
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA ELEKTROTECHNICKÁ

KATEDRA ŘÍDICÍ TECHNIKY

DIPLOMOVÁ PRÁCE

MuPADLibrary for Symbolic Computation
with PolynomialMatrices

Petr Augusta

2005

Vedoucí: Ing. ZdeněkHurák, Ph.D.
Centrum aplikované kybernetiky, Katedra řídicí techniky,
Fakulta elektrotechnická, České vysoké učení technické v Praze

Oponent: RNDr. Aleš Němeček
Katedramatematiky, Fakulta elektrotechnická,
České vysoké učení technické v Praze

Anotace

Práce popisuje nově vytvořenou a volně dostupnou knihovnu funkcí pro symbolické počítání
s polynomy a polynomiálními maticemi nazvanou Polmat. Knihovna Polmat je vyvíjena pro
MuPAD, snadno dostupný a výkonný počítačový algebraický systém a programovací jazyk. Sa-
motný MuPAD neobsahuje funkce pro analýzu systémů a návrh regulačních obvodů a filtrů,
a proto vznikla snaha tyto algoritmy vytvořit. Knihovna najde uplatnění ve výzkumu a vývoji
tzv. algebraických metod návrhu regulátorů a filtrů. Implementovány byly funkce pro řešení
lineárních rovnic s polynomy a polynomiálními maticemi, výpočet spektrální faktorizace poly-
nomu a polynomiální matice a další. Dokument obsahuje úvod do počítání s polynomiálními
maticemi a počítání s počítačovými algebraickými systémy, popis použití funkcí a procedur,
vysvětlení užitýchmetod, demonstrativní příklady a výsledky zkušebních testů.

Abstract

This diploma thesis comes with a freely available library for symbolic computation with poly-
nomials and polynomial matrices, named Polmat. The Polmat library is developed for MuPAD,
which is an easily accessible efficient computer algebra system and programming language.
MuPAD does not contain functions used for design and analysis of control systems, therefore,
an endeavour to make them arose. Solvers for linear equations with polynomials and polyno-
mial matrices, spectral factorization of polynomials and polynomial matrices and others have
been implemented. This document contains introduction into polynomial matrix computation
and basic usage of computer algebra systems, syntax of implemented functions and procedures,
description of usedmethods, demonstrative examples and results of computational testing.

2

Contents

1 Introduction 5

2 PolynomialMatrix Computation 7
2.1 Introduction . 7
2.2 Methods . 9

3 Computer Algebra Systems 11
3.1 Maple andMathematica . 11
3.2 Matlab and Polynomial Toolbox . 12
3.3 Scilab . 12

4 MuPAD 13
4.1 Introduction . 13
4.2 MuPADPackages . 16
4.3 MuPAD-Scilab Link . 17

5 NewData Type Polmat 18
5.1 Definition of a NewObject . 18
5.2 Examples . 19

6 Algorithms 21
6.1 Greatest CommonDivisor . 21
6.2 Adjoint, Inverse, Determinant and Rank . 22
6.3 Solution of Linear Equations with Polynomials, PolynomialMatrices 24
6.4 Spectral Factorization . 28
6.5 Matrix Reductions andDecompositions . 29
6.6 Routh Table and Its Offer in Addition to Stability 33
6.7 Division of Polynomials . 35
6.8 Minimal Realization . 36

7 Benchmarks 37
7.1 Equation Solvers . 37
7.2 Matrix Determinant . 38
7.3 Smith Form . 39

3

8 Applications in Control Design 40
8.1 Cruise Control System . 40
8.2 Inverted Pendulum . 44
8.3 PendulumDiscrete-TimeModel . 48
8.4 Robust Control . 51

9 Conclusions 53

Bibliography 55

List of Symbols 58

List of Figures 59

List of Tables 60

Index 61

4

Chapter 1

Introduction

Thepolynomialmethods, launched in 1970’s fromCzechoslovakia, are one of the twomainused
approaches to linear systems, the other being the so-called state-space methods. Within this
framework, systems are described by input-output relations, i. e. the systems with single input
and single output (SISO) by univariate polynomial fractions and the systems with multiple
inputs and multiple outputs (MIMO) by left or right fractions of polynomial matrices. The
procedures for analysis of properties of dynamical systems and controller design are based on
manipulation with polynomials and polynomial matrices.

While the state-spacemethods, which operate with constantmatrices, are included inmany
software libraries, there are a few packages that can handle polynomial matrices. The most
complete library is no doubt the commercial Polynomial Toolbox for Matlab [44], developed by
PolyX company. A few functions are implemented in Maple [43], Scilab [46]. Quite recently,
some other packages for polynomial matrices computation for various software have been
developed by the students of Czech Technical University in Prague: Mathematica package for
polynomial matrices [21, 22] by Petr Kujan, package Polpack++ for C++ [6] by Leoš Halmo,
Java package [33] by Michal Paděra, a library for TI-89/TI-92 programmable calculators [39]
by Petr Štefko. These packages are based on numerical methods.

Numerical computation plays central role in industrial applications. Even the task of a
controller design using polynomial methods is transformed into series of numerical operations
with constant matrices, for which numerous software libraries are available (LAPACK, NAG,
IMSL). The algorithms are based on e. g. Sylvester matrix methods, interpolation [8, 12] and
there is endeavour to improve them all the time. However fast and efficient, these numerical
algorithms are not always useful and reliable. The rounding errors introduced by finite precision
arithmetics (mainly 64-bit floating point) take their price.

On the other hand, symbolic algorithms usually require more computing time and more
storage then numeric ones. But symbolic computation gives the precise results and therefore
even numerically unstable elementary operations can be performed without any risk of huge
errors. In addition, computation with symbols is available. The role of symbolic algorithms can
be found in helpingwith development of numerical algorithms and find out rounding errors and
numerical unstability.

It is the aim of this work to give a package of functions for symbolic computation with
polynomials and polynomial matrices. The created library is named Polmat and it is distributed

5

INTRODUCTION 6

freely [1]. A computer algebra systemMuPAD [45] was chosen for algorithms implementation.
It provides a concept for object oriented programming, offers an interactive source code debug-
ger and a powerfull visualization tool. A license of MuPAD versions for a student, a teacher,
a lecturer, a representant of an educational institution or a private person is free. MuPAD is
developed mainly at the University of Paderborn in Germany since 1990. Polmat has been
implemented and tested inMuPAD 2.5.3.

In this document, the chapter Polynomial Matrices Computation gives the basic informa-
tion about a computationwith polynomials and polynomial matrices. The next chapter explains
some fundamentals of Computer Algebra Systems. The chapter MuPAD is devoted to Mu-
PAD software. A data type polmat and its definition is described in the chapterNew Data Type
Polmat. The implemented algorithms are described in the chapter Algorithms. In the chapter
Benchmarks some tests and comparison with some others packages are made. The chapter
Applications in Control Design gives some examples for using Polmat in the control theory.

Responses of Users

Stefan Wehmeier, MuPAD developer and researcher at Universität-Gesamthochschule Pader-
born, together with Prof. Benno Fuchssteiner, head of MuPAD developers, have contacted us
and offered cooperation and support.

Prof. MirosławMajewski, Zayed University, organizer of MathPAD Conference, has invited us
toMathPAD 2005, Toruń, Poland.

Ishan Pendharkar from Department of Electrical Engineering, Indian Institute of Techno-
logy Bombay, working in behavioral systems theory, uses Polmat for computing polynomial
J-spectral factorization andmatrix diagonalization.

Julian Stoev has contacted us and expressed his suggestions.

Chapter 2

PolynomialMatrix Computation

This chapter would like to give a short introduction into polynomial matrix computation. For
detailed informations you can read e. g. [19, 24, 5, 25, 13, 23, 7, 37, 38].

2.1 Introduction

There are twomain approaches to description of linear systems signals and control: state-space
and polynomial description. The former uses four constant matrices and is often written as a
system of differential (recurrence) and algebraic equations. The latter expresses linearmodel as
a transfer function. Single Input Single Output (SISO) system is described by a fraction of two
polynomials, i. e. ratio of Laplace transform of output and Laplace transform of input with zero
initial conditions in continuous-time case and ratio ofZ-transform of output andZ-transform
of input with zero initial conditions in discrete-time case. Multi Input Multi Output (MIMO)
system is described by a fraction of two polynomial matrices.

For instance, a system can be described by state-spacemethods as

x(t + 1) =

 0 −1
5

1 6
5

 x(t) +

 1
0

 u(t)

y(t) =
(

4
5

13
50

)
x(t) +

(
0
)
u(t)

where t is discrete time. The same system is described by polynomial methods as transfer
function

Y (d) =
4
5 d −

7
10 d

2

1− 6
5 d + 1

5 d
2
U(d),

where d is complex variable. Obviously, the second method is more elegant than the first one.
Polynomials and polynomial matrices arise naturally and have clear physical interpretation.
This description is usually obtained from experimental identification and there is no need to
introduce artificial variables called states. Sometimes the concept of state variable is very useful,
because it enables us consider things that are going on inside the model, but sometimes this is
undesirable if we want to focus on input-output behaviour only.

7

POLYNOMIALMATRIX COMPUTATION 8

A following example shows controller design by polynomial methods.

Example 2.1

Consider the scheme in Fig. 2.1 and the unstable plant P, the controller C which are described
by the following transfer functions

P(d) =
b(d)
a(d)

=
4
5 d −

7
10 d

2

1− 6
5 d + 1

5 d
2
, C(d) =

y(d)
x(d)

.

Figure 2.1: Basic block scheme of closed loop

Find the polynomials x(d) and y(d) such that closed-loop system is stable. A stability of
closed loop depends on a polynomial c(d) given by

c(d) = a(d) x(d) + b(d) y(d).

Choose any stable polynomial c(d), for instance c(d) = 1, and solve the previous equation for
x(d) and y(d) (

1− 6
5
d +

1
5
d2
)
x(d) +

(
4
5
d − 7

10
d2
)
y(d) = 1.

This equation has infinite set of solutions, one of them is

x(d) = 1− 238
27

d

y(d) =
338
27

− 68
27

d

and the controller is
C(d) =

y(d)
x(d)

=
68 d − 338
238 d − 27

.

2

Simply, the controller design consists of the solution of a linear polynomial equation

a x + b y = c.

For MIMO systems, the process is analogous. Linear equations with polynomial matrices are
solved. These equationsmay have one of the following forms

AX + BY = C
AX + Y B = C
X A + Y B = C.

POLYNOMIALMATRIX COMPUTATION 9

In optimal control with quadratic control quality criterion a spectral factorization is computed.
Then the equation

X JX∗ = B or X X∗ = B

where X∗(s) = XT(−s) in continuous-time case, X∗(z) = XT(z−1) in discrete-time case is
solved.

Very often in system analysis of synthesis, we need conversion of a polynomial matrix to one
of several special forms, e.g., Smith form, Smith-McMillan form, Hermite form, row echelon
form, etc.

Example 2.2

Consider theMIMO system [38]

G(s) =
1

s (s + 1)2

1 (s + 1)2 s (s + 1) (s + 2)
0 s (s + 2) 0
0 0 3 s (s + 1) (s + 2)

 .

Compute its zeros and poles. Smith-McMillan form ofG(s) is

1
s (s + 1)2

1 0 0
0 s (s + 2) 0
0 0 3 s (s + 1) (s + 2)

 =

1
s (s + 1)2

0 0

0
s + 2

(s + 1)2
0

0 0
3 (s + 2)
(s + 1)

 .

Poles, zeros are given by

s (s + 1)2 · (s + 1)2 · (s + 1) = 0,
(s + 2) · 3 (s + 2) = 0,

respectively. 2

2.2 Methods

For all thesemathematical routines the special algorithms are designed. Theymay be based on

• elementary operations on polynomial matrix,
• Sylvester matrix method,
• interpolation.

Let us introduce the corresponding definitions.

Definition 2.1 (Elementary operations) [19, 4]
LetA(λ)m,n be a polynomialmatrix. Elementary row (column) operations for polynomialmatrix
A(λ) have the form

POLYNOMIALMATRIX COMPUTATION 10

(i) interchange of any two rows (columns),
(ii) addition to any row (column) of a polynomial multiple of any other row (column),
(iii) scaling any row (column) by any nonzero real or complex number.

2

Themethods based on elementary operations on polynomial matrix are very efficient. Inter-
esting in number of computations, these methods are the most effective of all. Because they are
numerically unstable it is not possible use them in numerical algorithms.

Sylvester matrix methods are able to compute rather numerically than symbolically. Before
wemake clear what is Sylvester matrix we introduce a following definition.

Definition 2.2 (Bandmatrix)
Suppose amatrix

A = (aij), i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

If there exists number p, 0 < p < min(m, n), such that aij = 0 for all i, j for which |i− j| > p, an
A is said to be bandmatrix. A number p is calledwidth of band. 2

Sylvester matrix [8]
Suppose a polynomial matrix equation

A(s)X(s) = B(s),

where A(s)m,n, B(s)m,p are given polynomial matrices and X(s)n,p is variable. The matrices can
be written as

A(s) = A0 + A1 s + A2 s2 + · · · + A∂A s∂A

B(s) = B0 + B1 s + B2 s2 + · · · + B∂B s∂B

X(s) = X0 + X1 s + X2 s2 + · · · + X∂X s∂X .

Thenwe canwrite an equivalent equation

A0 0
A1 A0
... A1

. . .

A∂A
... A0

A∂A A1
.

0 A∂A

︸ ︷︷ ︸

Â

X0

X1
...

X∂X

︸ ︷︷ ︸

X̂

=

B0

B1
...

B∂B

︸ ︷︷ ︸

B̂

where Â is an especial kind of bandmatrix called Sylvester matrix. 2

A last mentioned method is the interpolation. It is not useful for symbolic computation. For
its definition and algorithm see e. g. [8, 12, 21].

Chapter 3

Computer Algebra Systems

A computer algebra system is a type of software package that is used in manipulation of mathe-
matical formulae. The primary aim of a computer algebra system is to solve tedious or difficult
algebraic tasks. The computer algebra systems can be used interactively, the user enters some
commands and the system evaluates them. The principal difference between a computer ale-
bra system and a traditional calculator is the ability to deal with equations symbolically rather
than numerically. In addition, most computer algebra systems can approximate solutions nu-
merically and user can set the precision to the desired number of digits. The computer algebra
systems often provide a programming language and tools for visualization and animation of
mathematical data.

The beginning of development of computer algebra systems is jointedwith comming of pro-
gramming languages as Fortran and Lisp. The first program able to manipulate with symbol-
ical expression SAIN (Symbolic Automatic INtegration) came in 1961, followed by FORMAC,
MATHLAB, REDUCE, SCRATCHPAF,muMATH and others.

At present, there are many different computer algebra systems. Some are distributed com-
mercially, others can be obtained for free. We distinguish special purpose and general purpose
computer algebra systems. Special purpose systems can handle particular problems. For exam-
ple, GAP, LiE deal with group theory, CASA and GANITH solve algebraic geometry problems,
etc. The best-known general purpose systems are MathCAD, Mathematica, Maple, Maxima,
MuPAD.

In what follows, we say more about Maple, Mathematica, Matlab and Scilab. Even though
Matlab and Scilab do not belong strictly among CAS product, we consider them here.

3.1 Maple andMathematica

Maple [43] and Mathematica [47] are ones of the most used computer algebra systems. They
combine symbolic andnumerical computingmethods, provide graphical tool andprogramming
language. Maple is distributed byWaterlooMaple, Inc. Mathematica is distributed byWolfram
Research, Inc.Mathematica package for polynomialmatrix computation has been developed by
Kujan [22].

11

COMPUTERALGEBRA SYSTEMS 12

3.2 Matlab and Polynomial Toolbox

Concerning technical universities,Matlab is themostwidespreadproduct. It enables fast numer-
ical solvers, so needed in engineering. Matlab contains Symbolic Math Toolbox for symbolical
computing.Matlab is trademark by TheMathworks, Inc.

The Polynomial Toolbox for Matlab [44] is a Matlab toolbox for polynomial matrix com-
putation, developed by PolyX company. It offers e. g. new generation of numerical algorithms,
continuous-time and discrete-time system and signal models based on polynomial matrix frac-
tions, classical and robustness analysis for LTI systems and filters, classical and optimal design
tools (pole placement, all stabilizing controllers, dead-beat, H2 and LQG), H∞ optimization,
conversion to and from LTI object of the Control System Toolbox. For futher informations
see [44].

3.3 Scilab

Scilab [46] is mainly numerical package but there exists Scilab-MuPAD link (see Sec. 4.3),
therefore, there is a short information about this project in this section.

Scilab is developed since 1990 by INRIA and ENPC. It is a scientific software package for
numerical computations. It is distributed freely. Scilab aims at handling more complex objects
than numerical matrices. The manipulation rational or polynomial transfer matrices is done by
manipulating lists and typed listswhich allows a natural symbolic representation of complicated
mathematical objects such as transfer functions, linear systems or graphs.

Chapter 4

MuPAD

This chapter explains the basic useMuPAD. Formore details see [32, 31, 45].

4.1 Introduction

MuPAD is an interactive general purpose computer algebra system in an integrated and open
environment for symbolic and numeric computing. It has been developed at the University of
Paderborn since 1990. MuPAD provides a concept for object oriented programming, offers an
interactive source code debugger and a powerfull visualization tool calledVCam.MuPADkernel
is implemented inC andC++, theMuPAD libraries are implemented inMuPAD’s programming
language. A user can write ownMuPAD procedures and compile and link existing C/C++-code
asDynamicModules at runtime. TheMuPAD distributions for various operating systems exist.

Figure 4.1:MuPAD

13

MUPAD 14

A license of some MuPAD versions for a student, a teacher, a lecturer, a representant of an
educational institution or just a private person who is interested in doing mathematics is free,
visit [45]. The free MuPAD versions, downloaded from [45], have a built-in memory limit of
6megabytes. The registration removes it, see help for register command inMuPAD.

After starting program, you can enter an instruction and wait until MuPAD computes the
result and prints it on the screen. For instance, to computewith numbers, you can type 1 + 3/2
and press<ENTER>. MuPAD displays

>> 1 + 3/2

5/2

Most of MuPAD’s mathematical knowledge is organized in libraries. A list of all available
libraries can be printed by calling

>> info()

-- Libraries:

Ax, Cat, Dom, Network, RGB,

Series, Type, adt, combinat, detools,

fp, generate, groebner, import, intlib,

linalg, linopt, listlib, matchlib, module,

numeric, numlib, ode, orthpoly, output,

plot, polylib, prog, property, solvelib,

specfunc, stats, stdlib, stringlib, student,

transform

You can get help by calling ?. You can also type

>> ?linalg

>> ?linalg::stackMatrix

and get help for a librarylinalg, for a functionlinalg::stackMatrix, respectively, or choose
Help inMuPADmenu.

The numbers, symbolic expressions,matrices, arrays, lists, equations, inequalities andmore
are called MuPAD objects. Every MuPAD object belongs to some data type, called the domain
type. The types with capital letters as DOM INT, DOM POLY etc. correspond to domains provided
by theMuPADkernel.Domains asDom::Matrix()were implemented in theMuPAD language.
For full-range description ofMuPAD objects read [32, Chap. 4].

By way of example we illustrate work withMuPAD.

Example 4.1

Student’s exercise is to solve an equation

x + 2
7 x + 23

=
x− 2

7 (x + 1)
.

MUPAD 15

But student see badly and copies it with mistaken second term in the numerator on left-hand
side andwithminus in the denominator on right-hand side.He solves this bad equation correctly
and obtains right solution of given one. The question is what equation did he solve.

InMuPAD solve this tasks by following.

>> solve((x+2)/(7*x+23)=(x-2)/(7*(x+1)), x)

{-5}

>> solve((x+a)/(7*x+23)=(x-2)/(7*(x-1)), x)

/ { 7 a - 46 } \

piecewise| { -------- } if a <> 16/7, {} if a = 16/7 |

\ { 7 a - 16 } /

>> solve((7*a-46)/(7*a-16)=-5, a)

{3}

A student solved the equation
x + 3

7 x + 23
=

x− 2
7 (x− 1)

.

2

Example 4.2

Solve a linear optimization problem

max

2 x− 3 y

∣∣∣∣∣∣∣∣
x + 2 y ≥ 6
y− x ≤ 3
x + y ≤ 10

, x, y ≥ 0

 .

Get a numeric solution via linopt::maximize at first.

>> linopt::maximize([{x+2*y>=6, y-x<=3, x+y<=10}, 2*x-3*y,

NonNegative])

[OPTIMAL, {y = 0, x = 10}, 20]

You can also use of MuPAD’s tool for vizualization of mathematical data to solve our task by
graphicmethod.

>> k:=[[x+2*y>=6, y-x<=3, x+y<=10], 2*x-3*y, NonNegative]:

>> g:=linopt::plot_data(k, [x, y]):

>> plot2d(g)

After performing a last command,MuPAD opens a window in Fig. 4.2. 2

MUPAD 16

Figure 4.2: Graphicmethod for solving a linear optimalization problem

4.2 MuPADPackages

MuPAD provides a programming language in which the user can implement complex algo-
rithms. The procedures can be defined via proc-end proc and can be joined to packages [32].
All functions, contained in a package, are avaible after calling command

package("$PATH")

where $PATH denotes package directory path. In Linux, place packages to directory

~/.mupad/packages

for easy loading.

Example 4.3

You can load a Polmat library by, for example,

>> package("polmat")

"Library Polmat successfully loaded."

2

MUPAD 17

4.3 MuPAD-Scilab Link

TheMuPAD-Scilab link [29] is the link betweenMuPADand the numerical Scilab package [46].
Using this link, data can be exchanged betweenMuPADand Scilab and some Scilab commands
can be executed from inside aMuPAD session.

You can perform numerical computing by Scilab inMuPAD, as in following example.

Example 4.4

>> scilab::start()

TRUE

>> scilab::sqrt(2)

1.414213562

2

Chapter 5

NewData Type Polmat

The Polmat library usesMuPAD domains and data types for definition its objects and combines
them. Polmat works with four rings, with polynomials, polynomial matrices, rational functions
and rationalmatrices. You candefine a newobject by functionpolmat::new, or shortlypolmat.
The function chooses object data type according to input data.

The domains DOM_POLY is used for definition of a polynomial. It is a special data type which
is implemented with some kernel functions and makes computation with polynomials more
efficient. The analogous data type for polynomial matrices is missing. Therefore, a polynomial
matrix is an element of domain type

Dom::Matrix(Dom::DistributedPolynomial([x],

Dom::ExpressionField(normal, iszero@normal), LexOrder))

wherexdenotes an indeterminate. For bettermanipulationwithpolynomialmatrices, command
polmat::poly:=Dom::DistributedPolynomial is performed.

For computing with the polynomials in control theory, we often need use the polynomials
with negative exponents, for example a(z) = 2 z + 1 + 2 z−1. Such polynomials are defined as
DOM_EXPR and amatrix of such polynomials is object of domain Dom::Matrix().

Our approach has only one trouble. There is not compability of scalar polynomial with 1 by
1 polynomial matrix or a term of a polynomial matrix, because any matrix domain type is not
compatible with type DOM_POLY inMuPAD.

The description of a command polmat follows.

5.1 Definition of a NewObject

As itwas said,polmat::newdefines anewobject – apolynomial, a polynomialmatrix, a rational
function or a rational matrix.

Call(s)

a:=polmat(p<, x>)

A:=polmat(m, x)

18

NEWDATATYPE POLMAT 19

Parameters andOptions

p – a polynomial or an expression
m – an element of a domain DOM LIST, see the Sec. 5.2
x – an indeterminate

Return Values

a – an element of a domain DOM EXPR, DOM POLY, DOM INT, . . .
A – an element of a domain Dom::Matrix(polmat::poly) or Dom::Matrix()

5.2 Examples

The creation of new objects is best seen via a simple examples.

Example 5.1

Create a polynomial and the polynomial matrices

a(x) = 10 c x2 + x, A(d) =

 d 1− d
5 d2 d2

 , B(x) =

 x + x−1 1 + x−2

5 x + 1 2

 .

>> a:=polmat(x+10*c*x^2, x)

2

poly((10 c) x + x, [x])

>> A:=polmat([[d, -d+1],[5*d^2, d^2]], d)

+- -+

| d, - d + 1 |

| |

| 2 2 |

| 5 d , d |

+- -+

>> B:=polmat([[x+x^-1, x^-2],[5*x+1, 2]], x)

+- -+

| 1 1 |

| x + -, -- |

| x 2 |

| x |

| |

| 5 x + 1, 2 |

+- -+

2

NEWDATATYPE POLMAT 20

Example 5.2

It is available to define a number as constant or as polynomial.

>> a:=polmat(3)

3

>> domtype(%)

DOM_INT

>> a:=polmat(3, x)

poly(3, [x])

>> domtype(%)

DOM_POLY

2

Example 5.3

In control theory, the discrete-time systems are described by polynomials in z or in z−1 = d. In
the second case, you can resolve if an indeterminate will be z or d.

>> c:=polmat(1/z + 3/z^2)

1 3

- + --

z 2

z

>> c:=polmat(1/z + 3/z^2, 1/z)

2

poly(3 d + d, [d])

2

Chapter 6

Algorithms

This chapter serves the algorithms description. We mention the algorithms for a greatest com-
mon divisor, an adjoint of a matrix, the equations solvers, a spectral factorization, the matrix
decompositions and reductions, a rank of a matrix, the Routh table, the Schmidt pairs, the
Nehari problem, a division of the polynomials and aminimal realization. You can readmore in-
formations, some examples and the description of all algorithms implemented in Polmat in [2].

6.1 Greatest CommonDivisor

For the polynomial computation, greatest common divisor (GCD) of polynomials is one of the
most important algorithms. In Polmat, it is computed by function polmat::gcd.

Call(s)

[d, p, q, r, s] := polmat::gcd(a, b, x)

[D, P, Q, R, S] := polmat::gcd(A, B, x<, "left">)

[D, P, Q, R, S] := polmat::gcd(A, B, x<, "right">)

Parameters andOptions

a, b – the polynomials of domain DOM_POLY
A, B – thematrices of a type Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

d, p, q, r, s – the polynomials of domain DOM_POLY
D – amatrix of a type Dom::Matrix(polmat::poly)
P, Q, R, S – thematrices of a type Dom::Matrix()

21

ALGORITHMS 22

Details

Scalar version of the algorithm solves a system of equations

a p− b q = d
a r − b s = 0,

where a, b are given polynomials, p, q, r, s, d are variables and d is GCD. Computationmethod is
based on Euclidean algorithm.

Algorithm for polynomial matrices finds left, right GCD of the polynomial matrices, solves a
system of equations

AP + BQ = D
AR + BS = 0,

P A + QB = D
RA + SB = 0,

respectively, whereA,B are given polynomial matrices,P,Q,R, S are variables andD is GCD.
These algorithms are based on elementary operations on polynomial matrix. For full de-

scription the both GCD algorithms see [23].

6.2 Adjoint, Inverse, Determinant and Rank

Algorithms for computation of adjoint, inverse, determinant and rank of a polynomial matrix
are contained in this section.

6.2.1 Adjoint of aMatrix and Determinant

Adjoint of a matrix adjA and the determinant detA of a matrix A are computed by function
polmat::adj.

Call(s)

[adj, det] := polmat::adj(A, x)

Parameters andOptions

A – an element of a domain Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

adj – an element of a domain Dom::Matrix(polmat::poly)
det – an element of a domain polmat::poly

ALGORITHMS 23

Details

Algorithm is based on elementary operations on polynomial matrix. For its full description
read [23].

Also function polmat::det for computingmatrix determinant is available, see [2].

6.2.2 Inverse of aMatrix

Inverse of amatrix is returned by function polmat::inverse.

Call(s)

B := polmat::inverse(A, x)

Parameters andOptions

A – an element of a domain Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

B – an element of a domain Dom::Matrix(polmat::poly)

Details

InverseA−1 for amatrixA is computed by using adjoint and determinant of amatrix by

A−1 =
adjA
detA

.

6.2.3 Rank of a PolynomialMatrix

Rank is computed by function polmat::rank.

Call(s)

r := polmat::rank(A, x<, horn>)

r := polmat::rank(A, x<, sylv>)

Parameters andOptions

A – amatrix of a domain Dom::Matrix(polmat::poly)
x – an indeterminate
horn –Horner schememethod is used
sylv – Sylvester matrix algorithm used

ALGORITHMS 24

Return Values

r – a nonnegative integer number

Details

There are two methods for computing rank of a polynomial matrix [8, 4]. The first one uses
matrix evaluation by Horner scheme [49, 4], the second one is Sylvester matrix algorithm [8].
Mentionedmethods are performed by themacros polmat::value and polmat::gensylv [2].

Optional parameter (horn/sylv) determines whatmethodwill be used. The default is Horner
schememethod.

6.3 Solution of Linear Equations with Polynomials,
PolynomialMatrices

Solvers equations with polynomials and polynomial matrices are described in this section.

6.3.1 AXBYCEquation

Solution of linear equation with polynomials, polynomial matrices

a x + b y = c, (6.1)
AX + BY = C, (6.2)

respectively, where a, b, c are given polynomials,A,B,C are given polynomial matrices and x, y,
X,Y are variables is returned by polmat::axbyc.

Call(s)

[X,Y] := polmat::axbyc(a, b, c, x<, "x-minimal">)

[X,Y] := polmat::axbyc(a, b, c, x<, "y-minimal">)

[X,Y] := polmat::axbyc(a, b, c, x<, "degx<dega">)

[X,Y] := polmat::axbyc(A, B, C, x)

Parameters andOptions

a, b, c – the polynomials
A, B, C – the polynomial matrices of type polmat::matrix
x – an indeterminate

ALGORITHMS 25

Return Values

X, Y – an element of a domain DOM POLY or Dom::Matrix(polmat::poly)

Details

General solution of (6.1) is
x = p

c
d
+ r t

y = q
c
d
+ s t,

where polynomials d, p, q, r, s are solution of GCD algorithm and t is an arbitrary one.
General solution (6.2) is

X = P2 C2 + R2 T
Y = Q2 C2 + S2 T ,

where T is an arbitrarymatrix and

C = D2 C2,
AP2 + BQ2 = D2

AR2 + BS2 = 0.
(6.3)

If the parameter "x-minimal" is given, the equation is solved for x-minimal solution x1,
y1. If the parameter "y-minimal" is given, the equation is solved for y-minimal solution x2, y2.
These algorithms are described in [14].

If theparameter"degy<dega" is given, the equation is solved for∂y3 < ∂a. General solution
is

x3 = x2 +
b

(a, b)
t

y3 = y2 −
a

(a, b)
t,

where an arbitrary polynomial tmust satisfy ∂t < ∂(a, b).

6.3.2 AXYBCEquation

Solution of linear equations of polynomials, polynomial matrices

a x + y b = c
AX + Y B = C,

respectively, where a, b, c are given polynomials,A,B,C are given polynomial matrices and x, y,
X,Y are variables is returned by polmat::axybc.

Call(s)

[X, Y] := polmat::axybc(a, b, c, x)

[X, Y] := polmat::axybc(A, B, C, x)

ALGORITHMS 26

Parameters andOptions

a, b, c – the polynomials
A, B, C – the polynomial matrices of type polmat::matrix
x – an indeterminate

Return Values

X, Y – the elements of a domain DOM POLY or Dom::Matrix(polmat::poly)

6.3.3 XAYBCEquation

Solution of linear equations of polynomials or polynomial matrices

x a + y b = c,
X A + Y B = C, (6.4)

respectively, where a, b, c are given polynomials,A,B,C are given polynomial matrices and x, y,
X,Y are variables is returned by polmat::xabyc.

Call(s)

[X, Y] := polmat::xabyc(a, b, c, x)

[X, Y] := polmat::xabyc(A, B, C, x)

Parameters andOptions

a, b, c – the polynomials
A, B, C – the polynomial matrices of type polmat::matrix
x – an indeterminate

Return Values

X, Y – the elements of a domain DOM POLY or Dom::Matrix(polmat::poly)

Details

General solution of (6.4) is
X = C1 P1 + T R1

Y = C1Q1 + T S1,
(6.5)

where T is an arbitrarymatrix and

C = C1D1,
P1 A + Q1 B = D1

R1 A + S1 B = 0.

ALGORITHMS 27

6.3.4 AXBYCDEquation

Solution of linear equations of polynomials

a x̄ + b̄ y = c + d̄,

where a, b, c, d are given polynomials and x, y are variables is returned by polmat::axbycd.

Call(s)

[X, Y] := polmat::axbycd(a, b, c, d c, x<, "x-minimal">)

[X, Y] := polmat::axbycd(a, b, c, d c, x<, "y-minimal">)

Parameters andOptions

a, b, c – the polynomials, the expressions or the numbers
d c – an expression
x – an indeterminate

Return Values

X, Y – the elements of a domain DOM POLY

Details

If the parameter "x-minimal" is given, the equation is solved for x-minimal solution. This
parameter is default. If the parameter "y-minimal" is given, the equation is solved for y-
-minimal solution. The algorithm is described in [16].

6.3.5 AXXABEquation

Solution of symmetric linear equations of polynomials

ā x + a x̄ = b,

where a is given polynomial, b is given two-sided one and x is variable is returned by function
polmat::axxab.

Call(s)

X := polmat::axxab(a, b, x)

Parameters andOptions

a, b – the polynomials
x – an indeterminate

ALGORITHMS 28

Return Values

X – an element of a domain DOM POLY

6.4 Spectral Factorization

In various optimal control techniques, spectral factorization is a crucial computational step.
Algorithm for polynomial spectral factorization and algorithm for polynomial matrix J-spectral
factorization is performed by function polmat::spf.

Call(s)

[X, n, eps] := polmat::spf(p, x)

[P, J] := polmat::spf(Z, x)

Parameters andOptions

p – the polynomials of domain DOM_POLY
Z – a polynomial matrix of type Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

X – a polynomial of domain DOM_POLY
n – an integer number
eps – a real number
P, J – the polynomial matrices of type Dom::Matrix(polmat::poly)

Details

Polynomial spectral factorization problemmeans to find a polynomial x satisfying

x x̄ = b,

where b is given polynomial and x̄(s) = x(−s) in continue-time case, x̄(d) = x(d−1) in discrete-
time case. The implemented algorithm for polynomial spectral factorization is based on a
Newton-Raphson iterative scheme and on themacro polmat::axxab. For details see [40, 41].

The Newton-Raphson method is stopped when norm(xi − xi−1) is less then a value of
polmat::spf::tol or a number of iteration is a value of polmat::spf::noi. The default
value of polmat::spf::tol is 10−8. The default value of polmat::spf::noi is 30.

The scalar version of function polmat::spf returns a polynomial x, number of performed
iterations n and precision ε.

ALGORITHMS 29

Polynomial matrix version of spectral factorization algorithm is based on a diagonaliza-
tion [13, 26]. For input polynomial matrixZ thematricesP and J are computed that

Z = P̄ J P,

where P̄(s) = PT(−s) and the constant matrix J has a form
I1 0 0
0 −I2 0
0 0 0

 .

The algorithm for discrete-time case is not available.

6.5 Matrix Reductions andDecompositions

This chapter refers to some matrix decompositions and the reductions to some forms. Algo-
rithms for computing Hermite form, Smith form, Popov form, a reduction by a right and a left
divisor and others are presented.

6.5.1 Smith Form

An input matrix is reduced by elementary column and row operations to Smith form [23, 19] by
function polmat::smithForm. The algorithm computesmatricesP andQ so that

P AQ = diagl, m [a1, a2, . . . , ar, 0, . . . , 0] ,

whereAl, m is a givenmatrix. Formore details see [23].

Call(s)

[P, B, Q, r] := polmat::smithForm(A, x)

Parameters andOptions

A – amatrix of a type Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

P, B, Q – thematrices of a domain Dom::Matrix (B= P AQ),
r – an integer number

ALGORITHMS 30

6.5.2 Hermite Form

Matrix reduction to Hermite form [19] is performed by function polmat::hermiteForm. It
computes matrices P, Q so that P A, AQ is row, column Hermite form, respectively, where
A is given matrix. The computing method is based on elementary operations on polynomial
matrix. If the parameter col is given columnHermite form is computed else rowHermite form is
computed.

Call(s)

[X, T] := polmat::hermiteForm(A, x<, col>)

[X, T] := polmat::hermiteForm(A, x<, row>)

Parameters andOptions

A – amatrix of a type Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

X, T – thematrices of a domain Dom::Matrix, Hermite form and a transformationmatrix

6.5.3 Popov Form

Matrix reduction to Popov form [19, 30] is computed by function polmat::popovForm. For
definition Popov form and algorithm see [19]. If the parameter col is given column Popov form
is computed else row Popov form is computed. An input matrix must be column, row reduced,
respectively.

Call(s)

X := polmat::popovForm(A, x<, col>)

X := polmat::popovForm(A, x<, row>)

Parameters andOptions

A – amatrix of a type Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

X – amatrix of a domain Dom::Matrix

ALGORITHMS 31

6.5.4 Right and Left Decomposition

Right or left matrix decomposition

S = B1 A−12 , S = A−11 B2,

respectively, is returned by function polmat::decomp. An inputmatrix Smust be given as

S =
B
a

whereB is l bymmatrix and a is polynomial.
For right, left decomposition, the algorithm computes left GCD of Al and B, right GCD of Am

andB, respectively, whereAl = a Il,Am = a Im. For full-range description see [23].

Call(s)

[A2, B1] := polmat::decomp(B, a, x<, "right">)

[A1, B2] := polmat::decomp(B, a, x<, "left">)

Parameters andOptions

B – amatrix of a type Dom::Matrix(polmat::poly)
p – a polynomial of a domain DOM_POLY
x – an indeterminate

Return Values

A1, B1, A2, B2 – thematrices of a domain Dom::Matrix

6.5.5 Matrix Reduction Test

Function polmat::isreduced tests whether amatrix is column or row reduced.

Call(s)

polmat::isreduced(m, x<, "col">)

polmat::isreduced(m, x<, "row">)

Parameters andOptions

m – amatrix of a type Dom::Matrix(polmat::poly)
x – an indeterminate
"col" – a column reduction test, default
"row" – a row reduction test

ALGORITHMS 32

Return Values

a value of a domain DOM_BOOL

6.5.6 Reduction by a Right and a Left Divisor

Reduction by right or left divisor is made by function polmat::reduce. The algorithm com-
putesmatrix C1, C2 so that

C = C1 D1, C = D2 C2,

whereD1,D2 is right, left divisor of givenmatrixC, respectively. Presumption is that divisors are
computed by functionpolmat::gcd and they are in triangular form.This algorithm is described
in [23].

Call(s)

C1 := polmat::reduce(C, D1, x<, "right">)

C2 := polmat::reduce(C, D2, x<, "left">)

Parameters andOptions

C, D1, D2 – amatrix of a type Dom::Matrix(polmat::poly)
x – an indeterminate
"right" – a reduction by right divisor, default
"left" – a reduction by left divisor

Return Values

C1, C2 – amatrix of a type Dom::Matrix(polmat::poly)

6.5.7 Column andRowReduction

Function polmat::reduce returns column, row reduced matrix for an input matrix A. Algo-
rithm computesmatrixAr,Ac, and unimodular matrixU, V that

Ar = U A, Ac = AV ,

respectively. The method is based on elementary operations on polynomial matrix. The default
method is row reduction.

Call(s)

[Ar, U] := polmat::reduce(A, x,<, row>)

[Ac, V] := polmat::reduce(A, x,<, col>)

ALGORITHMS 33

Parameters andOptions

A – amatrix of a domain Dom::Matrix(polmat::poly)
x – an indeterminate

Return Values

Ar, Ac, U, V – thematrices of a domain Dom::Matrix(polmat::poly)

6.6 Routh Table and Its Offer in Addition to Stability

This chapter deals with the algorithms derived from [35]. There is shown that Routh table [35,
38] canbeused to construct anorthonormal basis in the space of strictly proper rational function
with a common stable denominator and so can be used to compute the H2 norm, the Hankel
approximation and theNehari problems.

In following, consider a strictly proper stable signal or system

G(s) =
b(s)
a(s)

. (6.6)

6.6.1 Routh and Augmented Routh Table

Routh table is constructed by function polmat::routh. Augmented Routh table [35] is con-
structed by function polmat::augRouth.

Call(s)

R := polmat::Routh(a, x)

[R, Q1, Q2] := polmat::augRouth(b, a, x)

Parameters andOptions

a, b – the polynomials of a type DOM_POLY
x – an indeterminate

Return Values

R, Q1, Q2 – thematrices of a domain Dom::Matrix()

6.6.2 H2 Norm

H2 norm of (6.6) is computed by function polmat::h2norm.

ALGORITHMS 34

Call(s)

h := polmat::h2norm(b, a, x)

Parameters andOptions

a, b – the polynomials of a type DOM_POLY
x – an indeterminate

Return Values

h – a number or an expression

6.6.3 Schmidt Pairs

Function polmat::schmidtPair computes Schmidt pairs for (6.6).

Call(s)

schp := polmat::schmidtPair(b, a, x)

Parameters andOptions

a, b – the polynomials of a type DOM_POLY
x – an indeterminate

Return Values

schp – a table of arrays of an expression

6.6.4 Nehari Problem

Function polmat::nehari findsQ(s) ∈ H∞ tominimize ‖G(−s)− Q(s)‖∞.

Call(s)

F := polmat::nehari(b, a, x)

Parameters andOptions

a, b – the polynomials of a type DOM_POLY
x – an indeterminate

ALGORITHMS 35

Return Values

F – an expression

6.7 Division of Polynomials

Functions for computing division of polynomials are contained in this section. The first function
returns a quotient and a reminder, the second one computes a long division. Both functions are
described in [23].

6.7.1 Division of Two Polynomials

Function polmat::divide divides polynomials a and b and returns a quotient q and a reminder
r.We canwrite

q =
a
b
− r

b
.

Call(s)

[q, r] := polmat::divide(a, b, x)

Parameters andOptions

a, b – the polynomials of a domain DOM_POLY
x – an indeterminate

Return Values

q, r – the polynomials of a domain DOM_POLY

6.7.2 Long Division

Function polmat::longdividemakes expansion of a transfer function to series. The transfer
function may be given as two polynomials a and b or as expression c. The first k members of
series are computed.

Call(s)

q := polmat::longdivide(a, b, x, k)

q := polmat::longdivide(c, x, k)

ALGORITHMS 36

Parameters andOptions

a, b – the polynomials of a domain DOM_POLY
c – an expression
x – an indeterminate
k – a nonnegative integer number

Return Values

q – a polynomial of a domain DOM_POLY

6.8 Minimal Realization

The last algorithm described in this paper deals with a state-space realization. Consider system
defined by

S =
B
a
. (6.7)

Function polmat::minreal computes four constant matrices, which are aminimal realization
of S. This algorithm is based on [23].

Call(s)

[F, G, H, J] := polmat::minreal(B, a, x)

Parameters andOptions

B – amatrix of a domain Dom::Matrix(polmat::poly)
a – the polynomials of a domain DOM_POLY
x – an indeterminate

Return Values

F, G, H, J – thematrices of a domain Dom::Matrix

Chapter 7

Benchmarks

We compare the Polmat library with a MuPAD library linalg and some polynomial matrices
computation oriented packages. We are interested in the computing time. Polmat performs a
symbolic computation, while, for instance, the Polynomial Toolbox for Matlab is a numerical
package. We presume the numeric packages as Polynomial Toolbox or Scilab are faster then
Polmat.

Let us verify our idea by three experimental tests. The first one shows a computing time
of solution linear equation with polynomial matrices with using of Polmat and the Polynomial
Toolbox, the second one deals with computation of a matrix determinant and compares a com-
puting time of four methods and, finally, third one shows computing times of reduction matrix
to Smith form by Polmat, linalg and the Polynomial Toolbox.

The random matrices, used in the testing, are generated by polmat::rand in MuPAD
and prand in Matlab. In MuPAD the computing time is measured by a function time, in
Matlab by cputime and in Scilab by timer. These functions measure the CPU time that was
spent by the current process. Tables bellow contain computing times in the same format as
mentioned commands return them (introduced times may be rounded). Tests are performed
under operating system Linux with kernel 2.4.25 in MuPAD 2.5.3, in Matlab 6.0.0.88 (R12)
with the Polynomial Toolbox 3.0.19 and in Scilab 3.0.Note that tests were runningwith variable
DIGITS equal 40 inMuPAD.

7.1 Equation Solvers

As it was said, we solve an equation AX + BY = C with usingmacros

• polmat::axbyc inMuPAD and
• axbyc inMatlab

in the first test. First, we found general solution equation with polynomial matrices (Tab. 7.1),
futher, we take a solution equation with polynomials with aminimal degree ofY (Tab. 7.2).

37

BENCHMARKS 38

polynomial degree 1 5 10 1 2 3 3
matrix dimension 1 1 1 2 3 3 5
Polmat 29 122 482 120 844 2056 19 630
Polynomial Toolbox 41 44 47 40 46 47 56

Table 7.1:Benchmark– the computing times inmilliseconds: Solver for equationAX+BY = C,
general solution

polynomial degree 3 5 10 25
Polmat 49 83 224 1675
Polynomial Toolbox 86 91 98 128

Table 7.2:Benchmark– the computing times inmilliseconds: Solver for equationAX+BY = C,
general solution

7.2 Matrix Determinant

The second test compares five algorithms for a matrix determinant, two symbolic methods and
three numeric ones, performed by

• linalg::det inMuPAD,
• polmat::det inMuPAD,
• polmat::det inMuPAD,
• inv in the Polynomial Toolbox inMatlab and
• invr in Scilab.

The results are contained in Tab. 7.3.

polynomial degree 1 3 3 5 5 10
matrix dimension 2 3 5 5 10 10
MuPAD, linalg 2 23 292 656 19 620 ∗
Polmat, symbolic 26 286 10 448 ∗ ∗ ∗
Polmat, numeric 11 42 92 173 1114 2590
Polynomial Toolbox 2 2 3 4 4 9
Scilab 0 2 0 2 4 8

Table 7.3: Benchmark – the computing times in milliseconds: Determinant of a polynomial
matrix n by n of degree d

BENCHMARKS 39

7.3 Smith Form

Reduction polynomial matrix to Smith form is tested. Three algorithms,

• linalg::smithForm inMuPAD,
• polmat::smithForm in Polmat,
• smith in the Polynomial Toolbox inMatlab,

are compared. The computing times are shown in Tab. 7.4.

polynomial degree 1 3 4 6 2 3
matrix dimension 2 3 3 3 4 4
linalg 23 257 502 2590 3614 68310
Polmat 91 910 1554 5100 1198 2944
Polynomial Toolbox 210 785 1040 1465 950 1380

Table 7.4: Benchmark – the computing times in milliseconds: Reduction polynomial matrix to
Smith form

Chapter 8

Applications in Control Design

We introduce somebasic control problems and their solution by polynomialmethodswith using
Polmat in this chapter.

8.1 Cruise Control System

In the first example, consider a simple model of a car [48] of Fig. 8.1a. Neglecting the inertia of
the wheels and supposing that friction is what is opposing the motion of the car, the system can
be described by

m v̇ + k v = u,

where u is the force from the engine, v is the velocity and k is the friction coefficient. Let u be
input and v output. The corresponding transfer function is

P(s) =
1

ms + k
. (8.1)

In what follows, assumem > 0 and k > 0 and consider the scheme of Fig. 8.1b.

(a) (b)

Figure 8.1: Cruise control system (a), Feedback control system (b)

40

APPLICATIONS IN CONTROLDESIGN 41

8.1.1 Stabilizing Controllers

Weshall compute a parametrization of all controllers that internally stabilize the plant (8.1). Set
of all such controllers is given by

C =
Y − AW
X + BW

,

whereX andY are two proper and stable rational functions satisfying the Bézout equation

AX + BY = 1

and W is a parameter ranging over the set of proper and stable rational functions such that
X + BW 6= 0. Formore details and proof read, e. g., [13, 25].

Obtain a stable fractional representation of the plant (8.1) as follows. Choose a factor (s−1),

B(s)
A(s)

=
1

ms + k
, A(s) =

ms + k
s + 1

, B(s) =
1

s + 1

and solve the equation
ms + k
s + 1

X(s) +
1

s + 1
Y (s) = 1. (8.2)

By substitution

s =
1− w
w

,

transform (8.2) to the polynomial equation

(m + (k −m)w) x(w) + w y(w) = 1 (8.3)

and solve it by Polmat

1 assume(m>0): assume(k>0):

2 A:=(m*s+k)/(s+1):

3 B:=1/(s+1):

4 a:=polmat(normal(subs(A, s=(1-w)/w)), w):

5 b:=polmat(normal(subs(B, s=(1-w)/w)), w):

6 c:=polmat(1, w):

7 t:=0:

8 [x,y]:=polmat::axbyc(a, b, c, w):

By assuming t = 0 on line 7, get a particular solution of (8.3). Now, perform backsubstitution

w =
1

s + 1

into x(w) and y(w) and obtain solution of (8.2)

9 X:=subs(expr(x), w=1/s+1):

10 Y:=subs(expr(y), w=1/s+1):

APPLICATIONS IN CONTROLDESIGN 42

The formula for all controllers that internally stabilize the plant (8.1) reads

C(s) =

m− k
m

− ms + k
s + 1

W (s)

1
m

+
1

s + 1
W (s)

. (8.4)

For
m = 1000 kg, k = 50N sm−1, (8.5)

the set of controllers is

C(s) =

19
20

− 1000 s + 50
s + 1

W (s)

1
1000

+
1

s + 1
W (s)

.

8.1.2 PI Controllers

Wecomputed the set of all controllers that internally stabilize the plant (8.1) in previous subsec-
tion.We shall now select all PI controllers contained in the set (8.4).

PI controller has a form
CPI(s) =

kP s + kI
s

.

Solve the equation
C(s) = CPI(s)

forW (s)

11 C:=(Y-A*W)/(X+B*W):

12 Cpi:=(kP*s+kI)/s:

13 solve(C=Cpi, W):

PI controllers corespond to the parameter

W (s) =
(m− k − kP) s2 + (m− k − kI − kP) s− kI

m2 s2 +m (kI + kP) s +mkI
.

With the parameters (8.5)W (s) is

W (s) =
(950− kP) s2 + (950− kI − kP) s +−kI

1000000 s2 + (1000 kP + 50000) s + 1000 kI
.

8.1.3 Asymptotic Properties

For the system (8.1) find a controller so that

1. the feedback system is internally stable,

APPLICATIONS IN CONTROLDESIGN 43

2. the final value of y equals 1 when r is a unit step and d = 0,
3. the final value of y equals zero when d is a sinusoid of 1 rad s−1 and r = 0.

First, determine the set of all internally stabilizing controllers. It was done by (8.4). The second
step is to compute the input-to-output transfer function and disturbance-to-output transfer
function, these read

T(s) = B(s) (Y (s)− A(s)W (s)) ,

H(s) = B(s) (X(s) + B(s)W (s)) ,

respectively. The point (2) holds if [5]

B(0) (Y (0)− A(0)W (0)) = 1

and the point (3) holds if
B(j) (X(j) + B(j)W (j)) = 0.

The problem is reduced to solving following three algebraic equations

W (0) = − 1
m

<{W (j)} = − 1
m

(8.6)

={W (j)} = − 1
m
.

LetW be a polynomial in (s + 1)−1 with enough variable coefficients, so

W (s) = x1 +
1

s + 1
x2 +

1
(s + 1)2

x3.

The equations (8.6) can be written as one F x = bwhere

F =

1 1

s+1

∣∣∣
s=0

1
(s+1)2

∣∣∣
s=0

1 <
{

1
s+1

}∣∣∣
s=j

<
{

1
(s+1)2

}∣∣∣
s=j

0 =
{

1
s+1

}∣∣∣
s=j

=
{

1
(s+1)2

}∣∣∣
s=j

 , x =

x1
x2
x3

 , b =

W (0)

<{W (j)}
={W (j)}

InMuPAD, type following

14 v:=matrix([[1, 1/(s+1), 1/(s+1)^2]]):

15 F:=matrix::stackMatrix(subs(v, s=0),

map(subs(v, s=I), Re), map(subs(v, s=I),Im)):

16 b:=matrix([op(solve(subs(B*(Y-A*W)=1, s=0), W)),

Re(op(solve(subs(B*(X+B*W), s=I), W))),

Im(op(solve(subs(B*(X+B*W), s=I), W)))]):

17 [x1, x2, x3]:=[op(linalg::matlinsolve(F, b))]:

18 Cap:=subs(C, W=x1+1/(s+1)*x2+1/(s+1)^2*x3):

APPLICATIONS IN CONTROLDESIGN 44

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

time (sec)

am
pl

itu
de

 (N
, m

/s
)

input
output

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

time (sec)

am
pl

itu
de

 (N
, m

/s
)

input
ouput

(a) (b)

Figure 8.2: Step response of the closed-loop system, disturbance frequency 1 rad s−1 (a),
1.8 rad s−1 (b)

The controller that achieves internal stability and asymptotic properties is given by

Cap(s) =
(4m− k) s3 + 5ms2 + (4m− k) s +m

s3 + s
, (8.7)

The substituting (8.5) into (8.7) gets

Cap(s) =
3950 s3 − 5000 s2 − 3950 s + 1000

s3 + s
.

Properties of the closed-loop system are best seen in the diagrams. Step response of the
close-loop system for disturbance with amplitude 1000 and frequency 1 rad s−1 and 1.8 rad s−1

is in Fig. 8.2. It is obvious that the output tracks reference and the sinusoid 1 rad s−1 is filtered.

8.2 Inverted Pendulum

Consider an invertedpendulum [5, 27, 38] of Fig. 8.3a. Suppose that friction in joint is negligible
and all mass is concentrated in the ball. Then describe it by

m l2
d2 ϕ(t)
d t2

−mg l sinϕ(t) = −M(t) (8.8)

wherem is mass of the rod, l length of the rod,ϕ is angle andM is a torque.
Linearize the equation (8.8) about the pointϕ(t) = 0 rad and describe an inverted pendulum

by transfer function

P(s) =
1

mg l −m l2 s2

where input is the torqueM and output is the angleϕ. Choosem = 0.5 kg and l = 1m and enter
this system intoMuPAD

APPLICATIONS IN CONTROLDESIGN 45

(a) (b)

Figure 8.3: Inverted pendulum (a), Feedback control scheme (b)

19 P:=1/(m*l*g-m*l^2*s^2):

20 m:=1/2: l:=1: g:=981/100:

21 b:=polmat(numer(P), s):

22 a:=polmat(denom(P), s):

With these particular parameters the transfer function of the plant is

P(s) =
b(s)
a(s)

=
200

981− 100 s2
. (8.9)

Evidently, the pendulum up is unstable position and the system (8.9) is not stable.

8.2.1 Pole Placement

Design a controller via pole placement for our system (8.9). Consider the scheme 8.3b and a
controller having a form

C(s) =
y(s)
x(s)

.

Then the characteristic polynomial of a closed-loop system is

c(s) = a(s) x(s) + b(s) y(s). (8.10)

To physically realize a controller, c(s) must satisfy

∂c(s) ≥ 2 ∂a(s)− 1,

hence, the characteristic polynomial for the system (8.9) has the form

c(s) = (s2 + 2 ζ ωn s + ω2
n) (s + c1).

APPLICATIONS IN CONTROLDESIGN 46

0-25-50-75-100-125

20

10

0

-10

-20

Re

Im

Re

Im 0,50,3750,250,1250
0

-0,0005

-0,001

-0,0015

-0,002

-0,0025

-0,003

-0,0035

Time (sec)

Phi (rad)

Time (sec)

Phi (rad)

(a) (b)

Figure 8.4: Zero and polemap (a) and step response (b) of closed-loop system

Choose

ωn = 20
√
2, ζ =

√
2
2

, c1 = 100,

corresponding characteristic polynomial is

c(s) = (s2 + 40 s + 800) (s + 100),

and solve (8.10) for x(s) and y(s).

23 c:=polmat((s^2+40*s+800)*(s+100), s):

24 [x, y]:=polmat::axbyc(a, b, c, s, "y-minimal"):

25 C:=polmat::tf(y, x):

The resulting controller is

C(s) =
−480981 s− 8137340

200 s + 28000
.

Zero and polemap and step response of closed-loop system is in Fig. 8.4.

8.2.2 LQGController

Our objective is to design a controller

C(s) =
y(s)
x(s)

for the system (8.9) that minimizes the standard quadratic optimization criterion

lim
t→∞

∫ t

0

{
uT(t) r2 u(t) + yT(t) q2 y(t)

}
d t

APPLICATIONS IN CONTROLDESIGN 47

Time (sec)

φ
(r

ad
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−7

−6

−5

−4

−3

−2

−1

0

1

q
2
=1

q
2
=100

q
2
=10000

Time (sec)

 u
 (N

m
s−1

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−400

−200

0

200

400

600

800

1000
q

2
=1

q
2
=100

q
2
=10000

(a) (b)

Figure 8.5: Impulse response of closed-loop system, output (a), manipulated variable (b) for
various weights q2 (impulse is applied to inputw)

where u(t) is the control input and y(t) is themeasured output. Let v(t) be the disturbing torque
acting on the pendulum with covariance r1 and w(t) is a noise that adds to measured angular
positionwith covariance q1, see Fig. 8.3b.Consider the covariances of the input noise andoutput
noise

q1 = 5 · 10−6, r1 = 5 · 10−6

andweights on the output (controlled) signals and the input (control) signal

q2 = 1, r2 = 1.

A controller design consists of solving two spectral factorizations and one linear equation

a(s) r1 a∗(s) + b(s) q1 b∗(s) = f (s) f ∗(s)

a(s) r2 a∗(s) + b∗(s) q2 b(s) = g(s) g∗(s)

a(s) x(s) + b(s) y(s) = f (s) g(s),

whereX∗(s) = XT(−s) and taking the solution with ∂ y(s) < ∂ a(s)

26 q1:=r1:=polmat(5/1000000, s):

27 q2:=r2:=polmat(1, s):

28 f:=polmat::spf(a*r1*polmat::conjugatetranspose(a, s)+

b*q1*polmat::conjugatetranspose(b, s), s)[1]:

29 g:=polmat::spf(a*r2*polmat::conjugatetranspose(a, s)+

polmat::conjugatetranspose(b, s)*q2*b, s)[1]:

30 c:=polmat(f*g, s):

31 [x, y]:=polmat::axbyc(a, b, c, s, "degy<dega"):

32 subs([x, y], t=0):

33 C:=simplify(factor(1/polmat::tf(op(%)))):

APPLICATIONS IN CONTROLDESIGN 48

The controller is

C(s) =
1944722

√
2 + 1962

√
2004722 + s

√√
1002361 + 981

(
20
√
1002361 + 19620

)
−294300

√
2− 400

√
2004722 − 10000 s2

√
2− 4000 s

√√
1002361 + 981

,

numerically

C(s) =
1764999.42 s + 5528212.82

−178086.71 s− 14142.14 s2 − 982555.87
.

Fig. 8.5 shows impulse responses for various q2.

8.3 PendulumDiscrete-TimeModel

This example shows usage of Polmat in discrete-time control theory. Consider a system of
Fig. 8.3a. Discrete-timemodel, corresponding to pendulum up position, can be written as

P(d) =
b(d)
a(d)

=
d2 + 2 d + 1

8 d2 + 24 d + 8
(8.11)

where a sample time was chossen Ts = 1. In following, consider scheme of Fig. 8.6.

Figure 8.6: Feedback control scheme

8.3.1 Stabilizing Controllers

At first, compute set of all stabilizing controllers for the system (8.11). It is defined as

C(d) =
y− aw
x + b w

,

where x and y satisfy
a x + b y = 1

andw is an arbitrary stable and proper rational function such that x + b w 6= 0.
Solve this task inMuPAD by

APPLICATIONS IN CONTROLDESIGN 49

34 P:=(d^2+2*d+1)/(8*d^2+24*d+8):

35 a:=polmat(denom(P)):

36 b:=polmat(numer(P)):

37 [x, y]:=polmat::axbyc(a, b, 1, d):

38 [x, y]:=subs([x, y], t=0):

39 C:=polmat::tf(y-a*w, x+b*w):

All stabilizing controllers are given by

C(d) =
8 d + 24− (64 d2 + 192 d + 64)w
−d − 2 + (8 d2 + 16 d + 8)w

.

8.3.2 Asymptotic Reference Tracking

Output tracks reference of type step if denominator of open-loop system contains (1 − d).
Plant (8.11) has not this property, so a controller must have it. Solve equation

x + b w = −d − 2 + (8 d2 + 16 d + 8)w = (1− d) ŵ

forw. Type

40 solve(denom(C)=(1-d)*w_, w):

41 Crt:=subs(C, w=op(%)):

and get

Crt(d) =
−8− (8 d3 + 16 d2 − 16 d − 8) ŵ

(d3 + d2 − d − 1) ŵ
, (8.12)

where ŵ is an arbitrary stable and proper rational function such that

(d3 + d2 − d − 1) ŵ 6= 0. (8.13)

Step response of closed-loop system for ŵ = 0.1 and ŵ = 0.0001 is in Fig. 8.7.

8.3.3 LQController

Find an LQ controller contained in the set (8.12). Disturbance-to-output transfer function is
given by

G(d) =
P

1 + P Crt
= p− q ŵ = 0− (d3 + 2 d2 − 2 d − 1) ŵ. (8.14)

H2 norm of (8.14) is

‖G(d)‖ = ‖p− q ŵ‖ = ‖ − (d3 + 2 d2 − 2 d − 1) ŵ‖,

clearly, it is zero for
ŵ = 0. (8.15)

With using of Polmat you can type

APPLICATIONS IN CONTROLDESIGN 50

42 G:=collect(normal(P/(1+P*Crt)), w_):

43 wh2:=-polmat::coeff(G, w_, 0)/polmat::coeff(G, w_, 1):

Solution (8.15) does not satisfy (8.13). Optimal solution of LQ controller problem was not
found. LQ controller tracking reference of type step does not exist. Step response of closed-loop
system for value near to optimal (ŵ = 0.0001) is in Fig. 8.7b. Fig. 8.8 shows step responses with
disturbance d with zeromean and variance equaled 100000.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.7

0.8

0.9

1

Time (s)

φ
(r

ad
)

input
output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.9996

0.9997

0.9998

0.9999

1

1.0001

Time (s)

φ
(r

ad
)

input
output

(a) (b)

Figure 8.7: Asymptotic reference tracking, step response of closed-loop system for ŵ = 0.1 (a),
ŵ = 0.0001 (b)

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

Time (s)

φ
(r

ad
)

input
output

0 5 10 15 20 25 30 35 40 45 50
0.98

0.99

1

1.01

1.02

Time (s)

φ
(r

ad
)

input
output

(a) (b)

Figure 8.8: Asymptotic reference tracking, step response of closed-loop system for ŵ = 0.1 (a),
ŵ = 0.0001 (b) disturbed by d with zeromean and variance equaled 100000

APPLICATIONS IN CONTROLDESIGN 51

8.4 Robust Control

This example shows using of Polmat in robust control theory. Consider a primitive mechanical
system given by transfer function [11]

Θ(s)
T(s)

=
10 d s + 10 k

s2(s2 + 11 d s + 11 k)
=
b(s)
a(s)

where Θ denotes an angle, T is an applied moment and k and d are undetermined parameters
being found in the intervals

0.09 ≤ k ≤ 0.4, 0.004 ≤ d ≤ 0.04. (8.16)

Design a controller and find out robust stability [5, 7, 11].
At first, choose any d and k agreeing with (8.16) and enter the nominal model

44 [dmin, dmax]:=[4/1000, 4/100]:

45 [kmin, kmax]:=[9/10, 4/10]:

46 d:=(dmin+dmax)/2:

47 k:=(kmin+kmax)/2:

48 a:=polmat(s^2*(s^2+11*d*s+11*k)):

49 b:=polmat(10*d*s+10*k):

The nominal model is
b(s)
a(s)

=
110 s + 3250

500 s4 + 121 s3 + 3575 s2
.

Choose the characteristic polynomial of the closed loop and design a controller via pole place-
ment

50 c:=polmat((s+5)^5*((s+1/2+1/4*I)*(s+1/2-1/4*I))):

51 [x,y]:=polmat::axbyc(a, b, c, s, "y-minimal"):

The controller

C(s) =
12963581441757 s3 − 10637501072975 s2 + 22346289062500 s + 5363769531250

5701250000 s3 + 919592797500 s2 + 9351194996130 s + 42140725407250
.

is obtained.
Now, perform the robust stability test

52 delete d, k

53 a:=polmat(s^2*(s^2+11*d*s+11*k), s):

54 b:=polmat(10*d*s+10*k, s):

55 cl:=collect(a*x+b*y, [k, d]):

56 pd:=coeff(cl, d, 1):

57 pk:=coeff(cl, k, 1):

58 p0:=cl-d*pd-k*pk:

59 polmat::ptopplot(p0, [pd, pk], [[dmin, dmax], [kmin, kmax]],

x*I/100 $ x=0..150)

APPLICATIONS IN CONTROLDESIGN 52

The last commandplots a value set of polytope of polynomials (Fig. 8.9). It is obvious that zero is
excluded and in accordance withZero Exclusion Theorem [11] the closed loop is robustly stable.

0-2500-5000-7500-1e+4
0

-2500

-5000

-7500

-1e+4

Re

Im

Re

Im

Polynomial Values Set

Figure 8.9: Value set of polytope of polynomials

Chapter 9

Conclusions

It was the aim of this diploma thesis to give a package of functions for symbolic computation
with polynomials and polynomial matrices for the computer algebraic system MuPAD. The
library was named Polmat. MuPAD with Polmat provide a useful alternative to the few exist-
ing numerical libraries for polynomial matrices. Polmat is available for free download [1] and
responses from control community as well asMuPAD development team have been stated.

MuPAD was found efficient and very capable mathematical tool and great package for
symbolic computation. Polmat makes possible using MuPAD in control theory by a series of
new implemented functions, including solvers for linear equations with polynomial matrices
and spectral factorization.

Implementedalgorithmsdonotmakeambitions toperformcalculations faster than similarly
oriented packages, based on numerical methods. In fact, benchmarks in Sec. 7 show that com-
puting times needed to return result are in majority longer in Polmat than in other well-known
packages for polynomial matrices computation. Solving linear equations with polynomials or
polynomial matrices gets longer time with using of Polmat than the Polynomial Toolbox for
Matlab.While computing time increases quickly withmatrix dimension and polynomial degree
in Polmat, it seems to be constant in Polynomial Toolbox. There have been implemented two
methods for computing a matrix determinant, symbolic and numeric one. The symbolic algo-
rithm is the slowest of all tested ones. The numeric method is faster than linalg::det but
much slower then functions of numerical packages. While computing time of reduction matrix
to Smith form by linalg library increases quickly with a matrix dimension, it increases rather
with polynomial degree in Polmat.

There is one relevant problem with using Polmat and MuPAD which might bring some
difficulties. Entry of polynomial matrix or 1 by 1 polynomial matrix as it is defined in Polmat
(see Sec. 5) is not compatible with domain DOM POLY which is used for scalar polynomial. Do-
main DOM POLY is used because it is provided by the MuPAD kernel and computing with scalar
polynomials is so more efficient than with another domains. Similar domain for matrix of poly-
nomials is lacked. This makes problems with performing elementary operations on polynomial
matrix when a matrix row or column is multiplied by scalar polynomial. A Polmat user might
meet this problem, for instance, if solver an equation with polynomial matrices returns a 1 by
1 matrix whose entry becomes to one of several scalar input arguments of another function. I
hope this problemwill be fixed duringmy cooperation withMuPAD team.

53

CONCLUSIONS 54

Only one of the most important algorithms useful in control theory has not been imple-
mented. It is polynomial matrix spectral factorization for the discrete-time case. It is a future
extension.

Bibliography

[1] AUGUSTA, P. – HURÁK, Z. Polmat – polynomials and polynomial matrices for MuPAD
[online]. 〈http://www.polmat.wz.cz〉, 2004. [cite 2004-07-11].

[2] AUGUSTA, P. – HURÁK, Z. Polmat user’s guide. Reference manual, December 2004.

[3] CHIASSON, J. et al. Control of amultilevel converter using resultant theory. IEEETransac-
tions on Control System Technology, vol. 11:345–354,May 2003.

[4] DEMLOVÁ, M. – NAGY, J. Algebra. Praha: SNTL, 1985.

[5] DOYLE, J. C. – FRANCIS, B. A. – TANNENBAUM, A. R. Feedback Control Theory. New
York:Macmillan, 1992.

[6] HALMO, L. Polpack++: C++ library for computing with polynomial matrices [online].
〈http://polpackplusplus.sourceforge.net〉, February 2004.

[7] HAVLENA, V. – ŠTECHA, J. Moderní teorie řízení. Praha: Vydavatelství ČVUT, 2st edition,
2000.

[8] HENRION, D. Reliable algorithms for polynomial matrices. PhD thesis, Institute of Infor-
mation Theory and Automation, ASCR. Prague, 1998.

[9] HENRION, D. – PRIEUR, C. – TLIBA, S. Improving conditioning of polynomial pole place-
ment problems with application to low-order controller design for a flexible beam. LAAS-
CNRSResearch Report No. 04163, February 2004.

[10] HENRION, D. – ŠEBEK, M. An algorithm for polynomial matrix factor extraction. In
Proceedings of the IEEE Conference on Decision and Control, pages 1875–1880, Phoenix,
Arizona, December 1999.

[11] HROMČÍK, M. – HURÁK, Z. – ŠEBEK, M. Robustní řízení [online]. 〈http://dce.felk.
cvut.cz/ror〉, 2004. [cite 2004-11-11].

[12] HROMČÍK, M. – ŠEBEK, M. New algorithm for polynomial matrix determinant based on
FFT. InEuropean Control Conference ECC’99, Karlsruhe, Germany, September 1999.

[13] HUNT, K. J., editor. Polynomial Methods in Control and Filtering. London: Peter Peregri-
nus, 1993. ISBN 0-86341-295-5.

55

http://www.polmat.wz.cz
http://polpackplusplus.sourceforge.net
http://dce.felk.cvut.cz/ror
http://dce.felk.cvut.cz/ror

CONCLUSIONS 56

[14] JEŽEK, J. Newalgorithm forminimal solutionof linear polynomial equations.Kybernetika,
vol. 18, no. 6:505–516, 1982.

[15] JEŽEK, J. Conjugate and symmetric polynomial equation – I : Continue-time systems.
Kybernetika, vol. 19, no. 2:121–130, 1983.

[16] JEŽEK, J. Conjugate and symmetric polynomial equations – II : Discrete-time systems.
Kybernetika, vol. 19, no. 3:196–211, 1983.

[17] JEŽEK, J. – KUČERA, V. Efficient algorithm for matrix spectral factorization. Automatica,
vol. 21, no. 6:663–669, 1985.

[18] JOHN, J. Systémy a řízení. Praha: Vydavatelství ČVUT, 1st edition, 1999. ISBN 80-01-
01474-6.

[19] KAILATH, T. Linear Systems. NewYork : Prentice Hall, 1980.

[20] KRAJNÍK, E. Maticový počet. Praha: Vydavatelství ČVUT, 1st edition, 2000. ISBN 80-01-
01723-0.

[21] KUJAN, P. Efektivní výpočty s polynomiálními maticemi v systému Mathematica s ap-
likacemi v řízení. Master’s thesis, Czech Technical University in Prague, Department of
Control Engineering. Prague, 2004.

[22] KUJAN, P. – HROMČÍK, M. – ŠEBEK, M. New package for effective polynomial computa-
tion in Mathematica. In The 11th Mediterranean Conference on Control and Automation
(MED’03), July 2003. ISBN 960-87706-0-2.

[23] KUČERA, V. Algebraická teorie diskrétního lineárního řízení. Praha: Academia, 1978.

[24] KUČERA, V. Discrete Linear Control. JohnWiley and Sons, 1979.

[25] KUČERA, V. Parametrization of stabilizing controllers with applications. Advances in
Automatic Control,Voicu,M., editor, pages 173–192, 2003.

[26] KWAKERNAAK, H. – ŠEBEK, M. Polynomial J-spectral factorization. IEEE Transactions
on Automatic Control, vol. 39, no. 2:315–328, 1994.

[27] Leonov, G. A.Lekcii po kursu teori� upravleni� I. Sankt-Peterburgski�
gosudarstvenny� universitet, 2004.

[28] LUKÁČ, S. Implementácia IKT do vyučovania matematiky. In 3. celoštátna konferencia
Infovek 2002, Október 2002.

[29] METZNER, T. The MuPAD-Scilab link. 〈http://www.additive-net.de/ftp/win32/
software/mupad/MuPADScilab_Doku.pdf〉, 2003.

[30] MULDERS, T. – STORJOHANN, A. On lattice reduction for polynomial matrices. Journal of
Symbolic Computation, no. 35:377–401, 2003.

http://www.additive-net.de/ftp/win32/software/mupad/MuPADScilab_Doku.pdf
http://www.additive-net.de/ftp/win32/software/mupad/MuPADScilab_Doku.pdf

CONCLUSIONS 57

[31] OEVEL, W. – GERHARD, J. MuPAD 2.5 Quick Reference. 2002.

[32] OEVEL, W. et al. TheMuPADTutorial. Springer, 2000.

[33] PADĚRA, M. Numerical algorithms for polynomialmatrices in Java. Master’s thesis, Czech
Technical University in Prague, Department of Control Engineering. Prague, 2004.

[34] POSTEL, F. The linear algebra package “linalg”. Automath Technical Report, no. 9, 1998.

[35] QIU, L. What can Routh table offer in addition to stability? In 4th IFAC Symposium on
Robust Control design, 2003.

[36] ROUBAL, J. et al. Moderní teorie řízení – Cvičení. Praha: Vydavatelství ČVUT, 1st edition,
2005.

[37] ŠTECHA, J. Diskrétní řídicí systémy. Praha: České vysoké učení technické v Praze, 1st edi-
tion, 1985.

[38] ŠTECHA, J. – HAVLENA, V. Teorie dynamických systémů. Praha: Vydavatelství ČVUT,
2nd edition, 2002. ISBN 80-01-01971-3.

[39] ŠTEFKO, P. C library for computing with polynomial matrices for the TI-89/92 pro-
grammable calculators [online]. 〈http://ptoolti89.wz.cz〉, February 2004.

[40] VOSTRÝ, Z. New algorithm for polynomial spectral factorization with quadratic conver-
gence I. Kybernetika, vol. 11, no. 6:415–422, 1975.

[41] VOSTRÝ, Z. New algorithm for polynomial spectral factorization with quadratic conver-
gence II. Kybernetika, vol. 12, no. 4:248–259, 1976.

[42] ZIPPEL, R. Effective polynomial computation. Boston : Kluwer Academic Publishers, 1993.
ISBN 0-7923-9375-9.

[43] Maple home page. Maplesoft, a division ofWaterlooMaple, Inc. [online]. 〈http://www.
maplesoft.com〉, 2004. [cite 2004-11-04].

[44] The polynomial toolboox 2.0 – polynomial equations, polynomial matrices. PolyX, Ltd.
[online]. 〈http://www.polyx.cz〉, 2000. [cite 2004-04-26].

[45] MuPAD. SciFace [online]. 〈http://www.mupad.com〉, 2004. [cite 2004-08-07].

[46] Scilab. Scilab Group [online]. 〈http://scilabsoft.inria.fr〉, 2004. [cite 2004-08-
07].

[47] The Mathematica home page. Wolfram Research, Inc. [online]. 〈http://www.
mathematica.com〉, 2004. [cite 2004-11-04].

[48] Control tutorial for Matlab [online]. 〈http://www.engin.umich.edu/group/ctm〉.
[cite 2004-08-30].

[49] Wikipedia – the free encyclopedia [online]. 〈http://en.wikipedia.org〉, 2004.
[cite 2003-11-10].

http://ptoolti89.wz.cz
http://www.maplesoft.com
http://www.maplesoft.com
http://www.polyx.cz
http://www.mupad.com
http://scilabsoft.inria.fr
http://www.mathematica.com
http://www.mathematica.com
http://www.engin.umich.edu/group/ctm
http://en.wikipedia.org

List of Symbols

a polynomial, number
A, A(s) matrix, polynomial matrix
∂a degree of a polynomial
∂A degree of a polynomial matrix
I, In identity matrix, identity matrix of the dimension n× n
Al,m, A(s)l,m matrix of the dimension l ×m
A, A(s) transfer function or rational function

ā complex conjugate of the polynomial
ã reciprocal of the polynomial
(., .) greatest common divisor

A−1 inverse of thematrix
adjA adjoint of thematrix
detA determinant of thematrix
diagl,m[.] diagonal matrix
‖.‖ norm
‖.‖∞ H∞ norm

58

List of Figures

2.1 Basic block scheme of closed loop . 8

4.1 MuPAD . 13
4.2 Graphicmethod for solving a linear optimalization problem 16

8.1 Cruise control system, Feedback control system 40
8.2 Step response of the closed-loop system . 44
8.3 Inverted pendulum, Feedback control scheme 45
8.4 Zero and polemap, step response of closed-loop system 46
8.5 Impulse response of closed-loop system . 47
8.6 Feedback control scheme . 48
8.7 Asymptotic reference tracking . 50
8.8 Asymptotic reference tracking with LQ controller 50
8.9 Value set of polytope of polynomials . 52

59

List of Tables

7.1 Benchmark, solver for equationAX + BY = C, general solution 38
7.2 Benchmark, solver for equationAX + BY = C, special solution 38
7.3 Benchmark, matrix determinant . 38
7.4 Benchmark, reduction to Smith form . 39

60

Index

adjoint, 21, 22
asymptotic properties, 42

control
optimal, 9
robust, 51

controller
LQ, 49
LQG, 46
PI, 42
set, 41, 48

determinant, 22, 53

elementary operations, 5, 9, 10, 22, 23, 30,
32, 53

form
Hermite, 9, 29, 30
Popov, 29, 30
Smith, 9, 29, 53
Smith-McMillan, 9

greatest common divisor, 21, 25, 31

H2 norm, 33
Horner scheme, 23, 24

interpolation, 5, 9, 10
inverse, 23

linalg, 14, 37–39
linalg::

det, 38
smithForm, 39
stackMatrix, 14

Maple, 5, 11
Mathematica, 11
Matlab, 5, 12, 37–39

matrix
band, 10
Sylvester, 5, 9, 10, 23, 24

Maxima, 11
minimal realization, 21, 36

Nehari problem, 21, 33, 34

pole placement, 45, 51
polmat::

adj, 22
augRouth, 33
axbyc, 24, 37
axbycd, 27
axxab, 27, 28
axybc, 25
decomp, 31
det, 23, 38
divide, 35
gcd, 21, 32
gensylv, 24
h2norm, 33
hermiteForm, 30
inverse, 23
isreduced, 31
longdivide, 35
minreal, 36
nehari, 34
popovForm, 30
rand, 37
rank, 23
reduce, 32
routh, 33
schmidtPair, 34
smithForm, 29, 39
spf, 28
value, 24
xabyc, 26

61

Polynomial Toolbox for Matlab, 5, 12, 37–
39, 53

polytope, 52

rank, 21, 23
reduction

column, 32
row, 32

Routh table, 21, 33

Schmidt pairs, 21, 34
Scilab, 5, 12, 37, 38
spectral factorization, 6, 9, 21, 28, 47, 53,

54

Zero Exclusion Theorem, 52

62

	Introduction
	Polynomial Matrix Computation
	Introduction
	Methods

	Computer Algebra Systems
	Maple and Mathematica
	Matlab and Polynomial Toolbox
	Scilab

	MuPAD
	Introduction
	MuPAD Packages
	MuPAD-Scilab Link

	New Data Type Polmat
	Definition of a New Object
	Examples

	Algorithms
	Greatest Common Divisor
	Adjoint, Inverse, Determinant and Rank
	Solution of Linear Equations with Polynomials, Polynomial Matrices
	Spectral Factorization
	Matrix Reductions and Decompositions
	Routh Table and Its Offer in Addition to Stability
	Division of Polynomials
	Minimal Realization

	Benchmarks
	Equation Solvers
	Matrix Determinant
	Smith Form

	Applications in Control Design
	Cruise Control System
	Inverted Pendulum
	Pendulum Discrete-Time Model
	Robust Control

	Conclusions
	Bibliography
	List of Symbols
	List of Figures
	List of Tables
	Index

