-TDoA it is sufficient to have only anchors synchronized
and that the measurements ℎ𝑖,𝑗 can be directly used for position estimation.

For the A2T-TDoA the bias elimination is much more difficult. In this variant the anchors
broadcast localization messages that are received by tags. However, the UWB was not devel-
oped for simultaneous reception of multiple messages [2]. The anchors then have to broadcast
the messages with some delay between each transmission to give tags enough time to process
the received message and prepare for the next reception. The transmission times can be em-
bedded into the data parts of the localization messages so it is not problematic to compensate
for the delay in the measurement. But due to the transmission spacing the error induced by
the bias drift is no longer negligible. Even when the anchors are synchronized, the tag is still
not and the biases are no longer equal, i.e. 𝑏𝑖 ̸= 𝑏𝑗 for anchors 𝑖 and 𝑗.

The transmission delays have to be long enough for the give tags enough time for processing.
At the same time the delay must be as short as possible to minimize drift-related errors. We
can expect that the transmission delays will be at least as long as it takes to send a single
message, but possibly longer to include time margin for the processing. The expected length
of the delays is in order of units or tens of milliseconds.

The error (bias difference) induced by the bias dynamics can be written as

𝑏𝑖 − 𝑏𝑗 = �̇� · (𝑡Tx,𝑖 − 𝑡Tx,𝑗). (1.14)

Again, if we consider the acceptable range for the bias drift ±20 ppm, specified by the standard
IEEE 802.15.4 [2], we can calculate the expected error. With the expected transmission delays
of several milliseconds the bias drift error easily gets into range of tens of nanoseconds which
again makes the measurements unusable.
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The bias change is significant and it is necessary to compensate for it in order to enable
the tag’s localization. Probably due to the bias difficulties there are not many A2T-TDoA
solutions available for the UWB networks. Therefore, solving this problem and making A2T-
TDoA localization possible is the main focus of this thesis and we will discuss this topic in
more detail and propose a solution in Chapter 3.
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In the context of the indoor positioning and navigation, the UWB based networks have gained
an increasing attention over the past decade, mostly for their promising achievable precision.
In such networks the most widely used localization principles are the TWR and TDoA.

For a practical use, the TDoA is a preferred choice since it is more scalable and able to
handle hundreds of concurrent users. The networks that use TWR as their core principle are
suitable only for small networks with very few users (total user count usually not exceeding
ten). Their use can be found for example in presentations of the UWB positioning, proofs of
a localization concept, proximity detection or during production tests and calibration.

In the previous chapter we have introduced both the TWR and TDoA localization princi-
ples, their pros and cons and outlined the implementation requirements and difficulties. For
the TDoA we have defined two messaging schemes that we will consider, the Tag to Anchor
and the Anchor to Tag. In the UWB-TDoA networks the T2A variant is used significantly
more often than the A2T one. The probable reason is that the A2T-TDoA measurements are
heavily affected by the drift of tag’s clock. The process of the clock drift compensation is not
trivial, as will be shown in Chapter 3.

Here we will be focusing on the T2A-TDoA. In this variant, a tag sends a blink message
that is received by all the anchors within the signal range. Every anchor stores the time of
arrival of the blink message. The measured time together with the tag’s identification are
then sent from each anchor to the computation node where the position is estimated.

The implementation of an UWB-TDoA system or network can be broken down into three
main problems that are summarized below. The designer may choose to solve them separately,
however, that can prove to be difficult, as each problem may affect the others.

• Anchor synchronization, usually done through an UWB channel using a single anchor
as a time reference. The selected anchor periodically sends synchronization messages
that the other anchors use for their own synchronization [3, 13, 15].
There also exists a protocol that does not require synchronization of the anchors. Such
protocol is proposed by [16], where the biases are eliminated using relations between
successive receptions of tag’s messages. However, such methods have certain drawbacks,
for example relying on inter-message relations that do not have to be present. Another
drawback is the introduction of additional communication load to the UWB channel,
which is higher than with synchronization only.

• Positioning data collection and position estimation; there has to be established a com-
munication path between the anchors and the computation node that is used for sending
positioning data (e.g., time stamps).
The proper algorithm for the position estimation must be chosen as well. As the problem
is nonlinear, a popular choice is an Extended Kalman Filter (EKF) or any of the Newton-
like methods, which solve the problem as a nonlinear least-squares (NLSQ) problem [17,
18] (e.g. Levenberg-Marquardt method).
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• Scalability; the system must be scalable in order to cover large areas, such as storage
halls. The scalability mainly depends on the capabilities of the deployed synchronization
algorithms and the realization of power and data interconnections.

One of the synchronization scaling approaches is to have many separate anchor sub-
networks (usually denoted as synchronization domains) with a reference anchor in each
domain [19]. The problems arise on the boundaries of the domains where we get time
stamps related to a single tag message but measured with respect to different time bases.
Consequently, such TDoA measurement is useless.

A different approach is to spread the synchronization packets from single reference an-
chor through out the network with the use of so-called relay anchors. By chaining the
otherwise separate domains together we are able to have the whole network in single
synchronization domain [10].

From the three problems listed above, two problems, synchronization and estimation, were
solved in our previous works [3, 4]. The scalability was solved in [10], where we have proposed
the Chained synchronization algorithm.

This chapter gives a summary of the synchronization and estimation solution together with
a description of the Chained synchronization in a later section.

Since this work’s primary focus is not on the T2A-TDoA and anchor synchronization top-
ics, we will provide the descriptions without discussing the results. Instead we will provide
illustrative results in Appendix B.

2.1 Synchronization

The synchronization of the anchor time bases plays a crucial role in the TDoA localization.
Without it, the measured receive times would be unusable as every time would be measured
with respect to a different time base and without knowledge of the mutual bias of these time
bases. In order to remedy this, the anchor time bases have to be precisely synchronized,
usually with sub-nanosecond accuracy.

The purpose of synchronization is to bring the mutual time bias of any two anchors within
the network to zero, i.e., make every anchor to measure time with respect to a single common
time base or time domain. Thus, a reference time domain has to be chosen. The specific
choice of the reference domain is not important. A straightforward and valid option is to
select a single anchor within the network to which the others synchronize. We will label the
time-reference anchor as the master anchor (having its master domain) and the rest as slave
anchors.

The synchronization should introduce minimal additional load to the communication chan-
nel, since it is also used for the positioning data (e.g., blink messages). Thus, one-way syn-
chronization methods are preferred over the multi-way ones (such surely send more than one
message). Also, using a one-way synchronization we make the protocol easier, since such
method can broadcast the messages (send message to all devices that are able to receive),
and do so without implementing a message delivery checks. In one-way synchronization the
master anchor periodically broadcasts synchronization messages that contain the time of the
message transmission expressed in the master time domain.

Synchronization can be done through a wired channel or through wireless channel, but since
we are interested in easily scalable solutions we chose the wireless option.
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For the synchronization we will use the second-order linear approximation of the bias (1.3),
where 𝑏𝑖 expresses the time domain bias of 𝑖th anchor to the master domain

𝑏𝑖[𝑘] = 𝑏𝑖[𝑘 − 1] + �̇�𝑖[𝑘 − 1]𝑇𝑘 + 1
2 �̈�𝑖[𝑘 − 1]𝑇 2

𝑘 , (2.1)

where 𝑇𝑘 represents the elapsed time between epochs 𝑘 and 𝑘 − 1. The term measurement
epoch, or simply an epoch, refers to a time instance between two measurements or between
two position fixes in the positioning context.

A comprehensive overview and comparison of the wireless one-way synchronization methods
is offered by [15]. The article compares five methods with varying complexity, with every
method using only a first-order linear model of the bias (with only the bias 𝑏𝑖 and its drift
�̇�𝑖). The methods range from a simple linear interpolation, over a PID controller to a Kalman
filter. Each method assumes that it periodically receives synchronization messages containing
master time. We will refer to the period of the synchronization messages as the synchronization
period 𝑇𝑘. It is shown by [15] that the performance of a method depends also on the length of
synchronization period, which can then be also viewed as a design parameter for the system.

The simplest of the methods is the linear interpolation. In each synchronization period the
current bias is calculated

𝑏𝑖[𝑘] = 𝑡𝐴
Rx, sync[𝑘] − 𝑡𝑀

Tx, sync[𝑘], (2.2)

where the superscripts denote in which time domain the value was measured, the 𝐴 is for slave
anchor domain and 𝑀 for the reference time domain. Reception times of a blink messages
are stored until the next synchronization message arrives. Then the time stamp correction
for each blink is calculated using linear interpolation. Consequently, the TDoA measurement
formation and position estimation is inherently lagged.

Another methods proposed by the [15] are the proportional-integral (PI), the proportional-
integral-differential (PID) and the proportional-integral-integral (PII) control loops. The three
methods are very similar, however, they differ notably in terms of performance and stability,
for more details consult [15].

The PI-based control loops take a different approach of estimating the correction value.
Instead of estimating the bias value between the slave and master time domains, the loops
try to estimate the receive time 𝑡𝐴

Rx[𝑘] of the next synchronization message. When the syn-
chronization message arrives, the master transmit time and the reception time of the message
is passed as inputs to the control loop. The difference between the actual 𝑡𝐴

Rx[𝑘] and esti-
mated 𝑡𝐴

Rx[𝑘] reception time of the message is used to drive the PI-based control loop. The
correction value for the receive times of the blink messages can be calculated right after the
message reception with the use of the estimated reception of the synchronization message
𝑡𝐴
Rx[𝑘] and the transmission time of synchronization message 𝑡𝑀

Tx[𝑘]. The detailed description
with schematics can be found in [15].

The final presented method is the discrete Kalman filter.6 The estimated state vector
comprises of the bias 𝑏 and the bias drift �̇�. The filter has no control input and accepts
the direct measurement of the bias, which is the difference of the time of reception and
transmission of the synchronization message.7 The predicted value of the bias is used for the
correction of the blink reception time. The predicted bias is obtained by performing the time
update step of the KF.

6We will refer to a discrete version of Kalman filter simply as a Kalman filter.
7This is not entirely true as the measurement is missing the propagation delay between master and slave

anchor. We will return to this topic in Section 2.1.1.
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The discussed synchronization methods were compared using the achieved localization ac-
curacy for several values of the synchronization period ranging from 150 ms to 900 ms. The
best results were achieved using the Kalman filter that outperformed the rest even for longer
synchronization periods [15]. Even though the Kalman filter is the most complex among the
methods, its stability, performance, variance estimates and precise predictions easily outweigh
the increase of computational demands.

Based on these reasons we have chosen to use the Kalman filter proposed by the [15] as
a basis for one-way synchronization of the UWB network. We have added the second-order
state to the filter, the bias drift rate �̈�, in order to further improve its performance, especially
during the warm-up phases of the devices.

In the following subsections we will describe the implementation of the Kalman filter for
one-way point to point (master to slave) synchronization. We will also describe the Chained
synchronization extension, which allows to synchronize widespread networks by relaying the
synchronization messages.

2.1.1 Point-to-Point synchronization
In the previous text we have briefly discussed the possible algorithms for the anchor syn-
chronization presented by the [15]. From the listed algorithms the Kalman filter stood as
the one achieving the best performance. We have implemented the KF for the purpose of
synchronization in our previous works [3, 4].

The Kalman filter is a stochastic state estimator of a system, where we are unable to
measure the states directly. However we are able to observe the internal state by measuring
the system output. The measurement is typically affected by the additive white Gaussian
noise [20, 21].

The Kalman filter is a two step recursive algorithm where the state development is predicted
in the time update step and corrected afterwards when the current measurement is included
during the measurement update step. In its original form, the Kalman filter is only used on
linear systems. For such systems the Kalman filter is optimal in a sense that it minimizes the
mean squared estimation error [21].

The filter recursively estimates the system state vector 𝑥 that evolves in time according to
the linear system state model

𝑥[𝑘] = F𝑥[𝑘 − 1] + B𝑢[𝑘 − 1] + 𝑤[𝑘] , (2.3)
𝑦[𝑘] = H𝑥[𝑘] + 𝑣[𝑘] , (2.4)

where F is the system matrix, B is the control matrix, 𝑢 is control input, H is output matrix
(measurement model) and 𝑦 is the system output. In general, the matrices are time variant
as their elements may change between iterations. For simplicity, however, we assume them to
be time invariant.8 The 𝑤 and 𝑣 are the process noise and measurement noise, respectively.
Both are assumed to have the normal distribution with zero mean and covariance matrices Q
and R.

𝑤 ∼ 𝒩 (0, Q) , 𝑣 ∼ 𝒩 (0, R) (2.5)

It is also assumed that the two noise vectors 𝑤 and 𝑣 are uncorrelated, meaning they are
independent of each other E[𝑤 · 𝑣T] = 0 (their covariance is zero).

8With the matrix F as an exception, because we will change the elements containing the time period.
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Both matrices Q and R are used as tuning parameters of the filter, since their real values
might not be known or are difficult to estimate. This is especially true for the process co-
variance Q. Most real-world system are non-linear, but they can be approximated on short
time intervals by linear models. The approximation error is kept low by sufficient density of
sampling.

Finding the real values for the measurement covariance is fortunately not that tricky. Values
of the matrix R are usually obtained from the manual of the device or measured in a controlled
environment.

Together with the state estimate the Kalman filter also keeps track of the uncertainty of
the estimate. This uncertainty is represented by the state covariance matrix P and is updated
within each time and measurement update, along with the state estimate.

Another important parameter of the Kalman filter is the estimation period, which deter-
mines how often the time update step is performed. Usually, this period is equal to the
sampling period of the measurements, but there are cases in which we need the filter to pre-
dict system state in regular intervals, independently on the measurements. The possibility to
do so is a great advantage of the Kalman filter.

The time update step predicts a new value for the state vector from the previous estimate
using the system model provided. Such estimate is called a priori estimate, because it uses an
information obtained in the past, and it is commonly labeled with a − sign in the superscript.
The time update equations [21] for the state estimate 𝑥 and the estimate covariance P are

𝑥−[𝑘] = F𝑥+[𝑘 − 1] , (2.6)
P−[𝑘] = FP+[𝑘 − 1]FT + Q . (2.7)

We can see that during each time update the covariance P is increased by the process noise
covariance Q, by which the filter takes into account the possible imperfections of the model.

During the measurement update the measurement is used to correct the predicted values
and compute a posteriori estimate 𝑥+ and covariance P+. In the measurement update the
difference between the measurement and estimated measurement (estimated system output)
is determined; this difference is called the innovation 𝜈.

𝜈[𝑘] = 𝑧[𝑘] − H𝑥−[𝑘] (2.8)
S[𝑘] = HP−[𝑘]HT + R (2.9)

Kalman filter also computes the covariance matrix S of the innovation. By examining the
elements of S we can detect whether the Kalman filter estimates converge to the internal state
of the observed system. That is when covariance S is changing slightly between iterations or
not at all.

Continuing with the description of the KF. The a posteriori estimate and covariance is
calculated according to [21] as

𝑥+[𝑘] = 𝑥−[𝑘] + K[𝑘]𝜈[𝑘] , (2.10)
P+[𝑘] = (I − K[𝑘]H)P−[𝑘](I − K[𝑘]H)T + K[𝑘]RKT[𝑘] , (2.11)

where K is the Kalman gain
K[𝑘] = P−[𝑘]HTS−1[𝑘] . (2.12)

The a posteriori estimate and covariance are then used in the next run of the Kalman filter
as the previous estimated values.
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2 Synchronization and Tag to Anchor TDoA

When Kalman filter converges to a steady state, the time development of the innovation
should look like a zero mean white noise with a covariance S. If there is a disagreement
between innovations and covariance S, it should be understood as an indication that the filter
parameters are not set correctly and further tuning or change of the model is needed.

After the introduction of the Kalman filter, we can move on to the description of its appli-
cation for the purpose of the anchor synchronization. The particular implementation in [15]
used a bias system model in which the state vector consists of the bias 𝑏 and the bias drift �̇�,

𝑥 =
[︁
𝑏 �̇�

]︁T
, F =

[︃
1 𝑇𝑠

0 1

]︃
, (2.13)

where 𝑇𝑠 is the synchronization period.
The system model assumes that the bias drift is constant or that it is changing only within

the process noise given by the matrix Q. While this is mostly true for the clock in steady state
(when the anchor network is running for some time), it is certainly not true for the warm-up
phases of the devices after power-on. From our experiments (see [3, 4] and Appendix B) we
have learned that the bias drift �̇� is dependent on the DW1000 (its internal clock electronics)
temperature and that the clock drift �̇� changes quite rapidly.

When the drift changes considerably, due to its non-zero drift rate, the filter is not be able
to keep up with the changes and the predicted bias will be repeatedly in disagreement with
the measurements. As a result the innovation will no longer be zero-mean and the estimates
will contain additional offsets.

To evade this problems we have added a third state that describes the bias drift rate �̈� into
our implementation.

𝑥 =
[︁
𝑏 �̇� �̈�

]︁T
, F =

⎡⎢⎣1 𝑇𝑠
1
2𝑇 2

𝑠

0 1 𝑇𝑠

0 0 1

⎤⎥⎦ (2.14)

The measurement of the bias is obtained from each of the received synchronization message
by solving the eq. (1.4) for the bias,

𝑏 = 𝑡𝑆
Rx,𝑠 − 𝑡𝑀

Tx,𝑠[𝑘] − 𝜏 , (2.15)

where 𝑡𝑆
Rx,𝑠 and 𝑡𝑀

Tx,𝑠 is the time of reception and transmission of the synchronization messages,
respectively, measured in the corresponding slave (𝑆) and master (𝑀) time domains. The
𝜏 is the time of signal propagation between the slave anchor and master anchor. For the
correct function of the synchronization, the propagation delay 𝜏 has to be known in advance
and measured as accurately as possible. Any error in the delay 𝜏 (or distance 𝑑 = 𝑐 · 𝜏)
measurements will result in offsetting the slave anchor domain from the master domain.

From the (2.15) we are able to form the measurement model H of the system and construct
the innovation equation.

𝜈[𝑘] = (𝑡Rx,𝑠[𝑘] − 𝑡Tx,𝑠[𝑘] − 𝜏) − H𝑥−[𝑘] , H =
[︁
1 0 0

]︁T
(2.16)

As for the matrix Q and (in this case) scalar variance 𝑅, determining the values is again
easier for 𝑅 as it is provided by the manufacturer. Variance 𝑅 expresses the uncertainty
of the time-stamping process, which includes time-stamping of the transmitted and received
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2.1 Synchronization

synchronization message. The variance for both types of time stamps is equal and its value
is 𝜎2

𝑡 = (150 ps)2 [15]. Therefore, the value of measurement covariance is

𝑅 = 2𝜎2
𝑡 = 2 · (150 ps)2 . (2.17)

This value is valid for high SNR signals. For signals with low SNR the measurement variance
will be larger, but typically the received signals have high SNR.

Finding the suitable values for matrix Q can be a tedious process and as it requires to
be fine tuned until satisfactory performance is achieved. The synchronization intervals 𝑇𝑘

may not be fixed, either due to some delay in transmission or due to a missed reception of
a synchronization message. Therefore, we define the process covariance per second Q̄. To get
the actual covariance Q during the estimation, we simply multiply the normalized covariance
Q̄ with a time interval.

Q(𝑇 ) = 𝑇 Q̄ (2.18)

To conclude this section we state how to correct the receive times of the blink messages.
Suppose that when a blink message arrives at the anchor antenna, the time-stamping process
assigns it a time stamp 𝑡𝑆

Rx,𝑏.
Correction �̂� of the time stamp is calculated by performing a time step for the bias value.

�̂� = F1 · 𝑥[𝑘] = 𝑏[𝑘] + 𝑇𝑏 �̇�[𝑘] + 1
2𝑇 2

𝑏 �̈�[𝑘], 𝑇𝑏 = 𝑡𝑆
Rx,𝑏 − 𝑡𝑆

Rx,𝑠[𝑘] , (2.19)

where F1 is the first row of system matrix F and 𝑇𝑏 is the delay between reception of the
synchronization message and blink message. The blink ToA is then converted from the slave
domain to the master domain.

𝑡𝑀
Rx,𝑏 = 𝑡𝑆

Rx,𝑏 − �̂� (2.20)

The Kalman filter also provides us with the variance of the correction and thus the variance
of the bias estimate 𝜎2

𝑏

𝜎2
𝑏 = F1P[𝑘]FT

1 + Q11 , Q11 = 𝑇𝑏Q̄11 . (2.21)

Finally, with the variance of the estimated bias, at the time of blink reception, we are able
to express the total variance of the blink receive time 𝜎2

Rx,𝑀 in master domain

𝜎2
Rx,𝑀 = 𝜎2

𝑡 + 𝜎2
𝑏 , (2.22)

where 𝜎2
𝑡 is the variance of the time stamp measurement.

The calculated variance can be used to asses the measurement quality, which can help to
evaluate which measurements are better suited for the position estimation.

2.1.2 Chained synchronization
The synchronization process presented in the previous subsection assumes that there is always
an unobstructed line of sight (LOS) between a slave and the master anchor. This poses a limit
on the UWB network size and the area where it is able to operate.

Assuring the line of sight between a single master and all the slave anchors may not be
possible. For example consider a situation, where we have to provide localization inside of
a building across multiple rooms. Surely we are able to guarantee a LOS within each room
but not across all of them.
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2 Synchronization and Tag to Anchor TDoA

It is possible to synchronize slave anchors even without a line of sight, but we have to
keep in mind that any obstruction in the signal path adds an unknown delay to the signal
time of flight. This delay creates an additional offset to the input of the synchronization
KF that disrupts the synchronization. Moreover, each obstruction also attenuates the signal,
effectively shortening the range of synchronization signals.

A possible way to partially solve this issue is to break the network to several isolated syn-
chronization domains, each with its own master anchor, with no inter-group communication
allowed. Every slave anchor within a domain has a LOS to the domain’s master anchor.
While this solution is fairly simple to implement, it is usable only if the movement of users
is restricted to a single group only. Once any user ventures on the boundary of two domains
then it may not be possible to successfully localize him as the time measurements will come
from two different time domains with unknown mutual bias. The Chained synchronization
algorithm overcomes such limitations by connecting the whole UWB network into a single
network-wide synchronization domain.

As already mentioned, we are often unable to assure the LOS between master and each
slave anchor. However, instead of insisting on direct LOS paths for the synchronization we
rather chain the anchors together to create a composite LOS path with the master anchor
at the beginning and the slave anchor at the end of the chain. These chained anchors have
LOS to the intermediate anchors in the chain and their role is to relay the synchronization
messages from the master further down the chain.

Utilizing the intermediate LOS links to substitute for the direct LOS is the key idea of the
Chained synchronization algorithm [10]. The algorithm introduces new anchor type into the
network, the relay anchor.

The function of a relay anchor is straightforward. Upon receiving a synchronization message
at time 𝑡𝑅

Rx,𝑠 from a relay (or the master) that is previous in the chain, the relay synchronizes
itself using the algorithm we described in Section 2.1.1. Relay then broadcasts a new syn-
chronization message to the slaves (or relays) that are further in the chain at time 𝑡𝑅

Tx,𝑟 after
a defined delay 𝑇Tx elapses [10]. The transmitted relay message is similar to the synchroniza-
tion message sent by the master. The message includes the time of transmission from the
relay 𝑡𝑀

Tx,𝑟 converted to the master domain by the estimated bias value 𝑏𝑟. These messages
can be received by other relays that resend them to anchors in their vicinity.

𝑡𝑀
Tx,𝑟 = 𝑡𝑅

Rx,𝑠 − 𝑏𝑟 + 𝑇Tx (2.23)

In addition to the transmission time value the relay anchor also includes the variance
of the transmission time, providing the measure of quality of its own synchronization and
transmission time estimation. Note that this is enabled by the use of Kalman filter. The
transmission variance is calculated in a similar fashion as it was for the blink variance in
the (2.21) but with an additional term describing the transmission time stamp variance [10].

𝜎2
Tx = F1PFT

1 + 𝑇TxQ̄11 + 𝜎2
𝑡 (2.24)

Relay anchors use the synchronization KF, which we have described in Section 2.1.1, with
a modified measurement equation. In this case both the message receive 𝑡Rx,𝑠 and transmit
𝑡Tx,𝑠 times have an associated variance since the message can originate either from master
or relay anchors. The variance of the receive time stamp is given by the measuring variance
𝜎2

𝑡 = (150 ps)2 and the transmission time variance 𝜎2
Tx, which is obtained from the received

relay message. We combine both variances in the measurement variance 𝑅.

𝑅 = 𝜎2
𝑡 + 𝜎2

Tx (2.25)
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Of course we also have to use an appropriate value for the propagation delay 𝜏 in the
measurement equation (2.15).

The Chained synchronization algorithm provides us a way to expand our UWB network
beyond a single room or hall. By introducing the relay anchors we are able to spread the
synchronization messages throughout the whole network and have every anchor belong to
a single time domain.

The algorithm itself has been proposed in [10] along with the predictions of the performance.
The performance was then experimentally evaluated in to following article [11]. Most attention
has been given to the synchronization error, which is the difference in synchronization through
the direct path (from master to slave) and the relayed path.

Results of the evaluations confirmed the predictions. Considering the synchronization error,
the further from the master a relay is the higher is its synchronization error. This is due to the
imperfections of the individual relays, which originate either from systematic errors (such as
calibration errors) or from the errors of rather random character (such as power fluctuations,
effects of the environment). Each error contributes to the offset of the relay’s time domain
and thus to the synchronization error. Moreover, this error is cumulative and after performing
several hops (passing several relays) the error exceeds several nanoseconds. This may greatly
deteriorate the localization performance if the measurements originating from distant relay
time domains are combined [11]. However we can mitigate this issue if the relay domains are
physically far enough, so that their measurements are less likely to be combined.

The error can be lowered during production and network installation. In production the
calibration of the equipment delays has to be done precisely. Those delays contain the antenna
delay and power dependent delays [22]. Also precise anchor position determination helps to
reduce the error as the ranges to master and relay anchors enter the calculations. Although
critical, the process of determination and compensation of these delays is beyond the scope
of this work, but it will be a subject of the future works.

By allowing the relay anchors to act as a synchronization sources for the slave anchors,
the algorithm provides a possibility to create redundant synchronization paths within net-
work. In the articles [10, 11] we have also investigated the effect of the choice of topology on
synchronization error.

Few chain examples can be seen in Figure 2.1, starting with a simple sequential path. For
the redundancy we can for instance construct multiple independent paths (Figure 2.1b) from
which a slave anchor can receive synchronization. The advantage of using independent paths
is having a redundant path, but also the possibility to combine the synchronization messages
coming from them, which usually reduces the synchronization error [11].

We are not limited to the two mentioned topologies as we can create much complex ones
where the paths join and split at several points, such as the mesh topology in Figure 2.1d.

2.2 Construction of the TDoA pairs

Synchronization of the anchors using the discussed algorithms makes TDoA localization of
the tags within an UWB network possible.

As was already discussed in the previous sections, the measurements for the Tag to Anchor
TDoA variant are created from the ToA measurements of a blink message received by the an-
chors. All such time stamps must be available to the position estimation algorithm, including
the identification of the tag and anchor. Therefore, every anchor sends the blink time stamp,
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2 Synchronization and Tag to Anchor TDoA

(a) Serial chain (b) Parallel independent chains

(c) Partially shared (d) Mesh

Figure 2.1: Examples of chain topologies [10]

tag address, own address and additional data such as RSSI or tag’s battery voltage to the
computation node for the position estimation.

The computation node creates the TDoA measurements from the input anchors data. This
is done by taking a pair-wise differences of the receive time stamps. We will discuss how to
choose the pairs later in this section.

A TDoA measurement ℎ̃𝑖𝑗 is constructed by taking the reception times of a blink message
received by the anchors 𝑖 and 𝑗

ℎ̃𝑖𝑗 = 𝑡Rx,𝑖 − 𝑡Rx,𝑗 . (2.26)

The measurements are gathered into a TDoA measurement vector ℎ̃. For convenience we
can also gather the reception times into a single vector 𝑡Rx and describe the pairing using
a matrix D, then we can create the vector ℎ̃ using matrix multiplication.

ℎ̃ = D𝑡Rx (2.27)

The matrix D ∈ R𝑚×(𝑚−1), where 𝑚 is the number of ToA measurements, is called a combi-
nation matrix. Each row of the matrix contains a single 1 and a single −1 to describe a ToA
pair which forms a TDoA measurement. Following is an example structure of the D matrix.

D =

⎡⎢⎢⎢⎢⎣
1 −1 0 · · · 0
0 1 −1 · · · 0
...

... . . . . . . ...
0 0 · · · 1 −1

⎤⎥⎥⎥⎥⎦ (2.28)

If the pairs are chosen carefully, we can construct the D matrix such that its rows are linearly
independent. Then the vector ℎ̃ contains measurements with maximal information.
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(a) D1 results in hyperbolae with low DOP (b) D2 results in hyperbolae with high DOP

Figure 2.2: The effect of matrix D choice on DOP

Equation (2.26) expresses the difference in the blink message reception. Given the anchor
time base synchronicity9, the reception time difference is also equal to the difference of signal
propagation times 𝜏𝑖 and 𝜏𝑗 from the tag to the two particular anchors.

𝑡Rx,𝑖 − 𝑡Rx,𝑗 = 𝜏𝑖 − 𝜏𝑗 (2.29)

The computed time differences are typically in the order of nanoseconds. For the sake of
avoiding arithmetic difficulties during the position estimation, it is convenient to convert the
times into distances and work with larger numbers. Then the equation (2.26) can be expressed
using the positions of the tag 𝑟, 𝑖th and 𝑗th anchor.

ℎ𝑖𝑗 = ‖𝑟𝑖 − 𝑟‖ − ‖𝑟𝑗 − 𝑟‖ = 𝑐 · (𝜏𝑖 − 𝜏𝑗) = 𝑐 · (𝑡Rx,i − 𝑡Rx,𝑗) (2.30)

The equation above is an equation for hyperbola with parameter ℎ𝑖𝑗 and focal points at
the anchors. The hyperbola is a set of possible tag locations at the time of the tag’s blink
transmission.

Multiple TDoA measurements must be available in order to find the position of the tag.
Each TDoA measurement corresponds to a hyperbola on which the tag lies. Consequently,
the tag position estimate is at the intersection point of all measured hyperbolae.

The hyperbolae are determined by the selection of anchor pairs used for construction of the
TDoA measurements and thus by the structure of the combination matrix D.

Now let us consider an example of tag localization, where we try to estimate its position
with measurements from three anchors, but with two different combination matrices D1 and
D2. The example setup with the resulting hyperbolae is depicted in Figure 2.2.

D1 =
[︃
1 −1 0
0 1 −1

]︃
, D2 =

[︃
1 −1 0
1 0 −1

]︃
(2.31)

In Figure 2.2 we can observe how the choice of combination matrix D influences the resulting
hyperbolae deduced from identical set of receive time stamps. We can see that in Figure 2.2a

9For the purposes of the position estimation we assume that the anchors are synchronized and thus they
measure w.r.t. a common time base. Therefore, for the remainder of this chapter we omit the superscripts,
denoting the time domain.
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that the hyperbolae intersect at an almost orthogonal angle, as opposed to the situation in
Figure 2.2b.

If the measurements were perfect, then the specific choice of D would not affect the results
of the estimation, as the hyperbolae would intersect precisely at a single point.

However the real-world measurements are always affected by error sources, which in turn
cause the hyperbolae not to intersect at a single point. The hyperbolae then resemble zones,
rather then lines, which is illustrated in Figure 2.2.

Instead of a point of the intersection, the zoned hyperbolae have an area of intersection
with tag being anywhere within the area.10 In Figure 2.2b the area is much larger than in
Figure 2.2a, because the two hyperbolae intersect at much sharper angle, so that their arms
are almost parallel.

This brings us to a parameter called Dilution of Precision (DOP). It represents the measure
of sensitivity of the estimate on the measurement inaccuracy. It tells how much the estimated
position changes if we disturb the measurements by a small value. The higher the DOP the
more sensitive the estimate will be to the input date and the more it will be prone to errors.

The calculation of the DOP is a topic which deserves its own section and we devoted
Appendix A for its description.

The DOP is related to the measured TDoA and consequently with the combination ma-
trix D. As a result, if we modify the matrix D the DOP will also change.

We can see now that using a single D matrix for the whole estimation process may not
be optimal in the terms of achievable DOP, thus localization accuracy as well. Therefore we
may want to change the particular measurement pairing when the user moves in an area with
high DOP. However, we do not know the DOP value prior to the position estimation. It is
apparent that the task of finding the optimal D is not straightforward.

When the total number of anchors is low we should be able to compute the DOP (for
computation see Appendix A) in advance for every possible D matrix. During the estimation
we could choose the optimal D based on the pre-calculated DOP and last position estimate.
However, this approach is very memory demanding for higher number of anchors.

Another approach could be such that we keep track of the last used D matrix and last DOP
for each tag. If the new position estimate achieved higher DOP we try to permute the D for
the next estimation epoch.

It is apparent that the choice of D is not direct one. To the author’s knowledge there is not
a published method or algorithm for the choice of the TDoA pairs or matrix D such that the
DOP of the subsequent position estimate would be minimal (or low enough). In our future
works we would like to explore this topic more and find a feasible method to optimize the D
matrix.

2.3 Solution of the positioning equations
The last thing missing from the general description of the TDoA localization is the actual
position estimation from the measured TDoA set.

Firstly, it is necessary to define the coordinate system. For the UWB positioning the pre-
ferred system is any right-handed Cartesian coordinate system, which has three perpendicular
axes, labeled 𝑥, 𝑦 and 𝑧. In this work we will consider the ENU system, which specifies that
the 𝑥 axis is pointing towards east, 𝑦 towards north and 𝑧 upwards.

10This is a fairly simplified view. In reality, there is not an area with sharp error bounds, but rather
a continuous random value distribution.
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From the geometric standpoint, the position is obtained by finding the intersection of the
measured hyperbolae (or hyperboloids in three dimensions). For this purpose we will use the
distance difference equation (2.30) from the previous section. Additionally, we will assume that
during the formation of TDoA pairs a mapping Φ(𝑚) is created that maps the measurement
number 𝑚 to the anchor pair 𝑖 and 𝑗. The reason for that is to simplify the expressions and
avoid confusion in measurement vector ℎ having two indices in its subscripts (suggesting that
it is a matrix rather than a vector). The mapping can be derived from the combination matrix
D. The measurement equation has the following form:

ℎ𝑚 = 𝑐 · (𝑡Rx,i − 𝑡Rx,𝑗) , Φ(𝑚) = (𝑖, 𝑗) . (2.32)

For the determination of the 3D position, three measurements ℎ𝑚 are sufficient. The
position estimate 𝑟 is then a point where all of the three hyperboloids intersect. Such point
has a distance to each of the hyperbolae equal to zero, thus it satisfies the following set of
equations, where the measurement is compared with the expected value.

ℎ𝑚 − (‖𝑟𝑖 − 𝑟‖ − ‖𝑟𝑗 − 𝑟‖) = 0 , 𝑚 ∈ {1, 2, 3} . (2.33)

The measurements, however, are never perfect and are always affected by an error. As we
have seen in Figure 2.2, there is no longer a single point of intersection, due to the errors
(error gaps), but rather an area where the bounds overlap. Thus, more measurements are
taken in order to reduce the area.

When we use more than three measurements (for the 3D case) the set of equations usually
becomes over determined and has no exact solution. Instead, the position is estimated by
finding a solution of (2.33) that minimizes the sum of squared distances to all of the measured
hyperbolae. This criterion and problem of the position estimation is formulated as a nonlinear
least-squares problem (NLSQ)

min
𝑟

𝑓(𝑟) = min
𝑟

𝑀∑︁
𝑚=1

[𝑔𝑚(𝑟)]2, (2.34)

where
𝑔𝑚(𝑟) = ℎ𝑚 − (‖𝑟𝑖 − 𝑟‖ − ‖𝑟𝑗 − 𝑟‖) , (2.35)

is the element of residual vector holding the distance to a hyperbola.
Solution can be found using the standard nonlinear optimization methods, such as gradient-

descent, Gauss-Newton or Levenberg-Marquardt. In our previous works we have used the
Levenberg-Marquardt method, since it provides a compromise between convergence speed
and risk of divergence [3, 23]. We denote this approach as the epoch by epoch estimation as it
is using only data corresponding to a single blink message and does not exploit the information
from previous epochs.

In this work we consider an additional approach that uses also the past information and
tries to estimate the position in a more continuous way. For this purpose we will use an
Extended Kalman Filter (EKF).

In the following sections we will describe both approaches. Additionally, we will discuss the
benefits and implementation of adding a soft constraint on height into the position estimation.
The height constraint may help reduce the error (not only) in the vertical coordinate when
the geometry of the anchors is flat and prone to errors in estimation of the tag’s height.
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2 Synchronization and Tag to Anchor TDoA

2.3.1 Nonlinear least-squares — Epoch by epoch
The epoch by epoch approach involves usage of the traditional algorithm used for solving of the
non linear least-squares problem. The application of Levenberg-Marquardt (LM) algorithm
is described here. The nonlinear problem can be represented in the following form:

min
𝑥

𝑓(𝑥) = min
𝑥

𝑀∑︁
𝑚=1

[𝑔𝑚(𝑥)]2 = min
𝑥

𝑀∑︁
𝑚=1

[𝑦𝑚 − 𝑦𝑚(𝑥)]2 . (2.36)

The function 𝑓 is referred to as the cost function, 𝑥 is the vector of unknown parameters,
𝑔𝑚 is a measurement residual, 𝑦𝑚 is a measurement and 𝑦𝑚 is an estimated value of the
measurement (output of a model).

The LM solves the problem above in an iterative manner starting from an initial guess 𝑥0
until the estimate converges. The update equation for the LM method has the following form

𝑥𝑘+1 = 𝑥𝑘 − (GT
𝑘 G𝑘 + 𝜆𝑘I)−1GT

𝑘 · 𝑔(𝑥𝑘) , (2.37)

where I is the identity matrix, 𝜆𝑘 is a positive parameter of the method and G is a Jacobi
matrix of the residual vector 𝑔

G𝑘 = 𝜕𝑔(𝑥)
𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝑘

. (2.38)

The LM method solves the NLSQ problem by combining the advantages of the gradient
and Gauss-Newton methods [24, 25]. The method behavior is influenced by the value of
the parameter 𝜆𝑘, which we will explain later. Firstly, we will present the equations for the
gradient and Gauss-Newton methods and their properties.

The gradient method finds the function (local) minimum by updating the estimate 𝑥𝑘 in
the direction of the steepest descent, which is the direction opposite to the gradient of the
cost function ∇𝑓 . For the estimate update a gradient of the cost function is used, thus the
gradient method is a first order method

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘) , (2.39)

where 𝛼𝑘 is a parameter called step size.
If the problem and cost function are formulated in the sense of NLSQ (2.36), then the

gradient has the following form.

∇𝑓(𝑥𝑘) = GT
𝑘 · 𝑔(𝑥𝑘) (2.40)

When using the gradient method we may change the step size 𝛼𝑘 between iterations, but it
is usually held constant for all iterations. Main attribute of the gradient method is that it
converges steadily towards a function minimum, but does it rather slowly. With fixed step
size, the method may oscillate around the minimum before finally converging to it.

The Gauss-Newton method is a method used specifically to solve NLSQ problems. Its
iteration update takes the form of:

𝑥𝑘+1 = 𝑥𝑘 − (GT
𝑘 G𝑘)−1GT

𝑘 · 𝑔(𝑥𝑘) . (2.41)

The Gauss-Newton is derived using the second order Taylor series expansion (thus it is a second
order method). The inverted expression in the brackets is an approximation of the cost
function Hessian ∇2𝑓 (the second-derivative matrix) obtained by neglecting the higher order
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2.3 Solution of the positioning equations

terms. In the equation below we provide the Hessian equation of a cost function having the
NLSQ form (Equation (2.36))

∇2𝑓(𝑥) = 2GT
𝑘 G𝑘 + 2

𝑀∑︁
𝑚=1

𝑔𝑚(𝑥𝑘)∇2𝑔𝑚(𝑥𝑘) . (2.42)

The Hessian describes the curvature of the cost function and with this additional informa-
tion the method dynamically scales and bends the search direction to find a minimum more
efficiently.

Gauss-Newton method is faster in achieving a minimum than the gradient method. How-
ever, it relies on a good initial guess (close to a minimum) otherwise the estimates tend to
diverge.

As already mentioned, the Levenberg-Marquardt method is a combination of the methods
described above. Its behavior is changed by manipulating the 𝜆𝑘 parameter. For higher values
of 𝜆𝑘 is the inverted expression in the Levenberg-Marquardt update (2.37) approximately equal
to 𝜆𝑘I so the method behaves like the gradient method with a step size of 𝜆−1

𝑘 . For lower
values of 𝜆𝑘 the identity matrix is negligible in comparison to the other term and the method
behaves more like a Gauss-Newton method.

According to [24, 25] the 𝜆𝑘 parameter is changed using the following rules:

• If the cost increases, then the estimate is not accepted as it is further away from the
function minimum. The 𝜆𝑘 parameter is increased and the safer gradient behavior of
the method is favored.

• If the cost decreases, then the estimate is accepted, since the estimate is converging to
a minimum. The 𝜆𝑘 is decreased and the faster Gauss-Newton is favored.

To use the LM method for position estimation we need to formulate the problem in the
NLSQ sense, which we have already done with the Equations (2.34) and (2.35), and derive its
first derivative. In the calculations we also need to know the positions of the anchors, marked
as vectors 𝑟𝑖.

min
𝑟

𝑓(𝑟) = min
𝑟

𝑔T𝑔 (2.43)

𝑔𝑚(𝑟) = (ℎ𝑚 − (‖𝑟𝑖 − 𝑟‖ − ‖𝑟𝑗 − 𝑟‖)) (2.44)

The first derivative G𝑚 (here the subscript denotes the row number rather than the itera-
tion) of the vector element 𝑔𝑚 is

G𝑚 = 𝜕𝑔𝑚(𝑟)
𝜕𝑟

=
[︁
(1𝑗𝑟 − 1𝑖𝑟)T

]︁
, (2.45)

where the 1𝑖𝑟 is a unit vector pointing from the current estimate 𝑟 to the anchor 𝑖.
In a previous section about the anchor synchronization we have stated that with the Kalman

filter we are able to obtain the variance of the blink time stamp and with it the quality of
the measurement. In the LM equation (2.37) we do not take any measurement variance
into account, and so every measurement is treated with equal weight. This may degrade the
performance of the estimation if a measurement from a badly synchronized anchor enters the
calculations.

It is why the weighting is introduced to the LM algorithm. The weighting acts as a reg-
ularization of the inverse term and increases the stability of calculations. More precisely it
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2 Synchronization and Tag to Anchor TDoA

is the generalized Tikhonov regularization as it follows the same pattern. The measurement
weighting is done on the residuals 𝑔 and the approximated Hessian [26]:

GTG → GTWG, GT𝑔 → GTW𝑔 , (2.46)

where weighting matrix W is a square matrix that is the inverse of the measurement covariance
matrix. The equation for the LM update with weighting is following

𝑥𝑘+1 = 𝑥𝑘 − (GT
𝑘 WG𝑘 + 𝜆𝑘I)−1GT

𝑘 𝑔(𝑥𝑘) . (2.47)

The individual weights are calculated from the blink variance. If the TDoA measurements
ℎ were formed using combination matrix D as

ℎ = D𝑡Rx𝑐 , (2.48)

then the weights (measurement variances) are calculated in a similar fashion from the vector
of time stamp variances 𝜎2

Rx, where the individual blink variances are calculated according to
the Equation (2.22)

W = (D diag(𝜎2
Rx)DT𝑐2)−1 , (2.49)

where the operator diag(·) creates a diagonal matrix from the given input vector.
In our implementation we have used the version of the LM update that replaces the identity

matrix with a matrix, that has only the diagonal of the matrix GT
𝑘 WG𝑘 [27]

𝑥𝑘+1 = 𝑥𝑘 − (GT
𝑘 WG𝑘 + 𝜆𝑘Diag (GT

𝑘 WG𝑘))−1GT
𝑘 𝑔(𝑥𝑘) , (2.50)

where the Diag(·) operator creates a diagonal matrix, nullifying the off-diagonal elements.
In cases where the estimates are far from the minimum and parameter 𝜆𝑘 is large, the

influence of the (GT
𝑘 WG𝑘) becomes negligible to that of 𝜆𝑘I and the method behaves as

gradient-descent method. Replacing the identity matrix with the diagonal of (GT
𝑘 WG𝑘)

helps the estimates to get back to the minimum faster and in the more precise direction, by
taking into account the scales of the elements on the main diagonal [27].

2.3.2 Per tag Kalman filter — Continual estimation
The LM method presented in the previous section estimates the tag positions using only the
data from the current epoch, making each estimate an isolated one. While this makes the
LM method universally usable for every tag, it simultaneously cuts outs any information that
may be gained from the connections that inter-epoch estimate possesses.

An approach that uses the inter-epoch information may have more stable (and even ac-
curate) results, for example by taking the tag movement dynamics into consideration. This
can be achieved by employing the Extended Kalman Filter (EKF) to solve the positioning
equations. The EKF also allows us to accept more measurements from different sources into
the process. Consequently, we are able to fuse the data and filter the estimated positions
during the position estimation process.

Since the positioning problem is nonlinear, the classic linear Kalman filter cannot be applied.
The Extended Kalman Filter (EKF) deals with the non-linearity by the means of linearization
of the system model around each estimate 𝑥 [21]. The use of EKF is often challenging for
highly nonlinear systems. When the linear approximation is less accurate, the Kalman filter
behaves poorly. Therefore, the system must be sampled densely enough.
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2.3 Solution of the positioning equations

The non-linearity may be present in the system model and/or the measurement model.
Following equations describe both models in the discrete time variant [21]

𝑥[𝑘] = 𝑓(𝑥[𝑘 − 1], 𝑢[𝑘 − 1], 𝑤[𝑘 − 1]), 𝑤[𝑘] ∼ 𝒩 (0, Q), (2.51)
𝑦[𝑘] = 𝑔(𝑥[𝑘], 𝑣[𝑘]), 𝑣[𝑘] ∼ 𝒩 (0, R). (2.52)

The variables in the above equations have similar meaning as they had in the KF equations
in Section 2.1.1. The 𝑥 denotes the system state, 𝑢 control input, 𝑦 system output and 𝑤
and 𝑣 the process noise and measurement noise, respectively. The functions 𝑓 and 𝑔 capture
the nonlinear behavior of the system and measurement models.

The time update step for EKF starts with the computation of the new estimate according
to the nonlinear model 𝑓 with the noise 𝑤 set to zero.

𝑥−[𝑘] = 𝑓(𝑥[𝑘 − 1], 𝑢[𝑘 − 1], 0) (2.53)

In order to obtain a priori estimate covariance P−, we linearize the above equation at the
point of previous a posteriori estimate 𝑥[𝑘 − 1].

F[𝑘 − 1] = 𝜕𝑓(𝑥, 𝑢, 𝑤)
𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥[𝑘−1], 𝑢=𝑢[𝑘−1]

(2.54)

With the linear matrix F we are now able to calculate estimate variance using the linear
KF equations.

P−[𝑘] = F[𝑘 − 1]P[𝑘 − 1]FT[𝑘 − 1] + Q (2.55)

Similarly for the measurement update step, the estimated output is obtained by evaluating
the nonlinear measurement model 𝑔 at the a priori estimate. Together with the measurement
𝑧[𝑘] the innovation is calculated as

𝜈[𝑘] = 𝑧[𝑘] − 𝑔(𝑥−[𝑘], 0) . (2.56)

Again, the first partial derivative of the function 𝑔 (denoted by G) is used for evaluation
of the measurement covariance S.

G[𝑘] = 𝜕𝑔(𝑥, 𝑤)
𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥−[𝑘]

(2.57)

S[𝑘] = G[𝑘]P−[𝑘]GT[𝑘] + R (2.58)

The a posteriori state estimate and covariance are calculated using the following equa-
tion [21], which is identical to the one used for the linear KF.

𝑥+[𝑘] = 𝑥−[𝑘] + K[𝑘]𝜈[𝑘], K[𝑘] = P−[𝑘]GT[𝑘]S−1[𝑘] (2.59)
P+[𝑘] = (I − K[𝑘]G[𝑘])P−[𝑘](I − K[𝑘]G[𝑘])T + K[𝑘]RKT[𝑘] (2.60)

From the presented equations we can see that if both the system and measurement models
are linear, then the EKF reduces to linear KF. When the observed system is highly nonlinear,
so that the EKF fails to estimate its state correctly, it is better to use the Unscented Kalman
Filter (UKF). The UKF does not linearize the statistics and tries to preserve the nonlinear
character by applying so called unscented transformation on the state estimates [28]. We plan
to investigate the UKF performance in the following works, however, we do not expect major
differences from the EKF performance.
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2 Synchronization and Tag to Anchor TDoA

To use the EKF for position estimation we start by determining the state vector 𝑥 and
system model. The model should describe the tag’s movement. In the most basic form we can
use the model of a stationary object that estimates only object’s position 𝑟, with the system
model 𝑓 being an identity matrix and thus linear.

𝑥 = 𝑟, F =

⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦ (2.61)

Between measurements or estimation epochs, the movement of the object will have to
be sufficiently slow, because the model assumes a static object. Any movement will then be
perceived as a process noise 𝑤, resulting from the not perfect model and having the covariance
Q. Then the matrix Q has to be carefully tuned to capture the expected movement, in order
for the EKF estimates to be able to keep up with the measurements. High blink rate may
also help to reduce the model error.

We could add velocity to the model for an improvement of the estimates, for the cases
where we are tracking the position of an object that moves in more or less straight lines (such
as a trolley, car or a robot). Including the velocity, however, may not be suitable if we are
tracking movement of pedestrians. Their movement is more chaotic as they are able reverse
the direction of their movement at any time. When this happens, few of the new estimates
will still follow the old direction until the filter catches up and corrects the velocity. Therefore,
it is more suitable to use the static model for the pedestrian tracking. In the following text we
will use this static model, as we will present results from either static or pedestrian movement
tracking experiments.

The measurement update step involves a nonlinear equation. As we have mentioned, the
TDoA measurements ℎ𝑚 define the set of possible tag positions to be on a hyperbola. Thus
the measurement model is the hyperbola equation

𝑔𝑚(𝑟) = ‖𝑟𝑖 − 𝑟‖ − ‖𝑟𝑗 − 𝑟‖ , (2.62)

where 𝑟 is the tag’s position, 𝑟𝑖 is position of anchor 𝑖 and 𝑔𝑚(𝑟) is the predicted output based
on the tag and anchors positions. Note that the 𝑔𝑚 is the 𝑚-th element of the measurement
model vector 𝑔 and that we still use the measurement mapping Φ(𝑚) → (𝑖, 𝑗) introduced at
the beginning of Section 2.3.

The innovation is obtained by comparing the TDoA measurement ℎ𝑚 with the predicted
value 𝑔𝑚.

𝜈𝑚[𝑘] = ℎ𝑚[𝑘] − 𝑔𝑚(𝑟)[𝑘] (2.63)

By linearizing the measurement model 𝑔 we get the matrix G. For the 𝑚-th row of matrix
G it holds

G𝑚 = [(1𝑗𝑟 − 1𝑖𝑟)T] , (2.64)

where 1𝑖𝑟 is a unit vector pointing from the current estimate 𝑟 towards the anchor 𝑖.
It can be observed that the innovation vector 𝜈 is identical to the residual vector in the LM

estimation (2.44) and that both methods share the Jacobi matrix G.
The calculation of the measurement covariance matrix R is almost identical to the calcu-

lation of weighting matrix W (2.49) in the previous section. The difference is that the result
for matrix R is not inverted

R = D diag(𝜎2
Rx)DT 𝑐2 . (2.65)
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The EKF described in this section will serve as a basis for the EKF used for the A2T-
TDoA localization in Chapter 3. Some of the results of T2A-TDoA localization are included
in Appendix B.

2.3.3 Additional height measurement
For an indoor localization scenario it is common, that the anchors will be placed at the same
height, resulting in a flat geometry. Such placement typically results in high vertical DOP and
thus the estimate accuracy in the vertical coordinate is rather poor. To cope this problem, it
is beneficial to place the anchors in diverse heights, but that is not always possible.

When we are estimating a position of a trolley or a pedestrian, it can be expected that the
𝑧-coordinate of the tag will be fairly constant (e.g. tag being placed in a pocket). In such
cases it is appropriate to add a soft constraint on the height of the tags to achieve better
results in three-dimensional positioning. The soft constraint specifies both the approximate
(mean) height 𝑝 of the tag together with its uncertainty 𝜎2

𝑝 (variance).
Both the LM estimator and EKF can be easily extended with this constraint, by adding an

artificial measurement of the tag’s height (or a real one if available). The height measurement
in LM is added by appending it to the residual vector 𝑔LM

𝑔LM
𝑝 =

[︃
𝑔LM

𝑝 − 𝑟𝑧

]︃
, (2.66)

where 𝑟𝑧 is the vertical component of the tag’s position estimate and 𝑝 is the height measure-
ment. The measurement is added to the EKF by expanding the measurement model and the
innovation vector

𝜈𝑝 =
[︃

𝜈
𝑝 − 𝑟𝑧

]︃
. (2.67)

The Jacobi matrix G is shared by both methods

GLM
𝑝 =

[︃
GLM

0 0 −1

]︃
, GEKF

𝑝 =
[︃

GEKF

0 0 −1

]︃
. (2.68)

Finally the height measurement variance is added

WLM
𝑝 =

⎡⎢⎢⎢⎢⎣
0

WLM ...
0

0 · · · 0 1/𝜎2
𝑝

⎤⎥⎥⎥⎥⎦ , REKF
𝑝 =

⎡⎢⎢⎢⎢⎣
0

REKF ...
0

0 · · · 0 𝜎2
𝑝

⎤⎥⎥⎥⎥⎦ . (2.69)

The performance improvement brought by the soft constraint is presented at the end of
Appendix B. More importantly, it is also used for the A2T-TDoA in Chapter 3.
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In the previous chapter we have summarized the principles of the Tag to Anchor TDoA.
This variant estimates the position of the tag from the reception times of a blink message,
transmitted by the tag. The measured data is gathered in the so-called computation node of
the network where the actual estimation takes place. Our focus in this chapter will be on the
Anchor to Tag TDoA positioning, where the tags can estimate their own position by passively
listening to the messages transmitted by the anchors.

The need for a computation node of the T2A-TDoA variant implies that the resulting
positions immediately after the estimation are available only to the node (wherever in the
network that is). If users need to know their own location, it has to be sent to them from the
computation node using a communication channel. Generally, the channel can be the UWB
channel, but then the position forwarding would induce a heavy load for the channel and limit
the number of tag blinks per second. Therefore, it is not a viable solution for the networks
with many users.

As we have written, the T2A-TDoA is capable of handling a hundreds or even a thousand of
simultaneously running tags. The limit is determined mostly by the selected UWB channel,
channel capacity and the bit rate, with which the blinks are sent. Also the speed of the
position estimation is a limiting factor if the real time positioning is required.

One of the advantages of A2T-TDoA is that the position estimate is available to the user
immediately after its computation. This is done by allowing the user to measure the data
necessary and compute the position on their own. By doing so, it enables the A2T-TDoA to
have an unlimited number of simultaneously running tags, which is another advantage of the
approach.

The user limit of the T2A-TDoA approach is sufficient for a significant amount of possible
use cases. However, the immediate unavailability of the position estimates to the users might
be an issue, for example when the system is used for the localization of a robot within
a building. Typically for its own function the robot needs to know its position at regular
intervals and as soon as possible. Returning the position from the computation node might
be problematic if the UWB channel cannot be used for that purpose or if the computation
node is not present at all. In that case the A2T-TDoA would be a perfect solution for the
robot positioning.

Another example is using the UWB network as an extension to the GNSS localization,
providing the positions for both the outside environment and for indoors, where the network
is operating. The UWB estimates should be combined with the GNSS estimates seamlessly
without the need for the user’s intervention and ideally without any additional data load to
the UWB network. Thus, the A2T-TDoA seems to be better suited for the problem.

Inspired by the GNSS, the A2T-TDoA variant reverses the messaging scheme between tags
and anchors. The anchors now periodically send beacon messages that are received by the
tags. Similarly to the GNSS the A2T-TDoA can support any number of user tags since the
estimation is done at their end and the UWB channel is utilized by the anchors only.

Every tag estimates its own position once a sufficient number of beacon messages is received.
Because the tags are listening most of the time of their operation, their power consumption
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rises significantly as the message reception is more power-demanding than transmission. The
consumption is increased even further due to the position estimation. However, given the
advantages that A2T-TDoA offers, the increased power consumption is an acceptable price.

For the position estimation we cannot use the algorithms described in Chapter 2 as the
error caused by the tag’s clock bias (more specifically its bias drift) is no longer negligible.

In GNSS, the positioning signals sent from the satellites use code multiplex [18], which
allows the users to receive them simultaneously. Then the data gathered about and from the
received messages can directly be used for the position estimation.

The simultaneous full featured message reception, however, is not achievable by the UWB
devices, only a single message can be received or transmitted at a time [2, 9]. Therefore
the beacon messages have to be transmitted with a delay between each other so that they
would not interfere with one another and the tags will have enough time to process them. Yet
even when using the shortest delays possible, the bias dynamics of the tag is still capable of
rendering the raw measurements useless (as shown in Section 1.2.2).

Nevertheless, we were able to design an EKF that estimates the bias and eliminates its
influence on the data and estimates the tag’s position as well. The only available methods
are able to estimate the position by ignoring the bias problem to some extent, but with much
poorer positioning results when compared to our solution.

In the following sections we will discuss the tag clock drift problem in detail. We will
describe how the bias influences the measurements and to what extent. Next we will propose
a method how to cope with the bias using an Extended Kalman Filter and how to estimate
the position. At the end of the chapter we will present and discuss the results from the carried
out experiments and evaluate the performance of the proposed solution.

3.1 Effect of bias drift on A2T measurements

We have already tackled the topic of the drift effect in the introductory Section 1.2.2 while
discussing the TDoA principle. Within a single epoch of the A2T variant, every anchor
broadcasts a beacon message at a specified transmit time (this time is included in the data
section of the message). The messages are then received by the tag, which also stores the
receive time and transmit time of each of the received message. These beacon messages cannot
be sent all at the same time, because the UWB devices can receive only one message at the
time. Therefore the anchors have to transmit the messages with a delay to one another.

As we consider the TDoA localization principle, we also assume that the time bases of the
anchors are synchronized and belong to the same master time domain. Also, the tags have
free running clocks and therefore have an arbitrary bias to the master domain.

As in the previous sections, we assume the relation between the transmit and receives times
(ToA) to be

𝑡𝑇
Rx,𝑖 = 𝑡𝐴

Tx,𝑖 + 𝜏𝑖 + 𝑏𝑖 , (3.1)

where the super script denotes the time domain of the measurement, (𝑇 ) for tag and (𝐴) for
anchor, 𝜏𝑖 is the propagation time between the two devices and the 𝑏𝑖 bias of the two time
domains. In general, the bias 𝑏𝑖 is not stationary and changes in time.

In the calculations of the TDoA measurements, the tag has to compensate for the trans-
mission spacing 𝑇𝑖𝑗 by subtracting it from the measurement.

ℎ̃𝑚 = (𝑡𝑇
Rx,𝑖 − 𝑡𝑇

Rx,𝑗) − 𝑇𝑖𝑗 (3.2)
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3.1 Effect of bias drift on A2T measurements

Since the anchors are synchronized, the transmission spacing can be derived from the message
transmission times.

𝑇𝑖𝑗 = 𝑡𝐴
Tx,𝑖 − 𝑡𝐴

Tx,𝑗 (3.3)

Then we can form the TDoA measurement by rearranging the Equation (3.1)

𝑡𝑇
Rx,𝑖 − 𝑡𝐴

Tx,𝑖 = 𝜏𝑖 + 𝑏𝑖 , (3.4)

and taking the difference with data from two anchors.

ℎ̃𝑚 = (𝑡𝑇
Rx,𝑖 − 𝑡𝑇

Rx,𝑗) − (𝑡𝐴
Tx,𝑖 − 𝑡𝐴

Tx,𝑗) = (𝜏𝑖 − 𝜏𝑗) + (𝑏𝑖 − 𝑏𝑗) (3.5)

From the (3.5) we can see how the tag time base bias contributes to the measurements.
In contrast to the T2A variant, neither the transmit times nor the biases cancel out, since
they are not equal and measured at different instances. The anchors are synchronized and
therefore we can model how the tag clock dynamics differs from the anchor clock dynamics.
If we use the linear model (1.3), we can express the bias difference using the tag bias drift �̇�
w.r.t. the anchor clock drift.

𝑏𝑖 − 𝑏𝑗 = �̇� · (𝑡𝑇
Rx,𝑖 − 𝑡𝑇

Rx,𝑗) (3.6)

It is important to clarify that it does not matter whether we use, for the (3.6), the difference of
receive times in tag’s domain or transmit times in master domain. The two time differences will
differ in the order of nanoseconds, due to the propagation times in reception time difference
and bias drift. Therefore the transmission spacing (order of milliseconds) present in these
differences will be more dominant. After multiplying the time difference with the bias drift
�̇�, the two differences (difference of reception times and difference of transmission times) will
become indistinguishable and both will express the same transmission spacing of the beacon
messages. This has been also proven in [4].

For the position estimation we would rather work with distances and for that, we multiply
the TDoA measurement ℎ̃𝑚 by the signal propagation speed 𝑐 to convert the time differences
into the distance differences.

ℎ𝑚 = 𝑐 · [(𝑡𝑇
Rx,𝑖 − 𝑡𝑇

Rx,𝑗) − (𝑡𝐴
Tx,𝑖 − 𝑡𝐴

Tx,𝑗)]
= 𝑐 · (𝜏𝑖 − 𝜏𝑗) + 𝑐 · (𝑏𝑖 − 𝑏𝑗)
= (‖𝑟 − 𝑟𝑖‖ − ‖𝑟 − 𝑟𝑗‖)⏟  ⏞  

TDoA

+ 𝑐 · �̇� · (𝑡𝑇
Rx,𝑖 − 𝑡𝑇

Rx,𝑗)⏟  ⏞  
Tag clock drift error

(3.7)

The bias drift comes into the TDoA measurement as an error source. According to the
IEEE 802.15.4 [2] the crystal oscillators used for the UWB devices have their bias drifts in
the range ±20 ppm. Using the highest bit rate offered by DW1000, which is 6.8 Mbps [9],
each beacon message should be transmitted within a millisecond. Then we can expect the
transmission spacing (or the delay between message receptions) to be in units of milliseconds.

In Table 3.1 we demonstrate how the clock drift and choice of transmission spacing influences
the measurement error. As show in the table, even with very precise oscillators and short
transmission spacing the error easily reaches order of meters. If we take the worst case for
the oscillator drift and spacing of 10 ms, the error has the magnitude of hundreds of meters,
which makes the measurements useless.

The transmission spacing should be as low as possible for two reasons. First is to reduce the
measurement error and second to ensure that the linear approximation of the bias dynamics
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3 Anchor to Tag TDoA

will be as close as possible. From the other perspective, the transmission spacing has to be
long enough for the tags to be able to process the message and prepare for reception of another
message.

Either way we have to compensate for the bias effect to be able to estimate positions using
the A2T-TDoA. Since we are not really interested in the absolute bias between tag and anchor
time scale11 we can use an approach with the Kalman filter as we did in Section 2.1.1 and
estimate only its dynamics, the bias drift �̇� and its rate of change �̈�. With the estimated drift
we could fix the measurements and use EKF for position estimation, derived in Section 2.3.2.

Such disconnected approach (separation of bias and position estimation) could face some
issues with the stability of the estimates, since the two, bias and position, are clearly firmly
connected as can be seen in (3.5) and (3.7). A more stable solution is to expand the Extended
Kalman filter from Section 2.3.2 by adding the bias drift �̇� and drift rate �̈� to its state vector
and jointly estimate position and bias. The derivation of such EKF will be further in this
chapter.

3.1.1 Obtaining A2T measurements
To determine the A2T measurements, the tag listens to the beacon messages, that are period-
ically sent by the anchors. The beacon messages contain the time of their transmission from
the source anchor and each message has upon reception assigned also a receive time.

The structure of the beacon messages is nearly identical to the synchronization or relay
messages. From the section about the Chained synchronization 2.1.2 we know, that the relay
message additionally contains the variance of the transmission time, which is used for the
synchronization of the slave anchors but it can be also used for the tag’s position estimation.
The variance will prove to be rather useful.

Because the relay messages already contain all the data necessary for the A2T measurements
(transmit time and variance) it is beneficial to use them also for the position estimation. If all
the anchors are configured as relays, with an appropriate transmission spacing, the tags can
then listen for the relay/beacon messages and position themselves from the captured data.
Using this scheme, the tags “parasite” on the synchronization network and passively localize
themselves, without anyone’s knowledge. This is illustrated by Figure 3.1, where there is one
master anchor 𝑀 , two relays 𝑅1 and 𝑅2, one slave anchor and one tag. The synchronization

Table 3.1: Effect of clock drift and transmission spacing on the measurement error

Transmission spacing
1 ms 10 ms 1 s

D
rif

t

1 ppm 0.3 m 3 m 300 m
3 ppm 0.9 m 9 m 900 m
20 ppm 6 m 60 m 6 km
40 ppm 12 m 120 m 12 km

11We are not able to measure the bias, because we would have to know the distance between the tag and
an anchor (see (3.1) and (2.15)) which we do not know prior to the position estimation.
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M

SR1

R2

T

Figure 3.1: Tag parasiting on the synchronization messages

messages are symbolized as the solid lines, whereas the dashed ones are used to represent that
the tag can receive those messages as well.

In this section we have used the terms relay and beacon messages to name basically identical
message. To avoid the confusion we will use the term relay message in the context of the
Chained synchronization and beacon message in the context of A2T-TDoA localization.

3.2 Estimation of position and drift

In A2T-TDoA each measurement contains an error induced by the free running tag clock. For
a successful position estimation this error source has to be compensated for.

In the context of TDoA-UWB positioning this topic is not yet very well explored even
though it might be intriguing and useful for self-navigating robots or small vehicles. The
reason is probably because of the troubles connected to the drift and also because T2A-TDoA
variant is easier to implement and its properties are usually sufficient (total user count and
position availability).

From the available sources three interesting algorithms are presented, each one of them
unique in its approach. It is interesting that in each of the papers, the authors used the
DW1000 UWB chip for the UWB communication and positioning, the same model used by
us.

First of the articles [29] by Corbalán et. al. presents a system called Chorus, which is
able to simultaneously receive multiple messages with the DW1000 hardware and mitigate
the problem with the bias. They are able to get time stamps of several simultaneously
arriving messages even though it is not defined by the standard IEEE 802.15.4 [2]. They do
so by examining the Channel Impulse Response (response of a matched filter) right after the
reception of the first message. However the message reception is not full-fledged as they are
able only to detect whether a message has arrived and when. By the proposed procedure it is
not possible to retrieve any other information carried by the message. Also it is not possible
to identify the source of a message just by the channel response alone. Therefore the message
scheduling has to be passed to the tag beforehand.

Second system [30] called SnapLoc and developed by Großwindhager et. al. ignores the prob-
lem with the bias drift of the user tag by using extremely short transmission spacing (128 ns)
between the localization messages. Authors also use a dedicated anchor for synchronization,
however this anchor does not participate in the localization (does not send the localization
messages). Similarly to the Chorus [29], also SnapLoc [30] struggles with delivering data in
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3 Anchor to Tag TDoA

the localization messages. The information needed for localization and identification of the
localization message has to be passed in advance.

Finally the third approach, which is conceptually closest to ours, has been developed by
Ledergerber and his team for a mobile robot self-localization [31]. In their paper each local-
ization epoch is composed of two steps. Firstly the synchronization message for the anchors
is sent from the reference anchor. In the second step the reference anchor sends a localization
message, which is then forwarded by the other anchors with a given delay (1 ms) between each
transmission. Each of the sent messages (synchronization and localization) is also received by
the tags. Using data from the messages sent by the reference anchor, tag firstly estimates its
bias drift and then proceeds to estimate its position using the EKF.

We can see that the approaches are quite diverse, each trying to solve the problem differently.
However, all of the approaches are struggling to a certain extent with the scalability of the
localization area. Authors do not discuss how the anchors are synchronized beyond the room
or hall where the reference anchor is located. The aforementioned approaches also set a hard
limit on the maximal number of anchors used for the localization. For example SnapLoc
supports eight anchors at maximum [30] for a given transmission spacing. As the author
states, if more anchors are needed, the transmission spacing has to be shortened, but the
precision worsens as the measurements are more susceptible to the multipath [30].

Our solution, which we will present in this section, is a novel method how to localize with
A2T-TDoA variant with results and precision comparable to that of the T2A and preserving
the scalability that the original system has. Also the number of anchors, which can provide
localization data, has bound expected to be in tens. The anchor limit is set by the length of
synchronization period and transmission delay between beacon messages.

We will also discuss the differences between our solution and the solution provided by [31]
at the end of this section.

3.2.1 Extended Kalman Filter
For the position estimation from the bias-affected A2T measurements we can use the EKF,
which we have implemented in Section 2.3.2, and modify it to estimate also the bias dynamics.
We begin by adding the bias drift �̇� and its rate of change �̈� to the filter state vector.

𝑥 =
[︁
𝑟T �̇� �̈�

]︁T
(3.8)

Next, we define the system model. For the bias drift we will use the discrete linear model
introduced in (1.3) and because we do not need the bias12 𝑏 we can omit it and use a reduced
version of the model

�̇�[𝑘] = �̇�[𝑘 − 1] + �̈�[𝑘 − 1] 𝑇𝑒 , (3.9)

where 𝑇𝑒 is time elapsed between discrete times 𝑘 − 1 and 𝑘.
With the bias drift model and the movement model at hand we can now form the state

transition matrix F

F =

⎡⎢⎣ I 03×2

02×3
1 𝑇𝑘

0 1

⎤⎥⎦ , (3.10)

where 𝑇𝑘 is a time delay between epochs 𝑘 − 1 and 𝑘.

12In fact, we are unable to measure it as it is an unobservable state, due to the differentiation in TDoA.
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3.2 Estimation of position and drift

The measurement model is derived from (3.7). Here we observe the state vector through
the measured times of arrival and transmission

𝑧𝑚[𝑘] = 𝑐 · [(𝑡𝑇
Rx,𝑖[𝑘] − 𝑡𝑇

Rx,𝑗 [𝑘]) − (𝑡𝐴
Tx,𝑖[𝑘] − 𝑡𝐴

Tx,𝑗 [𝑘])], (3.11)

which can be written in the vector form with the use of the combination matrix D

𝑧[𝑘] = D · (𝑡𝑇
Rx[𝑘] − 𝑡𝐴

Tx[𝑘]) · 𝑐 . (3.12)

The measurement model is an augmented version of the measurement model (2.62), we
have derived for the T2A EKF. The model contains an extra term related to the bias drift
effect.

𝑦𝑚[𝑘] = (‖𝑟[𝑘] − 𝑟𝑖‖ − ‖𝑟[𝑘] − 𝑟𝑗‖) + 𝑐 · �̇�[𝑘] · (𝑡𝑇
Rx,𝑖[𝑘] − 𝑡𝑇

Rx,𝑗 [𝑘]) (3.13)
After the linearization of the measurement model we get the matrix G. For each row G𝑚

of the matrix it holds that

G𝑚 =
[︁
(1𝑖,𝑟 − 1𝑗,𝑟)T 𝑡𝑇

Rx,𝑖[𝑘] − 𝑡𝑇
Rx,𝑗 [𝑘] 0

]︁
. (3.14)

The measurement covariance is determined in a similar way as it was for the T2A EKF in
Section 2.3.2. In the case of A2T the measurements are formed using both the receive times
and the transmit times, so the variance of the transmission times 𝜎2

Tx has to be added to the
measurement covariance. The transmission covariance is contained within data part of the
beacon messages so that it is available for the tag. The resulting covariance R is

R = D · diag(𝜎2
Rx + 𝜎2

Tx) · DT · 𝑐2 , (3.15)

where 𝜎2
Rx is again the variance of a time measurement, and operator diag(·) creates a diagonal

matrix from the input vector.
With the described EKF the tag is able to estimate its own position once it collects a suf-

ficient amount of A2T measurements (using at least four beacon messages for the three-
dimensional estimate).

However, the performance of the estimate might not be the best one achievable yet, because
we are trying to estimate both the position and the bias drift dynamics using a single type
of measurements. If we use only the sufficient number of A2T measurements (three for in
a 3D half-space), then the resulting set of equations (measurements) would be undetermined
because of the unknown bias drift �̇�. The estimation would perceive the drift as a free pa-
rameter or variable. To cope with this we may use more measurements that it is sufficient
for the position estimation. But in that case there is still an issue that we are observing the
drift dynamics only on a short time intervals, i.e., the transmission delays between beacon
transmissions.

To observe the bias time development more precisely it is better to observe it on wider
intervals. To do this we add an auxiliary measurement that helps us to measure the bias
development on wider scale by using the data obtained in successive epochs.

3.2.2 Auxiliary drift measurement update
In order to get a better observation of the bias dynamics we have to extend the interval
on which the bias measurements are done. It can be achieved by providing an additional
measurements to the EKF. As the tag is receiving the beacon messages periodically we can
use the data received in consecutive epochs for the estimation.
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With each received beacon message we are given the time of message transmission and
reception. We remind that for the two times the following holds

𝑡𝑇
Rx,𝑖[𝑘] − 𝑡𝐴

Tx,𝑖[𝑘] = 𝜏𝑖[𝑘] + 𝑏𝑖[𝑘] , (3.16)

where the index 𝑘 marks the epoch when the measurement was taken.
In the (3.16) the bias 𝑏𝑖, between the tag and anchor time bases, is present and since we

are unable to observe or estimate the bias we cannot use this equation directly for the bias
measurement. But we are able to measure the change of the bias by taking the difference of
reception and transmission times between subsequent epochs

(𝑡Rx,i[𝑘] − 𝑡Rx,j[𝑘 − 1]) − (𝑡Tx,i[𝑘] − 𝑡Tx,j[𝑘 − 1]) = 𝜏𝑖[𝑘] − 𝜏𝑗 [𝑘 − 1] + 𝑏𝑖[𝑘] − 𝑏𝑗 [𝑘 − 1] . (3.17)

By taking the difference of data from two consecutive epochs we get an observation of how
much the bias and the time of flight have changed from the last epoch. Of course, nothing for-
bids us to use data originating from different anchors, but as the difference of the propagation
times Δ𝜏 (calculated from tag’s position estimate and anchors positions) appears in the Equa-
tion (3.17) it would again make the measurements useless as we do not know the propagation
times prior to the estimation. We would rather omit the estimated propagation times from
the measurements entirely as well, because correctly observing the bias dynamics is a crucial
part of the A2T positioning and we want to get rid of any potential error sources. If we would
include the estimated propagation times with the intention of getting better measurements
we would more likely disturb the bias measurements. It is because the estimates would not be
precise enough (especially during the first epochs), making the positioning needlessly much
more difficult for the estimation process. Therefore, we create such bias measurements using
only the data from messages sent by the same anchor (such that 𝑖 = 𝑗).

By measuring the bias change using data from a single anchor only, we can express the
differences as

𝜏𝑖[𝑘] − 𝜏𝑖[𝑘 − 1] + 𝑏𝑖[𝑘] − 𝑏𝑖[𝑘 − 1] = Δ𝜏 + Δ𝑏 , (3.18)

where we express the change of bias Δ𝑏 with states �̇� and �̈�

Δ𝑏 = 𝑇𝑘 �̇� + 1
2𝑇 2

𝑘 �̈� , 𝑇𝑘 = 𝑡𝑇
Rx,𝑖[𝑘] − 𝑡𝑇

Rx,𝑖[𝑘 − 1] . (3.19)

The Equation (3.18) in this form could be used as a bias measurement model for the EKF,
but it still contains the unknown term Δ𝜏 , which we cannot eliminate with the estimated
values for the reasons discussed above. Here, we are forced to make an assumption that
the change in 𝜏 between epochs is negligible or within the bounds set by the measurement
covariance.

We suspect that this assumption might be correct, because the propagation time difference
Δ𝜏 is associated only with one anchor. Let us assume the following example where we are
estimating the position of a slowly moving object, for example a pedestrian or a fork lifter,
with speed up to 10 km h−1 and with a delay between epochs 𝑇𝑘 = 100 ms. Then we can expect
the propagation time difference from an anchor to the tag to be in units of nanoseconds. Now
if we assume the tag’s bias drift to be 40 ppm and stable (after warm up), then with the same
epoch delay 𝑇𝑘 = 100 ms the change of bias should be in units of microseconds.

By comparison we see that for slowly moving objects the change of bias Δ𝑏 is by three orders
of magnitude greater than the change of propagation time Δ𝜏 and that the assumption Δ𝑏 ≫
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Δ𝜏 holds. Furthermore, the assumption holds also for objects moving at higher velocities
(close to 100 km h−1) as the Δ𝜏 is does not exceed 20 ns.

Under this assumption we can ignore the Δ𝜏 term, which leads us to the bias measurement
model 𝑔𝑏[𝑘]. The model is linear and for a measurement with an index 𝑚

𝑦𝑏
𝑚 = (𝑡Rx,i[𝑘] − 𝑡Rx,i[𝑘 − 1]) − (𝑡Tx,i[𝑘] − 𝑡Tx,i[𝑘 − 1]) , (3.20)

the model has the following form

𝑔𝑏
𝑚[𝑘] =

[︁
0 0 0 𝑇𝑘

1
2𝑇 2

𝑘

]︁
⏟  ⏞  

G𝑏
𝑚

· 𝑥−[𝑘] , (3.21)

where the G𝑏
𝑚 is the 𝑚-th row of the measurement model matrix G𝑏, 𝑇𝑘 is the delay between

reception of the two beacon messages from the same anchor and 𝑥−[𝑘] is the a priori state
estimate in the epoch 𝑘.

3.2.3 Hybrid measurements

By adding the auxiliary bias measurement we have augmented the EKF to have more in-
dependent inputs to estimate the bias dynamics, both on a short intervals and the longer
intervals.

The EKF is by its definition able to accept both measurement types in a single measure-
ment update and perform data fusion on them. However, this approach would face numerical
problems because the position measurements (3.12) are numerically much larger (units to
tens of meters) than the bias measurements (ppm). The same applies for the corresponding
measurement variances. This results in the combined innovation covariance S being ill con-
ditioned (due to matrix containing both large and small values on the diagonal) and being
unable to accurately compute its inverse in (2.59). To cope with this we have to split the
measurement update into two parts, one for bias update and one for position update.

Another argument for splitting the measurement update is that the bias update is inde-
pendent of the position estimate (we have removed the dependency from the model (3.21)),
whereas the position update is dependent on the bias estimate. Therefore the bias measure-
ment update should be done before the position update. Having two measurement inputs
gives us also the possibility to perform the bias measurement update even when we do not
have enough measurements to estimate the position, but enough of them to estimate bias.

In the next section we provide the results of a series of experimental tests done with the
proposed EKF. The tests carried out were focused on the performance of position estimation
as well as the contributions of the auxiliary measurements.

3.3 Experimental results

This section contains the results of the A2T-TDoA positioning. We present data from three
of the concluded experiments, two tests with tag static and one test with moving tag. All
experiments were situated in a classroom, 4 m wide and 10 m long, with six anchors and one
tag. The tag was mounted on top of a tripod (height 1.6 m) with its position perfectly known
during the static tests. The anchors were mounted in a grid like structure, all at the same
height of 2.5 m.
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The presented data from static experiments focuses on bias estimation, importance of the
auxiliary bias measurements and the performance of the positioning in specified locations
within the network. The static experiments have the height soft constraint included.

The dynamic measurement presents the positioning performance of a moving tag and how
the height soft constraint improves the A2T-TDoA results, if the anchor geometry is not
favorable for height estimation.

The first test was performed with the tag mounted on top of a tripod and placed near the
center of the room. The tag remained stationary during the measurement. Its height has
been constrained to 1.6 m with variance (25 cm)2.

First, we will discuss the effect of the clock on the TDoA measurements and its elimination.
The TDoA measurements without the bias corrections are plotted in Figure 3.2a. For a static
object, the TDoA measurements should be almost constant. However, due to the changing
clock drift they change in time as well, as can be seen in Figure 3.2a. Figure 3.2b depicts
the estimated bias drift and drift rate. By comparison of the drift evolution and evolution of
the raw TDoA measurements, we can conclude that the drift influences the measurements,
as they follow the trend set by the drift. As a consequence of the drift effect, the raw TDoA
measurements are far larger than anticipated13 for the room of size 4 m by 10 m. The expected
size of measurements is in order of meters (below 10 ns), not tens of meters (over 30 ns) as
seen in Figure 3.2a.

The EKF, proposed in this chapter, corrects the TDoA measurements using the estimated
bias. Afterwards, the EKF estimates position. The corrected measurements can be seen
in Figure 3.2c, which seem to have almost constant mean value with standard deviation
approximately 500 ps (15 cm). Figure 3.2d shows the top-down perspective of the classroom
with the estimated positions. From this view, it can be observed that the estimated positions
are very close to the true position of the tag. This is proven by the mean estimation error 𝜇𝜀

and its variance 𝜎2
𝜀 , which is

𝜇𝜀 = 20.1 cm, 𝜎2
𝜀 = (3.9 cm)2 . (3.22)

Figures 3.3 and 3.4 show the importance of auxiliary bias drift measurements. By comparing
the estimates of the drift in Figure 3.3, we can see that without the auxiliary measurements
they differ mostly in the estimation of the drift rate �̈�. In such circumstances the EKF fails
to observe the change in clock drift correctly, as it has only the short scale measurements of
the drift, where it remains fairly constant. This is supported by the fact that the drift rate
estimate �̈� in the Figure 3.3a cannot be labeled as the derivative of the clock drift �̇�, as the
drift rate is zero while the drift �̇� is clearly changing.

Figure 3.4 compares the estimated 𝑥, 𝑦 and 𝑧. The estimated coordinates are presented
with their mean value and 95 % confidence intervals, provided by the estimate covariance
matrix P from the EKF. In Figure 3.4a, it can be seen that due to the poor estimation of
the drift �̇� and drift rate �̈� the coordinates are not constant, as opposed to the correctly
estimated coordinates in Figure 3.4b. The error in the position estimation is most notable in
the 𝑧-coordinate, where its value goes as low as 1 m before returning back up. The drop of
the value corresponds to the interval, when the estimated drift rate was zero, while the drift
was clearly changing.

In the next experiment we performed several static measurements on a grid in the class-
room. During the measurements both the A2T and T2A measurements were collected and

13The TDoA between anchors 𝑖 and 𝑗 should not be larger than the distance between anchors 𝑖 and 𝑗.
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(a) Measured TDoA ℎ𝑖𝑗 without drift correc-
tions
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(b) Estimated drift and drift rate
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(c) Measured TDoA ℎ𝑖𝑗 with drift corrections

(d) Estimated position

Figure 3.2: Static test 1: Measured data and estimation results

the estimation was done with height soft constraint. This test provides the comparison of the
positioning performance in different places of an area and also the comparison of the A2T
and T2A positioning.

The estimation results can be seen in Figure 3.5, where the anchors are depicted as black
circles, tag’s ground truth positions as black crosses and estimated positions as dots, with
color indicating position’s total standard deviation. Both methods achieved best performance
when the tag was inside the anchor constellation. When the tag was placed outside of the
constellation, the performance deteriorated as the DOP increased.

The two methods are comparable based on their performance and estimate error. However,
there are differences. For example, the estimates in the first row from the left are more stable
for A2T then they are for T2A. This may be caused by the increase of measurement error
due to the higher SNR of the positioning messages (either beacon or blink), which is caused
by unfavorable mutual orientations of the anchors and tag antennas. The relations between
measurement error and received power is investigated by [22] and will be discussed in future
works.
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(a) Without auxiliary measurements

3700 3800 3900 4000 4100 4200

Time [s]

-10

-5

0

5

10

D
ri
ft

[p
p
m

]

-30

-20

-10

0

10

20

30

D
ri
ft

ra
te

[p
p
b
/
s]

(b) With auxiliary measurements

Figure 3.3: Static test 1: Drift estimate with and without auxiliary measurements

(a) Without auxiliary measurements (b) With auxiliary measurements

Figure 3.4: Static test 1: Coordinate plot with and without auxiliary measurements (red is
estimated value, blue confidence interval)

The results are summarized by Table 3.2, where the total RMS and mean error is stated
for both methods.

Finally, the last test was focused on the dynamic positioning performance of the A2T-TDoA
and how the height soft constraint may improve it. During this test, the tag was attached
to a tripod and the movement was realized by moving the tripod. The tripod was moved by
hand between the desks in an E-like shape. The results can be seen in Figure 3.6, where the
desks are depicted as gray rectangles.

Table 3.2: Static test 2: Estimation error comparison
RMS [m] Mean error [m]
2D 3D 𝑥 𝑦 𝑧

Anchor to Tag 0.26 0.30 −0.03 0.10 0.08
Tag to Anchor 0.34 0.37 0.10 −0.12 −0.03
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(a) Tag to Anchor (b) Anchor to Tag

Figure 3.5: Static test 2: Grid, estimated positions

(a) Height unconstrained (b) Height constrained to 1.6 m

Figure 3.6: Dynamic test: Estimated positions

By looking at the top-down view in Figure 3.6, it can be seen that the unconstrained esti-
mation (Figure 3.6a) has the estimate less dense, in comparison to the constrained estimation
(Figure 3.6b). This is because the estimates that were higher than 3 m were cropped from
the plot. The higher estimation error in the 𝑧-coordinate is a result of flat geometry of the
anchors. As can be seen in Figure 3.7a, the mean value of the estimated 𝑧-coordinate is mostly
higher than 2 m, but with large confidence intervals that span even to the 1.6 m values.

By adding the height soft constraint, we were able to reduce the variance of the 𝑧-coordinate
estimates, which then improved the estimation in the horizontal plane.

3.4 Perspectives of the A2T positioning

In this chapter we have presented an implementation of Anchor to Tag TDoA positioning for
UWB networks using the Extended Kalman Filter for the position estimation. In A2T-TDoA
variant the stationary and synchronized anchors periodically broadcast beacon messages that
are received by the tags. Each tag is able to estimate its own position in real-time using these
messages. Also, there is no limitation on how many tags can receive the beacon messages,
enabling any tag within the network to position and possibly navigate itself. This of course
comes with the cost of increased power consumption of the tags, due to the listening for the
messages and additional computations.
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3 Anchor to Tag TDoA

(a) Height unconstrained (b) Height constrained to 1.6 m

Figure 3.7: Dynamic test: Position in time with 95 % confidence intervals

While the A2T-TDoA variant provides appealing advantages (real-time position, unlimited
users), it is still a concept that is relatively new to the UWB-TDoA networks. The A2T-
TDoA also faces great challenges posed by the free-running nature of the tag’s clocks. Thus,
the resources concerning the A2T are rare.

Nonetheless, several articles that implement the A2T-TDoA positioning do exist, each
choosing a different approach. The solutions presented by the available articles [29–31], have
to accept several restrictions to assure proper function of their approach. The most notable
restrictions are the positioning scalability and the inability to send data in the positioning
messages [29, 30].

The approach proposed in [31], where they estimated position of a quadcopter, is concep-
tually very similar to ours. The authors also used the EKF for position estimation and they
also used an one-way synchronization. Also, the presented algorithm combines UWB measure-
ments with accelerometer and barometer data, improving the estimation of 𝑧-coordinate and
velocity [31]. However, their A2T localization relies on an extended synchronization scheme,
where every epoch an extra synchronization message is sent. These two messages are used
for estimation of the tag’s clock drift. The second synchronization message is relayed by the
anchors to the tag and used for its positioning.

The algorithm proposed by [31] differs from ours in several aspects. First of all, our algo-
rithm requires only one synchronization message to be sent per epoch and anchor (without
the extra message for drift estimation). Second, we have improved the drift measurements by
measuring it on larger intervals, whereas [31] measure the drift only on 1 ms intervals.

The article [31] provides the estimation results from the quadcopter flight. For evaluation
they used so-called mean RMS of the estimation error. Which is not really an appropriate
metric as it is the mean size of position error

mean RMS = 1
𝑁

𝑁∑︁
𝑖=0

√︁
[(�̂�𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2] , (3.23)

while the RMS calculates the square-root of mean quadratic position error

RMS =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=0

[(�̂�𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2] , (3.24)
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3.4 Perspectives of the A2T positioning

where �̂�𝑖, 𝑦𝑖 are estimated coordinates, 𝑥𝑖, 𝑦𝑖 are the corresponding true values and 𝑁 is the
number of measurements.

Nevertheless, using this metric they achieve mean RMS error of 14 cm in horizontal plane.
However, they also fuse the UWB measurements with the data from an accelerometer and
barometer, which improves their estimation. Due to the data fusion and that we do not have
the ground truth for the dynamic test, the performance is not comparable with our solution.
For the sake of completeness, using similar metric on the static grid test with constrained
height we achieve mean RMS error of 15 cm in horizontal plane.

The estimation A2T-TDoA results, presented in the previous chapter, conclude that the
EKF algorithm proposed in this chapter achieves great accuracy when positioning both sta-
tionary and moving objects. It should be noted that the A2T can be used in parallel with
T2A. The fact that anchors behave as relays, does not collide with their ability to receive
blink messages and send them to the computation node for estimation. This behavior can be
exploited in situations when the position of certain objects has to be tracked, while certain
users require their real-time position.

In the future works we want to investigate the use of Unscented Kalman Filter (UKF)
instead of EKF and, given that tags are able to estimate clock drift, also the possibility of
utilizing ToA measurements for position estimation.
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4 Automated determination of the anchor
network

In the previous chapters we have described the algorithms for position estimation in the UWB-
TDoA networks, using either the T2A or A2T approach. The devices which partake in the
localization are the anchors and tags. The anchors are nodes with fixed and known position,
while the tags are mobile user nodes with position determined during the position estimation.

The anchor properties suggest that the network is established well before the estimation
and that we already have the knowledge of the anchor positions. Nonetheless, such knowledge
is usually unknown to us, because in most cases we are the ones who create the network
by placing the anchors and thus we have to determine the anchor positions ourselves. The
determination of the positions commonly involves specialized equipment for distance measure-
ment and positioning. Such approach can be time consuming, especially for large networks
inside a diverse environments (such as building interiors), or not feasible enough for smaller,
one-time use networks.

The usual tools for determination of anchor positions involve some kind of distance measure-
ment. However, the anchors themselves already have the means to measure distance between
each other. Using the TWR protocol (see Section 1.2.1).

In this chapter we will describe the algorithm proposed by [32] for anchor self-positioning,
and suggest few improvements of that algorithm. Main advantage of these algorithms is that
the calculations are distributed and are done by the anchors. Consequently, there is no need
for a computation node dedicated for the calculations.

The content of this chapter will be more practical in a sense that it will focus on the
problems in localization networks that are commonly not tackled. In the first section we will
discuss the common methods of the anchor position determination along with the necessary
basics of graph theory. The following sections will present several algorithms that can solve
the problem. First will be a non-distributed Levenberg-Marquardt, which we will use as
a benchmark, followed by the distributed algorithm and the improvements of it. Finally we
present the results from an experiment in a real environment and discuss the performance of
the algorithms.

4.1 Common methods
The UWB localization network has to be determined prior to any tag localization. The
network determination consists of several tasks, for example defining the area to provide with
localization and placing the anchors. Provided that we already posses the functional hardware
and software for the positioning, the network building process can be summarized with several
steps:

1. Investigate the area of interest and specify target positioning accuracy

2. Define the coordinate system
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4 Automated determination of the anchor network

3. Suggest the placement of infrastructure and make a Dilution of Precision (DOP) analysis
• If the DOP values are not satisfactory (too high where it should be low), change

the placement in that area so that DOP lowers to a tolerable level and repeat 3

4. Obtain precise positions of anchors

5. Load the necessary data into the infrastructure nodes

6. Place the anchors to given places and make necessary interconnections

Before going to the merit of the network definition, we will briefly describe the points of
the plan above.

Objective of the first step it is to define the accuracy goal. It is necessary to decide in which
parts of the area it is required to have better performance in terms of lower estimation error,
where it is acceptable to have a higher error and where it is sufficient to detect the presence
of a tag only. Results of this step highly influence the total number of anchors as lowering
the positioning error and irregularity of space require an increase of the number of anchors.

The second of the proposed steps consists of choosing a coordinate system and its origin.
For an indoor localization any 𝑥𝑦𝑧 Cartesian, preferably right-handed, coordinate system is
suitable. For example the East-North-Up (ENU) system, where 𝑥-axis is pointing towards
the east, 𝑦-axis to the north and 𝑧-axis upwards, is a good choice. In some cases aligning the
horizontal axes with the perpendicular building walls is preferred. The exact position of origin
is arbitrary. At this point we can also obtain the GNSS coordinates of the coordinate system
origin and determine the transformation between the local system and the GNSS coordinate
system. With this transformation we are able to convert the estimated local positions of the
tags to the global coordinate systems, i.e. perform georeferencing, and for example visualize
them on a map.

In the third step we try to place the anchors so that the covered area is maximized while
trying to keep the number of them as low as possible (to keep the costs and number of
connections low). Then, the anchors will inherently be divided into separate groups, divided
by walls or other obstacles. We must then ensure that there always exists a link between
the groups in a form of at least one anchor pair, one from each of the neighboring groups,
with a line of sight between them. Anchors from such pairs are suitable candidates for the
relay anchors. If the groups are connected in this fashion, we should end up with a connected
localization network (connected graph).

In order to evaluate the theoretical performance of the network it is useful to perform a DOP
analysis. The calculation of the DOP parameters is in Appendix A. Results of the analysis
helps to find the areas in a network where the localization error could be above the tolerable
level. If there is such an area, we should rearrange (or add) the anchors while preserving the
network connectivity. This step is repeated until all the demands on the network are satisfied.
It should be noted that this step aims to find a compromise between the cost (number of
anchors) and performance. When the infrastructure placement is final, a master anchor and
relays should be chosen.

These first three steps are simple in comparison to the fourth step, because they can be
done rather quickly, using only a simple floor plan (although detailed plan is better for the
DOP analysis) and do not require physical presence of an engineer in the area.

The fourth step, the precise survey of the anchor locations, is the most challenging one. It
is necessary for the correct function of the positioning algorithm to know the positions of the
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anchors as accurately as possible. Otherwise the algorithm would not know how to interpret
the measured data as there would be too many unknown variables to estimate. Moreover, for
the purpose of anchor synchronization we need to know the distances between the master (or
relay) and slave anchors.

Until recently this task has been done manually using a simple laser distance measures,
more advanced measuring system or total stations with various degree of accuracy. However,
this proves to be very time consuming. It can also become very costly if a high precision
of anchor positions (and thus localization) is needed because it requires more people to be
involved and more expensive equipment.

Difficulties connected with the manual measurement could quickly outweigh the benefits
of the localization, especially in cases when the network is of medium size or the network is
needed to be operational in a matter of minutes.

Implementing a self-localizing semi-automated protocol into anchors is therefore a very
interesting and desirable option. Since the implementation of the TWR protocol would enable
the creation of a functional network on demand we will call such network an ad hoc UWB
network. Because only the UWB networks are considered, we will omit the UWB part and
refer to the network simply as the ad hoc network. Also, within this section, we will refer to
the protocol or algorithm that estimates the anchor positions simply as the algorithm.

The main goal for the ad hoc network creation is to measure a sufficient number of anchor-
anchor distances and have them as inputs to the algorithm that estimates the anchor positions.
The word sufficient hides behind itself a process of anchor pair selection for the distance
measurements. Naturally, there are a few requirements on the set of pairs that have to be
satisfied, so that the anchor positions could be estimated:

• When estimating the positions in two dimensions, the pairs should be selected in a way
that every anchor is present in at least three different pairs, giving us at least three
distances. The reason for that number comes from the used localization method for
position estimation (see Section 1.2.1). The position is estimated by finding the inter-
section of circles, where we need three circles (three distances) to have only one point
of intersection (an unique solution). Should the requirement be lowered to only two
distances, then we are most likely to obtain an ambiguous solution14 that cannot be
solved without additional constraints.
For three-dimensional estimation the number of distances rises to four (intersecting four
spheres). Nonetheless, the observability of the height component is typically marginal,
since the anchors are usually organized in a horizontal plane. The height can also be
measured rather easily and accurately without a specialized equipment, in comparison
to the horizontal coordinates.

• Distance between an anchor pair should be measured only if there is a clear line of sight
between them.

The anchor determination algorithm also needs initial conditions which can be either a few
(two to four) known anchor positions (the ones that can be easily measured) or set of rules
that help to define the coordinate system and select correct solution from non-unique ones
(e.g. anchor 𝐴2 is left of anchor 𝐴1, anchor 𝐴3 is at origin 𝒪).

14In such case, one solution is a mirrored version of the other.
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The algorithm, proposed by [32], views the anchor network as a graph. In its nature, the
algorithm is a graph algorithm which operates with the nodes of the graph, the anchors, and
which is designed for distributed operation. Before we proceed further, we have to define
several terms concerning graphs and graph theory and how they are related to the anchors
and UWB network.

Utilization of graph theory

A usual definition of a graph 𝐺 = 𝐺(𝑉, 𝐸) is that it is an ordered pair of two sets, where 𝑉
is a set of graph vertices or nodes and 𝐸 is the set of edges, connecting the vertices [33]. A
subgraph 𝑆 = 𝑆(𝑉𝑠, 𝐸𝑠) of a graph 𝐺 is then a graph, whose set of vertices 𝑉𝑠 and edges 𝐸𝑠

are subsets of the sets 𝑉 and 𝐸.

𝐺 = 𝐺(𝑉, 𝐸), 𝑆 = 𝑆(𝑉𝑠, 𝐸𝑠), 𝑉𝑠 ⊆ 𝑉, 𝐸𝑠 ⊆ 𝐸 (4.1)

Several properties are assigned to each vertex. However, in our case we are particularly
interested in only one property, which is the degree of a vertex. A vertex degree 𝑑(𝑣) of a vertex
𝑣 is a number of edges that enter or leave the vertex. We can further divide the degree into
in-degree 𝑑𝑖(𝑣) (number of incoming edges) and out-degree 𝑑𝑜(𝑣) (number of outgoing edges)
of a vertex 𝑣, while the equality 𝑑(𝑣) = 𝑑𝑖(𝑣) + 𝑑𝑜(𝑣) holds.

It is possible to define two graphs on the anchor network. First, the visibility graph 𝐺𝑣 =
𝐺𝑣(𝑉𝑣, 𝐸𝑣), where the 𝑉𝑣 is a set of all anchors within the network, and 𝐸𝑣 is a set of visibility
edges. An edge 𝑒𝑖𝑗 = (𝑖, 𝑗) ∈ 𝐸𝑣 exists between anchors 𝑖 and 𝑗 if there exists a clear line
of sight between them. Second, we define the distance measurement graph 𝐺𝑑 = 𝐺𝑑(𝑉𝑑, 𝐸𝑑),
where the 𝑉𝑑 is again a set of anchors and 𝐸𝑑 is a set of measurement edges. An edge
𝑒𝑖𝑗 = (𝑖, 𝑗) ∈ 𝐸𝑑 between anchors 𝑖 and 𝑗 exists if a distance between them has been measured.

These two graphs generally share the set of vertices 𝑉𝑑 = 𝑉𝑣, while the distance edge set
is a subset of the visibility set 𝐸𝑑 ⊆ 𝐸𝑣, making the distance graph a subgraph of visibility
graph.

4.2 Problem definition and established solutions

The determination of anchors is a task of finding their individual three-dimensional positions
𝑟𝑖 =

[︁
𝑥𝑖 𝑦𝑖 𝑧𝑖

]︁T
given the measured distances 𝑑𝑖,𝑗 and initial conditions either in the form

of fixed positions 𝑟𝑓𝑖 or constraints 𝑥𝑖 > 0.
The problem is nonlinear, as the positions are estimated using multilateration. We can

formulate it as a nonlinear least-squares problem. Our goal is to estimate the unknown
positions of 𝑛𝑢 anchors 𝑟𝑖 using the measured distances. The unknown positions are organized
into the vector 𝑥 of unknown variables

𝑥 =
[︁
𝑟T

1 · · · 𝑟T
𝑛𝑢

]︁T
. (4.2)

The usual formulation is the minimization of the sum of squared differences of estimated
distances and the measured ones

min
𝑥

𝑓1(𝑥) = min
𝑥

∑︁
(𝑖,𝑗)∈𝐸𝑑

(‖𝑟𝑖 − 𝑟𝑗‖ − 𝑑𝑖,𝑗)2 , (4.3)
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where 𝑑𝑖,𝑗 is the measured distance between anchors 𝑖 and 𝑗, 𝐸𝑑 is the set of distance edges
and ‖𝑣‖ =

√︁∑︀
𝑣2

𝑖 is the two-norm of a vector15.
However, the authors of [32] use different cost function, where also the estimated and

computed distances are squared.

min
𝑥

𝑓2(𝑥) = min
𝑥

∑︁
(𝑖,𝑗)∈𝐸𝑑

(︁
‖𝑟𝑖 − 𝑟𝑗‖2 − 𝑑2

𝑖,𝑗

)︁2
(4.4)

The reason for that is left unexplained by the authors nor is it explained whether the cost
function 𝑓2 has the same set of optimal values as the 𝑓1 has. However, neither of the cost
functions is convex16, thus there is no guarantee that any of the algorithms will find the
global minimum. Therefore the results of the estimation will be most probably suboptimal,
regardless of the chosen cost function.

The reasons for the change might be of both practical and numerical nature. The practical
is that for the evaluation of the 𝑓2 we do not have to calculate any square roots, an operation
which is slow in comparison with multiplication. The numerical reason is that the function 𝑓2
is continuous, which means that its first derivation is real and defined on the whole function
domain, whereas the first derivation of the 𝑓1 is undefined whenever 𝑟𝑖 = 𝑟𝑗 (results in division
by zero).

We assume that the problem will be solved in the anchors, which is an embedded device with
limited computing power. Therefore, given the reasons above we will use the cost function 𝑓2
as it is more suitable for our use.

Now with the cost function 𝑓 = 𝑓2 determined, we can define the vector of residuals 𝑔. For
the 𝑙th element of vector 𝑔 it holds

𝑔𝑙(𝑥) = ‖𝑟𝑖 − 𝑟𝑗‖2 − 𝑑2
𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝐸𝑑 . (4.5)

The cost function 𝑓 can then be expressed using the vector 𝑔

min
𝑥

𝑓(𝑥) = min
𝑥

𝑔(𝑥)T · 𝑔(𝑥) . (4.6)

Koppanyi et. al. [32] propose several algorithms, which solve the estimation problem using
distributed calculations, using only the distances and provided initial conditions. The article
views the anchor network as a graph and uses graph theory techniques for the estimation.
The proposed algorithms are the Consensus Subgradient (CSG) and Accelerated Weighted
Gradient (AWG). In every iteration of a distributed algorithm each anchor calculates a part
of the solution and shares it with its neighbors using the available communication channel.

Algorithms CSG and AWG have different requirements on the locality of available infor-
mation. While CSG relies only on the information gathered from the anchor’s intermediate
neighborhood, AWG algorithm needs to know the graph Laplacian17, which is considered to
be a global information. It could be difficult to correctly and promptly propagate a global
information throughout the whole network, because the actual network topology might not
be known to us at the time when the estimation takes place.

For this reason we will focus on the CSG algorithm as it uses purely local information.
In the following subsections we will first implement a global solution using the Levenberg-
Marquardt algorithm. Then the equations of the CSG algorithm from [32] will be stated and

15In this chapter we will omit the norm subscript as we will consider only the two-norm.
16Besides other important properties, for the convex functions it holds that any local minimum is also

a global minimum.
17A matrix characteristic to a network, reflecting the connections between vertices.
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4 Automated determination of the anchor network

its principle described. Next, several improvements of the CSG algorithm will be suggested
and finally in Section 4.5 we will show the results from a real-world experiment and discuss
them.

4.3 Global approach with LM method
The LM optimization algorithm serves as a benchmark to the CSG algorithm and its vari-
ants. We expect that this estimator will converge rather fast with more accurate results in
comparison with the distributed algorithm, as it has a global information available.

We will only derive the problem equations for the Levenberg-Marquardt algorithm, as this
method has already been described in Section 2.3.

We begin by reminding the LM update equation without the measurement weighting

𝑥𝑘+1 = 𝑥𝑘 −
(︁
GT

𝑘 G𝑘 + 𝜆𝑘 diag(GT
𝑘 G𝑘)

)︁−1
GT

𝑘 𝑔𝑘 , G𝑘 = 𝜕𝑔(𝑥)
𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝑘

, (4.7)

where 𝑥𝑘 is 𝑘th estimate of the unknown variables, 𝜆𝑘 is the method parameter, 𝑔𝑘 = 𝑔(𝑥𝑘)
is the residual vector of the cost function and G𝑘 is its Jacobi matrix at point 𝑥𝑘.

Let us suppose that in an ad hoc UWB network there are in total 𝑛 anchors, where 𝑛𝑘 of
them have known location and 𝑛𝑢 have unknown location. Then the vector 𝑥 consists of 𝑛𝑢

unknown positions.
𝑥 =

[︁
𝑟T

1 · · · 𝑟T
𝑛𝑢

]︁T
(4.8)

The residual vector is calculated according to (4.5). For an 𝑙th measurement between the
anchors 𝑖 and 𝑗 with measured distance 𝑑𝑖,𝑗 , the derivative of the corresponding element 𝑔𝑙 is

d𝑔𝑙(𝑥)
d𝑥

=
[︁

𝜕𝑔𝑙(𝑥)
𝜕𝑟1

, · · · , 𝜕𝑔𝑙(𝑥)
𝜕𝑟𝑖

, · · · , 𝜕𝑔𝑙(𝑥)
𝜕𝑟𝑗

, · · · , 𝜕𝑔𝑙(𝑥)
𝜕𝑟𝑛𝑢

]︁
. (4.9)

We can see that most of the derivative elements will be zero, except for those belonging to
the unknown anchors from the measurement 𝑙. Those elements are equal to

𝜕𝑔𝑙(𝑥)
𝜕𝑟𝑖

= 2(𝑟𝑖 − 𝑟𝑗)T ,
𝜕𝑔𝑙(𝑥)

𝜕𝑟𝑗
= 2(𝑟𝑗 − 𝑟𝑖)T . (4.10)

The derivatives for each measurement are then combined into the Jacobi matrix G

G(𝑥𝑘) = d𝑔(𝑥)
d𝑥

⃒⃒⃒⃒
𝑥=𝑥𝑘

=

⎡⎢⎢⎣
d𝑔1(𝑥)

d𝑥...
d𝑔𝑚(𝑥)

d𝑥

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑥=𝑥𝑘

. (4.11)

4.4 Distributed methods
When creating an ad hoc UWB network it is often not possible or desirable to have every
anchor within the network connected to one another and to the computing node via a wired
connection (e.g., Ethernet). Without the interconnections it becomes difficult to efficiently
and reliably control the network and share data within it.

This denies us to use an algorithm, such as the LM, which would solve the problem at once.
For that we would have to collect the measured distances from the anchors to a single point,
where the estimation would take place.
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Instead we could solve the problem using a distributed algorithm. One of them is presented
by [34] and [35] and its utilization for the ad hoc UWB network is described in [32].

The algorithm is called a Consensus Subgradient and it combines the properties of graph
algorithms and (sub) gradient optimization methods. In this section we will describe the
algorithm and propose several improvements.

4.4.1 Consensus Subgradient algorithm
We begin by stating the cost function

min
𝑥

∑︁
(𝑖,𝑗)∈𝐸𝑑

(︁
‖𝑟𝑖 − 𝑟𝑗‖2 − 𝑑2

𝑖,𝑗

)︁2
= min

𝑥
𝑔(𝑥)T · 𝑔(𝑥) , (4.12)

where the 𝑟𝑖 are anchor positions, 𝑑𝑖,𝑗 is a measured distance between anchors 𝑖 and 𝑗 and
𝐸𝑑 is a set of edges, representing the anchor pairs with measured distance.

The estimated vector 𝑥 is a vector of all anchor positions, both known (fixed) and unknown.
Consequently, a part of the variable vector 𝑥 is actually known, but with this inconsistency the
algorithm implementation becomes simpler. Thus, it is necessary to assure, that the known
parts of the 𝑥 remain fixed through the whole estimation process.

Instead of solving the problem globally at once, like we did in Section 4.3, we try to solve it in
distributed fashion. Every anchor 𝑖 has its own estimation vector 𝑥

[𝑖]
𝑘 , containing the estimates

of all the positions, and solves the problem using its local information (i.e., the information
obtainable from its immediate neighborhood). In our case, we consider the distances to
the neighbors and data (estimate) updates from them. The local information is used to
calculate the estimate update 𝑢

[𝑖]
0 from 𝑥

[𝑖]
𝑘 , which is then shared with the neighbors. The

local anchor also receives updates from its neighbors, naturally. All the received update vectors
are combined into a new estimate 𝑥

[𝑖]
𝑘+1. These steps are done in parallel in all anchors and

are repeated until the convergence is achieved. In the terminology of distributed calculations
the anchors are called agents.

Every iteration of the CSG algorithm begins with anchor performing a subgradient iteration
with its current estimate 𝑥

[𝑖]
𝑘 in order to obtain an updated estimate 𝑢

[𝑖]
0 [32].

𝑢
[𝑖]
0 = 𝑥

[𝑖]
𝑘 − 𝛼𝑘 𝑣[𝑖](𝑥[𝑖]

𝑘 ), where 𝑣[𝑖](𝑥[𝑖]
𝑘 ) = (G[𝑖](𝑥𝑘))T · 𝑔[𝑖](𝑥𝑘) (4.13)

The vector 𝑔[𝑖] is the residual vector containing only those elements connected with the mea-
surements available in the node 𝑖 and G[𝑖] is Jacobi matrix of the local residual 𝑔[𝑖].

From the above equation we can observe that the subgradient update is very similar to
the gradient descent update, equations (2.39) and (4.14), where the current estimate 𝑥

[𝑖]
𝑘 is

updated by a vector 𝑣[𝑖] scaled with current step size 𝛼𝑘.

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘 ∇𝑓(𝑥𝑘), ∇𝑓(𝑥) = GT(𝑥) · 𝑔(𝑥) (4.14)

The difference is in the step direction vector 𝑣. While in the gradient descent method it
was the gradient of the cost function ∇𝑓 , in the subgradient method it is a subgradient of
the cost function. While the subgradient 𝑣 being calculated similarly as the gradient ∇𝑓 ,
both being derivatives of the same objective function, from a mathematical point of view it
is different.

Gradient ∇𝑓 is calculated using all of the available data and thus really gives the direction
of the steepest ascent. On the other hand a subgradient is calculated only with a subset of
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4 Automated determination of the anchor network

data, which means that it gives only a partial information about the steepest ascent direction.
In other words a subgradient, calculated from a subset of data, can provide only a limited
view on how the function changes from the current point if we change only the corresponding
subset of variables.

The article [34], provides a definition of a subgradient 𝑔 of a convex function 𝑓 at point 𝑥

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑔T(𝑦 − 𝑥) , ∀𝑦 . (4.15)

It is apparent that a subgradient underestimates the growth of the convex cost function 𝑓 .
In practice we can understand a subgradient as gradient with many elements set to 0. The
definition of a subgradient assumes the function to be convex. But our cost function is not
convex and therefore the inequality (4.15) does not hold, which means that the subgradient
may even overestimate the function growth. Furthermore, it may result in getting the es-
timates further from what could be a function minimum (either local or global). However,
getting a suboptimal solution is a property of the non-convex function minimization, which
has to be taken into account while optimizing its value. As we will see in Section 4.5, the
estimation results of the CSG algorithm are satisfactory.

The subgradient update (4.13) is performed by every anchor. Once all the anchors finish
their computation, the anchors exchange the calculated vectors 𝑢

[𝑖]
0 with each of their neigh-

bors and enter the consensus phase. In graph theory a consensus is when the internal state
(in our case the estimates of anchor positions 𝑥[𝑖]) of every graph node 𝑖 ∈ 𝑉 are equal.

𝑥[𝑖] = 𝑥[𝑗] , ∀𝑖, 𝑗 ∈ 𝑉𝑑 (4.16)
In the consensus part of the algorithm, every anchor combines the received update vectors

𝑢
[𝑗]
0 from the neighboring anchors with its own update vector 𝑢

[𝑖]
0 into the matrix U[𝑖]

0

U[𝑖]
0 =

[︁
𝑢

[𝑖]
0 𝑢

[1]
0 · · · 𝑢

[𝑚𝑖]
0

]︁T
, (4.17)

where 𝑚𝑖 is number of neighbors of anchor 𝑖 and vectors 𝑢
[1]
0 to 𝑢

[𝑚𝑖]
0 originate from the 𝑖th

anchor’s neighbor.
Here, we point out a change in notation regarding the vectors 𝑢. Until now have we used

subscripts and variable 𝑘 to denote that the value has been calculated in 𝑘th iteration of
the CSG algorithm. However, as the consensus part of the CSG is also iterative, we have
to also mark the iteration count for the inner consensus iterations. Fortunately the update
vectors 𝑢[𝑖] are recalculated every CSG iteration so their value is not retained outside the
CSG iteration 𝑘 (this is why we used subscript 0 in equation (4.13)). This allows us to keep
the iteration counts separate. We chose the subscript 𝑙 to denote the iteration number of the
consensus phase.

After the construction of the matrix U[𝑖]
𝑙 , every anchor makes a consensus iteration. In the

iteration a new update vector 𝑢
[𝑖]
𝑙 is calculated by taking a weighted average of matrix’s U

rows
𝑢

[𝑖]
𝑙+1 = W𝑖𝑖𝑢

[𝑖]
𝑙 +

∑︁
(𝑖,𝑗)∈𝐸𝑑

W𝑖𝑗𝑢
[𝑗]
𝑙 , (4.18)

where matrix W is so called consensus matrix.
After doing the iteration above, the new update vectors 𝑢

[𝑖]
𝑙+1 are again shared with the

neighboring anchors and then a new consensus iteration is performed (starting with the con-
struction of matrix U[𝑖]

𝑙 ). The sharing and iterating is repeated until a consensus is achieved,
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that is until the update vector converges 𝑢
[𝑖]
𝑙+1 ≈ 𝑢

[𝑖]
𝑙 for all anchors and is equal to a single

vector 𝑢 (so that all 𝑢
[𝑖]
𝑙 are the same for all 𝑖). The vector 𝑢[𝑖] without the iteration 𝑙 subscript

has the meaning of the converged vector, obtained as a result of consensus iterations.
Once the network achieves the consensus at the end of the consensus phase (4.18), every

anchor takes its converged update vector 𝑢[𝑖] and uses it as its new estimate of the estimation
vector 𝑥[𝑖].

𝑥
[𝑖]
𝑘+1 = 𝑢[𝑖] (4.19)

The subgradient update (4.13) and consensus phase (4.18) are repeated until the estimate
𝑥

[𝑖]
𝑘 converges for all anchors.
The matrix W plays an important role in the convergence of (4.18) and must be chosen

wisely. The Metropolis-Hastings definition [35, 36] was chosen by the authors of the article [32]
and in this work we will use it as well18,

𝑊𝑖𝑗 =

⎧⎨⎩min
{︁

1
𝑑(𝑣𝑖) , 1

𝑑(𝑣𝑗)

}︁
, 𝑖 ̸= 𝑗 ∧ (𝑖, 𝑗) ∈ 𝐸𝑑,∑︀

𝑘 max
{︁

0, 1
𝑑(𝑣𝑖) − 1

𝑑(𝑣𝑘)

}︁
, 𝑖 = 𝑗 ∧ (𝑖, 𝑘) ∈ 𝐸𝑑

(4.20)

where 𝑑(𝑣𝑖) is the degree of 𝑖th anchor.
Selected definition uses for weights calculation only the node degrees, which is the number

of anchor’s neighbors. Advantage of this definition is that it does not require any global
information, because the anchor’s degree is stored in anchor’s memory and can be obtained
anytime from any neighbor.

Other possible metrics are discussed in [35] while convergence analysis of (4.18) is provided
in [34].

When the CSG algorithm converges to a solution, the vector 𝑥[𝑖] will be identical for every
anchor and will contain positions of all the anchors. While it seems beneficial that every
anchor has the knowledge of the others whereabouts, it implies that every anchor knows the
size of the network in advance. This can be viewed as an acceptable global information, as it
can be put into the anchors during their placement. The problem is, however, that for large
networks it forces the embedded hardware to operate with long vectors and large matrices.
Computing matrix products and inverses with large matrices can greatly impact both the
computation speed and precision.

It is not necessary for an anchor to know positions of all other anchors, as it is never needed
for the positioning (from a single anchor’s perspective) or synchronization. Only the positions
of the neighboring anchors will be ever needed e.g. for the determination of distance between
slave and relay anchors.

The CSG algorithm also requires a significant amount of data to be shared, in the form of
the update vectors 𝑢

[𝑖]
𝑙 , each iteration during the consensus phase. This vector has the same

size as the estimate vector 𝑥, which means that it will be also large for large networks.
We can see that the CSG algorithm is better suited for smaller networks, where the dimen-

sions of vectors and matrices can still be handled by the embedded hardware. Moreover, the
algorithm does not state nor hint how the update vectors should be shared, leaving a crucial
part unsolved.

One of our improvements to the algorithm aims to solve both the dimensionality and update
vector sharing issues and we will discuss the improvement in the next section.

18The definition of W in the original work [32] is missing a case where 𝑖 = 𝑗. Its definition presented in
Equation (4.20) is taken from [36].
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Figure 4.1: Example of an anchor neighborhood

4.4.2 CSG dimension reduction and local consensus
In the previous section we have described the Consensus Subgradient algorithm and discussed
its issues, the growth of the estimation vector and the necessary data flow during estimation.
In this section we propose several adjustments of the algorithm, which will make it usable
even for large networks while preserving the estimation accuracy.

We start with the dimensionality issue. As we have said before, for every anchor it is
sufficient to know only the positions of itself and the neighboring anchors. Therefore we
propose that every anchor should estimate its own position and the positions of its neighbors
only, instead of all the anchors. This greatly reduces the sizes of vectors and matrices and
makes the calculations simpler.

With the change of the estimation vector 𝑥[𝑖] the update vector 𝑢
[𝑖]
𝑙 and most importantly

the construction of matrix U𝑙 also change. In the original version, the update vector 𝑢
[𝑖]
𝑙

contained positions of all anchors and these update vectors from other anchors were simply
combined into the matrix U[𝑖]

𝑙 . But with the proposed reduction, the matrix U[𝑖]
𝑙 will contain

only the entries corresponding to the neighbors of anchor 𝑖. From the neighboring anchors,
only the updates concerning the common neighbors can be put into the matrix U[𝑖]

𝑙 , meaning
that there will be zeros in places of non-common neighbors as not every of the neighboring
anchors has the same neighbors as the 𝑖th anchor has.

As an example consider the section of an anchor network in Figure 4.1. We will describe
the construction of the U[1]

𝑙 matrix from the perspective of anchor 1, which has anchors 2, 3
and 4 as its neighbors. The estimation vector of anchor 1 has the following structure

𝑥
[1]
𝑘 =

[︁
𝑟T

1 𝑟T
2 𝑟T

3 𝑟T
4

]︁T
. (4.21)

When the anchor 1 receives the update vectors from its neighbors, it proceeds to construct
the matrix U[1], where each element 𝑢𝑖,𝑗 corresponds to the position estimate of 𝑖th anchor,
received from the 𝑗th neighbor (1 being the local anchor 1).

U[1]
𝑙 =

⎡⎢⎢⎢⎣
𝑢1,1 𝑢1,2 𝑢1,3 𝑢1,4
𝑢2,1 𝑢2,2 0 𝑢2,4
𝑢3,1 0 𝑢3,3 0
𝑢4,1 𝑢4,2 0 𝑢4,4

⎤⎥⎥⎥⎦
T

(4.22)

The matrix U[1]
𝑙 contains several zero vectors 0, that is because several neighbors of the anchor

1 are not common for every neighbor. For example the anchor 3 is a neighbor of anchor 1 but
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not a neighbor of anchors 2 or 4. Therefore, the anchor 3 is unable to compute the update of
position estimates for anchors 2 and 4 as there is no measured distance between them.

If we perform the consensus iterations, with the matrix U[1]
𝑙 constructed as described, the

unavoidable presence of the zero vectors in matrix U[1]
𝑙 results in the estimates being pushed

towards zero. To cope with this we propose to replace the 0 vectors with the parts of the
update vector from the local anchor 𝑖, which should direct the estimates away from the zero
and hopefully towards a solution. The filled matrix from the example would look like

U[1]
𝑙 =

⎡⎢⎢⎢⎣
𝑢1,1 𝑢1,2 𝑢1,3 𝑢1,4
𝑢2,1 𝑢2,2 𝑢2,1 𝑢2,4
𝑢3,1 𝑢3,1 𝑢3,3 𝑢3,1
𝑢4,1 𝑢4,2 𝑢4,1 𝑢4,4

⎤⎥⎥⎥⎦
T

. (4.23)

This approach has the hazard of moving the estimate away from the local minimum, espe-
cially if the local update 𝑢[1] is bad. The thorough convergence analysis of this modification is
yet to be done. However, we assume that step in the wrong direction will be corrected in the
following iteration of the algorithm or that it will result in longer convergence. Nevertheless,
it is an acceptable trade off for the size reduction of the local estimate vector 𝑥

[𝑖]
𝑘 .

Filling the zero vectors 0 in the matrix U[𝑖]
𝑙 with the local updates allows for the second ad-

justment, which resolves the issue with the large size of necessary data flow. Instead of sharing
the update vector 𝑢

[𝑖]
𝑙 after each weighting during a consensus iteration, the anchors should

perform only a single consensus iteration (4.18) and share the result as their new estimate
𝑥

[𝑖]
𝑘+1. This greatly reduces the data flow and utilization of the communication channel, while

also preserving the accuracy of the estimates, which we will prove with experiments within
the Section 4.5. We denote this CSG modification as the Neighborhood CSG (N-CSG).

4.4.3 Consensus Levenberg-Marquardt

In addition to the previously mentioned adjustments we have also tried to improve the con-
vergence speed by replacing the subgradient update (4.13) with a different one. We chose to
replace it with the basic version of Levenberg-Marquardt update, changing the computation
of update vector to

𝑢
[𝑖]
0 = 𝑥

[𝑖]
𝑘 − [(G[𝑖]

𝑘 )TG[𝑖]
𝑘 + 𝜆𝑘 I]−1(G[𝑖]

𝑘 )T · 𝑔
[𝑖]
𝑘 , (4.24)

where

𝑔
[𝑖]
𝑘 = 𝑔[𝑖](𝑥[𝑖]

𝑘 ) , G[𝑖]
𝑘 = 𝜕𝑔[𝑖](𝑥[𝑖])

𝜕𝑥[𝑖]

⃒⃒⃒⃒
⃒
𝑥[𝑖]=𝑥

[𝑖]
𝑘

. (4.25)

We have named this modification of the CSG as Consensus Levenberg-Marquardt (CLM).
We will provide the comparison of how the algorithm’s performance changes, when different
update methods are used. Note, that the consensus phase of the algorithm will interfere with
the LM rules governing the manipulation of the 𝜆𝑘 parameter. Thus, the algorithm may
experience sudden increases of the cost function that normally would not happen with the
LM method alone.
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Figure 4.2: Distance graph

4.5 Experiments and comparison

For the evaluation of the ad hoc algorithms we chose to estimate the positions of anchors,
which are positioned in the RCD Radiokomunikace headquarters. The UWB network consists
of 28 anchors and covers whole floor, across several rooms. The floor plan together with the
anchors and distance graph is depicted in Figure 4.2.

For the initial guess we used the true anchor positions perturbed with uniformly distributed
random noise in ±2 m range. By that we simulate the situation when we would guess the
anchor positions roughly from a given floor plan. We have selected 5 anchors from the room
in the bottom-right corner of Figure 4.2 and one anchor from the room to the left to be used
as initial conditions to the algorithms. Given that all the initial anchors are separated from
the others by walls, we can expect that there will be a cumulative positioning error, due to the
delays and measurement errors caused by the signal propagating through a wall. This error
will grow with the distance from the “initial” room. We also expect the error in 𝑧-coordinate
to be higher than in the horizontal coordinates, because the anchors are mounted under the
ceiling, thus having the same height. For the estimation we set the iteration limit to 100
iterations.

The global solution given by the LM algorithm serves as a benchmark. The algorithms will
be compared based on their estimation accuracy and convergence speed.

In Figure 4.3 there are the estimation results given by the LM, CSG, CSG estimating only
neighboring positions (N-CSG) and the version with LM update (N-CLM). The blue dots
denote the fixed initial anchors, black dots are the true positions of the anchors and red
circles are the estimated positions. Red line is used to connect the true position with the
corresponding estimate.

It is apparent that even with the rough initial guess each algorithm estimated the anchor
positions closely to the true positions. However, due to the size of the building Table 4.1 and
Figure 4.4 might be more informational on the algorithms performance.
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Figure 4.3: Estimated anchor positions

Table 4.1 compares the algorithms based on the estimation error19. The columns provide
the RMS of the estimation error in 𝑥, 𝑦 and 𝑧 coordinates, the RMS error in two and three
dimensions and the maximal position error.

Surprisingly the LM has the worst performance in terms of 𝑧-coordinate error, total RMS
and maximal error. By looking at the RMS of individual coordinates, it can be seen that the
LM achieves low error in horizontal coordinates, while having the worst error in 𝑧-coordinate.
This is probably caused by the combination of flat anchor geometry and solving the problem
as a whole. The flat geometry explanation is supported by the low horizontal RMS and high
three-dimensional RMS, which is double in magnitude. The algorithms solving the problem
locally perform better in the overall error than the LM algorithm.

The important finding of these experiments is that the N-CSG and N-CLM algorithms,
which estimate the position of neighboring anchors only, achieved the lowest estimation errors.

19The difference between estimated position 𝑟 and true position 𝑟.
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Table 4.1: Comparison of the final position estimate errors
RMS [m] 2D 3D Max

𝑥 𝑦 𝑧 RMS [m] RMS [m] error [m]
LM 0.40 0.41 1.29 0.40 0.81 3.68
CSG 0.45 0.47 0.64 0.46 0.53 1.54
N-CSG 0.38 0.27 0.71 0.33 0.49 1.31
N-CLM 0.39 0.33 0.63 0.36 0.47 1.39
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Figure 4.4: Algorithms performance comparison

This is surprising as the N-CSG and N-CLM simplify the problem and in case of N-CLM the
LM update interferes with the consensus.

Figure 4.4 provides a view of the estimation error and the current cost in each iteration for
all of the used algorithms. Note, that the estimation error may have different behavior than
the cost, as the algorithms are controlled by the cost.

In Figure 4.4b we can see that the LM reduces the cost rapidly during the first iterations,
however, it keeps to improve the estimate until the last iteration (see Figure 4.4a). We can
observe that by the iteration 55 every algorithm, apart from the CSG, has almost reached
a minimum and slowed the cost reduction. Although, the N-CSG is still improving its estimate,
but rather slowly,

In Figures 4.4a and 4.4b on the plots for the N-CLM we can see that the interference
between LM and consensus phase can be an issue. This is caused by the changes to the
estimate, done in the consensus phase, are unknown to the LM part of the N-CLM, which
results in LM updating the estimate in a wrong direction.

From the results provided in this section, it can be concluded that the CSG, N-CSG and
N-CLM algorithms are capable of estimating the global anchor positions given only the local
information. For the network used for the experiments, the algorithms can be considered as
converged in approximately 55 iterations. However, due to the interfering parts of the N-CLM
algorithm, an appropriate cost limit must be set, in order to avoid sudden cost increase.
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The interesting findings of the experiments are that even the reduced algorithms N-CSG
and N-CLM are able to find a good solution and even outperform the original CSG algorithm.
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5 Conclusion

In this work we have continued our development of the position estimation in TDoA-UWB net-
works. Our past works were concerned with the Tag to Anchor TDoA variant. In this variant
the tags are positioned based on their blink messages, which are received by the synchronized
anchors. We have recapitulated the key topics of the T2A-TDoA localization in Chapter 2.
Also presented were the Chained synchronization algorithm [10] and implementation of the
position estimation with the Extended Kalman filter.

One of the two main topics of this work is the positioning with the Anchor to Tag TDoA
variant, which we covered in Chapter 3. Here, the anchors broadcast beacon messages that
are received by any of the listening tags in range. From these messages, each tag is able to
estimate its own position. However, the UWB does not support simultaneous reception of
multiple messages, thus the message transmission has to be spaced by a certain delay. Due
to the free running clock of the tag devices, the clock drift becomes a dominant source of
error, which renders the measurements unusable and which only increases with the increasing
message transmission spacing.

The A2T-TDoA method in the UWB networks is not well explored yet and thus, there
are only few related sources. Yet, we were able to compensate for the clock drift effects and
successfully estimate tag’s position. We have achieved this by adjusting the EKF to estimate
also the drift dynamics in addition to the position. Moreover, our implementation uses only
standardized UWB messages, which allows us to embed data in them, unlike the approaches
proposed by [29, 30].

We have evaluated the performance of the approach in a series of static and dynamic
tests, some of which are presented in Section 3.3. In the static grid measurement the A2T
EKF achieved RMS estimation error of 0.26 m in horizontal plane and error of 0.30 m when
estimating in three dimensions. This error would be probably even lower if the anchors were
not all mounted in the same height.

Correctly implemented A2T-TDoA allows the user tags to estimate their own position,
which makes the real-time navigation possible. Also, there is no limit on the number of
concurrently operating tags, since any tag that is able to receive beacon messages is able to
locate itself as well.

Furthermore, the UWB network designed in our works is able to operate in both A2T and
T2A modes simultaneously. This is a direct result of the introduction of the relay anchors
to the network [10] and that the beacon messages are in fact the relayed synchronization
messages. Such property enables simultaneous tracking (e.g., goods in a warehouse) and
navigation (e.g., vehicles, pedestrians, autonomous robots).

Chapter 4 focused on the self-localization of the anchors during the determination of a UWB
network. Positions of the anchors within a UWB network are considered to be a fundamental
information, without which the estimation of the tag’s position would not be possible. Usu-
ally a dedicated measuring equipment (laser distance meters, total stations, etc.) is used to
determine the positions of the anchors. Such approach is time consuming, especially for large
networks, and requires equipment with personnel to operate it.
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5 Conclusion

However, the anchors are able to measure distances between each other using the TWR
protocol. To solve the estimation problem we have considered the use of distributed calcula-
tions, where every anchor contributes to the problem solving. By contributing, every anchor
is provided with the solution (anchor positions) once it is estimated.

In particular, we have focused on the Consensus Subgradient algorithm proposed for this
purpose by [32] that uses only the local information (measured distances) for the estimation.
The realized experiments indicate that the original CSG algorithm is able to correctly estimate
the positions of the anchors. However, it forces every anchor to operate with potentially
large vectors and matrices, which could be very time consuming for the embedded hardware.
Therefore, we have suggested to reduce the estimation vector of every anchor, so that every
anchor estimates only its own position and the positions of the neighboring anchors. We have
denoted this modification as the Neighborhood CSG, or N-CSG.

Furthermore, we have suggested to exploit a Levenberg-Marquardt update instead of the
subgradient update in the distributed estimation, which could increase convergence speed.
Combining it with the previous suggestion we have denoted this algorithm as the Neighbor-
hood Consensus Levenberg-Marquardt, or N-CLM.

The experiments then showed that both N-CSG and N-CLM modifications, in terms of
estimation error, performed equally well or even better than the original CSG algorithm. Also,
the N-CLM proved to have faster convergence in the experiments. However, the N-CLM suffers
from sudden increases of the cost function values, due to the interference with the consensus
part of the algorithm. Therefore, there have to be devised additional rules and limits that
would stop the N-CLM estimation before the estimate diverges, even temporarily.

Due to the already broad scope of this work, we have omitted two topics, the antenna
delay calibration and the power corrections, both having noteworthy impact on achievable
accuracy. The effect of signal power on the DW1000 UWB chip time-stamping electronics
has been shown and investigated by [9] and [22]. In our future works we would like to explore
this topic in detail, particularly with relation to the methods presented within this thesis.
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A Dilution of Precision

Dilution of precision is a quantitative measure of increase in estimated position covariance
given the covariance of input data. A loose definition of DOP is that it is the covariance of
the change in position 𝑟 if we slightly perturb the input data ℎ.

DOP = cov
(︂ d𝑟

dℎ

)︂
(A.1)

The DOP is mostly associated with the GNSS [17, 37]. In relation with satellite navigation,
the DOP parameters relate the geometry of satellites used for the estimation with the actual
position of the user. Generally, if the satellites are covering a large area of the sky, from the
user’s point of view, then the DOP tends to be low and the estimated positions more precise.
An example of constellations that achieve low and high DOP can be seen in Figure A.1.

In the context of TDoA, the DOP is related to how the hyperbolae intersect. If the hyper-
bolae intersect mostly perpendicularly, then the DOP is low. This is depicted in Figure A.2.

Formally, the DOP is calculated using the matrix G describing the satellite constellation
(geometry) w.r.t. user’s position. In our case the matrix G is the Jacobi matrix of the
residuals, derived in (2.45) and (2.64). With the matrix G the relation between the position
covariance and covariance of measurement is [37]

cov(d𝑟) = (GTG)−1GTcov(dℎ)G(GTG)−1 , (A.2)

In case of GNSS the relation above can be reduced to a more compact form, using an assump-
tion of independent measurements and that their variance is identical.

cov(dℎ) = I 𝜎2
ℎ (A.3)

A1 A2

(a) Low HDOP

A1

A2

(b) High HDOP

Figure A.1: Example of HDOP for ToA
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A Dilution of Precision

A1 A2

A3

(a) Low HDOP

A1 A2

A3

(b) High HDOP

Figure A.2: Example of HDOP for TDoA

The assumption of independent measurements does not hold for our TDoA-UWB system,
where the covariance can be different for each measurement. However, the relation is useful
for the derivation of the DOP. The final relationship of the covariance is then [37]

cov(d𝑟) = (GTG)−1I 𝜎2
ℎ , (A.4)

where the elements of matrix (GTG)−1 provide a measure how the measurement covariance
and geometry effect the estimation covariance. These elements are used for the calculation of
the DOP.

For the estimation of the position in three dimensions, the matrix from (A.4) has the
following structure [37]

(GTG)−1 =

⎡⎢⎣𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎦ . (A.5)

The matrix G derived in Section 2.3 can be used in the calculations in (A.5). For the sake
of completeness we state the matrix G for both the TDoA and ToA which is used in the
GNSS [37]

GTDoA
𝑚 =

[︁
(1𝑗𝑟 − 1𝑖𝑟)T

]︁
, GToA

𝑚 =
[︁
1T

𝑖𝑟

]︁
, (A.6)

where 𝑚 is the number of a measurement, and 1𝑖𝑟 is the unit vector pointing from the position
estimate 𝑟 to the 𝑖th anchor.

From the 𝑎𝑖𝑗 elements the vertical, horizontal and positional DOP can be determined as
follows

VDOP = √
𝑎33 , HDOP =

√
𝑎11 + 𝑎22 , PDOP =

√
𝑎11 + 𝑎12 + 𝑎13 . (A.7)

Each of the VDOP, HDOP and PDOP quantities tell us how much is the estimated position
sensitive to the change in data in vertical direction, horizontal direction and in any direction,
respectively.

If we return back to the TDoA-UWB systems, the motivation for introducing the height soft
constraint in Section 2.3.3 to the estimation, was the bad (high) VDOP of the network. It is
often that the anchors are placed to a similar heights, creating a two-dimensional plane. Such
network may have good accuracy with estimating the positions in two dimensions (having
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HDOP low nearly everywhere within the network). The network will perform badly when
estimating the vertical coordinate, because the hyperboloids will intersect under bad angles,
resulting in high VDOP and unreliable estimate of the vertical coordinate.

The DOP parameters can be used for evaluation of the anchor placement withing the net-
work. Providing a tool with which we can determine if the placement is good or if it needs
to be adjusted. Another important aspect that influences the DOP in TDoA-UWB networks
is the choice of combination matrix D. The choice of TDoA pairs determines the hyper-
boloids that will be intersecting and therefore directly influences the DOP. This is different
from the GNSS or ToA systems where the DOP was fully determined by the measurements
alone, whereas for the TDoA the DOP is determined by both the measured ToA and their
combination into TDoA measurements.

In Figures A.3 and A.4 we can see a real-world example of DOP distribution within a build-
ing and how it is affected by the matrix D, with the matrices stated in (A.8) and (A.9). In
the figures there is a contour plot of HDOP for a room and for a hall, each in two versions
that differ in the used combination matrix D. The anchors are depicted as the large black
circles. Figures A.3a and A.4a use such a combination matrix D that the HDOP is good in
the whole area. Other Figures A.3b and A.4b use a combination matrix D which results in
worse HDOP. The most notable difference in the figures is, that the area, where the HDOP
is equal or below 1, is noticeably smaller in Figures A.3b and A.4b than it is in Figures A.3a
and A.4a.

D1 =

⎡⎢⎢⎢⎣
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎤⎥⎥⎥⎦ , D2 =

⎡⎢⎢⎢⎣
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤⎥⎥⎥⎦ (A.8)

D3 =
[︃
1 −1 0
0 1 −1

]︃
, D4 =

[︃
1 −1 0
1 0 −1

]︃
(A.9)
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Figure A.3: Example of HDOP in a room
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Figure A.4: Example of HDOP in a hall
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B Results of the T2A TDoA

This appendix serves as a recapitulation of key results achieved with the TDoA-UWB system
developed in our previous works [3, 4]. The results presented are of three types, each covering
a part of the localization, described in Chapter 2. The chosen topics are anchor synchroniza-
tion and the improvement of adding bias drift rate as a state, position estimation performance
comparison using Levenberg-Marquardt method and Extended Kalman filter and finally the
effect of adding soft constraint on the tag’s height.

For the presentation of the synchronization results we have chosen a test data, where one
of the anchors was warming up, shortly after power-on. That is when the clock drift changes
rapidly and where the two-state Kalman filter faces major difficulties in synchronizing the
anchor. The benefit of estimating the bias drift rate with the three-state KF is best demon-
strated on datasets affected by rapidly changing drift.

In Figures B.1 and B.2 we can see comparison of the two-state and three-state KF, using
the same dataset. The data presented on the figures were generated from the synchronization
messages, sent by master anchor, and from the estimates of the Kalman filters. Figures B.1
and B.2 always contain data from two anchors 𝐴0 and 𝐴1, where 𝐴0 was at the warm-up
stage during the measurement, whereas the 𝐴1 was at steady state. Figure B.1 contains
a Cumulative Density Function (CDF) of the estimation error of the bias for both of the two
anchors. We can see that in Figure B.1a the anchor 𝐴0 is not able to correctly estimate the
bias, due to the unanticipated changes in the bias drift, and more than 35 % of the errors are
larger than 1 ns. Such a high error20 would definitely result in a drop of positioning accuracy.
In contrast, in Figure B.1b we can see that the introduction of the bias drift rate to the model
helped to compensate the bias drift change and greatly reduce the error (over 95 % lower than
500 ps).

The findings mentioned above are supported by the evolution of KF states, bias drift �̇� and
bias drift rate �̈�, which are plotted in Figure B.2. In Figure B.2a we can see the state vector
development or the two-state KF (understandably with the bias drift rate �̈� fixed to 0). In this
case, the bias drift of the anchor 𝐴1 remained constant during the measurement. The bias
drift of anchor 𝐴0 was changing during the first five minutes of the measurement, suggesting
that the bias drift rate nonzero. The size of the bias drift rate and the resulting change in
the bias drift for the anchor 𝐴0 must have been higher than the corresponding process noise
variance of the filter. Otherwise the error would not be that high for the two-state filter, as
seen in Figure B.1a.

Figure B.2b depicts the states for the three-state KF and it confirms that there has been
indeed a change of bias drift, possibly due to the changing temperature of the device, which
has over time stabilized near zero (as the temperature stabilized).

By introducing the third state we were able to greatly reduce the synchronization error and
use the anchors for positioning even as early as during the warm-up phase. The reduction of
the error is summarized by Table B.1, where the listed error is the RMS of the synchronization

20The synchronization error of 1 ns is equivalent of approximately 30 cm of ranging error. Given that during
positioning several measurements are combined, the error multiplies, resulting a very poor position estimate.
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Figure B.1: CDF of bias error
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Figure B.2: Time development of bias drift and bias drift rate

error from the whole measurement. It is remarkable that with the proposed three-state KF
we are able to achieve very low synchronization error, as low as 300 ps (9 cm).

The next topic of the TDoA-UWB system development was about the position estimation
from TDoA measurements. Position estimation is a nonlinear problem and we chose to solve
it using two approaches. Firstly, we chose to view the problem as a NLSQ one a solve it
with epoch-by-epoch approach, using the Levenberg-Marquardt algorithm. For the second
approach was used the Extended Kalman filter. Both algorithms achieve great accuracy with

Table B.1: Synchronization RMS error for two and three-state Kalman Filter
Two-state KF Three-state KF

RMS [ns] Mean [ns] RMS [ns] Mean [ns]
Anchor 𝐴0 2.302 1.295 0.305 −0.007
Anchor 𝐴1 0.306 −0.099 0.244 0.002
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(a) Levenberg-Marquardt (b) Extended Kalman Filter

Figure B.3: Comparison of LM and EKF based on estimation results
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Figure B.4: Comparison of LM and EKF based on total estimation standard deviation

the given data and both have almost equivalent computational costs. We will compare the
algorithms by the estimation results and standard deviation of the estimates.

For the comparison we chose data from a static test in a classroom with six anchors and
the tag placed on a tripod. So the position of the anchors and the tag is precisely known. In
Figure B.3 we can see the resulting estimates from horizontal view. The anchors are plotted
as red dots, while the ground truth for the tag’s position is depicted as a black circle.

From the estimated positions in Figure B.3 we immediately notice that the estimates of
both algorithms are very accurate and that the EKF estimates exhibit lower position variance.
Indeed, the standard deviation of the estimates confirms it. The standard deviation has been
calculated from the position estimate covariance, which was estimated by the LM and EKF
algorithms. The evolution of the standard deviation during the measurement is displayed in
Figure B.4.

Finally, we compare the estimation results with and without the use of constrained height.
The motivation of using the constraint is to reduce the uncertainty of the estimation of tag’s
vertical 𝑧-coordinate. This is useful when the anchors are in the same height and the vertical
uncertainty is substantially higher then the horizontal. If we have the information that the
tag will be moving at more or less constant height, we can put this information into the
estimation and make the estimates more accurate.
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Figure B.5: Effect of height constraint on estimation results using LM

Even if we are not interested in the 𝑧-coordinate, we still might be interested in adding the
constraint, because the excessive uncertainty in the 𝑧-coordinate can affect the estimation of
horizontal coordinates and make it less accurate.

In Figure B.5 we can see the comparison of position estimates with and without the height
soft constraint. The estimates were calculated using LM algorithm. The test was done with
five anchors and a tag attached to a trolley, making it move at constant height. The anchors
were mounted 2.7 m above ground, while the tag’s height was 1 m. The anchors are displayed
as red dots, tag’s positions as blue dots and the ground truth of tag’s movement as black
dashed line.

We can see that the uncertainty in the 𝑧-coordinate may really affect the estimation in
horizontal plane as can be seen in Figure B.5a. The estimates in the left part of the figure
are far from the true position due to the uncertain height. By implementing the height soft
constraint the estimates return closer to the true value, as it is shown in Figure B.5b.
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