

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF CONTROL ENGINEERING

MASTER’S THESIS

Automatic Traffic Counter

Prague 2009 Bc. Miroslav Macháček, BEng

Declaration

I, Miroslav Macháček declare that this thesis is my own work and that, to the best of

my knowledge, it contains no material previously published, or substantially overlapping

with material submitted for the award of any other degree at any institution, except where

due acknowledgment is made.

January 17th 2009, Prague Signed:

Prohlášení

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem

pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

V Praze dne 17.1.2009
 podpis

I

Acknowledgements and dedications

I would like to thank Ing. Michal Kutil, the supervisor of this thesis, for his guidance

and comments, and for always being kind and helpful. I must also express my thanks to

Taranis Invest, s.r.o. company for providing facilities for in-the-field tests. The biggest

words of thanks go to my parents for easing up the years of my studies, and for dedicating

so much effort to raise me and teach me, and generally for helping me out even during my

adulthood. Without them, I would not have been able to write any thesis at all.

This thesis is dedicated to my family and all my friends (especially those from

Čabuzi village).

II

Assignment

III

Abstract

The aim of this thesis was to create a system for traffic data acquisition based on

inductive loops built within the roadway. The first part of the thesis involves development

of an inductive loop detector for sensing whether a car is above the inductive loop. The

second part comprises the realization of a device, which employs inductive loop detectors,

for measuring speed and length of vehicles. The device logs the vehicle data, and transfers

it to a server via a GPRS connection. The last two parts deal with implementation of a

server application for receiving and saving remote data from stations to the database,

together with a web interface for showing statistical information and charts about stations

and their traffic.

Abstrakt

Diplomová práce popisuje návrh systému pro sběr dopravních dat pomocí indukčních

smyček ve vozovce. První část práce popisuje vývoj detektoru indukční smyčky pro

zjištění, zda se vozidlo nachází nad smyčkou. Druhá část obsahuje návrh zařízení pro

měření rychlosti a délky vozidla pomocí detektorů indukčních smyček včetně průběžného

nahrání posbíraných dat na server pomocí GPRS spojení. Poslední dvě části práce se

zabývají vývojem serverové aplikace pro příjem a ukládání dat z jednotlivých stanic do

databáze a implementací webového rozhraní pro zobrazování dopravních statistik a

průběhů na jednotlivých stanicích.

IV

Table of Contents

Declaration ... I
Acknowledgements and dedications ...II
Assignment .. III
Abstract .. IV
Abstrakt ... IV
Table of Contents ... V
List of Figures ... VIII
List of Tables .. X
List of Abbreviations ... XI
1 Introduction ... 1
2 Motivation and Methodology ... 3

2.1 Reason for this Thesis ... 3
2.2 Review of Vehicle Detection Technologies .. 4

2.2.1 Non-Intrusive (Over-Roadway) ... 4
2.2.2 Intrusive (In-Roadway) ... 4

2.3 Inductive Loops in General ... 5
2.4 Vehicle Detection Principle Used.. 6

2.4.1 Changes in Inductance ... 6
2.4.2 Resonant Frequency .. 6
2.4.3 Inductance Values and Calculations .. 7

2.5 Traffic Measurement Principle Used ... 8
2.5.1 Signals from Detectors .. 8
2.5.2 Measurement of Time Intervals ... 9

3 Microchip PIC and Equipment ... 10
3.1 PIC18 Family ... 10

3.1.1 Description .. 10
3.1.2 Configuration Bits ... 11

3.1 Microchip MPLAB Development Environment .. 12
3.2 ASIX PRESTO Programmer ... 12

3.2.1 Description .. 12
3.2.2 Flashing Environment ... 13

3.3 CCS C Compiler .. 14
3.3.1 Description .. 14
3.3.2 Installation ... 15
3.3.3 Compiling from the command line .. 16
3.3.4 Setting the Configuration Bits ... 16
3.3.5 Interrupts .. 17
3.3.6 General Structure of Source Code ... 18

3.4 Tiny Bootloader ... 19
3.4.1 Compiling Bootloader Source Code .. 20
3.4.2 Usage ... 21
3.4.3 Changes to the User’s Source Code .. 22

4 Inductive Loop Detector ... 23
4.1 Device Description .. 23
4.2 Loop Oscillator Circuit .. 26

4.2.1 Circuit based on Comparator ... 26

V

4.2.2 Circuit based on Operational Amplifier .. 27
4.2.3 Surge Protection .. 28

4.3 Microcontroller .. 29
4.3.1 PIC18F2420 ... 30
4.3.2 Frequency measurement .. 31
4.3.3 Sample Buffer .. 32
4.3.4 Calibration ... 33
4.3.5 Vehicle Recognition .. 34
4.3.6 LED Outputs .. 36
4.3.7 Setting Device Parameters ... 36

5 Traffic Counter.. 38
5.1 Device Description .. 39
5.2 Firmware Implementation ... 41

5.2.1 Vehicle Measurement .. 41
5.2.2 Date and Time ... 43
5.2.3 Measuring Temperature ... 44
5.2.4 Vehicle and Temperature Samples Buffer .. 45

5.3 Device Settings and Parameters .. 47
5.4 Command-line Interface .. 48

5.4.1 Character Buffer .. 48
5.4.2 Buffer Processing .. 49
5.4.3 Usage ... 50

5.5 GPRS Modem .. 50
5.5.1 Description .. 50
5.5.2 Communication ... 51
5.5.3 AT Commands ... 52
5.5.4 Modem Configuration ... 52
5.5.5 GPRS Connection to Server .. 53
5.5.6 Server Protocol .. 54
5.5.7 Transferring Samples ... 55

6 Server Applications ... 56
6.1 Server Installation .. 56
6.2 Database Model ... 56
6.3 Traffic Server ... 58

6.3.1 Sockets in PHP .. 59
6.3.2 Handling Multiple Clients ... 59
6.3.3 File Formats ... 60
6.3.4 Binary Data Conversion .. 62
6.3.5 Event Log .. 62
6.3.6 Server Configuration ... 63
6.3.7 Running the Server .. 63

6.4 Traffic Statistics ... 64
6.4.1 jQuery .. 65
6.4.2 JpGraph .. 68
6.4.3 Traffic Charts API ... 68

6.5 Database Benchmarking .. 70
7 Conclusion .. 72

7.1 System Summary ... 72
7.2 Tests in the field .. 72
7.3 Further Work ... 73

VI

8 References and Bibliography .. 74
9 Software and Packages Used .. 76
Appendix 1 Content of the Attached CD .. 77
Appendix 2 Inductive Loop Detector Schematic .. 78
Appendix 3 Inductive Loop Detector PCB ... 79
Appendix 4 Inductive Loop Detector Bill of Materials .. 80
Appendix 5 Inductive Loop Detector User’s Manual ... 81
Appendix 6 Traffic Counter Schematic... 86
Appendix 7 Traffic Counter PCB .. 87
Appendix 8 Traffic Counter Bill of Materials ... 89
Appendix 9 Traffic Counter User’s Manual.. 90
Appendix 10 Traffic Counter: List of Commands .. 96
Appendix 11 Database Create Script .. 98
Appendix 12 Example Source Code for CCS C Compiler ... 100

VII

List of Figures

Figure 1.1 System Overview ... 1
Figure 2.1 Inductive Loop and Vehicle Presence .. 5
Figure 2.2 Detection and Object Orientation... 6
Figure 2.3 Vehicle Measurement Principle ... 8
Figure 2.4 Signals From Loops ... 8
Figure 3.1 PIC18F2320 in PDIP package ... 10
Figure 3.2 Microchip MPLAB IDE - layout ... 12
Figure 3.3 ASIX PRESTO Programmer ... 13
Figure 3.4 ASIX-UP Flashing Environment ... 13
Figure 3.5 PIC Standard PDIP Programming Pinouts ... 14
Figure 3.6 CCS C Compiler IDE ... 15
Figure 3.7 CCS C Compiler Fuses Quick View .. 16
Figure 3.8 CCS C Compiler Interrupt Quick View ... 17
Figure 3.9 Tiny Bootloader Memory Layout .. 19
Figure 3.10 Tiny Bootloader Source Code Modification .. 20
Figure 3.11 Tiny Bootloader PC Application .. 22
Figure 4.1 Inductive Loop Detector .. 23
Figure 4.2 ILD System Overview ... 24
Figure 4.3 ILD Board Layout .. 24
Figure 4.4 ILD Loop Connector .. 25
Figure 4.5 ILD Main Connector .. 25
Figure 4.6 Oscillator Circuit with Comparator .. 26
Figure 4.7 Oscillator Cicuit with Operational Amplifier .. 27
Figure 4.8 Simple Conversion from Sine Wave to TTL Signal .. 28
Figure 4.9 Overvoltage Protectors ... 28
Figure 4.10 Overvoltage Protection... 29
Figure 4.11 ILD Operation Diagram ... 30
Figure 4.12 PIC18F2420 pinout .. 31
Figure 4.13 CCP module in Capture mode.. 31
Figure 4.14 Vehicle Recognition State Machine ... 34
Figure 4.15 State Change Hysteresis ... 35
Figure 5.1 Traffic Counter ... 38
Figure 5.2 Traffic Counter System Overview ... 39
Figure 5.3 Traffic Counter Board Layout .. 40
Figure 5.4 PC and GPRS Modem Connectors .. 40
Figure 5.5 Detectors and Microcontroller Connection .. 41
Figure 5.6 Vehicle Measurement State Machine... 42
Figure 5.7 Maxim DS1302 Basic Circuit .. 43
Figure 5.8 Maxim DS18B20 Pinout and Circuit ... 45
Figure 5.9 Samples Memory Layout ... 46
Figure 5.10 Buffer Processing Algorithm ... 49
Figure 5.11 TENcom SPEEDER RS GPRS Modem .. 51
Figure 5.12 GPRS Connection Process ... 53
Figure 5.13 Client-Server Communication Diagram .. 55
Figure 6.1 Database Model .. 57
Figure 6.2 Traffic Server Operation .. 58

VIII

Figure 6.3 Binary File Structure .. 61
Figure 6.4 Traffic Statistics Web Application ... 64
Figure 6.5 Datepicker plugin for jQuery ... 66
Figure 6.6 Tablesorter Plugin for jQuery .. 67
Figure 6.7 Simple Line Plot via JpGraph Library ... 68
Figure 6.8 Charts Generated in Traffic Charts API ... 70

IX

List of Tables

Table 3.1 Microchip PIC Configuration bits (selection) ... 11
Table 3.2 List of Important Devices Supported by ASIX PRESTO 13
Table 4.1 ILD Connector Description ... 25
Table 4.2 Frequency Configuration ... 36
Table 4.3 Device Sensitivity Configuration .. 37
Table 5.1 DS1302 Driver API ... 43
Table 5.2 Memory Space and Buffer Sizes ... 46
Table 5.3 Device Parameters ... 47
Table 5.4 Speeder RS Specification .. 51
Table 5.5 List of Important AT Commands .. 52
Table 5.6 Client Authorization Headers .. 54
Table 6.1 Binary File Headers ... 61
Table 6.2 Unpack Function Little-endian Parameters ... 62
Table 6.3 Server Configuration Attributes .. 63
Table 6.4 Traffic Charts API Variables ... 69
Table 6.5 Traffic Charts API ... 69
Table 6.6 MySQL Query Benchmark ... 71

X

List of Abbreviations

ANSI American National Standards Institute

CAN Controller Area Network

CSV Comma-Separated Values

CTU Czech Technical University

DCE Data Communication Equipment

DIP Dual-In-line Package

DOM Document Object Model

DTE Data Terminal Equipment

EEPROM Electrically Erasable and Programmable Read-Only Memory

FEE Faculty of Electrical Engieering

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile communications

HTML HyperText Markup Language

ICSP In-Circuit Serial Programming

IDE Integrated Development Environment

ILD Inductive Loop Detector

ITS Intelligent Transportation Systems

LED Light Emitting Diode

LPR Licence Plate Recognition

MSSP Master Synchronous Serial Port

PC Personal Computer

PCB Printed Circuit Board

PDIP Plastic Dual-In-Line Package

PHP Hypertext Preprocessor Language

PIC Programmable Intelligent Computer

PLL Phase-Locked Loop

PWM Pulse-Width Modulation

RISC Reduced Instruction Set Computer

RTC Real-Time Clock

SPI Serial Peripheral Interface

XI

XII

SQL Server Query Language

TTL Transistor-Transistor Logic

TVS Transient Voltage Surpressor

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

UTC Coordinated Universal Time

WIM Weight-In-Motion

Miroslav Macháček Automatic Traffic Counter

1 Introduction

The overview of the system is depicted in Figure 1.1. The thesis deals with the

development of an Inductive Loop Detector (ILD – Chapter 4) used for sensing the

presence of a conductive metal object near the loop. In other words, to find out whether

a vehicle enters/is above the loop. The detector has to have the ability to cope with

different loop inductances as well as temperature drifts, and therefore, an auto-

calibration feature had to be introduced.

Figure 1.1 System Overview

For gathering traffic data such as speed and length of vehicles, another device has

been developed. Traffic Counter (Chapter 5) uses simple principle to measure speed

and length of a vehicle by placing two inductive loops (including two ILDs) within a

traffic lane. The device can gather data from up to 2 traffic lanes, samples are stored in

an internal memory, and from time to time, the buffer in binary form is transferred over

a GPRS connection to the server. Furthermore, station temperature data is also logged

and transferred to the server. The Traffic Counter provides a command-line interface so

that the user can configure and monitor the device.

A server application (Traffic Server in Chapter 6.3) for receiving data from

stations has been written in PHP language, which allows the developer to use high-

level functions without the necessity of taking care of matters whose are implicit in

PHP such as memory management. Another advantage is the possibility of running the

application on different platforms such as Linux or Microsoft Windows, because both

operating systems support PHP scripting. The server application gathers binary data

CTU in Prague, FEE, Department of Control Engineering Page 1 of 100

Miroslav Macháček Automatic Traffic Counter

from stations, puts them into files, and also uploads them to the database for further

processing.

For an user-friendly output, a PHP web interface (Traffic Statistics - Chapter 6.4)

has been created. Charts and statistical information on stations such as speed and length

categories, number of vehicles per day/hour, with the possibility of selecting date range

and other constraints, can be generated via the web interface.

CTU in Prague, FEE, Department of Control Engineering Page 2 of 100

Miroslav Macháček Automatic Traffic Counter

2 Motivation and Methodology

In nowadays, road and highway traffic has become a great concern because of

continuous increase in traffic, which calls for new roads to be built. One matter is to

build them, the second one is to optimise the current transportation system, and

therefore, to improve efficiency of existing roads. Because of that, it is essential to

gather traffic data, not only for statistical information but mainly for analysis and

further traffic control.

There are many technologies for gathering traffic data (Chapter 2.2). One of well-

working principles is acquisition based on inductive loops embedded in the roadway,

which is the concern of this thesis. Chapter 2.4 and Chapter 2.5 deal with the principles

of that method.

Later on, the traffic data collected can be used for analysis, prediction, and

control of traffic in higher-level technology – ITS, whose aim is to increase safety, and

to reduce road congestions and fuel consumption. The traffic data can also be used as a

source for information, guidance, and assistance systems for drivers.

2.1 Reason for this Thesis

Vehicle detection and measurement based on inductive loops has been in place

for tens of years, and it is the most used technology. Over the world, especially in the

US, it is quite easy to buy an inductive loop detector device and a traffic counter

device. However, in the Czech Republic, it is not so easy since companies either get

those devices from abroad, or develop and use them for their own purpose without

further providing/selling them.

Therefore, the purpose of this thesis was to develop both detector and counter,

based on simple and well-available components. Given that the inductive loop

detector can also be used at stop bar places in parking where vehicle presence needs

to be found out, or in automation for metal proximity sensing, it was a major concern

to develop own and low-cost detector.

CTU in Prague, FEE, Department of Control Engineering Page 3 of 100

Miroslav Macháček Automatic Traffic Counter

2.2 Review of Vehicle Detection Technologies

Vehicle detection technologies are non-intrusive and intrusive. The non-

intrusive principle uses a sensor built in the roadway, the latter employs a sensor

mounted above or at the side of the roadway. Both technologies have their pros and

cons. An in-depth discussion on both principles can be found in [2, 3, 5].

2.2.1 Non-Intrusive (Over-Roadway)
Non-intrusive technology uses microwave, ultrasonic, active and passive

infrared, acoustic, and laser principle. An advantage is the ease of installation,

above or at the side of the roadway. A disadvantage is the need for sensor

cleaning, and the susceptibility to weather condition such as fog, heavy rain and

others. Some of over-roadway detection devices use more than one sensors in

order to overcome the drawbacks of each sensor.

In nowadays, video image processors have been incorporated within traffic

sensors. They are easy to set up, and are able to monitor several traffic lanes at a

time. Moreover, it is also possible to introduce Licence Plate Recognition (LPR) to

the system since an image of a vehicle is already present in digital form.

2.2.2 Intrusive (In-Roadway)
Examples of this category are inductive and magnetic loops, magnetometers,

tape-switches, and piezoelectric cables. Installation and maintenance of one of

those sensors means disruption of traffic. However, especially reliability is usually

better than in non-intrusive sensors since in-roadway sensor measurement in not

susceptible to weather conditions. The latest inductive loop detectors also provide

a better accuracy than over-roadway sensors.

Recently, there has been a demand for Weight-in-Motion (WIM) technology

[5], which is capable to measure speed, length, and gross+axle weight of a vehicle.

The WIM usually combines piezoelectric and inductive-loop sensors into one

system, and it is mainly used to detect overweight vehicles.

CTU in Prague, FEE, Department of Control Engineering Page 4 of 100

Miroslav Macháček Automatic Traffic Counter

2.3 Inductive Loops in General

The detection is based on sensing a change of loop inductance when a vehicle

approaches the loop. The loop is embedded in the pavement where saw cuts are made

to place the wire into the roadway. A change in magnetic flux caused by a vehicle

(i.e. its chassis) is depicted in Figure 2.1. There are several approaches of detecting

the change of inductance such as resonant and phase-shift methods.

The resonant principle is based on an oscillator circuit where the inductive loop

is its part. The change in inductance causes a change in resonant frequency.

Therefore, in the detector, frequency measurement has to be carried out, which is a

simple task since it can be achieved easily with a microcontroller. The resonant

method (Chapter 2.4) has been used in this thesis (ILD device in Chapter 4).

Figure 2.1 Inductive Loop and Vehicle Presence

Vehicle measurement can be performed by a single inductive loop. The

advantage is that it is simpler than two-loop system, because of saw cuts and

measurement equipment. However, this method can only estimate the vehicle speed

based on statistical information [4], there is no possibility to measure length of the

vehicle.

In contrast, the two-loop method is capable to measure vehicle speed and

length quite accurately. This method has been used in this thesis, and is discussed in

Chapter 2.5 and Chapter 5.

Furthermore, it can also be achieved to specify the vehicle class by calculating

the number of axles of the vehicle [8]. The loop frequency is sampled in periods of

milliseconds, and the resulting curve contains information on the axle count.

Similarly, the same method can be used to produce a vehicle signature [6, 7], which

can be used for vehicle matching between two remote places.

CTU in Prague, FEE, Department of Control Engineering Page 5 of 100

Miroslav Macháček Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 6 of 100

2.4 Vehicle Detection Principle Used

2.4.1 Changes in Inductance
The inductive loop detector behaves as a tuned electrical circuit. When a

vehicle passes above the loop, the vehicle induces eddy currents in wire of the

loop, which decreases its inductance. The outcome is a change in oscillator

frequency of the circuit. Figure 2.2 shows the effect of orientation of a metal

object on the detection. There is a misconception that the detection is based on

metal mass. Instead of that, surface metal area has the biggest impact.

Figure 2.2 Detection and Object Orientation

In addition, there is a ferromagnetic effect caused by the iron mass of the

engine, transmission, or differential. This effect causes an increase of inductance

when such part of a vehicle enters the loop. Nonetheless, the surrounding metal of

the vehicle always has a stronger impact, and therefore, the overall inductance will

decrease in spite of that.

2.4.2 Resonant Frequency
The resonant frequency of LC tank circuit is:

[FHHz
LC

fOSC ,,
2

1
π

=] (2.1)

In order to maintain fast responses of the detector, the resonant frequency

should be set approximately between 20 kHz and 120 kHz.

The Quality factor of the loop is expressed by

[OhmHHz]
Rs

LsfQ ,,,.2
−=

π (2.2)

Where Ls = Loop series inductance, Rs = Loop series resistance

The resulting frequency is given by:

Miroslav Macháček Automatic Traffic Counter

[]−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ,,,
112

1

2

FHHz

Q
LC

fOSC

π

 (2.3)

An important thing to note is that the resonant frequency changes slightly when

there is resistance in the circuit. In this application, when the inductive loop in the

road is about 20-40 meters long, its resistance might be up to several Ohms, which

influences the oscillation frequency a bit. Nevertheless, the task of the ILD is not to

measure the value of the loop inductance accurately, but to detect the change in

inductance only.

2.4.3 Inductance Values and Calculations
The following formulas have been used to determine loop inductance and

dimension (refer to [20] for further description).

a) Circular loop

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛= 28ln2

a
RRNL ROμμ

 (2.4)

where L = Inductance [H]

N = Number of turns [-]

R = Radius of the circle [m]

µ0 = 4π.10-7 = Permeability of vacuum [H/m] R
µR = Relative permeability [-]

a = Radius of the wire [m]

b) Rectangular loop

()[

⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−+++−=

a
hw

a
wh

h
whww

w
whhhwhhw

N
L RO

2ln.2ln.ln.

ln.22

22

22
22

2

π
μμ

(2.5)

where L = Inductance [H]

N = Number of turns [-]

w = Width of the rectangle [m]

w

hh = Height of the rectangle [m]

a = Radius of the wire [m]

CTU in Prague, FEE, Department of Control Engineering Page 7 of 100

Miroslav Macháček Automatic Traffic Counter

2.5 Traffic Measurement Principle Used

The principle is shown in Figure 2.3. There are 2 inductive loops built within

the roadway. Each loop has length l meters, and there is d meters distance between

the loops. Each loop is connected to one inductive loop detector and signals carrying

vehicle presence are used.

Road

Loop 2Loop 1

l d
Loop

Length
Loop

Distance

l

Figure 2.3 Vehicle Measurement Principle

2.5.1 Signals from Detectors
The measurement is carried out through a sequence of impulses loop detectors

(see Figure 2.4). In order to avoid crosstalks and other noise interferences, the

sequence is strictly given:

1. Vehicle enters the first loop

2. Vehicle enters the second loop

3. Vehicle leaves the fist loop

4. Vehicle leaves the second loop

t

LOOP 1

LOOP 2

t0 t1 t2 t3
Figure 2.4 Signals From Loops

CTU in Prague, FEE, Department of Control Engineering Page 8 of 100

Miroslav Macháček Automatic Traffic Counter

Other sequences will be ignored. Thus, there arises a limitation of this

method:

Vehicles shorter than Loop Distance will be not be measured.

However in practice, loop distance is approximately 2 meters, vehicles shorter

than that value are not considered as vehicles. Therefore, this limitation is just a

minor drawback.

2.5.2 Measurement of Time Intervals
The measurement starts when a vehicle enters the first loop (t1). When the

vehicle enters the second loop (t2), its speed can be calculated:

],,.[1

01
1 smsm

tt
dlv −

−
+

= (2.6)

Subsequently, When the vehicle leaves the first loop (t3), its length can be

calculated:

()],.,[1
0211 ssmmlttvl −−−= (2.7)

Another speed and length can be calculated when the vehicle leaves the first

and the second loop respectively (t3, t4):

],,.[1

23
2 smsm

tt
dlv −

−
+

=

(2.8)

()],.,[1
1312 ssmmlttvl −−−=

(2.9)

In theory, the both inductive loop detectors are supposed to behave the same

and to detect a vehicle in the same point of its chassis. Therefore, the following

equations are satisfied:

Speed:

(2.10)

2301 tttt −=−

Length:

(2.11)

1302 tttt −=−

However, in the real application, the equalities will never be satisfied. For

instance, detector responses are not exactly the same, or a vehicle does not enter both

loops in the same position. In order to make vehicle speed and length more accurate,

calculated values v1, v2 and l1, l2 can be averaged.

CTU in Prague, FEE, Department of Control Engineering Page 9 of 100

Miroslav Macháček Automatic Traffic Counter

3 Microchip PIC and Equipment

Microchip PIC microcontrollers are popular because of low cost, availability,

various collections of source codes, and free/cheap development tools. Those 8-bit

microcontrollers have Harvard architecture (program and data memory spaces are

separated) which together with RISC instruction set ensures that the most instructions

are executed within one machine cycle.

3.1 PIC18 Family

3.1.1 Description
PIC18 family (example shown in Figure 3.1) is based on the previous PIC16

family, fixes its drawbacks, and introduces upgrades such as:

• Much deeper call stack (31 levels)

• The call stack may be read or write

• Conditional branch instructions

• Indexed addressing mode

Figure 3.1 PIC18F2320 in PDIP package

The most important is the deeper call stack and highly optimised instruction set

optionally with extended instructions. This delivers the possibility of using a higher-

level programming language such as C language.

The PIC18 microcontrollers can (with some exceptions) run at a clock speed up

to 40MHz, and they are generally equipped with the following on-board peripherals:

• Watchdog timer

• Internal clock oscillator

CTU in Prague, FEE, Department of Control Engineering Page 10 of 100

Miroslav Macháček Automatic Traffic Counter

• PLL for multiplying the clock frequency

• 8/16 Bit Timers (3)

• Internal EEPROM memory

• Synchronous/Asynchronous Serial Interface USART

• MSSP Peripheral for I²C and SPI Communications

• Compare/Capture and PWM modules

• Analog-to-digital converter

• Analog Comparator

There are many variants of PIC18 microcontrollers having different on-board

peripherals (an example of a model in brackets):

• CAN (18F2480)

• USB (18F2455)

• Ethernet (18F66J60)

3.1.2 Configuration Bits
Every PIC microcontroller contains the configuration bits (so-called fuses)

whose are used to tell the microcontroller how it should handle external

environment. These bits are mapped at the start of program memory at 0x300000,

and have to be set during programming the chip. The fuses set behavior of PIC on-

board peripherals such as Watchdog, Oscillator, Memory protection, and others.

Some important fuses are listed in Table 3.1, a full description of fuses can

be found in the Microchip PIC device’s data sheet [15, 16]. Detailed process of

setting the fuses can be found in Chapter 3.3.4.

Fuse Desciption Fuse Desciption

XT Crystal oscillator (<4Mhz) HS Crystal oscillator (>4Mhz)

XTPLL Crystal oscillator (<4Mhz)
with frequency multiplier H4 Crystal oscillator (>4Mhz)

with 4x frequency multiplier

NOWDT no Watchdog Timer NOLVP Disable low voltage
programming pin

NODEBUG don’t enable debug
pins for ICD MCLR Master Clear Reset

pin enabled

NOPROTECT Code not protected
from reading NOEBTRB Boot block not protected

from table reads

NOWRT Program memory not
write protected

Table 3.1 Microchip PIC Configuration bits (selection)

CTU in Prague, FEE, Department of Control Engineering Page 11 of 100

Miroslav Macháček Automatic Traffic Counter

3.1 Microchip MPLAB Development Environment

MPLAB IDE (Figure 3.2) is a free toolset for managing projects for Microchip

microcontrollers: writing source code, compiling, simulating, and debugging. It

contains interface for additional Microchip or third-party development tools such as C

compilers and PIC emulators/real-time debuggers. Application contains integrated

MPASM assembler language compiler.

Figure 3.2 Microchip MPLAB IDE - layout

3.2 ASIX PRESTO Programmer

3.2.1 Description
ASIX PRESTO Programmer (Figure 3.3) is an USB 1.1/2.0 programmer which

supports many devices ranging from Serial EEPROM/Flash memories through 8-32

Bit microcontrollers to CPLD/FPGA microprocessors. An important list of devices

supported can be found in Table 3.2. The programmer supports ICSP programming ,

and since it is usb-powered, it does not need any power supply for programming

CTU in Prague, FEE, Department of Control Engineering Page 12 of 100

Miroslav Macháček Automatic Traffic Counter

microcontrollers. Given that the device uses an USB interface chip from FTDI

company [9], it is possible to use the programmer either under Windows or Linux.

Figure 3.3 ASIX PRESTO Programmer

Manufacturer Devices Supported Manufacturer Devices Supported

Microchip PIC16, PIC18, dsPIC,
PIC24, PIC32 Atmel AVR, 8051

Atmel, Philips,
NXP ARM Xilinx, Altera,

Lattice
CPLD and FPGA

devices

Various Serial EEPROM and Flash
memories

Table 3.2 List of Important Devices Supported by ASIX PRESTO

3.2.2 Flashing Environment
The programmer has its own environment Asix UP [25] in both English and

Czech languages (Figure 3.4) for flashing microcontrollers, which can also be run

under Linux.

Configuration
bits settings

Program
memory view

EEPROM
memory view

Figure 3.4 ASIX-UP Flashing Environment

CTU in Prague, FEE, Department of Control Engineering Page 13 of 100

Miroslav Macháček Automatic Traffic Counter

Within the application, a hex file, containing compiled source code, has to be

loaded, and a microcontroller can be flashed with the file afterwards. It should be

noted that even though the hex file contains settings for Configuration bits

(Chapter 3.1.2) of the microcontroller, the application allows the user to change those

bits just before flashing (see Configuration bits settings in Figure 3.4). Figure

3.5 [18] contains standard programming pinouts for PDIP package.

Figure 3.5 PIC Standard PDIP Programming Pinouts

3.3 CCS C Compiler

3.3.1 Description
CCS C Compiler [27] is an ANSI C compiler developed exclusively for

Microchip PIC microcontrollers. It comes with an extensive collection of libraries

(RS232, CAN, SPI, I2C, USB and others) as well as many examples, which make it

very easy to use.

 It can be bought with or without IDE (Figure 3.6), it should be noted that the

compiler itself can be integrated into Microchip MPLAB IDE (Chapter 3.1).

However, the advantage of the original IDE is that it fully supports compiler features

such as prompt, list of fuses/interrupts (see Chapter 3.3.4 and Chapter 3.3.5),

statistics and memory usage, whose improve and speed up development process.

Thus, given that I have used the IDE for this thesis, I think that it is worth to get the

IDE as well.

CTU in Prague, FEE, Department of Control Engineering Page 14 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 3.6 CCS C Compiler IDE

The compiler has to be obtained for particular PIC family, or as a combination

of them:

• PCB - for 12-bit PIC MCUs (PIC10, PIC12)

• PCM - for 14-bit PIC MCUs PIC16

• PCH - for 14-bit PIC MCUs PIC18

• PCD - for 24-bit PIC MCUs PIC24/dsPIC

It should be noted that the PIC18 family only has been used for this thesis, and

hence, PCWH IDE+PCH compiler have been used for development.

3.3.2 Installation
The compiler is as default installed into C:\Program Files\PICC

directory. There is the following structure of its subfolders:

• Devices – header files (.h) for PIC microcontrollers

• Drivers – libraries for various devices (e.g. memories, sensors,

displays), drivers for CAN and USB modules

• Examples – example source codes

CTU in Prague, FEE, Department of Control Engineering Page 15 of 100

Miroslav Macháček Automatic Traffic Counter

3.3.3 Compiling from the command line
We do not need any IDE for compiling a source code since it can also be

compiled directly from the command line:

• we can run “C:\Program Files\PICC\Ccsc.exe” and select a .C file

which contains main() function of the PIC application

• in case of compiling directly from the command line there is the

following format “Ccsc.exe options filename” where options are

described in [10].

example : Ccsc.exe +FH C:\picsources\file.c

3.3.4 Setting the Configuration Bits
The compiler produces a hex file ready to be flashed into a

microcontroller. The hex file also contains Configuration bits (Chapter 3.1.2).

Therefore, in order to get the fuses configured, a special keyword in the source

code followed by fuse description has to be used:

#fuses HS,NOWDT,NOPROTECT,NOLVP,NOPBADEN,WRTB ,NOCPD,NOWRTC

In case of using the CCS Compiler IDE (Chapter 3.3.1, Figure 3.6), a list of

fuses available (Figure 3.7) for selected target microcontroller can be viewed by

choosing View>Valid Fuses from the IDE menu toolbar.

Figure 3.7 CCS C Compiler Fuses Quick View

CTU in Prague, FEE, Department of Control Engineering Page 16 of 100

Miroslav Macháček Automatic Traffic Counter

3.3.5 Interrupts
The Microchip PIC family offers various internal/external interrupts such as

timer overflow, external edge trigger, serial line receive and others. Similarly, to

previous subchapter, the CCS Compiler IDE provides a quick list (Figure 3.8) of

interrupts available for particular microcontroller.

Figure 3.8 CCS C Compiler Interrupt Quick View

PIC18 family introduces priority interrupts, where an interrupt can either be

low or high priority. High-priority interrupt events will interrupt any low-level

interrupts that may be in progress. Entire interrupt logic can be found in [15].

3.3.5.1 Setting an Interrupt
The compiler provides function for dealing with interrupts. At first, a

peripheral which will fire an interrupt has to be set:

setup_timer_1(T1_INTERNAL|T1_DIV_BY_8);

Subsequently, the appropriate interrupt, including general interrupt flag,

has to be enabled:

enable_interrupts(INT_TIMER1);
enable_interrupts(GLOBAL);

Finally, an interrupt service routine has to be put somewhere in the source

code:

#int_TIMER1
void TIMER1_isr()
{
 // this routine is executed when timer1 overflows
}

CTU in Prague, FEE, Department of Control Engineering Page 17 of 100

Miroslav Macháček Automatic Traffic Counter

3.3.5.2 High-priority Interrupt
If the user intends to use high-priority interrupts, the following has to be

placed at the beginning of source code:

#device HIGH_INTS=true

After that, the user has to mark some particular interrupt with high-priority:

#int_CCP1 HIGH
void CCP1_isr()
{ // interrupt handler function
}

It shall be pointed out that according to my experience, if the user enables

high-priority interrupts, and he does not set any interrupt to be high-priority, the

microcontroller behaves strange and unpredictably when the compiled source

code is flashed and run. This might either be a compiler bug or a bug of a

microcontroller.

3.3.6 General Structure of Source Code
Like other C language compilers, source codes consists of .c and .h files, and

there also has to be main function within the main .c file. All microcontroller

firmware codes written within this thesis have the following structure and order:

• Include device header file (ex.: include <18f2420.h>)

• Set internal device configuration (#device command)

• Set configuration bits (#fuses command)

• Include other project files (.h .c) and function prototypes

• Interrupt handler routines, other functions

• Main function (void main())

An example of source code can be found in Appendix 12.

CTU in Prague, FEE, Department of Control Engineering Page 18 of 100

Miroslav Macháček Automatic Traffic Counter

3.4 Tiny Bootloader

Generally, the term “bootloader” means a small block of code that is executed

once a device is reset or powered on. In terms of embedded systems, the bootloader

is used for downloading a firmware to a device without the need for programming

equipment (i.e. programmer).

Tiny Bootloader [26] is a bootloader for Microchip PIC16, PIC18, dsPIC30

families that provide self-programming. It allows flashing the microcontroller via its

serial line interface, which is usually present within every application. This speeds up

development markedly, because the chip does not have to be taken out of a board.

Given that the source code of the bootloader is freely available and is written in

assembler language for PIC, it can easily be adapted to any PIC device running at

various clock-rate and having various serial line speed.

Assets of the bootloader are its size, which is merely 100 words, and also the

fact that it comes with a PC application for writing a hex file into the

microcontroller. The following subchapters describe process of compiling and

employment of the Tiny Bootloader.
Goto

Bootloader
USER

Interrupt
Service
Routine

USER Main
Program

Empty space

Goto Start

Bootloader
program

Figure 3.9 Tiny Bootloader Memory Layout

The bootloader memory structure is depicted in Figure 3.9. It resides at the end

of program memory. When the microcontroller is powered on, it waits for a while for

an initialization char over its serial line. When there is nothing received, user

CTU in Prague, FEE, Department of Control Engineering Page 19 of 100

Miroslav Macháček Automatic Traffic Counter

firmware is executed. Otherwise, the bootloader is run and begins to communicate

with the PC.

3.4.1 Compiling Bootloader Source Code
The bootloader comes with source code written in assembler languages

(MPASM) for PIC, and several precompiled hex files. In order to use it with a PIC

having a custom Configuration (baud rate, fuses, frequency), the source code has

to be modified and compiled before flashing it into the microcontroller.

At first, Microchip MPLAB IDE (Chapter 3.1) has to be installed, since it

contains assembler language compiler. The compiler has a limitation on path

length of compiled files. Therefore, it is suggested to place all bootloader files

directly in a folder located in the root directory of a drive. Otherwise, in case of

long path to files, the compilation of the source code will fail.

Figure 3.10 Tiny Bootloader Source Code Modification

Source codes particularly for PIC18 family are located under

/picsource/pic18/ directory. If the user wants to use an universal bootloader,

tinybld18F.asm file has to be modified (see Figure 3.10) according to the

following:

• Select device by writing its model name (i.e 18f2420). It is also

necessary to change the device in MPLAB environment from Menu

Toolbar : Configure > Select Device... Otherwise, it will be compiled

incorrectly.

• Modify crystal speed and serial line baud rate

CTU in Prague, FEE, Department of Control Engineering Page 20 of 100

Miroslav Macháček Automatic Traffic Counter

• Set Configuration bits. A complete list of fuses suitable for a device,

including fuse description, can be found in device’s .inc file (e.g.

P18F2420.INC) under C:\Program Files\Microchip\MPASM Suite\.

An example of device configuration taken from the beginning of

tinybld18F.asm file:

LIST P=18F2420
xtal EQU 20000000
baud EQU 115200
CONFIG OSC = HS, FCMEN = ON, IESO = ON, PWRT = ON
CONFIG BOREN = OFF, WDT = OFF, MCLRE = ON, LPT1OSC = OFF
CONFIG PBADEN = OFF, CCP2MX = PORTC, STVREN = ON
CONFIG XINST = OFF, DEBUG = OFF, LVP=OFF

Once the source code has been successfully compiled, it can be flashed into

the microcontroller.

3.4.2 Usage
The Tiny Bootloader contains a PC application (Figure 3.11) for

downloading the user firmware to the microcontroller. The use of the application is

straight-forward. The user has to select a COM port where the microcontroller is

connected to, and the communication speed (i.e. baud rate). A hex file containing

compiled user firmware has to be opened via Browse button. After that, the target

microcontroller has to be put in reset by disconnecting its power supply or by

pulling low its MCLR pin. Consecutively, the user has to release the

microcontroller from reset state (e.g. pull MCLR pin high), followed by clicking

on Write Flash button. Finally, the user application should be flashed into the

microcontroller. If the user does not click on Write Flash Button (i.e. PC

application will not send initialization to the chip), the user firmware in a

microcontroller will be executed.

CTU in Prague, FEE, Department of Control Engineering Page 21 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 3.11 Tiny Bootloader PC Application

3.4.3 Changes to the User’s Source Code
The Tiny Bootloader resides at the very end of program memory. Thus, when

compiling the user source code, the compiler has to be aware of the fact that

nothing can be placed at the end of program memory where the bootloader

program resides. Otherwise, the bootloader code would be overwritten and

therefore destroyed.

Within the CCS C Compiler, this can be achieved by placing the following

definition in source code right after device and fuses definitions.

#include <18F2420.h>
#device adc=10
#FUSES NOWDT //No Watch Dog Timer
#FUSES WDT128 //Watch Dog Timer uses 1:128 Postscale
#FUSES H4 //High speed osc with HW enabled 4X PLL
#FUSES PROTECT //Code not protected from reading
#use delay(clock=40000000)

// START OF BOOTLOADER DEFINITION
#define MAX_FLASH getenv("PROGRAM_MEMORY")
#define LOADER_SIZE 0xFF //tinybld size + a bit more (200 bytes is
enough)
#build(reset=0x0000:0x0007)
#org MAX_FLASH-LOADER_SIZE , MAX_FLASH-1 void boot_loader(void) {}
// END OF BOOTLOADER DEFINITION

CTU in Prague, FEE, Department of Control Engineering Page 22 of 100

Miroslav Macháček Automatic Traffic Counter

4 Inductive Loop Detector

Inductive Loop Detector (ILD) (Figure 4.1) is a device developed for finding out

whether a vehicle is above an inductive loop. Particularly, the presence of a conductive

metal object (i.e. axles or a chassis of a vehicle) is recognized by a change in

inductance of a loop embedded in the roadway (Chapter 2.4).

Figure 4.1 Inductive Loop Detector

4.1 Device Description

Figure 4.2 depicts a system structure. During the development of this device, it

was mandatory to keep in mind that the device had to respond in the shortest time

interval possible. Therefore, given that it is quick and easy to implement, one of the

fastest ways for measuring inductance was to measure frequency change of a

resonant LC (so-called tank), whose oscillation frequency changes as one of the

values of its components changes.

CTU in Prague, FEE, Department of Control Engineering Page 23 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 4.2 ILD System Overview

Furthermore, in order to measure loops having a broad range of inductance, the

device contains auto-calibration feature, which also compensates small differences in

inductance caused by temperature drifts. The device itself contains an analog part for

measuring inductance, and a digital part for analysis, calculations, calibration and

decisions. The latter comprises a Microchip PIC18F2420 microcontroller

(Chapter 4.3) running at the highest possible frequency (40 MHz), taking into

account the amount of calculations to be carried out, and some minor peripherals

described in Chapter 4.3.6 and Chapter 4.3.7.

Figure 4.3 ILD Board Layout

Moreover, given that loops are supposed to be placed within the roadway, the

device contains surge protectors (transient voltage surpressors – Chapter 4.2.3) on

the loop inputs. In order to let the environment know about the state of the device

CTU in Prague, FEE, Department of Control Engineering Page 24 of 100

Miroslav Macháček Automatic Traffic Counter

and the presence of a vehicle above the loop, there are several LED diodes on the

ILD, whose function is described in Chapter 4.3.6. Similarly, the device parameters,

such as sensitivity, can be set via on-board DIP switches.

Figure 4.3 depicts the board layout. An inductive loop can be either connected

through the main connector or the loop connector (Figure 4.4). The device should

also be grounded via its pin 1.

The device has to be powered through its main connector (Figure 4.5), where

inputs and outputs can also be found. Their purpose is described in Table 4.1.

Figure 4.4 ILD Loop Connector

Figure 4.5 ILD Main Connector

Pin No. Name Direction Description

1, 14 L1 In Inductive Loop (+)

2, 15 PE In Grounding to the earth

3, 16 L2 In Inductive Loop (-) (=GND)

5, 18 DC- In Negative Voltage Power Supply (-7 to -12V)

6, 19 GND In System Ground

7, 20 DC+ In Positive Voltage Power Supply (+7 to +12V)

9, 22 RST In
External Reset (with opto-isolation – against

EXTGND)

10, 23 VEHI Out
Vehicle Above 100ms Impulse (with opto-

isolation – against EXTGND)

11, 24 VEH Out
Vehicle Above Permanent (with opto-

isolation – against EXTGND)

12, 25 EXTGND In Ground for opto-isolation

13 VEHTTL Out Vehicle Above – TTL signal (against GND)

Table 4.1 ILD Connector Description

CTU in Prague, FEE, Department of Control Engineering Page 25 of 100

Miroslav Macháček Automatic Traffic Counter

4.2 Loop Oscillator Circuit

In order to detect changes in inductance of a loop, a resonant circuit has been

introduced. Detection is carried out by measuring a resonant frequency of the circuit

that consists of parallel combination of inductor and capacitor. The capacitor value is

fixed, whereas inductance (of the loop) changes as a conductive metal object comes

near the loop. Hence, the presence of a vehicle near the loop causes change in the

frequency of the oscillator. Later on, this signal is processed by a microcontroller

described in Chapter 4.3.2.

Two different oscillator circuits have been examined. It should be noted that

the second circuit has been employed in the final version of the ILD. Their pros and

cons are discussed in the following two subheads.

4.2.1 Circuit based on Comparator
The schematic (based on [19]) is shown in Figure 4.6. The main component

is a comparator LM311. Components L1 and C1 creates a parallel LC circuit. The

advantage of this circuit is that it can be powered by single power supply only, and

that the output is already in TTL logic, which simplifies a connection to the

microcontroller.

Figure 4.6 Oscillator Circuit with Comparator

This circuit was originally used for measuring small capacitors and

inductors. Unfortunately, when a loop (several meters of wire) having non-zero

resistance is used in this circuit, the output signal gets noisy. This causes a small

CTU in Prague, FEE, Department of Control Engineering Page 26 of 100

Miroslav Macháček Automatic Traffic Counter

variation in the output frequency, and therefore, a lower sensitivity of detection

(because the signal has to be averaged or filtered), which is a major drawback of

this circuit.

4.2.2 Circuit based on Operational Amplifier
With regard to the issue mentioned in the previous subchapter, another

oscillator circuit has been examined. The circuit in Figure 4.7 employs an

operational amplifier, components C1 and L1 forms a parallel LC circuit. Resistor

R3 controls the energy fed into the LC circuit.

Figure 4.7 Oscillator Cicuit with Operational Amplifier

The schematic overcomes the drawback of the previous circuit. However, a

disadvantage is the need for dual power supply. In addition, the output signal is a

sine wave, which needs further conversion to TTL logic (Figure 4.8). In spite of

the fact that more components are necessary to be introduced, this circuit has

been used in the analog part of the ILD.

CTU in Prague, FEE, Department of Control Engineering Page 27 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 4.8 Simple Conversion from Sine Wave to TTL Signal

4.2.3 Surge Protection
The inductive loop built within the roadway is connected with the oscillator

through twisted-pair cable. Due to outdoor environmental conditions, the circuit

needs to be protected against overvoltage caused by electrostatic discharge coming

from the loop. The following two types of surge protectors have been used:

a) Gas Discharge Tube - Figure 4.9a

b) TVS Diode (Transil) - Figure 4.9b

Figure 4.9 Overvoltage Protectors

a) Gas Discharge Tube, b) TVS Diode

Gas Dicharge Tubes are gas-filled components which protect against

overvoltage from tens of Volts (typically 100V). They are characterized by low

capacitance (approx. 1pF) and high currents (thousands A) they are able to

withstand. In spite of that, TVS Diodes can protect the circuit even from several

CTU in Prague, FEE, Department of Control Engineering Page 28 of 100

Miroslav Macháček Automatic Traffic Counter

Volts. Hence, it is a good practice to combine both types of protectors. Figure 4.10

shows the protection used. Normal diodes in bridge improve frequency behaviour

of TVS Diodes.

Figure 4.10 Overvoltage Protection

4.3 Microcontroller

Chapter 4.2 described the approach of measuring the inductance of the loop.

The sine-wave output of the oscillator has been converted into a TTL signal whose

frequency is to be measured and processed by the microcontroller. This chapter

describes the microcontroller, its peripherals used, and the firmware implementation.

The operation diagram is depicted in Figure 4.11. After the device is powered

on, the microcontroller peripherals such as Timers, Ports are configured. Afterwards,

the device waits until there is a signal from loop oscillator circuit, and waits 5

seconds so that it gathers some frequency samples (Chapter 4.3.3), and frequency

mean value and deviation (Chapter 4.3.4) are calculated. If the samples deviation is

lower than some particular threshold, the device is calibrated and vehicle-detecting

mode is set. Otherwise, the deviation implies that there is something happening to the

inductive loop, and the device tries to recalibrate itself again. Even during vehicle-

detecting mode, due to temperature and other impacts, the device needs to check

occasionally whether it requires recalibration.

CTU in Prague, FEE, Department of Control Engineering Page 29 of 100

Miroslav Macháček Automatic Traffic Counter

Initialisation

Power On or Reset

Signal from
Oscillator

Wait 5s

Small
Deviation

Normal
Operation

Calibrate to the
mean value

yes

Setup Ports, Timers,
and other peripherals

Calculate mean value and
deviation of sample buffer

Wait until there is
a frequency signal

Calibrate

Needs
Recalibration

Recognize vehicles

no

No Signal

No Signal

Figure 4.11 ILD Operation Diagram

4.3.1 PIC18F2420
PIC18F2420 is a 28-pin microcontroller which has 16Kb flash program

memory and 768 bytes of RAM. Its pinout is shown in Figure 4.12. PORTB (pins

21-28) contains internal pull-up resistors, which can be switched on/off by

software. They are convenient for switches – there is no need for external resistors.

There is a 10MHz crystal oscillator connected to the microcontroller. The

microcontroller uses its frequency multiplier (H4 fuse in Table 3.1) which yields

40MHz input clock to the microcontroller and 10MHz of effective clock (further

details in [15]).

CTU in Prague, FEE, Department of Control Engineering Page 30 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 4.12 PIC18F2420 pinout

4.3.2 Frequency measurement
Capture/Compare/PWM module (CCP) is a PIC on-board peripheral for

timing inputs/outputs. It can be configured in Capture mode that allows interrupt-

on-change when rising/falling edge appears on the CCP1 input (pin 13). Figure

4.13 depicts the function of CCP module when it is configured in Capture mode.

Figure 4.13 CCP module in Capture mode

The following has to be set to configure the CCP:

• Switch to Capture Mode

• Select Timer for capturing (Timer1/Timer3)

• Select occurrence:

Rising edge, Falling edge, every 4th Rising edge, every 16th Rising

edge

• Enable CCP interrupt

Given that the frequency of the oscillator is expected between 20 kHz and

145 kHz (Chapter 2.4.2), it is convenient to set the signal prescaler to 16 so that

the interrupt routine is not called so often. Furthermore, dividing the signal by 16

also produces signal filtration, which is desired.

Therefore, the snippet in C language (for CCS C Compiler – Chapter 3.3) for

CCP configuration is the following:

CTU in Prague, FEE, Department of Control Engineering Page 31 of 100

Miroslav Macháček Automatic Traffic Counter

setup_ccp1(CP_CAPTURE_DIV_16|CCP_USE_TIMER3);
setup_timer_3(T3_INTERNAL|T3_DIV_BY_1);
enable_interrupts(INT_CCP1);
enable_interrupts(GLOBAL);

CCP interrupt routine (high-priority – Chapter 3.3.5.2):

#int_CCP1 HIGH
void CCP1_isr()
{
 unsigned int16 CCPtemp,CCPactual;
 static unsigned int16 CCPprev;
 CCPtemp=CCP_1; // get the captured value of Timer3
 CCPactual=CCPtemp-CCPprev; // contains time duration between 16 ticks
of the input signal
 // further processing
 CCPprev=CCPtemp;
}

Variable CCPactual contains count of Timer3 ticks between 16 periods of the

input signal. Hence, the signal frequency is calculated:

][10.40.44
16 6

Hz
CCPactualCCPactual

f

f

OSC

S == (4.1)

4.3.3 Sample Buffer
In order to collect frequency samples for calibration and for recognizing

vehicles, samples buffering has been introduced. For both purposes, the only

properties necessary to know are the mean value and deviation of samples

gathered. Thus, samples can be saved into a circular buffer, which rolls from its

end to the beginning. The following outlines the circular buffer implementation:

#define SAMPLES_NO 64
unsigned int16 Samples[SAMPLES_NO];
unsigned int8 SamplePointer=0;

Writing into the buffer:

Samples[SamplePointer]=CCPactual;
SamplePointer++;
 if(SamplePointer>=SAMPLES_NO) SamplePointer=0;

There is no need for calculating frequency according to Equation 4.1. All

computations can be worked out with counter values, which is much faster because

samples do not have to be converted to frequency value.

Hence, Samples array is continuously filled with counter values gathered

according to Chapter 4.3.2, and it contains the most recent 64 frequency samples.

CTU in Prague, FEE, Department of Control Engineering Page 32 of 100

Miroslav Macháček Automatic Traffic Counter

4.3.4 Calibration
At the start-up and every time an inductive loop is connected, calibration

process has to be carried out. If there is a loop connected to the device, the device

gathers samples into a calibration circular buffer (see Chapter 4.3.3 for algorithm

used) for 5 seconds, and calculates the mean value and the deviation of the

samples:

∑
−

=

=
1

0

1 N

i
ix

N
x (4.2)

()∑
−

=

−
−

=
1

0

2

1
1 N

i
i xx

N
s (4.3)

In C language:

unsigned int16 GetMean(unsigned int16 arr[],char length)
{
 unsigned int32 Sum=0;
 char i;
 for(i=0;i<length;i++)Sum+=arr[i];
 Sum/=length;
 return (unsigned int16)Sum;
}

unsigned int16 GetDeviation(unsigned int16 arr[],unsigned int16
meanvalue,char length)
{
 unsigned int32 Sum1=0,Sum2=0;
 char i;
 for(i=0;i<length;i++)
 {
 Sum1=(unsigned int16)(abs((signed int32)arr[i]-meanvalue));
 Sum1*=Sum1;
 Sum2+=Sum1;
 }
 return (unsigned int16)((float)(1.0/(length-1.0))*(float)Sum2);
}

It shall be noted that there is no square root function at the end of

GetDeviation function. Again, the deviation value does not have to be calculated

accurately, and square root math function takes up plenty of machine cycles to be

worked out.

Calibration is performed during the following events:

• Power up/Reset

• A loop is disconnected and connected again

• The mean value changes during vehicle-recognition mode

• Vehicle is above the loop continuously for 5 minutes

CTU in Prague, FEE, Department of Control Engineering Page 33 of 100

Miroslav Macháček Automatic Traffic Counter

It should be noted that the oscillator frequency is limited to 20kHz to

145kHz. If frequency is out of range, calibration will not be performed and the

device will behave as if there was no signal (see Chapter 4.3.6). Calibration is

successful if the value obtained by GetDeviation function is lower than

Deviation Threshold described in Chapter 4.3.7.

4.3.5 Vehicle Recognition
When the device is successfully calibrated, vehicle-recognition mode is set.

The device calculates the mean value and the deviation (Chapter 4.3.3) of Sample

buffer, and based on the calibrated mean value, it decides whether a vehicle is

above the loop or not.

Recognition is implemented as a state machine depicted in Figure 4.14.

There are 2 states – No vehicle (VehOff), Vehicle (VehOn). Transition between

them is done according to Figure 4.15.

Figure 4.14 Vehicle Recognition State Machine

Actual mean (average) value of frequency is continuously calculated

(GetMean function) from the sample buffer and compared to the calibrated value.

Averaging process provides filtration of unwanted detections.

If the actual value gets out of the outer interval (i.e. a metal object is close to

the inductive loop), it is considered as vehicle above, and transition to VehOn state

is made. Similarly, when the actual value returns back to the inner interval, it

implies that the vehicle has left the loop, and VehOff state is set. In order to

provide setting the sensitivity of the device, both intervals can be set via on-board

switches (Chapter 4.3.7).

The device is automatically recalibrated if the device remains in VehOn state

longer than 5 minutes.

CTU in Prague, FEE, Department of Control Engineering Page 34 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 4.15 State Change Hysteresis

Calibrated value in Figure 4.15 is a value of CCP1 counter obtained

according to frequency measurement described in Chapter 4.3.2. When a vehicle

enters the loop, the loop inductance decreases (see Chapter 2.4.1) and therefore,

oscillator frequency is increased according to Equation 2.1 and 2.3 - the higher

frequency, the lower counter value.

It would be sufficient to implement left side of interval in Figure 4.15 only,

because a vehicle always causes lower counter value. However, the purpose of

the ILD is to be versatile, and therefore, to detect ferromagnetic materials

(Chapter 2.4.1) as well. Hence, a symmetrical interval, capable of detecting both

types of materials, has been introduced. Code snippet in C language of the state

machine follows:

if(VehicleAbove)
{// vehicle is above
 if(AverageCounter>=(CalibCounter-CalibCounterOff) &&
AverageCounter<=(CalibCounter+CalibCounterOff))
 { // vehicle is leaving
 VehicleAbove=false;
 }
}
else
{// no vehicle
 if(AverageCounter<=(CalibCounter-CalibCounterOn) ||
AverageCounter>=(CalibCounter+CalibCounterOn))
 { // vehicle is going above
 VehicleAbove=true;
 }
}

CalibCounterOn and CalibCounterOff are hysteresis offsets, they provide to

set the device sensitivity (Chapter 4.3.7). Both can be changed via on-board DIP

switches (Chapter 4.3.7).

CTU in Prague, FEE, Department of Control Engineering Page 35 of 100

Miroslav Macháček Automatic Traffic Counter

4.3.6 LED Outputs
There are three LED diodes (position shown in Figure 4.3) on the ILD –

Green, Yellow, Red. Each of them has a different meaning also depending on the

device calibration state. Their purpose is described in Appendix 5.

4.3.7 Setting Device Parameters
The detector is equipped with 2 blocks of DIP switches (position shown in

Figure 4.3) used for configuring the device.

a) Oscillator frequency

DIP switches in Figure 4.3 set the loop oscillator’s frequency by adding

parallel capacitors to the oscillator LC tank (see C1 and L1 in Figure 4.7).

Frequency decreases as capacitance grows (Equation 2.1). There is a fixed

10nF capacitor. In addition, there are 2 switches for adding 33nF and 100nF

capacitors to the circuit. It is necessary to keep in mind that the oscillator

frequency has a limited range of 20 kHz to 145 kHz in the firmware

(Chapter 4.3.2).

 When 2 detectors are working close to each other, crosstalks may occur. In

other words, one detector may influence the other one. Therefore, to avoid

the crosstalk, operating frequencies have to different from each other. In order

to determine the frequency easily, the device expresses the actual operating

frequency by yellow LED diode blinking (see Appendix 5). Loop frequency

can be selected by frequency switches (see Figure 4.3 for position). Their

combinations and possible inductance values are listed in Table 4.2.

DIP Switch On
Total Capacitance

[nF]

Loop Inductance

Range [uH]

none 10 120 - 6000

1 43 30 – 1500

2 110 10 - 600

1, 2 143 8 - 450

Table 4.2 Frequency Configuration

CTU in Prague, FEE, Department of Control Engineering Page 36 of 100

Miroslav Macháček Automatic Traffic Counter

b) Detection Sensitivity

The device, apart from previously described frequency setting, also allows to

set the sensitivity of detection. In other words, how small metal object can be

detected. The calibration deviation threshold (Chapter 4.3.4) also changes

according to the sensitivity configuration - The higher the sensitivity, the higher

deviation threshold that allows the device to be calibrated.

There are 8 DIP switches, the switches 7, 8 are used only - Table 4.3. The

reset of switches are not used and may be used in the future.

DIP Switch On Device Sensitivity Calibration Deviation Threshold

None of 7,8 Low Low

7 Medium Low Medium

8 Medium High Medium

7, 8 High High

Table 4.3 Device Sensitivity Configuration

CTU in Prague, FEE, Department of Control Engineering Page 37 of 100

Miroslav Macháček Automatic Traffic Counter

5 Traffic Counter

Previous chapter deals with recognition whether a vehicle is above an inductive

loop. With the help of the Inductive Loop Detector, we can therefore determine the

vehicle presence and position.

Figure 5.1 Traffic Counter

The Traffic Counter (Figure 5.1) is a device developed for measuring speed and

length of vehicles. Maximally two traffic lanes can be monitored, each of them has to

be equipped with 2 inductive loops which has to be away from each other some

particular distance so that measurement can be carried out (Chapter 2.5).

Figure 5.2 contains an overview of the Traffic Counter. The device incorporates

an on-board RTC chip (Chapter 5.2.2) so that date and time is also logged when a

vehicle is measured. Furthermore, there is ambient temperature monitoring

(Chapter 5.2.3) and both indoor and outdoor temperatures can be logged. The device

can be configured via the implemented command-line interface (Chapter 5.4) running

on its PC RS-232.

As the last task performed, in case a GPRS modem is connected to the device,

vehicle and temperature samples gathered are transferred to the server in particular

time intervals.

CTU in Prague, FEE, Department of Control Engineering Page 38 of 100

Miroslav Macháček Automatic Traffic Counter

On-board
Temperature

Sensor
Microcontroller

IDL 1

PC

Real Time
Clock

GPRS
Modem

LED
Signalization

External
Temperature

Sensor

IDL 2 IDL 3 IDL 4

Figure 5.2 Traffic Counter System Overview

5.1 Device Description

The device is based on PIC18F2620, it is exactly the same microcontroller as

PIC18F2420 (Chapter 4.3.1) except for ROM and RAM sizes, which are 32kB and

4KB. The microcontroller has been chosen because of large memory since the device

has to buffer vehicle samples meanwhile it is not connected to the Internet via a

GPRS modem.

The layout of the device is shown in Figure 5.3. The device needs +-15V DC

supplied by an external power supply through a power connector. There are 4

connectors for ILDs (Chapter 4), which are used for measuring vehicles.

The device contains two RS-232 connectors for PC and a GPRS modem.

Finally, there are 2 temperature sensors, one for board (indoor) temperature, the latter

(should be placed outside the box and connected by cable to external temperature

sensor connector) for outdoor temperature.

CTU in Prague, FEE, Department of Control Engineering Page 39 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 5.3 Traffic Counter Board Layout

Communication connectors and their pinout is shown in Figure 5.4, a straight

cable should be used for connecting the PC and a modem. Both connectors have a

standard RS-232 pinout.

Figure 5.4 PC and GPRS Modem Connectors

The user is notified about the state of the device by 4 on-board LEDs whose

purpose is described in Appendix 9.

CTU in Prague, FEE, Department of Control Engineering Page 40 of 100

Miroslav Macháček Automatic Traffic Counter

5.2 Firmware Implementation

5.2.1 Vehicle Measurement
The device implements loop signals measurement as described in

Chapter 2.5. There are 4 inductive loop detectors connected to the Traffic Counter,

each detector provides vehicle TTL signal (VEHTTL) on its pin 13 (see Table

4.1). Those signals are connected to the microcontroller’s PORTB (Figure 5.5) that

has interrupt-on-change feature on its 4th to 7th bits.

Figure 5.5 Detectors and Microcontroller Connection

The PORTB interrupt is called once rising/falling edge has occurred on pins

PORTB.4 to PORTB.7. In order to find out what event has happened, the previous

state has to be memorized. The following snipped outlines the PORTB interrupt

routine (does not include vehicle measurement algorithm):

#int_RB HIGH
void RB_isr(void)
{
 int8 current;
 static int8 last;
 static int8 bitevent;
 current=input_b();
 bitevent=(current ^ last)>>4; // get change
 if((bitevent & 3) > 0)//something with lane0 – event on ild1 or ild2
 {}
 if((bitevent & 12) > 0)//something with lane1 – event on ild3 or ild4
 {}
last=current;
}

Vehicle measurement is carried out via state machine as depicted in Figure

5.6. Measurement starts when a vehicle enters the first loop. A state transition is

made according to Figure 2.4, and in case of any unexpected state of the detector

inputs, transition to the idle state is made.

CTU in Prague, FEE, Department of Control Engineering Page 41 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 5.6 Vehicle Measurement State Machine

Time measurement is performed via timer0 which is a 16-bit timer. After

every transition, timer0 ticks are saved into t0-t3 variables. For the purpose of

vehicle measurement, a slower timer is better. The highest prescaler value of the

timer is 256, thus, the timer has the following properties (with regard to 20Mhz

crystal clock of the device):

• Timer tick 51,2us

• Overflow every 3355ms

Given that 3,3 seconds is not enough to measure long vehicles, the number of

timer overflows (of) is counted and its value is added to length calculations:

[]ticksticksdmdmkmph
tt

looplengthceloopdisv ,,,,
)01(512

)tan(3600000
1 −

+
=

(5.1)

()

[]dmtickstickskmphcm

looplength
ofttv

l

,,,,

.10
360000

65536*02.512 1
1 −

+−
=

(5.2)

Similar calculations are done with t2, t3 values (to calculate v2, l2) if

measurement averaging is set by the user (refer to MEASUREAVG in Chapter 5.3

and Appendix 10).

Vehicle samples (including timestamp described in Chapter 5.2.2) are saved

into RAM buffer as discussed in Chapter 5.2.4 to RAM storage.

CTU in Prague, FEE, Department of Control Engineering Page 42 of 100

Miroslav Macháček Automatic Traffic Counter

5.2.2 Date and Time
It is essential that the device saves a timestamp along with vehicle’s speed

and length. For that purpose, it was mandatory to employ a RTC peripheral to

establish a time base.

Maxim DS1302 [12] is a RTC chip in PDIP8 package with a simple 3-wire

TTL interface. It provides time keeping calendar functions up to the year 2099. A

basic circuit is depicted in Figure 5.7. In order to keep time base even if power

supply is not connected, an external back-up capacitor can be attached on pin 8.

The chip contains internal diode and resistors charger (Trickle Charger in the

device data sheet) for the capacitor so it is charged when the main power supply is

available. When a capacitor is fully charged, the time keeping will be functional

up to several days.

Figure 5.7 Maxim DS1302 Basic Circuit

The CCS C Compiler (Chapter 3.3) comes with a DS1302 driver (DS1302.c)

and standard C language library time.h. Therefore, the following only describes the

functions of the driver. Further information on the 3-wire interface can be found in

the device data sheet.

Function Description

rtc_init() Initialize the chip

rtc_set_datetime()
Write date and time to the

chip

rtc_get_date() Read date

rtc_get_time() Read time

Table 5.1 DS1302 Driver API

It should be noted that the chip does not allow to set seconds. Hence, when

calling rct_set_datetime function, it always sets seconds to 0.

CTU in Prague, FEE, Department of Control Engineering Page 43 of 100

Miroslav Macháček Automatic Traffic Counter

For purpose of saving vehicle samples into buffer, the sample size matters

because there is a limited RAM size of the microcontroller. Therefore, it is more

efficient to save a Unix timestamp having 4 bytes rather than saving date and time

separately. The compiler’s time.h contains mktime function which accepts

struct_tm, and which returns a timestamp (i.e. number of seconds since January 1,

1970 00:00:00 UTC). All date and time functions of the compiler time library have

years since 1900 – for instance, number 108 means the year 2008 etc. Months and

days begin at 0, not 1. The following demonstrates how to get a timestamp:

struct_tm ActualTime;
unsigned int32 timestamp;
ActualTime.tm_year=year+100;
ActualTime.tm_mon=month-1;
ActualTime.tm_mday=day-1;
ActualTime.tm_hour=hour;
ActualTime.tm_min=min;
ActualTime.tm_sec=sec;
timestamp=mktime(&ActualTime);

5.2.3 Measuring Temperature
As well as gathering vehicle samples, the Traffic Counter provides taking

indoor and outdoor temperature samples by two Maxim DS18B20 [13] digital

temperature sensors. One is placed on the board, the latter should be connected by

3 wires to the external sensor connector (shown in Figure 5.3), and placed outside

the case. The period of taking temperature samples can be set by TEMPTIME

attribute (Table 5.3) via the command-line interface described in Chapter 5.4.

DS18B20 is a 3-pin variable precision temperature sensor in TO-92 package,

it communicates via Maxim 1-Wire interface, which is a master-slave, half-duplex

protocol on a single wire. Figure 5.8 contains DS18B20 pinout and basic circuit.

There has to be a pull-up resistor on the data lane for proper work of the 1-Wire.

The description of the interface is out of scope of this thesis since the CCS C

Compiler contains a driver for the sensor.

CTU in Prague, FEE, Department of Control Engineering Page 44 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 5.8 Maxim DS18B20 Pinout and Circuit

Several 1-Wire devices can be placed on a single 1-Wire bus. However, for

ease of employing 2 temperature sensors, the both are placed on separated 1-Wire

buses.

The device driver has been modified so that it handles two different buses

and also allows for having no sensor connected (in case of the external sensor).

The following describes the modified driver API:

ds1820_init() – initiates the on-board sensor

ds1820_init2() – initiates the external sensor

ds1820_read(int1 sensor) – returns sensor temperature in degree Celsius,

 sensor=0 -> on-board, =1 -> external

 if sensor is not connected, returns -128

5.2.4 Vehicle and Temperature Samples Buffer
Both types of samples need to be saved into RAM memory, where they are

uploaded from later on (see GPRS modem in Chapter 5.5). So that the sample size

is as small as possible, some reductions have been made.

Given that number of lanes within a station will surely never be higher than

16, we need just 4 bits for that value. Moreover, length of a vehicle will certainly

be lower than 40 meters, thus, only 12 bits are required to hold the length value in

centimetres (12 bits ~ 4096 cm). Those two variables can be assembled into one

16-bit variable.

CTU in Prague, FEE, Department of Control Engineering Page 45 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 5.9 Samples Memory Layout

Structure of a vehicle (7 bytes) and a temperature (6 bytes) sample is shown

in Figure 5.9. The CCS C Compiler uses Little-endian byte ordering (the least

significant bit/byte is stored at the memory with the lowest address). In order to

provide access to single bytes of each sample, the entire sample is encapsulated in

a union, which provides access to different variables at the same location in RAM

memory (see Chapter 5.5.7 for usage demonstration):

typedef union {
 int8 bytes[7];
 struct {
 unsigned int32 DateTime;
 unsigned int16 LaneLength; // lower 12 bits = length in cm, higher 4
bits=lane
 unsigned int8 Speed;
 } vehicle;
} Vehicle;
Vehicle VehicleBuffer[VEHICLE_BUFFER_LENGTH];

Finally, variable VehicleBuffer is the main buffer, where vehicle samples are

saved into, and from where the data is read for server upload. Temperature buffer

is implemented in the similar manner. Table 5.2 summarizes some combinations of

vehicle and temperature buffer sizes with regard to the available RAM memory

space, the combination in bold, which provides a reasonable ratio between both

types of samples, has been used.

Number of Vehicle

Samples

Number of Temperature

Samples
Total RAM Usage [%]

430 30 95

400 70 94

350 100 90

Table 5.2 Memory Space and Buffer Sizes

CTU in Prague, FEE, Department of Control Engineering Page 46 of 100

Miroslav Macháček Automatic Traffic Counter

5.3 Device Settings and Parameters

In order to save settings such as inductive loop dimensions, server’s ip address,

station id, it is necessary to save the configuration into a memory which keeps its

content even without power supply. Fortunately, the microcontroller contains an

internal 1kB EEPROM memory. Device configuration (properties listed in Table 5.3)

can be changed via PC serial interface (Chapter 5.4).

It should be noted that configuration is load from EEPROM memory after

power-up. If the user wants to save the configuration to EEPROM, the WRITE

command (refer to Appendix 10) has to be issued.

Item Value Type Description

AutoStart bool Start measurement after power-up

SID uint16 Station ID

MeasureAvg bool Measure Average (see averaging in Chapter 2.5.2)

LoopDist uint8 Distance between loops [dm]

LoopLen uint8 Length of a loop [dm]

LaneNum uint8 LaneNumber (see Chapter 6.2)

GprsSend bool Send samples to the server

GprsTime uint8 Send period [minutes]

GprsPin uint16 PIN code of the modem SIM card (0 for none)

ServerIP uint32 IP address of the server (xxx.xxx.xxx.xxx)

ServerPort uint16 Server port

TempTime uint8
Time interval of taking temperature samples

[minutes]

Table 5.3 Device Parameters

There is a data structure in the program which can be written/read into the

EEPROM memory, example:

typedef struct _Config{
 int1 AUTOSTART;
 int1 MEASUREAVG;
 int1 GPRSSEND;
 unsigned int8 GPRSTIME;
}Config;
Config Configuration;

CTU in Prague, FEE, Department of Control Engineering Page 47 of 100

Miroslav Macháček Automatic Traffic Counter

The following two functions implements reading and writing from the internal

EEPROM memory, whole data structure at particular offset can be written:

void EEPROM_READ(int *ptr,int num,int addr)
{
 int count;
 for (count=0;count<num;count++)
 {
 ptr[count]=READ_EEPROM(addr+count);
 }
}
void EEPROM_WRITE(int *ptr,int num,int addr)
{
 int count;
 for (count=0;count<num;count++)
 {
 WRITE_EEPROM(addr+count,ptr[count]);
 }
}

To save the configuration structure, the following command is used:

EEPROM_READ(&Configuration,sizeof(Configuration),0);

5.4 Command-line Interface

In order to configure the device (see Chapter 5.3), a simple command-line

interface has been implemented. It receives characters from PC serial line, buffers

them, and when a delimiter character is sent, the entire buffer is processed. The list

of available commands can be found in Appendix 10.

5.4.1 Character Buffer
Each character received through the device HW UART causes a RDA interrupt

routine to be called. The character is saved into a receive buffer. If a ‘\r’ character is

received, the content of the buffer is copied (so that serial line receive works when

the buffer is processed) and is processed in the program main loop (see

Chapter 5.4.2). The following function receives a character when it is ready, saves it

into the buffer, and sets process flag.

inline void PCBufferIsr()
{
 char c;
 c=fgetc(PC);
 if(c=='\n')
 {
 if(PCBufferPointer>0 && PCBuffer[PCBufferPointer-1]=='\r')
PCBufferPointer--;
 PCBuffer[PCBufferPointer]='\0';
 strcpy(PCBufferCopy,PCBuffer);
 PCBufferPointer=0;
 PCBufferProcess=true;

CTU in Prague, FEE, Department of Control Engineering Page 48 of 100

Miroslav Macháček Automatic Traffic Counter

 }
 else
 {
 PCBuffer[PCBufferPointer]=c;
 if(PCBufferPointer<PC_BUFFER_LENGTH-1)
 {
 PCBufferPointer++;
 }
 }
}

5.4.2 Buffer Processing
There are 2 types of command – with or without value. Character buffer

contains entire string received over the serial line. Figure 5.10 depicts the

processing algorithm. At first, it is verified that the command exists. If the

command cannot contain a value, a response to the command is generated.

Otherwise, if the command received contains a value, it means that the users

is going to change device configuration. Hence, the value is parsed and saved.

Figure 5.10 Buffer Processing Algorithm

CTU in Prague, FEE, Department of Control Engineering Page 49 of 100

Miroslav Macháček Automatic Traffic Counter

The value can be various depending on the command. It is mostly a numeric

value – bool, uint8, uint16. However, in some cases, it can also be a datetime or an

ip address.

5.4.3 Usage
The serial line at the PC side shall be set according to the following:

• 115200 baud, 8 bits, no parity, 1 stop bit, no handshake

The list of all available commands can be found in Appendix 10. All

commands have to end with \r or \r\n characters. Otherwise, the device will not

reply. If the received command exists, the device replies with the command,

otherwise an “unknown command” string is sent back.

In case of commands with value, if the user sends the command without any

value, it is considered as reading the command value and the device replies with

the value. If the user sends a command+space followed by a value, this value is

parsed and saved into an appropriate configuration property.

Some examples of commands follow:

• Get actual temperature: GETTEMP\r

• Get the device date and time: DT\r

• Set the device date and time (2008-12-12 15:43): DT 0812121543\r

• Set the server IP address: SERVERIP 192.168.1.1\r

5.5 GPRS Modem

A GPRS modem has been introduced for transferring data to the server (see

Traffic Server in Chapter 6.3). The modem is connected with the Traffic Counter via

Modem connector depicted in Figure 5.3.

5.5.1 Description
TENcom SPEEDER RS [24] is shown in Figure 5.11. The modem

communicates via a standard RS-232 interface.

CTU in Prague, FEE, Department of Control Engineering Page 50 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 5.11 TENcom SPEEDER RS GPRS Modem

Modem highlights are listed in Table 5.4. The modem can be run at different

baud rates, and SW or HW handshaking can be used. The modem provides

embedded UDP and TCP/IP stack, which makes all network operations transparent

to the user.

Property Value

Power Supply 7-30V DC

RF 900/1800/1900MHz

GSM Voice: FR, EFR, HR

SMS: Text, PDU, MO/MT

GPRS Mode: Class B

Multislot Class 12 (4Rx, 4Tx, Max 5 Slots)

Speed: 85,6kb/s Tx and Rx

Interface RS-232, standard AT command set

Speed: 9600 – 115200 baud selectable

SW or HW handshake

UDP, TCP/IP stack, PPP, PAD, CMUX

Table 5.4 Speeder RS Specification

5.5.2 Communication
The modem is a DCE with a Cannon 9 female connector. There is a male

connector on the Traffic Counter board so that it is a DTE. Connection between

the devices should be via a 1:1 RS-232 cable. The communication properties have

been chosen as the following (modem factory defaults in brackets):

• 19200 (115200) baud, 8 bits, no parity, 1 stop bit, no handshake

(RTS/CTS)

CTU in Prague, FEE, Department of Control Engineering Page 51 of 100

Miroslav Macháček Automatic Traffic Counter

Even though the modem provides HW handshaking via RTS/CTS signals, no

handshaking has been used. However, the modem sets the CD (Carrier Detect –

pin 1) signal once a GPRS connection has been established.

5.5.3 AT Commands
The modem communicates via a standard modem AT command set. Each

command starts with “AT” prefix and is processed by the device when \r\n (CRLF)

string is received. The response from the modem also ends with \r\n. Modem

configuration needs to be saved into its EEPROM memory (AT&W command).

Table 5.5 contains a list of selected AT commands, full command set can be found

in [17].

Command Answer(s) Description

AT OK Find out whet

AT&V List settings Print actual settings

AT&W OK Write settings to memory

AT+IPR=val OK Set baud rate, example: AT+IPR=19200

AT+IFC=x,y OK Set handshaking mode, ex.: AT+IFC=0,0

AT+CPIN="val"
OK

ERROR
Sets PIN code for SIM card

AT$PADDST="ip",
port

OK
Set Server IP address and Port, ex.:

AT$PADDST=”192.168.1.1”,12345

ATD*99#

CONNECT

ERROR

NO CARRIER

Open GPRS connection

+++
Escape sequence, switch from data to AT

command mode

ATH OK Close GPRS connection

Table 5.5 List of Important AT Commands

5.5.4 Modem Configuration
Before using the modem, it needs to be configured for active TCP

connections. The following describes configuring the modem for TCP mode, for

UDP and PPP modes, the reader should refer to [16].

CTU in Prague, FEE, Department of Control Engineering Page 52 of 100

Miroslav Macháček Automatic Traffic Counter

1. Baud rate and handshaking

AT+IPR=19200\r\n
AT+IFC=0,0\r\n

2. Network access point

AT+CGDCONT=1,”IP”,”internet”\r\n

3. Active TCP connection

AT$HOSTIF=2\r\n
AT$ACTIVE=1\r\n

4. Target IP and port (example)

AT$PADDST=”192.168.1.1”,1000\r\n

5. Write settings

AT&W\r\n

5.5.5 GPRS Connection to Server
Samples are transferred to the server (if GprsSend property is true) in

intervals given by GprsTime property (Table 5.3). At first, GprsPin, ServerIp and

ServerPort properties have to be configured.

Figure 5.12 outlines how a GPRS

connection is established, used, and released.

It is implemented as a state machine. In

every state, there is a timeout for a reply from

the modem. If the modem replies OK, another

state is set. In case of error, the gprs

connection is closed and entire process starts

over.

Once a PIN code is set properly, the

modem connects to GSM network, and replies

OK. After the ATD*99# command is issued, a

GPRS connection to the server is about to be

established. This may take several up to

several tens of seconds. The modem sends

CONNECT in case it has been successfully

connected to the server. If a connection is closed by the server or GSM network,

Figure 5.12 GPRS Connection Process

CTU in Prague, FEE, Department of Control Engineering Page 53 of 100

Miroslav Macháček Automatic Traffic Counter

the modem sends NO CARRIER message. If a connection cannot be established,

the modem replies ERROR.

5.5.6 Server Protocol
Communication protocol is described in Figure 5.13. When a connection to

the server application (Traffic Server in Chapter 6.3) has been established

according to process described in Chapter 5.5.5, the client (e.g. Traffic Counter

station) sends headers to be recognized and authorized by the server. Headers are

sent in text mode (id=value) and are separated by semicolon. There are 8

mandatory headers (Table 5.6). If they are not sent, the client is disconnected.

Header Description

SID Station ID

PVER Protocol Version

FWVER Firmware Version

HWVER Hardware Version

DTFROM Acquisition Start - unix timestamp

DTTO Acquisition End - unix timestamp

SV Number of vehicle samples to be sent

ST Number of temperature samples to be sent

Table 5.6 Client Authorization Headers

Hence, the header string look similarly to the following:

SID=1;PVER=10;FWVER=9;HWVER=10;DTFROM=1228150807;DTTO=1228151807;SV=2;ST=2
\r\n

Afterwards, in case of a proper authorization, a binary mode is set and

vehicle and temperature samples are transferred (see Chapter 5.5.7). Every time a

reply from a second side is expected, there is a timeout so that connection is closed

when an error occurs. If server sends ERROR or BYE, connection is also

terminated. All text messages are delimitered by \r\n.

CTU in Prague, FEE, Department of Control Engineering Page 54 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 5.13 Client-Server Communication Diagram

5.5.7 Transferring Samples
Vehicle and temperature buffers are implemented and filled as described in

Chapter 5.2.4. Once a connection to the server has been established and the station

has been authorized by the server (see headers in Chapter 5.5.6), both buffers are

transferred to the server in binary form.

Both sample arrays have items encapsulated within union structure, thus, all

data can be accessed via bytes array. The following outlines the function for

transferring data in binary form. Every byte of the vehicle sample is sent to the

GPRS modem. Temperature buffer is handled in a similar way:

void BinarySendVehicle(unsigned int16 index)
{
 char i;
 for(i=0;i<7;i++)fputc(VehicleBuffer[index].bytes[i],GPRS);
}

CTU in Prague, FEE, Department of Control Engineering Page 55 of 100

Miroslav Macháček Automatic Traffic Counter

6 Server Applications

Previous chapters deal with traffic data acquisition and uploading to the server in

binary form over a TCP connection. Thus, there has to be a mainframe application

(Traffic Server – Chapter 6.3) for receiving and processing at the server side. The

application communicates with Traffic Counter station over the Internet, places the

received data into files, and uploads them to the database as well.

The latest part is a web-interface (Traffic Statistics - Chapter 6.4) for viewing a

state of stations and their traffic information. Both applications/scripts are written in

PHP language [30] so that the entire server side can be run on various operating

systems such as Microsoft Windows or Linux.

6.1 Server Installation

In order to get server applications working, the following packages have to be

installed and configured (both tasks are out of scope of this thesis and can be found

on the Internet):

• Apache Web Server [29] (version 2 and higher)

• PHP Preprocessor Language [30] (version 5 and higher)

• MySQL Database Server [31] (version 5 and higher)

Moreover, for proper function of the server application, it is also mandatory to

install the following modules:

• Mod_rewrite for Apache

• GD library plugin for PHP

• JpGraph library for PHP [35]

• jQuery Javascript Library [22], [33]

6.2 Database Model

The database structure has been designed keeping in mind the purpose of traffic

data and its later processing. Table attributes are mainly used within the web-

interface described in Chapter 6.4. Database table layout (designed in [32]) is shown

in Figure 6.1, SQL create script can be found in Appendix 11. The model containts

the following tables:

CTU in Prague, FEE, Department of Control Engineering Page 56 of 100

Miroslav Macháček Automatic Traffic Counter

• stations: contains nodes (i.e. Traffic Counter – Chapter 5), each node

uploads data over the internet.

• temperatures: indoor and outdoor temperature samples of stations

• uploadedfiles: every time a station uploads a file, the file details are

inserted so that the user can check how stations upload data

• lanes: each station consists of one or more traffic lanes.

• trafficdata: raw vehicle samples – speed and length of vehicles for

every lane

Figure 6.1 Database Model

The following columns are important since they have to be set properly in the

Traffic Counter device at a station (see Chapter 5):

• stations.idstation – an unique id of a station (SID parameter in

Appendix 10)

• lanes.lanenumber – id of lane within a station (LANENUM parameter

is Appendix 10)

Even though lanes.idlane is a unique identifier, it is easier to use

lanes.lanenumber which is only unique per station. The reason is that lanenumber is

CTU in Prague, FEE, Department of Control Engineering Page 57 of 100

Miroslav Macháček Automatic Traffic Counter

an offset which can be modified when adding more lanes to the station. See property

LANENUM in Chapter 5.3 for station configuration of lanenumber item.

6.3 Traffic Server

The Traffic Server is a PHP script which receives data from station over

network, puts it into files and also upload to the MySQL database (having the table

structure according to the model in Figure 6.1). It implements multi-client TCP

server through socket connections.

Figure 6.2 demonstrates the operation of the server. At first, a socket server is

established, and then it waits for a new client or data from any currently connected

client. Communication and protocol are described in Chapter 5.5.6.

When a new client is connected, authorization in terms of receiving headers in

Text mode has to be made. Once the headers have been successfully acquired from

the client, the server awaits vehicle and temperature data in binary form. In case of

any error in communication, the client is disconnected. Once all vehicle or all

temperature samples have been received, they are converted to text form, saved into

text files, and uploaded to the database.

Figure 6.2 Traffic Server Operation

CTU in Prague, FEE, Department of Control Engineering Page 58 of 100

Miroslav Macháček Automatic Traffic Counter

6.3.1 Sockets in PHP
Sockets in PHP are similar to C language sockets. The following PHP code

snippet sets up a TCP socket for listening on port 10000:

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);
if (!is_resource($socket)) {
 echo 'Unable to create socket: '.
socket_strerror(socket_last_error());
 exit(1);
}
 // try to re-use address and port
if (!socket_set_option($socket, SOL_SOCKET, SO_REUSEADDR, 1))
{ echo 'Unable to set option on socket: '.
socket_strerror(socket_last_error());
 exit(1);
}
if (!socket_bind($socket, 0, 10000)) {
 echo 'Unable to bind socket: '. socket_strerror(socket_last_error());
 exit(1);
}
socket_listen($socket, 5);

Unfortunately, PHP language does not provide threads, but it supports both

non-blocking and blocking sockets. Given that the data transfer from a station

takes only several seconds and is carried out in a period of several minutes,

blocking socket can be used without any problems.

Connection or client disconnection can be recognized by reading from the

socket where the event occurred:

 $result = socket_read($clients[$i]['socket'],7,PHP_BINARY_READ);
 if($result === FALSE || $result=='' ||
(socket_last_error($clients[$i]['socket']) == 104)) {}

6.3.2 Handling Multiple Clients
The server application provides the possibility of having several clients

(stations) connected at a time. Even though blocking sockets have been used, a

simple principle for dealing with multiple clients has been employed.

The scripts waits until there is either a new client connected or data from one

of the current clients is available. The following outlines the main loop of the data

server script:

while(1){
 $read[0] = $socket; // copy the main socket to detect a new client
 for($i=1; $i<count($clients)+1; ++$i) {
 if($clients[$i] != NULL)
 {// copy sockets of all current clients
 $read[$i+1] = $clients[$i]['socket'];
 }}
 $ready = socket_select($read, $write = NULL, $except = NULL, $tv_sec =
NULL); // blocks

CTU in Prague, FEE, Department of Control Engineering Page 59 of 100

Miroslav Macháček Automatic Traffic Counter

 if(in_array($socket, $read)) {// a new client connected
 }
 for($i=1; $i<$max_clients+1; ++$i){
 if(in_array($clients[$i]['socket'], $read)){ // process data from
current clients
 }
 }}

The $read array contains all client sockets including the server socket.

Function socket_select blocks until at least one event occurs on $read array, and

removes those sockets from $read array which do not have any event. Function

parameters have to be passed by reference – the reason for $write, $except, $tv_sec

variables.

6.3.3 File Formats
Once all vehicle samples have been acquired from the station, the file

containing those samples is saved into BINARY_FILES_PATH directory.

Afterwards, the binary file is processed and uploaded to the database. In case of a

successful upload, the file is moved to BINARY_FILES_PATH_PARSED

directory, and is also converted from binary to text form and saved into

DATA_FILES_PATH.

Filename is always the following: SID-DATETIME.EXT, where

SID = Station ID, DATETIME = MySQL timestamp, EXT=bin/txt

Example of traffic file: 1-2008-12-04_22_21_41.bin

Example of temperature file: 1-2008-12-04_22_21_41_T.bin

a) Binary File

The structure of a binary file is depicted in Figure 6.3. The file contains

Prefix “TRAFDATA” in ASCII form so that the file can be distinguished from

other files. Number of Headers (N) is a count of all consecutive headers. After

that, there is N of header items (Header 1 to N), each consists of Header ID and a

variable-length value depending on the particular header – see Table 6.1. After the

last header item, there are traffic (each 7 bytes) / temperature (6 bytes) samples in

the same format as it is sent by the station in (see Chapter 5.5.2).

CTU in Prague, FEE, Department of Control Engineering Page 60 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 6.3 Binary File Structure

Header

ID
Size [B] Name Description

0 2 SID Station ID

1 1 PVER Network Protocol Version

2 1 FWVER Station Firmware Version

3 1 HWVER Station Hardware Version

4 4 DTFROM Acquisition Start Unix timestamp

5 4 DTTO Acquisition End Unix timestamp

6 1 TYPE Type of Data: 0=traffic, 1=temperature

7 2 SMPLNO Number of Samples

Table 6.1 Binary File Headers

b) Text File

Its format is straight-forward and self-explanatory. Every line contains one

value, headers begin with * character. Samples are separated by comma, and

have the following format (Traffic text file example is below):

Traffic: lanenumber; datetime; speed; length

Temperature: datetime; tempin; tempout

* Traffic Data File
* Created on:2008-12-04 23:19:43
* SID=1
* PVER=1.0
* FWVER=0.9
* HWVER=1.0
* DTFROM=2008-12-01 18:00:07
* DTTO=2008-12-01 18:16:47
* TYPE=0
* SMPLNO=2
1;2008-12-01 18:00:07;55;500
1;2008-12-01 18:00:10;65;306

CTU in Prague, FEE, Department of Control Engineering Page 61 of 100

Miroslav Macháček Automatic Traffic Counter

6.3.4 Binary Data Conversion
As described in Chapter 5.5.7, traffic and temperature data is transferred

from stations in binary form, and it is necessary to unpack them before uploading

to the database. PHP language contains unpack function for conversion from

binary format. The following code snippet contains a function for vehicle sample

conversion.

function UnpackVehicleSample($binstring)
{
 $unpackeddata=unpack("V1datetime/v1lanelength/C1speed",$binstring);
 $vehiclesample=array();
 $vehiclesample['unixtimestamp']=$unpackeddata['datetime'];
 $vehiclesample['dt']=gmdate("Y-m-d H:i:s",$unpackeddata['datetime']);//
convert unix timestamp
 $vehiclesample['datecol']=gmdate("Y-m-d",$unpackeddata['datetime']);
 $vehiclesample['lane']=($unpackeddata['lanelength'])>>12;//the highest 4
bits
 $vehiclesample['length']=$unpackeddata['lanelength']&0xfff;//the lowest
12 bits
 $vehiclesample['speed']=$unpackeddata['speed'];
 return $vehiclesample;
}

The unpack function is capable of converting data from little-endian, big-

endian, and machine byte order representations. The Traffic Counter device uses

little-endian byte order as described in Chapter 5.2.4. Table 6.2 contains unpack

function unpacking format (char=1byte, short=2bytes, long=4bytes).

Code Description Code Description

c Signed Char C Unsigned Char

v Unsigned Short V Unsigned Long

Table 6.2 Unpack Function Little-endian Parameters

6.3.5 Event Log
Client communication events are into files in LOG_FILES_PATH folder

(Chapter 6.3.6). Filename is “#date.log” for normal logs and “ERR-#date.log” for

error logs, where #date is a variable containing the date of logging – e.g. 2008-12-

24.log .

The log file is a csv file having the following structure:

Datetime;Client_ID;Event;Message

When a client is authorized, all headers obtained are listed in the log.

Example of log file:

CTU in Prague, FEE, Department of Control Engineering Page 62 of 100

Miroslav Macháček Automatic Traffic Counter

2008-12-15
16:06:22;SID:1;PVER:10;FWVER:10;HWVER:10;DTFROM:1228150807;DTTO:1228151807
;SV:2;ST:2;
2008-12-15 16:07:16;CLIENT:1;ERROR;Connection refused by the client
2008-12-15 16:07:30;SID:1;DISCON

6.3.6 Server Configuration
File ServerSettings.php contains definitions (listed in Table 6.3) necessary to

be set before the server is run. The server script uses some function from the web-

interface and vice versa. Therefore, it is mandatory to set an appropriate path. All

paths are absolute and need to end with \ or / character (depending on Operating

System).

Definition Name Type Description

DEBUG bool
Debug messages will be displayed in console

output

SERVER_PORT int Port number the server will be running at

WEB_PATH string
Path to the web-interface directory (to the

folder where index.php file is)

BINARY_FILES_PATH string
Where to store binary files which have not

been parsed yet

BINARY_FILES_

PATH_PARSED
string

Where to store parsed binary files (traffic and

temperature)

DATA_FILES_PATH string
Where to store text data files (traffic and

temperature)

LOG_FILES_PATH string Where to store server log files

Table 6.3 Server Configuration Attributes

6.3.7 Running the Server
The PHP script has to be executed not as a website but as a command line

script. At first, the server has to be configured – see Chapter 6.3.6.

a) Linux

The executable script has to have the following at the beginning (issue

which php command for finding out the path):

#!/usr/bin/php

It also requires executable permission for running:

CTU in Prague, FEE, Department of Control Engineering Page 63 of 100

Miroslav Macháček Automatic Traffic Counter

chmod +x Server.php
./Server.php

b) Windows

Consider that the PHP environment is installed in C:\php\ directory.

The server can be started issuing the following command:

C:\php\php.exe C:\path_to_server\Server.php

6.4 Traffic Statistics

Traffic Statistics (a screenshot in Figure 6.4) is a PHP web application

developed for administration of stations, their lanes, and for their monitoring

including generating graphical outputs (i.e. charts).

Figure 6.4 Traffic Statistics Web Application

The application employs jQuery UI [33] Javascript Library for sorting tables

and for easy selection of date intervals, and JpGraph [35] PHP library for generating

charts. The following outlines the features of the application:

CTU in Prague, FEE, Department of Control Engineering Page 64 of 100

Miroslav Macháček Automatic Traffic Counter

• Station Management

Create/edit station, its description, view station last update date

• Lanes Management

Create/Edit station lanes, their lane number, description, view lane last update

• Upload history

Binary files upload, view upload history and details

• Stats

Lane Charts – number of vehicles per hour/day, average speed per hour/day,

speed and length categories

Station Charts – indoor and outdoor temperature

• Export

Raw lane data export into CSV files

6.4.1 jQuery
jQuery is a open-source Javascript library [22] which simplifies HTML

document access, event handling and animations through abstractions of low-level

functions and attributes. Particularly jQuery UI is its part which provides easy-to-

implement user interface - effect such as resizing, sorting, drag & drop and others.

This thesis employs two plugins from jQuery UI – Datepicker and

Tablesorter. Therefore, facts mandatory to get those two plugins working are

mentioned only. For an extensive description of jQuery features, the reader should

refer to [22] and [33].

6.4.1.1 Usage

The heart of the entire Library is the file jquery.js. It has to be included in

HTML source code at first:

<script type="text/javascript" src="jquery.js"></script>

jQuery functions can be used as soon as the DOM is ready, after which

the jQuery code can be run. The following demonstrates how to achieve that:

<script type="text/javascript">
$(document).ready(function(){
// executed once the DOM is ready, put user’s jquery code here
$("a").click(function() {
 alert("Hello world!");
 });
});
 </script>

CTU in Prague, FEE, Department of Control Engineering Page 65 of 100

Miroslav Macháček Automatic Traffic Counter

Which does the same as the following code (without jQuery):

Link

6.4.1.2 Datepicker
It is a plugin embedded in jQuery UI package. It provides an easy date

selection via a small calendar menu. It can also be configured so that it allows

to select a date range.

The Datepicker is bound to an input tag:

<input type="text" size="10" value="" id="startDate"/>

After that, the following (to be placed into ready function – see

Chapter 6.4.1.1) causes a calendar to pop up when the text field is focused, the

outcome is shown in Figure 6.5.

$("#singleDate").datepicker({
 maxDate: 0,
 dateFormat: $.datepicker.W3C,
 showOn: "both",
 buttonImage: "images/calendar.gif",
 buttonImageOnly: true,
 firstDay: 1
});

Figure 6.5 Datepicker plugin for jQuery

6.4.1.3 Tablesorter
Tablesorter [34] provides sorting feature and a nice graphical layout of

HTML tables via jQuery library. It is a former plugin of jQuery UI since it has

been separated from jQuery. Figure 6.6 demonstrates the result of Tablesorter

plugin.

CTU in Prague, FEE, Department of Control Engineering Page 66 of 100

Miroslav Macháček Automatic Traffic Counter

Figure 6.6 Tablesorter Plugin for jQuery

The HTML table should contain THEAD and TBODY tags so that the

tablesorter can be applied on the table. The following code outlines the table

structure:

<table id="myTable">
<thead>
<tr>
 <th>Last Name</th><th>First Name</th><th>Email</th><th>Due</th><th>Web
Site</th>
</tr>
</thead>
<tbody>
<tr>
 <td>Smith</td><td>John</td><td>jsmith@gmail.com</td><td>$50.00</td>
 <td>http://www.jsmith.com</td>
</tr>
</tbody>
</table>

Tablesorter javascript file should also be included in the HTML file:

<script type="text/javascript" src="ui/jquery.tablesorter.js"></script>
<script type="text/javascript" src="ui/jquery.metadata.js"></script>

If the users wants to use jQuery inline function, metadata.js needs to be

included. Subsequently, jQuery code has to be added to ready function

described in Chapter 6.4.1.1.

$.tablesorter.defaults.widgets = ['zebra'];
$("#MyTable").tablesorter({sortList: [[0,0]]});

The code above sets the first column of table MyTable as the sorting

column, and zebra widget makes different color of every second row of the

table.

Inline functions provide the functionality of changing Tablesorter

properties through code placed within the object tag. For instance, the

following disables sorting feature on the associated column:

<th class="{sorter: false}">Functions</th>

CTU in Prague, FEE, Department of Control Engineering Page 67 of 100

Miroslav Macháček Automatic Traffic Counter

6.4.2 JpGraph
Is an object-oriented PHP library for generating various types of charts such

as line, bar, pie and ring plots. A chart can either be saved as an image file or

shown directly within a web site. Within this thesis, the second method, alongside

line and pie plots, has been used.

The usage of the JpGraph library is straight-forward and well-documented in

[23], and it would be beyond the range of this thesis to provide a description of the

library. The following PHP code only demonstrates the simplicity of using the

library, Figure 6.7 contains the chart generated:

<?php
include ("../jpgraph.php");
include ("../jpgraph_line.php");
$ydata = array(11,3, 8,12,5 ,1,9, 13,5,7); // Some data
$graph = new Graph(350, 250,"auto");
// Create the graph. These two calls are always required
$graph->SetScale("textlin");
$lineplot =new LinePlot($ydata); // Create the linear plot
$lineplot ->SetColor("blue");
$graph->Add($lineplot); // Add the plot to the graph
$graph->Stroke();// Display the graph
?>

Figure 6.7 Simple Line Plot via JpGraph Library

6.4.3 Traffic Charts API
In order to provide the transparency of JpGraph functions, an API for

generating traffic charts based on database samples has been implemented. Scripts

for chart generating are in /charts/ folder under the main web-interface directory

(i.e. where index.php can be found). Each file generates different type of chart

which is generated right into the screen, and variables are passed over query string

- $_GET array whose variables are listed in Table 6.4.

CTU in Prague, FEE, Department of Control Engineering Page 68 of 100

Miroslav Macháček Automatic Traffic Counter

GET variable Description

idlane Traffic lane(s) to be shown in the chart

idstation Station(s) to be shown in the chart

datefrom, dateto Range of date to be shown

daily
=1 -> show data per day

=0 -> show data per hour

interval day interval – i.e. how many days to show

showlength
=1 -> length categories will be generated

=0 -> speed categories will be generated

Table 6.4 Traffic Charts API Variables

Variables datefrom and dateto are dates in MySQL format (ex: 2008-12-24),

and they limit date period to be shown in the chart. In some charts, idlane/idstation

are array variables (ex: idlane[]). This allows to plot data from several

lanes/station in one chart.

Filename Description GET variable

VehiclesPerDay.php
Number of Vehicles in a

lane per day/hour

idlane[]

datefrom, dateto

daily

AvgSpdPerHour.php
Average speed in a lane

per hour

idlane[] or idstation

datefrom, dateto

PercentagePie.php
Speed and length

categories of a lane

idlane

datefrom

interval

showlength

AvgTempPerHour.php Average temperatures
idstation[]

datefrom, dateto

Table 6.5 Traffic Charts API

In order to show traffic data of several lanes in one graph, idlane GET

variable is passed as an array, and the URL may look similarly to the following:

VehiclesPerDay.php?idlane[]=1&idlane[]=2&datefrom=2008-10-10&dateto=2008-
11-10&daily=1

CTU in Prague, FEE, Department of Control Engineering Page 69 of 100

Miroslav Macháček Automatic Traffic Counter

If it is desired to embed the chart within a web page, this URL query can be

put in an img tag within the HTML code:

<img src="charts/VehiclesPerDay.php?idlane[]=1&datefrom=2008-10-
10&dateto=2008-11-10" />

Configuration of Traffic Charts API is under charts/chartfunctions.inc where

also speed and length categories can be changed. Examples of charts generated via

the Traffic Charts API are depicted in Figure 6.8.

Figure 6.8 Charts Generated in Traffic Charts API

6.5 Database Benchmarking

Table trafficdata (model in Chapter 6.2) has been filled with roughly 400000

pre-generated samples. This table contains data of vehicle samples of all stations, and

queries for generating charts are executed on this table. Therefore, its performance is

vital. The following code has been run in order to measure query execution time, the

query is taken from chart-generating function:

<?php
$mysql=MysqlConnect();
$strttm = explode(' ', microtime());
$strttm = $strttm[1] + $strttm[0];
// BEGIN there should be operations to be measured
$q=mysql_query("SELECT COUNT(*) FROM trafficdata WHERE idlane='1' AND
datecol BETWEEN '2008-07-01' AND ADDDATE('2008-07-01',7-1) AND length
BETWEEN '500' AND '899'");
// END
$endtm = explode(' ', microtime());
$tottm = $endtm[0] + $endtm[1] - $strttm;
$buf=sprintf('%.f', $tottm);
echo $buf."
\n";
list($count)=mysql_fetch_row($q);
echo $count;
MysqlClose($mysql);
?>

It turned out that adding an extra column datecol, containing a date extracted

from dt column, decreased the query time, because almost every query for

CTU in Prague, FEE, Department of Control Engineering Page 70 of 100

Miroslav Macháček Automatic Traffic Counter

generating a chart is date limited. In addition, adding a multi-column index to

trafficdata table on (idlane,datecol) also improved the query time. Table 6.6

summarizes the effect of good/bad indexes on execution time. It proves the fact that a

wrong index slows down the query – in this case, because dt column contains

datetime – which is almost everytime unique, the index misleads the database engine.

In case the table contains several indexes, EXPLAIN keyword can be used in

the query. The database returns a list of reasonable/used indexes.

Index On Execution Time [s]

No Indexes 0.36

idlane,dt 1.6

idlane, datecol 0.11

Table 6.6 MySQL Query Benchmark

CTU in Prague, FEE, Department of Control Engineering Page 71 of 100

Miroslav Macháček Automatic Traffic Counter

7 Conclusion

7.1 System Summary

The outcome of this thesis is a fully functional, stand-alone system for traffic data

acquisition such as speed and length of vehicles. The system developed consists of 4

parts.

The first part, the Inductive Loop Detector, finds out the presence of a vehicle

with the help of a wired loop embedded within the roadway. However, given that it

generally detects metal objects, it can be used in various types of automation such as

proximity detection and others. The second part, Traffic Counter, employs 4 loop

detectors, and gathers traffic data from 2 lanes. The data collected is in particular time

interval transferred to the server via a GPRS modem.

The last part of the system comprises two server applications. The first one

receives data from multiple stations and uploads them to the database. The latter is a

web interface for monitoring traffic at stations and generating statistical and graphical

outputs.

Once the entire system has been configured, it automatically gathers traffic data

from lanes of stations, transfers them to the server where samples are used for

statistical information such as speed and length categories and lane occupancy.

7.2 Tests in the field

The entire system has been placed in the field for some period to gather traffic

data. The Inductive Loop Detector has been tested with an inductive loop built in a tar

roadway. The loop was rectangular with dimensions 2 m x 2 m, and inductance of

approx. 100uH. The loop frequency was perfectly stable having almost zero variation,

hence, the overall device sensitivity is very high. A small vehicle (1000 kg weight, 3,7

m length), even though the loop inductance was so low, caused a change in inductance

of 2%. Such a substantial change can be detected by the device without any problems.

To summarize, the ILD device could also be used to detect motorbikes or even bicycles

(with different loop size) in normal traffic.

Speed accuracy of the Traffic Counter has been examined with the help of a GPS

device that provided reliable speed information. The Traffic Counter speed

measurement error increases rapidly at speed lower than approx. 25 kmph. It is caused

CTU in Prague, FEE, Department of Control Engineering Page 72 of 100

Miroslav Macháček Automatic Traffic Counter

by different reactions of both ILDs in the traffic lane. The speed error remains at

approx. 5% for speeds above the threshold. It should be noted that the test was

conducted up to speeds of 90 kmph.

7.3 Further Work

As further extension of the thesis, some features could be added to the Inductive

Loop Detector. Because of its universality, there are various ways how to use that

device. Therefore, a convenient feature would be to allow the user to set parameters,

such as trigger delay, via the unused on-board switches.

Moreover, the IDL could be modified to continuously sample loop frequency

when a vehicle passes over the loop, and create a vehicle signature, which could be

used for recognizing number of axles of the vehicle. Similarly, it could also be

employed in vehicle matching at two remote places, as mentioned in Chapter 2.3.

With regard to the Traffic Counter, in order to increase the number of monitored

traffic lanes, an auxiliary microcontroller peripheral (i.e. port expander) for increasing

the number of detectors connected could be employed. A possibility of saving data on a

SD card would come in useful at places without a GPRS connection.

As for the traffic statistics web-interface, different charts can be added, and

integration into ITS, for further data analysis and traffic control, could be performed.

CTU in Prague, FEE, Department of Control Engineering Page 73 of 100

Miroslav Macháček Automatic Traffic Counter

8 References and Bibliography

[1] Pavel Přibyl, Radim Mach. Řídicí systémy silniční dopravy. 1st printing,

Prague: Vydavatelství ČVUT, 2003. ISBN 80-01-02811-9

[2] Lawrence A. Klein. Traffic Detector Handbook: Third Edition - Volume I.

Milton K. Mills, David R.P. Gibson. 3rd Edition, Wash. D.C.: Federal
Highway Administration; U.S. Department of Transportation. 2006.
Publication No. FHWA-HRT-06-108

[3] Lawrence A. Klein. Traffic Detector Handbook: Third Edition - Volume II.

Milton K. Mills, David R.P. Gibson. 3rd Edition Wash. D.C.: Federal
Highway Administration; U.S. Department of Transportation. 2006.
Publication No. FHWA-HRT-06-139

[4] Carlos Sun, Stephen G. Ritchie. Individual Vehicle Speed Estimation Using

Single Loop Inductive Waveforms. Berkeley: University of California. 1999.
ISSN 1055-1417

[5] Luz Elena Y. Mimbela. A Summary of Vehicle Detection and Surveillance

Technologies used in Intelligent Transportation Systems [online]. Lawrence
A. Klein, Ph.D., P.E. New Mexico: The Vehicle Detector Clearinghouse.
2007. Available from <http://www.nmsu.edu/~traffic/> [viewed 17 January
2009]

[6] Virgil F. Totten. Application of Vehicle Detector Waveforms in Vehicle Re-

Identification and Evaluating Detector Installation Performance. Indiana:
Purdue University. 2008

[7] Seyed Mohmamad Tahib. Vehicle Re-Identification Based On Inductance

Signature Matching. University of Toronto. 2001

[8] Carlos Sun. An Investigation in the Use of Inductive Loop Signatures for

Vehicle Classification. California PATH, University of California. 2000.
Report No. UCB-ITS-PRR-2000-4

[9] Future Technology Devices International Limited. USB Chips [online].

Available from <http://www.ftdichip.com> [viewed 14 January 2009]

[10] Custom Computer Service, Inc. C Compiler Reference Manual [online].
Available from <http://www.ccsinfo.com/downloads.php> [viewed 1 January
2009]

[11] Custom Computer Service, Inc. Developers forum [online].

Available from <http://ccsinfo.com/forum> [viewed 1 January 2009]

CTU in Prague, FEE, Department of Control Engineering Page 74 of 100

Miroslav Macháček Automatic Traffic Counter

[12] Maxim Integrated Products, Inc. DS1302 Trickle-Charge Timekeeping Chip
Data Sheet [online]. Available from <http://www.maxim-
ic.com/quick_view2.cfm/qv_pk/2685/t/al> [viewed 1 January 2009]

[13] Maxim Integrated Products, Inc. DS18B20 Programmable Resolution 1-Wire

Digital Thermometer Data Sheet [online]. Available from
<http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2812/t/al> [viewed 1
January 2009]

[14] Maxim Integrated Products, Inc. MAX232 Multichannel RS-232

Drivers/Receivers Data Sheet [online]. Available from < http://www.maxim-
ic.com/quick_view2.cfm/qv_pk/1798> [viewed 1 January 2009]

[15] Microchip Technology Inc. PIC18F2420/2520/4420/4520 Data Sheet

[online]. Available from
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en0102
70> [viewed 1 January 2009]

[16] Microchip Technology Inc. PIC18F2525/2620/4525/4620 Data Sheet

[online]. Available from
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en0102
84> [viewed 1 January 2009]

[17] Enfora L.P. Enfora Enabler-G GSM/GPRS Radio Modem AT Command Set

Reference, version 1.13, published on 7th June 2004

[18] Shane Tolmie. MicrochipC.com PIC micros and C, [online]. Available from

<http://www.microchipc.com> [viewed 1 January 2009]

[19] Midland Amateur Radio Club Inc. LC Meter, [online]. Available from

<http://www.marc.org.au> [viewed 1 January 2009]

[20] Tecnick.com s.r.l. Inductance Calculator, [online]. Available from

<www.technick.net> [viewed 1 January 2009]

[21] The PHP Group. PHP Language Manual, [online]. Available from

<http://www.php.net/manual/en/> [viewed 1 January 2009]

[22] John Resig and the jQuery Team. jQuery JavaScript Library, [online].

Available from <http://jquery.com> [viewed 1 January 2009]

[23] Aditus Consulting. JpGraph Documentation, [online]. Available from

<http://www.aditus.nu/jpgraph/documentation.php> [viewed 1 January 2009]

[24] TENcom, s.r.o. GPRS Modem Configuration Manual, [online]. Available

from <http://www.tencom.cz/download.php> [viewed 1 January 2009]

CTU in Prague, FEE, Department of Control Engineering Page 75 of 100

Miroslav Macháček Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 76 of 100

9 Software and Packages Used

[25] ASIX, s.r.o. ASIX UP [online]. Available from
<http://tools.asix.net/prg_presto.htm> [viewed 1 January 2009]

[26] Claudiu Chiculita. Tiny PIC bootloader [online]. Available from <

http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm> [viewed 1
January 2009]

[27] Custom Computer Services, Inc. PCWH C Compiler for Microchip PIC

[online]. Available from <http://ccsinfo.com> [viewed 1 January 2009]

[28] Microchip Technology Inc. MPLAB Integrated Development Environment
[online]. Available from
<http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&no
deId=1406&dDocName=en019469&part=SW007002> [viewed 1 January
2009]

[29] The Apache Software Foundation. The Apache HTTP Server Project,

[online]. Available from <http://httpd.apache.org> [viewed 1 January 2009]

[30] The PHP Group. PHP Language, [online]. Available from <www.php.net>

[viewed 1 January 2009]

[31] The Sun Microsystems, Inc. MySQL Database Server, [online]. Available

from <www.mysql.com> [viewed 1 January 2009]

[32] MicroOLAP Technologies Ltd. MicroOLAP Database Designer for MySQL,

[online]. Available from
<http://www.microolap.com/products/database/mysql-designer> [viewed 1
January 2009]

[33] Paul Bakaus and the jQuery Team, Inc. jQuery UI [online]. Available from

<http://ui.jquery.com/> [viewed 1 January 2009]

[34] Christian Bach. Tablesorter Plugin for jQuery [online]. Available from <

http://tablesorter.com/docs> [viewed 1 January 2009]

[35] Aditus Consultiong. JpGraph [online]. Available from
<http://www.aditus.nu/jpgraph/> [viewed 1 January 2009]

[36] CadSoft Computer GmbH. EAGLE [online]. Available from

<www.cadsoft.de/> [viewed 1 January 2009]

Miroslav Macháček Appendix 1 Automatic Traffic Counter

Appendix 1 Content of the Attached CD

• /DP2009-Machacek.pdf This thesis in Adobe PDF format

• /Docs/ Documentation, Data Sheets, Manuals

• /Install/ Installation and Setup Executables

• /PCB/ PCBs, Schematics, Bill of Materials

o ILD Inductive Loop Detector

o TrafficCounter Station Device

• /Src/ Source Codes and Executables

o DataServer/ PHP TCP Server

o ILD/ Inductive Loop Detector

o TrafficCounter/ Station Device

o TrafficStats/ PHP Web Application

CTU in Prague, FEE, Department of Control Engineering Page 77 of 100

Miroslav Macháček Appendix 2 Automatic Traffic Counter

Appendix 2 Inductive Loop Detector Schematic

CTU in Prague, FEE, Department of Control Engineering Page 78 of 100

Miroslav Macháček Appendix 3 Automatic Traffic Counter

Appendix 3 Inductive Loop Detector PCB

74
 m

m

71 mm

CTU in Prague, FEE, Department of Control Engineering Page 79 of 100

Miroslav Macháček Appendix 4 Automatic Traffic Counter

Appendix 4 Inductive Loop Detector Bill of Materials

Quantity Devices Component
1 SW1 microswitch
4 D1.D2.D3.D4 1N4007
1 R9 1k
3 R5.R6.R7 1k8
1 R2 2k7
1 DIPSW2 2xdipswitch
1 R11 4k7
1 JP1 4xjumper
1 DIPSW1 8xdipswitch
1 XT 10MHz
3 R8.R10.R12 10k
1 C5 10nF
2 C8.C9 22p
1 C6 33nF
1 IO2 78L05
1 IO1 79L05
5 C10.C11.C12.C13.C7 100nF
2 C3.C4 100u/10V
2 C1.C2 100uF/16V
2 R3.R4 820R
1 CON1 ARK2500V-A-3P
1 E$1 Cannon 25 Male
1 LED3 GRN 2mA
1 E$21 LM311
2 D5.D6 P6KE10V UNIDIR
1 OK1 PC817
1 OK2 PC827
1 E$24 PIC18F2420
1 LED1 RED 2mA
1 E$20 TL072
1 LED2 YEL 2mA

CTU in Prague, FEE, Department of Control Engineering Page 80 of 100

Miroslav Macháček Appendix 5 Automatic Traffic Counter

Appendix 5 Inductive Loop Detector User’s Manual

1) Introduction

The Inductive Loop Detector is a microcontroller-based device device for

detecting an electrically conducting metal object near the inductive loop. The main

purpose of the device is to detect vehicle presence by sensing an inductance change

caused by the vehicle passing above the loop embedded in the roadway.

The device provides self-tuning feature so that a wide range of loop inductances

is achieved, the loop operating frequency can be set by on-board switches. The user is

notified about the state of the device by 3 on-board LEDs.

2) Technical Data

CTU in Prague, FEE, Department of Control Engineering Page 81 of 100

Miroslav Macháček Appendix 5 Automatic Traffic Counter

Power Requirements +-15V DC, approx. 100mA

Board Dimensions 71 mm (L) x 73 mm (W) x 23 mm (H)

Mounting Pillar: 4x 3mm hole (distance 61 mm, 63 mm)

Connector Plug-in

Connectors Con1: ARK2500V-A-3P

ARK2500F-A-3P for cable side

Con2: Cannon 25-pin Male

Surge Protection On Loop inputs:

Gas Discharge Tube

TVS Diodes

Tuning Fully Automatic

Inductance Range (Theoretical): 8 to 6000 uH

Loop Operating Frequency 20-145kHz

4 selectable positions via SW3 switches

Sensitivity 4 selectable positions via SW2 switches:

Low, Medium Low, Medium High, High

Digital Inputs Opto-isolated (External Reset)

Digital Outputs TTL outputs (Vehicle Above)

Opto-isolated outputs (Vehicle Above, Vehicle

Above Impulse)

LEDs Green – Vehicle Presence

Yellow – Calibration, Operating Frequency

Red - Error

3) Connectors

CON1 – Loop and Grounding (front view)

CON2 – Main Connector (front view)

CTU in Prague, FEE, Department of Control Engineering Page 82 of 100

Miroslav Macháček Appendix 5 Automatic Traffic Counter

Pin No. Name Direction Description

1, 14 L1 In Inductive Loop (+)

2, 15 PE In Grounding to the earth

3, 16 L2 In Inductive Loop (-) (=GND)

5, 18 DC- In Negative Voltage Power Supply (-7 to -12V)

6, 19 GND In System Ground

7, 20 DC+ In Positive Voltage Power Supply (+7 to +12V)

9, 22 RST In
External Reset (with opto-isolation – against

EXTGND), Input Current = 5mA

10, 23 VEHI Out
Vehicle Above 100ms Impulse (with opto-

isolation – against EXTGND)

11, 24 VEH Out
Vehicle Above Permanent (with opto-

isolation – against EXTGND)

12, 25 EXTGND In Ground for opto-isolation

13 VEHTTL Out Vehicle Above – TTL signal (against GND)

4) Settings

SW1 – Reset Button

SW2 – Device Parameters

Sensitivity

pins 7, 8
Pin Switch On Sensitivity

none Low

7 Medium Low

8 Medium High

7, 8 High

SW3 – Loop Frequency Settings

Pin Switch On Frequency

none High

1 Medium High

2 Medium Low

1, 2 Low

CTU in Prague, FEE, Department of Control Engineering Page 83 of 100

Miroslav Macháček Appendix 5 Automatic Traffic Counter

5) LED purpose

Device State LED Action Description

No Signal Red On

There is no loop connected or the

oscillator frequency is out of range

(has to be 20 kHz – 145 kHz)

Calibrating Yellow On Calibration in progress

Calibrating Red Blink
Blinks once if calibration was not

successful

Calibrating Yellow Blink
Blinks for 2 seconds in case of

successful calibration

Vehicle-

recognition
Green Off No Vehicle above the loop

Vehicle-

recognition
Green On Vehicle above

Vehicle-

recognition
Yellow Blink

Blinks according to the actual loop

frequency

(e.g. 30 kHz = 3x, 80 kHz = 8x)

6) Operating Instructions

I. Principle of Operation

The detection is based on sensing a change of loop inductance when a metal

part approaches the loop. Loop inductance depends on loop dimensions, number of

turns, feeder length, and the ambient environment.

II. Start Up

1. Connect the loop either via Con1 or via Con2. Feeder cable to the loop should

be twisted in pair so that crosstalks and other interferences are as lower as

possible.

2. Connect the power supply (through Con2)

CTU in Prague, FEE, Department of Control Engineering Page 84 of 100

Miroslav Macháček Appendix 5 Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 85 of 100

III. Calibration

The calibration is fully automatic. When a power is supplied to the device, or

a reset is performed, the detector will automatically tune itself to the loop it is

connected to. In case the loop is not in steady state (i.e. metal parts are passing by

the loop), the detector tries to recalibrate.

Once the device has been calibrated, detection of metal objects is turned on.

The detector also handles environmental effects (temperature etc.) which cause

slow changes in inductance by auto-recalibrating on the fly.

IV. Operation

If there is no loop connected, or the loop frequency is out of range, the red

LED lights. The yellow LED is turned on when a calibration is taking place. If

calibration is not successful, the red light blinks once.

During the normal operation when the device is calibrated, the yellow LED

signalizes the current loop frequency by blinking. The green LED shows whether a

metal part is near the loop.

7) Troubleshooting

Fault Possible Cause Hint

No LED lights on power

up

Wrong power connection Check power feed

Red LED is still on Faulty loop of feeder

connection

Check loop installation and

connection

Loop operating frequency

out of range

Select different frequency

settings (SW3)

The detector cannot

calibrate (e.g. Red LED

blinks occasionally)

Crosstalks with adjacent

detector

Select different frequency

settings (SW3)

Miroslav Macháček Appendix 6 Automatic Traffic Counter

Appendix 6 Traffic Counter Schematic

CTU in Prague, FEE, Department of Control Engineering Page 86 of 100

Miroslav Macháček Appendix 7 Automatic Traffic Counter

Appendix 7 Traffic Counter PCB

12
2

m
m

 126 mm

CTU in Prague, FEE, Department of Control Engineering Page 87 of 100

Miroslav Macháček Appendix 7 Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 88 of 100

Miroslav Macháček Appendix 8 Automatic Traffic Counter

Appendix 8 Traffic Counter Bill of Materials

Quantity Devices Component
1 R3 0R
1 C24 1F
4 R1.R2.R7.R8 2k2
2 R5.R6 4k7
1 IO2 78L12
1 R9 10k
1 XT1 20MHz
2 C15.C16 22p
1 XT2 32.768kHz
1 C23 47u/16V
1 IO3 78L05
1 IO1 79L12
1 R4 100R

16 C3.C4.C5.C6.C10.C11.C12.C13.C14.C17.C18.C1
9.C20.C21.C22.C25 100n

3 C7.C8.C9 100u/25V
2 C1.C2 470u/35V
2 CON7.CON8 ARK2500V-A-3P
1 CON1 Cannon 25 Female
4 CON3.CON4.CON5.CON6 Cannon 25 Female
1 CON2 Cannon 25 Male
2 IO8, External Temperature Sensor DS18B20
1 IO7 DS1302
4 LED1.LED2.LED3.LED4 LED 3mm/2mA
2 IO5.IO6 MAX232CPE
1 IO4 PIC18F2620
1 SW1 microswitch

CTU in Prague, FEE, Department of Control Engineering Page 89 of 100

Miroslav Macháček Appendix 9 Automatic Traffic Counter

Appendix 9 Traffic Counter User’s Manual

1) Introduction

The Traffic Counter is a device for measuring speed and length of vehicles. The

device allows to gather data from up to 2 traffic lanes. Each lane is monitored by 2

Inductive Loop Detectors that are connected with 2 inductive loops build in the

roadway surface of the lane.

The device, apart from vehicle data, also takes samples of indoor and outdoor

temperature, and all data is transferred via a GPRS modem to the server. Device

parameters can be configured via a command-line interface running over RS-232 line.

2) Technical Data

CTU in Prague, FEE, Department of Control Engineering Page 90 of 100

Miroslav Macháček Appendix 9 Automatic Traffic Counter

Power Requirements +-15V DC, approx. 400mA

Board Dimensions 126 mm (L) x 125 mm (W) x 23 mm (H)

(excluding Detector boards)

Mounting Pillar: 4x 3mm hole (distance 116 mm, 112 mm)

Connectors Con1, Con2: ARK2500V-A-3P

(ARK2500F-A-3P for cable side)

Con3: Cannon 9-pin Female

Con4: Cannon 9-pin Male

Con5-8: Cannon 25-pin Female

Traffic Lanes Up to 2 lanes monitored

Inductive Loop Detectors Up to 4 detectors, 2 needed for each traffic lane

Communication GPRS Modem: RS-232, 19200, 8N1, no

handshake

PC: RS-232, 115200, 8N1, no handshake

Date and Time RTC chip on board, time keeping will be working

several after power supply disconnect

Traffic Data Capture Date, Time, Lane, Speed, Length

Sample Buffer Memory up to 400 Vehicle and 70 Temperature Samples

transferred to server over GPRS in time intervals

Temperature Sensors 2 Digital sensors:

1 On-Board (Indoor)

1 On External Connector (Outdoor)

Device Configuration Over PC RS-232, Command-line Interface

Buttons and Switches Device reset button

LEDs Green – Device State

Yellow – Vehicle Sampling

Red – GPRS State

CTU in Prague, FEE, Department of Control Engineering Page 91 of 100

Miroslav Macháček Appendix 9 Automatic Traffic Counter

Connectors

Con3, Con4 (Modem and PC Serial Lines - front view):

Con1, Con2 (Power Supply, External Temperature Sensor – front view):

Pin No.
Con1

(Power Supply In)

Con2

(Ext. Temp. Sens.)

1 -15V DC +5V (sensor pin 3)

2 GND IO (sensor pin 2)

3 +15V DC GND (sensor pin 1)

Con5-8 (Loop Detectors): refer to Inductive Loop Detector User’s Manual

3) LED signalization

LED Color Event Description

1 Green
On Device is powered

Blink Data acquisition is in progress (START command)

2 Yellow Blink Vehicle sample has been taken

3 - Not Used, Future Purpose

4 Red

On GPRS connection being initialized

Slow

Blink

GPRS connection has been established, vehicle

and temperature samples being tranferred

Fast

Blink

20 fast blinks means GPRS connection error, retry

in 2 minutes

CTU in Prague, FEE, Department of Control Engineering Page 92 of 100

Miroslav Macháček Appendix 9 Automatic Traffic Counter

4) Operating Instructions

I. Start Up

1. Connect external temperature sensor over a 3-wire cable to Con2. Place

the sensor outside the box so that it measures outdoor temperature.

2. Plug in 2 or 4 loop detectors – Lane1 = Con5,6 ; Lane2= Con7,8

Connect corresponding loops to the detectors

3. Set operating frequencies of the detectors so that there are no crosstalks

between them (Rule of thumb: The closer two loops, the bigger frequency

span). Set appropriate sensitivity of each detector.

4. Plug PC serial line in Con4

5. Attach +-15V DC power supply to Con1

6. Configure the device according to paragraph 5)

II. GPRS Modem Configuration

The modem interface is configured in default: 115200, 8N1, RTS/CTS. This

has to be changed to: 19200, 8N1, No handshake. In order to reconfigure the

modem interface, connect the modem to PC terminal and issue the following:

AT+IPR=19200\r\n

AT+IFC=0,0\r\n

And write out the new settings: AT&V\r\n, and reconfigure your PC terminal

according to those new settings. Change TCP stack settings:

AT$HOSTIF=2\r\n

AT$ACTIVE=1\r\n

Subsequently, set GPRS properties according to your GSM provider (internet

is an example):

AT+CGDCONT=1,”IP”,”internet”\r\n

And write out the settings to modem memory:

AT&W\r\n

CTU in Prague, FEE, Department of Control Engineering Page 93 of 100

Miroslav Macháček Appendix 9 Automatic Traffic Counter

5) Configuration

The device is configured via its PC serial line. Connect a PC to Con4, and set

the following in PC’s terminal application: 115200, 8N1, no handshake. Once a

device is powered on, a message “Traffic Counter” is sent to the PC, and the user

can communicate with the device via commands.

A command consists of 2 parts – Text and Value. If Value is not present, it is

considered as reading. Otherwise, the value is processed by the device and saved

into configuration. A list of available commands can be found in Appendix 10. The

following 3 paragraphs summarize basic configuration.

I. Managing Configuration and Device

Command Description

LOADDEF Loads factory defaults (always use for new devices)

SHOWSET Shows current configuration

READ Reads configuration from EEPROM memory

WRITE Writes current configuration to EEPROM memory

DT Read/Write date and time

RESTART Restarts the device

Note: Do not forget to issue WRITE command if you have changed any

device parameter!

II. Measurement Configuration

The following commands have to be used in order to configure the device for

taking vehicle samples:

1. Set Lane Number, Loop Length and Distance between loops:

Commands: LANENUM, LOOPLEN, LOOPDIST

2. Start or stop measurement:

Commands: START, STOP, AUTOSTART

3. Listen to measured vehicles (samples will be sent to the PC)

Commands : LISTEN, NOLISTEN

4. Check vehicle buffer:

Commands: VEHCOUNT, SHOWVEH, CLEARVEH

CTU in Prague, FEE, Department of Control Engineering Page 94 of 100

Miroslav Macháček Appendix 9 Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 95 of 100

III. Server Upload

The following should be configured for proper data upload to the server:

1. Station ID, Lane Number (for appropriate server database upload)

Commands: SID, LANENUM

2. Server IP address and Port:

Commands: SERVERIP, SERVERPORT

3. Enable GPRS transfer, Time period, SIM card PIN code:

Commands: GPRSSEND, GPRSTIME, GPRSPIN

4. Try to connect to the server

Commands: GPRSNOW

Miroslav Macháček Appendix 10 Automatic Traffic Counter

Appendix 10 Traffic Counter: List of Commands

Command Description

Commands without write values

LISTEN Vehicle samples will be sent to the PC for 5 minutes

NOLISTEN Stop listening vehicle samples

VEHCOUNT Show number of vehicle samples in buffer

UPTIME Show number of minutes of device uptime

RESTART Restart the device

RESETDET Reset Inductive Loop Detectors

LOADDEF Load default settings

READ Read settings from EEPROM memory

WRITE Write settings to EEPROM memory

SHOWSET Show actual settings

SHOWVEH Show the content of vehicle buffer

CLEARVEH Clear vehicle buffer

SHOWTEMP Show content of temperature buffer

CLEARTEMP Clear temperature buffer

GETTEMP Show current indoor and outdoor temperature

JOKE Easter Egg

VER Show network protocol, firmware and hardware versions

HELP Show list of available commands

GPRSNOW Connect and transfer buffers (veh., temp.) to the server

GPRSDISCON Close and reset GPRS modem

START Begin measurement

STOP Stop measurement

Commands for Configuration (read/write value)

AUTOSTART
Start Measurement after power-up

0=no, 1=yes

CTU in Prague, FEE, Department of Control Engineering Page 96 of 100

Miroslav Macháček Appendix 10 Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 97 of 100

DT

Set/Get actual date and time (set command without seconds)

format: YYMMDDHHmm

ex. 0812301545 = 2009-12-30 15:45:00

MEASUREAVG
Measure speed and length by averaging

0=no, 1=yes

GPRSSEND
Transfer samples to the server

0=no, 1=yes

GPRSTIME
Time interval of transferring

[minutes]

GPRSPIN
PIN code for a SIM card in the GPRS modem

0 for no PIN

LOOPDIST
Distance between loops

[dm]

LOOPLEN
Length of loop

[dm]

LANENUM
Lane offset – LaneNumber of the first lane

LaneNumber+1 of the second lane

SERVERIP
IP address of the server

[xxx.xxx.xxx.xxx]

SERVERPORT
Server port

[0-65535]

TEMPTIME
How often to get temperature samples

[minutes, 0=don’t take any samples]

SID Station ID

Miroslav Macháček Appendix 11 Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 98 of 100

Appendix 11 Database Create Script

--
-- Diagram Name: ERmodel
-- Created on: 25.12.2009 17:02:54
--
SET FOREIGN_KEY_CHECKS=0;
-- Drop table stations
DROP TABLE IF EXISTS `stations`;

CREATE TABLE `stations` (
 `idstation` mediumint(8) UNSIGNED NOT NULL AUTO_INCREMENT,
 `name` varchar(30) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 `description` tinytext CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL
COMMENT 'description',
 `lat` float(10,6),
 `lng` float(10,6),
 `created` datetime NOT NULL,
 `lastdataupdate` datetime COMMENT 'last data update',
 `active` tinyint(1) NOT NULL DEFAULT '1',
 `deactivated` datetime,
 PRIMARY KEY(`idstation`)
)
ENGINE=MYISAM
ROW_FORMAT=dynamic;

-- Drop table uploadedfiles
DROP TABLE IF EXISTS `uploadedfiles`;

CREATE TABLE `uploadedfiles` (
 `idfile` mediumint(8) UNSIGNED NOT NULL AUTO_INCREMENT,
 `idstation` mediumint(8) UNSIGNED NOT NULL,
 `filename` varchar(30) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 `dacq` date COMMENT 'date of acquisition',
 `dtfrom` datetime NOT NULL COMMENT 'dt of the first sample of the file',
 `dtto` datetime NOT NULL COMMENT 'dt of the last sample of the file',
 `pver` varchar(5) CHARACTER SET utf8 COLLATE utf8_general_ci COMMENT 'network
protocol version',
 `fwver` varchar(5) CHARACTER SET utf8 COLLATE utf8_general_ci,
 `hwver` varchar(5) CHARACTER SET utf8 COLLATE utf8_general_ci,
 `dtuploaded` datetime NOT NULL,
 `vehiclecount` mediumint(10) UNSIGNED COMMENT 'how many vehicle samples',
 `temperaturecount` smallint(5) UNSIGNED COMMENT 'how many temperature samples',
 PRIMARY KEY(`idfile`)
)
ENGINE=MYISAM
ROW_FORMAT=dynamic;

-- Drop table lanes
DROP TABLE IF EXISTS `lanes`;

CREATE TABLE `lanes` (
 `idlane` mediumint(8) UNSIGNED NOT NULL AUTO_INCREMENT,
 `idstation` mediumint(8) UNSIGNED NOT NULL,
 `name` varchar(30) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 `description` tinytext CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 `lanenumber` tinyint(3) UNSIGNED NOT NULL,
 `direction` tinyint(1) NOT NULL DEFAULT '0' COMMENT 'going towards what',
 `speedlimit` tinyint(3) UNSIGNED COMMENT 'maximal speed in a lane in kmph',
 `created` datetime NOT NULL,
 `active` tinyint(1) NOT NULL DEFAULT '1',
 `deactivated` datetime,
 `lastdataupdate` datetime,
 PRIMARY KEY(`idlane`)
)

Miroslav Macháček Appendix 11 Automatic Traffic Counter

CTU in Prague, FEE, Department of Control Engineering Page 99 of 100

ENGINE=MYISAM
ROW_FORMAT=dynamic;

-- Drop table temperatures
DROP TABLE IF EXISTS `temperatures`;

CREATE TABLE `temperatures` (
 `idtemp` bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT,
 `idstation` mediumint(8) UNSIGNED NOT NULL,
 `dt` datetime NOT NULL,
 `tempin` tinyint(4) NOT NULL COMMENT 'indoor temperature',
 `tempout` tinyint(4) NOT NULL COMMENT 'outdoor temperature',
 PRIMARY KEY(`idtemp`)
)
ENGINE=MYISAM
ROW_FORMAT=fixed;

-- Drop table trafficdata
DROP TABLE IF EXISTS `trafficdata`;

CREATE TABLE `trafficdata` (
 `idtraffic` bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT,
 `idlane` mediumint(8) UNSIGNED NOT NULL,
 `dt` datetime NOT NULL,
 `datecol` date NOT NULL COMMENT 'contains date of dt',
 `speed` tinyint(3) UNSIGNED NOT NULL COMMENT 'kmph',
 `length` smallint(5) UNSIGNED NOT NULL COMMENT 'in 10s of cm',
 PRIMARY KEY(`idtraffic`),
 INDEX `idlane`(`idlane`, `datecol`),
 INDEX `idlane_2`(`idlane`, `dt`)
)
ENGINE=MYISAM
ROW_FORMAT=fixed;

SET FOREIGN_KEY_CHECKS=1;
-- Drop View TrafficOverview
DROP VIEW IF EXISTS `TrafficOverview`;
CREATE VIEW `TrafficOverview` AS
SELECT stations.idstation, stations.name, stations.lastdataupdate,(SELECT
ROUND(AVG(tempout)) FROM temperatures WHERE dt BETWEEN (NOW()-INTERVAL 1 HOUR)
AND NOW()) AS tempout,
(SELECT ROUND(AVG(tempin)) FROM temperatures WHERE
temperatures.idstation=stations.idstation AND dt BETWEEN (NOW()-INTERVAL 1 HOUR)
AND NOW()) AS tempin,
(SELECT COUNT(*) FROM trafficdata LEFT JOIN lanes USING (idlane) WHERE
lanes.idstation=stations.idstation AND dt BETWEEN (NOW()-INTERVAL 1 DAY) AND
NOW()) AS vehday,
(SELECT COUNT(*) FROM trafficdata LEFT JOIN lanes USING (idlane) WHERE
lanes.idstation=stations.idstation AND dt BETWEEN (NOW()-INTERVAL 1 HOUR) AND
NOW()) AS vehhour
FROM stations ORDER BY stations.name
;

Miroslav Macháček Appendix 12 Automatic Traffic Counter

Appendix 12 Example Source Code for CCS C Compiler

#include <18f2455.h>
#device ADC=10
#fuses HSPLL,PLL5,CPUDIV3,NOVREGEN,NOWDT,NOPROTECT,
NOLVP,NODEBUG,NOPBADEN,WRTB,MCLR,NOCPD,NOWRTC
#use fast_io(B)
#use delay(clock=24000000)
#use rs232(baud=115200,xmit=PIN_C6, rcv=PIN_C7, STREAM=RS232)
#define TICKS_PER_SECOND 732 //how often per second the timerirq routine
is called
unsigned int16 timing = 0;
#INT_rtcc
void timerirq()
 {
 if (++timing == TICKS_PER_SECOND)
 {
 timing = 0;
 output_toggle(PIN_B0);
 if(input(PIN_B0))
 {
 //set_pwm1_duty(0);
 }
 else
 {
 //set_pwm1_duty(1023);
 }
 }
 }
#INT_ext1
void extint()
{
 printf ("extint\n");
 }
void main()
{
 char c;
 fprintf(RS232, "load\r\n");
 set_tris_b(2);
 output_low(PIN_B0);
 ext_int_edge(1, L_TO_H);
 setup_ccp1(CCP_PWM);
 setup_timer_2(T2_DIV_BY_16, 256, 16);
 set_pwm1_duty(512);
 set_timer0(0);
 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32|RTCC_8_BIT);
 enable_interrupts(INT_TIMER0);
 enable_interrupts(INT_EXT1);
 enable_interrupts(GLOBAL);

 while (1)
 {
 if(kbhit())
 {
 c = getc();
 printf("echo: %c\r\n", c);
 if(c=='0')set_pwm1_duty(0);
 else if(c=='1')set_pwm1_duty(10);
 else if(c=='2')set_pwm1_duty(1023);
 }
 }
}

CTU in Prague, FEE, Department of Control Engineering Page 100 of 100

	Declaration
	Acknowledgements and dedications
	Assignment
	/
	Abstract
	Abstrakt
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	The overview of the system is depicted in Figure 1.1. The thesis deals with the development of an Inductive Loop Detector (ILD – Chapter 4) used for sensing the presence of a conductive metal object near the loop. In other words, to find out whether a vehicle enters/is above the loop. The detector has to have the ability to cope with different loop inductances as well as temperature drifts, and therefore, an auto-calibration feature had to be introduced.
	For gathering traffic data such as speed and length of vehicles, another device has been developed. Traffic Counter (Chapter 5) uses simple principle to measure speed and length of a vehicle by placing two inductive loops (including two ILDs) within a traffic lane. The device can gather data from up to 2 traffic lanes, samples are stored in an internal memory, and from time to time, the buffer in binary form is transferred over a GPRS connection to the server. Furthermore, station temperature data is also logged and transferred to the server. The Traffic Counter provides a command-line interface so that the user can configure and monitor the device.
	A server application (Traffic Server in Chapter 6.3) for receiving data from stations has been written in PHP language, which allows the developer to use high-level functions without the necessity of taking care of matters whose are implicit in PHP such as memory management. Another advantage is the possibility of running the application on different platforms such as Linux or Microsoft Windows, because both operating systems support PHP scripting. The server application gathers binary data from stations, puts them into files, and also uploads them to the database for further processing.
	For an user-friendly output, a PHP web interface (Traffic Statistics - Chapter 6.4) has been created. Charts and statistical information on stations such as speed and length categories, number of vehicles per day/hour, with the possibility of selecting date range and other constraints, can be generated via the web interface.
	2 Motivation and Methodology
	In nowadays, road and highway traffic has become a great concern because of continuous increase in traffic, which calls for new roads to be built. One matter is to build them, the second one is to optimise the current transportation system, and therefore, to improve efficiency of existing roads. Because of that, it is essential to gather traffic data, not only for statistical information but mainly for analysis and further traffic control.
	There are many technologies for gathering traffic data (Chapter 2.2). One of well-working principles is acquisition based on inductive loops embedded in the roadway, which is the concern of this thesis. Chapter 2.4 and Chapter 2.5 deal with the principles of that method.
	Later on, the traffic data collected can be used for analysis, prediction, and control of traffic in higher-level technology – ITS, whose aim is to increase safety, and to reduce road congestions and fuel consumption. The traffic data can also be used as a source for information, guidance, and assistance systems for drivers.
	2.1 Reason for this Thesis

	Vehicle detection and measurement based on inductive loops has been in place for tens of years, and it is the most used technology. Over the world, especially in the US, it is quite easy to buy an inductive loop detector device and a traffic counter device. However, in the Czech Republic, it is not so easy since companies either get those devices from abroad, or develop and use them for their own purpose without further providing/selling them.
	Therefore, the purpose of this thesis was to develop both detector and counter, based on simple and well-available components. Given that the inductive loop detector can also be used at stop bar places in parking where vehicle presence needs to be found out, or in automation for metal proximity sensing, it was a major concern to develop own and low-cost detector.
	2.2 Review of Vehicle Detection Technologies

	Vehicle detection technologies are non-intrusive and intrusive. The non-intrusive principle uses a sensor built in the roadway, the latter employs a sensor mounted above or at the side of the roadway. Both technologies have their pros and cons. An in-depth discussion on both principles can be found in [2, 3, 5].
	2.2.1 Non-Intrusive (Over-Roadway)

	Non-intrusive technology uses microwave, ultrasonic, active and passive infrared, acoustic, and laser principle. An advantage is the ease of installation, above or at the side of the roadway. A disadvantage is the need for sensor cleaning, and the susceptibility to weather condition such as fog, heavy rain and others. Some of over-roadway detection devices use more than one sensors in order to overcome the drawbacks of each sensor.
	In nowadays, video image processors have been incorporated within traffic sensors. They are easy to set up, and are able to monitor several traffic lanes at a time. Moreover, it is also possible to introduce Licence Plate Recognition (LPR) to the system since an image of a vehicle is already present in digital form.
	2.2.2 Intrusive (In-Roadway)

	Examples of this category are inductive and magnetic loops, magnetometers, tape-switches, and piezoelectric cables. Installation and maintenance of one of those sensors means disruption of traffic. However, especially reliability is usually better than in non-intrusive sensors since in-roadway sensor measurement in not susceptible to weather conditions. The latest inductive loop detectors also provide a better accuracy than over-roadway sensors.
	Recently, there has been a demand for Weight-in-Motion (WIM) technology [5], which is capable to measure speed, length, and gross+axle weight of a vehicle. The WIM usually combines piezoelectric and inductive-loop sensors into one system, and it is mainly used to detect overweight vehicles.
	2.3 Inductive Loops in General

	The detection is based on sensing a change of loop inductance when a vehicle approaches the loop. The loop is embedded in the pavement where saw cuts are made to place the wire into the roadway. A change in magnetic flux caused by a vehicle (i.e. its chassis) is depicted in Figure 2.1. There are several approaches of detecting the change of inductance such as resonant and phase-shift methods.
	The resonant principle is based on an oscillator circuit where the inductive loop is its part. The change in inductance causes a change in resonant frequency. Therefore, in the detector, frequency measurement has to be carried out, which is a simple task since it can be achieved easily with a microcontroller. The resonant method (Chapter 2.4) has been used in this thesis (ILD device in Chapter 4).
	Vehicle measurement can be performed by a single inductive loop. The advantage is that it is simpler than two-loop system, because of saw cuts and measurement equipment. However, this method can only estimate the vehicle speed based on statistical information [4], there is no possibility to measure length of the vehicle.
	In contrast, the two-loop method is capable to measure vehicle speed and length quite accurately. This method has been used in this thesis, and is discussed in Chapter 2.5 and Chapter 5.
	Furthermore, it can also be achieved to specify the vehicle class by calculating the number of axles of the vehicle [8]. The loop frequency is sampled in periods of milliseconds, and the resulting curve contains information on the axle count. Similarly, the same method can be used to produce a vehicle signature [6, 7], which can be used for vehicle matching between two remote places.
	2.4 Vehicle Detection Principle Used
	2.4.1 Changes in Inductance

	The inductive loop detector behaves as a tuned electrical circuit. When a vehicle passes above the loop, the vehicle induces eddy currents in wire of the loop, which decreases its inductance. The outcome is a change in oscillator frequency of the circuit. Figure 2.2 shows the effect of orientation of a metal object on the detection. There is a misconception that the detection is based on metal mass. Instead of that, surface metal area has the biggest impact.
	In addition, there is a ferromagnetic effect caused by the iron mass of the engine, transmission, or differential. This effect causes an increase of inductance when such part of a vehicle enters the loop. Nonetheless, the surrounding metal of the vehicle always has a stronger impact, and therefore, the overall inductance will decrease in spite of that.
	2.4.2 Resonant Frequency

	The resonant frequency of LC tank circuit is:
	 (2.1)
	In order to maintain fast responses of the detector, the resonant frequency should be set approximately between 20 kHz and 120 kHz.
	The Quality factor of the loop is expressed by
	 (2.2)
	Where Ls = Loop series inductance, Rs = Loop series resistance
	The resulting frequency is given by:
	 (2.3)
	An important thing to note is that the resonant frequency changes slightly when there is resistance in the circuit. In this application, when the inductive loop in the road is about 20-40 meters long, its resistance might be up to several Ohms, which influences the oscillation frequency a bit. Nevertheless, the task of the ILD is not to measure the value of the loop inductance accurately, but to detect the change in inductance only.
	2.4.3 Inductance Values and Calculations

	The following formulas have been used to determine loop inductance and dimension (refer to [20] for further description).
	a) Circular loop
	 (2.4)where L = Inductance [H]N = Number of turns [-]R = Radius of the circle [m]µ0 = 4π.10-7 = Permeability of vacuum [H/m]
	µR = Relative permeability [-]a = Radius of the wire [m]
	b) Rectangular loop
	(2.5)where L = Inductance [H]N = Number of turns [-]w = Width of the rectangle [m]
	h = Height of the rectangle [m]a = Radius of the wire [m]
	2.5 Traffic Measurement Principle Used

	The principle is shown in Figure 2.3. There are 2 inductive loops built within the roadway. Each loop has length l meters, and there is d meters distance between the loops. Each loop is connected to one inductive loop detector and signals carrying vehicle presence are used.
	2.5.1 Signals from Detectors

	The measurement is carried out through a sequence of impulses loop detectors (see Figure 2.4). In order to avoid crosstalks and other noise interferences, the sequence is strictly given:
	1. Vehicle enters the first loop
	2. Vehicle enters the second loop
	3. Vehicle leaves the fist loop
	4. Vehicle leaves the second loop
	Other sequences will be ignored. Thus, there arises a limitation of this method:
	Vehicles shorter than Loop Distance will be not be measured.
	However in practice, loop distance is approximately 2 meters, vehicles shorter than that value are not considered as vehicles. Therefore, this limitation is just a minor drawback.
	2.5.2 Measurement of Time Intervals

	The measurement starts when a vehicle enters the first loop (t1). When the vehicle enters the second loop (t2), its speed can be calculated:
	 (2.6)
	Subsequently, When the vehicle leaves the first loop (t3), its length can be calculated:
	 (2.7)
	Another speed and length can be calculated when the vehicle leaves the first and the second loop respectively (t3, t4):
	 (2.8)
	 (2.9)
	In theory, the both inductive loop detectors are supposed to behave the same and to detect a vehicle in the same point of its chassis. Therefore, the following equations are satisfied:
	Speed: (2.10)
	Length: (2.11)
	However, in the real application, the equalities will never be satisfied. For instance, detector responses are not exactly the same, or a vehicle does not enter both loops in the same position. In order to make vehicle speed and length more accurate, calculated values v1, v2 and l1, l2 can be averaged.
	3 Microchip PIC and Equipment
	Microchip PIC microcontrollers are popular because of low cost, availability, various collections of source codes, and free/cheap development tools. Those 8-bit microcontrollers have Harvard architecture (program and data memory spaces are separated) which together with RISC instruction set ensures that the most instructions are executed within one machine cycle.
	3.1 PIC18 Family
	3.1.1 Description

	PIC18 family (example shown in Figure 3.1) is based on the previous PIC16 family, fixes its drawbacks, and introduces upgrades such as:
	 Much deeper call stack (31 levels)
	 The call stack may be read or write
	 Conditional branch instructions
	 Indexed addressing mode
	The most important is the deeper call stack and highly optimised instruction set optionally with extended instructions. This delivers the possibility of using a higher-level programming language such as C language.
	The PIC18 microcontrollers can (with some exceptions) run at a clock speed up to 40MHz, and they are generally equipped with the following on-board peripherals:
	 Watchdog timer
	 Internal clock oscillator
	 PLL for multiplying the clock frequency
	 8/16 Bit Timers (3)
	 Internal EEPROM memory
	 Synchronous/Asynchronous Serial Interface USART
	 MSSP Peripheral for I²C and SPI Communications
	 Compare/Capture and PWM modules
	 Analog-to-digital converter
	 Analog Comparator
	There are many variants of PIC18 microcontrollers having different on-board peripherals (an example of a model in brackets):
	 CAN (18F2480)
	 USB (18F2455)
	 Ethernet (18F66J60)
	3.1.2 Configuration Bits

	Every PIC microcontroller contains the configuration bits (so-called fuses) whose are used to tell the microcontroller how it should handle external environment. These bits are mapped at the start of program memory at 0x300000, and have to be set during programming the chip. The fuses set behavior of PIC on-board peripherals such as Watchdog, Oscillator, Memory protection, and others.
	Some important fuses are listed in Table 3.1, a full description of fuses can be found in the Microchip PIC device’s data sheet [15, 16]. Detailed process of setting the fuses can be found in Chapter 3.3.4.
	Fuse
	Desciption
	Fuse
	Desciption
	XT
	Crystal oscillator (<4Mhz)
	HS
	Crystal oscillator (>4Mhz)
	XTPLL
	Crystal oscillator (<4Mhz)with frequency multiplier
	H4
	Crystal oscillator (>4Mhz)
	with 4x frequency multiplier
	NOWDT
	no Watchdog Timer
	NOLVP
	Disable low voltage programming pin
	NODEBUG
	don’t enable debug pins for ICD
	MCLR
	Master Clear Reset
	pin enabled
	NOPROTECT
	Code not protectedfrom reading
	NOEBTRB
	Boot block not protectedfrom table reads
	NOWRT
	Program memory notwrite protected
	3.1 Microchip MPLAB Development Environment

	MPLAB IDE (Figure 3.2) is a free toolset for managing projects for Microchip microcontrollers: writing source code, compiling, simulating, and debugging. It contains interface for additional Microchip or third-party development tools such as C compilers and PIC emulators/real-time debuggers. Application contains integrated MPASM assembler language compiler.
	3.2 ASIX PRESTO Programmer
	3.2.1 Description

	ASIX PRESTO Programmer (Figure 3.3) is an USB 1.1/2.0 programmer which supports many devices ranging from Serial EEPROM/Flash memories through 8-32 Bit microcontrollers to CPLD/FPGA microprocessors. An important list of devices supported can be found in Table 3.2. The programmer supports ICSP programming , and since it is usb-powered, it does not need any power supply for programming microcontrollers. Given that the device uses an USB interface chip from FTDI company [9], it is possible to use the programmer either under Windows or Linux.
	3.2.2 Flashing Environment

	The programmer has its own environment Asix UP [25] in both English and Czech languages (Figure 3.4) for flashing microcontrollers, which can also be run under Linux.
	Within the application, a hex file, containing compiled source code, has to be loaded, and a microcontroller can be flashed with the file afterwards. It should be noted that even though the hex file contains settings for Configuration bits (Chapter 3.1.2) of the microcontroller, the application allows the user to change those bits just before flashing (see Configuration bits settings in Figure 3.4). Figure 3.5 [18] contains standard programming pinouts for PDIP package.
	3.3 CCS C Compiler
	3.3.1 Description

	CCS C Compiler [27] is an ANSI C compiler developed exclusively for Microchip PIC microcontrollers. It comes with an extensive collection of libraries (RS232, CAN, SPI, I2C, USB and others) as well as many examples, which make it very easy to use.
	 It can be bought with or without IDE (Figure 3.6), it should be noted that the compiler itself can be integrated into Microchip MPLAB IDE (Chapter 3.1). However, the advantage of the original IDE is that it fully supports compiler features such as prompt, list of fuses/interrupts (see Chapter 3.3.4 and Chapter 3.3.5), statistics and memory usage, whose improve and speed up development process. Thus, given that I have used the IDE for this thesis, I think that it is worth to get the IDE as well.
	The compiler has to be obtained for particular PIC family, or as a combination of them:
	 PCB - for 12-bit PIC MCUs (PIC10, PIC12)
	 PCM - for 14-bit PIC MCUs PIC16
	 PCH - for 14-bit PIC MCUs PIC18
	 PCD - for 24-bit PIC MCUs PIC24/dsPIC
	It should be noted that the PIC18 family only has been used for this thesis, and hence, PCWH IDE+PCH compiler have been used for development.
	3.3.2 Installation

	The compiler is as default installed into C:\Program Files\PICC directory. There is the following structure of its subfolders:
	 Devices – header files (.h) for PIC microcontrollers
	 Drivers – libraries for various devices (e.g. memories, sensors, displays), drivers for CAN and USB modules
	 Examples – example source codes
	3.3.3 Compiling from the command line

	We do not need any IDE for compiling a source code since it can also be compiled directly from the command line:
	 we can run “C:\Program Files\PICC\Ccsc.exe” and select a .C file which contains main() function of the PIC application
	 in case of compiling directly from the command line there is the following format “Ccsc.exe options filename” where options are described in [10].example : Ccsc.exe +FH C:\picsources\file.c
	3.3.4 Setting the Configuration Bits

	The compiler produces a hex file ready to be flashed into a microcontroller. The hex file also contains Configuration bits (Chapter 3.1.2). Therefore, in order to get the fuses configured, a special keyword in the source code followed by fuse description has to be used:
	In case of using the CCS Compiler IDE (Chapter 3.3.1, Figure 3.6), a list of fuses available (Figure 3.7) for selected target microcontroller can be viewed by choosing View>Valid Fuses from the IDE menu toolbar.
	3.3.5 Interrupts

	The Microchip PIC family offers various internal/external interrupts such as timer overflow, external edge trigger, serial line receive and others. Similarly, to previous subchapter, the CCS Compiler IDE provides a quick list (Figure 3.8) of interrupts available for particular microcontroller.
	PIC18 family introduces priority interrupts, where an interrupt can either be low or high priority. High-priority interrupt events will interrupt any low-level interrupts that may be in progress. Entire interrupt logic can be found in [15].
	3.3.5.1 Setting an Interrupt

	The compiler provides function for dealing with interrupts. At first, a peripheral which will fire an interrupt has to be set:
	Subsequently, the appropriate interrupt, including general interrupt flag, has to be enabled:
	Finally, an interrupt service routine has to be put somewhere in the source code:
	3.3.5.2 High-priority Interrupt

	If the user intends to use high-priority interrupts, the following has to be placed at the beginning of source code:
	After that, the user has to mark some particular interrupt with high-priority:
	It shall be pointed out that according to my experience, if the user enables high-priority interrupts, and he does not set any interrupt to be high-priority, the microcontroller behaves strange and unpredictably when the compiled source code is flashed and run. This might either be a compiler bug or a bug of a microcontroller.
	3.3.6 General Structure of Source Code

	Like other C language compilers, source codes consists of .c and .h files, and there also has to be main function within the main .c file. All microcontroller firmware codes written within this thesis have the following structure and order:
	 Include device header file (ex.: include <18f2420.h>)
	 Set internal device configuration (#device command)
	 Set configuration bits (#fuses command)
	 Include other project files (.h .c) and function prototypes
	 Interrupt handler routines, other functions
	 Main function (void main())
	An example of source code can be found in Appendix 12.
	3.4 Tiny Bootloader

	Generally, the term “bootloader” means a small block of code that is executed once a device is reset or powered on. In terms of embedded systems, the bootloader is used for downloading a firmware to a device without the need for programming equipment (i.e. programmer).
	Tiny Bootloader [26] is a bootloader for Microchip PIC16, PIC18, dsPIC30 families that provide self-programming. It allows flashing the microcontroller via its serial line interface, which is usually present within every application. This speeds up development markedly, because the chip does not have to be taken out of a board.
	Given that the source code of the bootloader is freely available and is written in assembler language for PIC, it can easily be adapted to any PIC device running at various clock-rate and having various serial line speed.
	Assets of the bootloader are its size, which is merely 100 words, and also the fact that it comes with a PC application for writing a hex file into the microcontroller. The following subchapters describe process of compiling and employment of the Tiny Bootloader.
	The bootloader memory structure is depicted in Figure 3.9. It resides at the end of program memory. When the microcontroller is powered on, it waits for a while for an initialization char over its serial line. When there is nothing received, user firmware is executed. Otherwise, the bootloader is run and begins to communicate with the PC.
	3.4.1 Compiling Bootloader Source Code

	The bootloader comes with source code written in assembler languages (MPASM) for PIC, and several precompiled hex files. In order to use it with a PIC having a custom Configuration (baud rate, fuses, frequency), the source code has to be modified and compiled before flashing it into the microcontroller.
	At first, Microchip MPLAB IDE (Chapter 3.1) has to be installed, since it contains assembler language compiler. The compiler has a limitation on path length of compiled files. Therefore, it is suggested to place all bootloader files directly in a folder located in the root directory of a drive. Otherwise, in case of long path to files, the compilation of the source code will fail.
	Source codes particularly for PIC18 family are located under /picsource/pic18/ directory. If the user wants to use an universal bootloader, tinybld18F.asm file has to be modified (see Figure 3.10) according to the following:
	 Select device by writing its model name (i.e 18f2420). It is also necessary to change the device in MPLAB environment from Menu Toolbar : Configure > Select Device... Otherwise, it will be compiled incorrectly.
	 Modify crystal speed and serial line baud rate
	 Set Configuration bits. A complete list of fuses suitable for a device, including fuse description, can be found in device’s .inc file (e.g. P18F2420.INC) under C:\Program Files\Microchip\MPASM Suite\.
	An example of device configuration taken from the beginning of tinybld18F.asm file:
	Once the source code has been successfully compiled, it can be flashed into the microcontroller.
	3.4.2 Usage

	The Tiny Bootloader contains a PC application (Figure 3.11) for downloading the user firmware to the microcontroller. The use of the application is straight-forward. The user has to select a COM port where the microcontroller is connected to, and the communication speed (i.e. baud rate). A hex file containing compiled user firmware has to be opened via Browse button. After that, the target microcontroller has to be put in reset by disconnecting its power supply or by pulling low its MCLR pin. Consecutively, the user has to release the microcontroller from reset state (e.g. pull MCLR pin high), followed by clicking on Write Flash button. Finally, the user application should be flashed into the microcontroller. If the user does not click on Write Flash Button (i.e. PC application will not send initialization to the chip), the user firmware in a microcontroller will be executed.
	3.4.3 Changes to the User’s Source Code

	The Tiny Bootloader resides at the very end of program memory. Thus, when compiling the user source code, the compiler has to be aware of the fact that nothing can be placed at the end of program memory where the bootloader program resides. Otherwise, the bootloader code would be overwritten and therefore destroyed.
	Within the CCS C Compiler, this can be achieved by placing the following definition in source code right after device and fuses definitions.
	4 Inductive Loop Detector
	Inductive Loop Detector (ILD) (Figure 4.1) is a device developed for finding out whether a vehicle is above an inductive loop. Particularly, the presence of a conductive metal object (i.e. axles or a chassis of a vehicle) is recognized by a change in inductance of a loop embedded in the roadway (Chapter 2.4).
	4.1 Device Description

	Figure 4.2 depicts a system structure. During the development of this device, it was mandatory to keep in mind that the device had to respond in the shortest time interval possible. Therefore, given that it is quick and easy to implement, one of the fastest ways for measuring inductance was to measure frequency change of a resonant LC (so-called tank), whose oscillation frequency changes as one of the values of its components changes.
	Furthermore, in order to measure loops having a broad range of inductance, the device contains auto-calibration feature, which also compensates small differences in inductance caused by temperature drifts. The device itself contains an analog part for measuring inductance, and a digital part for analysis, calculations, calibration and decisions. The latter comprises a Microchip PIC18F2420 microcontroller (Chapter 4.3) running at the highest possible frequency (40 MHz), taking into account the amount of calculations to be carried out, and some minor peripherals described in Chapter 4.3.6 and Chapter 4.3.7.
	Moreover, given that loops are supposed to be placed within the roadway, the device contains surge protectors (transient voltage surpressors – Chapter 4.2.3) on the loop inputs. In order to let the environment know about the state of the device and the presence of a vehicle above the loop, there are several LED diodes on the ILD, whose function is described in Chapter 4.3.6. Similarly, the device parameters, such as sensitivity, can be set via on-board DIP switches.
	Figure 4.3 depicts the board layout. An inductive loop can be either connected through the main connector or the loop connector (Figure 4.4). The device should also be grounded via its pin 1.
	The device has to be powered through its main connector (Figure 4.5), where inputs and outputs can also be found. Their purpose is described in Table 4.1.
	Pin No.
	Name
	Direction
	Description
	1, 14
	L1
	In
	Inductive Loop (+)
	2, 15
	PE
	In
	Grounding to the earth
	3, 16
	L2
	In
	Inductive Loop (-) (=GND)
	5, 18
	DC-
	In
	Negative Voltage Power Supply (-7 to -12V)
	6, 19
	GND
	In
	System Ground
	7, 20
	DC+
	In
	Positive Voltage Power Supply (+7 to +12V)
	9, 22
	RST
	In
	External Reset (with opto-isolation – against EXTGND)
	10, 23
	VEHI
	Out
	Vehicle Above 100ms Impulse (with opto-isolation – against EXTGND)
	11, 24
	VEH
	Out
	Vehicle Above Permanent (with opto-isolation – against EXTGND)
	12, 25
	EXTGND
	In
	Ground for opto-isolation
	13
	VEHTTL
	Out
	Vehicle Above – TTL signal (against GND)
	4.2 Loop Oscillator Circuit

	In order to detect changes in inductance of a loop, a resonant circuit has been introduced. Detection is carried out by measuring a resonant frequency of the circuit that consists of parallel combination of inductor and capacitor. The capacitor value is fixed, whereas inductance (of the loop) changes as a conductive metal object comes near the loop. Hence, the presence of a vehicle near the loop causes change in the frequency of the oscillator. Later on, this signal is processed by a microcontroller described in Chapter 4.3.2.
	Two different oscillator circuits have been examined. It should be noted that the second circuit has been employed in the final version of the ILD. Their pros and cons are discussed in the following two subheads.
	4.2.1 Circuit based on Comparator

	The schematic (based on [19]) is shown in Figure 4.6. The main component is a comparator LM311. Components L1 and C1 creates a parallel LC circuit. The advantage of this circuit is that it can be powered by single power supply only, and that the output is already in TTL logic, which simplifies a connection to the microcontroller.
	This circuit was originally used for measuring small capacitors and inductors. Unfortunately, when a loop (several meters of wire) having non-zero resistance is used in this circuit, the output signal gets noisy. This causes a small variation in the output frequency, and therefore, a lower sensitivity of detection (because the signal has to be averaged or filtered), which is a major drawback of this circuit.
	4.2.2 Circuit based on Operational Amplifier

	With regard to the issue mentioned in the previous subchapter, another oscillator circuit has been examined. The circuit in Figure 4.7 employs an operational amplifier, components C1 and L1 forms a parallel LC circuit. Resistor R3 controls the energy fed into the LC circuit.
	The schematic overcomes the drawback of the previous circuit. However, a disadvantage is the need for dual power supply. In addition, the output signal is a sine wave, which needs further conversion to TTL logic (Figure 4.8). In spite of the fact that more components are necessary to be introduced, this circuit has been used in the analog part of the ILD.
	4.2.3 Surge Protection

	The inductive loop built within the roadway is connected with the oscillator through twisted-pair cable. Due to outdoor environmental conditions, the circuit needs to be protected against overvoltage caused by electrostatic discharge coming from the loop. The following two types of surge protectors have been used:
	a) Gas Discharge Tube - Figure 4.9a
	b) TVS Diode (Transil) - Figure 4.9b
	Gas Dicharge Tubes are gas-filled components which protect against overvoltage from tens of Volts (typically 100V). They are characterized by low capacitance (approx. 1pF) and high currents (thousands A) they are able to withstand. In spite of that, TVS Diodes can protect the circuit even from several Volts. Hence, it is a good practice to combine both types of protectors. Figure 4.10 shows the protection used. Normal diodes in bridge improve frequency behaviour of TVS Diodes.
	4.3 Microcontroller

	Chapter 4.2 described the approach of measuring the inductance of the loop. The sine-wave output of the oscillator has been converted into a TTL signal whose frequency is to be measured and processed by the microcontroller. This chapter describes the microcontroller, its peripherals used, and the firmware implementation.
	The operation diagram is depicted in Figure 4.11. After the device is powered on, the microcontroller peripherals such as Timers, Ports are configured. Afterwards, the device waits until there is a signal from loop oscillator circuit, and waits 5 seconds so that it gathers some frequency samples (Chapter 4.3.3), and frequency mean value and deviation (Chapter 4.3.4) are calculated. If the samples deviation is lower than some particular threshold, the device is calibrated and vehicle-detecting mode is set. Otherwise, the deviation implies that there is something happening to the inductive loop, and the device tries to recalibrate itself again. Even during vehicle-detecting mode, due to temperature and other impacts, the device needs to check occasionally whether it requires recalibration.
	4.3.1 PIC18F2420

	PIC18F2420 is a 28-pin microcontroller which has 16Kb flash program memory and 768 bytes of RAM. Its pinout is shown in Figure 4.12. PORTB (pins 21-28) contains internal pull-up resistors, which can be switched on/off by software. They are convenient for switches – there is no need for external resistors.
	There is a 10MHz crystal oscillator connected to the microcontroller. The microcontroller uses its frequency multiplier (H4 fuse in Table 3.1) which yields 40MHz input clock to the microcontroller and 10MHz of effective clock (further details in [15]).
	4.3.2 Frequency measurement

	Capture/Compare/PWM module (CCP) is a PIC on-board peripheral for timing inputs/outputs. It can be configured in Capture mode that allows interrupt-on-change when rising/falling edge appears on the CCP1 input (pin 13). Figure 4.13 depicts the function of CCP module when it is configured in Capture mode.
	The following has to be set to configure the CCP:
	 Switch to Capture Mode
	 Select Timer for capturing (Timer1/Timer3)
	 Select occurrence:
	Rising edge, Falling edge, every 4th Rising edge, every 16th Rising edge
	 Enable CCP interrupt
	Given that the frequency of the oscillator is expected between 20 kHz and 145 kHz (Chapter 2.4.2), it is convenient to set the signal prescaler to 16 so that the interrupt routine is not called so often. Furthermore, dividing the signal by 16 also produces signal filtration, which is desired.
	Therefore, the snippet in C language (for CCS C Compiler – Chapter 3.3) for CCP configuration is the following:
	CCP interrupt routine (high-priority – Chapter 3.3.5.2):
	Variable CCPactual contains count of Timer3 ticks between 16 periods of the input signal. Hence, the signal frequency is calculated:
	 (4.1)
	4.3.3 Sample Buffer

	In order to collect frequency samples for calibration and for recognizing vehicles, samples buffering has been introduced. For both purposes, the only properties necessary to know are the mean value and deviation of samples gathered. Thus, samples can be saved into a circular buffer, which rolls from its end to the beginning. The following outlines the circular buffer implementation:
	Writing into the buffer:
	There is no need for calculating frequency according to Equation 4.1. All computations can be worked out with counter values, which is much faster because samples do not have to be converted to frequency value.
	Hence, Samples array is continuously filled with counter values gathered according to Chapter 4.3.2, and it contains the most recent 64 frequency samples.
	4.3.4 Calibration

	At the start-up and every time an inductive loop is connected, calibration process has to be carried out. If there is a loop connected to the device, the device gathers samples into a calibration circular buffer (see Chapter 4.3.3 for algorithm used) for 5 seconds, and calculates the mean value and the deviation of the samples:
	 (4.2)
	 (4.3)
	In C language:
	It shall be noted that there is no square root function at the end of GetDeviation function. Again, the deviation value does not have to be calculated accurately, and square root math function takes up plenty of machine cycles to be worked out.
	Calibration is performed during the following events:
	 Power up/Reset
	 A loop is disconnected and connected again
	 The mean value changes during vehicle-recognition mode
	 Vehicle is above the loop continuously for 5 minutes
	It should be noted that the oscillator frequency is limited to 20kHz to 145kHz. If frequency is out of range, calibration will not be performed and the device will behave as if there was no signal (see Chapter 4.3.6). Calibration is successful if the value obtained by GetDeviation function is lower than Deviation Threshold described in Chapter 4.3.7.
	4.3.5 Vehicle Recognition

	When the device is successfully calibrated, vehicle-recognition mode is set. The device calculates the mean value and the deviation (Chapter 4.3.3) of Sample buffer, and based on the calibrated mean value, it decides whether a vehicle is above the loop or not.
	Recognition is implemented as a state machine depicted in Figure 4.14. There are 2 states – No vehicle (VehOff), Vehicle (VehOn). Transition between them is done according to Figure 4.15.
	Actual mean (average) value of frequency is continuously calculated (GetMean function) from the sample buffer and compared to the calibrated value. Averaging process provides filtration of unwanted detections.
	If the actual value gets out of the outer interval (i.e. a metal object is close to the inductive loop), it is considered as vehicle above, and transition to VehOn state is made. Similarly, when the actual value returns back to the inner interval, it implies that the vehicle has left the loop, and VehOff state is set. In order to provide setting the sensitivity of the device, both intervals can be set via on-board switches (Chapter 4.3.7).
	The device is automatically recalibrated if the device remains in VehOn state longer than 5 minutes.
	Calibrated value in Figure 4.15 is a value of CCP1 counter obtained according to frequency measurement described in Chapter 4.3.2. When a vehicle enters the loop, the loop inductance decreases (see Chapter 2.4.1) and therefore, oscillator frequency is increased according to Equation 2.1 and 2.3 - the higher frequency, the lower counter value.
	It would be sufficient to implement left side of interval in Figure 4.15 only, because a vehicle always causes lower counter value. However, the purpose of the ILD is to be versatile, and therefore, to detect ferromagnetic materials (Chapter 2.4.1) as well. Hence, a symmetrical interval, capable of detecting both types of materials, has been introduced. Code snippet in C language of the state machine follows:
	CalibCounterOn and CalibCounterOff are hysteresis offsets, they provide to set the device sensitivity (Chapter 4.3.7). Both can be changed via on-board DIP switches (Chapter 4.3.7).
	4.3.6 LED Outputs

	There are three LED diodes (position shown in Figure 4.3) on the ILD – Green, Yellow, Red. Each of them has a different meaning also depending on the device calibration state. Their purpose is described in Appendix 5.
	4.3.7 Setting Device Parameters

	The detector is equipped with 2 blocks of DIP switches (position shown in Figure 4.3) used for configuring the device.
	a) Oscillator frequency
	DIP switches in Figure 4.3 set the loop oscillator’s frequency by adding parallel capacitors to the oscillator LC tank (see C1 and L1 in Figure 4.7). Frequency decreases as capacitance grows (Equation 2.1). There is a fixed 10nF capacitor. In addition, there are 2 switches for adding 33nF and 100nF capacitors to the circuit. It is necessary to keep in mind that the oscillator frequency has a limited range of 20 kHz to 145 kHz in the firmware (Chapter 4.3.2).
	 When 2 detectors are working close to each other, crosstalks may occur. In other words, one detector may influence the other one. Therefore, to avoid the crosstalk, operating frequencies have to different from each other. In order to determine the frequency easily, the device expresses the actual operating frequency by yellow LED diode blinking (see Appendix 5). Loop frequency can be selected by frequency switches (see Figure 4.3 for position). Their combinations and possible inductance values are listed in Table 4.2.
	DIP Switch On
	Total Capacitance [nF]
	Loop Inductance Range [uH]
	none
	10
	120 - 6000
	1
	43
	30 – 1500
	2
	110
	10 - 600
	1, 2
	143
	8 - 450
	b) Detection Sensitivity
	The device, apart from previously described frequency setting, also allows to set the sensitivity of detection. In other words, how small metal object can be detected. The calibration deviation threshold (Chapter 4.3.4) also changes according to the sensitivity configuration - The higher the sensitivity, the higher deviation threshold that allows the device to be calibrated.
	There are 8 DIP switches, the switches 7, 8 are used only - Table 4.3. The reset of switches are not used and may be used in the future.
	DIP Switch On
	Device Sensitivity
	Calibration Deviation Threshold
	None of 7,8
	Low
	Low
	7
	Medium Low
	Medium
	8
	Medium High
	Medium
	7, 8
	High
	High
	5 Traffic Counter
	Previous chapter deals with recognition whether a vehicle is above an inductive loop. With the help of the Inductive Loop Detector, we can therefore determine the vehicle presence and position.
	The Traffic Counter (Figure 5.1) is a device developed for measuring speed and length of vehicles. Maximally two traffic lanes can be monitored, each of them has to be equipped with 2 inductive loops which has to be away from each other some particular distance so that measurement can be carried out (Chapter 2.5).
	Figure 5.2 contains an overview of the Traffic Counter. The device incorporates an on-board RTC chip (Chapter 5.2.2) so that date and time is also logged when a vehicle is measured. Furthermore, there is ambient temperature monitoring (Chapter 5.2.3) and both indoor and outdoor temperatures can be logged. The device can be configured via the implemented command-line interface (Chapter 5.4) running on its PC RS-232.
	As the last task performed, in case a GPRS modem is connected to the device, vehicle and temperature samples gathered are transferred to the server in particular time intervals.
	5.1 Device Description

	The device is based on PIC18F2620, it is exactly the same microcontroller as PIC18F2420 (Chapter 4.3.1) except for ROM and RAM sizes, which are 32kB and 4KB. The microcontroller has been chosen because of large memory since the device has to buffer vehicle samples meanwhile it is not connected to the Internet via a GPRS modem.
	The layout of the device is shown in Figure 5.3. The device needs +-15V DC supplied by an external power supply through a power connector. There are 4 connectors for ILDs (Chapter 4), which are used for measuring vehicles.
	The device contains two RS-232 connectors for PC and a GPRS modem. Finally, there are 2 temperature sensors, one for board (indoor) temperature, the latter (should be placed outside the box and connected by cable to external temperature sensor connector) for outdoor temperature.
	Communication connectors and their pinout is shown in Figure 5.4, a straight cable should be used for connecting the PC and a modem. Both connectors have a standard RS-232 pinout.
	The user is notified about the state of the device by 4 on-board LEDs whose purpose is described in Appendix 9.
	5.2 Firmware Implementation
	5.2.1 Vehicle Measurement

	The device implements loop signals measurement as described in Chapter 2.5. There are 4 inductive loop detectors connected to the Traffic Counter, each detector provides vehicle TTL signal (VEHTTL) on its pin 13 (see Table 4.1). Those signals are connected to the microcontroller’s PORTB (Figure 5.5) that has interrupt-on-change feature on its 4th to 7th bits.
	The PORTB interrupt is called once rising/falling edge has occurred on pins PORTB.4 to PORTB.7. In order to find out what event has happened, the previous state has to be memorized. The following snipped outlines the PORTB interrupt routine (does not include vehicle measurement algorithm):
	Vehicle measurement is carried out via state machine as depicted in Figure 5.6. Measurement starts when a vehicle enters the first loop. A state transition is made according to Figure 2.4, and in case of any unexpected state of the detector inputs, transition to the idle state is made.
	Time measurement is performed via timer0 which is a 16-bit timer. After every transition, timer0 ticks are saved into t0-t3 variables. For the purpose of vehicle measurement, a slower timer is better. The highest prescaler value of the timer is 256, thus, the timer has the following properties (with regard to 20Mhz crystal clock of the device):
	 Timer tick 51,2us
	 Overflow every 3355ms
	Given that 3,3 seconds is not enough to measure long vehicles, the number of timer overflows (of) is counted and its value is added to length calculations:
	 (5.1)
	 (5.2)
	Similar calculations are done with t2, t3 values (to calculate v2, l2) if measurement averaging is set by the user (refer to MEASUREAVG in Chapter 5.3 and Appendix 10).
	Vehicle samples (including timestamp described in Chapter 5.2.2) are saved into RAM buffer as discussed in Chapter 5.2.4 to RAM storage.
	5.2.2 Date and Time

	It is essential that the device saves a timestamp along with vehicle’s speed and length. For that purpose, it was mandatory to employ a RTC peripheral to establish a time base.
	Maxim DS1302 [12] is a RTC chip in PDIP8 package with a simple 3-wire TTL interface. It provides time keeping calendar functions up to the year 2099. A basic circuit is depicted in Figure 5.7. In order to keep time base even if power supply is not connected, an external back-up capacitor can be attached on pin 8. The chip contains internal diode and resistors charger (Trickle Charger in the device data sheet) for the capacitor so it is charged when the main power supply is available. When a capacitor is fully charged, the time keeping will be functional up to several days.
	The CCS C Compiler (Chapter 3.3) comes with a DS1302 driver (DS1302.c) and standard C language library time.h. Therefore, the following only describes the functions of the driver. Further information on the 3-wire interface can be found in the device data sheet.
	Function
	Description
	rtc_init()
	Initialize the chip
	rtc_set_datetime()
	Write date and time to the chip
	rtc_get_date()
	Read date
	rtc_get_time()
	Read time
	It should be noted that the chip does not allow to set seconds. Hence, when calling rct_set_datetime function, it always sets seconds to 0.
	For purpose of saving vehicle samples into buffer, the sample size matters because there is a limited RAM size of the microcontroller. Therefore, it is more efficient to save a Unix timestamp having 4 bytes rather than saving date and time separately. The compiler’s time.h contains mktime function which accepts struct_tm, and which returns a timestamp (i.e. number of seconds since January 1, 1970 00:00:00 UTC). All date and time functions of the compiler time library have years since 1900 – for instance, number 108 means the year 2008 etc. Months and days begin at 0, not 1. The following demonstrates how to get a timestamp:
	5.2.3 Measuring Temperature

	As well as gathering vehicle samples, the Traffic Counter provides taking indoor and outdoor temperature samples by two Maxim DS18B20 [13] digital temperature sensors. One is placed on the board, the latter should be connected by 3 wires to the external sensor connector (shown in Figure 5.3), and placed outside the case. The period of taking temperature samples can be set by TEMPTIME attribute (Table 5.3) via the command-line interface described in Chapter 5.4.
	DS18B20 is a 3-pin variable precision temperature sensor in TO-92 package, it communicates via Maxim 1-Wire interface, which is a master-slave, half-duplex protocol on a single wire. Figure 5.8 contains DS18B20 pinout and basic circuit. There has to be a pull-up resistor on the data lane for proper work of the 1-Wire. The description of the interface is out of scope of this thesis since the CCS C Compiler contains a driver for the sensor.
	Several 1-Wire devices can be placed on a single 1-Wire bus. However, for ease of employing 2 temperature sensors, the both are placed on separated 1-Wire buses.
	The device driver has been modified so that it handles two different buses and also allows for having no sensor connected (in case of the external sensor). The following describes the modified driver API:
	ds1820_init() – initiates the on-board sensor
	ds1820_init2() – initiates the external sensor
	ds1820_read(int1 sensor) – returns sensor temperature in degree Celsius,
	 sensor=0 -> on-board, =1 -> external
	 if sensor is not connected, returns -128
	5.2.4 Vehicle and Temperature Samples Buffer

	Both types of samples need to be saved into RAM memory, where they are uploaded from later on (see GPRS modem in Chapter 5.5). So that the sample size is as small as possible, some reductions have been made.
	Given that number of lanes within a station will surely never be higher than 16, we need just 4 bits for that value. Moreover, length of a vehicle will certainly be lower than 40 meters, thus, only 12 bits are required to hold the length value in centimetres (12 bits ~ 4096 cm). Those two variables can be assembled into one 16-bit variable.
	Structure of a vehicle (7 bytes) and a temperature (6 bytes) sample is shown in Figure 5.9. The CCS C Compiler uses Little-endian byte ordering (the least significant bit/byte is stored at the memory with the lowest address). In order to provide access to single bytes of each sample, the entire sample is encapsulated in a union, which provides access to different variables at the same location in RAM memory (see Chapter 5.5.7 for usage demonstration):
	Finally, variable VehicleBuffer is the main buffer, where vehicle samples are saved into, and from where the data is read for server upload. Temperature buffer is implemented in the similar manner. Table 5.2 summarizes some combinations of vehicle and temperature buffer sizes with regard to the available RAM memory space, the combination in bold, which provides a reasonable ratio between both types of samples, has been used.
	Number of Vehicle Samples
	Number of Temperature Samples
	Total RAM Usage [%]
	430
	30
	95
	400
	70
	94
	350
	100
	90
	5.3 Device Settings and Parameters

	In order to save settings such as inductive loop dimensions, server’s ip address, station id, it is necessary to save the configuration into a memory which keeps its content even without power supply. Fortunately, the microcontroller contains an internal 1kB EEPROM memory. Device configuration (properties listed in Table 5.3) can be changed via PC serial interface (Chapter 5.4).
	It should be noted that configuration is load from EEPROM memory after power-up. If the user wants to save the configuration to EEPROM, the WRITE command (refer to Appendix 10) has to be issued.
	Item
	Value Type
	Description
	AutoStart
	bool
	Start measurement after power-up
	SID
	uint16
	Station ID
	MeasureAvg
	bool
	Measure Average (see averaging in Chapter 2.5.2)
	LoopDist
	uint8
	Distance between loops [dm]
	LoopLen
	uint8
	Length of a loop [dm]
	LaneNum
	uint8
	LaneNumber (see Chapter 6.2)
	GprsSend
	bool
	Send samples to the server
	GprsTime
	uint8
	Send period [minutes]
	GprsPin
	uint16
	PIN code of the modem SIM card (0 for none)
	ServerIP
	uint32
	IP address of the server (xxx.xxx.xxx.xxx)
	ServerPort
	uint16
	Server port
	TempTime
	uint8
	Time interval of taking temperature samples [minutes]
	There is a data structure in the program which can be written/read into the EEPROM memory, example:
	The following two functions implements reading and writing from the internal EEPROM memory, whole data structure at particular offset can be written:
	To save the configuration structure, the following command is used:
	5.4 Command-line Interface

	In order to configure the device (see Chapter 5.3), a simple command-line interface has been implemented. It receives characters from PC serial line, buffers them, and when a delimiter character is sent, the entire buffer is processed. The list of available commands can be found in Appendix 10.
	5.4.1 Character Buffer

	Each character received through the device HW UART causes a RDA interrupt routine to be called. The character is saved into a receive buffer. If a ‘\r’ character is received, the content of the buffer is copied (so that serial line receive works when the buffer is processed) and is processed in the program main loop (see Chapter 5.4.2). The following function receives a character when it is ready, saves it into the buffer, and sets process flag.
	5.4.2 Buffer Processing

	There are 2 types of command – with or without value. Character buffer contains entire string received over the serial line. Figure 5.10 depicts the processing algorithm. At first, it is verified that the command exists. If the command cannot contain a value, a response to the command is generated.
	Otherwise, if the command received contains a value, it means that the users is going to change device configuration. Hence, the value is parsed and saved.
	The value can be various depending on the command. It is mostly a numeric value – bool, uint8, uint16. However, in some cases, it can also be a datetime or an ip address.
	5.4.3 Usage

	The serial line at the PC side shall be set according to the following:
	 115200 baud, 8 bits, no parity, 1 stop bit, no handshake
	The list of all available commands can be found in Appendix 10. All commands have to end with \r or \r\n characters. Otherwise, the device will not reply. If the received command exists, the device replies with the command, otherwise an “unknown command” string is sent back.
	In case of commands with value, if the user sends the command without any value, it is considered as reading the command value and the device replies with the value. If the user sends a command+space followed by a value, this value is parsed and saved into an appropriate configuration property.
	Some examples of commands follow:
	 Get actual temperature: GETTEMP\r
	 Get the device date and time: DT\r
	 Set the device date and time (2008-12-12 15:43): DT 0812121543\r
	 Set the server IP address: SERVERIP 192.168.1.1\r
	5.5 GPRS Modem

	A GPRS modem has been introduced for transferring data to the server (see Traffic Server in Chapter 6.3). The modem is connected with the Traffic Counter via Modem connector depicted in Figure 5.3.
	5.5.1 Description

	TENcom SPEEDER RS [24] is shown in Figure 5.11. The modem communicates via a standard RS-232 interface.
	Modem highlights are listed in Table 5.4. The modem can be run at different baud rates, and SW or HW handshaking can be used. The modem provides embedded UDP and TCP/IP stack, which makes all network operations transparent to the user.
	Property
	Value
	Power Supply
	7-30V DC
	RF
	900/1800/1900MHz
	GSM
	Voice: FR, EFR, HR
	SMS: Text, PDU, MO/MT
	GPRS
	Mode: Class B
	Multislot Class 12 (4Rx, 4Tx, Max 5 Slots)
	Speed: 85,6kb/s Tx and Rx
	Interface
	RS-232, standard AT command set
	Speed: 9600 – 115200 baud selectable
	SW or HW handshake
	UDP, TCP/IP stack, PPP, PAD, CMUX
	5.5.2 Communication

	The modem is a DCE with a Cannon 9 female connector. There is a male connector on the Traffic Counter board so that it is a DTE. Connection between the devices should be via a 1:1 RS-232 cable. The communication properties have been chosen as the following (modem factory defaults in brackets):
	 19200 (115200) baud, 8 bits, no parity, 1 stop bit, no handshake (RTS/CTS)
	Even though the modem provides HW handshaking via RTS/CTS signals, no handshaking has been used. However, the modem sets the CD (Carrier Detect – pin 1) signal once a GPRS connection has been established.
	5.5.3 AT Commands

	The modem communicates via a standard modem AT command set. Each command starts with “AT” prefix and is processed by the device when \r\n (CRLF) string is received. The response from the modem also ends with \r\n. Modem configuration needs to be saved into its EEPROM memory (AT&W command). Table 5.5 contains a list of selected AT commands, full command set can be found in [17].
	Command
	Answer(s)
	Description
	AT
	OK
	Find out whet
	AT&V
	List settings
	Print actual settings
	AT&W
	OK
	Write settings to memory
	AT+IPR=val
	OK
	Set baud rate, example: AT+IPR=19200
	AT+IFC=x,y
	OK
	Set handshaking mode, ex.: AT+IFC=0,0
	AT+CPIN="val"
	OK
	ERROR
	Sets PIN code for SIM card
	OK
	Set Server IP address and Port, ex.: AT$PADDST=”192.168.1.1”,12345
	ATD*99#
	CONNECT
	ERROR
	NO CARRIER
	Open GPRS connection
	+++
	Escape sequence, switch from data to AT command mode
	ATH
	OK
	Close GPRS connection
	5.5.4 Modem Configuration

	Before using the modem, it needs to be configured for active TCP connections. The following describes configuring the modem for TCP mode, for UDP and PPP modes, the reader should refer to [16].
	1. Baud rate and handshaking
	2. Network access point
	3. Active TCP connection
	4. Target IP and port (example)
	5. Write settings
	5.5.5 GPRS Connection to Server

	Samples are transferred to the server (if GprsSend property is true) in intervals given by GprsTime property (Table 5.3). At first, GprsPin, ServerIp and ServerPort properties have to be configured.
	Figure 5.12 outlines how a GPRS connection is established, used, and released.
	It is implemented as a state machine. In every state, there is a timeout for a reply from the modem. If the modem replies OK, another state is set. In case of error, the gprs connection is closed and entire process starts over.
	Once a PIN code is set properly, the modem connects to GSM network, and replies OK. After the ATD*99# command is issued, a GPRS connection to the server is about to be established. This may take several up to several tens of seconds. The modem sends CONNECT in case it has been successfully connected to the server. If a connection is closed by the server or GSM network, the modem sends NO CARRIER message. If a connection cannot be established, the modem replies ERROR.
	5.5.6 Server Protocol

	Communication protocol is described in Figure 5.13. When a connection to the server application (Traffic Server in Chapter 6.3) has been established according to process described in Chapter 5.5.5, the client (e.g. Traffic Counter station) sends headers to be recognized and authorized by the server. Headers are sent in text mode (id=value) and are separated by semicolon. There are 8 mandatory headers (Table 5.6). If they are not sent, the client is disconnected.
	Header
	Description
	SID
	Station ID
	PVER
	Protocol Version
	FWVER
	Firmware Version
	HWVER
	Hardware Version
	DTFROM
	Acquisition Start - unix timestamp
	DTTO
	Acquisition End - unix timestamp
	SV
	Number of vehicle samples to be sent
	ST
	Number of temperature samples to be sent
	Hence, the header string look similarly to the following:
	Afterwards, in case of a proper authorization, a binary mode is set and vehicle and temperature samples are transferred (see Chapter 5.5.7). Every time a reply from a second side is expected, there is a timeout so that connection is closed when an error occurs. If server sends ERROR or BYE, connection is also terminated. All text messages are delimitered by \r\n.
	5.5.7 Transferring Samples

	Vehicle and temperature buffers are implemented and filled as described in Chapter 5.2.4. Once a connection to the server has been established and the station has been authorized by the server (see headers in Chapter 5.5.6), both buffers are transferred to the server in binary form.
	Both sample arrays have items encapsulated within union structure, thus, all data can be accessed via bytes array. The following outlines the function for transferring data in binary form. Every byte of the vehicle sample is sent to the GPRS modem. Temperature buffer is handled in a similar way:
	6 Server Applications
	Previous chapters deal with traffic data acquisition and uploading to the server in binary form over a TCP connection. Thus, there has to be a mainframe application (Traffic Server – Chapter 6.3) for receiving and processing at the server side. The application communicates with Traffic Counter station over the Internet, places the received data into files, and uploads them to the database as well.
	The latest part is a web-interface (Traffic Statistics - Chapter 6.4) for viewing a state of stations and their traffic information. Both applications/scripts are written in PHP language [30] so that the entire server side can be run on various operating systems such as Microsoft Windows or Linux.
	6.1 Server Installation

	In order to get server applications working, the following packages have to be installed and configured (both tasks are out of scope of this thesis and can be found on the Internet):
	 Apache Web Server [29] (version 2 and higher)
	 PHP Preprocessor Language [30] (version 5 and higher)
	 MySQL Database Server [31] (version 5 and higher)
	Moreover, for proper function of the server application, it is also mandatory to install the following modules:
	 Mod_rewrite for Apache
	 GD library plugin for PHP
	 JpGraph library for PHP [35]
	 jQuery Javascript Library [22], [33]
	6.2 Database Model

	The database structure has been designed keeping in mind the purpose of traffic data and its later processing. Table attributes are mainly used within the web-interface described in Chapter 6.4. Database table layout (designed in [32]) is shown in Figure 6.1, SQL create script can be found in Appendix 11. The model containts the following tables:
	 stations: contains nodes (i.e. Traffic Counter – Chapter 5), each node uploads data over the internet.
	 temperatures: indoor and outdoor temperature samples of stations
	 uploadedfiles: every time a station uploads a file, the file details are inserted so that the user can check how stations upload data
	 lanes: each station consists of one or more traffic lanes.
	 trafficdata: raw vehicle samples – speed and length of vehicles for every lane
	The following columns are important since they have to be set properly in the Traffic Counter device at a station (see Chapter 5):
	 stations.idstation – an unique id of a station (SID parameter in Appendix 10)
	 lanes.lanenumber – id of lane within a station (LANENUM parameter is Appendix 10)
	Even though lanes.idlane is a unique identifier, it is easier to use lanes.lanenumber which is only unique per station. The reason is that lanenumber is an offset which can be modified when adding more lanes to the station. See property LANENUM in Chapter 5.3 for station configuration of lanenumber item.
	6.3 Traffic Server

	The Traffic Server is a PHP script which receives data from station over network, puts it into files and also upload to the MySQL database (having the table structure according to the model in Figure 6.1). It implements multi-client TCP server through socket connections.
	Figure 6.2 demonstrates the operation of the server. At first, a socket server is established, and then it waits for a new client or data from any currently connected client. Communication and protocol are described in Chapter 5.5.6.
	When a new client is connected, authorization in terms of receiving headers in Text mode has to be made. Once the headers have been successfully acquired from the client, the server awaits vehicle and temperature data in binary form. In case of any error in communication, the client is disconnected. Once all vehicle or all temperature samples have been received, they are converted to text form, saved into text files, and uploaded to the database.
	6.3.1 Sockets in PHP

	Sockets in PHP are similar to C language sockets. The following PHP code snippet sets up a TCP socket for listening on port 10000:
	Unfortunately, PHP language does not provide threads, but it supports both non-blocking and blocking sockets. Given that the data transfer from a station takes only several seconds and is carried out in a period of several minutes, blocking socket can be used without any problems.
	Connection or client disconnection can be recognized by reading from the socket where the event occurred:
	6.3.2 Handling Multiple Clients

	The server application provides the possibility of having several clients (stations) connected at a time. Even though blocking sockets have been used, a simple principle for dealing with multiple clients has been employed.
	The scripts waits until there is either a new client connected or data from one of the current clients is available. The following outlines the main loop of the data server script:
	The $read array contains all client sockets including the server socket. Function socket_select blocks until at least one event occurs on $read array, and removes those sockets from $read array which do not have any event. Function parameters have to be passed by reference – the reason for $write, $except, $tv_sec variables.
	6.3.3 File Formats

	Once all vehicle samples have been acquired from the station, the file containing those samples is saved into BINARY_FILES_PATH directory. Afterwards, the binary file is processed and uploaded to the database. In case of a successful upload, the file is moved to BINARY_FILES_PATH_PARSED directory, and is also converted from binary to text form and saved into DATA_FILES_PATH.
	Filename is always the following: SID-DATETIME.EXT, where
	SID = Station ID, DATETIME = MySQL timestamp, EXT=bin/txt
	Example of traffic file: 1-2008-12-04_22_21_41.bin
	Example of temperature file: 1-2008-12-04_22_21_41_T.bin
	a) Binary File
	The structure of a binary file is depicted in Figure 6.3. The file contains Prefix “TRAFDATA” in ASCII form so that the file can be distinguished from other files. Number of Headers (N) is a count of all consecutive headers. After that, there is N of header items (Header 1 to N), each consists of Header ID and a variable-length value depending on the particular header – see Table 6.1. After the last header item, there are traffic (each 7 bytes) / temperature (6 bytes) samples in the same format as it is sent by the station in (see Chapter 5.5.2).
	HeaderID
	Size [B]
	Name
	Description
	0
	2
	SID
	Station ID
	1
	1
	PVER
	Network Protocol Version
	2
	1
	FWVER
	Station Firmware Version
	3
	1
	HWVER
	Station Hardware Version
	4
	4
	DTFROM
	Acquisition Start Unix timestamp
	5
	4
	DTTO
	Acquisition End Unix timestamp
	6
	1
	TYPE
	Type of Data: 0=traffic, 1=temperature
	7
	2
	SMPLNO
	Number of Samples
	b) Text File
	Its format is straight-forward and self-explanatory. Every line contains one value, headers begin with * character. Samples are separated by comma, and have the following format (Traffic text file example is below):
	Traffic: lanenumber; datetime; speed; length
	Temperature: datetime; tempin; tempout
	6.3.4 Binary Data Conversion

	As described in Chapter 5.5.7, traffic and temperature data is transferred from stations in binary form, and it is necessary to unpack them before uploading to the database. PHP language contains unpack function for conversion from binary format. The following code snippet contains a function for vehicle sample conversion.
	The unpack function is capable of converting data from little-endian, big-endian, and machine byte order representations. The Traffic Counter device uses little-endian byte order as described in Chapter 5.2.4. Table 6.2 contains unpack function unpacking format (char=1byte, short=2bytes, long=4bytes).
	Code
	Description
	Code
	Description
	c
	Signed Char
	C
	Unsigned Char
	v
	Unsigned Short
	V
	Unsigned Long
	6.3.5 Event Log

	Client communication events are into files in LOG_FILES_PATH folder (Chapter 6.3.6). Filename is “#date.log” for normal logs and “ERR-#date.log” for error logs, where #date is a variable containing the date of logging – e.g. 2008-12-24.log .
	The log file is a csv file having the following structure:
	Datetime;Client_ID;Event;Message
	When a client is authorized, all headers obtained are listed in the log.
	Example of log file:
	6.3.6 Server Configuration

	File ServerSettings.php contains definitions (listed in Table 6.3) necessary to be set before the server is run. The server script uses some function from the web-interface and vice versa. Therefore, it is mandatory to set an appropriate path. All paths are absolute and need to end with \ or / character (depending on Operating System).
	Definition Name
	Type
	Description
	DEBUG
	bool
	Debug messages will be displayed in console output
	SERVER_PORT
	int
	Port number the server will be running at
	WEB_PATH
	string
	Path to the web-interface directory (to the folder where index.php file is)
	BINARY_FILES_PATH
	string
	Where to store binary files which have not been parsed yet
	BINARY_FILES_PATH_PARSED
	string
	Where to store parsed binary files (traffic and temperature)
	DATA_FILES_PATH
	string
	Where to store text data files (traffic and temperature)
	LOG_FILES_PATH
	string
	Where to store server log files
	6.3.7 Running the Server

	The PHP script has to be executed not as a website but as a command line script. At first, the server has to be configured – see Chapter 6.3.6.
	a) Linux
	The executable script has to have the following at the beginning (issue which php command for finding out the path):
	It also requires executable permission for running:
	b) Windows
	Consider that the PHP environment is installed in C:\php\ directory.
	The server can be started issuing the following command:
	6.4 Traffic Statistics

	Traffic Statistics (a screenshot in Figure 6.4) is a PHP web application developed for administration of stations, their lanes, and for their monitoring including generating graphical outputs (i.e. charts).
	The application employs jQuery UI [33] Javascript Library for sorting tables and for easy selection of date intervals, and JpGraph [35] PHP library for generating charts. The following outlines the features of the application:
	 Station Management
	Create/edit station, its description, view station last update date
	 Lanes Management
	Create/Edit station lanes, their lane number, description, view lane last update
	 Upload history
	Binary files upload, view upload history and details
	 Stats
	Lane Charts – number of vehicles per hour/day, average speed per hour/day, speed and length categories
	Station Charts – indoor and outdoor temperature
	 Export
	Raw lane data export into CSV files
	6.4.1 jQuery

	jQuery is a open-source Javascript library [22] which simplifies HTML document access, event handling and animations through abstractions of low-level functions and attributes. Particularly jQuery UI is its part which provides easy-to-implement user interface - effect such as resizing, sorting, drag & drop and others.
	This thesis employs two plugins from jQuery UI – Datepicker and Tablesorter. Therefore, facts mandatory to get those two plugins working are mentioned only. For an extensive description of jQuery features, the reader should refer to [22] and [33].
	6.4.1.1 Usage

	The heart of the entire Library is the file jquery.js. It has to be included in HTML source code at first:
	jQuery functions can be used as soon as the DOM is ready, after which the jQuery code can be run. The following demonstrates how to achieve that:
	Which does the same as the following code (without jQuery):
	6.4.1.2 Datepicker

	It is a plugin embedded in jQuery UI package. It provides an easy date selection via a small calendar menu. It can also be configured so that it allows to select a date range.
	The Datepicker is bound to an input tag:
	After that, the following (to be placed into ready function – see Chapter 6.4.1.1) causes a calendar to pop up when the text field is focused, the outcome is shown in Figure 6.5.
	6.4.1.3 Tablesorter

	Tablesorter [34] provides sorting feature and a nice graphical layout of HTML tables via jQuery library. It is a former plugin of jQuery UI since it has been separated from jQuery. Figure 6.6 demonstrates the result of Tablesorter plugin.
	The HTML table should contain THEAD and TBODY tags so that the tablesorter can be applied on the table. The following code outlines the table structure:
	Tablesorter javascript file should also be included in the HTML file:
	If the users wants to use jQuery inline function, metadata.js needs to be included. Subsequently, jQuery code has to be added to ready function described in Chapter 6.4.1.1.
	The code above sets the first column of table MyTable as the sorting column, and zebra widget makes different color of every second row of the table.
	Inline functions provide the functionality of changing Tablesorter properties through code placed within the object tag. For instance, the following disables sorting feature on the associated column:
	6.4.2 JpGraph

	Is an object-oriented PHP library for generating various types of charts such as line, bar, pie and ring plots. A chart can either be saved as an image file or shown directly within a web site. Within this thesis, the second method, alongside line and pie plots, has been used.
	The usage of the JpGraph library is straight-forward and well-documented in [23], and it would be beyond the range of this thesis to provide a description of the library. The following PHP code only demonstrates the simplicity of using the library, Figure 6.7 contains the chart generated:
	6.4.3 Traffic Charts API

	In order to provide the transparency of JpGraph functions, an API for generating traffic charts based on database samples has been implemented. Scripts for chart generating are in /charts/ folder under the main web-interface directory (i.e. where index.php can be found). Each file generates different type of chart which is generated right into the screen, and variables are passed over query string - $_GET array whose variables are listed in Table 6.4.
	GET variable
	Description
	idlane
	Traffic lane(s) to be shown in the chart
	idstation
	Station(s) to be shown in the chart
	datefrom, dateto
	Range of date to be shown
	daily
	=1 -> show data per day
	=0 -> show data per hour
	interval
	day interval – i.e. how many days to show
	showlength
	=1 -> length categories will be generated
	=0 -> speed categories will be generated
	Variables datefrom and dateto are dates in MySQL format (ex: 2008-12-24), and they limit date period to be shown in the chart. In some charts, idlane/idstation are array variables (ex: idlane[]). This allows to plot data from several lanes/station in one chart.
	Filename
	Description
	GET variable
	VehiclesPerDay.php
	Number of Vehicles in a lane per day/hour
	idlane[]
	datefrom, dateto
	daily
	AvgSpdPerHour.php
	Average speed in a lane per hour
	idlane[] or idstation
	datefrom, dateto
	PercentagePie.php
	Speed and length categories of a lane
	idlane
	datefrom
	interval
	showlength
	AvgTempPerHour.php
	Average temperatures
	idstation[]
	datefrom, dateto
	In order to show traffic data of several lanes in one graph, idlane GET variable is passed as an array, and the URL may look similarly to the following:
	If it is desired to embed the chart within a web page, this URL query can be put in an img tag within the HTML code:
	Configuration of Traffic Charts API is under charts/chartfunctions.inc where also speed and length categories can be changed. Examples of charts generated via the Traffic Charts API are depicted in Figure 6.8.
	6.5 Database Benchmarking

	Table trafficdata (model in Chapter 6.2) has been filled with roughly 400000 pre-generated samples. This table contains data of vehicle samples of all stations, and queries for generating charts are executed on this table. Therefore, its performance is vital. The following code has been run in order to measure query execution time, the query is taken from chart-generating function:
	It turned out that adding an extra column datecol, containing a date extracted from dt column, decreased the query time, because almost every query for generating a chart is date limited. In addition, adding a multi-column index to trafficdata table on (idlane,datecol) also improved the query time. Table 6.6 summarizes the effect of good/bad indexes on execution time. It proves the fact that a wrong index slows down the query – in this case, because dt column contains datetime – which is almost everytime unique, the index misleads the database engine.
	In case the table contains several indexes, EXPLAIN keyword can be used in the query. The database returns a list of reasonable/used indexes.
	Index On
	Execution Time [s]
	No Indexes
	0.36
	idlane,dt
	1.6
	idlane, datecol
	0.11
	7 Conclusion
	7.1 System Summary

	The outcome of this thesis is a fully functional, stand-alone system for traffic data acquisition such as speed and length of vehicles. The system developed consists of 4 parts.
	The first part, the Inductive Loop Detector, finds out the presence of a vehicle with the help of a wired loop embedded within the roadway. However, given that it generally detects metal objects, it can be used in various types of automation such as proximity detection and others. The second part, Traffic Counter, employs 4 loop detectors, and gathers traffic data from 2 lanes. The data collected is in particular time interval transferred to the server via a GPRS modem.
	The last part of the system comprises two server applications. The first one receives data from multiple stations and uploads them to the database. The latter is a web interface for monitoring traffic at stations and generating statistical and graphical outputs.
	Once the entire system has been configured, it automatically gathers traffic data from lanes of stations, transfers them to the server where samples are used for statistical information such as speed and length categories and lane occupancy.
	7.2 Tests in the field

	The entire system has been placed in the field for some period to gather traffic data. The Inductive Loop Detector has been tested with an inductive loop built in a tar roadway. The loop was rectangular with dimensions 2 m x 2 m, and inductance of approx. 100uH. The loop frequency was perfectly stable having almost zero variation, hence, the overall device sensitivity is very high. A small vehicle (1000 kg weight, 3,7 m length), even though the loop inductance was so low, caused a change in inductance of 2%. Such a substantial change can be detected by the device without any problems. To summarize, the ILD device could also be used to detect motorbikes or even bicycles (with different loop size) in normal traffic.
	Speed accuracy of the Traffic Counter has been examined with the help of a GPS device that provided reliable speed information. The Traffic Counter speed measurement error increases rapidly at speed lower than approx. 25 kmph. It is caused by different reactions of both ILDs in the traffic lane. The speed error remains at approx. 5% for speeds above the threshold. It should be noted that the test was conducted up to speeds of 90 kmph.
	7.3 Further Work

	As further extension of the thesis, some features could be added to the Inductive Loop Detector. Because of its universality, there are various ways how to use that device. Therefore, a convenient feature would be to allow the user to set parameters, such as trigger delay, via the unused on-board switches.
	Moreover, the IDL could be modified to continuously sample loop frequency when a vehicle passes over the loop, and create a vehicle signature, which could be used for recognizing number of axles of the vehicle. Similarly, it could also be employed in vehicle matching at two remote places, as mentioned in Chapter 2.3.
	With regard to the Traffic Counter, in order to increase the number of monitored traffic lanes, an auxiliary microcontroller peripheral (i.e. port expander) for increasing the number of detectors connected could be employed. A possibility of saving data on a SD card would come in useful at places without a GPRS connection.
	As for the traffic statistics web-interface, different charts can be added, and integration into ITS, for further data analysis and traffic control, could be performed.
	8 References and Bibliography
	9 Software and Packages Used
	Appendix 1 Content of the Attached CD
	Appendix 2 Inductive Loop Detector Schematic
	/
	Appendix 3 Inductive Loop Detector PCB
	/
	/
	Appendix 4 Inductive Loop Detector Bill of Materials
	Appendix 5 Inductive Loop Detector User’s Manual
	/
	1) Introduction
	The Inductive Loop Detector is a microcontroller-based device device for detecting an electrically conducting metal object near the inductive loop. The main purpose of the device is to detect vehicle presence by sensing an inductance change caused by the vehicle passing above the loop embedded in the roadway.
	The device provides self-tuning feature so that a wide range of loop inductances is achieved, the loop operating frequency can be set by on-board switches. The user is notified about the state of the device by 3 on-board LEDs.
	2) Technical Data
	Power Requirements
	+-15V DC, approx. 100mA
	Board Dimensions
	71 mm (L) x 73 mm (W) x 23 mm (H)
	Mounting
	Pillar: 4x 3mm hole (distance 61 mm, 63 mm)
	Connector Plug-in
	Connectors
	Con1: ARK2500V-A-3P
	ARK2500F-A-3P for cable side
	Con2: Cannon 25-pin Male
	Surge Protection
	On Loop inputs:
	Gas Discharge Tube
	TVS Diodes
	Tuning
	Fully Automatic
	Inductance Range (Theoretical): 8 to 6000 uH
	Loop Operating Frequency
	20-145kHz
	4 selectable positions via SW3 switches
	Sensitivity
	4 selectable positions via SW2 switches:
	Low, Medium Low, Medium High, High
	Digital Inputs
	Opto-isolated (External Reset)
	Digital Outputs
	TTL outputs (Vehicle Above)
	Opto-isolated outputs (Vehicle Above, Vehicle Above Impulse)
	LEDs
	Green – Vehicle Presence
	Yellow – Calibration, Operating Frequency
	Red - Error
	3) Connectors
	CON1 – Loop and Grounding (front view)
	CON2 – Main Connector (front view)
	Pin No.
	Name
	Direction
	Description
	1, 14
	L1
	In
	Inductive Loop (+)
	2, 15
	PE
	In
	Grounding to the earth
	3, 16
	L2
	In
	Inductive Loop (-) (=GND)
	5, 18
	DC-
	In
	Negative Voltage Power Supply (-7 to -12V)
	6, 19
	GND
	In
	System Ground
	7, 20
	DC+
	In
	Positive Voltage Power Supply (+7 to +12V)
	9, 22
	RST
	In
	External Reset (with opto-isolation – against EXTGND), Input Current = 5mA
	10, 23
	VEHI
	Out
	Vehicle Above 100ms Impulse (with opto-isolation – against EXTGND)
	11, 24
	VEH
	Out
	Vehicle Above Permanent (with opto-isolation – against EXTGND)
	12, 25
	EXTGND
	In
	Ground for opto-isolation
	13
	VEHTTL
	Out
	Vehicle Above – TTL signal (against GND)
	4) Settings
	SW1 – Reset Button
	SW2 – Device Parameters
	Sensitivitypins 7, 8
	Pin Switch On
	Sensitivity
	none
	Low
	7
	Medium Low
	8
	Medium High
	7, 8
	High
	SW3 – Loop Frequency Settings
	Pin Switch On
	Frequency
	none
	High
	1
	Medium High
	2
	Medium Low
	1, 2
	Low
	5) LED purpose
	Device State
	LED
	Action
	Description
	No Signal
	Red
	On
	There is no loop connected or the oscillator frequency is out of range (has to be 20 kHz – 145 kHz)
	Calibrating
	Yellow
	On
	Calibration in progress
	Calibrating
	Red
	Blink
	Blinks once if calibration was not successful
	Calibrating
	Yellow
	Blink
	Blinks for 2 seconds in case of successful calibration
	Vehicle-recognition
	Green
	Off
	No Vehicle above the loop
	Vehicle-recognition
	Green
	On
	Vehicle above
	Vehicle-recognition
	Yellow
	Blink
	Blinks according to the actual loop frequency (e.g. 30 kHz = 3x, 80 kHz = 8x)
	6) Operating Instructions
	I. Principle of Operation
	The detection is based on sensing a change of loop inductance when a metal part approaches the loop. Loop inductance depends on loop dimensions, number of turns, feeder length, and the ambient environment.
	II. Start Up
	1. Connect the loop either via Con1 or via Con2. Feeder cable to the loop should be twisted in pair so that crosstalks and other interferences are as lower as possible.
	2. Connect the power supply (through Con2)
	III. Calibration
	The calibration is fully automatic. When a power is supplied to the device, or a reset is performed, the detector will automatically tune itself to the loop it is connected to. In case the loop is not in steady state (i.e. metal parts are passing by the loop), the detector tries to recalibrate.
	Once the device has been calibrated, detection of metal objects is turned on. The detector also handles environmental effects (temperature etc.) which cause slow changes in inductance by auto-recalibrating on the fly.
	IV. Operation
	If there is no loop connected, or the loop frequency is out of range, the red LED lights. The yellow LED is turned on when a calibration is taking place. If calibration is not successful, the red light blinks once.
	During the normal operation when the device is calibrated, the yellow LED signalizes the current loop frequency by blinking. The green LED shows whether a metal part is near the loop.
	7) Troubleshooting
	Fault
	Possible Cause
	Hint
	No LED lights on power up
	Wrong power connection
	Check power feed
	Red LED is still on
	Faulty loop of feeder connection
	Check loop installation and connection
	Loop operating frequency out of range
	Select different frequency settings (SW3)
	The detector cannot calibrate (e.g. Red LED blinks occasionally)
	Crosstalks with adjacent detector
	Select different frequency settings (SW3)
	Appendix 6 Traffic Counter Schematic
	/
	Appendix 7 Traffic Counter PCB
	 /
	/
	Appendix 8 Traffic Counter Bill of Materials
	Appendix 9 Traffic Counter User’s Manual
	/
	1) Introduction
	The Traffic Counter is a device for measuring speed and length of vehicles. The device allows to gather data from up to 2 traffic lanes. Each lane is monitored by 2 Inductive Loop Detectors that are connected with 2 inductive loops build in the roadway surface of the lane.
	The device, apart from vehicle data, also takes samples of indoor and outdoor temperature, and all data is transferred via a GPRS modem to the server. Device parameters can be configured via a command-line interface running over RS-232 line.
	2) Technical Data
	Power Requirements
	+-15V DC, approx. 400mA
	Board Dimensions
	126 mm (L) x 125 mm (W) x 23 mm (H)
	(excluding Detector boards)
	Mounting
	Pillar: 4x 3mm hole (distance 116 mm, 112 mm)
	Connectors
	Con1, Con2: ARK2500V-A-3P
	(ARK2500F-A-3P for cable side)
	Con3: Cannon 9-pin Female
	Con4: Cannon 9-pin Male
	Con5-8: Cannon 25-pin Female
	Traffic Lanes
	Up to 2 lanes monitored
	Inductive Loop Detectors
	Up to 4 detectors, 2 needed for each traffic lane
	Communication
	GPRS Modem: RS-232, 19200, 8N1, no handshake
	PC: RS-232, 115200, 8N1, no handshake
	Date and Time
	RTC chip on board, time keeping will be working several after power supply disconnect
	Traffic Data
	Capture Date, Time, Lane, Speed, Length
	Sample Buffer Memory
	up to 400 Vehicle and 70 Temperature Samples
	transferred to server over GPRS in time intervals
	Temperature Sensors
	2 Digital sensors:
	1 On-Board (Indoor)
	1 On External Connector (Outdoor)
	Device Configuration
	Over PC RS-232, Command-line Interface
	Buttons and Switches
	Device reset button
	LEDs
	Green – Device State
	Yellow – Vehicle Sampling
	Red – GPRS State
	Con3, Con4 (Modem and PC Serial Lines - front view):
	Con1, Con2 (Power Supply, External Temperature Sensor – front view):
	Pin No.
	Con1 (Power Supply In)
	Con2 (Ext. Temp. Sens.)
	1
	-15V DC
	+5V (sensor pin 3)
	2
	GND
	IO (sensor pin 2)
	3
	+15V DC
	GND (sensor pin 1)
	Con5-8 (Loop Detectors): refer to Inductive Loop Detector User’s Manual
	3) LED signalization
	LED
	Color
	Event
	Description
	1
	Green
	On
	Device is powered
	Blink
	Data acquisition is in progress (START command)
	2
	Yellow
	Blink
	Vehicle sample has been taken
	3
	-
	Not Used, Future Purpose
	4
	Red
	On
	GPRS connection being initialized
	Slow Blink
	GPRS connection has been established, vehicle and temperature samples being tranferred
	Fast Blink
	20 fast blinks means GPRS connection error, retry in 2 minutes
	4) Operating Instructions
	I. Start Up
	1. Connect external temperature sensor over a 3-wire cable to Con2. Place the sensor outside the box so that it measures outdoor temperature.
	2. Plug in 2 or 4 loop detectors – Lane1 = Con5,6 ; Lane2= Con7,8
	Connect corresponding loops to the detectors
	3. Set operating frequencies of the detectors so that there are no crosstalks between them (Rule of thumb: The closer two loops, the bigger frequency span). Set appropriate sensitivity of each detector.
	4. Plug PC serial line in Con4
	5. Attach +-15V DC power supply to Con1
	6. Configure the device according to paragraph 5)
	II. GPRS Modem Configuration
	The modem interface is configured in default: 115200, 8N1, RTS/CTS. This has to be changed to: 19200, 8N1, No handshake. In order to reconfigure the modem interface, connect the modem to PC terminal and issue the following:
	AT+IPR=19200\r\n
	AT+IFC=0,0\r\n
	And write out the new settings: AT&V\r\n, and reconfigure your PC terminal according to those new settings. Change TCP stack settings:
	AT$HOSTIF=2\r\n
	AT$ACTIVE=1\r\n
	Subsequently, set GPRS properties according to your GSM provider (internet is an example):
	AT+CGDCONT=1,”IP”,”internet”\r\n
	And write out the settings to modem memory:
	AT&W\r\n
	5) Configuration
	The device is configured via its PC serial line. Connect a PC to Con4, and set the following in PC’s terminal application: 115200, 8N1, no handshake. Once a device is powered on, a message “Traffic Counter” is sent to the PC, and the user can communicate with the device via commands.
	A command consists of 2 parts – Text and Value. If Value is not present, it is considered as reading. Otherwise, the value is processed by the device and saved into configuration. A list of available commands can be found in Appendix 10. The following 3 paragraphs summarize basic configuration.
	I. Managing Configuration and Device
	Command
	Description
	LOADDEF
	Loads factory defaults (always use for new devices)
	SHOWSET
	Shows current configuration
	READ
	Reads configuration from EEPROM memory
	WRITE
	Writes current configuration to EEPROM memory
	DT
	Read/Write date and time
	RESTART
	Restarts the device
	Note: Do not forget to issue WRITE command if you have changed any device parameter!
	II. Measurement Configuration
	The following commands have to be used in order to configure the device for taking vehicle samples:
	1. Set Lane Number, Loop Length and Distance between loops:
	Commands: LANENUM, LOOPLEN, LOOPDIST
	2. Start or stop measurement:
	Commands: START, STOP, AUTOSTART
	3. Listen to measured vehicles (samples will be sent to the PC)
	Commands : LISTEN, NOLISTEN
	4. Check vehicle buffer:
	Commands: VEHCOUNT, SHOWVEH, CLEARVEH
	III. Server Upload
	The following should be configured for proper data upload to the server:
	1. Station ID, Lane Number (for appropriate server database upload)
	Commands: SID, LANENUM
	2. Server IP address and Port:
	Commands: SERVERIP, SERVERPORT
	3. Enable GPRS transfer, Time period, SIM card PIN code:
	Commands: GPRSSEND, GPRSTIME, GPRSPIN
	4. Try to connect to the server
	Commands: GPRSNOW
	Appendix 10 Traffic Counter: List of Commands
	Command
	Description
	Commands without write values
	LISTEN
	Vehicle samples will be sent to the PC for 5 minutes
	NOLISTEN
	Stop listening vehicle samples
	VEHCOUNT
	Show number of vehicle samples in buffer
	UPTIME
	Show number of minutes of device uptime
	RESTART
	Restart the device
	RESETDET
	Reset Inductive Loop Detectors
	LOADDEF
	Load default settings
	READ
	Read settings from EEPROM memory
	WRITE
	Write settings to EEPROM memory
	SHOWSET
	Show actual settings
	SHOWVEH
	Show the content of vehicle buffer
	CLEARVEH
	Clear vehicle buffer
	SHOWTEMP
	Show content of temperature buffer
	CLEARTEMP
	Clear temperature buffer
	GETTEMP
	Show current indoor and outdoor temperature
	JOKE
	Easter Egg
	VER
	Show network protocol, firmware and hardware versions
	HELP
	Show list of available commands
	GPRSNOW
	Connect and transfer buffers (veh., temp.) to the server
	GPRSDISCON
	Close and reset GPRS modem
	START
	Begin measurement
	STOP
	Stop measurement
	Commands for Configuration (read/write value)
	AUTOSTART
	Start Measurement after power-up
	0=no, 1=yes
	DT
	Set/Get actual date and time (set command without seconds)
	format: YYMMDDHHmm
	ex. 0812301545 = 2009-12-30 15:45:00
	MEASUREAVG
	Measure speed and length by averaging
	0=no, 1=yes
	GPRSSEND
	Transfer samples to the server
	0=no, 1=yes
	GPRSTIME
	Time interval of transferring
	[minutes]
	GPRSPIN
	PIN code for a SIM card in the GPRS modem
	0 for no PIN
	LOOPDIST
	Distance between loops
	[dm]
	LOOPLEN
	Length of loop
	[dm]
	LANENUM
	Lane offset – LaneNumber of the first lane
	LaneNumber+1 of the second lane
	SERVERIP
	IP address of the server
	[xxx.xxx.xxx.xxx]
	SERVERPORT
	Server port
	[0-65535]
	TEMPTIME
	How often to get temperature samples
	[minutes, 0=don’t take any samples]
	SID
	Station ID
	Appendix 11 Database Create Script
	Appendix 12 Example Source Code for CCS C Compiler

